- play_arrow 방화벽 필터 구성
- play_arrow 방화벽 필터가 네트워크를 보호하는 방법 이해
- play_arrow 방화벽 필터 일치 조건 및 작업
- 방화벽 필터 개요(OCX 시리즈)
- ACX 시리즈 라우터의 방화벽 필터 프로필 개요(Junos OS Evolved)
- 방화벽 필터 일치 조건 이해
- 방화벽 필터 계획 이해
- 방화벽 필터 평가 방법 이해
- 방화벽 필터 일치 조건 이해
- 방화벽 필터 FMC(Flexible Match Condition)
- 방화벽 필터 비 종료 동작
- 방화벽 필터 종료 동작
- 방화벽 필터 일치 조건 및 작업(ACX 시리즈 라우터)
- ACX 시리즈 라우터의 방화벽 필터 일치 조건 및 동작(Junos OS Evolved)
- 프로토콜 독립적 트래픽에 대한 방화벽 필터 일치 조건
- IPv4 트래픽 방화벽 일치 조건
- IPv6 트래픽에 대한 방화벽 필터 일치 조건
- 숫자 또는 텍스트 별칭을 기반으로 한 방화벽 필터 일치 조건
- 비트 필드 값에 기반한 방화벽 필터 일치 조건
- 주소 필드를 기반으로 한 방화벽 필터 일치 조건
- 주소 클래스에 기반한 방화벽 필터 일치 조건
- MPLS 트래픽의 IP 기반 필터링 및 선택적 포트 미러링 이해
- MPLS 트래픽에 대한 방화벽 필터 일치 조건
- MPLS 태그 지정된 IPv4 또는 IPv6 트래픽에 대한 방화벽 필터 일치 조건
- VPLS 트래픽에 대한 방화벽 필터 일치 조건
- 레이어 2 CCC 트래픽에 대한 방화벽 필터 일치 조건
- 레이어 2 브리징 트래픽에 대한 방화벽 필터 일치 조건
- 루프백 인터페이스의 방화벽 필터 지원
- play_arrow 라우팅 엔진 트래픽에 방화벽 필터 적용
- 레이어 3 VPN의 라우팅 인스턴스에 대한 루프백 인터페이스에서 논리적 단위 구성
- 예: 접두사 목록을 기반으로 포트에 대한 TCP 액세스를 제한하는 필터 구성
- 예: 신뢰할 수 있는 소스의 트래픽을 허용하도록 상태 비저장 방화벽 필터 구성
- 예: Block Telnet 및 SSH 액세스에 대한 필터 구성
- 예: TFTP 액세스를 차단하는 필터 구성
- 예: IPv6 TCP 플래그를 기반으로 패킷을 수락하도록 필터 구성
- 예: 지정된 BGP 피어를 제외하고 포트에 대한 TCP 액세스를 차단하는 필터 구성
- 예: TCP 및 ICMP 플러드로부터 보호하기 위한 무상태 방화벽 필터 구성
- 예: 초당 패킷 속도 제한 필터로 라우팅 엔진 보호
- 예: LAC 가입자에 대한 DHCPv6 및 ICMPv6 제어 트래픽을 제외하도록 필터 구성
- DHCP 방화벽 필터에 대한 포트 번호 요구 사항
- 예: 라우팅 엔진 보호를 위한 DHCP 방화벽 필터 구성
- play_arrow 전송 트래픽에 방화벽 필터 적용
- 예: 수신 큐잉 필터로 사용하기 위한 필터 구성
- 예: IPv6 플래그와 일치하도록 필터 구성
- 예: 포트 및 프로토콜 필드에서 일치하도록 필터 구성
- 예: 수락 및 거부된 패킷을 계산하도록 필터 구성
- 예: IP 옵션 패킷을 카운트하고 삭제하도록 필터 구성
- 예: IP 옵션 패킷을 계산하도록 필터 구성
- 예: 수락된 패킷을 카운트 및 샘플링하도록 필터 구성
- 예: DSCP 비트를 0으로 설정하는 필터 구성
- 예: DSCP 비트를 0으로 설정하는 필터 구성
- 예: 관련 없는 두 기준에서 일치하도록 필터 구성
- 예: 주소를 기반으로 DHCP 패킷을 수락하도록 필터 구성
- 예: 접두사에서 OSPF 패킷을 수락하도록 필터 구성
- 예: 프래그먼트를 처리하기 위한 상태 비저장 방화벽 필터 구성
- IPv4 패킷 단편화를 방지하거나 허용하도록 방화벽 필터 구성
- Mobility Extension 헤더가 있는 수신 IPv6 패킷을 삭제하도록 방화벽 필터 구성
- 예: IPv6 소스 또는 대상 IP 주소를 기반으로 송신 필터 구성
- 예: 대상 클래스를 기반으로 속도 제한 필터 구성
- play_arrow 논리적 시스템에서 방화벽 필터 구성
- 논리적 시스템의 방화벽 필터 개요
- 논리적 시스템에서 방화벽 필터를 구성하고 적용하기 위한 지침
- 논리적 시스템의 방화벽 필터에서 하위 개체에 대한 참조
- 논리적 시스템의 방화벽 필터에서 비방화벽 개체에 대한 참조
- 논리적 시스템의 비방화벽 개체에서 방화벽 필터로의 참조
- 예: 필터 기반 전달 구성
- 예: 논리적 시스템에서 필터 기반 전달 구성
- 예: ICMP 플러드로부터 논리적 시스템을 보호하기 위한 무상태 방화벽 필터 구성
- 예: ICMP 플러드로부터 논리적 시스템을 보호하기 위한 무상태 방화벽 필터 구성
- 논리적 시스템에 대해 지원되지 않는 방화벽 필터 문
- 논리적 시스템의 방화벽 필터에 대해 지원되지 않는 작업
- 라우팅 인스턴스에 대한 필터 기반 전달
- ACX 시리즈 라우터의 라우팅 인스턴스에 대한 포워딩 테이블 필터
- 포워딩 테이블 필터 구성
- play_arrow 방화벽 필터 계정 및 로깅 구성
- play_arrow 단일 인터페이스에 여러 방화벽 필터 연결
- 인터페이스에 방화벽 필터 적용
- 방화벽 필터 구성
- Multifield Classifier Example: 멀티필드 분류 구성
- MPC를 사용하는 MX 시리즈 라우터의 수신 큐잉을 위한 멀티필드 분류자
- 패킷 전달 동작을 지정하기 위해 방화벽 필터에 다중 필드 분류자 할당(CLI 절차)
- 중첩된 구성의 여러 방화벽 필터 이해
- 여러 방화벽 필터에 대한 참조 중첩에 대한 지침
- 목록으로 적용된 여러 방화벽 필터 이해
- 여러 방화벽 필터를 목록으로 적용하기 위한 지침
- 예: 여러 방화벽 필터 목록 적용
- 예: 여러 방화벽 필터에 대한 참조 중첩
- 예: 인터페이스 세트에서 수신된 패킷 필터링
- play_arrow 단일 방화벽 필터를 여러 인터페이스에 연결
- play_arrow IP 네트워크에서 필터 기반 터널링 구성
- play_arrow 서비스 필터 구성
- play_arrow 단순 필터 구성
- play_arrow 레이어 2 방화벽 필터 구성
- play_arrow 포워딩, 프래그먼트 및 폴리싱을 위한 방화벽 필터 구성
- play_arrow 방화벽 필터 구성(EX 시리즈 스위치)
- EX 시리즈 스위치용 방화벽 필터 개요
- 방화벽 필터 계획 이해
- 방화벽 필터 일치 조건 이해
- 방화벽 필터가 패킷 흐름을 제어하는 방법 이해
- 방화벽 필터 평가 방법 이해
- EX 시리즈 스위치에서 브리징 및 라우팅된 패킷에 대한 방화벽 필터 처리 지점 이해
- EX 시리즈 스위치의 방화벽 필터 매치 조건, 동작 및 동작 수정
- EX 시리즈 스위치의 방화벽 필터 일치 조건, 작업 및 작업 수정자를 위한 플랫폼 지원
- 스위치의 루프백 방화벽 필터에 대한 일치 조건 및 작업 지원
- 방화벽 필터 구성(CLI 절차)
- 방화벽 필터가 패킷의 프로토콜을 테스트하는 방법 이해
- EX 시리즈 스위치에 대한 필터 기반 포워딩 이해
- 예: EX 시리즈 스위치에서 포트, VLAN, 라우터 트래픽의 방화벽 필터 구성하기
- 예: EX 시리즈 스위치의 관리 인터페이스에 방화벽 필터 구성
- 예: 라우트 애플리케이션 트래픽-보안 장치에 필터 기반 포워딩 사용
- 예: 802.1X 또는 MAC RADIUS 인증이 활성화된 인터페이스의 여러 요청자에 방화벽 필터 적용
- 폴리서의 작동 여부 확인
- 방화벽 필터 문제 해결
- play_arrow 방화벽 필터 구성(QFX 시리즈 스위치, EX4600 스위치, PTX 시리즈 라우터)
- 방화벽 필터 개요(QFX 시리즈)
- 방화벽 필터 계획 이해
- 생성할 방화벽 필터 수 계획
- 방화벽 필터 일치 조건 및 조치(QFX 및 EX 시리즈 스위치)
- 방화벽 필터 일치 조건 및 동작(QFX10000 스위치)
- 방화벽 필터 일치 조건 및 작업(PTX 시리즈 라우터)
- PTX 시리즈 패킷 전송 라우터와 T 시리즈 매트릭스 라우터의 방화벽 및 폴리싱 차이점
- 방화벽 필터 구성
- 인터페이스에 방화벽 필터 적용
- 루프백 인터페이스의 MPLS 방화벽 필터 개요
- 스위치에서 MPLS 방화벽 필터 및 폴리서 구성
- 라우터에서 MPLS 방화벽 필터 및 폴리서 구성
- MPLS 방화벽 필터 및 폴리서 구성
- 방화벽 필터가 프로토콜을 테스트하는 방법 이해
- 브리지 및 라우팅된 패킷에 대한 방화벽 필터 처리 지점 이해
- 필터 기반 전달 이해
- 예: 라우트 애플리케이션 트래픽-보안 장치에 필터 기반 포워딩 사용
- GRE 또는 IPIP 트래픽의 캡슐화 해제를 위한 방화벽 필터 구성
- 방화벽 필터가 작동하는지 확인
- 방화벽 필터 트래픽 모니터링
- 방화벽 필터 구성 문제 해결
- play_arrow 방화벽 필터 어카운팅 및 로깅 구성(EX9200 스위치)
-
- play_arrow 트래픽 폴리서 구성
- play_arrow 트래픽 폴리서 이해하기
- 폴리서 구현 개요
- ARP 폴리서 개요
- 예: ARP 폴리서 구성
- 폴리서 및 토큰 버킷 알고리즘의 이점 이해하기
- 트래픽 폴리서에 맞는 적절한 버스트 크기 결정
- 트래픽 폴리싱을 사용하여 네트워크 액세스 제어 개요
- 트래픽 폴리서 유형
- 폴리서 및 방화벽 필터 작업 순서
- 폴리싱 패킷의 프레임 길이 이해하기
- 폴리싱에 지원되는 표준
- 계층적 폴리서 구성 개요
- 향상된 계층적 폴리서 이해
- pps(Packets-Per-Second) 기반 폴리서 개요
- 트래픽 폴리서 적용 지침
- 통합 이더넷 인터페이스에 대한 폴리서 지원 개요
- 예: 물리적 인터페이스에서 집계 트래픽을 위한 물리적 인터페이스 폴리서 구성
- PTX 시리즈 패킷 전송 라우터와 T 시리즈 매트릭스 라우터의 방화벽 및 폴리싱 차이점
- ACX 시리즈 라우터의 계층적 폴리서 개요
- ACX 시리즈 라우터에서 계층적 폴리서를 구성하기 위한 지침
- ACX 시리즈 라우터의 계층적 폴리서 모드
- ACX 시리즈 라우터에서 계층적 폴리서 처리
- ACX 시리즈 라우터에서 계층적 폴리서에 대해 수행되는 작업
- ACX 시리즈 라우터에서 통합 부모 및 하위 폴리서 구성
- play_arrow 폴리서 속도 제한 및 작업 구성
- play_arrow 레이어 2 폴리서 구성
- 계층적 폴리서
- 폴리서 오버헤드 구성
- 레이어 2의 2색 및 3색 폴리서
- 유사 회선의 레이어 2 트래픽 폴리싱 개요
- 유사 회선을 위한 2색 레이어 2 폴리서 구성
- 유사 회선을 위한 3색 레이어 2 폴리서 구성
- 동적 프로필 인터페이스에 폴리서 적용
- 라우팅 인스턴스에 동적 프로필 연결
- 유사 회선 개요에서 레이어 2 트래픽 폴리싱을 위한 변수 사용
- 복잡한 구성을 위한 폴리서 구성
- 복잡한 구성에 대한 동적 프로필 만들기
- 복잡한 구성의 라우팅 인스턴스에 동적 프로필 연결
- VPLS 연결에서 레이어 2 트래픽 폴리서 확인
- OVSDB 관리 인터페이스의 폴리서 이해
- 예: OVSDB 관리 인터페이스에 폴리서 적용
- play_arrow 레이어 3에서 2색 및 3색 트래픽 폴리서 구성
- play_arrow 레이어 3에서 논리적 및 물리적 인터페이스 트래픽 폴리서 구성
- play_arrow 스위치에서 폴리서 구성
- 폴리서 개요
- 트래픽 폴리서 유형
- 방화벽 필터에서 폴리서 사용 이해
- 삼색 마킹 아키텍처 이해
- 트래픽 요금을 관리하는 폴리서 구성하기(CLI 절차)
- 삼색 마킹 폴리서 구성
- Link Aggregation Groups를 사용하는 폴리서 이해
- 단일 속도 삼색 표시를 위한 색맹 모드 이해
- 단일 속도 삼색 표시를 위한 색상 인식 모드 이해
- 2레이트 삼색 마킹을 위한 색맹 모드 이해
- 2레이트 삼색 마킹을 위한 색상 인식 모드 이해
- 예: 2색 폴리서 및 접두사 목록 사용
- 예: 폴리서를 사용하여 초과 구독 관리
- 포워딩 클래스 및 손실 우선순위 할당
- 중간-낮음 PLP를 위한 색맹 송신 폴리서 구성
- 트래픽 속도를 제어하기 위한 2색 및 3색 폴리서 구성
- 2색 폴리서의 작동 여부 확인
- 3색 폴리서의 작동 여부 확인
- 폴리서 구성 문제 해결
- 폴리서 구성 문제 해결
-
- play_arrow 구성 명령문 및 작동 명령
- play_arrow 문제 해결
- play_arrow 기술 자료
-
예: RPD 인프라에서 경로 접두사에 대한 우선 순위 구성
이 예에서는 OSPF, LDP 및 BGP 프로토콜에 대한 RPD 인프라의 경로 접두사에 대한 우선 순위를 구성하는 방법을 보여줍니다.
요구 사항
이 예에서 사용되는 하드웨어 및 소프트웨어 구성 요소는 다음과 같습니다.
ACX 시리즈, M 시리즈, MX 시리즈, PTX 시리즈 및 T 시리즈의 조합에 있는 라우터 3개.
모든 디바이스에서 실행되는 Junos OS 릴리스 16.1 이상
시작하기 전에:
디바이스 인터페이스를 구성합니다.
다음과 같은 프로토콜을 구성합니다.
BGP(Border Gateway Protocol)
MPLS
최단 경로 우선(OSPF)
LDP
개요
경로 수가 많은 네트워크에서는 더 나은 컨버전스를 위해 경로가 업데이트되는 순서를 제어하고 차별화된 서비스를 제공하는 것이 중요할 때가 있습니다. 접두사 우선 순위 지정은 사용자가 특정 경로/접두사를 다른 경로보다 우선시하고 RIB(라우팅 테이블) 및 FIB(포워딩 테이블)에서 경로가 업데이트되는 순서를 제어하는 데 도움이 됩니다. Junos OS 릴리스 16.1 이상에서는 경로가 LDP/OSPF에서 rpd로, rpd에서 커널로 업데이트되는 순서를 제어할 수 있습니다. 프로토콜에서 기존 가져오기 정책의 우선순위를 또는 이를 통해 지정할 high
low
수 있습니다. 토폴로지가 변경되는 경우, 우선 순위가 높은 접두사가 라우팅 테이블에서 먼저 업데이트되고 그 다음에 낮은 우선 순위가 높은 접두사가 업데이트됩니다. 일반적으로 명시적으로 우선 순위가 할당되지 않은 경로는 중간 우선 순위로 처리됩니다. 동일한 우선 순위 수준 내에서 경로는 사전순으로 계속 업데이트됩니다.
이 예에서 라우팅 디바이스는 영역 0.0.0.0에 있으며 인터페이스 ge-1/3/0은 이웃 디바이스에 연결됩니다. 세 가지 가져오기 라우팅 정책을 구성합니다. next-hop-self, OSPF-PRIO 및 prio_for_bgp. 라우팅 정책 next-hop-self는 BGP의 경로를 수락합니다. OSPF 라우팅 정책의 경우 172.16.25.3/32와 일치하는 경로는 우선 순위가 높기 때문에 먼저 설치됩니다. LDP는 OSPF에서 경로를 가져옵니다. BGP 우선 순위 지정의 경우, 172.16.50.1/32와 일치하는 경로는 우선 순위가 높기 때문에 먼저 설치됩니다. 이러한 접두사와 연결된 경로는 접두사의 지정된 우선 순위 순서대로 라우팅 테이블에 설치됩니다.
구성
CLI 빠른 구성
이 예를 빠르게 구성하려면, 아래 명령을 복사하여 텍스트 파일로 붙여 넣은 다음 모든 라인브레이크를 제거하고, 네트워크 구성을 일치하는 데 필요한 세부 사항을 바꾸고 [edit] 계층 수준에서 명령을 복사하여 CLI로 붙여 넣은 다음, 구성 모드에서 commit
을(를) 입력합니다.
R1
set interfaces ge-1/3/0 unit 0 family inet address 172.16.12.1/24 set interfaces ge-1/3/0 unit 0 family mpls set interfaces lo0 unit 0 family inet address 172.16.25.1/32 set protocols mpls interface ge-1/3/0.0 set protocols bgp group prio_internal type internal set protocols bgp group prio_internal local-address 172.16.25.1 set protocols bgp group prio_internal import prio_for_bgp set protocols bgp group prio_internal neighbor 172.16.25.3 family inet unicast set protocols bgp group prio_internal neighbor 172.16.25.3 export next-hop-self sset protocols ospf import ospf_prio set protocols ospf area 0.0.0.0 interface ge-1/3/0.0 set protocols ospf area 0.0.0.0 interface lo0.0 passive set protocols ldp interface ge-1/3/0.0 set protocols ldp interface lo0.0 set policy-options policy-statement next-hop-self term nhself from protocol bgp set policy-options policy-statement next-hop-self term nhself then next-hop self set policy-options policy-statement next-hop-self term nhself then accept set policy-options policy-statement ospf_prio term ospf_ldp from protocol ospf set policy-options policy-statement ospf_prio term ospf_ldp from route-filter 172.16.25.3/32 exact set policy-options policy-statement ospf_prio term ospf_ldp then priority high set policy-options policy-statement ospf_prio term ospf_ldp then accept set policy-options policy-statement prio_for_bgp term bgp_prio from protocol bgp set policy-options policy-statement prio_for_bgp term bgp_prio from route-filter 172.16.50.1/32 exact set policy-options policy-statement prio_for_bgp term bgp_prio then priority high set routing-options nonstop-routing set routing-options router-id 172.16.25.1 set routing-options autonomous-system 2525
R2
set interfaces ge-1/0/5 unit 0 family inet address 172.16.12.2/24 set interfaces ge-1/0/5 unit 0 family mpls set interfaces ge-1/3/0 unit 0 family inet address 172.16.23.2/24 set interfaces ge-1/3/0 unit 0 family mpls set interfaces lo0 unit 0 family inet address 172.16.25.2/32 set protocols mpls interface ge-1/0/5.0 set protocols mpls interface ge-1/3/0.0 set protocols ospf area 0.0.0.0 interface lo0.0 passive set protocols ospf area 0.0.0.0 interface ge-1/0/5.0 set protocols ospf area 0.0.0.0 interface ge-1/3/0.0 set protocols ldp interface ge-1/0/5.0 set protocols ldp interface ge-1/3/0.0 set protocols ldp interface lo0.0 set routing-options nonstop-routing set routing-options router-id 172.16.25.2 set routing-options autonomous-system 2525
R3
set interfaces ge-1/0/1 unit 0 family inet address 172.16.23.3/24 set interfaces ge-1/0/1 unit 0 family mpls set interfaces lo0 unit 0 family inet address 172.16.25.3/32 set protocols mpls interface ge-1/0/1.0 set protocols bgp group prio_internal type internal set protocols bgp group prio_internal local-address 172.16.25.3 set protocols bgp group prio_internal neighbor 172.16.25.1 family inet unicast set protocols bgp group prio_internal neighbor 172.16.25.1 export next-hop-self set protocols bgp group prio_internal neighbor 172.16.25.1 export static_to_bgp set protocols ospf area 0.0.0.0 interface lo0.0 passive set protocols ospf area 0.0.0.0 interface ge-1/0/1.0 set protocols ldp interface ge-1/0/1.0 set protocols ldp interface lo0.0 set policy-options policy-statement next-hop-self term nhself from protocol bgp set policy-options policy-statement next-hop-self term nhself then next-hop self set policy-options policy-statement next-hop-self term nhself then accept set policy-options policy-statement static_to_bgp term s_to_b from protocol static set policy-options policy-statement static_to_bgp term s_to_b from route-filter 172.16.50.1/32 exact set policy-options policy-statement static_to_bgp term s_to_b from route-filter 172.16.50.2/32 exact set policy-options policy-statement static_to_bgp term s_to_b then accept set routing-options nonstop-routing set routing-options static route 172.16.50.1/32 receive set routing-options static route 172.16.50.2/32 receive set routing-options router-id 172.16.25.3 set routing-options autonomous-system 2525
디바이스 R1 구성
단계별 절차
다음 예는 구성 계층에서 다양한 수준의 탐색이 필요합니다. CLI 탐색에 대한 정보는 CLI 사용자 가이드의 을(를) 참조하십시오구성 모드에서 CLI 편집기 사용.
디바이스 R1 구성
인터페이스를 구성합니다.
content_copy zoom_out_map[edit interfaces]
user@R1# set interfaces ge-1/3/0 unit 0 family inet address 172.16.12.1/24 user@R1# set interfaces ge-1/3/0 unit 0 family mpls user@R1# set interfaces lo0 unit 0 family inet address 172.16.25.1/32디바이스에 루프백 주소를 할당합니다.
content_copy zoom_out_map[edit lo0 unit 0 family]
user@R1# set address 172.16.25.1/32MPLS를 구성합니다.
content_copy zoom_out_map[edit protocols]
user@R1# set protocols mpls interface ge-1/3/0.0라우터 R1의 라우터 ID와 AS(Autonomous System)를 구성합니다.
content_copy zoom_out_map[edit routing-options]
user@R1# set router-id 172.16.7.7 user@R1# set autonomous-system 100라우터 R1의 인터페이스에서 OSPF를 활성화합니다.
content_copy zoom_out_map[edit protocols]
user@R1# set protocols ospf import ospf_prio user@R1# set protocols ospf area 0.0.0.0 interface ge-1/3/0.0 user@R1# set protocols ospf area 0.0.0.0 interface lo0.0 passive인터페이스에서 LDP 프로토콜을 구성합니다.
content_copy zoom_out_map[edit protocols]
user@R1# set protocols ldp interface ge-1/3/0.0 user@R1# set protocols ldp interface lo0.0BGP를 구성합니다.
content_copy zoom_out_map[edit protocols]
user@R1# set protocols bgp group prio_internal type internal user@R1# set protocols bgp group prio_internal local-address 172.16.25.1 user@R1# set protocols bgp group prio_internal import prio_for_bgp user@R1# set protocols bgp group prio_internal neighbor 172.16.25.3 family inet unicast user@R1# set protocols bgp group prio_internal neighbor 172.16.25.3 export next-hop-self경로의 우선 순위를 지정하도록 정책 옵션을 구성합니다. 정책 next-hop-self는 BGP의 경로를 수락합니다. 세 가지 가져오기 라우팅 정책을 구성합니다. next-hop-self, OSPF-PRIO 및 prio_for_bgp. 라우팅 정책 next-hop-self는 BGP의 경로를 수락합니다. ospf-prio 라우팅 정책의 경우 172.16.25.3/32와 일치하는 경로는 우선 순위가 높기 때문에 먼저 설치됩니다. LDP는 OSPF에서 경로를 가져옵니다. prio_for_bgp 정책의 경우 172.16.50.1/32와 일치하는 경로는 우선 순위가 높기 때문에 먼저 설치됩니다.
content_copy zoom_out_map[edit policy-options policy-statement]
user@R1# set policy-options policy-statement next-hop-self term nhself from protocol bgp user@R1# set policy-options policy-statement next-hop-self term nhself then next-hop self user@R1# set policy-options policy-statement next-hop-self term nhself then accept user@R1# set policy-options policy-statement ospf_prio term ospf_ldp from protocol ospf user@R1# set policy-options policy-statement ospf_prio term ospf_ldp from route-filter 172.16.25.3/32 exact set policy-options policy-statement ospf_prio term ospf_ldp then priority high set policy-options policy-statement ospf_prio term ospf_ldp then accept set policy-options policy-statement prio_for_bgp term bgp_prio from protocol bgp set policy-options policy-statement prio_for_bgp term bgp_prio from route-filter 172.16.50.1/32 exact set policy-options policy-statement prio_for_bgp term bgp_prio then priority high
결과
구성 모드에서 show interfaces, show protocols, show routing-options 및 show policy-options 명령을 입력하여 구성을 확인합니다. 출력 결과가 의도한 구성대로 표시되지 않으면 이 예의 지침을 반복하여 구성을 수정하십시오.
[edit] user@R1# show interfaces ge-1/3/0 { unit 0 { family inet { address 172.16.12.1/24; } family mpls; } } lo0 { unit 0 { family inet { address address 172.16.25.1/32; } } }
[edit] user@R1# show protocols mpls { interface ge-1/3/0.0; } bgp { group prio_internal { type internal; local-address 172.16.25.1; import prio_for_bgp neighbor 172.16.25.3 { family inet { unicast; } export next-hop-self; } } } ospf { import ospf_prio; area 0.0.0.0 { interface ge-1/3/0.0; interface lo0.0 { passive; } } } ldp { interface ge-1/3/0.0; interface lo0.0; } }
[edit] user@R1# show routing-options nonstop-routing; router-id 172.16.25.1; autonomous-system 2525;
[edit] user@R1# show policy-options policy-statement next-hop-self { term nhself { from protocol bgp; then { next-hop self; accept; } } } policy-statement ospf_prio { term ospf_ldp { from { protocol ospf; route-filter 172.16.25.3/32 exact; } then { priority high; accept; } } } policy-statement prio_for_bgp { term bgp_prio { from { protocol bgp; route-filter 172.16.50.1/32 exact; } then priority high; } }
디바이스 구성이 완료되면 구성 모드에서 commit
을(를) 입력합니다.
검증
구성이 올바르게 작동하고 있는지 확인합니다.
OSPF 경로의 우선 순위 확인
목적
OSPF에서 예상되는 경로에 우선 순위가 설정되어 있는지 확인합니다.
작업
디바이스 R1의 운영 모드에서 명령을 실행합니다 show ospf route 172.16.25.3/32 extensive
. 높음 우선 순위는 OSPF 경로 172.16.25.3에 적용됩니다.
user@R1> show ospf route 172.16.25.3/32 extensive
Topology default Route Table:
Prefix Path Route NH Metric NextHop Nexthop
Type Type Type Interface Address/LSP
172.16.25.3 Intra Router IP 2 ge-1/3/0.0 172.16.12.2
area 0.0.0.0, origin 172.16.25.3, optional-capability 0x0
172.16.25.3/32 Intra Network IP 2 ge-1/3/0.0 172.16.12.2
area 0.0.0.0, origin 172.16.25.3, priority high
의미
출력은 OSPF 경로 172.16.25.3에 우선 순위가 high
적용됨을 보여줍니다.
LDP 경로의 우선 순위 확인
목적
LDP가 OSPF에서 상속되는지 확인합니다.
작업
운영 모드에서 명령을 입력하여 show route 172.16.25.3
LDP가 OSPF에서 경로를 상속했는지 확인합니다.
user@R1> show route 172.16.25.3
inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
172.16.25.3/32 *[OSPF/10] 00:10:27, metric 2
> to 172.16.25.2 via ge-1/3/0.0
inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
172.16.25.3/32 *[LDP/9] 00:10:24, metric 1
> to 172.16.25.2 via ge-1/3/0.0, Push 299824
운영 모드에서 명령을 입력하여 show route 172.16.25.3 extensive
LDP가 우선 순위를 상속받았는지 확인합니다.
user@R1> show route 172.16.25.3 extensive
inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
172.16.25.3/32 (1 entry, 1 announced)
State:<Flashall>
TSI:
KRT in-kernel 172.16.25.3/32 -> {172.16.12.2}
*OSPF Preference: 10
Next hop type: Router, Next hop index: 549
Address: 0xa463390
Next-hop reference count: 6
Next hop: 172.16.12.2 via ge-1/3/0.0, selected
Session Id: 0x0
State:<Active Int HighPriority>
Local AS: 2525
Age: 10:43 Metric: 2
Validation State: unverified
Area: 0.0.0.0
Task: OSPF
Announcement bits (4): 0-KRT 4-LDP 6-Resolve tree 2 7-Resolve_IGP_FRR task
AS path: I
inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
172.16.25.3/32 (1 entry, 1 announced)
State:<Flashall>
LDP Preference: 9
Next hop type: Router, Next hop index: 582
Address: 0xa477810
Next-hop reference count: 12
Next hop: 172.16.12.2 via ge-1/3/0.0, selected
Label operation: Push 299824
Label TTL action: prop-ttl
Load balance label: Label 299824: None;
Label element ptr: 0xa17ad00
Label parent element ptr: 0x0
Label element references: 1
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
State:<Active Int HighPriority>
Local AS: 2525
Age: 10:40 Metric: 1
Validation State: unverified
Task: LDP
Announcement bits (3): 2-Resolve tree 1 3-Resolve tree 2 4-Resolve_IGP_FRR task
AS path: I
의미
출력은 LDP가 OSPF에서 경로 172.16.25.3에 대한 우선 순위를 high
상속함을 보여줍니다.
BGP 경로의 우선 순위 확인
목적
BGP에서 예상되는 경로에 우선 순위가 설정되어 있는지 확인합니다.
작업
디바이스 R1에서 작동 모드에서 명령을 실행하여 show route protocol bgp
BGP에서 학습한 경로를 표시합니다.
user@R1> show route protocol bgp
inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
172.16.50.1/32 *[BGP/170] 00:11:24, localpref 100, from 172.16.25.3
AS path: I, validation-state: unverified
> to 172.16.12.2 via ge-1/3/0.0, Push 299824
172.16.50.2/32 *[BGP/170] 00:11:24, localpref 100, from 172.16.25.3
AS path: I, validation-state: unverified
> to 172.16.12.2 via ge-1/3/0.0, Push 299824
inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
mpls.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
디바이스 R1의 운영 모드에서 명령을 실행합니다 show route 172.16.50.1 extensive
. BGP 경로 172.16.50.1에는 높은 우선 순위가 적용됩니다.
user@R1> show route 172.16.50.1 extensive
inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
172.16.50.1/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 172.16.50.1/32 -> {indirect(1048574)}
*BGP Preference: 170/-101
Next hop type: Indirect, Next hop index: 0
Address: 0xa487b10
Next-hop reference count: 4
Source: 172.16.25.3
Next hop type: Router, Next hop index: 582
Next hop: 172.16.12.2 via ge-1/3/0.0, selected
Label operation: Push 299824
Label TTL action: prop-ttl
Load balance label: Label 299824: None;
Label element ptr: 0xa17ad00
Label parent element ptr: 0x0
Label element references: 1
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Protocol next hop: 172.16.25.3
Indirect next hop: 0xa4a9800 1048574 INH Session ID: 0x0
State: <Active Int Ext HighPriority>
Local AS: 2525 Peer AS: 2525
Age: 11:49 Metric2: 1
Validation State: unverified
Task: BGP_2525.172.16.25.3
Announcement bits (2): 0-KRT 6-Resolve tree 2
AS path: I (Atomic)
Accepted
Localpref: 100
Router ID: 172.16.25.3
Indirect next hops: 1
Protocol next hop: 172.16.25.3 Metric: 1
Indirect next hop: 0xa4a9800 1048574 INH Session ID: 0x0
Indirect path forwarding next hops: 1
Next hop type: Router
Next hop: 172.16.12.2 via ge-1/3/0.0
Session Id: 0x0
172.16.25.3/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 1
Nexthop: 172.16.12.2 via ge-1/3/0.0
의미
출력은 BGP 경로 172.16.50.1에 우선 순위가 high
적용되었음을 보여줍니다.