
D
AY

O
N

E:D
EPLO

Y
C

LO
U

D
-N

ATIV
E

C
O

N
TRA

IL
N

ETW
O

RKIN
G

A
S

A
C

N
IFO

R
KU

BERN
ETES

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/dayone.

DAY ONE: DEPLOY CLOUD-NATIVE CONTRAIL NETWORKING
AS A CNI FOR KUBERNETES

By Krishna Kishore, Rahul Verma, Tayib Ahmed

DAY ONE: DEPLOY CLOUD-NATIVE
CONTRAIL NETWORKING AS A CNI
FOR KUBERNETES

One of Contrail Networking’s (CN2) key benefits is its simplicity and cloud-native design, mak-
ing it easy to operate and consistent across different clouds. Additionally, CN2 is DevOps-
friendly with your existing workflows and processes. Advanced security features such as
micro-segmentation, multi-tenant and namespace network isolation, and label-based security
policies provide pervasive security for your network. CN2’s ability to manage multiple clusters
with one CN2 instance, and its multi-cluster policy federation for network security and BGP
cluster-to-cluster peering, enables scaling of your network across multiple clusters.

This book shows you how to deploy CN2 as a container network interface (CNI) in Kubernetes
(K8s) and how to toggle these features. Step-by-step you'll learn how to deploy applications
and add distributed clusters. It’s a tour de force for CN2 and the authors make it easy with lots
of verified examples and tips from their long-time Technical Support careers.

IT’S DAY ONE AND YOU HAVE A JOB TO DO:

n Understand Kubernetes Networking and the role of CNIs in Kubernetes.

n Learn about the advanced networking features and capabilities provided by CN2.

n Follow the CN2 deployment steps: installation of required components, configuring the

network, and creating objects such as virtual networks.

n Learn how CN2 objects work and how they are used: virtual networks, BGP routers, isolated

namespaces, security policies, etc.

n Deploy a multi-tier microservice-based enterprise application in CN2.

n Learn how to peer a CN2 cluster with DC gateway router.

“This new book on CN2 is an excellent resource that provides comprehensive coverage of key techni-
cal terms followed by step-by-step instructions for installation and verification. It also includes valu-
able insights from Juniper’s Customer Focused Technical Support (CFTS) and Product Line Manage-
ment (PLM) teams.” Payum Moussavi, GVP, Customer Service, Juniper Networks

“A thorough up-and-running book devoted to Cloud-Native Contrail Networking (CN2). Build a new
cloud on day one! Everything you need plus insights and tips from Rahul, Kishore, and Tayib.”

Raghupathi C., Senior Director of Technical Support, Juniper Networks

 CN2: more than just a Container Network Interface.

https://www.juniper.net/books

D
AY

O
N

E:D
EPLO

Y
C

LO
U

D
-N

ATIV
E

C
O

N
TRA

IL
N

ETW
O

RKIN
G

A
S

A
C

N
IFO

R
KU

BERN
ETES

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/dayone.

DAY ONE: DEPLOY CLOUD-NATIVE CONTRAIL NETWORKING
AS A CNI FOR KUBERNETES

By Krishna Kishore, Rahul Verma, Tayib Ahmed

DAY ONE: DEPLOY CLOUD-NATIVE
CONTRAIL NETWORKING AS A CNI
FOR KUBERNETES

One of Contrail Networking’s (CN2) key benefits is its simplicity and cloud-native design, mak-
ing it easy to operate and consistent across different clouds. Additionally, CN2 is DevOps-
friendly with your existing workflows and processes. Advanced security features such as
micro-segmentation, multi-tenant and namespace network isolation, and label-based security
policies provide pervasive security for your network. CN2’s ability to manage multiple clusters
with one CN2 instance, and its multi-cluster policy federation for network security and BGP
cluster-to-cluster peering, enables scaling of your network across multiple clusters.

This book shows you how to deploy CN2 as a container network interface (CNI) in Kubernetes
(K8s) and how to toggle these features. Step-by-step you'll learn how to deploy applications
and add distributed clusters. It’s a tour de force for CN2 and the authors make it easy with lots
of verified examples and tips from their long-time Technical Support careers.

IT’S DAY ONE AND YOU HAVE A JOB TO DO:

n Understand Kubernetes Networking and the role of CNIs in Kubernetes.

n Learn about the advanced networking features and capabilities provided by CN2.

n Follow the CN2 deployment steps: installation of required components, configuring the

network, and creating objects such as virtual networks.

n Learn how CN2 objects work and how they are used: virtual networks, BGP routers, isolated

namespaces, security policies, etc.

n Deploy a multi-tier microservice-based enterprise application in CN2.

n Learn how to peer a CN2 cluster with DC gateway router.

“This new book on CN2 is an excellent resource that provides comprehensive coverage of key techni-
cal terms followed by step-by-step instructions for installation and verification. It also includes valu-
able insights from Juniper’s Customer Focused Technical Support (CFTS) and Product Line Manage-
ment (PLM) teams.” Payum Moussavi, GVP, Customer Service, Juniper Networks

“A thorough up-and-running book devoted to Cloud-Native Contrail Networking (CN2). Build a new
cloud on day one! Everything you need plus insights and tips from Rahul, Kishore, and Tayib.”

 Raghupathi C., Senior Director of Technical Support, Juniper Networks

CN2: more than just a Container Network Interface.

https://www.juniper.net/books

Day One: Deploy Cloud-Native Contrail
Networking as a CNI for Kubernetes

By Krishna Kishore, Rahul Verma, Tayib Ahmed

Chapter 1: Network Virtualization . . 8

Chapter 2: CN2 as a Kubernetes CNI . . 22

Chapter 3: Installing and Getting Familiar with CN2. . 33

Chapter 4: Deploy a 3-Tier Application. . 54

Appendix: Add a Distributed Cluster to the Setup. . 76

	 iv

© 2023 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other countries.
The Juniper Networks Logo and the Junos logo, are trademarks
of Juniper Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper
Networks reserves the right to change, modify, transfer, or
otherwise revise this publication without notice.

Published by Juniper Networks Books
Authors: Krishna Kishore, Rahul Verma, Tayib Ahmed
Technical Reviewers: Ashish Paul (JTAC), Sheetal Jangeed
(CFTS), Aniruddh Amonker (CFTS), Aiman Iqbal
Editor in Chief: Patrick Ames
Printed in the USA by Vervante Corporation.
Version History: v1, April 2023
 2 3 4 5 6 7 8 9 10

About the Authors

Krishna Kishore is an experienced Staff Engineer with
Juniper CFTS, boasting a career spanning over 16 years in the
field of networking. In his current role, he provides valuable
support to Juniper customers in maintaining their private clouds
and SD-WAN. With his wealth of knowledge and expertise,
Krishna Kishore is an asset to Juniper CFTS and a reliable
partner for customers seeking to optimize their networking
infrastructure. He is the author of Day One: Contrail Network Up
and Running. In addition to his professional pursuits, he also has a
passion for design and 3D printing. He spends his free time
creating and producing unique items that are not typically
available for day-to-day needs.

Rahul Verma is a Staff Engineer at Juniper CFTS. With 13+
years of technical experience, he is an ambassador of Juniper
values. He drives complex situations with passion and delivers
excellence daily. In his current role, he possesses expertise across
various networking domains, including security, SDN,
SD-WAN, automation, and virtualization. Rahul is a technical
writer (published a Day One Book: vSRX on KVM), an avid runner
and loves to trek and breathe mountains.

Tayib Ahmed is a Senior Product Manager, Cloud Native
Contrail Networking (CN2) at Juniper Networks. With 18 years
in the networking industry, and over 10 years as an engineering
leader, Tayib has built and lead multi-functional global teams
from the ground up - creating and optimizing processes,
building training plans, engaging with customers to remove
friction points in the product and service offerings, and fostering
innovation. As a Product Manager, he is responsible for the
roadmap of CN2 - working closely with the engineering team
for feature delivery, marketing and field for GTM, and
customers for adoption. When not at work, Tayib can be found
mentoring startups in India.

Authors’ Acknowledgments

Krishna Kishore. I would like to express sincere gratitude to
Payum Moussavi, Raghupathi C, and Brahmeswara Reddy
Kauluru for their unwavering support in the office, and to my
wife Rakshita Pandey for her constant encouragement and
support throughout this journey. I am also grateful to my
colleagues Ashish Paul, Aiman Iqbal, Sheetal Jangeed, and
Aniruddh Amonker for their invaluable feedback and critical
comments, which helped shape this book. I also extend Patrick
Ames, for his guidance and expertise in bringing this book to
fruition. I would also like to extend my heartfelt appreciation to
Tayib Ahmed, co-author of this book, for his efforts and insights
throughout the writing process.

Rahul Verma. I would like to express sincere gratitude to
mentors Payum Moussavi, Raghupathi C, and Brahmeswara
Reddy Kauluru, who kept me motivated, and my parents and
my wife Isha S. Verma, who encouraged me for the pursuit.
Peers and reviewers (Aiman, Sheetal, Ashish, and Aniruddh)
played an important role in vetting the content. Delighted to
have Patrick Ames as the Editor in Chief to spray his magic
onto the work to give it the beautiful shape it is in today.

Tayib Ahmed. I would like to express sincere gratitude to
Aiman Iqbal and Nick Davey for the help they extended while
working on this book. Gratitude to co-authors is usually an
afterthought, but I would like to call out the brilliance of Rahul
Verma and Krishna Kishore. This book would have been a
non-starter without their boundless enthusiasm, technical
competence, and grit to get to the finish line despite countless
obstacles. The support system at home can never be
understated - my gratitude to my parents, my wife Nida Kauser
and my three wonderful kids who put up with periods of my
unavailability without complaint.

	 v	 Welcome to Day One 	 v	

Welcome to Day One

This book is part of the Day One library, produced and published by Juniper Networks
Books. Day One books feature Juniper Networks technology with straightforward expla-
nations, step-by-step instructions, and practical examples that are easy to follow.

	� Download a free PDF edition at https://www.juniper.net/dayone.

	� Purchase the paper edition at Vervante Corporation (www.vervante.com).

Key CN2 Resources

The authors of this book highly recommend the following CN2 resources and
documentation:

	� CN2 Manifests:
https://support.juniper.net/support/downloads/?p=contrail-networking

	� CN2 Documentation:
https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-
networking/#cat=set_up

	� CN2 supported platforms:
https://www.juniper.net/documentation/en_US/release-independent/contrail-
cloud-native/topics/reference/cloud-native-contrail-supported-platforms.pdf

	� CN2 Free trail:
https://www.juniper.net/us/en/forms/cn2-free-trial.html

	� CN2 Day One github repo for this book:
https://github.com/Juniper/cn2dayone

What You Need to Know Before Reading This Book

Before reading this book, you need to be familiar with the basic administrative functions
of Contrail Networking, including the ability to work with operational commands and
to read, understand, and change configurations.

This book makes a few assumptions about you, the reader:

	� You are familiar with Linux CLI and virtualization.

	� You are familiar using tools like VIM or VI.

	� You are familiar and able to read YAML files, and you have high-level understanding
of TCP/IP stack.

	 vi	 What You Will Be Able To Do After Reading This Book

What You Will Be Able To Do After Reading This Book
	� Understand Kubernetes Networking and the role of CNI in Kubernetes.

	� Discover how CN2 delivers more than CNI: Learn about the advanced networking
features and capabilities provided by CN2 that go beyond the basic CNI, such as
multi-cluster management, advanced security, and improved performance.

	� Understand the CN2 deployment steps: Comprehend the step-by-step process of
deploying CN2 in a Kubernetes cluster, including the installation of required
components, configuring the network, and creating objects such as virtual networks
and BGP routers.

	� Learn about CN2 objects: Understand how CN2 objects such as virtual networks,
BGP routers, isolated namespaces, and security policies work and how they are used
to create a secure and scalable network environment.

	� Deploy multi-tier microservice-based enterprise application in CN2: Understand
how to deploy a multi-tier microservice-based enterprise application in a CN2
environment and how CN2 can be used to manage and secure the network for such
applications.

	� Learn how to peer CN2 cluster with DC gateway router: Understand how to peer a
CN2 cluster with a DC gateway router to provide access to services and resources
from outside the cluster.

Glossary

BMS: Bare Metal Server

CIDR: Classless Inter-Domain Routing or super-netting

CLI: Command Line Interface

CRI: Container Runtime Interface

DPDK: The Data Plane Development Kit

eBPF: Extended Berkeley Packet Filter

FQDN: Fully Qualified Domain Name

K8s: Kubernetes

KLM: Kernel Loadable Module

KVM: Kernel-based Virtual Machine

LCM: Life Cycle Management

LXD: Linux Container

	 vii	 Glossary

OCI: Open Container Initiative

RKT: Container engine (pronounced as rocket)

SR-IOV: Single Root - Input/Output virtualization

UEFI: Unified Extensible Firmware Interface

VM: Virtual Machine

YAML: Yet Another Markup language

This chapter provides an overview of how data center (DC) architecture evolved to keep
up with trends in applications hosted from monolithic to microservices-based, evi-
denced by the emergence of containerization and the introduction of Kubernetes as a
leading orchestration platform. The chapter provides an insight into Container and Ku-
bernetes networking.

As Kubernetes has become the orchestrator of choice in data centers, it has created a
need for software-defined networking solutions such as Cloud-Native Contrail Net-
working (CN2) to address new challenges and provide a more secure and scalable net-
work environment. .

Evolution of DCs from Monolithic to Microservices-based
Architecture

The evolution of data centers has trended towards greater flexibility and efficiency of
computing resources, rather than many physical servers, each running a separate ap-
plication or service. The older approach has several drawbacks, including high costs for
both hardware and maintenance, and limited scalability.

So, DCs began to adopt virtualization technologies that allowed multiple virtual ma-
chines (VMs) to run on a single bare metal server for better resource utilization and eas-
ier management of infrastructure.

The advent of virtualization added a new challenge: the VMs that were spun up inside
the servers, in turn, needed to be connected, both within the same server and across
servers. The network problem had now moved inside the servers, too!

In addition, server resources need to be monitored, the LCM (Lifecycle Management)
of VMs was a necessity, and monitoring and troubleshooting were needed to maintain
sanity of Day 2 operations.

Chapter 1

Network Virtualization

	 9	 Evolution of DCs from Monolithic to Microservices-based Architecture

To improve resources utilization, features like multi-tenancy were developed.

The added complexities of a virtualized world gave birth to an open-source platform
called OpenStack. The OpenStack community developed many projects for managing
the complexities of virtual infrastructure and the one used for managing the network-
ing piece was Neutron.

While Neutron was good for demonstrating networking in a virtual world, it fell short
of the rigors needed to operate a networking infrastructure in the real world.

This is where Juniper developed an overlay SDN solution, based off OpenStack called
Contrail and it has been solving the real-world networking demands of leading telcos
and ISPs for a decade.

However, virtualization still had its limitations: slow provisioning times, significant
resources required to run each VM such as CPU, memory, and storage. CPU cycles
are also used when hypervisors emulate several hardware functions and map actual
memory addresses to memory addresses.

Figure 1-1	 Evolution Of Data Centers From the Monolithic Architecture to Microservices-Based
Architecture

With microservices-based applications exploding in usage, containers became the de
facto choice for implementing microservices-based applications. In recent years, con-
tainerization has emerged as a new approach to managing data centers. Containers
are a lightweight alternative to VMs, allowing applications to be packaged in a self-
contained way and run on any compatible host. This allows for faster deployment and
easier scaling of applications. In addition, containers provide better isolation between
applications, making it easier to manage their interactions. As seen with virtualization,
introduction of new technologies to solve pain points in existing ones comes with a
trade off – new and different problems for the older ones.

	 10	 Chapter 1: Network Virtualization

The adoption of microservices and container-based architecture has led to a significant
increase in the number of network connections and traffic flows, making it difficult to
manage and secure the network. Just like OpenStack emerged as the orchestrator of
choice for virtual workloads, Kubernetes has emerged as the orchestrator of choice for
containerized workloads.

The way Contrail stepped in to provide production-grade networking for VMs, Cloud-
Native Contrail Networking, or CN2, has emerged as the CNI of choice for cloud-na-
tive workloads or containers. CN2 provides advanced networking services such as
multi-cluster management, advanced security, and improved performance.

Data Center Issues Today Are Essentially About Networking

Today, data centers face several challenges, one of which is the increasing complexity of
managing and scaling the network to support the growing number of applications and
services. As organizations increasingly rely on digital technologies, the number of ap-
plications and services being run in data centers is increasing exponentially, resulting in
the need for more bandwidth, and perhaps more importantly, the ability to manage,
scale, and secure the network to support these applications and services.

As the number of applications and services running in data centers increases, the net-
work infrastructure needs to be able to scale to support them. Traditional networking
solutions are often not able to keep up with this demand, making it difficult to add new
applications and services without causing disruptions or creating bottlenecks.

Another issue is the lack of visibility and control over the network. As the number of
devices and applications connected to the network increases, it becomes increasingly
difficult to manage and troubleshoot the network. Without proper visibility and control,
it can be challenging to identify and resolve issues, which can lead to network downtime
and decreased productivity.

In addition, the complexity of the network infrastructure has increased with the adop-
tion of cloud, virtualization, and containerized workloads. This has made it challeng-
ing to monitor and troubleshoot network issues and to manage security policies across
the infrastructure.

In summary, today’s data centers are facing networking challenges related to the man-
agement, scalability, and visibility of the network. Traditional networking solutions are
not able to keep up with the growing complexity in data centers, and lack the scalability,
visibility, and control needed to support these applications and services effectively.

	 11	 Overview of Containers

Overview of Containers

Now let’s take a brief historical journey through containerization and review key terms
essential to understanding the content of this book and where DCs are evolving.

Containers, in their rudimentary form, have existed since 1979 as CHROOT and BSD
Jail. However, modern-day containers started to appear in 2006 after Google intro-
duced cgroups and Kernel Namespaces.

Containers package the application, libraries, and runtime dependencies into a single
file. They are portable, which means containers created on one machine can move to
any other machine provided the target machine is also running a similar kernel (see
Figure 1.2). For example, all containers created on Linux can run on any other Linux
machine provided the destination has compatible container runtime.

Figure 1.2	 How Containers Are Created and Delivered

Efforts were made by many different organizations and vendors to popularize contain-
ers, with Docker becoming synonymous for container management since 2013. Docker
offers tools to create, publish, and operate containers.

Container Runtime

Low-level software, which consumes mount point, meta data provided by the container
engine and communicates with the kernel to start containerized processes, setting up
cgroups, etc.

Though there are different container runtimes, most of them follow the specifications
provided by OCI (Open Container Initiative). OCI was established by Docker and sev-
eral other organizations in 2015 to standardize the runtimes and image specifications,
see: https://developers.redhat.com/blog/2018/02/22/container-terminology-practi-
cal-introduction#containers_101 .

	 12	 Chapter 1: Network Virtualization

Container Engine

Container engine is software that accepts user commands, including those from the
command line. It fetches images and executes the containers from the viewpoint of the
end user. There are numerous container engines: LXD, RKT, CRI-O, and Docker, for
instance.

Container Image

It is a file used as a local mount point when starting a container. Usually, these are stored
on a container registry and pulled when the container is started for the first time on a
host.

Figure 1.3	 Overview of Container Engine and Container Runtime

Running containers on a bare metal server or a VM requires a container runtime or
engine, which manages all the steps in the life cycle of containers, viz, getting the image,
mapping volumes, starting, and stopping the containers.

Here’s a list of container runtimes that you might come across:

	� Rkt

	� Docker

	� Podman

Kubernetes: Container Orchestrator

Kubernetes, also known as K8s, is an open-source container orchestration engine for
automating deployment, scaling, and management of container application workloads.
It helps organize and manage containers across multiple hosts in a cluster and provides

	 13	 Kubernetes: Container Orchestrator

features such as self-healing, rolling updates, replica sets, desired state of clusters, and
service discovery. Kubernetes provides a unified solution for deploying and managing
containers at scale, making it an essential tool for modern cloud-native application de-
velopment and deployment.

A typical deployment of Kubernetes in a cluster setup consists of two primary compo-
nents: a control plane residing on control node and worker nodes running the workload
pods. The control plane of Kubernetes is responsible for managing the overall state of
the cluster, including scheduling, and deploying containers, monitoring their health,
and handling failovers and scaling. A worker node in Kubernetes is responsible for run-
ning the containers that make up an application and providing the necessary resources
and services to support those containers, such as networking and storage. It communi-
cates with the control plane to receive instructions on what containers to run and how to
manage them.

Let’s delve into the terminology used in K8s so the rest of this book makes sense.

Nodes and Cluster

In K8s, Node is a VM or a physical machine. A collection of nodes working with a com-
mon control plane is referred to as Cluster.

Pod

Pod is the smallest entity that can run on a node. A pod usually encapsulates a container
inside it. However, there can be special requirements where developers may want to run
more than one container per pod.

TIP	 Ideally a pod runs one container but the same isn’t a rule. Kubernetes also
supports running more than one container in a single pod. Read more about the
multiple containers in a pod here: https://kubernetes.io/docs/concepts/workloads/
pods/

Pod hosts the application or a part of the application and exposes the intended service
on a specific port for other pods within the cluster or to the outside world to communi-
cate with.

For a complete list of K8s terminologies please refer to the K8s documentation here:
https://kubernetes.io/docs/reference/glossary/?fundamental=true .

Kubernetes Cluster and its components

Figure 1.4 shows the basic building blocks of the Kubernetes ecosystem. It is majorly
divided into a control node and multiple worker nodes forming a cluster. The control
node and worker node run their respective components in the form of pods in a
namespace called kube-system.

	 14	 Chapter 1: Network Virtualization

Figure 1.4	 K8s Cluster and Components

Control node runs a minimum of the following components:

	� kube API-Server acts as a gateway for RESTful clients to communicate with. It
also acts as focal point of communication for all other components of control and
worker nodes.

	� kube-scheduler fetches the state of the nodes from the etcd and calculates where to
schedule the next pod.

	� kube-control-manager runs controller processes to regulate the shared state of the
cluster.

	� etcd is the key-value store for the K8s ecosystem, all information about nodes,
workload configuration and the intents are stored in the etcd store.

Worker nodes by default run the following components. However, this may differ based
on the deployment variants:

	� kubelet is the captain of the ship (worker node) and makes sure pods and containers
are healthy and in a desired state. It is the one that updates the etcd with the state of
cluster via kubeAPI

	� kube-proxy maintains the network rules and the proxy information for data plane
communication for the workloads/pods.

The process of deploying intent in a Kubernetes cluster can be visualized as follows:
When a REST request is made via kubectl or any other API client, it submits the pod
spec to the kube-api-server. (1) The API server writes the Pod object to the etcd. (2) All
K8s components use watches to keep checking API server for changes. In this case,
KubeScheduler (using its watchers) sees that a new pod object is created but isn’t yet
bound to any compute nodes.

	 15	 Kubernetes: Container Orchestrator

KubeScheduler assigns a node to the pod and updates the API server which is further
propagated to etcd. (3) Kubelet, on every node (using its watchers), keep watching API
server. (4) On reading about a new pod assignment to itself, kubelet starts the pod on its
node. (5) Kubelet updates API server about the pod status. (6) API server persists the
pod state into etcd. Once etcd sends an ack, API server sends ack to kubelet indicating
the event status.

NOTE	 A K8s control node is also a worker node in itself and can run pods. It also has a
kubelet, kube-proxy, and runs a container runtime engine of itself. We did not include
these components on purpose in the diagram to simplify the learning curve.

K8s Networking

Networking inside Kubernetes is based on the following network model:

	� Containers within a pod share network namespaces (i.e., share same IP & MAC).
Hence, the containers within a pod can communicate with each other using a
loopback address.

	� Every pod gets its own IP address and there is no need to map ports from container
to the host.

	� NAT is not required, pods on one node can communicate with pods on all other
nodes.

Understanding Pod Networking

In the previous section, we looked at container networking and how it is connected to
the host. With the understanding that Kubernetes is a de-facto orchestration and con-
tainer management system which works at scale, let’s focus on pod networking.

Figure 1.5	 Understanding Pod Networking

	 16	 Chapter 1: Network Virtualization

A pod is a logical wrapper for a container to run in a K8s cluster. A pod can be termed
as a group of one or more containers with shared network and storage resources.

In Figure 1.5, you can see a node running two pods: Pod A running one container and
Pod B running two containers inside the pod.

Now, let us understand how a pod looks at the network.
root@Jumphost:~# kubectl get pods -A -o wide | grep PODA
default PODA 1/1 Running 0 51s 10.233.65.1 centralworker1 <none>
<none>
root@Jumphost:~# kubectl get pods -A -o wide | grep PODB
default PODB 2/2 Running 0 20m 10.233.66.1 centralworker2
<none> <none>

Here, the kubectl command is listing all pods in a specific namespace.

Now, let us look at how a pod looks at the underlying network. On inspecting the pod
running single container, you can see one network interface defined as eth0@if20 with
IP 10.233.65.1/18 and the other as a lo0 aka loopback interface:

root@Jumphost:~# kubectl exec --stdin --tty PODA -- /bin/bash
root@PODA:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
19: eth0@if20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:bd:d6:d6:00:59 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.233.65.1/18 brd 10.233.127.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fd85:ee78:d8a6:8607::1:101/112 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::246c:55ff:fed0:f255/64 scope link
 valid_lft forever preferred_lft forever

Likewise, if we inspect networking inside a multi-container pod, we will see an output of
command ip addr showing the same IP and mac address. This is because they share the
same storage and network resources and can communicate with each other using the
loopback address, i.e., 127.0.0.1.

root@Jumphost:~# kubectl exec --stdin --tty PODB -c 1st -- /bin/bash
root@PODB:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
13: eth0@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:52:2f:6b:db:17 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.233.66.1/18 brd 10.233.127.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fd85:ee78:d8a6:8607::1:201/112 scope global

	 17	 Kubernetes: Container Orchestrator

 valid_lft forever preferred_lft forever
 inet6 fe80::b86f:14ff:fea2:553e/64 scope link
 valid_lft forever preferred_lft forever
	
root@Jumphost:~# kubectl exec --stdin --tty PODB -c 2nd -- /bin/bash
root@PODB:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
13: eth0@if14: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
 link/ether 02:52:2f:6b:db:17 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.233.66.1/18 brd 10.233.127.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fd85:ee78:d8a6:8607::1:201/112 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::b86f:14ff:fea2:553e/64 scope link
 valid_lft forever preferred_lft forever

Veth interface consists of two ends – one inside the pod and the other on the host.

Looking at the single container pod named “PODA”, the eth0@if20 is the veth pair side
of the pod and is tunneled into the host namespace where the other side of the veth pair
lies.

To verify the host side of the veth, identify the host on which the pod is running by ex-
ecuting the command kubectl get pods -A -o wide. Using the information from the out-
put, login to the host and execute the command ip -c link show up.

root@centralworker1:~# ip -c link show up
~
20: tapeth0-908665@if19: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode
DEFAULT group default
 link/ether 56:1c:23:6f:75:8d brd ff:ff:ff:ff:ff:ff link-netnsid 1

The ping from PODA container pod towards the multi-container pod can be captured
on the tap interface of the host for troubleshooting purposes:

root@single:/# ping 10.233.66.1
PING 10.233.66.1 (10.233.66.1) 56(84) bytes of data.
64 bytes from 10.233.66.1: icmp_seq=1 ttl=63 time=2.49 ms
^C
--- 10.233.66.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.494/2.494/2.494/0.000 ms

root@centralworker1:~# tcpdump -ni tapeth0-908665
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on tapeth0-908665, link-type EN10MB (Ethernet), capture size 262144 bytes
16:46:36.326100 ARP, Request who-has 10.233.64.1 (00:00:5e:00:01:00) tell 10.233.64.1, length 28
16:46:38.326579 ARP, Request who-has 10.233.64.1 (00:00:5e:00:01:00) tell 10.233.64.1, length 28
16:46:38.348125 IP 10.233.65.1 > 10.233.66.1: ICMP echo request, id 382, seq 1, length 64
16:46:38.350581 IP 10.233.66.1 > 10.233.65.1: ICMP echo reply, id 382, seq 1, length 64

	 18	 Chapter 1: Network Virtualization

The traffic, when passed from pod to the host via veth pair, checks the Linux IP tables
and once allowed, it is forwarded to the corresponding veth pair of the destination pod.

This also shows the flat architecture of K8s where all pods can communicate with other
pods irrespective of where they are spawned. Similarly, if the destination pod is on a sepa-
rate node, the CNI plugin implemented in K8s will learn the destination pod IP subnet
and route the traffic to said node. Now, let us review what a CNI is.

Container Network Interface (CNI)

By default, the container or pod does not have a network interface. The runtime or or-
chestrator calls a CNI to provide it.

CNI is used by container runtimes or orchestrators such as K8s to ADD or DEL inter-
faces to pods and CHECK the status of those interfaces.

When the Kubernetes control plane determines the node on which a pod should be cre-
ated, the kube-api then informs corresponding kubelet to execute the task. The kubelet
then executes the task on the worker node.

Figure 1.6	 Kubelet and Its High-level Interaction

Kubelet is the primary worker node agent, and it works in terms of PodSpec, which de-
fines and describes a pod. Kubelet considers the definition and makes sure that containers
are running and healthy as per the spec. Each worker node needs to install a container
runtime at the time of cluster deployment as this is the component that would accept the
intent definition from Kubelet and perform all low-level tasks. Container runtime is also
sometimes termed as container engine, as it takes the responsibility of managing indi-
vidual containers. In a nutshell, container engine undertakes the tasks to:

	 19	 Kubernetes: Container Orchestrator

	� Load the container image from a repository

	� Monitor the local system resources

	� Manage the lifecycle of a container

Kubernetes is designed to support modular cloud-native applications. Hence, the plat-
form is equally flexible and modular. It provides interfaces at each layer to allow inter-
changeability. To incorporate multiple runtimes into Kubernetes, the community
specified a CRI (Container Runtime Interface), which allows a user to switch between
runtimes at any point of the cluster deployment. CRI-O is the most popular CRI plugin
as it is known for being extremely light and nimble.

Likewise, CRI and its corresponding runtime, we have CNI (Container Network Inter-
face) defined for this layer to be flexible for n number of plugins to be used for different
functionalities. There are several open source and closed source CNI plugins available.
You must use at least one CNI plugin for the pods in various nodes to communicate with
each other. For example, Calico uses the standard L3 approach while Flannel alongside
L3 fabric builds VXLAN out of the box. Cilium built a VXLAN-based networking
solution leveraging the existing CNI plugins like Calico. Juniper’s CN2 provides con-
nectivity to the pod workloads using overlay tunnels across the IP fabric. These tunnels
could be VXLAN, MPLSoUDP, or MPLSoGRE.

To conclude, Kubelet receives the intent from the Kube API server and connects to in-
stalled container runtime to run the required task. Container runtime performs ADD,
DELETE or CHECK function to perform the required task and updates the Kubelet,
which in turn updates the Kube API server with the result of the function execution.
The process is termed as a JOB and the details are written into the etcd store.

Kubernetes Services

Pods are the smallest execution unit in K8s cluster. Pods encapsulate containers that
comprise of application code. Pods are ephemeral resources; they get their own IP ad-
dress. If a pod goes down, K8s checks etcd, realizes that the current state does not meet
the desired state, and spins up a new pod. This leads to a problem: if a set of pods, say
“frontend,” uses functionality from some set of pods, let’s say “backend,” how do the
frontend pods keep track of IP addresses being used by pods running the backend
application?

Kubernetes service is the answer. It is an abstraction which defines a logical set of pods
and a policy to access them. It uses a Virtual IP as a stable IP. When a client sends a re-
quest to a service’s VIP, the request is redirected to one of the pods that is associated
with that service.

The set of pods targeted by a service are usually determined by the label selector.

	 20	 Chapter 1: Network Virtualization

Figure 1.7	 Kubernetes Service

K8s supports three types of services:

	� Cluster IP: is the usual way to access a service from within a Kubernetes cluster. It
is used for service communication within a cluster like frontend talking to backend
of an application.

	� Node Port: is the most basic way to access a service from outside the cluster. It is an
extension of clusterIP that exposes the service to entities outside the cluster by
adding a cluster-wide port on top of clusterIP. Node Port is used when you want
external connectivity to a service.

	� Load Balancer: a more sophisticated way to expose a service outside the cluster,
using an external load balancer. It builds on top of NodePort and ClusterIP and
exposes the service externally through a cloud provider’s load balancer. Typically
used when the Kubernetes cluster is hosted on a cloud provider.

Figure 1.8	 Service Types: 1. Cluster IP, 2. Node Port, 3. Load-Balancer

	 21	 Summary

Kubernetes Service Discovery

In modern distributed systems, services can be added, removed, or scaled dynamically,
and their IP addresses can change frequently. Without a way to dynamically discover
these services, it would be difficult to ensure that the clients can always connect to the
correct service instance.

Kubernetes has an in-built service discovery mechanism that makes it easier for applica-
tions to find each other in a K8s cluster as pods and services are dynamically created,
updated, and shifted between nodes.

Service discovery is done using Kubernetes DNS service called CoreDNS. It is a single
process container which resolves and caches DNS queries, responds to health checks,
and provides metrics.

Kubelet sets each new pod’s /etc/resolv.conf nameserver option to the cluster IP of the
DNS service, with appropriate search options to allow shorter hostnames.

The below output shows the DNS service IP address, which is in turn mapped to a pod
or a set of pods running coreDNS under the namespace kube-system. When the user
spawns pods, their DNS setting will point to this IP address.

root@single:~# kubectl exec -ti dnsutils -- cat /etc/resolv.conf
search default.svc.single.cluster svc.single.cluster single.cluster
nameserver 10.233.0.3 <<<<
options ndots:5
root@single:~#

Summary

This chapter covered the history of data center development and the current challenges
related to networking. It also delved into containerization and its role in the modern
data center. Additionally, the chapter presented an introduction to Kubernetes as a
leading container orchestration platform, including its key concepts and terminology.

Juniper’s Cloud Native Contrail Networking or CNCN/CN2, or simply CN2, is an over-
lay cloud native SDN solution. It is an evolution of a popular SDN solution called Con-
trail Networking, built from ground up to be cloud native. It offers a range of key
capabilities, including cloud native networking, SDN for OpenStack and Kubernetes,
NetOps-driven automation, multi-cluster management and scale, edge and remote com-
pute, and unmatched advanced networking services. It integrates into K8s as a founda-
tional piece of the cluster by utilizing the extension framework of custom resources. One
can make use of all the popular tools of K8s such as kubectl, K9s, and its own custom
GUI to monitor and manage a K8s+CN2 cluster.

Advantages of CN2 When Used as a CNI in K8s Environments

One of CN2’s key benefits is its simplicity and cloud native design, which makes it easy to
operate and consistent across different clouds. Additionally, CN2 is DevOps-friendly and
integrates seamlessly with existing workflows and processes. Advanced security features
such as micro-segmentation, multi-tenant and namespace network isolation, and label-
based security policies provide unparalleled security for your network.

Another benefit of CN2 is its ability to manage multiple clusters with one CN2 instance,
and its multi-cluster policy federation for network/security and BGP cluster-to-cluster
peering. This allows for easy management and scaling of your network across multiple
clusters.

CN2 also utilizes ultra-fast, high-performance technologies such as kernel vRouter,
DPDK vRouter, and SmartNIC to provide unmatched performance and speed. Overall,
CN2 is a powerful, versatile, and secure solution for managing and scaling your network
in a hybrid and multi-cloud environment.

Chapter 2

CN2 as a Kubernetes CNI

	 23	 CN2 Architecture in K8s Environments

To understand more about CN2 and its features, please use the following link: https://
www.juniper.net/us/en/products/sdn-and-orchestration/contrail/cloud-native-contrail-
networking-datasheet.html

CN2 Architecture in K8s Environments

Figure 2.1	 Cloud Native Contrail Networking with Kubernetes components

As an SDN product, CN2 can be visualized in planes: viz, config, control, data, UI and
analytics. Each plane consists of horizontally scalable nodes and each node consists of one
or more microservices to perform its function.

Config and control functions are together termed as CN2 control plane, and it controls
the networking on one or more compute nodes running in a cluster or across clusters.

Let’s review the various microservices created by CN2 deployment on a K8s cluster.

Contrail-k8s-apiserver

Contrail-k8s-apiserver extends the Kubernetes API to support contrail custom resources.
It exposes REST and watches for any configuration resource changes. Pods, service, etc.,
are K8s native resources taken care of by kube apiserver and virtualnetwork, routingin-
stance, etc., and are custom resources whose definition is provided under contrail-k8s-
server. The regular kube-apiserver forwards all network-related requests to the
contrail-k8s-apiserver for handling.

	 24	 Chapter 2: CN2 as a Kubernetes CNI

Contrail-k8s-controller

Contrail-k8s-controller applies business logic and converts the user intent into reality.
The same is implemented as a reconciliation loop and constantly compares the intent
with actual state, and in case of a mismatch, initiates tasks to fix it.

Contrail-k8s-kubemanager

Contrail-k8s-kubemanager watches for any changes to regular Kubernetes resources
such as service and namespace and interacts with contrail-k8s-controller to act upon any
changes that affect the networking resources.

Contrail-Control

The Contrail-control node performs two major functions:

	� Configuration distribution: It receives the config from the config node via REST
watch and creates a configuration graph. It further passes on the required config
(partial graph) as per the need of respective compute nodes which can also be
referred to as worker nodes in K8s terminology. The configuration graph available
at the control node contains the entire cluster view whereas the partial graph refers
to what an individual node should have.

	� Route learning and distribution: This function of Contrail-control distributes routes
between compute nodes and gateway router. It uses iBGP between the control nodes
and XMPP with computes. It uses eBGP to peer with GW/routers to exchange
routes with the external world. Refer to Figure 2.1

Compute node or worker node

Compute node consists of a vRouter-agent and vRouter forwarding component which
together form the data plane of the CN2.

The agent microservice performs control-related functions. It receives the config from
the control node, converts the config, and sets up flow and interfaces with orchestration
plug-ins like CNI for the forwarding component.

vRouter supports multiple forwarding modes like kernel loadable module, DPDK (at the
time of writing this book, support for SmartNIC offload and eBPF is work-in-progress).

NOTE	 Telemetry node is an optional component that can be deployed based on the
user’s needs. It provides metrics, alarms info, logging, and flow analysis. It leverages
services like Prometheus, Elastic, Fluentd, Kibana stack and Influx TSDB. All CN2
components produce telemetry data and the telemetry node exposes REST endpoints for
users to plug-in their applications.

	 25	 CN2 Architecture in K8s Environments

CN2 as CNI in K8s cluster

CN2 is not just a CNI, it’s a game-changing K8s SDN solution that brings next-level net-
working capabilities to your K8s clusters.

Before delving deeper into the topic, let’s imagine CN2 in conjunction with Kubernetes
components using Figure 2.2.

Figure 2.2	 CN2 in Conjunction with Kubernetes

A CNI, as discussed in Chapter 1, is a binary that implements networking interfaces to
every pod created by the K8s cluster. Its functions involve creating network interfaces,
assigning IP addresses, and attaching interfaces to the data plane.

As shown in Figure 2.2, the CN2 config and control components are installed alongside
K8s components on the control node. The CN2 vRouter components are installed on
each node alongside K8s components.

Let us understand what happens when an intent to create a pod is sent by a user, and how
it is created:

1. A REST request is made via kubectl or any other API client. It submits the pod spec
(or k8s object) to the kube-api-server which writes the object to etcd.

2. kube-scheduler watches for the changes and schedules the pod object on a node, up-
dates kube-api-server which further updates the etcd store.

3. kube-api-server sends a request to Kubelet to create the said pod as per the user intent.

4/5. Contrail-k8s-kubemanager, using REST watch, listens for the intent i.e., the re-
quest/changes, and works with kube-api-server and kube-k8s-controller to translate the
high-level intent into low-level details like VMI, IIP etc.

	 26	 Chapter 2: CN2 as a Kubernetes CNI

NOTE	 Contrail-k8s-controller watches for any changes to CN2 objects and reconciles
until the desired intent is achieved for that object.

6. Contrail-k8s-apiserver write the translated low-level configuration to the etcd database
via the kube-api-server.

7. Contrail-control, using REST watch, listens for changes from kube-apiserver. Once it
notices the changes, it reads the etcd database to build the corresponding configuration
map.

8. Contrail-control then pushes the required configuration map to the intended vRouter
on the scheduled worker node.

9. From Step 3, Kubelet polls the configured CNI (CN2 in this case) for the networking
information.

10. CNI (CN2 in this case) consults the vRouter agent for the pod config.

11. vRouter agent replies with VMI list as learnt from contrail-control. If the pod infor-
mation is not already with vRouter, it polls the control node to fetch the required
information.

12. CNI processes the VMI list and creates interfaces. It then attaches the interfaces to
the pod.

13. CNI then requests VMI IP for each interface from vRouter agent and updates the
kubelet about the same.

Refer to Juniper documentation using the link below. It explains the different ways CN2
can be deployed. For example, pod with DPDK workload, pod with classic workload,
pod using multus to deploy a second interface like SRIOV. https://www.juniper.net/doc-
umentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-k8s-install-and-lcm/
index.html .

CN2 Custom Resources

Isolated Namespace

Kubernetes has a construct called namespace which is meant to isolate various resources of
the cluster between a group of pods from others. However, default K8s NS does not pre-
vent pods from one NS to communicate with the other NS. CN2 enhances traditional
Kubernetes by providing isolated namespaces and custom default pod networks. Isolated
namespaces allow network segmentation between pods by creating new default pod and
service networks for each namespace. Isolated NS prevents communication between the
pods spawned in isolated NS from other namespaces.

	 27	 CN2 Custom Resources

Figure 2.3	 Communication of Pods Between Isolated Namespaces and Non-Isolated Namespaces

Virtual Network

By default, CN2 will use the CIDRs provided for pod and service networking in Kuber-
netes and create two virtual networks called default-pod-network and default-service-
network. In the previous paragraph, we stated that isolated NS enables Kubernetes to
create default pods and default service networks on a per NS basis. CN2 takes this further
by enabling Kubernetes to create pods with their individual networks, based on the sub-
net parameters of a custom default pod network. This allows network isolation at both
the namespace and pod level.

Figure 2.4 	 Pods in Their Custom Virtual Networks

VNR

A Virtual Network Router (VNR) in CN2 serves as a mechanism to establish communi-
cation between different virtual networks. This is achieved by a process known as route
leaking, where routing instances and tables are imported into designated virtual
networks.

	 28	 Chapter 2: CN2 as a Kubernetes CNI

Two types of network models are offered by CN2 VNR:

	� Mesh: This model allows intercommunication between pods in all connected virtual
networks.

	� Hub-Spoke: In this model, pods in spoke virtual networks can communicate with all
pods in the hub virtual network and vice versa. However, pods in different spoke
virtual networks cannot communicate with each other.

Figure 2.5	 Virtual network router enabling communication across VNs

Security Policy

Security policies in CN2 are used to block or allow specific ports between VNs when
VNR is created. It can also be used within a VN to provide micro segmentation.

Figure 2.6	 Security policy providing micro-segmentation

BGPRouter

The BGPRouter, which is also referred to as the gateway router (GWR), is a device that is
used to provide external connectivity for a cluster of devices; in this case, the CN2 cluster.
The GWR acts as a gateway between the internal network of the CN2 cluster and the
external networks, allowing devices within the cluster to communicate with devices out-
side the cluster.

	 29	 CN2 Custom Resources

Floating IP

Floating IP is used to direct traffic towards pod(s) or a service from external networks. For
example, a service-web-lb is a Kubernetes service, which is assigned an IP address from
service-vn, and it is not reachable from external networks. To enable communication to
this service from external hosts, create a VN called public-fip-vn and configure RT
matching with external GW VRF to this VN. This will allow routes to be advertised be-
tween public-fip-vn and GW VRF. The IP address from this VN will be used to assign a
floating IP to either a service or pod.

Figure 2.7	 BGProuter: Session Between Contrail Controller and Gateway Router

For this to work properly, it is necessary to configure matching route-targets on both the
VN and the GWR. Route-targets are used to identify the routes that are exported or im-
ported between different networks. By configuring matching route-targets on the VN and
the GWR, you can ensure that the VN and the GWR are able to communicate with each
other and exchange routing information. This allows devices within the VN to communi-
cate with external devices through the GWR and vice versa.

To enable the exchange of routes between the CN2 cluster and the gateway router
(GWR), it is necessary to create a configuration object called a BGPRouter. The BG-
PRouter object contains details such as the IP address and router ID of the GWR, the
autonomous system (AS) number of the GWR, the type of router, and the address family
(e.g., inet-vpn) that the GWR supports. The BGPRouter object also includes the route-
target, which is used to identify the routes that are exported or imported between differ-
ent networks.

	 30	 Chapter 2: CN2 as a Kubernetes CNI

In addition to creating the BGPRouter object on the CN2 cluster, it is also necessary to
configure the GWR to peer with the CN2 control nodes. This can be done by specifying
the IP addresses and other details of the CN2 control nodes in the GWR’s configuration.
Once this configuration is in place, the GWR and the CN2 control nodes should be able
to establish a BGP (Border Gateway Protocol) session with each other.

Once the BGP session is established, you should be able to see the BGP status on both the
CN2 cluster and the GWR as established. This indicates that the two devices can exchange
routing information with each other and that they are able to communicate using BGP.

Overall, the process of configuring the CN2 cluster and the GWR to exchange routes in-
volves creating a BGPRouter object on the CN2 cluster and configuring the GWR to peer
with the CN2 control nodes. Once this configuration is in place, the two devices should be
able to establish a BGP session and exchange routing information. Chapter 4 will be cov-
ering the configuration of both GWR and the CN2 cluster to peer with each other for
exchanging routes.

VMI

Virtual Machine Interface or VMI is a representation of a port or interface which belongs
to a virtual network. It may or may not have an associated pod/virtual machine to it.

Figure 2.8	 Virtual Machine Interface

IIP

Instance IP, or IIP, is an IP address associated with a subnet of a VN. This can be IPv4 or
IPv6. IIP is further associated with the VMI.

	 31	 CN2 Deployment Models

Figure 2.9	 Instance IP

CN2 Deployment Models

CN2 deployment models can broadly be classified in two types: single cluster and
multi-cluster.

In single cluster model, the control plane components of both K8s and CN2 are exclu-
sive to this cluster. See Figure 2.10.

Figure 2.10	 Kubernetes with CN2 as CNI in Single Cluster Deployment

	 32	 Chapter 2: CN2 as a Kubernetes CNI

In the multi-cluster model, each cluster will have its own K8s control components run-
ning. However, the CN2 control plane components will reside only on the central cluster.
Each worker residing in either central or workload cluster will be hosting vrouter-agent
and vrouter to provide SDN capabilities.

Figure 2.11	 Kubernetes with CN2 as CNI in Multi-cluster Deployment

Single cluster can also be deployed with two interfaces on each node – one for manage-
ment and the other for data+control. Similar topology is not supported for multi- cluster
deployments.

For more information on this, refer to: https://www.juniper.net/documentation/us/en/
software/cn-cloud-native22.3/cn-cloud-native-k8s-install-and-lcm/topics/topic-map/
cn-cloud-native-deployment-models.html .

Here’s a checklist to review before attempting to install CN2:

	� Bare Metal Server(s) or BMSs to host VMs.

	� Alternately, you would need four VMs for central site and four VMs for workload site
spread across any number of BMSs.

	� Supported Ubuntu VM image. Supported OS and Kernel versions are listed in the
PDF file which can be accessed using this link: https://www.juniper.net/documenta-
tion/en_US/release-independent/contrail-cloud-native/topics/reference/
cloud-native-contrail-supported-platforms.pdf.

	� Subnet with at least four IPs for each cluster that can be assigned to VMs.

	� The above-mentioned IPs should be able to access the Internet for downloading
packages, manifests, and containers.

	� Credentials to access the enterprise-hub.juniper.net for downloading container
images – request a free demo: https://www.juniper.net/us/en/forms/cn2-free-trial.
html

	� Access to the git repo https://github.com/Juniper/cn2dayone to download
installation playbooks and example manifests for application.

	� Juniper MX series router or any other router which supports MP-BGP routing
protocol and MPLSoGRE as tunneling encapsulation.

Chapter 3

Installing and Getting Familiar with CN2

	 34	 Chapter 3: Installing and Getting Familiar with CN2	 34	

Figure 3.1 illustrates a central cluster setup using K8s and CN2. The VMs shown in the
diagram represent the Jumphost, Central, Worker1, and Worker2 nodes that make up
the cluster. All these VMs are connected to a bridge, which in turn, is connected to a net-
work segment of a particular subnet. This subnet is part of the interface of a router,
which facilitates communication between the cluster and the rest of the network.

Figure 3.1	 CN2 Central Cluster Basic Setup

Additionally, there is another bare metal server that contains similar VMs. However, this
set of nodes or cluster will be referred to as the workload cluster.

Figure 3.2	 The Workload Cluster

	 35	 Setting Up Infrastructure for CN2 Deployment

Setting Up Infrastructure for CN2 Deployment

To resemble a setup which would be as close as a production one, you need to install two
clusters residing on two individual BMSs. You can also create the two clusters on a single
BMS provided that each set of VM/nodes have their own bridge for networking to con-
nect to external devices. The BMSs should be installed with Ubuntu 20.04 and have
enough storage in the root partition to host VMs; around 400 GB of storage should be
sufficient. Note that the exact steps and functioning of the installation playbooks might
differ depending on your specific installation and configuration. So, it would be prefer-
able to use the same installation method as we have used in the example.

Before attempting to install the CN2 as CNI for K8s, we will set up the physical cabling
based on Figure 3.3.

Figure 3.3	 BMS and MX Physical Connectivity

On BMS#1, create virtual machines to be used for central cluster. This cluster will host
the Kubernetes control and worker nodes as well as the CN2 control plane. The worker
nodes in the central cluster will run the vrouter and vrouter-agent pods to provide soft-
ware-defined networking (SDN) capabilities.

On BMS#2, create virtual machines to set up a distributed cluster, also known as workload
cluster. This cluster will have its own Kubernetes control node but will not include any
Contrail Networking control components. The worker nodes in the distributed cluster
will also run the vrouter and vrouter-agent pods to provide SDN capabilities.

	 36	 Chapter 3: Installing and Getting Familiar with CN2

Preparing the Network

The networking infrastructure for this deployment requires the creation of two subnets,
connected to a common routing domain, to allow communication between the CIDRs
and the rest of the internet for downloading container images and other dependencies.
Routing between the CIDRs is also required for communication between clusters placed
on each of the bare metal servers. It’s important to note that these requirements are not
strict guidelines and can be adapted as needed to fit the specific needs of the deployment.
However, one must understand the desired state to make any necessary changes.

Preparing the BMS to Support Virtualization

Ensure that the two bare metal servers (BMSs) hosting the various nodes of K8s and
CN2 cluster as virtual machines (VMs) are properly installed with all required packages
and dependencies. This will ensure smooth deployment and operation of the cluster.

Check if the BMSs BIOS/UEFI is enabled to support KVM:

root@cftsbmsr2003:~# kvm-ok
INFO: /dev/kvm exists
KVM acceleration can be used
root@cftsbmsr2003:~#

Check if the packages required to support virtualization are installed:
root@cftsbmsr2003:~# apt list | egrep “qemu-kvm|libvirt-daemon/|libvirt-clients|virtinst|virt-
manager|bridge-util|libguestfs-tools”

WARNING: apt does not have a stable CLI interface. Use with caution in scripts.

bridge-utils/focal,now 1.6-2ubuntu1 amd64 [installed]
libguestfs-tools/focal,now 1:1.40.2-7ubuntu5 amd64 [installed]
libvirt-clients/focal-updates,focal-security,now 6.0.0-0ubuntu8.16 amd64 [installed]
libvirt-daemon/focal-updates,focal-security,now 6.0.0-0ubuntu8.16 amd64 [installed,automatic]
qemu-kvm/focal-updates,focal-security,now 1:4.2-3ubuntu6.23 amd64 [installed]
virt-manager/focal-updates,now 1:2.2.1-3ubuntu2.1 all [installed]
virtinst/focal-updates,now 1:2.2.1-3ubuntu2.1 all [installed]
root@cftsbmsr2003:~#

If any of the packages or none of them are installed during your BMS installation, you
can install them using the following procedure or apt-get install <package-name>:

root@cftsbmsr2003:~# apt install qemu-kvm libvirt-daemon-system libvirt-clients bridge-
utils virtinst virt-manager libguestfs-tools
root@cftsbmsr2003:~# systemctl is-active libviwrtd
root@cftsbmsr2003:~# usermod -aG libvirt $USER
root@cftsbmsr2003:~# usermod -aG kvm $USER

NOTE	 This verification step must be performed on both bare metal servers hosting the
VMs.

	 37	 Installing K8s Cluster with CN2 as a CNI

Creating bridges on BMS to provide network connectivity for the virtual
machines

Bridges on Ubuntu can be created with brctl command. Bridges created with this com-
mand will disappear once the server is restarted. To hardcode the server to maintain the
required bridges, you can either use virsh edit net-edit option or just add the bridge to the
yaml file under /etc/netplan.

Below are the contents of the /etc/netplan/00-installer-config.yaml used in the setup for
demonstration:

network:
  version: 2
  renderer: networkd

  ethernets:
    enp3s0f0:
      dhcp4: false 
      dhcp6: false 

  bridges:
    mgmt:
      interfaces: [enp3s0f0]
      addresses: [10.219.90.79/26]
      gateway4: 10.219.90.65
      mtu: 1500
      nameservers:
        addresses: [66.129.233.81]
      parameters:
        stp: true
        forward-delay: 4
      dhcp4: no
      dhcp6: no

Observe that we are configuring the static IP address to the bridge called mgmt and using
the interface enp3s0f0 as a child interface of the bridge.

Installing K8s Cluster with CN2 as a CNI

Let’s begin deploying the first cluster with K8s with CN2 as CNI. This cluster will later
act as our central cluster.

On BMS#1, four virtual machines will be created and referred to as nodes. These nodes
will be connected to each other and the outside world through a Linux bridge. One of
these nodes will be used for orchestrating the cluster and is referred to as the Kube-
SprayHost. The remaining three nodes will be referred to as k8s-control, k8s-worker1,
and k8s-worker2, respectively.

	 38	 Chapter 3: Installing and Getting Familiar with CN2

Figure 3.4	 Network Plan for Installing CN2 with Single Interface

Depending on the CN2 version you are attempting to install, the recommended OS and
version needs to be installed in nodes for proper functioning. Here’s a link to CN2-sup-
ported platforms: https://www.juniper.net/documentation/en_US/release-indepen-
dent/contrail-cloud-native/topics/reference/cloud-native-contrail-supported-platforms.
pdf .

At the time of writing this document, the latest version of CN2 is CN2 22.4 and the rec-
ommended OS and version for upstream Kubernetes is Ubuntu 20.04.3 with kernel ver-
sion 5.4.0-97-generic/5.4.0-135-generic.

Download the KVM image of Ubuntu 20.04.3 with kernel 5.4.0-97-generic using the
following command on the BMS:

root@cftsbmsr2003:~# wget -qO ubuntu-20.04-server-cloudimg-amd64.img http://cloud-images-archive.
ubuntu.com/releases/focal/release-20220131/ubuntu-20.04-server-cloudimg-amd64.img
root@cftsbmsr2003:~# wget -qO MD5SUMS http://cloud-images-archive.ubuntu.com/releases/focal/
release-20220131/MD5SUMS
Verify that the downloaded VM image has been successfully downloaded by verifying the MD5 checksum of
image against the original checksum provided in the MD5SUMS file
root@cftsbmsr2003:~# md5sum ubuntu-20.04-server-cloudimg-amd64.img
5a487f53da7c9f1a5b59769b3463282e ubuntu-20.04-server-cloudimg-amd64.img
root@cftsbmsr2003:~# cat MD5SUMS | grep ubuntu-20.04-server-cloudimg-amd64-disk-kvm.img
5a487f53da7c9f1a5b59769b3463282e *ubuntu-20.04-server-cloudimg-amd64-disk-kvm.img

Now that the baremetal servers (BMSs) are ready and the KVM image from Ubuntu ar-
chives is sourced, we can start deploying Kubernetes and CN2 in the central cluster.

The process of deploying a K8s cluster with CN2 as CNI involves several steps to define
networking information like CIDR, gateway, and DNS for the cluster, modifying the
Ubuntu image to increase its size and configure the root credentials, hostname, SSH, and
network settings, spawning VMs, increasing the partition size from the default 8GB to
the maximum set in the image, and building a host file for accessing the nodes using their
FQDN/hostname. The jumphost is prepared to act as the host from which the

	 39	 Installing K8s Cluster with CN2 as a CNI

Kubespray will deploy the K8s cluster and trigger the installation of K8s and CN2 as
the K8s CNI for the cluster named Central. To simplify the process, we have automated
the deployment process into easy ansible playbooks that can be cloned from a git reposi-
tory, and a workflow diagram is provided to explain the installation process of Kuber-
netes and CN2 as CNI.

NOTE	 Some stages of the diagram could be a simple execution of the playbook, while
some may require two or more commands to be executed before moving to the next
stage.

Navigate to your bare metal server shell prompt and git clone the following repository:
git clone https://github.com/Juniper/cn2dayone.git

This git repo has ansible playbooks and .MD files containing troubleshooting links and
other content. We will update this repo frequently to make this day one book content
relevant for the upcoming release of CN2.

When you execute the git clone command, a folder with the name cn2dayone gets cre-
ated and it contains folders named Release and the litmustest. Deployment playbooks
for each release can be found under the Release folder.

For example, we will use folder 22.4 as it was the latest CN2 release at the time of au-
thoring this book.

Navigate to the folder 22.4 using cd command
cn2dayone/Release# cd 22.4

Navigate to cn2_central_ansible under 22.4 folder.
root@ubuntu:~/cn2dayone/Release/22.4# 

The cn2_central_ansible contains the following files:
-rw-r--r-- 1 root root 3968 Jan 13 16:17 1Play_VM_Creation.yaml
-rw-r--r-- 1 root root 3351 Jan 13 16:13 2Play_VM_Disk_Resize.yaml
-rw-r--r-- 1 root root 3794 Jan 13 16:13 3Play_jumphost.yaml
-rw-r--r-- 1 root root 1670 Jan 13 16:13 4Play_CNI_less_Cluster.yaml
-rw-r--r-- 1 root root 3798 Jan 13 16:13 5Play_CN2_Cluster.yaml
-rwxr-xr-x 1 root root  165 Jan 13 16:14 destroy_cluster.sh
-rw-r--r-- 1 root root 1136 Jan 13 16:13 inventory.yaml
-rw-r--r-- 1 root root 1381 Jan 13 16:13 k8s_inventory.yaml
-rwxr-xr-x 1 root root  556 Jan 13 16:14 network_yaml_create.sh
-rw-r--r-- 1 root root 1872 Jan 11 08:41 README.md

The first five files are the playbooks to automate the installation of K8s CN2 cluster.
Also, there are two inventory files, inventory.yaml used by custom playbooks and k8s_in-
ventory.yaml for the Kubernetes cluster. You need to edit these files to match your CN2
deployment topology. There is a shell script which takes input from inventory.yaml and
generates network yaml(ubuntu) for the VMs. This script is executing as part of first
playbook. Lastly, we have a destroy_cluster.sh used in an event cluster that needs to be
cleaned up for attempting installation once again.

	 40	 Chapter 3: Installing and Getting Familiar with CN2

Knowing the Five Deployment Playbooks

These five playbooks would be your best companion for your journey to deploy/rede-
ploy CN2:

	� Playbook 1 creates the VM images, customizes them and sets up the network. It
then spawns the VMs and starts them.

	� Playbook_2 resizes the VM disk size. This is required as the default image size is
only 2GB.

	� Playbook 3 installs all the required packages on first VM (node) to enable execution
of playbooks 4 and 5. After the execution of this playbook, the VM turns into a
KubeSpray host. This node will be used by other playbooks to install Kubernetes on
the remaining hosts.

	� Playbook 4 uses kubespray and the k8s inventory.yaml file to deploy a Kubernetes
cluster without a CNI.

	� Playbook 5 requests the user to enter the enterprise-hub.juniper.net credentials to
pull the required CN2 images from the repository. It then clones and updates the
yaml manifests with the token code created using the credentials. Finally, it deploys
CN2 using the updated manifests.

So, five ansible command executions using these five yaml playbooks, is all it takes to in-
stall a CN2 cluster. Now, let’s install CN2 by going through each step in detail.

Populate inventory.yaml to reflect network infrastructure

Edit the inventory.yaml file on Linux host using an editor of your choice.

Example: vi

The inventory.yaml should contain the subnet you have identified. This would be used to
assign IP addresses to the VMs. Remember to update the password and set it as per your
deployment. If you intend to deploy a distributed cluster as well, it is advisable to add the
IPs for the distributed cluster too. Example:

allcentral:
    hosts:
      centraljumphost:
        ansible_host: 10.219.90.82
      centralctrl:
        ansible_host: 10.219.90.83
      centralworker1:
        ansible_host: 10.219.90.84
      centralworker2:
        ansible_host: 10.219.90.85
    vars:
      root: juniper123

	 41	 Knowing the Five Deployment Playbooks

alldsi:
    hosts:
      ds1jumphost:
        ansible_host: 10.219.90.88
      ds1ctrl:
        ansible_host: 10.219.90.89
      ds1worker1:
        ansible_host: 10.219.90.90
      ds1worker2:
        ansible_host: 10.219.90.91

jumphost:
    hosts:
      centraljumphost:
        ansible_host: 10.219.90.82
      ds1jumphost:
        ansible_host: 10.219.90.88
    vars:
      root: juniper123

centralk8svm: 
    hosts:
      centralctrl:
        ansible_host: 10.219.90.83
      centralworker1:
        ansible_host: 10.219.90.84
      centralworker2:
        ansible_host: 10.219.90.85
  
    vars:
      root: juniper123

ds1k8svm:
    hosts:
      ds1ctrl:
        ansible_host: 10.219.90.89
      ds1worker1:
        ansible_host: 10.219.90.90
      ds1worker2:
        ansible_host: 10.219.90.91

    vars:
      root: juniper123

Updating Subnet and DNS Details

Open the network_yaml_create.sh and confirm the subnet and DNS of your environ-
ment. Change if required to match your network.

#!/bin/bash
#Script to generate network.yaml file for the nodes being configured.
node_list=(centraljumphost centralcontrol centralworker1 centralworker2)

node_gw=$(/sbin/ip route | awk ‘/default/ { print $3 }’)
env_dns=66.129.233.81

	 42	 Chapter 3: Installing and Getting Familiar with CN2

for node in ${node_list[@]}; do
node_ip=$( host $node | awk ‘/has address/ { print $4 }’)
cat > $(pwd)/$node.yaml <<FILE
 network:
  ethernets: 
    enp1s0:
      dhcp4: no
      dhcp6: no
      addresses: [$node_ip/26]
      gateway4:  $node_gw
      nameservers: 
        addresses: [$env_dns]
  version: 2
FILE
done

Executing Playbook 1 to Create VMs

This playbook would take inputs from the inventory file and build VMs to be used as clus-
ter nodes.

Run the Playbook_1: 1Play_VM_Creation.yaml
ansible-playbook -i inventory.yaml 1Play_VM_Creation.yaml

Output:
PLAY [Playbook to prepare VMs images, network, and spawn the VMs] ************************************

TASK [Gathering Facts] **
ok: [localhost]
--SNIP--

PLAY RECAP ***

localhost : ok=9 changed=5 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
Verification Task#1 : Run command “virsh list –all | grep central”
Output :-
473 centraljumphost running
 474 centralcontrol running
 475 centralworker1 running
 476 centralworker2 running

Verification of VM Creation
ssh centraljumphost”

Output:

The user should be able to login without getting prompted for a password and kernel ver-
sion should be 5.4.0-97-generic.

	 43	 Knowing the Five Deployment Playbooks

Resizing VM disks

This playbook resizes the disks of all the VMs created in the previous step. This is neces-
sary because the downloaded cloud image has only 2GB of disk space.

Run the Playbook_2:
#ansible-playbook -i 2Play_VM_Disk_Resize.yaml

Output:
PLAY [Update host file among all VMs and resize disk] **

TASK [Gathering Facts] **
ok: [centraljumphost]
ok: [centralcontrol]
ok: [centralworker1]
ok: [centralworker2]
--SNIP--
ok: [centraljumphost] => (item={‘mount’: ‘/boot/efi’, ‘device’: ‘/dev/vda15’, ‘fstype’: ‘vfat’,
‘options’: ‘rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859-
1,shortname=mixed,errors=remount-ro’, ‘size_total’: 109422592, ‘size_available’: 103973888, ‘block_
size’: 512, ‘block_total’: 213716, ‘block_available’: 203074, ‘block_used’: 10642, ‘inode_total’: 0,
‘inode_available’: 0, ‘inode_used’: 0, ‘uuid’: ‘BA5D-627F’}) => {
~
 “msg”: “All assertions passed”
}
failed: [centralcontrol] (item={‘mount’: ‘/’, ‘device’: ‘/dev/vda1’, ‘fstype’: ‘ext4’, ‘options’:
‘rw,relatime’, ‘size_total’: 2107494400, ‘size_available’: 688410624, ‘block_size’: 4096, ‘block_
total’: 514525, ‘block_available’: 168069, ‘block_used’: 346456, ‘inode_total’: 274176, ‘inode_
available’: 201558, ‘inode_used’: 72618, ‘uuid’: ‘00b72c14-e32b-4e33-988c-002ba91aafec’}) => {
~
 “msg”: “Assertion failed”
}

PLAY RECAP **
centralcontrol : ok=5 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
centraljumphost : ok=5 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
centralworker1 : ok=5 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
centralworker2 : ok=5 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1

Verify VM Disk Resizing

Verification: Log in to centraljumphost and confirm disk expansion.
ssh centraljumphost
root@centraljumphost:~# df -H
Filesystem      Size  Used Avail Use% Mounted on
udev             17G     0   17G   0% /dev
tmpfs           3.4G  1.2M  3.4G   1% /run
/dev/vda1        55G  1.5G   53G   3% /  <<<<<<<<

	 44	 Chapter 3: Installing and Getting Familiar with CN2

tmpfs            17G     0   17G   0% /dev/shm
tmpfs           5.3M     0  5.3M   0% /run/lock
tmpfs            17G     0   17G   0% /sys/fs/cgroup
/dev/vda15      110M  5.5M  104M   5% /boot/efi
/dev/loop1       66M   66M     0 100% /snap/core20/1328
/dev/loop0       71M   71M     0 100% /snap/lxd/21835
/dev/loop2       46M   46M     0 100% /snap/snapd/14549
tmpfs           3.4G     0  3.4G   0% /run/user/0

Installing Packages on Jumphost

With the execution of this playbook, Jumphost is installed with various packages like An-
sible, Kubespray, Kubectl, Helm, etc.

Run the Playbook_3:
ansible-playbook -i 3Play_jumphost.yaml
ansible-playbook -i inventory.yaml 3Play_JumpHost.yaml

Output:
PLAY [Install required packages on Jumpshost] ***

TASK [Gathering Facts] **
ok: [centraljumphost]

TASK [Add apt-key to update kubernetes repo] **

changed: [centraljumphost]

--SNIP---
PLAY RECAP **
centraljumphost : ok=16 changed=13 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
centralcontrol : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
centralworker1 : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
centralworker2 : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Verification Task #1: Confirm Ansible is running
root@centraljumphost:~# ansible --version
ansible [core 2.12.5]
 config file = None
 configured module search path = [‘/root/.ansible/plugins/modules’, ‘/usr/share/ansible/plugins/
modules’]
 ansible python module location = /usr/local/lib/python3.8/dist-packages/ansible
 ansible collection location = /root/.ansible/collections:/usr/share/ansible/collections
 executable location = /usr/local/bin/ansible
 python version = 3.8.10 (default, Nov 14 2022, 12:59:47) [GCC 9.4.0]
 jinja version = 2.11.3
 libyaml = True

	 45	 Knowing the Five Deployment Playbooks

Verification Task #2

Log in to Jumphost and confirm if you can login to control and worker nodes without
password.

ssh centraljumphost
ssh centralcontrol
ssh centralworker1
ssh centralworker2

Install K8s Without CNI

With the completion of this step, Kubespray will install a cluster on the remaining three
VMs.

Run the 4Play_CNI_less_Cluster.yaml
ansible-playbook -i inventory.yaml 4Play_CNI_less_Cluster.yaml
Output:
PLAY [Install k8s cluster without CNI] **

--SNIP—
PLAY RECAP **
centraljumphost : ok=9 changed=8 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Verification of K8s Installation
Login to centraljumphost:- ssh centraljumphost
Run command : kubectl get pods -A
root@centraljumphost:~# kubectl get pods -A
NAMESPACE     NAME                                    READY   STATUS    RESTARTS      AGE
kube-system   coredns-74d6c5659f-z8bqs                0/1     Pending   0             70s
kube-system   dns-autoscaler-59b8867c86-jbqmf         0/1     Pending   0             66s
kube-system   kube-apiserver-centralmaster            1/1     Running   1             2m54s
kube-system   kube-controller-manager-centralmaster   1/1     Running   2 (29s ago)   2m54s
kube-system   kube-proxy-76kjb                        1/1     Running   0             102s
kube-system   kube-proxy-fhst5                        1/1     Running   0             102s
kube-system   kube-proxy-p7rnj                        1/1     Running   0             102s
kube-system   kube-scheduler-centralmaster            1/1     Running   2 (29s ago)   2m54s
kube-system   nginx-proxy-centralworker1              1/1     Running   0             90s
kube-system   nginx-proxy-centralworker2              1/1     Running   0             90s
root@centraljumphost:~# kubectl get nodes -A -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
centralmaster NotReady control-plane 3m40s v1.24.6 10.219.90.83 <none> Ubuntu 20.04.3
LTS 5.4.0-97-generic cri-o://1.24.4
centralworker1 NotReady <none> 2m26s v1.24.6 10.219.90.84 <none> Ubuntu 20.04.3
LTS 5.4.0-97-generic cri-o://1.24.4
centralworker2 NotReady <none> 2m26s v1.24.6 10.219.90.85 <none> Ubuntu 20.04.3
LTS 5.4.0-97-generic cri-o://1.24.4

	 46	 Chapter 3: Installing and Getting Familiar with CN2

Installing CN2 as CNI for K8s Cluster

The execution of this playbook deploys CN2 22.4 as a CNI on the K8s cluster installed
in the previous step.

Run the 5Play_CN2_Cluster.yaml
ansible-playbook -i inventory.yaml 5Play_CN2_Cluster.yaml
Enter Docker Username?: cn2dayone@juniper.net
Enter Password?:

PLAY [Install required packages on Jumpshost] ***

--SNIP—
PLAY RECAP **
centraljumphost : ok=15 changed=4 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Verification of CN2 Installation in K8s Cluster
Run command: kubectl get pods -A
root@centraljumphost:~# kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS AGE
cert-manager cert-manager-745fb764f4-jd9zk 1/1 Running 0 17m
cert-manager cert-manager-cainjector-5654f68b7b-v96j5 1/1 Running 0 17m
cert-manager cert-manager-webhook-fff46dd94-bmzg6 1/1 Running 0 17m
contrail-deploy contrail-k8s-deployer-58c49b55d5-8nzz9 1/1 Running 0 18m
contrail-system contrail-k8s-apiserver-54949d5455-zk27n 1/1 Running 0 17m
contrail-system contrail-k8s-cert-gen-job-create-8qb8c 0/1 Completed 0
18m
contrail-system contrail-k8s-controller-79cc75db9-849jh 1/1 Running 0 16m
contrail contrail-control-0 2/2 Running 0 16m
contrail contrail-k8s-contrailstatusmonitor-fd97d69-bblwk 1/1 Running 0
16m
contrail contrail-k8s-kubemanager-6ddbcd597d-qrs99 1/1 Running 0 16m
contrail contrail-vrouter-masters-ntfbj 3/3 Running 0 16m
contrail contrail-vrouter-nodes-62ppm 3/3 Running 0 16m
contrail contrail-vrouter-nodes-ldqp4 3/3 Running 0 16m
kube-system coredns-74d6c5659f-fl8c7 1/1 Running 0 12m
kube-system coredns-74d6c5659f-z8bqs 1/1 Running 0 22m
kube-system dns-autoscaler-59b8867c86-jbqmf 1/1 Running 0 22m
kube-system kube-apiserver-centralmaster 1/1 Running 1 24m
kube-system kube-controller-manager-centralmaster 1/1 Running 2 (21m ago)
24m
kube-system kube-proxy-76kjb 1/1 Running 0 23m
kube-system kube-proxy-fhst5 1/1 Running 0 23m
kube-system kube-proxy-p7rnj 1/1 Running 0 23m
kube-system kube-scheduler-centralmaster 1/1 Running 2 (21m ago) 24m
kube-system nginx-proxy-centralworker1 1/1 Running 0 22m
kube-system nginx-proxy-centralworker2 1/1 Running 0 22m

	 47	 Getting Familiar with the Cluster

Getting Familiar with the Cluster

Congratulations on deploying the K8s cluster alongside CN2 as a CNI. Before we start
deploying the application as a workload on this cluster, let us get familiar with it and
check the basic constructs of K8s and Contrail.

Accessing the jump server

Log into the jump server by using ssh or virsh console <vm id>.

To confirm that you are on the right machine, enter the command kubectl get nodes:
root@centraljumphost:~# kubectl get nodes -A -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
centralctrl Ready control-plane 4h6m v1.24.6 10.219.90.83 <none> Ubuntu 20.04.5 LTS
5.4.0-135-generic cri-o://1.24.4
centralworker1 Ready <none> 4h5m v1.24.6 10.219.90.84 <none> Ubuntu 20.04.5 LTS
5.4.0-135-generic cri-o://1.24.4
centralworker2 Ready <none> 4h5m v1.24.6 10.219.90.85 <none> Ubuntu 20.04.5 LTS
5.4.0-135-generic cri-o://1.24.4

Expected outcome: One should see three nodes with names k8s-cp0, k8s-worker0, and
k8s-worker1, with STATUS in Ready state.

Verify the cluster status

All K8s pods would run in the kube-system namespace and the contrail pods would run
in Contrail and contrail-system namespace. We need to verify that all pods are in running
state.

root@centraljumphost:~# kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS AGE
cert-manager cert-manager-745fb764f4-fj48s 1/1 Running 0 4h
cert-manager cert-manager-cainjector-5654f68b7b-4vvzk 1/1 Running 0 4h
cert-manager cert-manager-webhook-fff46dd94-947b6 1/1 Running 0 4h
contrail-deploy contrail-k8s-deployer-58c49b55d5-5vzz7 1/1 Running 0 4h1m
contrail-system contrail-k8s-apiserver-785ffdf895-gmr8q 1/1 Running 0
3h59m
contrail-system contrail-k8s-cert-gen-job-create-rz9wr 0/1 Completed 0 4h
contrail-system contrail-k8s-controller-79cc75db9-ncqk8 1/1 Running 0
3h58m
contrail contrail-control-0 2/2 Running 0 3h58m
contrail contrail-k8s-contrailstatusmonitor-fd97d69-nf546 1/1 Running 0
3h58m
contrail contrail-k8s-kubemanager-6ddbcd597d-xv7zm 1/1 Running 0 3h58m
contrail contrail-vrouter-masters-v9kjz 3/3 Running 0 3h58m
contrail contrail-vrouter-nodes-58528 3/3 Running 0 3h58m
contrail contrail-vrouter-nodes-wsrct 3/3 Running 0 3h58m
kube-system coredns-74d6c5659f-96hmr 1/1 Running 0 3h56m
kube-system coredns-74d6c5659f-rs7vb 1/1 Running 0 4h6m
kube-system dns-autoscaler-59b8867c86-4m2rh 1/1 Running 0 4h6m
kube-system kube-apiserver-centralctrl 1/1 Running 1 4h8m

	 48	 Chapter 3: Installing and Getting Familiar with CN2

kube-system kube-controller-manager-centralctrl 1/1 Running 2 (4h6m ago)
4h8m
kube-system kube-proxy-62k9k 1/1 Running 0 4h7m
kube-system kube-proxy-6nf8v 1/1 Running 0 4h7m
kube-system kube-proxy-vsvql 1/1 Running 0 4h7m
kube-system kube-scheduler-centralctrl 1/1 Running 2 (4h6m ago) 4h8m
kube-system nginx-proxy-centralworker1 1/1 Running 0 4h7m
kube-system nginx-proxy-centralworker2 1/1 Running 0 4h7m

Monitoring the K8s cluster status

To list the pods, their status and uptime, execute the command kubectl get pods -A:
root@centraljumphost :~# kubectl get pods -A
NAMESPACE         NAME  READY   STATUS    RESTARTS   AGE
contrail-deploy   contrail-k8s-deployer-77f978c8f5-5m9v5      1/1     Running   0          7m17s
contrail-system   contrail-k8s-apiserver-758588f78c-sgr8k     1/1     Running   0          6m11s
contrail-system   contrail-k8s-controller-c6465c47b-k74cv     1/1     Running   0          5m20s
contrail          contrail-control-0                          2/2     Running   0          5m20s
contrail          contrail-k8s-kubemanager-79899489f8-w2nkk   1/1     Running   0          5m20s
contrail          contrail-vrouter-masters-4vz69              3/3     Running   0          5m19s
contrail          contrail-vrouter-nodes-gkjt2                3/3     Running   0          5m19s
contrail          contrail-vrouter-nodes-pr7j6                3/3     Running   0          5m19s
kube-system       coredns-657959df74-5fh4v                    1/1     Running   0          3m4s
kube-system       coredns-657959df74-p4qpl                    1/1     Running   0          7d22h
kube-system       dns-autoscaler-b5c786945-kz5z7              1/1     Running   0          7d22h
kube-system       kube-apiserver-k8s-cp0                      1/1     Running   0          7d22h
kube-system       kube-controller-manager-k8s-cp0             1/1     Running   0          7d22h
kube-system       kube-proxy-7k9kl                            1/1     Running   0          7d22h
kube-system       kube-proxy-nd97f                            1/1     Running   0          7d22h
kube-system       kube-proxy-w4gm4                            1/1     Running   0          7d22h
kube-system       kube-scheduler-k8s-cp0                      1/1     Running   0          7d22h
kube-system       nginx-proxy-k8s-worker0                     1/1     Running   0          7d22h
kube-system       nginx-proxy-k8s-worker1                     1/1     Running   0          7d22

You can observe the K8s microservices running in kube-system namespace and Contrail
microservices running in contrail, contrail-deploy, and contrail-system namespaces.

Namespaces

To list all the namespaces, execute the command kubectl get ns -A
root@centraljumphost :~# kubectl get ns -A
NAME   STATUS   AGE
contrail   Active   11m
contrail-analytics   Active   65m
contrail-deploy  Active   11m
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail   Active   9m12s
contrail-system  Active   11m
default  Active   7d22h
kube-node-lease  Active   7d22h
kube-public  Active   7d22h
kube-system  Active   7d22h

	 49	 Getting Familiar with the Cluster

Deployments

Deployment in Kubernetes allows you to describe an application’s life cycle, such as the
image to be used, and number of pods that should be there in it. It provides declarative
updates of pods and replica sets.

To list all the deployments and their state, execute the command kubectl get deployments -A
root@centraljumphost:~# kubectl get deployments -A
NAMESPACE         NAME                       READY   UP-TO-DATE   AVAILABLE   AGE
contrail-deploy   contrail-k8s-deployer      1/1     1            1           86m
contrail-system   contrail-k8s-apiserver     1/1     1            1           85m
contrail-system   contrail-k8s-controller    1/1     1            1           84m
contrail          contrail-k8s-kubemanager   1/1     1            1           84m
kube-system       coredns                    2/2     2            2           7d23h
kube-system       dns-autoscaler             1/1     1            1           7d23h

The output shows deployments of both K8s and Contrail. It also describes the desired
state of each subsystem. We can also print a more detailed output of each deployment by
executing command kubectl describe deployment <deployment name> -n
<namespace>. As an example: kubectl describe deployment contrail-k8s-apiserver
-n=contrail-system to see details about the deployment, such as number of replicas it is
configured to run, etc.

Service

A service in K8s is an abstraction which defines a logical set of pods and a policy to ac-
cess them. Run command kubectl get service -A:

root@centraljumphost:~# kubectl get service -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
contrail-system contrail-api ClusterIP 10.233.37.213 <none> 19443/TCP 92m
default kubernetes ClusterIP 10.233.0.1 <none> 443/TCP 7d23h
kube-system coredns ClusterIP 10.233.0.3 <none> 53/UDP,53/TCP,9153/TCP
7d23h

The output describes three services of type Cluster-IP. Each service also defines IP and a
port on which it is reachable. As no service is exposed to external users, external-ip is
empty for all entries.

DNS

K8s adds a DNS entry for each pod and service it creates. As pods get terminated and
recreated, the DNS entry is updated with the IP address assigned.

To determine the cluster’s DNS service clusterIP, execute command kubectl get service
-n=kube-system:

root@centraljumphost:~# kubectl get service -n=kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
coredns ClusterIP 10.233.0.3 <none> 53/UDP,53/TCP,9153/TCP 8d

	 50	 Chapter 3: Installing and Getting Familiar with CN2

The output describes the type of service, the IP address, and the ports on which DNS is ex-
posed. To debug DNS, you can download the dnsutils utility in the form of a pod from:

https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/ .

root@centraljumphost :~# kubectl exec -ti dnsutils -- cat /etc/resolv.conf
search default.svc.mycluster.contrail.lan svc.mycluster.contrail.lan mycluster.contrail.lan
nameserver 10.233.0.3
options ndots:5

The output here defines the search path and the nameserver set for the cluster. This utility can
also be used for debugging url to IP resolution for an application service.

CN2 status

Contrailstatus is a K8s binary written by Juniper to run on K8s system to show the contrail
system status. Run command kubectl contrailstatus to get the details about contrail subsystem
running on K8s.

root@centraljumphost :~# kubectl contrailstatus --all
PODNAME(CONFIG)                                 STATUS  NODE    IP              MESSAGE 
contrail-k8s-apiserver-5dc9bccf4-dcsjc          ok      k8s-cp0 10.219.90.74           
contrail-k8s-controller-c6465c47b-m4s64         ok      k8s-cp0 10.219.90.74           
contrail-k8s-kubemanager-79899489f8-qr6r9       ok      k8s-cp0 10.219.90.74           

PODNAME(CONTROL)        STATUS  NODE    IP              MESSAGE 
contrail-control-0      ok      k8s-cp0 10.219.90.74           

LOCAL BGPROUTER NEIGHBOR BGPROUTER      ENCODING        STATE           POD                
k8s-cp0         k8s-cp0                 XMPP            Established ok  contrail-control-0
k8s-cp0         k8s-worker0             XMPP            Established ok  contrail-control-0
k8s-cp0         k8s-worker1             XMPP            Established ok  contrail-control-0

PODNAME(DATA)                   STATUS  NODE            IP              MESSAGE 
contrail-vrouter-masters-6fr5h  ok      k8s-cp0         10.219.90.74           
contrail-vrouter-nodes-4dr95    ok      k8s-worker1     10.219.90.76           
contrail-vrouter-nodes-srrzc    ok      k8s-worker0     10.219.90.75     
      

Exploring Various CN2 Objects Using Kubectl

Subnet

The Subnet is a block of IP addresses and the configurations associated with those addresses.
A Subnet is based on a single address family (IPv4, IPv6) at a time. You must create separate
IPv4 and IPv6 Subnets. Run kubectl get subnet -A to list all subnets.

root@centraljumphost:~# kubectl get subnet -A
NAMESPACE NAME CIDR
USAGE STATE AGE
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-podnetwork-pod-v4-subnet

	 51	 Exploring Various CN2 Objects Using Kubectl

10.233.64.0/18 0.04% Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-podnetwork-pod-v6-subnet
fd85:ee78:d8a6:8607::1:0/112 0.01% Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-servicenetwork-pod-v4-subnet
10.233.0.0/18 0.03% Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-servicenetwork-pod-v6-subnet
fd85:ee78:d8a6:8607::1000/116 0.07% Success 2d23h

This output shows two subnets defined for IPv4 and IPv6, one each for pods and services.

VN

Virtual Networks are the basic building blocks for a CN2 subsystem. It forms a collection
of VMIs, IPs, and MACs that can aid in communication between entities. VN is
namespace scoped. Each namespace can have one or more VNs and each VN is isolated
unless they are explicitly connected via a policy or VNR. Run command kubectl get vn -A:

root@centraljumphost:~# kubectl get vn -A
NAMESPACE NAME VNI IP FAMILIES STATE
AGE
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-podnetwork 1 v6,v4
Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail default-servicenetwork 4 v6,v4
Success 2d23h
contrail ip-fabric 2 Success
2d23h
contrail link-local 3 Success
2d23h

The output shows two virtual networks built for the two K8s default networks, namely
pod and service. Besides these, there are two more networks created by default in contrail
namespace.

VMI

VMI represents an interface (port) in a virtual network. VMI objects are namespace
scoped. Contrail controller and Kubemanager reconcile and create VMIs for pods. Run
kubectl get vmi -A:

root@centraljumphost:~# kubectl get vmi -A
NAMESPACE CLUSTERNAME NAME NETWORK PODNAME
IFCNAME STATE AGE
contrail k8s-cp0-vhost0 ip-fabric
Success 2d23h
contrail k8s-worker0-vhost0 ip-fabric
Success 2d23h
contrail k8s-worker1-vhost0 ip-fabric
Success 2d23h
kube-system contrail-k8s-kubemanager-mycluster-contrail-lan coredns-657959df74-5fh4v-3245903c
default-podnetwork coredns-657959df74-5fh4v eth0 Success 2d23h
kube-system contrail-k8s-kubemanager-mycluster-contrail-lan coredns-657959df74-p4qpl-447e3644
default-podnetwork coredns-657959df74-p4qpl eth0 Success 2d23h
kube-system contrail-k8s-kubemanager-mycluster-contrail-lan dns-autoscaler-b5c786945-kz5z7-
5f94d62c default-podnetwork dns-autoscaler-b5c786945-kz5z7 eth0 Success 2d23h

	 52	 Chapter 3: Installing and Getting Familiar with CN2

This output shows one VMI created for vhost0 on each node of the cluster. Also, one
VMI is created for the DNS system running on each node.

NOTE	 Without a CNI deployed on the K8s cluster, the core DNS pods would be in
Pending state, as they require a VMI.

IIP

InstanceIP is an endpoint that automatically gets created when a service or a pod is cre-
ated in a K8s system.

To list the InstanceIPs, execute the command kubectl get iip -A.
root@centraljumphost:~# kubectl get iip -A
NAME IPADDRESS
NETWORK STATE AGE
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail-api-49e3fdb5 10.233.37.213
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-servicenetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-657959df74-5fh4v-387c815f
fd85:ee78:d8a6:8607::1:2 contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-
podnetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-657959df74-5fh4v-3a7c8485 10.233.64.2
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-podnetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-657959df74-p4qpl-90263557
fd85:ee78:d8a6:8607::1:100 contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-
podnetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-657959df74-p4qpl-9226387d 10.233.65.0
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-podnetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-8560b829 10.233.0.3
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-servicenetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-dns-autoscaler-b5c786945-kz5z7-891fc867
fd85:ee78:d8a6:8607::1:200 contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-
podnetwork Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-dns-autoscaler-b5c786945-kz5z7-8b1fcb8d 10.233.66.0
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail/default-podnetwork Success 2d23h

Floating IP

FloatingIP is a non-namespaced object created alongside a service in a CN2-powered
K8s system. To list floatingIPs, execute the command kubectl get fip -A.

root@centraljumphost:~# kubectl get fip -A
NAME IPADDRESS INTERFACES PORTMAPPING
STATE AGE
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail-api-49e3fdb5 10.233.37.213 0
TCP/19443->19443 Success 2d23h
contrail-k8s-kubemanager-mycluster-contrail-lan-coredns-8560b829 10.233.0.3 2
UDP/53->53,TCP/53->53,TCP/9153->9153 Success 2d23h

	 53	 Exploring Various CN2 Objects Using Kubectl

VNR

Virtual Network Router is an object that connects one virtual network to another. The
VNs can either be in the same Namespace or in different Namespaces. To list the VNRs,
execute command kubectl get vnr -A.

root@centraljumphost:~# kubectl get vnr -A
NAMESPACE NAME TYPE STATE AGE
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail DefaultPodServiceIPFabricNetwork spoke
Success 3d
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail DefaultPodServiceNetwork mesh
Success 3d
contrail-k8s-kubemanager-mycluster-contrail-lan-contrail DefaultServiceNetwork hub
Success 3d
contrail DefaultIPFabricNetwork hub Success 3d

This output shows three VNRs created by default for contrail cluster and one for contrail
namespace. Take a look at the types of VNRs created.

Mesh type VNR means all VNs connected in type mesh should be able to communicate
with each other barring the labels match. In case of hub and spoke types, VNs connected
as spoke can only communicate with hub VN and hub VN can communicate with all
spoke VNs. No spoke VNs can communicate with each other, again barring labels match.

Gateway router

A gateway router or bgprouter is a BGP speaker to which a CN2 cluster can be connect-
ed. The gateway router also builds dynamic tunnel with vRouter agent running on com-
pute. Once deployed, a bgprouter can be inspected using the following commands.

root@centraljumphost:~# kubectl get bgprouter -A -o wide
contrailstatus.contrail.juniper.net/v1
NAMESPACE NAME TYPE IDENTIFIER STATE AGE
contrail SDN-GW router 10.219.90.133 Success 34d <<<<
contrail centralmaster control-node 10.219.90.136 Success 45d

Another command to get more details about a specific bgprouter is mentioned below.
kubectl describe -n contrail bgprouter SDN-GW.

NOTE	 Next in Chapter 4, when we deploy a sample application and expose it via a
Loadbalancer service, a bgprouter will be configured and used to expose the external IP
outside the cluster.

This chapter starts with deploying a 3-tier application using a single kubectl apply com-
mand. The demo application will be running diagnostic containers in three environ-
ments, namely Prod, Staged, and Test. This resembles the environments a typical
application development team uses.

We access the service IP, on which the application is exposed, to replicate how isolation is
created for the three environments without the use of a network policy. Later, we roll back
the deployment and then re-deploy the application step-by-step to better understand how
it is built.

At this stage, you should be familiar with how the application is deployed and how isola-
tion is achieved. Next, we implement Network Policy to add micro segmentation and to
secure the application. In the end, we will summarize the deployment by implementing
one last construct around how the external IP, on which the application is exposed, can
be advertised to a gateway router.

The 3-tier Application to Be Deployed

In this book, we will deploy an application called thelitmustest, which is a 3-tier application
running diagnostic containers in generic tiers, namely frontend, middleware, and the
backend.

The frontend is exposed on port 80 to the outside world. The frontend pods poll the mid-
dleware pods of the three environments in which the application is deployed, namely
prod, staged, test and confirms the connectivity. The middleware pods listen on port 90
and poll their respective environment’s backend pods to confirm the connectivity. The
backend pods are exposed on port 80.

Chapter 4

Deploy a 3-tier Application

	 55	 Deploying the 3-tier Application in Multiple Environments

To conclude, once we deploy the application and access it using the exposed ExternalIP,
we get a clear understanding of pods and their inter-connectivity.

Figure 4.1	 Application Deployment in Multi-tier Multi-environment

Deploying the 3-tier Application in Multiple Environments

Let us deploy the litmustest application in all three environments with their respective tiers
along with all required components of the application.

If you are not already on AnsibleHost shell prompt, ssh to it or connect using virsh con-
sole <AnsibleHost>.

Execute the command kubectl get nodes -A -o wide to confirm the CN2 cluster health status.
root@centraljumphost:~# kubectl get nodes -A -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME
centralmaster Ready control-plane,master 21d v1.20.7 10.219.90.136 <none> Ubuntu
20.04.3 LTS 5.4.0-97-generic cri-o://1.20.7
centralworker1 Ready <none> 21d v1.20.7 10.219.90.137 <none> Ubuntu
20.04.3 LTS 5.4.0-97-generic cri-o://1.20.7
centralworker2 Ready <none> 21d v1.20.7 10.219.90.138 <none> Ubuntu
20.04.3 LTS 5.4.0-97-generic cri-o://1.20.7

Now, deploy thelitmustest application in production environment using the following
yaml manifest on git.

NOTE	 We need to clone the repo and navigate to thelitmustest application folder that
contains the yamls necessary.

	 56	 Chapter 4: Deploy a 3-tier Application

root@centraljumphost:~# git clone https://github.com/Juniper/cn2dayone.git
Cloning into ‘cn2dayone’...
remote: Enumerating objects: 66, done.
remote: Total 66 (delta 0), reused 0 (delta 0), pack-reused 66
Unpacking objects: 100% (66/66), 21.05 KiB | 615.00 KiB/s, done.

root@centraljumphost:~# ls -la
total 12
drwxr-xr-x  3 root root 4096 Mar 14 10:25 .
drwx------ 35 root root 4096 Mar 14 10:24 ..
drwxr-xr-x  6 root root 4096 Mar 14 10:25 cn2dayone

root@centraljumphost:~# cd cn2dayone/
.git/                cn2_central_ansible/ cn2_ds1_ansible/     thelitmustest/       

root@centraljumphost:~# cd cn2dayone/thelitmustest/

root@centraljumphost:~/cn2dayone/thelitmustest# ls -la
total 20
drwxr-xr-x 5 root root 4096 Mar 14 10:25 .
drwxr-xr-x 6 root root 4096 Mar 14 10:25 ..
drwxr-xr-x 2 root root 4096 Mar 14 10:25 prod_app1
drwxr-xr-x 2 root root 4096 Mar 14 10:25 staged_app1
drwxr-xr-x 2 root root 4096 Mar 14 10:25 test_app1

Apply all the yamls of this folder using the command kubectl apply -f prod_aap1.
root@centraljumphost:~/cn2dayone/thelitmustest# kubectl apply -f prod_app1
virtualnetwork.core.contrail.juniper.net/t2-ext-svc-vn created
subnet.core.contrail.juniper.net/t2-ext-svc-sn created
namespace/t2-prod-app1 created
subnet.core.contrail.juniper.net/t2-prod-app1-frontend-sn created
subnet.core.contrail.juniper.net/t2-prod-app1-middleware-sn created
subnet.core.contrail.juniper.net/t2-prod-app1-backend-sn created
virtualnetwork.core.contrail.juniper.net/t2-prod-app1-frontend-vn created
virtualnetwork.core.contrail.juniper.net/t2-prod-app1-backend-vn created
virtualnetwork.core.contrail.juniper.net/t2-prod-app1-middleware-vn created
virtualnetworkrouter.core.contrail.juniper.net/vnr-spoke created
virtualnetworkrouter.core.contrail.juniper.net/vnr-hub created
deployment.apps/t2-prod-app1-frontend-deployment created
service/t2-prod-app1-frontend-service created
service/t2-prod-app1-frontend-service-external created
deployment.apps/t2-prod-app1-middleware-deployment created
service/t2-prod-app1-middleware-service created
deployment.apps/t2-prod-app1-backend-deployment created
service/t2-prod-app1-backend-service created

Confirm the frontend deployment status
root@centraljumphost:~# kubectl rollout status -n t2-prod-app1 deployment/t2-prod-app1-frontend-
deployment
deployment “t2-prod-app1-frontend-deployment” successfully rolled out

Confirm the middleware deployment status
root@centraljumphost:~# kubectl rollout status -n t2-prod-app1 deployment/t2-prod-app1-middleware-
deployment
deployment “t2-prod-app1-middleware-deployment” successfully rolled out

	 57	 Deploying the 3-tier Application in Multiple Environments

Confirm the backend deployment status
root@centraljumphost:~# kubectl rollout status -n t2-prod-app1 deployment/t2-prod-app1-backend-
deployment
deployment “t2-prod-app1-backend-deployment” successfully rolled out

Or one can look at all the deployments per namespace using kubectl get deployment -n
<namespace>

root@centraljumphost:~# kubectl get deployment -n=t2-prod-app1
NAME                                 READY   UP-TO-DATE   AVAILABLE   AGE
t2-prod-app1-backend-deployment      2/2     2            2           57m
t2-prod-app1-frontend-deployment     2/2     2            2           57m
t2-prod-app1-middleware-deployment   2/2     2            2           57m

Now, let us visualize the services the deployment has exposed. Run the following com-
mand to check it.

root@centraljumphost:~# kubectl get svc -n=t2-prod-app1
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
t2-prod-app1-backend-service ClusterIP 10.233.46.97 <none> 80/TCP 6h22m
t2-prod-app1-frontend-service ClusterIP 10.233.52.38 <none> 80/TCP 6h17m
t2-prod-app1-frontend-service-external LoadBalancer 10.233.49.77 10.219.90.162 80:32355/TCP
6h17m
t2-prod-app1-middleware-service ClusterIP 10.233.50.220 <none> 90/TCP 6h24m

The output above shows that the frontend service is externally exposed using a service
type Loadbalancer. It has an ExternalIP assigned as 10.219.90.162.

Log in to the master node and access this application using the externalIP command: lynx
10.219.90.162.

Front End Pod Information

 Pod Name: t2-prod-app1-frontend-deployment-cd676f4cf-2zx2m

 Pod Namespace: t2-prod-app1

 Pod IP: 21.1.1.2

 Node Name: centralworker1

Middleware/Application pod information per environment

DEV ENV

{
 “pod_name”: “unknown”,
 “pod_namespace”: “unknown”,
 “pod_node_name”: “unknown”,
 “pod_ip”: “unknown”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

	 58	 Chapter 4: Deploy a 3-tier Application

TEST ENV

{
 “pod_name”: “unknown”,
 “pod_namespace”: “unknown”,
 “pod_node_name”: “unknown”,
 “pod_ip”: “unknown”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

PROD ENV

{
 “pod_name”: “t2-prod-app1-middleware-deployment-f9dff6cb6-sqx89”,
 “pod_namespace”: “t2-prod-app1”,
 “pod_nodename”: “centralworker1”,
 “pod_ip”: “21.1.2.1”,
 “pod_backend_connection”: true
}

 Connection to backend tier

 connection success

To conclude, the frontend pod with IP 21.1.1.2 got the request, the middleware pod with
IP 21.1.2.1 received the poll from frontend, and the connection to backend from middle-
ware is a success. Connection from prod frontend to staged and test environments is un-
known as the application has not been deployed in them yet.

Now, let us deploy the application in staged environment by running the following yaml
manifest.

root@centraljumphost:~/cn2dayone/thelitmustest# kubectl apply -f staged_app1
deployment.apps/t2-staged-app1-frontend-deployment created
service/t2-staged-app1-frontend-service created
service/t2-staged-app1-frontend-service-external created
deployment.apps/t2-staged-app1-middleware-deployment created
service/t2-staged-app1-middleware-service created
deployment.apps/t2-staged-app1-backend-deployment created
service/t2-staged-app1-backend-service created
virtualnetwork.core.contrail.juniper.net/t2-ext-svc-vn created
subnet.core.contrail.juniper.net/t2-ext-svc-sn created
namespace/t2-staged-app1 created
subnet.core.contrail.juniper.net/t2-staged-app1-frontend-sn created
subnet.core.contrail.juniper.net/t2-staged-app1-middleware-sn created
subnet.core.contrail.juniper.net/t2-staged-app1-backend-sn created
virtualnetwork.core.contrail.juniper.net/t2-staged-app1-frontend-vn created
virtualnetwork.core.contrail.juniper.net/t2-staged-app1-backend-vn created
virtualnetwork.core.contrail.juniper.net/t2-staged-app1-middleware-vn created
virtualnetworkrouter.core.contrail.juniper.net/vnr-spoke created
virtualnetworkrouter.core.contrail.juniper.net/vnr-hub created

	 59	 Deploying the 3-tier Application in Multiple Environments

Rollout of the deployment can be confirmed as shown below.
root@centraljumphost:~# kubectl get deployment -n=t2-staged-app1
NAME                                   READY   UP-TO-DATE   AVAILABLE   AGE
t2-staged-app1-backend-deployment      2/2     2            2           52s
t2-staged-app1-frontend-deployment     2/2     2            2           52s
t2-staged-app1-middleware-deployment   2/2     2            2           52s

Similarly, let us check the service IP on which the application is exposed.
root@centraljumphost:~# kubectl get svc -n=t2-staged-app1
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
t2-staged-app1-backend-service ClusterIP 10.233.9.84 <none> 80/TCP
2m18s
t2-staged-app1-frontend-service ClusterIP 10.233.30.178 <none> 80/TCP
2m18s
t2-staged-app1-frontend-service-external LoadBalancer 10.233.10.17 10.219.90.163 80:31848/TCP
2m18s
t2-staged-app1-middleware-service ClusterIP 10.233.50.231 <none> 90/TCP
2m18s

Now, let us execute the Lynx command from master node to access the application using
its ExternalIP, i.e. 10.219.90.163

Output:
Front End Pod Information

 Pod Name: t2-staged-app1-frontend-deployment-c445cc5ff-gwwb6

 Pod Namespace: t2-staged-app1

 Pod IP: 22.1.1.1

 Node Name: centralworker2

Middleware/Application pod information per environment

DEV ENV

{
 “pod_name”: “t2-staged-app1-middleware-deployment-679c895db8-k5pcl”,
 “pod_namespace”: “t2-staged-app1”,
 “pod_nodename”: “centralworker1”,
 “pod_ip”: “22.1.2.2”,
 “pod_backend_connection”: true
}

 Connection to backend tier

 connection success

TEST ENV

{
 “pod_name”: “unknown”,
 “pod_namespace”: “unknown”,
 “pod_node_name”: “unknown”,

	 60	 Chapter 4: Deploy a 3-tier Application

 “pod_ip”: “unknown”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

PROD ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

To summarize, using external-IP, we connected to frontend pod running in staged envi-
ronment with IP 22.1.1.1. The middleware pod from the same environment with IP
22.1.2.2 polled the status of the backend pod and served the combined connection status
to frontend.

If you notice, the result for test middleware remains unknown as the said environment
isn’t deployed yet, but the production environment shows timeout as the DNS got re-
solved, but the CN2 isolation kicked in and denied staged frontend pod from accessing
production middleware pod.

Lastly, let us deploy the application in the test environment.
root@centraljumphost:~/cn2dayone/thelitmustest# kubectl apply -f test_app1
deployment.apps/t2-test-app1-frontend-deployment created
service/t2-test-app1-frontend-service created
service/t2-test-app1-frontend-service-external created
deployment.apps/t2-test-app1-middleware-deployment created
service/t2-test-app1-middleware-service created
deployment.apps/t2-test-app1-backend-deployment created
service/t2-test-app1-backend-service created
virtualnetwork.core.contrail.juniper.net/t2-ext-svc-vn unchanged
subnet.core.contrail.juniper.net/t2-ext-svc-sn configured
namespace/t2-test-app1 created
subnet.core.contrail.juniper.net/t2-test-app1-frontend-sn created
subnet.core.contrail.juniper.net/t2-test-app1-middleware-sn created
subnet.core.contrail.juniper.net/t2-test-app1-backend-sn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-frontend-vn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-backend-vn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-middleware-vn created
virtualnetworkrouter.core.contrail.juniper.net/vnr-spoke created
virtualnetworkrouter.core.contrail.juniper.net/vnr-hub created

root@centraljumphost:~# kubectl get deployment -n=t2-test-app1

	 61	 Deploying the 3-tier Application in Multiple Environments

NAME                                 READY   UP-TO-DATE   AVAILABLE   AGE
t2-test-app1-backend-deployment      2/2     2            2           36s
t2-test-app1-frontend-deployment     2/2     2            2           36s
t2-test-app1-middleware-deployment   2/2     2            2           36s

root@centraljumphost:~# kubectl get svc -n=t2-test-app1
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
t2-test-app1-backend-service ClusterIP 10.233.42.143 <none> 80/TCP 57s
t2-test-app1-frontend-service ClusterIP 10.233.32.27 <none> 80/TCP 57s
t2-test-app1-frontend-service-external LoadBalancer 10.233.39.118 10.219.90.164 80:32215/TCP
57s
t2-test-app1-middleware-service ClusterIP 10.233.31.147 <none> 90/TCP 57s

To perform the test, first access the K8s control node using SSH. Now, run an access test
using the browser application Lynx. Access the IP address 10.219.90.164, which is the IP
address for frontend-service-external listening on port 80, by entering lynx 10.219.90.164
in the command line.

Front End Pod Information

 Pod Name: t2-test-app1-frontend-deployment-8c56867ff-qt8jt

 Pod Namespace: t2-test-app1

 Pod IP: 23.1.1.2

 Node Name: centralworker1

Middleware/Application pod information per environment

DEV ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

TEST ENV

{
 “pod_name”: “t2-test-app1-middleware-deployment-64678d548-knn4s”,
 “pod_namespace”: “t2-test-app1”,
 “pod_nodename”: “centralworker2”,
 “pod_ip”: “23.1.2.1”,
 “pod_backend_connection”: true
}

 Connection to backend tier

 connection success

	 62	 Chapter 4: Deploy a 3-tier Application

PROD ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

To summarize the output, the frontend pod in the test environment with IP 23.1.1.2, re-
sponded to the request on the ExternalIP service. The request from the frontend pod to
the test middleware was serviced by the pod with IP 23.1.2.1, and the request from the
middleware to the test backend pod was successful. However, while the DNS query for
both the production and staging environments was successful, access from the test mid-
dleware pod to either environment failed and resulted in a timeout.

Visualizing Application Isolation Without Network Policy

If you have noticed the deployed manifests for each application deployment in any tier,
you will see that no network policy manifests have been deployed yet. Despite this, traffic
can still be segmented/isolated in each tier. This is made possible by using CN2. By de-
fault, Kubernetes uses a single CIDR for the pod network, which provides no network
layer segmentation between pods in the cluster. However, CN2’s latest release 22.4 intro-
duces isolated namespaces, which creates a default pod and service network per
namespace to ensure isolation for pods and services within a namespace. Additionally,
CN2 allows for the creation of a custom pod network, which enables the creation of a
pod with a different pod network per namespace or even per pod basis, by defining an
annotation on either the pod or the namespace definition.

NOTE	 The above customization not only applies to the second interface of a pod, but
also to the first.

Rollback the deployment

Now that we have learned the outcome, let us take a step back and rollback the deploy-
ment. Let us deploy the application one step at a time and understand the constructs that
achieve the isolation.

To rollback, apply the following command.
kubectl delete -f ~/cn2dayone/thelistmustest/test_app1

deployment.apps “t2-test-app1-backend-deployment” deleted
service “t2-test-app1-backend-service” deleted
virtualnetwork.core.contrail.juniper.net “t2-ext-svc-vn” deleted
subnet.core.contrail.juniper.net “t2-ext-svc-sn” deleted

	 63	 Deep-Dive into the Deployment [Stepwise Approach]

deployment.apps “t2-test-app1-frontend-deployment” deleted
service “t2-test-app1-frontend-service” deleted
service “t2-test-app1-frontend-service-external” deleted
deployment.apps “t2-test-app1-middleware-deployment” deleted
service “t2-test-app1-middleware-service” deleted
namespace “t2-test-app1” deleted
subnet.core.contrail.juniper.net “t2-test-app1-frontend-sn” deleted
subnet.core.contrail.juniper.net “t2-test-app1-middleware-sn” deleted
subnet.core.contrail.juniper.net “t2-test-app1-backend-sn” deleted
virtualnetwork.core.contrail.juniper.net “t2-test-app1-frontend-vn” deleted
virtualnetwork.core.contrail.juniper.net “t2-test-app1-backend-vn” deleted
virtualnetwork.core.contrail.juniper.net “t2-test-app1-middleware-vn” deleted
virtualnetworkrouter.core.contrail.juniper.net “vnr-spoke” deleted
virtualnetworkrouter.core.contrail.juniper.net “vnr-hub” deleted

Deep-Dive into the Deployment [Stepwise Approach]

Let’s deploy the application in a test environment from scratch in a step-by-step manner.
This will help you understand the modifications in manifests that led to the segmentation
of application tier and environment without the use of network policy.

Navigate to the test_app1 folder and you should be able to see the following yaml files:
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# ls -la
total 36
drwxr-xr-x 2 root root 4096 Jan 13 03:55 .
drwxr-xr-x 5 root root 4096 Jan 11 16:52 ..
-rw-r--r-- 1 root root 855 Jan 13 03:53 back_dpl.yaml
-rw-r--r-- 1 root root 632 Jan 10 16:42 ext-net.yaml
-rw-r--r-- 1 root root 1924 Jan 13 03:55 front_dpl.yaml
-rw-r--r-- 1 root root 1687 Jan 13 03:54 mid_dpl.yaml
-rw-r--r-- 1 root root 2811 Jan 12 19:38 ns_vn_sn.yaml
-rw-r--r-- 1 root root 1560 Jan 13 03:53 svc_all.yaml
-rw-r--r-- 1 root root 980 Jan 12 19:37 vnr.yaml

The five files are:

	� ns_vn_sn.yaml defines the namespace, subnet and virtual-network.

	� vnr.yaml defines the virtualnetworkrouter.

	� front_dpl.yaml, mid_dpl.yaml and back_dpl.yaml define the deployment of the
three tiers of the application.

	� svc.yaml defines the service for all the tiers.

	� ext-net.yaml defines the external network which is mapped to a subnet. ExternalIP
is assigned to the frontend tier service from this subnet.

The workflow is conceptualized and implemented in which we define a namespace for
the environment, subnet and virtual network (VN) per tier.

	 64	 Chapter 4: Deploy a 3-tier Application

NOTE	 A VN is a construct, which defines isolation by default, i.e., any pods within the
same VN can talk to each other but not to pods outside the VN.

Following this, we define a VNR that connects the two VNs together.

Once the objects mentioned above are created, we can start deploying application pod to
spawn and reside within VNs. Pods are assigned IPs from the defined subnet attached to
the VN in which they are deployed. However, services are assigned an IP from the default
service network for Kubernetes service discovery.

Open file ns_vn_sn.yaml and study the different yaml definitions for different constructs
like namespace, subnet and virtual network. Observe the spec section under the virtual
network. It contains a Boolean field “podnetwork” set to true.

apiVersion: core.contrail.juniper.net/v2
kind: VirtualNetwork
metadata:
 namespace: t2-test-app1
 name: t2-test-backend-vn
 annotations:
 core.juniper.net/display-name: t2-test-backend-vn
 labels:
 vn: spoke
spec:
 podNetwork: true
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v2
 kind: Subnet
 namespace: t2-test-app1
 name: t2-test-backend-sn

NOTE	 This knob defines the virtual network type as a custom pod network. This will be
examined in the next section.

Let us deploy the yaml file ns_vn_sn.yaml.
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f ns_vn_sn.yaml
namespace/t2-test-app1 created
subnet.core.contrail.juniper.net/t2-test-app1-frontend-sn created
subnet.core.contrail.juniper.net/t2-test-app1-middleware-sn created
subnet.core.contrail.juniper.net/t2-test-app1-backend-sn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-frontend-vn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-backend-vn created
virtualnetwork.core.contrail.juniper.net/t2-test-app1-middleware-vn created

Here are the commands to check if the deployment is a success:
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get namespace | grep t2-test-app1
t2-test-app1 Active 44s

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get sn -n=t2-test-app1
NAME CIDR USAGE STATE AGE
t2-test-app1-backend-sn 23.1.3.0/24 1.17% Success 90s
t2-test-app1-frontend-sn 23.1.1.0/24 1.17% Success 90s

	 65	 Deep-Dive into the Deployment [Stepwise Approach]

t2-test-app1-middleware-sn 23.1.2.0/24 1.17% Success 90s

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get vn -n=t2-test-app1
NAME                         VNI   IP FAMILIES   STATE     AGE
t2-test-app1-backend-vn      15    v4            Success   2m20s
t2-test-app1-frontend-vn     7     v4            Success   2m20s
t2-test-app1-middleware-vn   16    v4            Success   2m20s

Let us examine the pod yaml files for the three tiers. Open the frontend tier file and ana-
lyze the difference from a standard Kubernetes pod deployment manifest. Look for the
annotations defined in the metadata section. These settings define the virtual network to
be used and sets the podnetwork Boolean as true under the cni-args section.

Here’s an extract from the frontend pod definition manifest:
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 “name”: “t2-test-app1-frontend-vn”,
 “namespace”: “t2-test-app1”,
 “cni-args”: {
 “net.juniper.contrail.podnetwork”: true
 }
 }
]

This annotation sets the pod’s first interface mapping to the user-defined virtual network
and not the default pod network.

Apply the three yaml files for the 3-tier application pods.
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f front_dpl.yaml
deployment.apps/t2-test-app1-frontend-deployment created
service/t2-test-app1-frontend-service created
service/t2-test-app1-frontend-service-external created

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f mid_dpl.yaml
deployment.apps/t2-test-app1-middleware-deployment created
service/t2-test-app1-middleware-service created

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f back_dpl.yaml
deployment.apps/t2-test-app1-backend-deployment created
service/t2-test-app1-backend-service created

Check the pods that are deployed for the 3-tier application.
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get pods -n=t2-test-app1 -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
t2-test-app1-backend-deployment-59ff5f8549-dl5tz 1/1 Running 0 62s 23.1.3.1
centralworker2 <none> <none>
t2-test-app1-backend-deployment-59ff5f8549-kts2c 1/1 Running 0 62s 23.1.3.2
centralworker1 <none> <none>
t2-test-app1-frontend-deployment-8c56867ff-cb5gj 1/1 Running 0 76s 23.1.1.1
centralworker2 <none> <none>

	 66	 Chapter 4: Deploy a 3-tier Application

t2-test-app1-frontend-deployment-8c56867ff-qvnlr 1/1 Running 0 76s 23.1.1.2
centralworker1 <none> <none>
t2-test-app1-middleware-deployment-64678d548-28kf5 1/1 Running 0 69s 23.1.2.1
centralworker2 <none> <none>
t2-test-app1-middleware-deployment-64678d548-pfqv5 1/1 Running 0 69s 23.1.2.2
centralworker1 <none> <none>

Kubectl description for one of the pods would show that only one interface is attached to
the container.

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl describe pod t2-test-app1-
frontend-deployment-8c56867ff-cb5gj -n=t2-test-app1
Name:             t2-test-app1-frontend-deployment-8c56867ff-cb5gj
Namespace:        t2-test-app1
Priority:         0
Service Account:  default
Node:             centralworker2/10.219.90.138
Start Time:       Thu, 12 Jan 2023 19:47:32 +0000
Labels:           env=t2-test-app1
                  pod-template-hash=8c56867ff
                  svc=t2-test-app1-frontend-deployment
                  vn=t2-test-app1-frontend-vn
Annotations:      k8s.v1.cni.cncf.io/network-status:
                    [{
                        “name”: “t2-test-app1/t2-test-app1-frontend-vn”,
                        “interface”: “eth0”,
                        “ips”: [
                            “23.1.1.1”
                        ],
                        “mac”: “02:6c:71:53:0c:c0”,
                        “default”: true,
                        “dns”: {}
                    }]
                  k8s.v1.cni.cncf.io/networks:
                    [
                      {
                        “name”: “t2-test-app1-frontend-vn”,
                        “namespace”: “t2-test-app1”,
                        “cni-args”: {
                        “net.juniper.contrail.podnetwork”: true
                         }
                      }
                    ]
                  kube-manager.juniper.net/vm-uuid: d6920791-bf6e-4c71-a584-3b2ad0a44380
Status:           Running
IP:               23.1.1.1

So, we deployed the namespace, subnet, virtual network and pods. Service’s definitions in
this lab are generic clusterIP type per tier, besides the frontend tier, which has a definition
of a second Loadbalancer service. This will get an ExternalIP to expose the application
outside.

This service has a special annotation that defines the knob externalnetwork and points it
to the network definition.

	 67	 Deep-Dive into the Deployment [Stepwise Approach]

Open the file front_dpl.yaml to verify the annotation as below:
service.contrail.juniper.net/externalNetwork: default/t2-ext-svc-vn

Let us deploy the service manifest file svc_all.yaml.

Run the following commands to deploy and check the status of services:
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f svc_all.yaml
service/t2-test-app1-frontend-service created
service/t2-test-app1-frontend-service-external created
service/t2-test-app1-middleware-service created
service/t2-test-app1-backend-service created

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get svc -n=t2-test-app1
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
t2-test-app1-backend-service ClusterIP 10.233.28.170 <none> 80/TCP 9m38s
t2-test-app1-frontend-service ClusterIP 10.233.25.244 <none> 80/TCP 9m52s
t2-test-app1-frontend-service-external LoadBalancer 10.233.51.151 <pending> 80:31116/TCP
9m52s
t2-test-app1-middleware-service ClusterIP 10.233.27.63 <none> 90/TCP 9m45s

The output shows ClusterIP per tier and an extra Loadbalancer service for the frontend
pod. But doesn’t the ExternalIP status show <pending>?

This is because we defined the virtual networks for the pods but not for the external net-
work. Let us deploy the file named ext-net.yaml.

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f ext-net.yaml
virtualnetwork.core.contrail.juniper.net/t2-ext-svc-vn created
subnet.core.contrail.juniper.net/t2-ext-svc-sn created

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get svc -n=t2-test-app1
t2-test-app1 t2-test-app1-backend-service ClusterIP 10.233.28.170 <none>
80/TCP 16m
t2-test-app1 t2-test-app1-frontend-service ClusterIP 10.233.25.244 <none>
80/TCP 16m
t2-test-app1 t2-test-app1-frontend-service-external LoadBalancer 10.233.53.31
10.219.90.164 80:31791/TCP 76s
t2-test-app1 t2-test-app1-middleware-service ClusterIP 10.233.27.63 <none>
90/TCP 16m

Now, access the service using the ClusterIIP/ExternalIP of the Loadbalancer service.
root@centralmaster:~# lynx 10.233.53.31
Output:-
Front End Pod Information

 Pod Name: t2-test-app1-frontend-deployment-8c56867ff-cb5gj

 Pod Namespace: t2-test-app1

 Pod IP: 23.1.1.1

 Node Name: centralworker2

Middleware/Application pod information per environment

	 68	 Chapter 4: Deploy a 3-tier Application

DEV ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

TEST ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

PROD ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false
}

 Connection to backend tier

 connection failure

Let us examine the output above. We accessed the ClusterIP service. The frontend pod of
the test environment with the IP address 23.1.1.1 replied to this request. However, the
middleware access is timed out for all three environments. Prod and stage timeout is ex-
pected as they reside in other namespaces, but timeout to the test environment middle-
ware is not expected.

The reason for the timeout is that the said pods are mapped to custom pod networks for
each tier. This feature of CN2 provides an additional layer of isolation other than
namespaces.

To enable communication selectively, we will use another feature of CN2 called VNRs.

The file vnr.yaml defines VNRs. These will bind the VNs together. As explained earlier in
the book, VNRs can be configured either as hub-and-spoke or mesh. This can be config-
ured by using the type field in the spec section of the manifest.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: t2-test-app1

	 69	 Deep-Dive into the Deployment [Stepwise Approach]

  name: vnr-spoke
  annotations:
    core.juniper.net/display-name: vnr-spoke
  labels:
    vnr: spoke
spec:
  type: spoke
  virtualNetworkSelector:
    matchLabels:
      vn: spoke
  import:
    virtualNetworkRouters:
      - virtualNetworkRouterSelector:
          matchLabels:
            vnr: hub
        namespaceSelector:
          matchLabels:
            ns: t2-test-app1

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
  namespace: t2-test-app1
  name: vnr-hub
  annotations:
    core.juniper.net/display-name: vnr-hub
  labels:
    vnr: hub
spec:
  type: hub
  virtualNetworkSelector:
    matchLabels:
      vn: hub
  import:
    virtualNetworkRouters:
      - virtualNetworkRouterSelector:
          matchLabels:
            vnr: spoke
        namespaceSelector:
          matchLabels:
            ns: t2-test-app1

We will use the hub-and-spoke type to enable communication between middleware to
frontend and backend. We are not using mesh type considering that the communication
from frontend to backend tier is not required.

The procedure will require us to create two VNRs — one would be vnr-hub and the oth-
er one vnr-spoke. Vnr-hub is mapped to middleware tier and vnr-spoke to frontend and
backend tier using the labels.

Let us deploy the final yaml manifest for this lab.
root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl apply -f vnr.yaml
virtualnetworkrouter.core.contrail.juniper.net/vnr-spoke created
virtualnetworkrouter.core.contrail.juniper.net/vnr-hub created

	 70	 Chapter 4: Deploy a 3-tier Application

root@centraljumphost:~/cn2dayone/thelitmustest/test_app1# kubectl get vnr -n=t2-test-app1
NAME   TYPE    STATE     AGE
CustomPodNetDefaultSvcNetwork-t2-test-app1-backend-vn      spoke   Success   8h
CustomPodNetDefaultSvcNetwork-t2-test-app1-frontend-vn     spoke   Success   8h
CustomPodNetDefaultSvcNetwork-t2-test-app1-middleware-vn   spoke   Success   8h
CustomPodNetIPFabricNetwork-t2-test-app1-backend-vn        spoke   Success   8h
CustomPodNetIPFabricNetwork-t2-test-app1-frontend-vn       spoke   Success   8h
CustomPodNetIPFabricNetwork-t2-test-app1-middleware-vn     spoke   Success   8h
vnr-hub  hub     Success   27s
vnr-spoke  spoke   Success   27s

Now that the VNR has been deployed, let us re-check the application using the ClusterIP
/ExternalIP from the master nodes.

root@centralmaster:~# lynx 10.233.53.31
Output:-
Front End Pod Information

   Pod Name: t2-test-app1-frontend-deployment-8c56867ff-cb5gj

   Pod Namespace: t2-test-app1

   Pod IP: 23.1.1.1

   Node Name: centralworker2

Middleware/Application pod information per environment

DEV ENV

{
  “pod_name”: “Connection timeout”,
  “pod_backend_connection”: false
}

   Connection to backend tier

   connection failure

TEST ENV

{
  “pod_name”: “t2-test-app1-middleware-deployment-64678d548-pfqv5”,
  “pod_namespace”: “t2-test-app1”,
  “pod_nodename”: “centralworker1”,
  “pod_ip”: “23.1.2.2”,
  “pod_backend_connection”: true
}

   Connection to backend tier

   connection success

PROD ENV

{
 “pod_name”: “Connection timeout”,
 “pod_backend_connection”: false

	 71	 Network Policy for Micro-segmentation

}

   Connection to backend tier

   connection failure

You can see that the frontend pod’s poll towards middleware is a success and the pod with
ID 23.1.2.2 accepted the request. The middleware pod’s poll to backend is also a success.
Hence, our VNR deployment is accomplished.

So, in this section we deployed the namespace, subnet and virtual network for the 3-tier
application. After verification of these resources, we deployed the pod and service on
each tier. Finally, we connected the VNs to each other by deploying VNRs, which eventu-
ally allowed communication between the middleware and other tiers. We achieved isola-
tion between the tiers without defining a network policy.

Let us now understand micro-segmentation by using network policy.

Network Policy for Micro-segmentation

A Kubernetes network policy defines access permissions for groups of pods by defining
ingress and egress rules. CN2 implements this using Contrail Firewall Constructs.

The primary question is whether we need to deploy a network policy when we already
have virtual networks (VNs) that isolate pods. This depends on how we want to structure
our application architecture. By deploying a NetPol, we can add an extra layer of isola-
tion for pod communication, effectively enabling micro-segmentation. NetPol provides
security between pods belonging to a virtual network.

To deploy network policy on the 3-tier application, apply the following yaml file.
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: t2-prod-app1-net-pol
  namespace: t2-prod-app1
spec:
  egress:
  - ports:
    - port: 53
      protocol: UDP
    - port: 53
      protocol: TCP
  - ports:
    - port: 90
      protocol: TCP
  ingress:
  - ports:
    - port: 443
      protocol: TCP
    - port: 80

	 72	 Chapter 4: Deploy a 3-tier Application

      protocol: TCP
  podSelector:
    matchLabels:
      svc: t2-prod-app1-frontend-deployment
  policyTypes:
  - Ingress
  - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: t2-prod-app1-middleware-net-pol
  namespace: t2-prod-app1
spec:
  ingress:
  - from:
    - podSelector:
        matchLabels:
          svc: t2-prod-app1-frontend-deployment
    ports:
    - port: 90
      protocol: TCP 
  egress:
  - ports:
    - port: 80
      protocol: TCP
    - port: 53
      protocol: UDP
    - port: 53
      protocol: TCP
  podSelector:
    matchLabels:
      svc: t2-prod-app1-middleware-deployment
  policyTypes:
  - Ingress
  - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: t2-prod-app1-backend-net-pol
  namespace: t2-prod-app1
spec:
  ingress:
  - from:
    - podSelector:
        matchLabels:
          svc: t2-prod-app1-middleware-deployment
    ports:
    - port: 80
      protocol: TCP 
  podSelector:
    matchLabels:

	 73	 Exposing Applications Externally Using BGP Peering with an SDNGW

 svc: t2-prod-app1-backend-deployment
 policyTypes:
 - Ingress

root@centraljumphost:~/vnr_book# kubectl apply -f Net_Pol.yaml
networkpolicy.networking.k8s.io/t2-test-app1-net-pol created
networkpolicy.networking.k8s.io/t2-test-app1-middleware-net-pol created
networkpolicy.networking.k8s.io/t2-prod-app1-backend-net-pol created

root@centraljumphost:~/vnr_book# kubectl get netpol -n=t2-test-app1
NAME POD-SELECTOR AGE
t2-test-app1-backend-net-pol svc=t2-test-app1-backend-deployment 36h
t2-test-app1-middleware-net-pol svc=t2-test-app1-middleware-deployment 36h
t2-test-app1-net-pol svc=t2-test-app1-frontend-deployment 36h

Exposing Applications Externally Using BGP Peering with an SDNGW

Exposing applications to the outside world is another important aspect to pull user traffic
to the application. This task is tied to the cluster’s SDN controller in which the applica-
tion is running.

CN2 natively supports peering with the gateway router using BGP protocol. The CN2
controller can peer with a BGP router and form dynamic GRE tunnels towards each
compute node to route and load balance traffic towards services or pods.

Here, in this example, we peer the CN2 cluster with an MX80.

NOTE	 CN2 can peer with any vendor or software BGP speaker, acting as a gateway
router for the cluster environment.

To configure CN2 to start peering with the BGP router, deploy the following yaml file:
apiVersion: core.contrail.juniper.net/v1alpha1
kind: BGPRouter
metadata:
 namespace: contrail
 name: sdn-gw
spec:
  parent:
    apiVersion: core.contrail.juniper.net/v1alpha1
    kind: RoutingInstance
    namespace: contrail
    name: default
  bgpRouterParameters:
    vendor: juniper
    routerType: router
    address: 10.219.90.133
    identifier: 10.219.90.133
    autonomousSystem: 64513
    addressFamilies:
      family:
        - inet
  bgpRouterReferences:

	 74	 Chapter 4: Deploy a 3-tier Application

    - apiVersion: core.contrail.juniper.net/v1alpha1
      kind: bgpouter
      namespace: contrail
      name: controller.central.cluster

kubectl apply -f bgprouter.yaml

root@centraljumphost:~# kubectl get bgprouter -A
NAMESPACE   NAME            TYPE           IDENTIFIER      STATE     AGE
contrail    SDN-GW          router         10.219.90.133   Success   1d
contrail    centralmaster   control-node   10.219.90.136   Success   1d

On the gateway side, with the following configuration in place, we should see BGP neigh-
borship established and dynamic GRE tunnels created towards the compute nodes:

set protocols bgp group clustercentral type internal
set protocols bgp group clustercentral local-address 10.219.90.133
set protocols bgp group clustercentral keep all
set protocols bgp group clustercentral family inet-vpn unicast
set protocols bgp group clustercentral neighbor 10.219.90.136
set routing-options dynamic-tunnels dynamic_overlay_tunnels source-address 10.219.90.133
set routing-options dynamic-tunnels dynamic_overlay_tunnels gre
set routing-options dynamic-tunnels dynamic_overlay_tunnels destination-networks 10.219.90.0/24
set interfaces lt-0/0/0 unit 0 encapsulation frame-relay
set interfaces lt-0/0/0 unit 0 dlci 1
set interfaces lt-0/0/0 unit 0 peer-unit 1
set interfaces lt-0/0/0 unit 0 family inet
set interfaces lt-0/0/0 unit 1 encapsulation frame-relay
set interfaces lt-0/0/0 unit 1 dlci 1
set interfaces lt-0/0/0 unit 1 peer-unit 0
set interfaces lt-0/0/0 unit 1 family inet
set interfaces irb unit 100 family inet address 10.219.90.133/26
set interfaces lo0 unit 0 family inet
set interfaces lo0 unit 1 family inet address 192.0.2.1/24
set routing-options route-distinguisher-id 10.219.90.133
set routing-instances Intranet instance-type vrf
set routing-instances Intranet interface lt-0/0/0.1
set routing-instances Intranet interface lo0.1
set routing-instances Intranet vrf-target target:64512:10000
set routing-instances Intranet routing-options static route 0.0.0.0/0 next-hop lt-0/0/0.1

root@jtac-mx80-r2026> show bgp summary 
Threading mode: BGP I/O
Groups: 1 Peers: 1 Down peers: 0
Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending
bgp.l3vpn.0          
                      95         95          0          0          0          0
inet.0               
                       0          0          0          0          0          0
Peer                     AS      InPkt     OutPkt    OutQ   Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.219.90.136         64512       8391       7162       0       4  2d 5:43:22 Establ
  bgp.l3vpn.0: 95/95/95/0

root@jtac-mx80-r2026> show dynamic-tunnels database 
*- Signal Tunnels #- PFE-down
Table: inet.3       

	 75	 Exposing Applications Externally Using BGP Peering with an SDNGW

Destination-network: 10.0.0.0/24

Destination-network: 10.219.90.0/24
Tunnel to: 10.219.90.136/32 State: Up
  Reference count: 1
  Next-hop type: gre
    Source address: 10.219.90.133
    Next hop: gr-0/0/10.32770
      State: Up
Tunnel to: 10.219.90.137/32 State: Up
  Reference count: 1
  Next-hop type: gre
    Source address: 10.219.90.133
    Next hop: gr-0/0/10.32774
      State: Up
Tunnel to: 10.219.90.138/32 State: Up
  Reference count: 1
  Next-hop type: gre
    Source address: 10.219.90.133
    Next hop: gr-0/0/10.32773
      State: Up

root@jtac-mx80-r2026> show route 10.219.90.162/32 

Intranet.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.219.90.162/32      *[BGP/170] 00:00:32, MED 100, localpref 200, from 10.219.90.136
                      AS path: ?, validation-state: unverified
                    >  via gr-0/0/10.32774, Push 140

bgp.l3vpn.0: 76 destinations, 76 routes (76 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.219.90.137:8:10.219.90.162/32                
                   *[BGP/170] 00:00:32, MED 100, localpref 200, from 10.219.90.136
                      AS path: ?, validation-state: unverified
                    >  via gr-0/0/10.32774, Push 140

From the output, we can observe that route 10.219.90.162/32 is advertised by CN2 con-
troller. The output also indicates that the route is installed in Intranet.inet.0 table.

The mentioned destination in CN2 cluster is reachable from the gateway using the gr-
0/0/10.32774 tunnel using push label as 140.

This route can be propagated by the gateway router to upstream networks. This enables
communication from external entities towards the service using IP 10.219.90.162.

This concludes the chapter of deploying the application and enabling communication
from external entities.

The central cluster contains all the contrail components required to control the Kuber-
netes constructs and the CN2 objects. One can add multiple distributed clusters running
their own K8s control plane and CN2 data plane, i.e., the vRouter and vRouter agent in
each of their nodes. Distributed clusters are attached to the central cluster via a listener in
the form of a Kubemanager. This reconciles any CRUD operation on the distributed
cluster.

With the following steps, one should be able to build the distributed cluster and attach it
to the central cluster with only five ansible playbook executions.

Knowing the five deployment playbooks

The cloned cn2dayone git repo contains folders cn2_deploy_central and cn2_deploy_
ds1. Navigate to the cn2_deploy_ds1 directory and analyze it. Listing the folder will show
you the following files:

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ls -la
total 64
drwxr-xr-x 2 root root 4096 Jan 21 18:05 .
drwxr-xr-x 6 root root 4096 Jan 14 13:03 ..
-rw-r--r-- 1 root root 4143 Jan 19 15:36 1Play_VM_Creation.yaml
-rw-r--r-- 1 root root 1378 Jan 19 15:36 2Play_VM_Disk_Resize.yaml
-rw-r--r-- 1 root root 3976 Jan 19 15:36 3Play_KubeSprayHost.yaml
-rw-r--r-- 1 root root 1950 Jan 19 15:36 4Play_CNI_less_Cluster.yaml
-rw-r--r-- 1 root root 7597 Jan 19 15:36 5Play_CN2_Cluster.yaml
-rwxr-xr-x 1 root root  146 Jan 19 15:36 destroy_cluster.sh
-rw-r--r-- 1 root root 1124 Jan 19 15:36 inventory.yaml
-rw-r--r-- 1 root root 1317 Jan 19 16:07 k8s_inventory.yaml
-rw-r--r-- 1 root root  657 Jan 19 15:36 kubemanager_ds1.yaml
-rwxr-xr-x 1 root root  537 Jan 19 15:36 network_yaml_create.sh
-rw-r--r-- 1 root root 1872 Jan 14 13:03 README.md 

Appendix

Add a Distributed Cluster to the Setup

	 77	 VM Creation

The yaml files starting with numbers 1 to 5 are the ones used to deploy the distributed
cluster. The file inventory.yaml defines the inventory used for cluster deployment. It con-
tains the VM names and corresponding IP addresses for this cluster. The K8s_inventory.
yaml defines the K8s cluster inventory file which would be pushed to the jumphost while
executing Playbook 3. This will eventually be used to build the CN2 K8s cluster. The file
kubemanager_ds1.yaml defines parameters used to deploy the kubemanager for distrib-
uted cluster on the central cluster. This file will be copied to the central cluster during the
execution of Playbook 5. Lastly, shell script network_yaml_create.sh is a file that is used
during the Playbook 1 execution to generate the four network yaml files to be pushed to
individual qcow images. These qcow images are disks mapped to the VMs.

VM Creation

The first playbook builds the network file, customizes the qcow2 images, spawns and ini-
tializes the VMs to be used in the deployment.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ansible-playbook -i inventory.yaml 1Play_VM_Creation.yaml

PLAY [Playbook to prepare vms image, network, customize and lastly spawn the vms]

TASK [Gathering Facts] ***
ok: [localhost]

PLAY RECAP ***
localhost : ok=9 changed=5 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Verification task #1: Enter command virsh list –all | grep ds1 to confirm four VMs are in
the running state.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# virsh list --all | grep ds1
 665 ds1jumphost running
 666 ds1ctrl running
 667 ds1worker1 running
 668 ds1worker2 running

Verification task #2: You must be able to ssh to the VMs without entering password.
root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ssh ds1jumphost
Warning: Permanently added ‘ds1jumphost’ (ECDSA) to the list of known hosts.
Warning: the ECDSA host key for ‘ds1jumphost’ differs from the key for the IP address ‘10.219.90.88’
Offending key for IP in /root/.ssh/known_hosts:12
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-97-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

 System information as of Sat Jan 21 18:18:35 UTC 2023

	 78	 Appendix: Add a Distributed Cluster to the Setup

 System load: 0.07 Processes: 183
 Usage of /: 3.0% of 50.42GB Users logged in: 0
 Memory usage: 0% IPv4 address for enp1s0: 10.219.90.88
 Swap usage: 0%

192 updates can be applied immediately.
141 of these updates are standard security updates.
To see these additional updates run: apt list --upgradable

New release ‘22.04.1 LTS’ available.
Run ‘do-release-upgrade’ to upgrade to it.

Last login: Sat Jan 21 18:18:21 2023 from 10.219.90.79
root@ds1jumphost:~#

Resizing VM disks

The execution of this playbook expands the disk to the required size for the deployment
and installs NTP on the VMs.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ansible-playbook -i inventory.yaml 2Play_VM_Disk_Resize.
yaml

PLAY [Update /etc/hosts among all Vms and resize the VMs Disk] ***************************************

TASK [Wait for system to become reachable] **

ok: [ds1jumphost]
ok: [ds1ctrl]
ok: [ds1worker2]
ok: [ds1worker1]

TASK [gather Facts] ***

ok: [ds1worker2]
ok: [ds1worker1]
ok: [ds1jumphost]
ok: [ds1ctrl]

--SNIP--

PLAY RECAP ***
ds1ctrl : ok=10 changed=7 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
ds1jumphost : ok=10 changed=7 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
ds1worker1 : ok=10 changed=7 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1
ds1worker2 : ok=10 changed=7 unreachable=0 failed=0 skipped=0 rescued=0
ignored=1

	 79	 VM Creation

Verification task #1: Log in to a VM and execute df -H to confirm if the disk has been
resized to 50G+

root@ds1jumphost:~# df -H
Filesystem      Size  Used Avail Use% Mounted on
udev             17G     0   17G   0% /dev
tmpfs           3.4G  1.2M  3.4G   1% /run
/dev/vda1        55G  1.7G   53G   3% /
tmpfs            17G     0   17G   0% /dev/shm
tmpfs           5.3M     0  5.3M   0% /run/lock
tmpfs            17G     0   17G   0% /sys/fs/cgroup
/dev/vda15      110M  5.5M  104M   5% /boot/efi
/dev/loop2       46M   46M     0 100% /snap/snapd/14549
/dev/loop0       71M   71M     0 100% /snap/lxd/21835
/dev/loop1       66M   66M     0 100% /snap/core20/1328
tmpfs           3.4G     0  3.4G   0% /run/user/0

Packages’ installation on ds1jumphost

The execution of this playbook will perform a makeover of ds1jumphost. At the comple-
tion of this playbook, the VM should be installed with all the packages required to deploy
Playbook 4 and 5.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ansible-playbook -i inventory.yaml 3Play_KubeSprayHost.
yaml

PLAY [Install required packages on Jumpshost] ***

TASK [Gathering Facts] **

ok: [ds1jumphost]

--SNIP--

PLAY RECAP **
ds1ctrl : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ds1jumphost : ok=22 changed=17 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ds1worker1 : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
ds1worker2 : ok=4 changed=3 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Install distributed K8s cluster

The execution of this playbook makes the jumphost a kubespray node. The jumphost, in
turn, installs the K8s cluster on the remaining nodes sans CNI. This may require pa-
tience as it involves a “Deploy cluster” step that may take time to complete successfully.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ansible-playbook -i inventory.yaml 4Play_CNI_less_Cluster.
yaml

	 80	 Appendix: Add a Distributed Cluster to the Setup

PLAY [Install k8s cluster without CNI] **

TASK [Gathering Facts] ***
ok: [ds1jumphost]

--SNIP--

PLAY RECAP ***
ds1jumphost : ok=9 changed=8 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

Verification task #1: Check that cluster has been deployed without a CNI and the DNS is
in pending state. This is an expected outcome.

root@ds1jumphost:~# kubectl get pods -A
NAMESPACE     NAME                              READY   STATUS    RESTARTS      AGE
kube-system   coredns-74d6c5659f-fdv5m          0/1     Pending   0             65s
kube-system   dns-autoscaler-59b8867c86-cxc6q   0/1     Pending   0             61s
kube-system   kube-apiserver-ds1ctrl            1/1     Running   1             2m49s
kube-system   kube-controller-manager-ds1ctrl   1/1     Running   2 (25s ago)   2m49s
kube-system   kube-proxy-62vbp                  1/1     Running   0             98s
kube-system   kube-proxy-cdgxq                  1/1     Running   0             98s
kube-system   kube-proxy-mktkq                  1/1     Running   0             98s
kube-system   kube-scheduler-ds1ctrl            1/1     Running   2 (23s ago)   2m49s
kube-system   nginx-proxy-ds1worker1            1/1     Running   0             98s
kube-system   nginx-proxy-ds1worker2            1/1     Running   0             96s

Verification task #2: Observe the output of command kubectl get svc -A to confirm that the
cluster-ip for kubernetes is unique and not in conflict with the central cluster.

root@ds1jumphost:~# kubectl get service -A | egrep -i “namespace|Kubernetes”
NAMESPACE    NAME         TYPE       CLUSTER-IP     EXTERNAL IP   PORT(S)     AGE
default    kubernetes     ClusterIP   10.234.0.1      <none>        443/TCP    1d

root@centraljumphost:~# kubectl get svc -A | egrep -i “namespace|Kubernetes”
NAMESPACE    NAME         TYPE       CLUSTER-IP     EXTERNAL IP   PORT(S)     AGE
default    Kubernetes   ClusterIP      10.233.0.1      <none>     443/TCP     1d

Deploy CN2 in distributed cluster

The execution of this play will perform all the necessary steps to install CN2 components
and plug the distributed cluster to central cluster.

root@CN2demo1:~/cn2dayone/cn2_ds1_ansible# ansible-playbook -i inventory.yaml 5Play_CN2_Cluster.yaml
[WARNING]: While constructing a mapping from
/root/cn2_deploy_ansible/cn2_ds1_ansible/5Play_CN2_Cluster.yaml, line 197, column 7, found a
duplicate
dict key (register). Using last defined value only.
Enter Enterprise_Hub.juniper.net Username?: rahulverma@juniper.net
Enter Password?:

PLAY [Install required packages on Jumpshost] ***

TASK [Gathering Facts] ***

	 81	 VM Creation

ok: [ds1jumphost]

--SNIP--

TASK [Pause for 1 minutes to build app cache] **

Pausing for 60 seconds
(ctrl+C then ‘C’ = continue early, ctrl+C then ‘A’ = abort)
ok: [ds1jumphost]

TASK [Reset DNS resolution] ***
changed: [ds1jumphost -> 10.219.90.89] => (item=ds1ctrl)
changed: [ds1jumphost -> 10.219.90.90] => (item=ds1worker1)
changed: [ds1jumphost -> 10.219.90.91] => (item=ds1worker2)

PLAY RECAP ***
centralctrl : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0
centraljumphost : ok=10 changed=5 unreachable=0 failed=0 skipped=2 rescued=0
ignored=0
centralworker1 : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0
centralworker2 : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0
ds1ctrl : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0
ds1jumphost : ok=28 changed=13 unreachable=0 failed=0 skipped=1 rescued=0
ignored=0
ds1worker1 : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0
ds1worker2 : ok=2 changed=0 unreachable=0 failed=0 skipped=3 rescued=0
ignored=0

Verification task #1: Access the ds1jumphost and confirm pod status.
root@ds1jumphost:~# kubectl get pods -A
NAMESPACE         NAME                                       READY   STATUS      RESTARTS      AGE
cert-manager      cert-manager-745fb764f4-49mqc              1/1     Running     0             8m53s
cert-manager      cert-manager-cainjector-5654f68b7b-bkn7t   1/1     Running     0             8m53s
cert-manager      cert-manager-webhook-fff46dd94-5s4kc       1/1     Running     0             8m52s
contrail-deploy   contrail-k8s-deployer-5cb67969d8-pddz2     1/1     Running     0             10m
contrail-system   contrail-k8s-cert-gen-job-create-95xnh     0/1     Completed   0             9m10s
contrail          contrail-vrouter-masters-qlmtl             3/3     Running     0             6m58s
contrail          contrail-vrouter-nodes-6n299               3/3     Running     0             6m58s
contrail          contrail-vrouter-nodes-d8dg5               3/3     Running     0             6m58s
kube-system       coredns-74d6c5659f-fdv5m                   1/1     Running     0             18m
kube-system       coredns-74d6c5659f-grjgq                   1/1     Running     0             4m10s
kube-system       dns-autoscaler-59b8867c86-cxc6q            1/1     Running     0             18m
kube-system       kube-apiserver-ds1ctrl                     1/1     Running     1             20m
kube-system       kube-controller-manager-ds1ctrl            1/1     Running     2 (17m ago)   20m
kube-system       kube-proxy-62vbp                           1/1     Running     0             19m
kube-system       kube-proxy-cdgxq                           1/1     Running     0             19m
kube-system       kube-proxy-mktkq                           1/1     Running     0             19m
kube-system       kube-scheduler-ds1ctrl                     1/1     Running     2 (17m ago)   20m
kube-system       nginx-proxy-ds1worker1                     1/1     Running     0             19m
kube-system       nginx-proxy-ds1worker2                     1/1     Running     0             19m

	 82	 Appendix: Add a Distributed Cluster to the Setup

The output suggests that the distributed cluster components are in running state
root@centraljumphost:~# kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS AGE
cert-manager cert-manager-7d6d9465db-5zv8r 1/1 Running 0 95d
cert-manager cert-manager-cainjector-6f567667c6-5ch8d 1/1 Running 0
95d
cert-manager cert-manager-webhook-f947d7c68-dz54j 1/1 Running 0
95d
contrail-deploy contrail-k8s-deployer-6447484fc7-4gpxb 1/1 Running 0
95d
contrail-system contrail-k8s-apiserver-59db79d795-nrq6b 1/1 Running 0
95d
contrail-system contrail-k8s-cert-gen-job-create-cf5zx 0/1 Completed 0
95d
contrail-system contrail-k8s-controller-7dbdbdd799-lz49d 1/1 Running 0
95d
contrail contrail-control-0 2/2 Running 0 95d
contrail contrail-k8s-contrailstatusmonitor-7d746f44f5-xldwz 1/1 Running 0
95d
contrail contrail-k8s-kubemanager-659fc566d6-rt49c 1/1 Running 0
95d
contrail contrail-vrouter-masters-zfr7b 3/3 Running 0 95d
contrail contrail-vrouter-nodes-qjcdw 3/3 Running 0 95d
contrail contrail-vrouter-nodes-rltgq 3/3 Running 0 95d
contrail kubemanager-ds1cluster-6d6996d784-4fd7w 1/1 Running 0
95d
kube-system coredns-657959df74-mqlng 1/1 Running 0 95d
kube-system coredns-657959df74-qq4pk 1/1 Running 0 95d
kube-system dns-autoscaler-b5c786945-s69qh 1/1 Running 0 95d
kube-system kube-apiserver-centralmaster 1/1 Running 0 95d
kube-system kube-controller-manager-centralmaster 1/1 Running 0
95d
kube-system kube-proxy-bpqfs 1/1 Running 0 95d
kube-system kube-proxy-h229g 1/1 Running 0 95d
kube-system kube-proxy-nqlmb 1/1 Running 0 95d
kube-system kube-scheduler-centralmaster 1/1 Running 0 95d
kube-system nginx-proxy-centralworker1 1/1 Running 0 95d
kube-system nginx-proxy-centralworker2 1/1 Running 0 95d

From the above output, we can confirm that the central cluster is deployed with a pod
called kubemanager-ds1cluster-6d6996d784 which acts as the kubemanger for distrib-
uted cluster.

This concludes the deployment of distributed cluster and connecting its CN2 data plane
with CN2 control plane residing in central cluster.

	 83	 What to Do Next and Where to Go	 83	

What to Do Next and Where to Go

As you conclude this book, we hope you found the above chapters helpful in understand-
ing the concepts and technologies explained. However, this is just the beginning of your
journey towards mastering these topics. As technology continues to evolve rapidly, we
encourage you to stay up to date with the latest developments and best practices.

To assist you in your learning journey, we have shared a git link that will be updated peri-
odically with additional resources such as troubleshooting guides, case studies, and more.
We hope you will continue to explore and learn more about these exciting technologies.

Git link: https://github.com/Juniper/cn2dayone

	Frontcover
	Backcover
	Title Page & Table of Contents
	Copyright & About the Authors
	Welcome to Day One
	Key CN2 Resources
	What You Need to Know Before Reading This Book
	What You Will Be Able To Do After Reading This Book
	Glossary

	Chapter 1: Network Virtualization
	Evolution of DCs from Monolithic to Microservices-basedArchitecture
	Data Center Issues Today Are Essentially About Networking
	Overview of Containers
	Kubernetes: Container Orchestrator
	Summary

	Chapter 2: CN2 as a Kubernetes CNI
	Advantages of CN2 When Used as a CNI in K8s Environments
	CN2 Architecture in K8s Environments
	CN2 Custom Resources
	CN2 Deployment Models

	Chapter 3: Installing and Getting Familiar with CN2
	Setting Up Infrastructure for CN2 Deployment
	Installing K8s Cluster with CN2 as a CNI
	Knowing the Five Deployment Playbooks
	Getting Familiar with the Cluster
	Exploring Various CN2 Objects Using Kubectl

	Chapter 4: Deploy a 3-tier Application
	The 3-tier Application to Be Deployed
	Deploying the 3-tier Application in Multiple Environments
	Visualizing Application Isolation Without Network Policy
	Deep-Dive into the Deployment [Stepwise Approach]
	Network Policy for Micro-segmentation
	Exposing Applications Externally Using BGP Peering with an SDNGW

	Appendix: Add a Distributed Cluster to the Setup
	VM Creation

	What to Do Next and Where to Go

