JuniPer

NETWORKS

SRC PE Software

NETCONF API Guide

Modified: 2018-10-15

Copyright © 2018, Juniper Networks, Inc.

Juniper Networks, In.

1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Copyright © 2018 Juniper Networks, Inc. All rights reserved.

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. and/or its affiliates in
the United States and other countries. All other trademarks may be property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.

SRC PE Software NETCONF API Guide
Release 4.12.x
Copyright © 2018 Juniper Networks, Inc. All rights reserved.

Revision History
October 2018—Revision 1

The information in this document is current as of the date on the title page.
YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.

SOFTWARE LICENSE

The terms and conditions for using this software are described in the software license contained in the acknowledgment to your purchase
order or, to the extent applicable, to any reseller agreement or end-user purchase agreement executed between you and Juniper Networks.
By using this software, you indicate that you understand and agree to be bound by those terms and conditions.

Generally speaking, the software license restricts the manner in which you are permitted to use the software and may contain prohibitions
against certain uses. The software license may state conditions under which the license is automatically terminated. You should consult
the license for further details.

For complete product documentation, please see the Juniper Networks Web site at www.juniper.net/techpubs.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at

https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of
that EULA.

ii Copyright © 2018, Juniper Networks, Inc.

https://support.juniper.net/support/eula/

Abbreviated Table of Contents

About the Documentation ...ttt ittt et e e

Part 1 Using the SRC XML and NETCONF APlIs

Chapter1 Introduction to the SRC XML and NETCONF APIs

Chapter 2 Using NETCONF and SRC XML Tag Elements...............

Chapter 3 Controlling the NETCONF Sessioncciiiiiiiii it iieiienannnns
Chapter 4 Requesting Informationccviiiii ittt it it rie e enns
Chapter 5 Changing Configuration Information
Chapter 6 Committing Configurations ...ttt ittt i enenns
Chapter 7 Summary of NETCONF TagElements.ccviiiiiiiinneinnnnnenns
Chapter 8 Summary of AttributesinSRC XML Tagso v v i vii it i e iieennenns

Copyright © 2018, Juniper Networks, Inc.

SRC PE 4.12.x NETCONF API Guide

iv Copyright © 2018, Juniper Networks, Inc.

Table of Contents

About the Documentation ...t i i e e xi
SRC Documentationand Release Notes Xi
AUIENCE . . oo Xi
Documentation Conventions Xi
Documentation Feedback xiii
Requesting Technical Support e Xiv

Self-Help Online Toolsand Resources iiiiiii e Xiv
OpeningaCaseWithJTAC e Xiv
Part1 Using the SRC XML and NETCONF APIs
Chapter1 Introduction to the SRC XML and NETCONF APISccvvviiiivnnnnn 3

ADOUL XML .. 4
XML and NETCONF Tag Elements. 4
Document Type Definition e 5

Advantages of Using the NETCONFand SRC XML APIs 5

NETCONF Session OVEIVIEW . . . vttt et e e e e e e 6

Chapter 2 Using NETCONFand SRC XML TagElements.............ccoviiiinnnn. 9

Complying with XML and NETCONF Conventions. 9
Request and Response Tag Elements 10
Child Tag Elements of a Request Tag Element n
Child Tag Elements of a Response Tag Element n
Spaces, Newline Characters, and Other White Space 1
XML CommeENtS e 12
Predefined Entity References 12

Mapping Commands to SRC XML TagElements 13
Mapping for Command Options with Variable Values. 14
Mapping for Fixed-Form Command Options, .. 14

Mapping Configuration Statements to SRC XML Tag Elements............... 15
Mapping for Hierarchy Levels and Container Statements. 15
Mapping for Objects That Have an Identifier.......................... 15
Mapping for Single-Value and Fixed-Form Leaf Statements.............. 17
Mapping for Leaf Statements with Multiple Values. 18

Using the Same Configuration Tag Elements in Requests and Responses. 19

Copyright © 2018, Juniper Networks, Inc. \

SRC PE 4.12.x NETCONF API Guide

Chapter 3

Chapter 4

Controlling the NETCONF Sessioncvitiiiiii i ieiiinennnnennns 21
Client Application’s Role ina NETCONF Sessionot i e 21
Establishing @ NETCONF SESSION oottt e e e 22
Generating Well-Formed XML Documents, 22
Prerequisites for Establishinga Connection. 23
Client Application Can Access SSH Software 23
Client Application Can Log In on C Series Controllers. 23
Login Account Has Public/Private Key Pair or Password 24
Client Application Can Access the KeysorPassword 26
NETCONF Service over SSHIsEnabled 26
Connectingtothe NETCONF Server. e 27
Starting the NETCONF Sessionot 28
Exchanging <hello> Tag Elements 28
Verifying Compatibility 29
Exchanging Information with the NETCONF Server 31
Sending a Request tothe NETCONF Server. ..., 31
Request Classeso e e 32
Including Attributes inthe Opening <rpc>Tag. . ..o vt .. 34
Parsing the NETCONF Server REeSpONSE . . oo e as 34
NETCONF Server Response Classes . . oo 35
Using a Standard API to Parse Response Tag Elements............. 36
Handling an Error or Warningttt 37
Locking and Unlocking the Candidate Configuration....................... 38
Locking the Candidate Configuration. 38
Unlocking the Candidate Configuration. 39
Terminating Another NETCONF Sessionottt 40
Ending a NETCONF Session and Closing the Connection. 41
Displaying CLI Outputas XML TagElements. 4]
Example of a NETCONF SeSSION . . . oo ot e e e e e 42
Exchanging Initialization Tag Elements 42
Sending an Operational Request 43
Locking the Configuration. 43
Changing the Configuration 44
Committing the Configuration i 45
Unlocking the Configuration. 45
Closing the NETCONF Sessiono e e 46
Requesting Information ...ttt it it it e e 47
Request Procedure OVEIVIEWo e e 47
Requesting Operational Information 48
Parsing the <output> Tag Element 49
Requesting Configuration Information 49
Requesting Information from the Candidate Configuration............... 51
Specifying the Scope of Configuration InformationtoReturn. 51
Requesting the Complete Configuration. 52
Requesting a Hierarchy Level or Container Object Without an
dentifier ... e 53
Requesting All Configuration Objects of a Specified Type 54

Requesting Identifiers for Configuration Objects of a Specified Type. .. 56

vi

Copyright © 2018, Juniper Networks, Inc.

Table of Contents

Requesting One Configuration Object 58
Requesting Specific Child Tags for a Configuration Object........... 60
Requesting Multiple Configuration Elements Simultaneously 62
Chapter 5 Changing Configuration Information oiiat. 65
Configuration Changes OVerview 65
Changing the Candidate Configuration. 66
Defining the New Configuration Data i 67
Providing Configuration DatainaFile.............. 67
Providing Configuration Dataasa Data Stream 68
Setting the Default Mode for Incorporating New Configuration Data 70
Replacing the Entire Candidate Configuration............. 71
Replacing the Candidate Configuration with Newly Defined Data......... 72
Replacing the Configuration with the ContentsofaFile............. 72
Setting Replace Mode as the Default Mode 72
Replacing the Candidate Configuration with the Running Configuration. ... 73
Changing Individual Configuration Elements 73
Merging Configuration Elements 74
Replacing Configuration Elements. i i 76
Creating New Configuration Elements. 77
Deleting Configuration Elements 78
Deleting a Hierarchy Level or Container Object 79
Deleting a Configuration Object That Has an Identifier.............. 80

Deleting a Single-Value or Fixed-Form Option from a Configuration
ObJaCt o 81
Deleting Values from a Multivalue Option of a Configuration Object. .. 82
Chapter 6 Committing Configurations it i i 85
Verifying a Configuration Before Committing It 85
Committing a Configuration 85
Chapter 7 Summary of NETCONF TagElements...........ccoiiiiiiiiiiinnnnnnn. 87
T2 00 o 87
<ClOSB-SESSION/ > & 88
SCOMMIE > L 88
<COPY-CONTIE > o 88
<data> .. 89
<delete-CoNfig> 90
<discard-Changes/ >t 90
<edit-CoNfig> ... o1
<EITOr-INTO> L 92
<BEt-CONTIg> .. 93
<hello> .. 94
<KIll-SBSSION> . . 95
<lOCK> o 95
SOK/ > 96
2 97
I (1o <Y o o 97
SIPC-TEPLY > oo 98
<EArBE > . e 99

Copyright © 2018, Juniper Networks, Inc. Vii

SRC PE 4.12.x NETCONF API Guide

Chapter 8

SUNIOCK > oo 99
Summary of AttributesinSRC XML Tags oo it iiiiieiiaeans 101
OPEratiON . .. e 101
sdx:changed-localtime 102
SAX:Changed-SeCcoNdSttt 102
XIS L o e 103

viii

Copyright © 2018, Juniper Networks, Inc.

List of Tables

About the Documentation i e e Xi
Table T: NOtICE ICONS xii
Table 2: Text Conventions i xii
Part1 Using the SRC XML and NETCONF APIs
Chapter 2 Using NETCONFand SRC XML TagElements.............ccoiviivinenn. 9
Table 3: Predefined Entity Reference Substitutions for Tag Content Values. 13
Table 4: Predefined Entity Reference Substitutions for Attribute Values. 13

Copyright © 2018, Juniper Networks, Inc. ix

SRC PE 4.12.x NETCONF API Guide

X Copyright © 2018, Juniper Networks, Inc.

About the Documentation

« SRC Documentation and Release Notes on page xi
« Audience on page xi

« Documentation Conventions on page xi

« Documentation Feedback on page xiii

« Requesting Technical Support on page xiv

SRC Documentation and Release Notes

Audience

For a list of related SRC documentation, see https://www.juniper.net/documentation/.

If the information in the latest SRC Release Notes differs from the information in the SRC
guides, follow the SRC Release Notes.

This documentation is intended for experienced system and network specialists working
with routers running Junos OS and JunosE software in an Internet access environment.
We assume that readers know how to use the routers, directories, and RADIUS servers
that they will deploy in their SRC networks. If you are using the SRC software in a cable
network environment, we assume that you are familiar with the PacketCable Multimedia
Specification (PCMM) as defined by Cable Television Laboratories, Inc. (CableLabs) and
with the Data-over-Cable Service Interface Specifications (DOCSIS) 1.1 protocol. We
also assume that you are familiar with operating a multiple service operator (MSO)
multimedia-managed IP network.

Documentation Conventions

Table Ton page xii defines the notice icons used in this guide. Table 2 on page xii defines
text conventions used throughout this documentation.

Copyright © 2018, Juniper Networks, Inc. Xi

https://www.juniper.net/documentation/

SRC PE 4.12.x NETCONF API Guide

Table 1: Notice Icons

Meaning

Description

a
‘
=]

Informational note

Indicates important features or instructions.

Caution

Indicates a situation that might result in loss of data or hardware damage.

Warning

Alerts you to the risk of personal injury or death.

Laser warning

Alerts you to the risk of personal injury from a laser.

Tip

Indicates helpful information.

Best practice

COBPPe

Alerts you to a recommended use or implementation.

Table 2: Text Conventions

Convention

Description

Examples

Bold text like this

« Represents keywords, scripts, and toolsin
text.

« Represents a GUI element that the user
selects, clicks, checks, or clears.

« Specify the keyword exp-msg.

« Run the install.sh script.

« Use the pkgadd tool.

« To cancel the configuration, click Cancel.

Bold text like this

Represents text that the user must type.

user@host# set cache-entry-age
cache-entry-age

Fixed-width text like this

Represents information as displayed on your
terminal’s screen, such as CLI commands in
output displays.

nic-locators {
login {
resolution {
resolver-name /realms/
login/Al;
key-type LoginName;
value-type Saeld;

xii

Copyright © 2018, Juniper Networks, Inc.

About the Documentation

Table 2: Text Conventions (continued)

Regular sans serif typeface

« Represents configuration statements.

« Indicates SRC CLIcommands and options
in text.

» Represents examples in procedures.
« Represents URLs.

« system ldap server{
stand-alone;

« Use the request sae modify device failover
command with the force option

« user@host#...
« https./Avwwijunipernet/documentation/software/
management/src/api-index.html

Italic sans serif typeface

Represents variables in SRC CLI commands.

user@host# set local-address
local-address

Angle brackets

Key name

In text descriptions, indicate optional
keywords or variables.

Indicates the name of a key on the keyboard.

Another runtime variable is <gfwif>.

Press Enter.

Key names linked with a plus sign

(+)

Indicates that you must press two or more
keys simultaneously.

Press Ctrl + b.

Italic typeface

Backslash

« Emphasizes words.
« |dentifies book names.
« |dentifies distinguished names.

« |dentifies files, directories, and paths in
text but not in command examples.

At the end of a line, indicates that the text
wraps to the next line.

« There are two levels of access: user and
privileged.

o SRC PE Getting Started Guide
« 0=Users, o=UMC
« The /etc/default.properties file.

Plugin.radiusAcct-1.class=\
net.juniper.smgt.sae.plugin\
RadiusTrackingPluginEvent

Words separated by the | symbol

Represent a choice to select one keyword or
variable to the left or right of this symbol.
(The keyword or variable may be either
optional or required.)

diagnostic | line

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can
improve the documentation. You can provide feedback by using either of the following
methods:

« Online feedback system—Click TechLibrary Feedback, on the lower right of any page
on the Juniper Networks TechLibrary site, and do one of the following:

Techlibrary Feedback **

Is this page helpful?

- Click the thumbs-up icon if the information on the page was helpful to you.

Copyright © 2018, Juniper Networks, Inc.

xiii

https://www.juniper.net/documentation/index.html

SRC PE 4.12.x NETCONF API Guide

- Click the thumbs-down icon if the information on the page was not helpful to you
or if you have suggestions for improvement, and use the pop-up form to provide
feedback.

« E-mail—Send your comments to techpubs-comments@juniper.net. Include the document
or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance
Center (JTAC). If you are a customer with an active J-Care or Partner Support Service
support contract, or are covered under warranty, and need post-sales technical support,
you can access our tools and resources online or open a case with JTAC.

« JTAC policies—For a complete understanding of our JTAC procedures and policies,
review the JTAC User Guide located at
https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

« Product warranties—For product warranty information, visit
http://www.juniper.net/support/warranty/.

« JTAC hours of operation—The JTAC centers have resources available 24 hours a day,
7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online
self-service portal called the Customer Support Center (CSC) that provides you with the
following features:

« Find CSC offerings: https://www.juniper.net/customers/support/

« Search for known bugs: https:/prsearch.juniper.net/

« Find product documentation: https:/www.juniper.net/documentation/

« Find solutions and answer questions using our Knowledge Base: https:/kb.juniper.net/

. Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

« Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

. Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

« Open a case online in the CSC Case Management tool: https://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement
(SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

Xiv Copyright © 2018, Juniper Networks, Inc.

mailto:techpubs-comments@juniper.net?subject=
https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://www.juniper.net/cm/
https://entitlementsearch.juniper.net/entitlementsearch/

About the Documentation

« Use the Case Management tool in the CSC at https://www.juniper.net/cm/.

« Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://www.juniper.net/support/requesting-support.html.

Copyright © 2018, Juniper Networks, Inc. XV

https://www.juniper.net/cm/
https://www.juniper.net/support/requesting-support.html

SRC PE 4.12.x NETCONF API Guide

XVi Copyright © 2018, Juniper Networks, Inc.

Using the SRC XML and NETCONF APIs

« Introduction to the SRC XML and NETCONF APIs on page 3
« Using NETCONF and SRC XML Tag Elements on page 9

« Controlling the NETCONF Session on page 21

« Requesting Information on page 47

« Changing Configuration Information on page 65

« Committing Configurations on page 85

« Summary of NETCONF Tag Elements on page 87

« Summary of Attributes in SRC XML Tags on page 101

Copyright © 2018, Juniper Networks, Inc.

SRC PE 4.12.x NETCONF API Guide

2 Copyright © 2018, Juniper Networks, Inc.

CHAPTERI1

INntroduction to the SRC XML and
NETCONF APIs

The NETCONF API (application programming interface) is an Extensible Markup Language
(XML) application that client applications use to request and change configuration
information on a C Series Controller that runs the SRC software. The operations defined
in the APl are equivalent to configuration mode commands in the SRC command-line
interface (CLI). Applications use the API to display, edit, and commit configuration
statements (among other operations), just as administrators use CLI configuration mode
commands such as show, set, and commit to perform those operations.

The SRC XML APl is an XML representation of SRC CLI configuration statements and
operational mode commands. SRC XML configuration tag elements are the content to
which the operations in the NETCONF API apply. SRC XML operational tag elements are
equivalent in function to operational mode commands in the CLI, which administrators
use to retrieve and change status information for a C Series Controller.

The NETCONF APl is described in RFC 4741, NETCONF Configuration Protocol, available
at http://www.ietf.org/rfc/rfc4741.txt.

Client applications request or change information on the C Series Controller by encoding
the request with tag elements from the NETCONF and SRC XML APIs and sending it to
the NETCONF server on the C Series Controller. (The NETCONF server is integrated into
the SRC software and does not appear as a separate entry in process listings.) The
NETCONF server directs the request to the appropriate software modules within the C
Series Controller, encodes the response in NETCONF and SRC XML tag elements, and
returns the result to the client application. For example, to request information about
the status of a C Series Controller’s interfaces, a client application sends the
<get-interfaces> tag element from the SRC XML API. The NETCONF server gathers the
information from the interface process and returns it in the <output> tag element.

This manual explains how to use the NETCONF and SRC XML APIs to configure Juniper
Networks C Series Controllers or request information about configuration or operation.
The main focus is on writing client applications to interact with the NETCONF server, but
you can also use the NETCONF API to build custom end-user interfaces for configuration
and information retrieval and display, such as a Web browser—based interface.

Copyright © 2018, Juniper Networks, Inc. 3

http://www.ietf.org/rfc/rfc4741.txt

SRC PE 4.12.x NETCONF API Guide

About XML

This chapter includes the following topics:

« About XML on page 4
« Advantages of Using the NETCONF and SRC XML APIs on page 5
« NETCONF Session Overview on page 6

XML is a language for defining a set of markers, called tags, that are applied to a data
set or document to describe the function of individual elements and codify the hierarchical
relationships between them. Tags look much like Hypertext Markup Language (HTML)
tags, but XML is actually a metalanguage used to define tags that best suit the kind of
data being marked.

The following sections discuss XML and NETCONF:

« XML and NETCONF Tag Elements on page 4
« Document Type Definition on page 5

For more details about XML, see A Technical Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html and the additional reference material at
the www.xml.com site. The official XML specification from the World Wide Web
Consortium (W3C), Extensible Markup Language (XML) 1.0, is available at
http://wwww3.org/TR/REC-xmlL.

XML and NETCONF Tag Elements

Iltems in an XML-compliant document or data set are always enclosed in paired opening
and closing tags. XML is stricter in this respect than HTML, which sometimes uses only
opening tags. The following examples show paired opening and closing tags enclosing
a value:

<interface>
<name>ethO</name>
</interface>

The term tag element refers to the triple of opening tag, contents, and closing tag. The
content can be an alphanumeric character string as in the preceding examples, or can
itself be a container tag element, which contains other tag elements.

If a tag element is empty—has no contents—it can be represented either as paired opening
and closing tags with nothing between them, or as a single tag with a forward slash after
the tag name. For example, the notation <eventing/> is equivalent to
<eventing></eventing>.

As the preceding examples show, angle brackets enclose the name of a NETCONF or
SRC XML tag element in its opening and closing tags. This is an XML convention, and the
brackets are a required part of the complete tag element name. They are not to be
confused with the angle brackets used in Juniper Networks documentation to indicate
optional parts of CLI command strings.

Copyright © 2018, Juniper Networks, Inc.

http://www.xml.com/pub/a/98/10/guide0.html
http://www.w3.org/TR/REC-xml

Chapter 1: Introduction to the SRC XML and NETCONF APIs

NETCONF and SRC XML tag elements obey the XML convention that the tag element
name indicates the kind of information enclosed by the tag element. For example, the
name of the SRC XML <interface> tag element indicates that it contains information
about an interface on the C Series Controller, whereas the name of the <name> tag
element indicates that its contents specify the identifier.

When discussing tag elements in text, the convention is to use just the name of the
opening tag to represent the complete tag element (opening tag, contents, and closing
tag). For example, it usually refers to “the <interface> tag element” instead of “the
<interface><name>name </name></interface> tag element.”

Document Type Definition

An XML-tagged document or data set is structured, because a set of rules specifies the
ordering and interrelationships of the items in it. The rules define the contexts in which
each tagged item can—and in some cases must—occur. A file called a document type
definition, or DTD, lists every tag element that can appear in the document or data set,
defines the parent-child relationships between the tags, and specifies other tag
characteristics. The same DTD can apply to many XML documents or data sets.

Advantages of Using the NETCONF and SRC XML APIs

The NETCONF and SRC XML APIs are programmatic interfaces. They fully document all
options for every supported operational request and all elements in every configuration
statement. The tag names clearly indicate the function of an element in an operational

request or configuration statement.

The combination of meaningful tag names and the structural rules in a DTD makes it
easy to understand the content and structure of an XML-tagged data set or document.
NETCONF and SRC XML tag elements make it straightforward for client applications
that request information from a C Series Controller to parse the output and find specific
information.

The following example illustrates how the APIs make it easier to parse output and extract
the needed information. It compares formatted ASCIl and XML-tagged versions of output.
The formatted ASCII follows:

Physical interface: fxpO, Enabled, Physical link is Up
Interface index: 4, SNMP iflndex: 3

This is the XML-tagged version:

<interface>
<name>fxp0</name>
<admin-status>enabled</admin-status>
<operational-status>up</operational-status>
<index>4</index>
<snmp-index>3</snmp-index>

</interface>

When a client application needs to extract a specific value from formatted ASCI| output,
it must rely on the value’s location, expressed either absolutely or with respect to labels

Copyright © 2018, Juniper Networks, Inc. 5

SRC PE 4.12.x NETCONF API Guide

or values in adjacent fields. Suppose that the client application wants to extract the
interface index. It can use a regular-expression matching utility to locate specific strings,
but one difficulty is that the number of digits in the interface index is not necessarily
predictable. The client application cannot simply read a certain number of characters
after the Interface index: label, but must instead extract everything between the label
and the subsequent label, which is:

, SNMP ifIndex

A problem arises if the format or ordering of output changes in a later version of the
software; for example, if a Logical index field is added following the interface index
number:

Physical interface: fxpO, Enabled, Physical link is Up
Interface index: 4, Logical index: 12, SNMP iflndex: 3

An application that extracts the interface index number delimited by the Interface index:
and SNMP ifIndex labels now obtains anincorrect result. The application must be updated
manually to search for the following label instead:

, Logical index

In contrast, the structured nature of XML-tagged output enables a client application to
retrieve the interface index by extracting everything within the opening <index> tag and
closing </index> tag. The application does not have to rely on an element’s position in
the output string, so the NETCONF server can emit the child tag elements in any order
within the <interface> tag element. Adding a new <logical-index> tag elementin a future
release does not affect an application’s ability to locate the <index> tag element and
extract its contents.

Tagged output is also easier to transform into different display formats. For instance,
you might want to display different amounts of detail about a given C Series Controller
component at different times. When a C Series Controller returns formatted ASCIl output,
you have to design and write special routines and data structures in your display program
to extract and store the information needed for a given detail level. In contrast, the inherent
structure of XML output is an ideal basis for a display program’s own structures. It is also
easy to use the same extraction routine for several levels of detail, simply ignoring the
tag elements you do not need when creating a less detailed display.

NETCONF Session Overview

Communication between the NETCONF server and a client application is session-based.
The two parties explicitly establish a connection before exchanging data and close the
connection when they are finished. The following list outlines the basic structure of a
NETCONF session. For more specific information, see

“Controlling the NETCONF Session” on page 21.

6 Copyright © 2018, Juniper Networks, Inc.

Chapter 1: Introduction to the SRC XML and NETCONF APIs

1. Theclient application establishes a connection to the NETCONF server and opens
the NETCONF session.

2. The NETCONF server and client application exchange initialization information, used
to determine if they are using compatible versions of the SRC software and the
NETCONF API.

3. Theclient application sends one or more requests to the NETCONF server and parses
its responses.

4. The client application closes the NETCONF session and the connection to the
NETCONF server.

Copyright © 2018, Juniper Networks, Inc. 7

SRC PE 4.12.x NETCONF API Guide

8 Copyright © 2018, Juniper Networks, Inc.

CHAPTER 2

Using NETCONF and SRC XML Tag
Elements

This chapter describes the syntactic and notational conventions used by the NETCONF
server and client applications, including the mappings between statements and
commands in the SRC command-line interface (CLI) and the tag elements in the SRC
Extensible Markup Language (XML) application programming interface (API).

For more information about the syntax of CLI commands and configuration statements,
see the SRC PE CLI User Guide. For information about specific configuration statements
and operational mode commands, see the SRC documentation set.

This chapter includes the following topics:

« Complying with XML and NETCONF Conventions on page 9
« Mapping Commands to SRC XML Tag Elements on page 13
« Mapping Configuration Statements to SRC XML Tag Elements on page 15

« Using the Same Configuration Tag Elements in Requests and Responses on page 19

Complying with XML and NETCONF Conventions

A client application must comply with XML and NETCONF conventions. Each request
from the client application must be a well-formed XML document; that is, it must obey
the structural rules defined in the NETCONF and SRC XML DTDs for the kind of information
encoded in the request. The client application must emit tag elements in the required
order and only in the legal contexts. Compliant applications are easier to maintain in the
event of changes to the SRC software or NETCONF API.

Similarly, each response from the NETCONF server constitutes a well-formed XML
document. (The NETCONF server obeys XML and NETCONF conventions.) The following
sections describe NETCONF conventions:

« Request and Response Tag Elements on page 10

« Child Tag Elements of a Request Tag Element on page 11

« Child Tag Elements of a Response Tag Element on page 11

« Spaces, Newline Characters, and Other White Space on page 11

Copyright © 2018, Juniper Networks, Inc. 9

SRC PE 4.12.x NETCONF API Guide

« XML Comments on page 12

« Predefined Entity References on page 12

Request and Response Tag Elements

A request tag element is one generated by a client application to request information
about a C Series Controller’s current status or configuration, or to change the configuration.
A request tag element corresponds to a CLI operational or configuration command. It
can occur only within an <rpc> tag element. Forinformation about the<rpc> tag element,
see “Sending a Request to the NETCONF Server” on page 31.

A response tag element represents the NETCONF server’s reply to a request tag element
and occurs only within an <rpc-reply> tag element. For information about the <rpc-reply>
tag element, see “Parsing the NETCONF Server Response” on page 34.

The following example represents an exchange in which a client application emits the
<get-interfaces> request tag element and the NETCONF server returns the <output>
response tag element.

O NOTE: This example, like all others in this guide, shows each tag element on
a separate line, in the tag streams emitted by both the client application and
NETCONF server. In practice, a client application does not need to include
newline characters between tag elements, because the server automatically
discards such white space. For further discussion, see “Spaces, Newline
Characters, and Other White Space” on page 11.

For information about the 11>11> character sequence, see “Generating Well-Formed XML
Documents” on page 22. For information about the attributes in the opening <rpc-reply>
tag, see “Parsing the NETCONF Server Response” on page 34. For information about the
xmlns attribute in the opening <output> tag, see “Requesting Operational Information”
on page 48.

Client Application NETCONF Server

<rpc>
<get-interfaces>
<interface-name>eth0</interface-name>
</get-interfaces>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<interface-information xmlns=" URL” >
<!-- children of <interface-information> -->
</interface-information>
</rpc-reply>
11>11>

Copyright © 2018, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

Child Tag Elements of a Request Tag Element

Some request tag elements contain child tag elements. For configuration requests, each
child tag element represents a configuration element (hierarchy level or configuration
object). For operational requests, each child tag element represents one of the options
you provide on the command line when issuing the equivalent CLI command.

Some requests have mandatory child tag elements. To make a request successfully, a
client application must emit the mandatory tag elements within the request tag element’s
opening and closing tags. If any of the children are themselves container tag elements,
the opening tag for each must occur before any of the tag elements it contains, and the
closing tag must occur before the opening tag for another tag element at its hierarchy
level.

In most cases, the client application can emit children that occur at the same level within
a container tag element in any order. The important exception is a configuration element
that has an identifier tag element, which distinguishes the configuration element from
other elements of its type. The identifier tag element must be the first child tag element
in the container tag element. Most frequently, the identifier tag element specifies the
name of the configuration element and is called <name>. For more information, see
“Mapping for Objects That Have an Identifier” on page 15.

Child Tag Elements of a Response Tag Element

The child tag elements of a response tag element represent the individual data items
returned by the NETCONF server for a particular request. The children can be either
individual tag elements (empty tags or tag element triples) or container tag elements
that enclose their own child tag elements. For some container tag elements, the NETCONF
server returns the children in alphabetical order. For other elements, the children appear
in the order in which they were created in the configuration.

The set of child tag elements that can occur in a response or within a container tag
element is subject to change in later releases of the SRC XML API. Client applications
must not rely on the presence or absence of a particular tag element in the NETCONF
server’s output, or on the ordering of child tag elements within a response tag element.
For the most robust operation, include logic in the client application that handles the
absence of expected tag elements or the presence of unexpected ones as gracefully as
possible.

Spaces, Newline Characters, and Other White Space

As dictated by the XML specification, the NETCONF server ignores white space (spaces,
tabs, newline characters, and other characters that represent white space) that occurs
between tag elements in the tag stream generated by a client application. Client
applications can, but do not need to, include white space between tag elements. However,
they must not insert white space within an opening or closing tag. If they include white
space in the contents of a tag element that they are submitting as a change to the
candidate configuration, the NETCONF server preserves the white space in the
configuration database.

Copyright © 2018, Juniper Networks, Inc. n

SRC PE 4.12.x NETCONF API Guide

XML Comments

In its responses, the NETCONF server includes white space between tag elements to
enhance the readability of responses that are saved to a file: it uses newline characters
to put each tag element on its own line, and spaces to indent child tag elements to the
right compared to their parents. A client application canignore or discard the white space,
particularly if it does not store responses for later review by human users. However, it
must not depend on the presence or absence of white space in any particular location
when parsing the tag stream.

For more information about white space in XML documents, see the XML specification
from the World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0,
at http://www.w3.org/TR/REC-xmlL.

Client applications and the NETCONF server can insert XML comments at any point
between tag elements in the tag stream they generate, but not within tag elements.
Client applications must handle comments in output from the NETCONF server gracefully
but must not depend on their content. Client applications also cannot use comments to
convey information to the NETCONF server, because the server automatically discards
any comments it receives.

XML comments are enclosed within the strings <!--and -->, and cannot contain the string
-- (two hyphens). For more details about comments, see the XML specification at
http://www.w3.org/TR/REC-xmlL.

The following is an example of an XML comment:

<!- - This is a comment. Please ignore it. - ->

Predefined Entity References

By XML convention, there are two contexts in which certain characters cannot appear in
their regular form:

. Inthe string that appears between opening and closing tags (the contents of the tag
element)

« Inthe string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must
substitute the equivalent predefined entity reference, which is a string of characters that
represents the disallowed character. Because the NETCONF server uses the same
predefined entity references in its response tag elements, the client application must be
able to convert them to actual characters when processing response tag elements.

Table 3 on page 13 summarizes the mapping between disallowed characters and
predefined entity references for strings that appear between the opening and closing
tags of a tag element.

Copyright © 2018, Juniper Networks, Inc.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Chapter 2: Using NETCONF and SRC XML Tag Elements

Table 3: Predefined Entity Reference Substitutions for Tag Content Values

Disallowed Character Predefined Entity Reference

& (ampersand) &
> (greater-than sign) &sgt;
< (less-than sign) <

Table 4 on page 13 summarizes the mapping between disallowed characters and
predefined entity references for attribute values.

Table 4: Predefined Entity Reference Substitutions for Attribute Values

Disallowed Character Predefined Entity Reference

& (ampersand) &
' (apostrophe) '
> (greater-than sign) >
< (less-than sign) <
" (quotation mark) "

As an example, suppose that the following string is the value contained by the <condition>
tag element:

if (a<b && b>c) return "Peer’s not responding"

The <condition> tag element looks like this (it appears on two lines for legibility only):

<condition>if (a<b && b>c) return "Peer’s not \
responding‘</condition>

Similarly, if the value for the <example> tag element’s heading attribute is
Peer’s "age" <> 40, the opening tag looks like this:

<example heading="Peer's "age" <> 40" >

Mapping Commands to SRC XML Tag Elements

The SRC XML API defines tag-element equivalents for many commandsin CLI operational
mode. For example, the <get-interfaces> tag element corresponds to the show interfaces
command.

Copyright © 2018, Juniper Networks, Inc. 13

SRC PE 4.12.x NETCONF API Guide

For information about the available command equivalents in the current release of the
SRC software, see the SRC XML API Operational Reference. For the mapping between
commands and XML tag elements, see the table at the beginning of each chapter. For
detailed information about a specific operation, see the appropriate section for the
request tag element.

The following sections describe the tag elements that map to command options:

- Mapping for Command Options with Variable Values on page 14

« Mapping for Fixed-Form Command Options on page 14

Mapping for Command Options with Variable Values

Many CLI commands have options that identify the object that the command affects or
reports about, distinguishing the object from other objects of the same type. In some
cases, the CLI does not precede the identifier with a fixed-form keyword, but XML
convention requires that the SRC XML API define a tag element for every option. To learn
the names for each identifier (and any other child tag elements) for an operational request
tag element, consult the tag element’s entry in the appropriate DTD or in the SRC XML
API Operational Reference.

The following example shows the XML tag elements for a CLI operational command that
has variable-form options. In the show interfaces command, ethO is the name of the
interface.

CLI Command SRC XML Tags

show interfaces ethO <rpc>
<get-interfaces>
<interface-name>ethO</interface-name>
</get-interfaces>
</rpc>

Mapping for Fixed-Form Command Options

Some CLI commands include options that have a fixed form, such as the brief and detail
strings, which specify the amount of detail to include in the output. The SRC XML API
usually maps such an option to an empty tag whose name matches the option name.

The following example shows the XML tag elements for the show disk status command,
which has a fixed-form option called brief.

CLICommand SRC XML Tags

show disk status brief <rpc>
<get-disk-status>
<brief/>
</get-disk-status>
</rpc>

Copyright © 2018, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

Mapping Configuration Statements to SRC XML Tag Elements

The SRC XML API defines a tag element for every container and leaf statement in the
configuration hierarchy. At the top levels of the configuration hierarchy, there is almost
always a one-to-one mapping between tag elements and statements, and most tag
names match the configuration statement name. At deeper levels of the hierarchy, the
mapping is sometimes less direct, because some CLI notational conventions do not map
directly to XML-compliant tagging syntax. The following sections describe the mapping
between configuration statements and XML tag elements:

« Mapping for Hierarchy Levels and Container Statements on page 15
« Mapping for Objects That Have an Identifier on page 15

« Mapping for Single-Value and Fixed-Form Leaf Statements on page 17

- Mapping for Leaf Statements with Multiple Values on page 18

0 NOTE: Forsome configuration statements, the notation used when you type
the statement at the CLI configuration-mode prompt differs from the notation
used in a configuration file. The same XML tag element maps to both
notational styles.

Mapping for Hierarchy Levels and Container Statements

The <configuration> tag element is the top-level XML container tag element for
configuration statements. It corresponds to the [edit] hierarchy level in CLI configuration
mode. Most statements at the next few levels of the configuration hierarchy are container
statements. The XML container tag element that corresponds to a container statement
almost always has the same name as the statement.

The following example shows the XML tag elements for a statement at the top level of
the configuration hierarchy. Note that a closing brace in a CLI configuration statement
corresponds to a closing XML tag.

CLI Configuration Statements | SRC XML Tags

<configuration>

<system>
system login { <login>
...child statements... <I-- tags for child statements -->
} </login>
</system>

</configuration>

Mapping for Objects That Have an Identifier

At some hierarchy levels, the same kind of configuration object can occur multiple times.
Eachinstance of the object has a unique identifier to distinguish it from the other instances.
In the CLI notation, the parent statement for such an object consists of a keyword and
identifier of the following form:

Copyright © 2018, Juniper Networks, Inc. 15

SRC PE 4.12.x NETCONF API Guide

keyword identifier {
. configuration statements for individual characteristics ..

}

keyword is a fixed string that indicates the type of object being defined, and identifier is
the unique name for this instance of the type. In the SRC XML API, the tag element
corresponding to the keyword is a container tag element for child tag elements that
represent the object’s characteristics. The container tag element’s name generally
matches the keyword string.

The SRC XML API differs from the CLI in its treatment of the identifier. Because the SRC
XML API does not allow container tag elements to contain both other tag elements and
untagged character data such as an identifier name, the identifier must be enclosed in
atagelement of its own. Most frequently, identifier tag elements for configuration objects
are called <name>. Some objects have multiple identifiers, which usually have names
other than <name>. To verify the name of each identifier tag element for a configuration
object, consult the entry for the object in the SRC XML API Configuration Reference.

O NOTE: The SRC software reserves the prefix sdx- for the identifiers of
configuration groups defined within the sdx-defaults configuration group.
User-defined identifiers cannot start with the string sdx-.

|dentifier tag elements also constitute an exception to the general XML convention that
tag elements at the same level of hierarchy can appear in any order; the identifier tag
element always occurs first within the container tag element.

The configuration for most objects that have identifiers includes additional leaf statements,
which represent other characteristics of the object. For example, each SAE group
configured at the [edit shared sae group] hierarchy level has an associated name (the
identifier) and can have leaf statements for other characteristics, such as configuration,
DHCP classification script, and subscriber classification script. For information about the
XML mapping for leaf statements, see “Mapping for Single-Value and Fixed-Form Leaf
Statements” on page 17, “Mapping for Leaf Statements with Multiple Values” on page 18,
and “Using the Same Configuration Tag Elementsin Requests and Responses” on page 19.

The following example shows the XML tag elements for configuration statements that
define two users called U1 and U2. Notice that the XML <user-name> tag element that
encloses the identifier of each user does not have a counterpart in the CLI statements.

16 Copyright © 2018, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

For complete information about changing C Series Controller configurations, see
“Changing Configuration Information” on page 65.

CLI Configuration Statements | SRC XML Tags

<configuration>
<system>
system login { <login>
user U1 { <user>
class admin; <user-name>Ul</user-name> <!-- identifier -->
} <class>admin</class>
user U2 { </user>
class admin; <user>
1 <user-name>U2</user-name> <!-- identifier -->
1 <class>admin</class>
</user>
</login>
</system>
</configuration>

Mapping for Single-Value and Fixed-Form Leaf Statements

A leaf statement is a CLI configuration statement that does not contain any other
statements. Most leaf statements define a value for one characteristic of a configuration
object and have the following form:

keyword valuve ;

In general, the name of the XML tag element corresponding to a leaf statement is the
same as the keyword string. The string between the opening and closing XML tags is the
same as the value string.

The following example shows the XML tag elements for a leaf statement that has a
keyword and a value: the announcement statement at the [edit system login] hierarchy
level.

CLI Configuration Statements SRC XML Tags

<configuration>
<system>
system login { <login>
announcement “ Authorized users only” ; <announcement>Authorized users only
1 </announcement>
</login>
</system>
</configuration>

Some leaf statements consist of a fixed-form keyword only, without an associated
variable-form value. The SRC XML API represents such statements with an empty tag.

Copyright © 2018, Juniper Networks, Inc. 17

SRC PE 4.12.x NETCONF API Guide

The following example shows the XML tag elements for the telnet statement at the
[edit system services] hierarchy level.

CLI Configuration Statements | SRC XML Tags

<configuration>

<system>
system services { <services>
telnet; <telnet/>
3 </services>
</system>

</configuration>

Mapping for Leaf Statements with Multiple Values

Some leaf statements accept multiple values, which can be either user-defined or drawn
from a set of predefined values. CLI notation uses square brackets to enclose all values
in a single statement, as in the following:

statement [valuel value2 value3...];

The SRC XML APl instead encloses each value in its own tag element. The following
example shows the XML tag elements for a CLI statement with multiple user-defined
values. The domain-search statement specifies two domains defined elsewhere in the
configuration. For complete information about changing C Series Controller configurations,
see “Changing Configuration Information” on page 65.

CLI Configuration Statements SRC XML Tags

<configuration>

<system>
system { <domain-search>jnpr.net</domain-search>
domain-search [jnpr.net juniper.net]; <domain-search>juniper.net</domain-search>
1 </system>

</configuration>

18 Copyright © 2018, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

The following example shows the XML tag elements for a CLI statement with multiple
predefined values. The permissions statement grants three predefined permissions to
members of the user-accounts login class.

CLI Configuration Statements SRC XML Tags

<configuration>

<system>
system login class user-accounts { <login>
permissions [configure admin control]; <class>
} <name>user-accounts</name>

<permissions>configure</permissions>
<permissions>admin</permissions>
<permissions>control</permissions>
</class>
</login>
</system>
</configuration>

Using the Same Configuration Tag Elements in Requests and Responses

The NETCONF server encloses its response to each configuration request in <rpc-reply>
and <configuration> tag elements. Enclosing each configuration response within a
<configuration> tag element contrasts with how the server encloses each different
operational response in a tag element named for that type of response—for example,
the <chassis-inventory> tag element for chassis information or the <interface-information>
tag element for interface information.

The XML tag elements within the <configuration> tag element represent configuration
hierarchy levels, configuration objects, and object characteristics, always ordered from
higher to deeper levels of the hierarchy. When a client application loads a configuration,
it can emit the same tag elements in the same order that the NETCONF server uses when
returning configuration information. This consistent representation makes handling
configuration information more straightforward. For instance, the client application can
request the current configuration, store the NETCONF server’s response in a local memory
buffer, make changes or apply transformations to the buffered data, and submit the
altered configuration as a change to the candidate configuration. Because the altered
configuration is based on the NETCONF server’s response, it is certain to be syntactically
correct. For more information about changing C Series Controller configurations, see
“Changing Configuration Information” on page 65.

Similarly, when a client application requests information about a configuration element
(hierarchy level or configuration object), it uses the same tag elements that the NETCONF
server will return in response. To represent the element, the client application sends a
complete stream of tag elements from the top of the configuration hierarchy (represented
by the <configuration> tag element) down to the requested element. The innermost tag
element, which represents the level or object, is either empty or includes the identifier
tag element only. The NETCONF server’s response includes the same stream of parent
tag elements, but the tag element for the requested configuration element contains all
the tag elements that represent the element’s characteristics or child levels. For more
information, see “Requesting Configuration Information” on page 49.

Copyright © 2018, Juniper Networks, Inc. 19

SRC PE 4.12.x NETCONF API Guide

The tag streams emitted by the NETCONF server and by a client application can differ
in the use of white space, as described in “Spaces, Newline Characters, and Other White
Space” on page 11.

20 Copyright © 2018, Juniper Networks, Inc.

CHAPTER 3

Controlling the NETCONF Session

This chapter explains how to start and terminate a session with the NETCONF server,
and describes the Extensible Markup Language (XML) tag elements from the NETCONF
application programming interface (API) that client applications and the NETCONF
server use to coordinate information exchange during the session. It includes the following
topics:

Client Application’s Role in a NETCONF Session on page 21
Establishing a NETCONF Session on page 22

Exchanging Information with the NETCONF Server on page 31
Locking and Unlocking the Candidate Configuration on page 38
Terminating Another NETCONF Session on page 40

Ending a NETCONF Session and Closing the Connection on page 41
Displaying CLI Output as XML Tag Elements on page 41

Example of a NETCONF Session on page 42

Client Application’s Role in a NETCONF Session

To create a session and communicate with the NETCONF server, a client application
performs the following procedures, which are described in the indicated sections:

1.

Establishes a connection to the NETCONF server on the C Series Controller, as
described in “Connecting to the NETCONF Server” on page 27.

Opens a NETCONF session, as described in “Starting the NETCONF Session” on
page 28.

(Optional) Locks the candidate configuration, as described in “Locking the Candidate
Configuration” on page 38. Locking the configuration prevents other users or
applications from changing it at the same time.

Requests operational or configuration information, or changes configuration
information, as described in “Requesting Information” on page 47 and
“Changing Configuration Information” on page 65.

(Optional) Verifies the syntactic correctness of a configuration before attempting to
commitit, as described in “Verifying a Configuration Before Committing It” on page 85.

Copyright © 2018, Juniper Networks, Inc. 21

SRC PE 4.12.x NETCONF API Guide

6. Commits changes made to the configuration, as described in “Committing a
Configuration” on page 85.

7. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 39.

8. Ends the NETCONF session and closes the connection to the C Series Controller, as
described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Establishing a NETCONF Session

The NETCONF server communicates with client applications within the context of a
NETCONTF session. The server and client explicitly establish a connection and session
before exchanging data, and close the session and connection when they are finished.

Client applications access the NETCONF server using the SSH protocol and use the
standard SSH authentication mechanism. After authentication, the NETCONF server
uses the login usernames and classes already configured on the C Series Controller to
determine whether a client application is authorized to make each request.

Forinformation about establishing a connection and NETCONF session, see the following
sections:

« Generating Well-Formed XML Documents on page 22

« Prerequisites for Establishing a Connection on page 23

« Connecting to the NETCONF Server on page 27

« Starting the NETCONF Session on page 28

For an example of a complete NETCONF session, see “Example of a NETCONF Session”
on page 42.

Generating Well-Formed XML Documents

Each set of NETCONF and XML tag elements emitted by the NETCONF server and a
client application within a <hello>, <rpc>, or <rpc-reply> tag element must constitute a
well-formed XML document by obeying the structural rules defined in the document type
definition (DTD) for the kind of information being sent. The client application must emit
tag elements in the required order and only in the allowed contexts.

The NETCONF server and client applications must also comply with RFC 4742, Using the
NETCONEF Configuration Protocol over Secure Shell (SSH), available at
http://www.ietf.org/rfc/rfc4742.txt. In particular, the server and applications must send
the character sequence]]>]]> after each XML document. This sequence is not legal
within an XML document and so unambiguously signals the end of a document. In practice,
the client application sends the sequence after the closing </hello> tag and each closing
</rpc> tag, and the NETCONF server sends it after the closing </hello> tag and each
closing </rpc-reply> tag.

22

Copyright © 2018, Juniper Networks, Inc.

http://www.ietf.org/rfc/rfc4742.txt

Chapter 3: Controlling the NETCONF Session

0 NOTE: Inthe following example (and in all examples in this document of tag
elements emitted by a client application), bold font is used to highlight the
part of the tag sequence that is discussed in the text.

<I- - generated by a client application - ->
<hello | rpc>

<I-contents of top-level tag element - ->
</hello | /rpc>
11711~

<I- - generated by the NETCONF server - ->
<hello | rpc-reply attributes>

<I- - contents of top-level tag element - ->
</hello | /rpc-reply>
11711~

Prerequisites for Establishing a Connection

To enable a client application to establish an SSH connection to the NETCONF server,
you must satisfy the requirements discussed in the following sections:

« Client Application Can Access SSH Software on page 23

« Client Application Can Log In on C Series Controllers on page 23

« Login Account Has Public/Private Key Pair or Password on page 24

« Client Application Can Access the Keys or Password on page 26

« NETCONF Service over SSH Is Enabled on page 26

Client Application Can Access SSH Software

The client application must be able to access the SSH software on the computer where
it runs.

If the application uses the NETCONF Perl module provided by Juniper Networks, no further
action is necessary. As part of the installation procedure for the Perl module, you install
a prerequisites package that includes the necessary SSH software.

If the application does not use the NETCONF Perl module, obtain the SSH software and
install it on the computer where the application runs. For information about obtaining
and installing SSH software, see http:/www.ssh.com and http://www.openssh.com.

Client Application Can Log In on C Series Controllers

The client application must be able to log in to each C Series Controller on which it
establishes NETCONF sessions. The following instructions explain how to create a login
account for the application. Alternatively, you can skip this section and enable
authentication through RADIUS or TACACS+. For instructions, see SRC PE Getting Started
Guide.

To determine if a login account exists, enter SRC command-line interface (CLI)
configuration mode on the C Series Controller and issue the following commands:

Copyright © 2018, Juniper Networks, Inc. 23

http://www.ssh.com
http://www.openssh.com

SRC PE 4.12.x NETCONF API Guide

[edit]
user@host# edit system login

[edit system login]
user@host# show user user-name

If the appropriate account does not exist, perform the following steps:

1. Include the user statement at the [edit system login] hierarchy level. Specify a login
class that has the permissions required for all actions to be performed by the
application. You can also include the optional full-name and uid statements. For
detailed information about creating user accounts, see SRC PE Getting Started Guide.

[edit system login]
user@host# set user user-name class class

2. (Optional) Commit the configuration. Alternatively, you can wait until you have added
the statements that satisfy all prerequisites (see “NETCONF Service over SSH s
Enabled” on page 26).

[edit system login]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application
establishes NETCONF sessions.

Login Account Has Public/Private Key Pair or Password

For a client application to authenticate with the NETCONF server, the login account that
you created in “Client Application Can Log In on C Series Controllers” on page 23 must
have an SSH public/private key pair, a text-based password, or both. A public/private
key pair is sufficient if the account is used only to connect to the NETCONF server through
SSH. If the account is also used to access the C Series Controller in other ways (for login
on the console, for example), it must have a text-based password. The password is also
used (the SSH server prompts for it) if key-based authentication is configured but fails.

0 NOTE: You can skip this section if you have chosen to enable authentication
through RADIUS or TACACS+, as described in SRC PE Getting Started Guide.

Follow the instructions in the appropriate section:

. Creating a Text-Based Password on page 24

« Creating a Public/Private Key Pair on page 25

Creating a Text-Based Password

To create a text-based password, perform the following steps:

24

Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

1. Include either the plain-text-password or encrypted-password statement at the [edit
system login user user-name authentication] hierarchy level. First, move to that hierarchy
level:

[edit system login]
user@host# edit user user-name authentication

To enter a password as text, issue the following command. You are prompted for the
password, which is encrypted before being stored.

[edit system login user user-name authentication]
user@host# set plain-text-password

New password: password

Retype new password: password

To store a password that you have previously created and hashed using Message
Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1), issue the following command:

[edit system login user user-name authentication]
user@host# set encrypted-password "password"

2. (Optional) Commit the configuration. Alternatively, you can wait until you have added
the statements that satisfy all prerequisites (see “NETCONF Service over SSH s
Enabled” on page 26).

[edit system login user user-name authentication]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application
establishes NETCONF sessions.

Creating a Public/Private Key Pair

To create an SSH public/private key pair, perform the following steps:

1. Issue the ssh-keygen command in the standard command shell (not the SRC CLI) on
the computer where the client application runs. By providing the appropriate
arguments, you encode the public key with either RSA (supported by SSH versions 1
and 2) or the Digital Signature Algorithm (DSA, supported by SSH version 2). For more
information, see the manual page for the ssh-keygen command. The SRC software
uses SSH version 2 by default, but also supports version 1.

% ssh-keygen options

2. Associate the public keys with the login account by including the ssh-authorized-keys
statement at the [edit system login user user-name authentication] hierarchy level.
The SRC software copies the public keys onto the C Series Controller:

[edit system login user user-name authentication]
user@host# set ssh-authorized-keys [ssh-authorized-keys...]

The ssh-keygen command by default stores each public key in a file in the ssh
subdirectory of the user home directory; the filename depends on the encoding (DSA

Copyright © 2018, Juniper Networks, Inc. 25

SRC PE 4.12.x NETCONF API Guide

or RSA) and SSH version. For more information about configuring SSH authentication,
see SRC PE Getting Started Guide.

3. (Optional) Commit the configuration. Alternatively, you can wait until you have added
the statements that satisfy all prerequisites (see “NETCONF Service over SSH |Is
Enabled” on page 26).

[edit system login user user-name authentication]
user@host# commit

4. Repeat Steps 2 and 3 on each C Series Controller where the client application
establishes NETCONF sessions.

Client Application Can Access the Keys or Password

The client application must be able to access the public/private keys or password you
created in “Login Account Has Public/Private Key Pair or Password” on page 24 and
provide it when the NETCONF server prompts for it.

There are several methods for enabling the application to access the key or password:

« If public/private keys are used, the ssh-agent program runs on the computer where the
client application runs, and handles the private key.

- When a user starts the application, the application prompts the user for the password
and stores it temporarily in a secure manner.

« The password is stored in encrypted form in a secure local-disk location or in a secured
database.

NETCONF Service over SSH Is Enabled

The |IETF draft titled Using the NETCONF Configuration Protocol over Secure Shell (SSH)
requires that the NETCONF server by default provide SSH access to client machines over
a devoted Transmission Control Protocol (TCP) port, to make it easy to identify and filter
NETCONF traffic. The port for the SRC NETCONF server is 32000. In addition, you can
enable client applications to access the NETCONF server over the default SSH port (22).
(For more information about the IETF draft, see “Generating Well-Formed XML
Documents” on page 22.)

Perform the following steps:

1. Include one or both of the following statements at the indicated hierarchy level:

- Toenable SSH access over the devoted port (32000) as specified by the IETF
specification, include the ssh statement at the [edit system services netconf]
hierarchy level:

[edit system login user user-name authentication]
user@host# top

[edit]

user@host# set system services netconf ssh

26 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

. Toenable access over the default SSH port (22), include the ssh statement at the
[edit system services] hierarchy level. This configuration also enables SSH access
to the C Series Controller for all users and applications.

[edit]
user@host# set system services ssh

2. Commit the configuration:

[edit]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application
establishes NETCONF sessions.

Connecting to the NETCONF Server

Before a client application can connect to the NETCONF server, you must satisfy the
requirements described in “Prerequisites for Establishing a Connection” on page 23.

When the prerequisites are satisfied, applications written in Perl use the NETCONF Perl
module to connect to the NETCONF server. A client application that does not use the
NETCONF Perl module uses one of two methods:

« It uses SSH library routines to establish an SSH connection to the NETCONF server,
provide the username and password or passphrase, and create a channel that acts as
an SSH subsystem for the NETCONF session. Providing instructions for using library
routines is beyond the scope of this document.

« ltissues the following ssh command to create a NETCONF session as an SSH
subsystem:

ssh -p 32000 -s user@hostname netconf

The -p option defines the port number on which the NETCONF server listens. This
option can be omitted if you enabled access to SSH over the default port in “NETCONF
Service over SSH Is Enabled” on page 26.

The -s option establishes the NETCONF session as an SSH subsystem.

The application must include code to intercept the NETCONF server’s prompt for the

password or passphrase. Perhaps the most straightforward method is for the application
to use a utility such as the expect command. The NETCONF Perl client uses this method,
for example.

Copyright © 2018, Juniper Networks, Inc. 27

SRC PE 4.12.x NETCONF API Guide

Starting the NETCONF Session

Each NETCONF session begins with a handshake in which the NETCONF server and the
client application specify the NETCONF capabilities they support. The following sections
describe how to start a NETCONF session:

« Exchanging <hello> Tag Elements on page 28
« Verifying Compatibility on page 29

Exchanging <hello> Tag Elements

The NETCONF server and client application each begin by emitting a <hello> tag element
to specify which operations, or capabilities, they support from among those defined in
the NETCONF specification. The <hello> tag element encloses the <capabilities> tag
element and the <session-id> tag element, which specifies the process ID (PID) of the
NETCONF server for the session. Within the <capabilities> tag element, a <capability >
tag element specifies each supported function.

The client application must emit the <hello> tag element before any other tag element
during the NETCONF session, and must not emit it more than once.

Each capability defined in the NETCONF specification is represented in a tag element by
auniformresource name (URN). Capabilities defined by individual vendors are represented
by uniform resource identifiers (URIs), which can be URNs or URLs. The NETCONF API
for SRC emits the following<hello> tag element (each<capability> tag element appears
on three lines for legibility only):

<hello>
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
<capability>
urn:ietf:params:xml:ns:netconf:capability:candidate:1.0
</capability>
<capability>
urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=http,ftp,file
</capability>
<capability>http://xml_juniper.net/netconf/junos/1.0</capability>
<capability>http://xml_juniper.net/netconf/junos/sdx/1.0</capability>
</capabilities>
<session-id>3911</session-id>
</hello>
11-11>

(For information about the]1]>1]> character sequence, see “Generating Well-Formed
XML Documents” on page 22.)

The URIs in the <hello> tag element indicate the following supported capabilities:

. urn:ietf:params:xml:ns:netconf:base:1.0—The NETCONF server supports the basic
NETCONF operations and tag elements defined in this namespace.

« urn:ietf:params:xml:ns:netconf:capability:candidate:1.0—The NETCONF server supports
operations on a candidate configuration. For more information, see “Requesting

28

Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

Information from the Candidate Configuration” on page 51 and
“Committing Configurations” on page 85.

. urn:ietf:params:xml:ns:netconf:capability:url:1.0 ?protocol=http,ftp,file—The NETCONF
server accepts configuration data stored in a file. It can retrieve files both from its local
filesystem (indicated by the file option in the URN) and from remote machines by using
Hypertext Transfer Protocol (HTTP) or FTP (indicated by the http and ftp options in
the URN). For more information, see “Providing Configuration Datain a File” on page 67.

« http://xml.juniper.net/netconf/junos/1.0—The NETCONF server supports the operations
defined in the SRC XML API for requesting and changing operational information (the
tag elements in the SRC XML API Operational Reference).

« http://xml.juniper.net/netconf/junos/sdx/1.0—The NETCONF server supports the
operations defined in the SRC XML API for requesting and changing operational
information (the tag elements in the SRC XML API Operational Reference). The
NETCONF server also supports operations for requesting or changing configuration
information (the tag elements in the SRC XML API Configuration Reference).

To comply with the NETCONF specification, the client application also emits a <hello>
tag element to define the capabilities it supports. It does not include the <session-id>
tag element:

<hello>
<capabilities>
<capability>first-capability</capability>
<I- - tag elements for additional capabilities - ->
</capabilities>
</hello>
11-11>

Verifying Compatibility

Exchanging <hello> tag elements enables a client application and the NETCONF server
to determine if they support the same capabilities. In addition, we recommend that the
client application determine the version of the SRC software running on the NETCONF
server. After emitting its<hello> tag element, it emits the <get-system-info> tag element
in an <rpc> tag element:

<rpc>
<get-system-info/>
</rpc>

11711~

The NETCONF server returns the <system-info> tag element, which encloses the
<system-identification> and <software-version> tag elements. (For information about
the <rpc-reply> tag element, see “Parsing the NETCONF Server Response” on page 34.)
Some tag elements appear on multiple lines, for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
xmlns:sdx="http://xml.juniper._net/junos/sdx/1.0">
<system-info>
<system-identification>

Copyright © 2018, Juniper Networks, Inc. 29

http://xml.juniper.net/netconf/junos/1.0
http://xml.juniper.net/netconf/junos/sdx/1.0

SRC PE 4.12.x NETCONF API Guide

<software-version>SRC Release 2.0.0</software-version>

<!- - other <system-identification> child tag elements - ->
</system-identification>
<I- - other <system-info> child tag elements - ->

</system-info>
</rpc-reply>
11711~

Normally, the version is the same for all SRC software components running on the C
Series Controller. (We recommend this configuration for predictable performance.) The
client application can determine the version of the SRC software components running
on the NETCONF server by emitting the <get-component-all> tag element in an<rpc>
tag element:

<rpc>
<get-component-all/>
</rpc>

11711~

The NETCONF server returns the <sdx-component-list> tag element, which encloses the
<sdx-component> tag elements plus a <version> tag element for each installed SRC
software component. (For information about the <rpc-reply> tag element, see “Parsing
the NETCONF Server Response” on page 34.) The <version> tag element within the
<sdx-component> tag element specifies the SRC release number (in the following
example, 2.0 for SRC Release 2.0) and the build information. Some tag elements appear
on multiple lines, for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
xmIns:sdx="http://xml_juniper._net/junos/sdx/1.0">
<sdx-component-list>
<sdx-component>
<status>stopped</status>
<version>Release: 2.0 Build: ACP.B.2.0.0.001</version>

<name>acp</name>
</sdx-component>
<I- - other <sdx-component> tag elements - ->

<sdx-component>
<status>running</status>
<version>Release: 2.0 Build: WEBADM.B.2.0.0.001</version>
<name>webadm</name>
</sdx-component>
</sdx-component-list>
</rpc-reply>
11-11>

In the NETCONF API for SRC, it is the responsibility of the client application to determine
how to handle any differences in version or capabilities. For fully automated performance,
include code in the client application that determines whether it supports the same
capabilities and SRC version as the NETCONF server. Decide which of the following
options is appropriate when there are differences, and implement the corresponding
response:

- Ignore differences in capabilities and SRC version, and do not alter the client
application’s behavior to accommodate the NETCONF server. A difference in SRC

30 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

versions does not necessarily make the server and client incompatible, so this is often
a valid approach. Similarly, it is a valid approach if the capabilities that the client
application does not support are operations that are always initiated by a client, such
as validation of a configuration and confirmed commit. In that case, the client maintains
compatibility by not initiating the operation.

« Alter standard behavior to be compatible with the NETCONF server. If the client
application is running a later version of the SRC software, for example, it can choose
toemitonly NETCONF and SRC XML tag elements that represent the software features
available in the NETCONF server’s version of the software.

« End the NETCONF session and terminate the connection. This is appropriate if you
decide that it is not practical to make the client application accommodate the SRC
version or capabilities supported by the NETCONF server. For instructions, see “Ending
a NETCONF Session and Closing the Connection” on page 41.

Exchanging Information with the NETCONF Server

The session continues when the client application sends a request to the NETCONF
server. The NETCONF server does not emit any tag elements after session initialization
except in response to the client application’s requests. The following sections describe
the exchange of tagged data:

« Sending a Request to the NETCONF Server on page 31
« Parsing the NETCONF Server Response on page 34

- Handling an Error or Warning on page 37

Sending a Request to the NETCONF Server

Toinitiate a request to the NETCONF server, a client application emits the opening <rpc>
tag, followed by one or more tag elements that represent the particular request, and the
closing </rpc> tag, in that order:

<rpc>
<I- - tag elements representing a request - ->
</rpc>

11711~

Each request is enclosed in its own separate pair of opening <rpc> and closing </rpc>
tags and must constitute a well-formed XML document by including only compliant and
correctly ordered tag elements. For information about the]]>11> character sequence,
see “Generating Well-Formed XML Documents” on page 22. For an example of emitting
an <rpc> tag element in the context of a complete NETCONF session, see “Example of
a NETCONF Session” on page 42.

The NETCONF server ignores any newline characters, spaces, or other white space
characters that occur between tag elements in the tag stream, but it preserves white
space within tag elements. For more information, see “Spaces, Newline Characters, and
Other White Space” on page 11.

Copyright © 2018, Juniper Networks, Inc. 31

SRC PE 4.12.x NETCONF API Guide

See the following sections for further information:

« Request Classes on page 32

« Including Attributes in the Opening <rpc> Tag on page 34

Request Classes

A client application can make three classes of requests:

« Operational Requests on page 32
« Configuration Information Requests on page 32

« Configuration Change Requests on page 33

0 NOTE: Although operational and configuration requests conceptually belong
to separate classes, a NETCONF session does not have distinct modes that
correspond to CLI operational and configuration modes. Each request tag
element is enclosed within its own <rpc> tag element, so a client application
can freely alternate operational and configuration requests.

Operational Requests

Operational requests are requests for information about C Series Controller status, and
correspond to the CLI operational mode commands listed in the SRC software command
references. The SRC XML API defines a request tag element for many CLI commands.
For example, the <get-interfaces> tag element corresponds to the show interfaces
command, and the <get-system-info> tag element requests the same information as
the show system information command.

The following sample request is for information about the interface called ethO:

<rpC>
<get-interfaces>
<interface-name>ethO</interface-name>
</get-interfaces>
</rpc>

11-11>

For more information, see “Requesting Operational Information” on page 48. For
information about the XML request tag elements available in the current SRC software
release, see the SRC XML API Operational Reference.

Configuration Information Requests

Requests for configuration information are requests for information about the current
configuration, either candidate or committed (the one currently in active use on the C
Series Controller). The candidate and committed configurations diverge when there are
uncommitted changes to the candidate configuration.

The NETCONF API defines the <get-config> tag element for retrieving configuration
information. The SRC XML API defines a tag element for every CLI configuration statement
described in the SRC software documentation set.

32 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

The following example shows how to request information from the [edit system login]
hierarchy level of the candidate configuration:

<rpC>
<get-config>
<source>
<candidate/>
</source>
<filter type="subtree'>
<configuration>
<system>
<login/>
</system>
</configuration>
</filter>
</get-config>
</rpc>
11-11>

For more information, see “Requesting Configuration Information” on page 49. For a
summary of the available configuration tag elements, see the SRC XML API Configuration
Reference.

Configuration Change Requests

Configuration change requests are requests to change the candidate configuration, or to
commit those changes to put them into active use on the C Series Controller. The
NETCONF API defines the <edit-config> and <copy-config> tag elements for changes to
the configuration. The SRC XML API defines a tag element for every CLI configuration
statement described in the SRC software documentation set.

The following example shows how to create a new user account called admin at the
[edit system login] hierarchy level in the candidate configuration:

<rpC>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<user>
<user-name>admin</user-name>
<full-name>Administrator</full-name>
<class>super-user</class>
</user>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
11>11>

Copyright © 2018, Juniper Networks, Inc. 33

SRC PE 4.12.x NETCONF API Guide

For more information, see “Changing Configuration Information” on page 65. For a
summary of SRC XML configuration tag elements, see the SRC XML API Configuration
Reference.

Including Attributes in the Opening <rpc> Tag

Optionally, a client application can include one or more attributes of the form
attribute-name="value" in the opening <rpc> tag. The NETCONF server echoes each
attribute, unchanged, in the opening <rpc-reply> tag in which it encloses its response.

This feature can be used to associate requests and responses if the value assigned to
an attribute by the client application is unique in each opening <rpc> tag. Because the
NETCONF server echoes the attribute unchanged, it is simple to map the response to
the initiating request. The NETCONF specification specifies the name message-id for this
attribute.

Parsing the NETCONF Server Response

The NETCONF server encloses its response to each client request in a separate pair of
opening <rpc-reply> and closing </rpc-reply> tags, each of which constitutes a
well-formed XML document. In the opening <rpc-reply> tag, it includes the xmlns and
xmlns:sdx attributes (the opening tag appears here on multiple lines for legibility only):

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
xmIns:sdx="http://xml_juniper.net/junos/sdx/1.0" \
[echoed attributes]>

<I- - tag elements representing a response - ->
</rpc-reply>
11-11>

The xmlns attribute defines the namespace for enclosed tag elements that do not have
the sdx: prefix on their names and that are not enclosed in a child container tag that has
the xmlns attribute with a different value.

The xmlns:sdx attribute defines the namespace for enclosed tag elements that have the
sdx: prefix on their names.

Forinformation about the 11>11> character sequence, see “Generating Well-Formed XML
Documents” on page 22. For information about echoed attributes, see “Including Attributes
in the Opening <rpc> Tag” on page 34.

Client applications must include code for parsing the stream of response tag elements
coming from the NETCONF server, either processing them as they arrive or storing them
until the response is complete. See the following sections for further information:

« NETCONF Server Response Classes on page 35

« Using a Standard API to Parse Response Tag Elements on page 36

34 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

NETCONF Server Response Classes

The NETCONF server returns three classes of responses:

« Operational Responses on page 35
« Configuration Information Responses on page 35

« Configuration Change Responses on page 36

Operational Responses

Operational responses are responses to requests for information about C Series Controller
status. They correspond to the output from CLI operational commands as described in
the SRC CLI command references.

The SRC XML API defines response tag elements for all defined operational request tag
elements. For example, the NETCONF server returns the information requested by the
<get-system-info> tag element in a response tag element called <system-info>.

The following sample response includes information about the C Series Controller. The
namespace indicated by the xmlns attribute in the opening <system-info> tag is for
system information. The opening tags appear on two lines here for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
xmIns:sdx="http://xml . juniper._net/junos/sdx/1.0">
<system-info sdx:style="normal’"\
xmIns="http://xml _juniper.net/sdx/system-info"\
xmIns:sdx="http://xml_juniper.net/sdx">
<cpu xmIns="http://xml.juniper.net/sdx/cpu’'>
<number>4</number>
<model>Dual Core AMD Opteron(tm) Processor 265</model>
<speed>1804.108 MHz</speed>
</cpu>
<I- - other data tag elements for <system-info> - ->
</system-info>
</rpc-reply>
11-11>

For more information about the xmlns attribute and the contents of operational response
tag elements, see “Requesting Operational Information” on page 48. For a summary of
operational response tag elements, see the SRC XML API Operational Reference.

Configuration Information Responses

Configuration information responses are responses to requests for information about the
C Series Controller’s current configuration. The SRC XML API defines a tag element for
every container and leaf statement in the configuration hierarchy.

The following sample response includes the information at the [edit system login]
hierarchy level in the configuration hierarchy. For brevity, the sample shows only one user
defined at this level. The opening <rpc-reply> tag appears on two lines for legibility only.
For information about the attributes in the opening <configuration> tag, see “Requesting
Information from the Candidate Configuration” on page 51.

Copyright © 2018, Juniper Networks, Inc. 35

SRC PE 4.12.x NETCONF API Guide

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
xmIns:sdx="http://xml _juniper.net/junos/sdx/1.0">

<data>
<configurationattributes>
<system>
<login>
<user>
<user-name>admin</user-name>
<full-name>Administrator</ful l-name>
<I- - other data tag elements for the admin user - ->
</user>
</login>
</system>
</configuration>
</data>
</rpc-reply>
11-11>

Configuration Change Responses

Configuration change responses are responses to requests that change the state or
contents of the C Series Controller configuration. The NETCONF server indicates
successful execution of a request by returning the <ok/> tag within the <rpc-reply> tag
element:

<rpc-reply xmIns="URN "xmlns:sdx=""URL”>
<ok/>

</rpc-reply>

11711~

If the operation fails, the <rpc-reply> tag element instead encloses an <rpc-error> tag
element that describes the cause of the failure. For information about handling errors,
see “Handling an Error or Warning” on page 37.

For information about changing C Series Controller configuration, see
“Changing Configuration Information” on page 65. For a summary of the available
configuration tag elements, see the SRC XML API Configuration Reference.

Using a Standard API to Parse Response Tag Elements

Client applications can handle incoming XML tag elements by feeding them to a parser
that is based on a standard API such as the Document Object Model (DOM) or Simple

API for XML (SAX). Describing how to implement and use a parser is beyond the scope
of this document.

Routines in the DOM accept incoming XML and build a tag hierarchy in the client
application’s memory. There are also DOM routines for manipulating an existing hierarchy.
DOM implementations are available for several programming languages, including C,
C++, Perl, and Java. For detailed information, see the Document Object Model (DOM)
Level 1 Specification from the World Wide Web Consortium (W3C) at
http://www.w3.org/TR/REC-DOM-Level-1. Additional information is available from the
Comprehensive Perl Archive Network (CPAN) at
http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm.

36

Copyright © 2018, Juniper Networks, Inc.

http://www.w3.org/TR/REC-DOM-Level-1
http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm

Chapter 3: Controlling the NETCONF Session

One potential drawback with DOM is that it always builds a hierarchy of tag elements,
which can become very large. If a client application needs to handle only a subhierarchy
at a time, it can use a parser that implements SAX instead. SAX accepts XML and feeds
the tag elements directly to the client application, which must build its own tag hierarchy.
For more information, see the official SAX website at http://sax.sourceforge.net.

Handling an Error or Warning

If the NETCONF server encounters an error condition, it emits an <rpc-error> tag element
containing tag elements that describe the error:

<rpc-reply xmlns="URN "xmlns:sdx=""URL”>
<rpc-error>
<error-severity>error-severity</error-severity>
<error-path>error-path</error-path>
<error-message>error-message</error-message>
<error-info>
<bad-element>command-or-statement</bad-element>
</error-info>
</rpc-error>
</rpc-reply>
11-11>

« <bad-element> identifies the command or configuration statement that was being
processed when the error or warning occurred. For a configuration statement, the
<error-path> tag element enclosed in the <rpc-error> tag element specifies the
statement’s parent hierarchy level.

. <error-message> describes the error or warning in a natural-language text string.

« <error-path> specifies the path to the configuration hierarchy level at which the error
or warning occurred, in the form of the CLI configuration mode banner.

« <error-severity> indicates the severity of the event that caused the NETCONF server
to return the <rpc-error> tag element. The two possible values are error and warning.

An error can occur while the server is performing any of the following operations, and the
server can send a different combination of child tag elements in each case:

« Processing an operational request submitted by a client application
. Changing, committing, or closing a configuration as requested by a client application

« Parsing a configuration submitted by a client application in an <edit-config> tag element

Client applications must be prepared to receive and handle an <rpc-error> tag element
at any time. The information in any response tag elements already received and related
to the current request might be incomplete. The client application can include logic for
deciding whether to discard or retain the information.

When the <error-severity> tag element has the value error, the usual response is for the
client application to discard the information and terminate. When the <error-severity >
tag element has the value warning, indicating that the problem is less serious, the usual
response is for the client application to log the warning or pass it to the user, but to
continue parsing the server’s response.

Copyright © 2018, Juniper Networks, Inc. 37

http://sax.sourceforge.net

SRC PE 4.12.x NETCONF API Guide

Locking and Unlocking the Candidate Configuration

When a client application is requesting or changing configuration information, it can use
one of two methods to access the configuration:

. Lock the candidate configuration, which prevents other users or applications from
changing it until the application releases the lock (equivalent to the CLI configure
exclusive command).

. Change the candidate configuration without locking it. We do not recommend this
method, because of the potential for conflicts with changes made by other applications
or users that are editing the configuration at the same time.

If an applicationis simply requesting configuration information and not changing it, locking
the configuration is not required. The application can begin requesting information
immediately, as described in “Requesting Configuration Information” on page 49. However,
it is appropriate to lock the configuration if it is important that the information being
returned not change during the session.

For more information about locking and unlocking the candidate configuration, see the
following sections:

« Locking the Candidate Configuration on page 38
« Unlocking the Candidate Configuration on page 39

Locking the Candidate Configuration

To lock the candidate configuration, a client application emits the <lock> and <target>
tag elements and the <candidate/> tag in the <rpc> tag element:

<rpc>
<lock>
<target>
<candidate/>
</target>
</lock>
</rpc>

11711~

Emitting these tag elements prevents other users or applications from changing the
candidate configuration until the lock is released (equivalent to the CLI configure exclusive
command). We recommend locking the configuration before you make changes,
particularly on C Series Controllers where multiple users are authorized to change the
configuration. A commit operation applies to all changes in the candidate configuration,
not just those made by the user or application that requests the commit. Allowing multiple
users or applications to make changes simultaneously can lead to unexpected results.

The NETCONF server confirms that it has locked the candidate by returning the <ok/>
tag in the <rpc-reply> tag element:

<rpc-reply xmIns="URN” xmlns:junos="URL"’>

38

Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

<ok/>
</rpc-reply>
11711~

If the server cannot lock the configuration, the <rpc-reply> tag element instead encloses
an <rpc-error> tag element explaining the reason for the failure. Reasons for the failure
can include the following:

« Another user or application has already locked the candidate configuration. The error
message reports the NETCONF session identifier of the user or application. If the client
application has the necessary access privilege, it can terminate the session that holds
the lock. For more information, see “Terminating Another NETCONF Session” on page 40.

« The candidate configuration already includes changes that have not yet been
committed. To commit the changes, see “Committing a Configuration” on page 85. To
discard uncommitted changes, see “Replacing the Candidate Configuration with the
Running Configuration” on page 73.

Only one application can hold the lock on the candidate configuration at a time. Other
users and applications can read the candidate configuration while it is locked. The lock
persists until either the NETCONF session ends or the client application unlocks the
configuration by emitting the <unlock> tag element, as described in “Unlocking the
Candidate Configuration” on page 39.

If the candidate configuration is not committed before the client application unlocks it,
or if the NETCONF session ends for any reason before the changes are committed, the
changes are automatically discarded. The candidate and committed configurations
remain unchanged.

Unlocking the Candidate Configuration

As long as a client application holds a lock on the candidate configuration, other
applications and users cannot change the candidate. To unlock the candidate
configuration, the client application includes the <unlock> and <target> tag elements
and the <candidate/> tag in the<rpc> tag element:

<rpC>
<unlock>
<target>
<candidate/>
</target>
</unlock>
</rpc>

11711~

The NETCONF server confirms that it has unlocked the candidate by returning the <ok/>
tag in the <rpc-reply> tag element:

<rpc-reply xmIns="URN” xmlns:junos="URL"’>
<ok/>

</rpc-reply>

11-11>

Copyright © 2018, Juniper Networks, Inc. 39

SRC PE 4.12.x NETCONF API Guide

If the server cannot unlock the configuration, the <rpc-reply> tag element instead encloses
an <rpc-error> tag element explaining the reason for the failure.

Terminating Another NETCONF Session

A client application’s attempt to lock the candidate configuration can fail because another
user or application already holds the lock, as mentioned in “Locking the Candidate
Configuration” on page 38. In this case, the NETCONF server returns an error message
that includes the username and process ID (PID) for the entity that holds the existing
lock:

<rpc-reply xmIns="URN” xmlns:junos="URL"">
<rpc-error>
<error-severity>error</error-severity>
<error-message>
configuration database locked by:
user terminal (pid PID) on since YYYY-MM-DD hh:mm:ss TZ, idle hh:mm:ss

exclusive
</error-message>
</rpc-error>
</rpc-reply>
11-11>

If the client application has maintenance permission, it can end the session that holds
the lock by emitting the <kill-session> and <session-id> tag elements in an <rpc> tag
element. The <session-id> tag element specifies the process ID (PID) obtained from the
error message:

<rpC>
<kill-session>
<session-id>PID</session-id>
</kill-session>
</rpc>

11711~

The NETCONF server confirms that it has terminated the other session by returning the
<ok/> tagin the <rpc-reply> tag element:

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>
<ok/>

</rpc-reply>

11-11>

We recommend that the application include logic for determining whether it is appropriate
to terminate another session, based on factors such as the identity of the user or
application that holds the lock, or the length of idle time.

When a session is terminated, the NETCONF server that is servicing the session rolls back
all uncommitted changes that have been made during the session.

40

Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

The following example shows how to terminate a session:

Client Application NETCONF Server

<rpc>
<kill-session>
<session-id>3250</session-id>
</kill-session>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Ending a NETCONF Session and Closing the Connection

When a client application is finished making requests, it ends the NETCONF session by
emitting the empty <close-session/> tag within an <rpc> tag element:

<|'pC>
<close-session/>
</rpc>

11711~

In response, the NETCONF server emits the <ok/> tag enclosed in an <rpc-reply>
tag element:

<rpc-reply xmlns="URN "xmlns:sdx=""URL”>
<ok/>

</rpc-reply>

11711~

For an example of the exchange of closing tag elements, see “Closing the NETCONF
Session” on page 46.

Because the connection to the NETCONF server is an SSH subsystem, it closes
automatically when the NETCONF session ends.

Displaying CLI Output as XML Tag Elements

To display the output from a CLI command as NETCONF and SRC XML tag elements
instead of as the default formatted ASCII, pipe the commmand to the display xml command.
The tag elements that describe SRC configuration or operational data belong to the SRC
XML API, which defines the content that can be retrieved and manipulated by the
NETCONF API.

The following example shows the output from the show system information command
issued on a C Series Controller (the opening <system-info> tag appears on multiple lines
for legibility only):

Copyright © 2018, Juniper Networks, Inc. 41

SRC PE 4.12.x NETCONF API Guide

user@host> show system information |display xml
<?xml version="1.0" encoding=""utf-8"?>
<system-info sdx:style="normal'\
xmIns="http://xml . juniper.net/sdx/system-info'\
xmIns:sdx="http://xml _juniper.net/sdx">
<cpu xmIns="http://xml_juniper.net/sdx/cpu'>
<number>4</number>
<model>Dual Core AMD Opteron(tm) Processor 265</model>
<speed>1804.108 MHz</speed>
</cpu>
<I- - other child tags of <system-info> - ->
</system-info>

Example of a NETCONF Session

This section describes the sequence of tag elements in a sample NETCONF session. The
client application begins by establishing a connection to a NETCONF server. See the
following sections:

« Exchanging Initialization Tag Elements on page 42
» Sending an Operational Request on page 43

« Locking the Configuration on page 43

« Changing the Configuration on page 44

« Committing the Configuration on page 45

« Unlocking the Configuration on page 45

« Closing the NETCONF Session on page 46

Exchanging Initialization Tag Elements

After the client application establishes a connection to a NETCONF server, the two
exchange <hello> tag elements, as shown in the following example. For legibility, the
example places the client application’s <hello> tag element below the NETCONF server’s.
The two parties can actually emit their <hello> tag elements at the same time. For
information about the 11>]1> character sequence used in this and the following examples,
see “Generating Well-Formed XML Documents” on page 22. For a detailed discussion of
the<hello> tag element, see “Exchanging <hello> Tag Elements” on page 28.

NETCONF Server Client Application

<hello>
<capabilities>
<capability >urn:ietf:params:xml:ns:netconf:base:1.0< /capability >
<capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability >
<capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?candidate:1.0</capability >
<capability>http://xml.juniper.net/netconf/junos/1.0< /capability >
<capability >http://xml.juniper.net/netconf/junos/sdx/1.0</capability >
</capabilities>
<session-id>3911</session-id>
</hello>

11>11>

42 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

NETCONF Server Client Application

<hello>
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0< /capability >
<capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0< /c:
<capability >urn:ietf:params:xml:ns:netconf:capability:url:1.0?candidate
<capability>http://xml.juniper.net/netconf/junos/1.0< /capability >
<capability>http://xml.juniper.net/netconf/junos/sdx/1.0</capability >
</capabilities>
</hello>
11>11>

Sending an Operational Request

The client application now emits the <get-system-info> tag element to request
information about the C Series Controller’s chassis hardware. The NETCONF server
returns the requested information in the <system-info> tag element.

Client Application

NETCONF Server

<rpc>

<get-system-info/>

</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<system-info>
<cpu>
<!-- other tags for <cpu> -->
</cpu>
<1-- other tags for <system-info> -->
</system-info>

</rpc-reply>
11>11>

Locking the Configuration

The client application then prepares to incorporate a change into the candidate
configuration by emitting the <lock> tag to prevent any other users or applications from
altering the candidate configuration at the same time. To confirm that the candidate
configuration is locked, the NETCONF server returns an <ok/> tag in an <rpc-reply> tag

Copyright © 2018, Juniper Networks, Inc.

43

SRC PE 4.12.x NETCONF API Guide

element. For more information about locking the configuration, see “l.ocking the Candidate
Configuration” on page 38.

Client Application | NETCONF Server

<rpc>
<lock>
<target>
<candidate/>
</target>
</lock>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Changing the Configuration

The client application now emits tag elements to create a new login class called
network-mgmt at the [edit system login class] hierarchy level in the candidate
configuration. To confirm that it incorporated the changes, the NETCONF server returns
an <ok/> tagin an <rpc-reply> tag element. (Understanding the meaning of these tag
elements is not necessary for the purposes of this example, but for information about
them, see “Changing Configuration Information” on page 65.)

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<class>
<name>network-mgmt</name>
<permissions>configure</permissions>
<permissions>snmp</permissions>
<permissions>system</permissions>
</class>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

44 Copyright © 2018, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

Client Application NETCONF Server

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Committing the Configuration

The client application commits the candidate configuration. To confirm that it committed
the candidate configuration, the NETCONF server returns an <ok/> tag in an <rpc-reply>
tag element. For more information about the commit operation, see “Committing a
Configuration” on page 85.

Client Application | NETCONF Server

<rpc>
<commit/>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Unlocking the Configuration

The client application unlocks (and by implication closes) the candidate configuration.
To confirm that it unlocked the candidate configuration, the NETCONF server returns an
<ok/> tag in an <rpc-reply> tag element. For more information about unlocking the
configuration, see “Unlocking the Candidate Configuration” on page 39.

Client Application | NETCONF Server

<rpc>
<unlock>
<target>
<candidate/>
</target>
</unlock>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Copyright © 2018, Juniper Networks, Inc. 45

SRC PE 4.12.x NETCONF API Guide

Closing the NETCONF Session

The client application closes the NETCONF session. For more information about closing
the session, see “Ending a NETCONF Session and Closing the Connection” on page 41.

Client Application | NETCONF Server

<rpc>
<close-session/>
</rpc>

11>11>

<rpc-reply xmlns=" URN ” xmlns:sdx=" URL * >
<ok/>

</rpc-reply>

11>11>

46 Copyright © 2018, Juniper Networks, Inc.

CHAPTER 4

Requesting Information

This chapter explains how to use the SRC Extensible Markup Language (XML) and
NETCONF application programming interfaces (APIs) to request information about C
Series Controller status and the current configuration.

The tag elements for operational requests are defined in the SRC XML APl and correspond
to command-line interface (CLI) operational commands, which are described in the SRC
software command references. There is a request tag element for many commands in
the CLI show family of commands.

The tag element for configuration requests is the NETCONF <get-config> tag element.
It corresponds to the CLI configuration mode show command, which is described in the
SRC PE CLI User Guide. The SRC XML tag elements that make up the content of both
requests and the NETCONF server’s responses correspond to CLI configuration
statements, which are described in the SRC software documentation set.

In addition to information about the current configuration, client applications can request
other configuration-related information.

This chapter includes the following topics:

« Request Procedure Overview on page 47
« Requesting Operational Information on page 48

« Requesting Configuration Information on page 49

Request Procedure Overview

To request information from the NETCONF server, a client application performs the
procedures described in the indicated sections:

1. Establishes a connection to the NETCONF server on the C Series Controller, as
described in “Connecting to the NETCONF Server” on page 27.

2. Opens a NETCONF session, as described in “Starting the NETCONF Session” on
page 28.

3. If making configuration requests, optionally locks the candidate configuration, as
described in “Locking the Candidate Configuration” on page 38.

Copyright © 2018, Juniper Networks, Inc. 47

SRC PE 4.12.x NETCONF API Guide

4. Makes any number of requests one at a time, freely intermingling operational and
configuration requests. See “Requesting Operational Information” on page 48 and
“Requesting Configuration Information” on page 49.

The application can also intermix requests with configuration changes, which are
described in “Changing Configuration Information” on page 65.

5. Accepts the tag stream emitted by the NETCONF server in response to each request
and extracts its content, as described in “Parsing the NETCONF Server Response” on
page 34.

6. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 39. Other users and applications cannot change
the configuration while it remains locked.

7. Ends the NETCONF session and closes the connection to the C Series Controller, as
described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Requesting Operational Information

To request information about the current status of a C Series Controller, a client
application emits the specific tag element from the SRC XML API that returns the desired
information. For example, the <get-interfaces> tag element corresponds to the

show interfaces command, and the <get-system-info> tag element requests the same
information as the show system information command.

For complete information about the operational request tag elements available in the
current SRC software release, see the chapters in the SRC XML API Operational Reference
that are titled “ Mapping Between Operational Tag Elements and CLI Commands” and

“ Summary of Operational Request Tag Elements.”

The application encloses the request tag element in an <rpc> tag element. The syntax
depends on whether the corresponding CLI command has any options:

<|’pC>
<I- - If the command does not have options - ->
<operational-request/>

<I- - If the command has options - ->
<operational-request>
<I- - tag elements representing the options - ->
</operational-request>
</rpc>

11711~

The NETCONF server encloses its response in a specific tag element that matches the
request tag element, enclosed in an <rpc-reply> tag element.

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>
<operational-response xmlns="URL-for-DTD">
<I- - SRC XML tag elements for the requested information - ->
</operational-response>
</rpc-reply>
11-11>

48

Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

The opening tag for each operational response includes the xmlns attribute to define the
XML namespace for the enclosed tag elements that do not have a prefix (such as sdx:)
in their names. The namespace indicates which XML document type definition (DTD)
defines the set of tag elements in the response. The SRC XML API defines separate DTDs
for operational responses from different software components. For instance, the DTD
for software component information is called SdxComponentList.dtd. The division into
separate DTDs and XML namespaces means that a tag element with the same name
can have distinct functions depending on which DTD it is defined in.

The namespace is a URL of the following form:
http://xml.juniper.net/sdx/category
where category specifies the DTD for the top-level tag.

For example, http:/xml.juniper.net/sdx/sdx-component-list would be the namespace for
the SdxComponentList DTD.

The SRC XML API Operational Reference includes the text of the SRC XML DTDs for
operational responses.

Parsing the <output> Tag Element

If the SRC XML API does not define a response tag element for the type of output

requested by a client application, the NETCONF server encloses its response in an

<output> tag element. The tag element’s contents are usually one or more lines of
formatted ASCII output like that displayed by the CLI on the computer screen.

0 NOTE: The content and formatting of data within an <output> tag element
are subject to change, so client applications must not depend on them. Future
versions of the SRC XML API will define specific response tag elements
(instead of <output> tag elements) for more commands. Client applications
that rely on the content of <output> tag elements will not be able to interpret
the output from future versions of the SRC XML API.

Requesting Configuration Information

Torequest information about a configuration on a C Series Controller, a client application
encloses the <get-config>, <source>, and <filter> tag elements in an <rpc> tag element.
By including the appropriate child tag element in the <source> tag element, the client
application requests information from either the candidate or active configuration. By
including the appropriate child tag elements in the <filter> tag element, the application
can request the entire configuration or portions of it:

<rpc>
<get-config>
<source>

<!- - tag specifying the source configuration - ->

Copyright © 2018, Juniper Networks, Inc. 49

http://xml.juniper.net/sdx/category
http://xml.juniper.net/sdx/sdx-component-list

SRC PE 4.12.x NETCONF API Guide

</source>
<filter type="'subtree'>
<!- - tag elements representing the configuration elements to
return - ->
</filter>
</get-config>
</rpc>

11711~

The type="subtree" attribute in the opening <filter> tag indicates that the client application
is using XML tag elements to represent the configuration elements about which it is
requesting information. For information about the syntax used within the <filter> tag
element to represent elements, see “Specifying the Scope of Configuration Information
to Return” on page 51.

o NOTE: If the client application locks the candidate configuration before
making requests, it needs to unlock the configuration after making its read
requests. Other users and applications cannot change the configuration while
it remains locked. For more information, see “Locking and Unlocking the
Candidate Configuration” on page 38.

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag
elements. It includes attributes in the opening <configuration> tag that indicate the XML
namespace for the enclosed tag elements and when the configuration was last changed
or committed. For information about the attributes, see “Requesting Information from
the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>
<data>
<configuration attributes>
<I- - SRC XML tag elements representing configuration elements -

</configuration>
</data>
</rpc-reply>
11-11>

If an XML tag element is returned within an <undocumented> tag element, the
corresponding configuration element is not documented in the SRC software configuration
guides or officially supported by Juniper Networks. Most often, the enclosed element is
used for debugging only by Juniper Networks personnel. In a smaller number of cases,
the elementis no longer supported or has been moved to another area of the configuration
hierarchy, but appears in the current location for backward compatibility.

Client applications can also request other configuration-related information.

The following sections describe how a client application specifies the source and scope
of configuration information returned by the NETCONF server:

« Requesting Information from the Candidate Configuration on page 51

» Specifying the Scope of Configuration Information to Return on page 51

50

Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

Requesting Information from the Candidate Configuration

To request information from the candidate configuration, a client application includes
the <source> tag element and <candidate/> tag in <rpc> and <get-config> tag elements:

<rpC>
<get-config>
<source>
<candidate/>
</source>
<filter>
<!- - tag elements representing the configuration elements to
return - ->
</filter>
</get-config>
</rpc>

11711~

0 NOTE: If requesting the entire configuration, the application omits the <filter>
tag element. For information about the <filter> tag element, see “Specifying
the Scope of Configuration Information to Return” on page 51.

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag
elements. In the opening <configuration> tag, it includes the xmlns attribute to specify
the namespace for the enclosed tag elements.

When returning information from the candidate configuration, the NETCONF server also
includes attributes that indicate when the configuration last changed (they appear on
multiple lines here only for legibility):

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>
<data>
<configuration xmIns="URL" sdx:changed-seconds=seconds"™ \
sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ'">

<I- - SRC XML tag elements representing the configuration - ->
</configuration>
</data>
</rpc-reply>
11-11>

sdx:changed-localtime represents the time of the last change as the date and time in the
C Series Controller’s local time zone.

sdx:changed-seconds represents the time of the last change as the number of seconds
since midnight on 1January 1970.

Specifying the Scope of Configuration Information to Return

By including the appropriate child tag elements in the <filter> tag element within the
<rpc> and <get-config> tag elements, a client application can request the entire
configuration or portions of it:

Copyright © 2018, Juniper Networks, Inc. 51

SRC PE 4.12.x NETCONF API Guide

<|’pC>
<get-config>
<source>
<candidate/>
</source>
<filter>
<I- - tag elements representing the configuration elements to
return - ->
</filter>
</get-config>
</rpc>

11-11>

For information about requesting different amounts of configuration information, see
the following sections:

« Requesting the Complete Configuration on page 52

« Requesting a Hierarchy Level or Container Object Without an Identifier on page 53
« Requesting All Configuration Objects of a Specified Type on page 54

« Requesting Identifiers for Configuration Objects of a Specified Type on page 56

« Reqguesting One Configuration Object on page 58

« Requesting Specific Child Tags for a Configuration Object on page 60

« Requesting Multiple Configuration Elements Simultaneously on page 62

Requesting the Complete Configuration

To request the entire candidate configuration, a client application encloses <get-config>
and <source> tag elements and the <candidate/> tag in an <rpc> tag element:

<rpc>
<get-config>
<source>
<candidate/>
</source>
</get-config>
</rpc>

11-11>

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag
elements. For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN "xmlns:sdx=""URL”>
<data>
<configuration attributes>
<I- - SRC XML tag elements representing the configuration - ->
</configuration>
</data>
</rpc-reply>
11711~

52 Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

Requesting a Hierarchy Level or Container Object Without an Identifier

To request complete information about all child configuration elements at a hierarchy
level or in a container object that does not have an identifier, a client application emits
a <filter> tag element that encloses the tag elements representing all levels in the
configuration hierarchy from the root (represented by the <configuration> tag element)
down to the immediate parent level of the level or container object, which is represented
by an empty tag. The entire request is enclosed in an <rpc> tag element:

<rpc>
<get-config>
<source>
<I- - tag specifying the source configuration - ->
</source>
<filter type="'subtree'>
<configuration>
<!- - opening tags for each parent of the requested level -
==
<level-or-container/>
<!- - closing tags for each parent of the requested level -
->
</configuration>
</filter>
</get-config>
</rpc>
11-11>

For information about the <source> tag element, see “Requesting Information from the
Candidate Configuration” on page 51.

The NETCONF server returns the requested section of the configuration in <data> and
<rpc-reply> tag elements. For information about the attributes in the opening
<configuration> tag, see “Requesting Information from the Candidate Configuration” on
page 51.

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>

<data>
<configuration attributes>
<I- - opening tags for each parent of the level - ->
<level-or-container>
<I- - child tag elements of the level or container - ->
</level-or-container>
<!- - closing tags for each parent of the level - ->
</configuration>
</data>
</rpc-reply>
11-11>

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-config> tag element.
For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 62.

Copyright © 2018, Juniper Networks, Inc. 53

SRC PE 4.12.x NETCONF API Guide

The following example shows how to request the contents of the [edit system login]
hierarchy level in the candidate configuration.

Client Application NETCONF Server

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<login/>
</system>
</configuration>
</filter>
</get-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<data>
<configuration xmlns="URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp" >
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<class>super-user</class>
<uid>632</uid>
</user>
<1-- other child tag elements of <login> -->
</login>
</system>
</configuration>
</data>
</rpc-reply>
11>11>

Requesting All Configuration Objects of a Specified Type

To request complete information about all configuration objects of a specified type in a
hierarchy level, a client application emits a <filter> tag element that encloses the tag
elements representing all levels in the configuration hierarchy from the root (represented
by the <configuration> tag element) down to the immediate parent level for the object
type. An empty tag represents the requested object type. The entire request is enclosed
inan <rpc> tag element:

<|’pC>
<get-config>
<source>
<I- - tag specifying the source configuration - ->
</source>

54 Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

<filter type="'subtree'>

<configuration>
<!- - opening tags for each parent of the requested object
type - —>
<object-type/>
<!- - closing tags for each parent of the requested object
type - ->
</configuration>
</filter>
</get-config>
</rpc>
11-11>

For information about the <source> tag element, see “Requesting Information from the
Candidate Configuration” on page 51.

This type of request is useful when the object’s parent hierarchy level has more than one
type of child object. If the requested object is the only child type that can occurinits
parent hierarchy level, then this type of request yields the same output as a request for
the complete parent hierarchy, which is described in “Requesting a Hierarchy Level or
Container Object Without an Identifier” on page 53.

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag
elements. For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN "xmlns:sdx=""URL”>

<data>
<configuration attributes>
<I- - opening tags for each parent of the object type - ->
<first-object>
<I- - child tag elements for the first object - ->
</first-object>
<second-object>
<I- - child tag elements for the second object - ->
</second-object>
<I- - additional instances of the object - ->
<I- - closing tags for each parent of the object type - ->
</configuration>
</data>
</rpc-reply>
11-11>

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-config> tag element.
For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 62.

Copyright © 2018, Juniper Networks, Inc. 55

SRC PE 4.12.x NETCONF API Guide

The following example shows how to request complete information about all radius-server
objects at the [edit system] hierarchy level in the candidate configuration.

Client Application NETCONF Server

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<radius-server/>
</system>
</configuration>
</filter>
</get-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<data>
<configuration xmlns="URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp" >
<system>
<radius-server>
<address>10.25.34.166</address >
<port>1812</port>
<secret>$9SPf3900REcr/9t...</secret>
<timeout>5</timeout>
<retry>3</retry>
</radius-server>
<radius-server>
<address>10.25.6.204</address >
<port>1812</port>
<secret>$9SK5Kvxd2gJZUi-d...</secret>
<timeout>5</timeout>
<retry>3</retry>
</radius-server>
</system>
</configuration>
</data>
</rpc-reply>
11>11>

Requesting Identifiers for Configuration Objects of a Specified Type

Torequest output that shows only the identifier for each configuration object of a specific
type in a hierarchy, a client application emits a <filter> tag element that encloses the tag
elements representing all levels of the configuration hierarchy from the root (represented
by the <configuration> tag element) down to the immediate parent level for the object
type. The object type is represented by its container tag element enclosing an empty
<name/> tag. (The <name> tag element can always be used, even if the actual identifier

56

Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

tag element has a different name. The actual name is also valid.) The entire request is
enclosed in an <rpc> tag element:

<rpC>
<get-config>
<source>
<!-tag specifying the source configuration - -> -
</source>
<filter type="'subtree'>
<configuration>
<I- - opening tags for each parent of the object type - ->
<object-type>
<name/>
</object-type>
<I- - closing tags for each parent of the object type - ->
</configuration>
</filter>
</get-config>
</rpc>
11-11>

For information about the <source> tag element, see “Requesting Information from the
Candidate Configuration” on page 51.

0 NOTE: Itis not possible to request only identifiers for object types that have
multiple identifiers. However, for many such objects the identifiers are the
only child tag elements, so requesting complete information yields the same
output as requesting only identifiers. For instructions, see “Requesting All
Configuration Objects of a Specified Type” on page 54.

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag
elements (here, objects for which the identifier tag element is called <name>). For
information about the attributes in the opening <configuration> tag, see “Requesting
Information from the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN" xmlns:sdx=""URL”>

<data>
<configuration attributes>
<I- - opening tags for each parent of the object type - ->
<first-object>
<name>identifier-for-first-object</name>
</first-object>
<second-object>
<name>identifier-for-second-object</name>
</second-object>
<I- - additional objects - ->
<!- - closing tags for each parent of the object type - ->
</configuration>
</data>
</rpc-reply>
11-11>

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-config> tag element.

Copyright © 2018, Juniper Networks, Inc. 57

SRC PE 4.12.x NETCONF API Guide

For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 62.

The following example shows how to request the identifier for each file configured at
the [edit system syslog file] hierarchy level in the candidate configuration.

Client Application | NETCONF Server

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<syslog>
<file/>
</syslog>
</system>
</configuration>
</filter>
</get-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<data>
<configuration xmlns="URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp" >
<system>
<syslog>
<file>
<name>filel</name>
<name>file2</name>
</file>
</syslog>
</system>
</configuration>
</data>
</rpc-reply>
11>11>

Requesting One Configuration Object

Torequest complete information about a specific configuration object, a client application
emits a <filter> tag element that encloses the tag elements representing all levels of the
configuration hierarchy from the root (represented by the <configuration> tag element)
down to the immediate parent level for the object.

To represent the requested object, the application emits its container tag element and
each of its identifier tag elements, complete with identifier value. For objects with a single
identifier, the <name> tag element can always be used, even if the actual identifier tag
element has a different name. The actual name is also valid. For objects with multiple
identifiers, the actual names of the identifier tag elements must be used. To verify the

58 Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

name of each of the identifiers for a configuration object, see the SRC XML AP/
Configuration Reference. The entire request is enclosed in an <rpc> tag element:

<rpC>
<get-config>
<source>
<!- -tag specifying the source configuration - ->
</source>
<filter type="subtree'>
<configuration>
<I- - opening tags for each parent of the object - ->
<object>
<name>identifier</name>
</object>
<I- - closing tags for each parent of the object - ->
</configuration>
</filter >
</get-config>
</rpc>
11-11>

For information about the <source> tag element, see “Requesting Information from the
Candidate Configuration” on page 51.

The NETCONF server returns the requested object in <data> and <rpc-reply> tag elements
(here, an object for which the identifier tag element is called <name>). For information
about the attributes in the opening <configuration> tag, see “Requesting Information
from the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN"xmIns:sdx ="URL">

<data>
<configuration attributes>
<I- - opening tags for each parent of the object - ->
<object>
<name>identifier</name>
<I- - other child tag elements of the object - ->
</object>
<I- - closing tags for each parent of the object - ->
</configuration>
</data>
</rpc-reply>
11-11>

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-config> tag element.
For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 62.

The following example shows how to request the contents of the user called barbara,
which is at the [edit system login user] hierarchy level in the candidate configuration. To

Copyright © 2018, Juniper Networks, Inc. 59

SRC PE 4.12.x NETCONF API Guide

specify the desired object, the client application emits the <name>barbara</name>
identifier tag element as the innermost tag element.

Client Application NETCONF Server

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<login>
<user>
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</filter>
</get-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<data>
<configuration xmlns="URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp" >
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<class>super-user</class>
<uid>632</uid>
</user>
<I1-- other child tag elements of <login> -->
</login>
</system>
</configuration>
</data>
</rpc-reply>
11>11>

Requesting Specific Child Tags for a Configuration Object

To request specific child tag elements for a specific configuration object, a client
application emits a <filter> tag element that encloses the tag elements representing all
levels of the configuration hierarchy from the root (represented by the <configuration>
tag element) down to the immediate parent level for the object. To represent the
requested object, the application emits its container tag element and identifier tag
element. For objects with a single identifier, the <name> tag element can always be used,
even if the actual identifier tag element has a different name. The actual name is also
valid. For objects with multiple identifiers, the actual names of the identifier tag elements

60 Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

must be used. To represent the child tag elements to return, it emits each one as an
empty tag. The entire request is enclosed in an <rpc> tag element:

<rpC>
<get-config>
<source>
<!- - tag specifying the source configuration - ->
</source>
<filter type="'subtree'>
<configuration>
<I- - opening tags for each parent of the object - ->
<object>
<name>identifier</name>
<first-child/>
<second-child/>
<I- - empty tag for each additional child to return
= =
</object>
<!- - closing tags for each parent of the object - ->
</configuration>
</filter>
</get-config>
</rpc>
11-11>

For information about the <source> tag element, see “Requesting Information from the
Candidate Configuration” on page 51.

The NETCONF server returns the requested children of the object in <data> and
<rpc-reply> tag elements (here, an object for which the identifier tag element is called
<name>). For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmIns="URN" xmlns:sdx=""URL">

<data>
<configuration attributes>
<I- - opening tags for each parent of the object - ->
<object>
<name>identifier</name>
<I- - requested child tag elements - ->
</object>
<!- - closing tags for each parent of the object - ->
</configuration>
</data>
</rpc-reply>
11-11>

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-config> tag element.
For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 62.

Copyright © 2018, Juniper Networks, Inc. 61

SRC PE 4.12.x NETCONF API Guide

The following example shows how to request only the address of the next-hop router
for the 192.168.5.0/24 route at the [edit routing-options static route] hierarchy level in the
candidate configuration.

Client Application NETCONF Server

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<routing-options>
<static>
<route>
<destination>192.168.5.0/24< /destination>
<next-hop/>
</route>
</static>
</routing-options>
</configuration>
</filter>
</get-config>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<data>
<configuration xmlns="URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp" >
<routing-options>
<static>
<route>
<destination>192.168.5.0/24</destination>
<next-hop>192.168.71.254</next-hop>
</route>
</static>
</routing-options>
</configuration>
</data>
</rpc-reply>
11>11>

Requesting Multiple Configuration Elements Simultaneously

Within a <get-config> tag element, a client application can request multiple configuration
elements of the same type or different types. The request includes only one <filter> and
<configuration> tag element. (The NETCONF server returns an error if there is more than
one of each.)

If two requested objects have the same parent hierarchy level, the client can either include
both requests within one parent tag element, or repeat the parent tag element for each
request. For example, at the [edit system] hierarchy level the client can request the list

62 Copyright © 2018, Juniper Networks, Inc.

Chapter 4: Requesting Information

of configured services and the identifier tag element for RADIUS servers in either of the
following two ways:

<!- - both requests in one <system> tag element - ->
<rpc>
<get-config>
<source>
<!- - tag specifying the source configuration - ->
</source>
<filter type="'subtree'>
<configuration>
<system>
<services/>
<radius-server>
<name/>
</radius-server>
</system>
</configuration>
</filter>
</get-config>
</rpc>
11-11>
<I- - separate <system> tag element for each element - ->
<rpc>
<get-config>
<source>
<I- - tag specifying the source configuration - ->
</source>
<filter type="'subtree'>
<configuration>
<system>
<services/>
</system>
<system>
<radius-server>
<name/>
</radius-server>
</system>
</configuration>
</filter>
</get-config>
</rpc>
11-11>

The client can combine requests for any of the following types of information:

« Requesting a Hierarchy Level or Container Object Without an Identifier on page 53
« Requesting All Configuration Objects of a Specified Type on page 54

« Requesting Identifiers for Configuration Objects of a Specified Type on page 56

« Requesting One Configuration Object on page 58

» Requesting Specific Child Tags for a Configuration Object on page 60

Copyright © 2018, Juniper Networks, Inc. 63

SRC PE 4.12.x NETCONF API Guide

64 Copyright © 2018, Juniper Networks, Inc.

CHAPTER S5

Changing Configuration Information

This chapter explains how to use the SRC Extensible Markup Language (XML) and
NETCONF application programming interfaces (APIs) to change C Series Controller
configuration. The NETCONF <edit-config> tag element corresponds to configuration
mode commands in the SRC command-line interface (CLI), which are described in the
SRC PE CLI User Guide. The SRC XML tag elements described here correspond to
configuration statements, which are described in the SRC software documentation set.

This chapter includes the following topics:

Configuration Changes Overview on page 65

Changing the Candidate Configuration on page 66

Defining the New Configuration Data on page 67

Setting the Default Mode for Incorporating New Configuration Data on page 70
Replacing the Entire Candidate Configuration on page 71

Changing Individual Configuration Elements on page 73

Configuration Changes Overview

To change configuration information, the client application performs the procedures
described in the indicated sections:

1.

Establishes a connection to the NETCONF server on the C Series Controller, as
described in “Connecting to the NETCONF Server” on page 27.

Opens a NETCONF session, as described in “Starting the NETCONF Session” on
page 28.

(Optional) Locks the candidate configuration, as described in “Locking the Candidate
Configuration” on page 38. Locking the configuration prevents other users or
applications from changing it at the same time.

Encloses the <edit-config> and <target> tag elements and the <candidate/> tagin
an <rpc> tag element. By including various child tag elements, the application can
provide the configuration data either in a file or as a directly loaded tag stream, and
can completely replace the existing configuration or specify the manner in which the
NETCONEF server loads the data into the existing candidate or copy. See “Changing
the Candidate Configuration” on page 66.

Copyright © 2018, Juniper Networks, Inc. 65

SRC PE 4.12.x NETCONF API Guide

5. Accepts the tag stream emitted by the NETCONF server in response to each request
and extracts its content, as described in “Parsing the NETCONF Server Response” on
page 34.

6. (Optional) Verifies the syntactic correctness of a configuration before attempting to
commitit,as describedin “Verifying a Configuration Before Committing It” on page 85.

7. Commits changes made to the configuration, as described in
“Committing Configurations” on page 85.

8. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 39. Other users or applications cannot change the
configuration while it remains locked.

9. Ends the NETCONF session and closes the connection to the C Series Controller, as
described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Changing the Candidate Configuration

To change the candidate configuration on a C Series Controller, a client application
encloses the <edit-config> and <target> tag elements and the <candidate/> tag in the
<rpc> tag element:

<|"pC>
<edit-config>
<target>
<candidate/>
</target>

<I- - EITHER - ->
<config>
<I- - tag elements representing the configuration elements to
change - ->
</config>
<I- - OR - —>
<url>
<I- - location specifier for file containing changes - ->
</url>

<default-operation>(merge | none | replace)</default-operation>
</edit-config>
</rpc>

11711~

The other child tag elements in the preceding syntax statement specify additional
parameters, and are described in the indicated sections:

« The <url> or <config> tag element defines the new configuration data to incorporate
into the candidate. See “Defining the New Configuration Data” on page 67.

« The <default-operation> tag element specifies the default manner in which the
NETCONF serverincorporates new configuration data into the candidate configuration.
See “Setting the Default Mode for Incorporating New Configuration Data” on page 70.

66 Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

The NETCONF server confirms that it incorporated the configuration data by returning
the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11-11>

If the NETCONF server cannot incorporate the configuration data, the <rpc-reply> tag
elementinstead encloses an <rpc-error> tag element explaining the reason for the failure.

Regardless of the value provided, the NETCONF server for the SRC software performs a
basic syntax check on the configuration data in the <edit-config> tag element. It performs
a complete syntactic and semantic validation in response to the <commit> tag element
(that is, when the configuration is committed),but not in response to the <edit-config>
tag element. For information about the <commit> tag element, see

“Committing Configurations” on page 85.

The client application can also include the operation attribute in the opening tag for a
configuration element to specify the manner in which to incorporate the element, which
can differ from the manner specified by the <default-operation> tag element. See
“Changing Individual Configuration Elements” on page 73.

Defining the New Configuration Data

A client application can use one of two ways to define the new data to incorporate into
the candidate configuration:

« Providing Configuration Data in a File on page 67

« Providing Configuration Data as a Data Stream on page 68
Providing Configuration Data in a File

To provide the new configuration data in a file, a client application emits the <url> and
<edit-config> tag elements in an<rpc> tag element:

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<url>
<I- - location of file containing configuration data - ->
</url>
<I- - other child tag elements of the <edit-config> tag element - ->
</edit-config>
</rpc>

11711~

Before loading the file, the client application or an administrator saves XML tag elements
as the contents of the file. The file includes the tag elements representing all levels of
the configuration hierarchy from the root (represented by the <configuration> tag element)
down to each element to change. The notation is the same as that used to request

Copyright © 2018, Juniper Networks, Inc. 67

SRC PE 4.12.x NETCONF API Guide

configuration information, as described in “Requesting Information” on page 47. For more
detailed information about the XML representation of configuration statements, see
“Mapping Configuration Statements to SRC XML Tag Elements” on page 15.

The file named by the <url> tag element can be specified as a local file path, an FTP
location, or a Hypertext Transfer Protocol (HTTP) URL:

« Alocal filename can have one of the following forms:

- /path/filename—File on a mounted file system, either on the local flash disk or on
the hard disk.

- a:filename or a:path/filename—File on the local drive. The default pathis / (the
root-level directory). The removable media can be in MS-DOS or UNIX (UFS) format.

« Afilename on an FTP server has the following form:
ftp://username:password@hostname/path/filename

« Afilename on an HTTP server has the following form:

http://username:password@hostname/path/filename

The default value for the path variable is the home directory for the username. To specify
an absolute path, the application starts the path with the characters %2F, as in
ftp://username:password@hostname/%?2Fpath/filename.

The following example shows how to incorporate configuration data stored in the file
/var/configs/user-accounts on the FTP server called cfg-server.mycompany.com.

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<url>ftp://admin:AdminPwd@cfg-server.mycompany.com/var/configs/user-accounts</url>
</edit-config>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Providing Configuration Data as a Data Stream

To provide configuration data as a data stream, a client application emits <rpc>,
<edit-config>, and <config> tag elements. To specify the configuration elements to
change, the application emits the tag elements representing all levels of the configuration
hierarchy from the root (represented by the <configuration> tag element) down to each
element to change. The notation is the same as that used to request configuration

68

Copyright © 2018, Juniper Networks, Inc.

http://username:password@hostname/path/filename

Chapter 5: Changing Configuration Information

information, as described in “Requesting Information” on page 47. For more detailed
information about the mappings between configuration elements and XML tag elements,
see “Mapping Configuration Statements to SRC XML Tag Elements” on page 15.

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<I- - tag elements representing the configuration changes - ->
</configuration>
</config>
<I- - other child tag elements of the <edit-config> tag element - ->
</edit-config>
</rpc>
11>11>

The following example shows how to provide new configuration data for the messages
system log file in a data stream:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<syslog>
<file>
<name>messages</name>
<contents>
<name>any</name>
<warning/>
</contents>
<contents>
<name>authorization</name>
<info/>
</contents>
</file>
</syslog>
</system>
</configuration>
</config>
< /edit-config>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Copyright © 2018, Juniper Networks, Inc. 69

SRC PE 4.12.x NETCONF API Guide

Setting the Default Mode for Incorporating New Configuration Data

By default, the NETCONF server merges new configuration data into the candidate
configuration, according to the following rules:

« A configuration element (hierarchy level or configuration object) that exists in the
candidate but not in the new configuration remains unchanged.

. A configuration element that exists in the new configuration but not in the candidate
is added to the candidate.

« If a configuration element exists in both configurations, the semantics are as follows:

- If achild statement of the configuration element (represented by a child tag element)
exists in the candidate but not in the new configuration, it remains unchanged.

- If a child statement exists in the new configuration but not in the candidate, it is
added to the candidate.

- If a child statement exists in both configurations, the value in the new data replaces
the value in the candidate.

Merge mode applies to all elements in the new configuration that do not have the
operation attribute in their opening container tag to specify a different mode. (For
information about the operation attribute, see “Changing Individual Configuration
Elements” on page 73.)

Merge mode is the default mode for incorporating new configuration data (it is used
when a client application does not specify a different mode). To explicitly specify merge
mode, the application can include the <default-operation> tag element with the value
merge in the <edit-config> tag element:

<rpc>
<edit-config>
<default-operation>merge</default-operation>

<I- - other child tag elements of the <edit-config> tag element - ->
</edit-config>
</rpc>
11-11>

The client application can specify one of two alternative default modes for incorporating
new configuration data:

« Inreplace mode, the new configuration data completely replaces the candidate
configuration. To specify replace mode, the candidate application includes the
<default-operation> tag element with the value replace in the <edit-config> tag element:

<rpc>
<edit-config>
<default-operation>replace</default-operation>
<I- - other child tag elements of the <edit-config> tag element -
->
</edit-config>
</rpc>

70

Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

11711~

We recommend using replace mode only when you completely overwrite the candidate
configuration with new configuration data. When the default mode is replace, we do
not recommend including the operation attribute on individual configuration elements
in the new configuration to specify a different incorporation mode for them.

Itis also possible to replace individual configuration elements while merging or creating
others. See “Replacing Configuration Elements” on page 76.

« Inno-change mode, configuration elements in the existing candidate configuration
remain unchanged unless the new configuration includes a corresponding element
that has the operation attribute in its opening container tag to specify an incorporation
mode. This mode prevents the NETCONF server from creating parent hierarchy levels
for an element that is being deleted. For more information, see “Deleting Configuration
Elements” on page 78. To specify no-change mode, the candidate application includes
the <default-operation> tag element with the value none in the <edit-config> tag
element:

<rpC>
<edit-config>
<default-operation>none</default-operation>
<I- - other child tag elements of the <edit-config> tag element -
—>
</edit-config>
</rpc>

11711~

If the new configuration data includes a configuration element that does not exist in
the candidate, the NETCONF server returns an error. We recommend using no-change
mode only when you remove configuration elements from the candidate configuration.
When creating or modifying elements, applications need to use merge mode.

Replacing the Entire Candidate Configuration

A client application can completely replace the current candidate configuration, either
with new data or by rolling back to a previous configuration.

0 NOTE: To comply with the NETCONF specification, the NETCONF server
accepts the <delete-config> tag element, which deletes the entire candidate
configuration. However, a commit operation fails if the candidate
configuration does not exist or is completely empty, so the application must
use the <edit-config> or <copy-config> tag element to add data to the
candidate configuration before committing it. See “<delete-config>" on
page 90.

Copyright © 2018, Juniper Networks, Inc. 7

SRC PE 4.12.x NETCONF API Guide

Forinformation about completely replacing the candidate configuration, see the following
sections:

» Replacing the Candidate Configuration with Newly Defined Data on page 72

« Replacing the Candidate Configuration with the Running Configuration on page 73

Replacing the Candidate Configuration with Newly Defined Data

To replace the entire candidate configuration with new configuration data, a client
application can use either of two methods, as described in the following sections.

With either method, the NETCONF server confirms that it replaced the candidate
configuration by returning the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11711~

If the NETCONF server cannot replace the candidate configuration data, the <rpc-reply>
tag element instead encloses an<rpc-error> tag element explaining the reason for the
failure.

Replacing the Configuration with the Contents of a File

One method for replacing the entire candidate configuration is to include the
<copy-config> tag element in the <rpc> tag element. The <source> tag element encloses
the <url> tag element to specify the filename that contains the new configuration data.
The <target> tag element encloses the <candidate/> tag to indicate that the new
configuration data replaces the candidate configuration:

<rpC>
<copy-config>
<target>
<candidate/>
</target>
<source>
<url>
<!- - location specifier for file containing the new
configuration - ->
</url>
</source>
</copy-config>
</rpc>

11-11>

Setting Replace Mode as the Default Mode

The other method for replacing the entire candidate configuration is to set replace mode
as the default incorporation mode. The candidate configuration includes the

<default-operation>tag element with the value replace in the <edit-config> tag element,
as described in “Setting the Default Mode for Incorporating New Configuration Data” on
page 70. To specify the new configuration data, the application includes either a <config>

72

Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

tag element that contains the data or a <url> tag element that names the file containing
the data, as discussed in “Defining the New Configuration Data” on page 67.

<rpC>
<edit-config>
<default-operation>replace</default-operation>
<source>

<I- - EITHER - ->

<config>
<I- - tag elements representing the new configuration - ->
</config>
<I- - 0OR - —>
<url>
<!- - location specifier for file containing the new
configuration - ->
</url>
</source>
</edit-config>
</rpc>
11-11>

Replacing the Candidate Configuration with the Running Configuration

To discard changes made to the candidate configuration and make its contents match
the contents of the current running (active) configuration, a client application includes
the <discard-changes/> tag in an<rpc> tag element:

<rpC>
<discard-changes/>
</rpc>

11~11>
This operation is equivalent to the CLI configuration mode rollback command.

The NETCONF server indicates that it discarded the changes by enclosing the <ok/> tag
in the <rpc-reply> tag element:

<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11711~

Changing Individual Configuration Elements

Although the NETCONF server by default merges new configuration data into the existing
candidate configuration, a client application can also replace, create, or delete individual
configuration elements (hierarchy levels or configuration objects). The same basic tag
elements are emitted for all operations—the <edit-config>, <target>, and either <config>
or <url> tag elements, plus the <candidate/> tag, in an <rpc> tag element:

<rpC>
<edit-config>

Copyright © 2018, Juniper Networks, Inc. 73

SRC PE 4.12.x NETCONF API Guide

<target>
<candidate/>
</target>
<!- - EITHER - ->
<config>
<configuration>
<!- - tag elements representing the configuration elements to
change - ->
</configuration>
</config>
<I- - OR - ->
<url>
<I- - location specifier for file containing changes - ->
</url>

</edit-config>
</rpc>

11711~

Within the <config> tag element or in the file named by the <url> tag element, the
application defines a configuration element by including the tag elements representing
all levels of the configuration hierarchy from the root (represented by the <configuration>
tag element) down to the immediate parent level for the element. To represent the
element, the application includes its container tag element. The child tag elements
included within the container tag element depend on the operation, and are described
in the following sections.

For more information about the tag elements that represent configuration statements,
see “Mapping Configuration Statements to SRC XML Tag Elements” on page 15. For
information about the tag elements for a specific configuration element, see the SRC
XML API Configuration Reference.

The NETCONF server indicates that it changed the configuration in the requested way
by enclosing the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11-11>

For more information, see the following sections:

« Merging Configuration Elements on page 74
« Replacing Configuration Elements on page 76
« Creating New Configuration Elements on page 77

« Deleting Configuration Elements on page 78

Merging Configuration Elements

To merge configuration elements (hierarchy levels or configuration objects) into the
candidate configuration, a client application emits the basic tag elements described in
“Changing Individual Configuration Elements” on page 73.

74 Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

To represent each element to merge (either within the <config> tag element or in the file
named by the <url> tag element), the application includes the tag elements representing
its parent hierarchy levels and its container tag element, as described in “Changing
Individual Configuration Elements” on page 73. Within the container tag, the application
includes each of the element’s identifier tag elements (if it has them) and the tag element
for each child to add or for which to set a different value. In the following, the identifier
tag element is called <name>:

<configuration>
<!- - opening tags for each parent of the element - ->
<element>
<name>identifier</name>
<!- - - child tag elements to add or change - ->
</element>
<I- - closing tags for each parent of the element - ->
</configuration>

The NETCONF server merges the new configuration element according to the rules
specified in “Setting the Default Mode for Incorporating New Configuration Data” on
page 70. As described in that section, the application can explicitly specify merge mode
by including the <default-operation>tag element with the value merge in the <edit-config>
tag element.

The following example shows how to merge information for a new interface called ethl
into the [edit interfaces] hierarchy level in the candidate configuration:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<interfaces>
<interface>
<name>ethl</name>
<unit>
<name>0</name>
<family>
<inet>
<address>10.0.0.1/8</address>
</inet>
</family>
</unit>
</interface>
</interfaces>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

Copyright © 2018, Juniper Networks, Inc. 75

SRC PE 4.12.x NETCONF API Guide

Client Application NETCONF Server

<rpc-reply xmlns="URN” xmlns:sdx=" URL” >
<ok/>

</rpc-reply>

11>11>

Replacing Configuration Elements

To replace configuration elements (hierarchy levels or configuration objects) in the
candidate configuration, a client application emits the basic tag elements described in
“Changing Individual Configuration Elements” on page 73.

To represent the new definition for each configuration element being replaced (either
within the <config> tag element or in the file named by the <url> tag element), the
application emits the tag elements representing its parent hierarchy levels and its
container tag element, as described in “Changing Individual Configuration Elements” on
page 73. Within the container tag, the application includes each of the element’s identifier
tag elements (if it has them) and all child tag elements (with values if appropriate) that
are being defined for the new version of the element. In the following, the identifier tag
element is called <name>. The application includes the operation="replace" attribute in
the opening container tag:

<configuration>
<I- - opening tags for each parent of the element - ->
<container-tag operation="replace'>
<name>identifier</name>

<I- - other child tag elements - ->
</container-tag>
<I- - closing tags for each parent of the element - ->
</configuration>

The NETCONF server removes the existing element that has the specified identifiers and
inserts the new element.

The application can also replace all objects in the configuration in one operation. For
instructions, see “Replacing the Entire Candidate Configuration” on page 71.

76

Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

The following example shows how to grant new permissions for the object named operator
at the [edit system login class] hierarchy level.

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<class operation="replace” >
<name>operator</name>
<permissions>configure</permissions>
<permissions>admin-control</permissions>
</class>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL”
>
<ok/>
</rpc-reply>
11>11>

Creating New Configuration Elements

To create configuration elements (hierarchy levels or configuration objects) in the
candidate configuration only if the elements do not already exist, a client application
emits the basic tag elements described in “Changing Individual Configuration Elements”
on page 73.

To represent each configuration element being created (either within the <config>tag
element or in the file named by the <url>tag element), the application emits the tag
elements representing its parent hierarchy levels and its container tag element, as
describedin “Changing Individual Configuration Elements” on page 73. Within the container
tag, the applicationincludes each of the element’s identifier tag elements (if it has them)
and all child tag elements (with values if appropriate) that are being defined for the
element. In the following, the identifier tag element is called <name>. The application
includes the operation="create" attribute in the opening container tag:

<configuration>
<!- - opening tags for each parent of the element - ->
<element operation="create">
<name>identifier</name> <I- - if the element has an identifier -

Copyright © 2018, Juniper Networks, Inc. 77

SRC PE 4.12.x NETCONF API Guide

<I- - other child tag elements - ->
</element>
<I- - closing tags for each parent of the element - ->
</configuration>

The NETCONF server adds the new element to the candidate configuration only if there
is no existing element of that name (for a hierarchy level) or with the same identifiers
(for a configuration object).

The following example shows how to add a user to a C Series Controllerif it is not already
configured:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<user operation=" create” >
<pame>camryn</name>
<class>super-user</class>
</user>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Deleting Configuration Elements

To delete a configuration element (hierarchy level or configuration object) from the
candidate configuration, a client application emits the basic tag elements described in
“Changing Individual Configuration Elements” on page 73. It also emits the
<default-operation> tag element with the value none to change the default mode

to no-change.

<|'pC>
<edit-config>
<target>
<candidate/>
</target>

<default-operation>none</default-operation>

78 Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

<!- - EITHER - ->
<config>
<configuration>
<!- - tag elements representing the configuration elements to
delete - ->
</configuration>
</config>
<I- - OR - ->
<url>
<!- - location specifier for file containing elements to delete
- =>
</url>

</edit-config>
</rpc>

11711~

In no-change mode, existing configuration elements remain unchanged unless the
corresponding element in the new configuration has the operation="delete" attribute in
its opening tag. This mode prevents the NETCONF server from creating parent hierarchy
levels for an element that is being deleted. We recommend that the only operation
performed in no-change mode be deletion. When merging, replacing, or creating
configuration elements, client applications use merge mode.

To represent each configuration element being deleted (either within the <config> tag
element or in the file named by the <url> tag element), the application emits the tag
elements representing its parent hierarchy levels, as described in “Changing Individual
Configuration Elements” on page 73. The tag element in which the operation="delete"
attribute isincluded depends on the element type, as described in the following sections:
« Deleting a Hierarchy Level or Container Object on page 79

+ Deleting a Configuration Object That Has an Identifier on page 80

« Deleting a Single-Value or Fixed-Form Option from a Configuration Object on page 81

» Deleting Values from a Multivalue Option of a Configuration Object on page 82

Deleting a Hierarchy Level or Container Object

To delete a hierarchy level and all of its children (or a container object that has children
but no identifier), a client application includes the operation="delete" attribute in the
empty tag that represents the level:

<configuration>
<I- - opening tags for each parent level - ->
<level-to-delete operation="delete"/>
<I- - closing tags for each parent level - ->
</configuration>

We recommend that the application set the default mode to no-change by including the
<default-operation> tag element with the value none, as described in “Deleting
Configuration Elements” on page 78. For more information about hierarchy levels and
container objects, see “Mapping for Hierarchy Levels and Container Statements” on
page 15.

Copyright © 2018, Juniper Networks, Inc. 79

SRC PE 4.12.x NETCONF API Guide

The following example shows how to remove the [edit system services netconf] hierarchy
level of the candidate configuration:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<services>
<netconf operation=" delete” />
</services>
</system>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Deleting a Configuration Object That Has an Identifier

To delete a configuration object that has an identifier, a client application includes the
operation="delete" attribute in the container tag element for the object. Inside the
container tag element, it includes the identifier tag element only, not any tag elements
that represent other characteristics. In the following, the identifier tag element is called
<name>:

<configuration>
<I- - opening tags for each parent of the object - ->
<object operation="delete">
<name>identifier</name>
</object>
<I- - closing tags for each parent of the object - ->
</configuration>

0 NOTE: The delete attribute appears in the opening container tag, not in the
identifier tag element. The presence of the identifier tag element results in
the removal of the specified object, not in the removal of the entire hierarchy
level represented by the container tag element.

We recommend that the application set the default mode to no-change by including the
<default-operation> tag element with the value none, as described in “Deleting

80

Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Configuration Elements” on page 78. For more information about identifiers, see “Mapping
for Objects That Have an Identifier” on page 15.

The following example shows how to remove the user object barbara from the
[edit system login user] hierarchy level in the candidate configuration:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<login>
<user operation="delete” >
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Deleting a Single-Value or Fixed-Form Option from a Configuration Object

To delete from a configuration object either a fixed-form option or an option that takes
just one value, a client application includes the operation="delete" attribute in the tag
element for the option. In the following, the identifier tag element for the object is called
<name>. (For information about deleting an option that can take multiple values, see
“Deleting Values from a Multivalue Option of a Configuration Object” on page 82.)

<configuration>
<I- - opening tags for each parent of the object - ->
<object>

<name>identifier</name>
<optionl operation="delete'>
<option2 operation="delete">

<I- - tag elements for other options to delete - ->
</object>
<I- - closing tags for each parent of the object - ->
</configuration>

We recommend that the application set the default mode to no-change by including the
<default-operation> tag element with the value none, as described in “Deleting

Copyright © 2018, Juniper Networks, Inc. 81

SRC PE 4.12.x NETCONF API Guide

Configuration Elements” on page 78. For more information about options, see “Mapping
for Single-Value and Fixed-Form Leaf Statements” on page 17.

The following example shows how to remove the fixed-form stand-alone option at the
[edit system ldap server] hierarchy level:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<ldap>
<server>
<stand-alone operation=" delete” />
</server>
</ldap>
</system>
</configuration>
</config>
</edit-config>
</rpc>

11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Deleting Values from a Multivalue Option of a Configuration Object

As described in “Mapping for Leaf Statements with Multiple Values” on page 18, some
configuration objects are leaf statements that have multiple values. In the formatted
ASCII CLI representation, the values are enclosed in square brackets following the name
of the object:

object [valuel value2 value3 ...];

The XML representation does not use a parent tag for the object, but instead uses a
separate instance of the object tag element for each value. In the following, the identifier
tag element is called <name>:

<parent-object>
<name>identifier</name>
<object>valuel</object>
<object>value2</object>
<object>value3</object>

82 Copyright © 2018, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

</parent-object>

To remove one or more values for such an object, a client application includes the
operation="delete" attribute in the opening tag for each value. It does not include tag
elements that represent values to be retained. The identifier tag element in the following
is called <name>:

<configuration>
<I- - opening tags for each parent of the parent object - ->
<parent-object>
<name>identifier</name>
<object operation="delete">valuel</object>
<object operation="delete">value2</object>
</parent-object>
<I- - closing tags for each parent of the parent object - ->
</configuration>

We recommend that the application set the default mode to no-change by including the
<default-operation> tag element with the value none, as described in “Deleting
Configuration Elements” on page 78. For more information about leaf statements with
multiple values, see “Mapping for Leaf Statements with Multiple Values” on page 18.

The following example shows how to remove two of the permissions granted to the
user-accounts login class:

Client Application NETCONF Server

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<login>
<class>
<pame>user-accounts</name>
<permissions operation=" delete” >configure</permissions>
<permissions operation="delete” >control</permissions>
</class>
</login>
</system>
</configuration>
</config>
< /edit-config>
</rpc>
11>11>

<rpc-reply xmlns="URN” xmlns:sdx="URL” >
<ok/>

</rpc-reply>

11>11>

Copyright © 2018, Juniper Networks, Inc. 83

SRC PE 4.12.x NETCONF API Guide

84 Copyright © 2018, Juniper Networks, Inc.

CHAPTER 6

Committing Configurations

This chapter explains how to commit a candidate configuration so that it becomes the
active configuration on the C Series Controller. For more detailed information about
commit operations, including a discussion of the interaction among different variants of
the operation, see the SRC PE CLI User Guide.

This chapter includes the following topics:

« Verifying a Configuration Before Committing It on page 85

« Committing a Configuration on page 85

Verifying a Configuration Before Committing It

During the process of committing the candidate configuration or a private copy, the
NETCONF server confirms that it is syntactically correct. If the syntax check fails, the
server does not commit the candidate.

The NETCONF server confirms that the candidate is valid by returning the <ok/> tagin
the <rpc-reply> tag element:

<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11711~

If the candidate is not valid, the <rpc-reply> tag element instead encloses an <rpc-error>
tag element explaining the reason for the failure.

Committing a Configuration

To commit the candidate configuration, a client application includes the <commit/> tag
inan <rpc> tag element:

<rpc>
<commit/>
</rpc>

11-11>

The NETCONF server confirms that it committed the candidate configuration by returning
the <ok/> tag in the <rpc-reply> tag element:

Copyright © 2018, Juniper Networks, Inc. 85

SRC PE 4.12.x NETCONF API Guide

<rpc-reply xmIns="URN "xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11-11>

If the NETCONF server cannot commit the candidate, the <rpc-reply> tag element instead
encloses an <rpc-error> tag element explaining the reason for the failure. The most
common causes are semantic or syntactic errors in the candidate configuration.

To avoid inadvertently committing changes made by other users or applications, a client
application locks the candidate configuration before changing it and emits the <commit/>
tag while the configuration is still locked. (For instructions on locking and changing the
candidate configuration, see “L.ocking the Candidate Configuration” on page 38 and
“Changing Configuration Information” on page 65.) After committing the configuration,
the application unlocks the candidate as described in “Unlocking the Candidate
Configuration” on page 39.

86 Copyright © 2018, Juniper Networks, Inc.

CHAPTER?7

Summary of NETCONF Tag Elements

This chapter lists the tag elements that client applications and the NETCONF server use
to control the NETCONF session and to exchange configuration information. It also
describes the 11>11> character sequence, which signals the end of each request and
response. The entries are in alphabetical order. For information about the notational
conventions used in this chapter, see Table 2 on page xii.

11>11>

Usage <hello>
<I- - child tag elements included by client application or NETCONF server
= =B
</hello>
11-11>
<rpc [attributes]>
<I- - tag elements in a request from a client application - ->
</rpc>
11711~
<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<!- - tag elements in the response from the NETCONF server - ->
</rpc-reply>
11-11>

Description Signal the end of each XML document sent by the NETCONF server and client applications.
Clients send the sequence after each XML document (after the closing </hello> tag and
each closing </rpc> tag). The NETCONF server sends the sequence after its closing
</hello> tag and each closing </rpc-reply> tag.

Use of this signal is required by RFC 4742, Using the NETCONF Configuration Protocol over
Secure Shell (SSH), available at http://www.ietf.org/rfc/rfc4742.txt.

Usage Guidelines See “Generating Well-Formed XML Documents” on page 22.

Related . <hello>onpage 94

Documentation
« <rpc>on page 97

Copyright © 2018, Juniper Networks, Inc. 87

http://www.ietf.org/rfc/rfc4742.txt

SRC PE 4.12.x NETCONF API Guide

<close-session/>

« <rpc-reply> on page 98

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<close-session/>
</rpc>

11-11>

Request that the NETCONF server end the current session.

See “Ending a NETCONF Session and Closing the Connection” on page 41.

« 11>11> on page 87

. <rpc>onpage 97

<commit>
Usage <rpc>
<commit/>
</rpc>
11~11>
Description Request that the NETCONF server commit the configuration immediately, making it the

Usage Guidelines

Related
Documentation

<copy-config>

active configuration.

See “Committing a Configuration” on page 85.

« 11>]11> on page 87

. <rpc>onpage 97

Usage

<rpc>
<copy-config>
<target>
<candidate/>
</target>
<source>
<url>
<I- - location specifier for file containing the new
configuration - ->
</url>

88

Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

Description

Contents

Usage Guidelines

Related
Documentation

</source>
<copy-config>
</rpc>

11711~

Replace the existing candidate configuration with configuration data contained in a file.

<source>—Encloses the <url> tag element, which specifies the source of the configuration
data.

<url>—Names the file that contains the new configuration data to substitute for the
existing candidate configuration. For information about specifying the file location, see
“Providing Configuration Data in a File” on page 67.

The <target> tag element and its contents are explained separately.

See “Replacing the Configuration with the Contents of a File” on page 72.

«]1>1]> on page 87
. <rpc>onpage 97

. <target> on page 99

<data>
Usage <rpc-reply xmIns="URN" xmlns:sdx=""URL">
<data>
<configuration>
<I- - XML tag elements for the configuration data - ->
</configuration>
</data>
</rpc-reply>
11-11>
Description Enclose configuration data returned by the NETCONF server in response to a <get-config>
tag element.
Contents <configuration>—Encloses configuration tag elements. It is the top-level tag element in

Usage Guidelines

Related
Documentation

the XML API, equivalent to the [edit] hierarchy level in the CLI. For information about
configuration elements, see the SRC XML API Configuration Reference.

See “Requesting Configuration Information” on page 49.

« 11>11> on page 87

Copyright © 2018, Juniper Networks, Inc. 89

SRC PE 4.12.x NETCONF API Guide

<delete-config>

. <get-config> on page 93

« <rpc-reply> on page 98

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<rpc>
<delete-config>
<target>
<candidate/>
</target>
<delete-config>
</rpc>

11711~

Delete the existing candidate configuration.

The <target> tag element and its contents are explained separately.

See “Replacing the Entire Candidate Configuration” on page 71.

« 11>11> on page 87

<rpc> on page 97

<target> on page 99

<discard-changes/>

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<discard-changes/>
</rpc>

11711~

Discard changes made to the candidate configuration, and make its contents match the
contents of the current running (active) configuration. This operation is equivalent to the
CLI configuration mode rollback command.

See “Replacing the Candidate Configuration with the Running Configuration” on page 73.

« 11>1]> on page 87

« <rpc>on page 97

90

Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

<edit-config>

Usage

Description

Contents

<rpC>
<edit-config>
<target>
<candidate/>
</target>

<I- - EITHER - ->
<config>
<configuration>
<I- - tag elements representing the data to incorporate - ->

</configuration>
</config>

<I- - OR - ->
<url>
<!- - location specifier for file containing data - ->
</url>

<default-operation>(merge | none | replace)</default-operation>
<edit-config>
</rpc>

11711~

Request that the NETCONF server incorporate configuration data into the candidate
configuration. Provide the data in one of two ways:

. Include the <url> tag element to specify the location of a file that contains the XML
configuration tag elements to incorporate.

. Include the <config> tag element to provide a data stream of XML configuration tag
elements to incorporate. The tag elements are enclosed in the <configuration> tag
element.

<config>—Encloses the <configuration> tag element.

<configuration>—Encloses the tag elements to incorporate into the candidate
configuration, provided as a data stream. For information about the syntax for representing
the elements to create, delete, or modify, see “Mapping Configuration Statements to
SRC XML Tag Elements” on page 15 and “Changing Individual Configuration Elements”
on page 73.

<default-operation>—(Optional) Specifies how to incorporate the new configuration
datainto the candidate configuration, particularly when there are conflicting statements.
The following are acceptable values:

Copyright © 2018, Juniper Networks, Inc. 91

SRC PE 4.12.x NETCONF API Guide

. merge—Combines the new configuration data with the candidate configuration
according to the rules defined in “Setting the Default Mode for Incorporating New
Configuration Data” on page 70. This is the default mode if the<default-operation> tag
element is omitted. It applies to all elements in the new data that do not have the
operation attribute in their opening container tag to specify a different mode. (For
information about the operation attribute, see “Changing Individual Configuration
Elements” on page 73.)

. none—Retains each configuration element in the existing candidate configuration
unless the new data includes a corresponding element that has the operation attribute
in its opening container tag to specify an incorporation mode. This mode prevents the
NETCONF server from creating parent hierarchy levels for an element that is being
deleted. For more information, see “Deleting Configuration Elements” on page 78.

. replace—Discards the existing candidate configuration and replaces it with the new
data. For more information, see “Setting Replace Mode as the Default Mode” on page 72.

<url>—Specifies the full pathname of the file that contains the configuration data to
load. The file must reside on the local disk. For more information, see “Providing
Configuration Data in a File” on page 67.

The <target> tag element and its contents are explained separately.

Usage Guidelines See “Changing Configuration Information” on page 65.

Related .]]>]]>onpage 87
Documentation
« <rpc>onpage 97

. <target> on page 99

<error-info>

Usage <rpc-reply xmlns="URN" xmlns:sdx=""URL">
<rpc-error>
<error-info>
<bad-element>command-or-statement</bad-element>
</error-info>
</rpc-error>
</rpc-reply>
11-11>

Description Provide additional information about the event or condition that causes the NETCONF
server to report an error or warning in the <rpc-error> tag element.

Contents <bad-element>—Identifies the command or configuration statement that was being
processed when the error or warning occurred. For a configuration statement, the

92 Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

Usage Guidelines

Related
Documentation

<get-config>

<error-path> tag element enclosed in the <rpc-error> tag element specifies the
statement’s parent hierarchy level.

See “Handling an Error or Warning” on page 37.

« 11>]]> on page 87
« <rpc-error>on page 97

« <rpc-reply> on page 98

Usage

Description

Contents

<|’pC>
<get-config>
<source>
<candidate/>
</source>

</get-config>

<get-config>
<source>
<candidate/>
</source>
<filter type="subtree'>
<configuration>
<I- - tag elements for each configuration element to return

</configuration>
</filter>
</get-config>
</rpc>

11711~

Request configuration data from the NETCONF server. The child tag elements <source>
and <filter> specify the source and scope of data to display:

. Todisplay the entire candidate configuration, enclose the <source> tag element and
<candidate/> tag in the <get-config> tag element.

. To display one or more sections of the configuration hierarchy (hierarchy levels or
configuration objects), enclose the appropriate child tag elements in the <source> and
<filter> tag elements.

<candidate/>—Represents the candidate configuration.

<configuration>—Encloses tag elements that specify which configuration elements to
return.

Copyright © 2018, Juniper Networks, Inc. 93

SRC PE 4.12.x NETCONF API Guide

Usage Guidelines

Related

Documentation

<hello>

<filter>—Encloses the <configuration> tag element. The mandatory type attribute
indicates the kind of syntax used to represent the requested configuration elements; the
only acceptable value is subtree.

To specify the configuration elements to return, include within the <filter> tag element
the XML tag elements that represent all levels of the configuration hierarchy from the
root (represented by the <configuration> tag element) down to each element to display.
For information about the syntax for representing each kind of element, see “Specifying
the Scope of Configuration Information to Return” on page 51. For information about the
configuration elements available in the current version of the SRC software, see the SRC
XML API Configuration Reference.

<source>—Encloses the tag that specifies the source of the configuration data. To specify

the candidate configuration, include the <candidate/>tag.

See “Requesting Configuration Information” on page 49.

« 11>11> on page 87
. <data> on page 89

« <rpc>on page 97

Usage

Description

Contents

<I- - emitted by a client application - ->
<hello>
<capabilities>
<capability>URI</capability>
</capabilities>
</hello>
11-11>

<I- - emitted by the NETCONF server - ->
<hello>
<capabilities>
<capability>URI</capability>
</capabilities>
<session-id>session-identifier</session-id>
</hello>
11-11>

Specify which operations, or capabilities, the emitter supports from among those defined
in the NETCONF specification. The client application must emit the <hello> tag element
before any other tag element during the NETCONF session, and must not emit it more
than once.

<capabilities>—Encloses one or more <capability> tags, which together specify the set
of supported NETCONF operations.

94

Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

Usage Guidelines

Related
Documentation

<Kkill-session>

<capability>—Specifies the uniform resource identifier (URI) of a capability defined in
the NETCONF specification or by a vendor. Each capability from the NETCONF
specification is represented by a uniform resource name (URN). Capabilities defined by
vendors are represented by URNs or URLSs. For a list of the capabilities supported by the
NETCONF server for the SRC software, see “Exchanging <hello> Tag Elements” on
page 28.

<session-id>—(Generated by NETCONF server only) Specifies the process ID (PID) of
the NETCONF server for the session.

See “Exchanging <hello> Tag Elements” on page 28.

« 11>]11> on page 87

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<lock>

<rpc>
<kill-session>
<session-id>PID</session-id>
</kill-session>
</rpc>

11711~

Request that the NETCONF server terminate another NETCONF session. The usual reason
to emit this tag is that the user or application for the other session holds a lock on the
candidate configuration, preventing the client application from locking the configuration
itself.

The client application must have maintenance permission.
<session-id>—The PID of the entity conducting the session to terminate. The PID is

reported in the <rpc-error> tag element that the NETCONF server generates when it
cannot lock a configuration as requested.

See “Terminating Another NETCONF Session” on page 40.

+ 11>1]1>onpage 87
« <lock> on page 95

« <rpc>onpage 97

Usage

<rpc>

Copyright © 2018, Juniper Networks, Inc. 95

SRC PE 4.12.x NETCONF API Guide

Description

Contents

Usage Guidelines

Related
Documentation

<ok/>

<lock>
<target>
<candidate/>
</target>
</lock>
</rpc>

11711~

Request that the NETCONF server lock the candidate configuration, enabling the client
application both to read and change it, but preventing any other users or applications
from changing it. The application must emit the <unlock/> tag to unlock the configuration.

If the NETCONF session ends or the application emits the <unlock> tag element before
the candidate configuration is committed, all changes made to the candidate
are discarded.

The <target> tag element and its contents are explained separately.

See “Locking the Candidate Configuration” on page 38.

« 11>11> on page 87
« <rpc>on page 97
. <target> on page 99

« <unlock> on page 99

Usage

Description

Usage Guidelines

Related
Documentation

<rpc-reply xmIns="URN" xmlns:sdx=""URL">
<ok/>

</rpc-reply>

11-11>

Indicate that the NETCONF server successfully performed a requested operation that
changes the state or contents of the configuration.

See “Configuration Change Responses” on page 36.

« 11>]11> on page 87

« <rpc-reply> on page 98

96

Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

<rpc>

Usage

Description

Attributes

Usage Guidelines

Related
Documentation

<rpc-error>

<rpc [attributes]>
<I- - tag elements in a request from a client application - ->
</rpc>

11711~

Enclose all tag elements in a request generated by a client application.

(Optional) One or more attributes of the form attribute-name="value". This feature can
be used to associate requests and responses if the value assigned to an attribute by the
client application is unique in each opening <rpc> tag. The NETCONF server echoes the
attribute unchanged in its opening <rpc-reply> tag, making it simple to map the response
to the initiating request. The NETCONF specification assigns the name message-id to
this attribute.

See “Sending a Request to the NETCONF Server” on page 31.

« 11>11> on page 87

. <rpc-reply>on page 98

Usage

Description

Contents

<rpc-reply xmIns="URN" xmlns:sdx="URL">
<rpc-error>
<error-severity>error-severity</error-severity>
<error-path>error-path</error-path>
<error-message>error-message</error-message>
<error-info>...</error-info>
</rpc-error>
</rpc-reply>
11-11>

Indicate that the NETCONF server has experienced an error while processing the client
application’s request. If the server has already emitted the response tag element for the
current request, the information enclosed in that response tag element might be
incomplete. The client application must include code that discards or retains the
information, as appropriate. The child tag elements described in the Contents section
detail the nature of the error. The NETCONF server does not necessarily emit all child tag
elements; it omits tag elements that are not relevant to the current request.

<error-message>—Describes the error or warning in a natural-language text string.

<error-path>—Specifies the path to the configuration hierarchy level at which the error
or warning occurred, in the form of the CLI configuration mode banner.

Copyright © 2018, Juniper Networks, Inc.

97

SRC PE 4.12.x NETCONF API Guide

Usage Guidelines

Related
Documentation

<rpc-reply>

<error-severity>—Indicates the severity of the event that caused the NETCONF server
to return the <rpc-error> tag element. The two possible values are error and warning.

The <error-info> tag element is described separately.

See “Handling an Error or Warning” on page 37.

« 11>11> onpage 87
« <error-info> on page 92

« <rpc-reply> on page 98

Usage

Description

Attributes

Usage Guidelines

Related
Documentation

<rpc-reply xmlIns="URN" xmlns:sdx=""URL">

<I- - tag elements in a reply from the NETCONF server - ->
</rpc-reply>
11711~

Enclose all tag elements in a reply from the NETCONF server. The immediate child tag
element is usually one of the following:

. The XML tag element that encloses the data requested by a client application with an
XML operational request tag element; for example, the <interface-information> tag
element in response to the <get-interface-information> tag element

. The <data> tag element, to enclose the data requested by a client application with
the <get-config> tag element

« The <ok/> tag, to confirm that the NETCONF server successfully performed an operation
that changes the state or contents of a configuration (such as a lock, change, or commit
operation)

. The <output> tag element, if the XML API does not define a specific tag element for
requested operational information

. The <rpc-error> tag element, if the requested operation generated an error or warning

xmlns—Names the default XML namespace for the enclosed tag elements.

See “Parsing the NETCONF Server Response” on page 34.

« 11>11> on page 87
. <data> on page 89

. <ok/>on page 96

98

Copyright © 2018, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

. <rpc>onpage 97

. <rpc-error>on page 97

<target>
Usage <rpc>
<(copy-config | delete-config | edit-config | lock | unlock)>
<target>
<candidate/>
</target>
</(copy-config | delete-config | edit-config | lock | unlock)>
</rpc>
11>11>
Description Specify the configuration on which to perform an operation.
Contents <candidate/>—Specifies the candidate configuration as the configuration on which to

Usage Guidelines

Related
Documentation

<unlock>

perform the operation. This is the only acceptable value for the SRC software.

See “Locking the Candidate Configuration” on page 38, “Unlocking the Candidate
Configuration” on page 39, “Changing the Candidate Configuration” on page 66, and
“Replacing the Configuration with the Contents of a File” on page 72.

« 11>11> on page 87

. <copy-config>on page 88

« <delete-config> on page 90
. <edit-config> on page 91

. <lock>on page 95

« <rpc>on page 97

« <unlock> on page 99

Usage

<rpc>
<unlock>
<target>
<candidate/>
</target>
</unlock>
</rpc>

11-11>

Copyright © 2018, Juniper Networks, Inc. 99

SRC PE 4.12.x NETCONF API Guide

Description Request that the NETCONF server unlock and close the candidate configuration, which
the client application previously locked by emitting the <lock> tag. Until the application
emits this tag element, other users or applications can read the configuration but cannot
change it.

Contents The <target> tag element and its contents are explained separately.

Usage Guidelines See “Unlocking the Candidate Configuration” on page 39.

Related .]]>]]>onpage87
Documentation . <lock> on page 95
« <rpc>on page 97

. <target> on page 99

100 Copyright © 2018, Juniper Networks, Inc.

CHAPTER 8

Summary of Attributes in SRC XML Tags

This chapter describes the attributes that the NETCONF server and client applications
include in opening SRC XML tags. For information about the notational conventions used
in this chapter, see Table 2 on page xii.

operation
Usage <rpc>
<edit-config>
<config>
<configuration>
<!- - opening tags for each parent of the changing element -
->
<changing-element operation="(create | delete | replace
) ">
<name>identifier</name> <I- - if changing element has
an identifier - ->
<I- - other child tag elements, if appropriate for
the operation - ->
</changing-element>
<!- - closing tags for each parent of the changing element -
==
</configuration>
</config>
<I- - other child tag elements of the <edit-config> tag element - ->
<edit-config>
</rpc>
11-11>

Description Specify how the NETCONF server incorporates an individual configuration element into
the candidate configuration. If the attribute is omitted, the element is merged into the
configuration according to the rules defined in “Setting the Default Mode for Incorporating
New Configuration Data” on page 70. The following are acceptable values:

. create—Creates the specified element in the configuration only if the element does
not already exist. See “Creating New Configuration Elements” on page 77.

. delete—Deletes the specified element from the candidate configuration. We
recommend that the <default-operation> tag element with the value none also be
included in the <edit-config> tag element. See “Deleting Configuration Elements” on
page 78.

Copyright © 2018, Juniper Networks, Inc. 101

SRC PE 4.12.x NETCONF API Guide

. replace—Replaces the specified element in the candidate configuration with the
provided new configuration data. See “Replacing Configuration Elements” on page 76.

Usage Guidelines See “Changing Individual Configuration Elements” on page 73.

Related . <edit-config> on page 91
Documentation
« <rpc>on page 97

. xmlns on page 103

sdx:changed-localtime

Usage <rpc-reply xmlns:sdx="URL">
<configuration xmIns="URL" sdx:changed-seconds=" seconds" \
sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ'>
<I- - XML tag elements for the requested configuration data - ->
</configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the
configuration was last changed as the date and time in the C Series Controller’s local
time zone.

Usage Guidelines See “Requesting Information from the Candidate Configuration” on page 51.

Related . <rpc-reply>onpage 98
Documentation « sdx:changed-seconds on page 102

« xmlns on page 103

sdx:changed-seconds

Usage <rpc-reply xmlns:sdx="URL">
<configuration xmIns="URL" sdx:changed-seconds="seconds™ \
sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ'>
<I- - XML tag elements for the requested configuration data - ->
</configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the
configuration was last changed as the number of seconds since midnight on 1January
1970.

Usage Guidelines See “Requesting Information from the Candidate Configuration” on page 51.

102 Copyright © 2018, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in SRC XML Tags

Related . <rpc-reply>onpage 98

Documentation)
« operation on page 101

. xmlns on page 103

xmlns
Usage <rpc-reply xmlns:sdx="URL">
<operational-response xmlns="URL-for-DTD"">
<I- -XML tag elements for the requested operational data - ->

</operational-response>
</rpc-reply>

<rpc-reply xmlns:sdx="URL">
<configuration xmIns="URL" sdx:changed-seconds="seconds™ \
sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ" >
<I- - XML tag elements for the requested configuration data - ->
</configuration>
</rpc-reply>

Description For operational responses, define the XML namespace for the enclosed tag elements
that do not have a prefix (such as sdx:) in their names. The namespace indicates which
XML document type definition (DTD) defines the set of tag elements in the response.

For configuration data responses, define the XML namespace for the enclosed
tag elements.

Usage Guidelines See “Requesting Operational Information” on page 48 and “Requesting Information from
the Candidate Configuration” on page 51.

Related . <rpc-reply>onpage 98

Documentation)
« operation on page 101

. sdx:changed-seconds on page 102

Copyright © 2018, Juniper Networks, Inc. 103

SRC PE 4.12.x NETCONF API Guide

104 Copyright © 2018, Juniper Networks, Inc.

	Abbreviated Table of Contents
	Table of Contents
	List of Tables
	About the Documentation
	SRC Documentation and Release Notes
	Audience
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Opening a Case with JTAC

	Part 1: Using the SRC XML and NETCONF APIs
	Chapter 1: Introduction to the SRC XML and NETCONF APIs
	About XML
	XML and NETCONF Tag Elements
	Document Type Definition

	Advantages of Using the NETCONF and SRC XML APIs
	NETCONF Session Overview

	Chapter 2: Using NETCONF and SRC XML Tag Elements
	Complying with XML and NETCONF Conventions
	Request and Response Tag Elements
	Child Tag Elements of a Request Tag Element
	Child Tag Elements of a Response Tag Element
	Spaces, Newline Characters, and Other White Space
	XML Comments
	Predefined Entity References

	Mapping Commands to SRC XML Tag Elements
	Mapping for Command Options with Variable Values
	Mapping for Fixed-Form Command Options

	Mapping Configuration Statements to SRC XML Tag Elements
	Mapping for Hierarchy Levels and Container Statements
	Mapping for Objects That Have an Identifier
	Mapping for Single-Value and Fixed-Form Leaf Statements
	Mapping for Leaf Statements with Multiple Values

	Using the Same Configuration Tag Elements in Requests and Responses

	Chapter 3: Controlling the NETCONF Session
	Client Application’s Role in a NETCONF Session
	Establishing a NETCONF Session
	Generating Well-Formed XML Documents
	Prerequisites for Establishing a Connection
	Client Application Can Access SSH Software
	Client Application Can Log In on C Series Controllers
	Login Account Has Public/Private Key Pair or Password
	Creating a Text-Based Password
	Creating a Public/Private Key Pair

	Client Application Can Access the Keys or Password
	NETCONF Service over SSH Is Enabled

	Connecting to the NETCONF Server
	Starting the NETCONF Session
	Exchanging <hello> Tag Elements
	Verifying Compatibility

	Exchanging Information with the NETCONF Server
	Sending a Request to the NETCONF Server
	Request Classes
	Operational Requests
	Configuration Information Requests
	Configuration Change Requests

	Including Attributes in the Opening <rpc> Tag

	Parsing the NETCONF Server Response
	NETCONF Server Response Classes
	Operational Responses
	Configuration Information Responses
	Configuration Change Responses

	Using a Standard API to Parse Response Tag Elements

	Handling an Error or Warning

	Locking and Unlocking the Candidate Configuration
	Locking the Candidate Configuration
	Unlocking the Candidate Configuration

	Terminating Another NETCONF Session
	Ending a NETCONF Session and Closing the Connection
	Displaying CLI Output as XML Tag Elements
	Example of a NETCONF Session
	Exchanging Initialization Tag Elements
	Sending an Operational Request
	Locking the Configuration
	Changing the Configuration
	Committing the Configuration
	Unlocking the Configuration
	Closing the NETCONF Session

	Chapter 4: Requesting Information
	Request Procedure Overview
	Requesting Operational Information
	Parsing the <output> Tag Element

	Requesting Configuration Information
	Requesting Information from the Candidate Configuration
	Specifying the Scope of Configuration Information to Return
	Requesting the Complete Configuration
	Requesting a Hierarchy Level or Container Object Without an Identifier
	Requesting All Configuration Objects of a Specified Type
	Requesting Identifiers for Configuration Objects of a Specified Type
	Requesting One Configuration Object
	Requesting Specific Child Tags for a Configuration Object
	Requesting Multiple Configuration Elements Simultaneously

	Chapter 5: Changing Configuration Information
	Configuration Changes Overview
	Changing the Candidate Configuration
	Defining the New Configuration Data
	Providing Configuration Data in a File
	Providing Configuration Data as a Data Stream

	Setting the Default Mode for Incorporating New Configuration Data
	Replacing the Entire Candidate Configuration
	Replacing the Candidate Configuration with Newly Defined Data
	Replacing the Configuration with the Contents of a File
	Setting Replace Mode as the Default Mode

	Replacing the Candidate Configuration with the Running Configuration

	Changing Individual Configuration Elements
	Merging Configuration Elements
	Replacing Configuration Elements
	Creating New Configuration Elements
	Deleting Configuration Elements
	Deleting a Hierarchy Level or Container Object
	Deleting a Configuration Object That Has an Identifier
	Deleting a Single-Value or Fixed-Form Option from a Configuration Object
	Deleting Values from a Multivalue Option of a Configuration Object

	Chapter 6: Committing Configurations
	Verifying a Configuration Before Committing It
	Committing a Configuration

	Chapter 7: Summary of NETCONF Tag Elements
]]>]]>
	<close-session/>
	<commit>
	<copy-config>
	<data>
	<delete-config>
	<discard-changes/>
	<edit-config>
	<error-info>
	<get-config>
	<hello>
	<kill-session>
	<lock>
	<ok/>
	<rpc>
	<rpc-error>
	<rpc-reply>
	<target>
	<unlock>

	Chapter 8: Summary of Attributes in SRC XML Tags
	operation
	sdx:changed-localtime
	sdx:changed-seconds
	xmlns

