
D
A

Y O
N

E
: JU

N
IP

E
R

 A
M

B
A

SSA
D

O
R

S’ C
O

O
K

B
O

O
K

 FO
R

 2
0

1
8

H
earty, D

w
yer, et.al.

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: JUNIPER AMBASSADORS’ COOKBOOK FOR 2018

By Dan Hearty, Tom Dwyer, Jeff Fry, Michel Tepper,
Steve Puluka, Martin Brown, Peter Klimai, and Clay Haynes

DAY ONE: JUNIPER AMBASSADORS’
 COOKBOOK FOR 2018

The Juniper Ambassador program recognizes and supports its top community members and the
generous contributions they make through sharing their knowledge, passion, and expertise on
J-Net, Facebook, Twitter, LinkedIn, and other social networks. In their new Day One cookbook,
the Juniper Ambassadors take on some of the top networking support issues and provide
clear-cut solutions and frank discussions on how to keep things running. The recipes in this
cookbook provide quick and tested solutions to everyday networking administration issues.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Identify and resolve asymmetric routing problems.

n	Provide redundant L3 Gateway in an EVPN-VXLAN fabric with inter-tenant intra-subnet

connectivity.

n Use EVPN route type-5 for aggregating multiple host MAC+IP routes for tenants behind a

single IP prefix for a given bridge domain.

n Convert your legacy EX4200/EX2200 DHCP configuration over to the new Enhanced

Layer 2 Software (ELS).

n	Restrict packet sizes that can affect GRE tunnels.

n	Extend a VLAN across a Layer 3 WAN without a complete re-architecture of the network

n Implement FBF when the traffic being processed arrives at an interface inside of a virtual

router’s routing instance.

n Automate certain operational and configuration tasks on your Junos network devices

using SaltStack.

“Networks are moving to the cloud and so are our Juniper Ambassadors. This book is filled

with customer solutions using Juniper technologies – from EVPN, to automating Junos with

SaltStack. I am grateful for the time and energy our Juniper Ambassadors have devoted to this

book. It’s yet another proof point that Juniper’s focus on customers is paying off.”

Rami Rahim, CEO, Juniper Networks

ISBN 978-1-941441-79-4

9 781941 441794

5 2 5 0 0

What’s on the minds of the
Juniper Ambassadors in 2018?
It’s EVPN, automating with
SaltStack, ELS and the EX
Series, GRE Tunnels, VLANs,
FBF routing, and more EVPN.

https://www.juniper.net/books
https://www.juniper.net

D
A

Y O
N

E
: JU

N
IP

E
R

 A
M

B
A

SSA
D

O
R

S’ C
O

O
K

B
O

O
K

 FO
R

 2
0

1
8

H
earty, D

w
yer, et.al.

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: JUNIPER AMBASSADORS’ COOKBOOK FOR 2018

By Dan Hearty, Tom Dwyer, Jeff Fry, Michel Tepper,
Steve Puluka, Martin Brown, Peter Klimai, and Clay Haynes

DAY ONE: JUNIPER AMBASSADORS’
 COOKBOOK FOR 2018

The Juniper Ambassador program recognizes and supports its top community members and the
generous contributions they make through sharing their knowledge, passion, and expertise on
J-Net, Facebook, Twitter, LinkedIn, and other social networks. In their new Day One cookbook,
the Juniper Ambassadors take on some of the top networking support issues and provide
clear-cut solutions and frank discussions on how to keep things running. The recipes in this
cookbook provide quick and tested solutions to everyday networking administration issues.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Identify and resolve asymmetric routing problems.

n	Provide redundant L3 Gateway in an EVPN-VXLAN fabric with inter-tenant intra-subnet

connectivity.

n Use EVPN route type-5 for aggregating multiple host MAC+IP routes for tenants behind a

single IP prefix for a given bridge domain.

n Convert your legacy EX4200/EX2200 DHCP configuration over to the new Enhanced

Layer 2 Software (ELS).

n	Restrict packet sizes that can affect GRE tunnels.

n	Extend a VLAN across a Layer 3 WAN without a complete re-architecture of the network

n Implement FBF when the traffic being processed arrives at an interface inside of a virtual

router’s routing instance.

n Automate certain operational and configuration tasks on your Junos network devices

using SaltStack.

“Networks are moving to the cloud and so are our Juniper Ambassadors. This book is filled

with customer solutions using Juniper technologies – from EVPN, to automating Junos with

SaltStack. I am grateful for the time and energy our Juniper Ambassadors have devoted to this

book. It’s yet another proof point that Juniper’s focus on customers is paying off.”

Rami Rahim, CEO, Juniper Networks

ISBN 978-1-941441-79-4

9 781941 441794

5 2 5 0 0

What’s on the minds of the
Juniper Ambassadors in 2018?
It’s EVPN, automating with
SaltStack, ELS and the EX
Series, GRE Tunnels, VLANs,
FBF routing, and more EVPN.

https://www.juniper.net/books
https://www.juniper.net

Day One: Ambassadors’ Cookbook for 2018

by Dan Hearty, Tom Dwyer, Jeff Fry, Michel Tepper, Steve Puluka,
Martin Brown, Peter Klimai, and Clay Haynes

Table of Contents

Preface . vii

Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN . 8

Recipe 2: Identifying and Resolving Asymmetric Routing Problems . 17

Recipe 3: Configuring Filter-Based Forwarding Inside a Junos® Routing Instance 24

Recipe 4: Configuring DHCP Services on the EX2300/EX4300 Series with Enhanced

Layer 2 Software . 29

Recipe 5: Exceeding the MTU and GRE Tunnels . 36

Recipe 6: Application-based Routing . 44

Recipe 7: Automating Junos with Salt . 50

Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing 64

Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10000 94

https://www.juniper.net

 iv

© 2018 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, Junos, Steel-Belted Radius, NetScreen,
and ScreenOS are registered trademarks of Juniper
Networks, Inc. in the United States and other countries.
The Juniper Networks Logo, the Junos logo, and JunosE
are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their respective
owners. Juniper Networks assumes no responsibility for
any inaccuracies in this document. Juniper Networks
reserves the right to change, modify, transfer, or otherwise
revise this publication without notice.

© 2018 by Juniper Networks Pvt Ltd. All rights reserved
for scripts published within this book.

Script Software License
© 2018 Juniper Networks, Inc. All rights reserved.
Licensed under the Juniper Networks Script Software
License (the “License”). You may not use this script file
except in compliance with the License, which is located at
http://www.juniper.net/support/legal/scriptlicense/. Unless
required by applicable law or otherwise agreed to in
writing by the parties, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

Published by Juniper Networks Books
Authors: Dan Hearty, Tom Dwyer, Jeff Fry, Michel Tepper,
Steve Puluka, Martin Brown, Peter Klimai
Technical Editor: Clay Haynes
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
Illustrations: Karen Joice
Ambassador Program Manager: Julie Wider

ISBN: 978-1-941441-79-4 (print)
Printed in the USA by Vervante Corporation.
ISBN: 978-1-941441-80-0 (ebook)
Version History: v1, September, 2018
 2 3 4 5 6 7 8 9 10

Visit the entire Day One library:
http://www.juniper.net/dayone

Feedback? Comments? Error reports? Email them to
dayone@juniper.net.

http://www.juniper.net/support/legal/scriptlicense
http://www.juniper.net/dayone

 v

Contributing Ambassadors

Dan Hearty (Recipe 8 and 9) is a Principal Engineer working for Telent in the UK
and is a Juniper Ambassador. He specializes in service provider and data centre
technologies with over 10 years’ experience. He is JNCIE-SP #2406 and holds a
number of other industry certifications.

Tom Dwyer (Recipe 1) is a Principal Engineer leading the Data Center Practice at
Nexum Inc, a VAR, MSP and training provider based out of Chicago. He has over
20 years of experience focused on networking, security, and data center technolo-
gies. Tom is a Juniper Ambassador and is certified by Juniper as a JNCIE-ENT
#424.

Jeff Fry (Recipe 4) works a Senior Consultant at Dimension Data and lives in
Northampton, PA with his wife and three sons. He is certified Cisco CCIE R&S
22061, Juniper JNCIE-ENT #567, as well as JNCIP in Service Provider, Security,
and Data Center. Jeff started his career over 25 years ago supporting Windows
and Unix environments and was bit by the network bug early in his career.

Michel Tepper (Recipe 2 and 6) is a Solutions Architect for Nuvias in the Nether-
lands and a Juniper Ambassador. Besides doing a lot of presales support he also is
a Juniper Networks Certified Instructor on Security, Services provider and Enter-
prise routing and switching tracks. Working 30+ years in the industry doesn’t re-
duce his enthusiasm for it, or for Juniper in specific. Besides Juniper certifications
Michel holds certifications for a number of other leading vendors..

Steve Puluka (Recipe 3) is a Network Architect with DQE Communications in
Pittsburgh, PA. He is part of a service provider team that manages a fiber optic
Metro Ethernet, Wavelength, and Internet Services network spanning 3k route
miles throughout Western Pennsylvania. He holds a BSEET along with a dozen
Juniper Certifications in Service Provider, Security, and Design. He also has certifi-
cation and extensive experience in Microsoft Windows server, along with strong
VMWare skills starting with Version 2. He has enjoyed supporting networks for
more than 20 years.

Martin Brown (Recipe 5) is a Network Security Engineer for a tier 1 service pro-
vider based in the UK and is a Juniper Ambassador. Martin started his career in IT
over 20 years ago supporting Macintosh computers and in 1999 earned his first
certification by becoming an MCP then an MCSE. In the past six years he has pro-
gressed to networking, implementing, and supporting network devices in a num-
ber of different environments including airports, retail, warehouses and service
providers. His knowledge covers a broad range of network device types and net-
work equipment from most of the major vendors including Cisco, F5, Checkpoint,
and of course, Juniper.

(continued)

 vi

Peter Klimai (Recipe 7) is a Juniper Ambassador and a Juniper Networks certified
instructor working at Poplar Systems, a Juniper-Authorized Education Partner in
Russia. He is certified JNCIE-SEC #98, JNCIE-ENT #393, and JNCIE-SP #2253
and has several years of experience supporting Juniper equipment for many small
and large companies. He teaches a variety of Juniper classes on a regular basis, be-
ginning with introductory level (such as IJOS) and including advanced (such as
AJSEC, JAUT, and NACC). Peter is enthusiastic about network automation using
various tools, as well as network function virtualization.

Clay Haynes (Technical Reviewer) is an IT professional with over 10 years of ex-
perience working on servers, firewalls, and networking. He currently works at
Twitter as a Senior Network Security Engineer and is a Juniper Ambassador. Clay
currently holds the JNCIE-SEC #69 and JNCIE-ENT #492 certifications.

 vii

Preface
The world we live in has become more interconnected than at any point in history.
Consider for a moment the smartphone in your pocket, and how its functions have
expanded beyond phone calls and SMS; I use my own phone to read books, watch
videos, pay for goods and services, and communicate to people around the globe
as if they are in the same room as me. These are activities that were considered un-
imaginable five years ago.

These applications exist in hosted data centers, cloud environments, or on-premis-
es servers. Regardless of where the application is hosted, we know that behind ev-
ery application lies a network. While the core foundations of networks have not
changed in decades, the hardware has become faster and more compact and its
software has increased in complexity to provide new features to meet the demands
of customers. The ever-present demand for higher performance from our networks
must be balanced with constraints imposed by business, as well as the needs for
ensuring security and availability.

The recipes in this cookbook have been authored by many amazing individuals
who come from very diverse backgrounds and business verticals. They will help
you design, deploy, operate, and maintain networks that are powered by Juniper
Networks. And they will help you integrate Juniper Networks with other vendor’s
solutions. A few of the topics that will be covered in this cookbook include EVPN,
MC-LAG, L2 Tunneling, virtualization, automation, working with ELS, and ad-
vanced security features.

Enjoy!

Clay Haynes, September 2018
Technical Reviewer & Juniper Ambassador

 � JunosOSUsed:16.1R7.7(MX)

 � JunosOSUsed:15.1X53-D66.8(QFX10002)

 � Juniper Platforms General Applicability: vMX, MX, QFX

Temporary topology changes can sometimes create monsters. This recipe tackles a
requirement to provide a Layer 2 stretch between two data centers. ACME was
just acquired by Phantom Corporation headquartered out of Chicago. They need
to migrate a large amount of virtual machines from ACME’s Las Vegas data center
to Phantom’s Chicago data center. Both data centers are using the same MPLS
provider, which allows them to quickly provision a Layer 3 VPN between their
two networks. This recipe shows how they can use EVPN to solve the Layer 2
stretch without major architectural changes.

Problem
You need to quickly extend a VLAN across a Layer 3 WAN without a complete
re-architecture of the network.

Solution
Mergers and acquisitions (M&A) can provide many challenges for a networking
staff. Oftentimes IT staff are the last to know about M&A activity, and timelines
to integrate the companies involved are usually aggressive. In this case study, this
already difficult situation is further escalated when the IT staff finds out that the
contract for ACME’s data center in Las Vegas is expiring, so it’s necessary to mi-
grate compute resources from ACME’s Las Vegas data center to Phantom Corpo-
ration’s Chicago data center.

Since both companies were using the same MPLS provider, adding connectivity
across both MPLS networks was made easy by provisioning a new L3VPN. Both

Recipe 1: Extending Layer 2 Over Layer 3 VPN
MPLS with EVPN-VXLAN

by Tom Dwyer

 9 Solution

companies have deployed Juniper QFX switches in their network that will be lev-
eraged in the solution.

From the high-level design standpoint shown in Figure 1.1, we will create an
EVPN-VXLAN connection between the two QFX10002s over our L3VPNs.

Figure 1.1 The Solution to Create a EVPN-VXLAN Connection

The reason EVPN is selected for this purpose is that it requires IP transport to pro-
vide connectivity between the virtual tunnel endpoints (VTEPs).

Let’s begin to build out the solution. The first step is to build the underlay net-
work. The purpose of the underlay network is to provide connectivity for the
VTEPs. The QFX10002 switches are already participating in BGP with each PE
router from the MPLS provider to provide connectivity. We will need to modify
the BGP export policy to advertise the loopback addresses that are being used for
VTEP termination points.

Figure 1.2 Las Vegas Addresses

 10 Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN

admin@LASQFX-1# set interfaces lo0 unit 0 family inet address 172.16.2.2/32

admin@LASQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT from protocol direct
admin@LASQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT from route-
filter 172.16.2.2/32 exact

admin@LASQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT then accept
admin@LASQFX-1# insert policy-options policy-statement CE-EXPORT term VTEP-
EXPORT before term REJECT-ALL

[edit]
admin@LASQFX-1# commit and-quit
commit complete
Exiting configuration mode

admin@LASQFX-1>

Figure 1.3 Chicago Addresses

admin@ORDQFX-1# set interfaces lo0 unit 0 family inet address 172.16.1.1/32

admin@ORDQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT from protocol direct
admin@ORDQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT from route-
filter 172.16.1.1/32 exact

admin@ORDQFX-1# set policy-options policy-statement CE-EXPORT term VTEP-EXPORT then accept
admin@ORDQFX-1# insert policy-options policy-statement CE-EXPORT term VTEP-
EXPORT before term REJECT-ALL

[edit]
admin@ORDQFX-1# commit and-quit
commit complete
Exiting configuration mode

admin@ORDQFX-1>

Okay, once this is committed we should be able to see the loopbacks at each data
center. As shown in Figure 1.3, on the MPLS PE router the loopbacks are being
advertised.

 11 Solution

Figure 1.4 Loopbacks Advertised

Now that the underlay has been has been built, it’s time to build out the overlay.
We will establish an iBGP session between the loopback addresses. Family EVPN
signaling is the only Network Layer Reachability Information (NLRI) that is need-
ed to establish the EVPN BGP session:

admin@LASQFX-1# set routing-options autonomous-system 65001
admin@LASQFX-1# set protocols bgp group EVPN-OVERLAY type internal
admin@LASQFX-1# set protocols bgp group EVPN-OVERLAY family evpn signaling
admin@LASQFX-1# set protocols bgp group EVPN-OVERLAY neighbor 172.16.1.1
admin@LASQFX-1# set protocols bgp group EVPN-OVERLAY local-address 172.16.2.2

admin@ORDQFX-1# set routing-options autonomous-system 65001
admin@ORDQFX-1# set protocols bgp group EVPN-OVERLAY type internal
admin@ORDQFX-1# set protocols bgp group EVPN-OVERLAY family evpn signaling
admin@ORDQFX-1# set protocols bgp group EVPN-OVERLAY neighbor 172.16.2.2
admin@ORDQFX-1# set protocols bgp group EVPN-OVERLAY local-address 172.16.1.1

Let’s start by extending one VLAN across the WAN. VLAN 1500 has been provi-
sioned for this purpose and we will provision a vxlan vni for it as well.

Figure 1.5 Extending VLAN 1500

 12 Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN

admin@LASQFX-1# set vlans VL1500 vlan-id 1500
admin@LASQFX-1# set vlans VL1500 vxlan vni 1500

admin@ORDQFX-1# set vlans VL1500 vlan-id 1500
admin@ORDQFX-1# set vlans VL1500 vxlan vni 1500

NOTE In our example the VNI and VLAN-ID have kept the same numerical
values. For simplicities sake, keeping both of them associated with the same value
is consistent with best practices that have been around with logical associations.
VXLAN has 24 bits and can scale beyond VLAN scalability. This type of scale is
beyond the scope of this recipe.

Now let’s modify the switch options to source the interface for the VTEP, using
lo0.0 for the VTEP, and configuring a route distinguisher and a route target:

admin@LASQFX-1# set switch-options vtep-source-interface lo0.0
admin@LASQFX-1# set switch-options route-distinguisher 172.16.2.2:1
admin@LASQFX-1# set switch-options vrf-target target:7777:7777
admin@LASQFX-1# set switch-options vrf-import EVPN-IMPORT

admin@ORDQFX-1# set switch-options vtep-source-interface lo0.0
admin@ORDQFX-1# set switch-options route-distinguisher 172.16.1.1:1
admin@ORDQFX-1# set switch-options vrf-target target:7777:7777
admin@ORDQFX-1# set switch-options vrf-import EVPN-IMPORT

Create Layer 3 interfaces for the VLAN:
admin@ORDQFX-1# set interfaces irb unit 1500 family inet address 10.1.50.2/24
admin@ORDQFX-1# set vlans VL1500 l3-interface irb.1500

admin@LASQFX-1# set interfaces irb unit 1500 family inet address 10.1.50.3/24
admin@LASQFX-1# set vlans VL1500 l3-interface irb.1500

NOTE Not all VTEPs are built the same. Some devices (QFX5100, QFX5200)
can only support a Layer 2 VTEP due to the ASICs that power them. They cannot
route EVPN inter-VXLAN traffic. This is important to know about when design-
ing where routing will occur in an EVPN network. In a mixed fabric of QFX5100
and QFX10002 devices, the QFX10002 would provide routing at the spine.

Add the vni for VLAN 1500 to the EVPN protocol and add a target for export:
admin@LASQFX-1# set protocols evpn encapsultation vxlan
admin@LASQFX-1# set protocols evpn extended-vni-list 1500
admin@LASQFX-1# set protocols evpn multicast-mode ingress-replication
admin@LASQFX-1# set protocols evpn default-gateway no-gateway-community
admin@LASQFX-1# set protocols evpn vni-options 1500 export target:1:1500

admin@ORDQFX-1# set protocols evpn encapsultation vxlan
admin@ORDQFX-1# set protocols evpn extended-vni-list 1500
admin@ORDQFX-1# set protocols evpn multicast-mode ingress-replication
admin@ORDQFX-1# set protocols evpn default-gateway no-gateway-community
admin@ORDQFX-1# set protocols evpn vni-options 1500 export target:1:1500

 13 Solution

Let’s now define the community values for the Type 1 routes defined by the route
target statement under switch options, and also, create a community for the Type 2
route import:

admin@ORDQFX-1# set policy-options community evpn-type1 members target:7777:7777
admin@ORDQFX-1# set policy-options community vni-1500 members target:1:1500

admin@LASQFX-1# set policy-options community evpn-type1 members target:7777:7777
admin@LASQFX-1# set policy-options community vni-1500 members target:1:1500

Next, define the import policy for EVPN, which will import routes into the default
switch.evpn.0 table from the bgp.evpn.0 table:

admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term EVPN-TYPE1 from community evpn-
type1

admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term EVPN-TYPE1 then accept
admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term VNI-1500 from community vni-
1500

admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term VNI-1500 then accept
admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term default-reject
admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term default-reject then reject

admin@LASQFX-1# set policy-options policy-statement EVPN-IMPORT term EVPN-TYPE1 from community evpn-
type1

admin@LASQFX-1# set policy-options policy-statement EVPN-IMPORT term EVPN-TYPE1 then accept
admin@LASQFX-1# set policy-options policy-statement EVPN-IMPORT term VNI-1500 from community vni-
1500

admin@LASQFX-1# set policy-options policy-statement EVPN-IMPORT term VNI-1500 then accept
admin@LASQFX-1# set policy-options policy-statement EVPN-IMPORT term default-reject
admin@ORDQFX-1# set policy-options policy-statement EVPN-IMPORT term default-reject then reject

[edit]
admin@ORDQFX-1# commit and-quit
commit complete
Exiting configuration mode

admin@ORDQFX-1>configure

edit]
admin@LASQFX-1# commit and-quit
commit complete
Exiting configuration mode

After commiting, this configuration should build out the topology shown in Figure
1.6, creating an EVPN-VXLAN connection across the L3VPN network.

 14 Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN

Figure 1.6 Connection Across the L3VPN Network

Now let’s verify that our EVPN is working:

Let’s first validate that the overlay is up and that EVPN is communicating. BGP is
established between the loopbacks. You can see that the EVPN family and NRLI
are present:

admin@LASQFX-1> show bgp neighbor 172.16.1.1
Peer: 172.16.1.1+54265 AS 65001 Local: 172.16.2.2+179 AS 65001
 Group: EVPN-OVERLAY Routing-Instance: master
 Forwarding routing-instance: master
 Type: Internal State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Options: <Preference LocalAddress LogUpDown AddressFamily Rib-group Refresh>
 Address families configured: evpn
 Local Address: 172.16.2.2 Holdtime: 90 Preference: 170

 admin@ORDQFX-1> show bgp neighbor 172.16.2.2
Peer: 172.16.2.2+179 AS 65001 Local: 172.16.1.1+54265 AS 65001
 Group: EVPN-OVERLAY Routing-Instance: master
 Forwarding routing-instance: master
 Type: Internal State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Options: <Preference LocalAddress LogUpDown AddressFamily Rib-group Refresh>
 Address families configured: evpn
 Local Address: 172.16.1.1 Holdtime: 90 Preference: 170

 15 Solution

For testing purposes we have provisioned two VMs in VLAN1500 connected on
each QFX:

LAS-VMHOSTA 10.1.50.100 00:50:79:66:68:00
ORD-VMHOSTB 10.1.50.200 00:50:79:66:68:01

On the LASQFX-1 let’s validate that the LAS-VMHOSTA MAC address is being
learned locally:

admin@LASQFX-1> show ethernet-switching table | match 00:50:79:66:68:00
 VL1500 00:50:79:66:68:00 D xe-0/0/1.0

Let’s see if we are learning this MAC address across the overlay we just estab-
lished. We should see Type 2 routes:

admin@ORDQFX-1> show route table bgp.evpn.0 | match 00:50:79:66:68:00
2:172.16.2.2:100::1500::00:50:79:66:68:00/304
2:172.16.2.2:100::1500::00:50:79:66:68:00::10.1.50.100/304

The ORDQFX-1 is now learning about this remote MAC address:
admin@ORDQFX-1> show ethernet-switching table | match 00:50:79:66:68:00
 VL1500 00:50:79:66:68:00 D vtep.32769 172.16.2.2 .

On the ORDQFX-1 let’s validate that the ORD-VMHOSTB MAC address is being
learned locally:

admin@ORDQFX-1> show ethernet-switching table | match 00:50:79:66:68:01
 VL1500 00:50:79:66:68:01 D xe-0/0/1.0

Let’s see if we are learning this MAC address across the overlay just established.
We should see Type 2 routes:

admin@LASQFX-1> show route table bgp.evpn.0 | match 00:50:79:66:68:01
2:172.16.1.1:1::1500::00:50:79:66:68:01/304
2:172.16.1.1:1::1500::00:50:79:66:68:01::10.1.50.200/304

The LASQFX-1 is now learning about this remote MAC address:
admin@LASQFX-1> show ethernet-switching table | match 00:50:79:66:68:01
 VL1500 00:50:79:66:68:01 D vtep.32769 172.16.1.1

Now that we are learning the MAC addresses across the overlay let’s validate that
we have end-to-end connectivity:

ping from 10.1.50.100 to 10.1.50.200
LAS-VMHOSTA>ping 10.1.50.200
PING 10.1.50.200 (10.1.50.200): 56 data bytes
64 bytes from 10.1.50.200: icmp_seq=0 ttl=64 time=10.048 ms
64 bytes from 10.1.50.200: icmp_seq=1 ttl=64 time=9.079 ms
64 bytes from 10.1.50.200: icmp_seq=2 ttl=64 time=9.059 ms
64 bytes from 10.1.50.200: icmp_seq=3 ttl=64 time=9.060 ms
64 bytes from 10.1.50.200: icmp_seq=4 ttl=64 time=9.064 ms

 16 Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN

2. ORD-VMHOSTB>ping 10.1.50.100
PING 10.1.50.200 (10.1.50.200): 56 data bytes
64 bytes from 10.1.50.100: icmp_seq=0 ttl=64 time=11.025 ms
64 bytes from 10.1.50.100: icmp_seq=1 ttl=64 time=10.072 ms
64 bytes from 10.1.50.100: icmp_seq=2 ttl=64 time=9.073 ms
64 bytes from 10.1.50.100: icmp_seq=3 ttl=64 time=9.050 ms
64 bytes from 10.1.50.100: icmp_seq=4 ttl=64 time=9.038 ms

Discussion
As with most networking solutions, there are always different ways to execute it or
to modify the result. The original design requirement was to stretch a single
VLAN across the overlay. With that as a requirement the QFX5100/QFX5200
can be utilized to provide this functionality.

Layer 3 was added for testing purposes. If any further routing, or inter-VXLAN
routing is required that can be configured as well.

You could configure anycast gateways if inter-VXLAN routing or routing off the
device is required – our example use case only requires stretching one VLAN for
the purposes of VM migration.

Recipe 2: Identifying and Resolving Asymmetric
Routing Problems

By Michel Tepper

 � Junos OS Used: 18.1R2.5

 � Juniper Platforms General Applicability: SRX, vSRX, MX

This recipe shows you how to recognize when asymmetric routing is occurring and
offers various solutions for resolving it.

Problem
Asymmetric routing is probably as old as IP itself but before stateful firewalling it
wasn’t a problem. Nowadays, if a packet hits a stateful firewall with the initiating
packet, but not with the return packet, the firewall will close the session. For TCP
traffic this will kill the session.

Solution
First we’ll describe how this can occur, and how to spot it when it’s happening to
you. Then we’ll get to the solution – actually, several possible solutions.

When a SYN packet arrives at a SRX Series, the security device will follow the first
path processing, and if routing is available to the destination, and a policy allows
it, a session will be created with an initial timeout of 20 seconds. After the SRX
detects that the three-way handshake has completed a SYN-ACK from the destina-
tion IP and an ACK from the source, the timeout is set to the timeout for the TCP
application, 30 minutes by default.

So what if the SYN-ACK is not seen by the SRX? Then the session is closed after
20 seconds, with the reason cited as age-out.

An example of this situation could be: We have a “normal” network with a inter-
nal network, a SRX and a Internet connection:

 18 Recipe 2: Identifying and Resolving Asymmetric Routing Problems

Figure 2.1 Normal Network

Now a private cloud service that’s reachable over a leased line is added to this net-
work as shown in Figure 2.2. The cloud provider places a SRX (SRX-2) on prem-
ises and is given the IP address 10.1.1.3 as local gateway IP. The server in the cloud
runs on IP 10.1.2.2.

Figure 2.2 Normal Network with Private Cloud

The local admin knows how to add a static route on the SRX Services and config-
ures this:

 19 Solution

set routing-options static route 10.1.2.0/24 next-hop 10.1.1.3

The routing table on SRX 1 now holds two routes:
root@SRX-1# run show route

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:00:17
 > to 1.1.3.2 via ge-0/0/0.0

…………………………….

10.1.2.0/24 *[Static/5] 00:02:18
 > to 10.1.1.3 via irb.0
…………………………….

Nothing has changed on the client, so the client is sending traffic for 10.1.2/24 to
its default gateway SRX-1on 10.1.1.1. SRX-1 has a static route for this prefix to
SRX-2, and the packet arrives at the destination as shown in Figure 2.3. The server
sends its reply to SRX-2. SRX-2 sees that the source IP address, 10.1.1.2, is the
client. It has a directly connected route to this client, so it does an ARP request and
sends the packet directly to the client, ignoring SRX-1. SRX-1 has seen the SYN,
but not the SYN-ACK.

Figure 2.3 Normal Network with Asymmetry

Let’s see what happens with a ping from client to server:
root@CLIENT> ping 10.1.2.2
PING 10.1.2.2 (10.1.2.2): 56 data bytes
64 bytes from 10.1.2.2: icmp_seq=0 ttl=62 time=25.771 ms
64 bytes from 10.1.2.2: icmp_seq=1 ttl=63 time=1.800 ms

 20 Recipe 2: Identifying and Resolving Asymmetric Routing Problems

64 bytes from 10.1.2.2: icmp_seq=2 ttl=63 time=1.814 ms
64 bytes from 10.1.2.2: icmp_seq=3 ttl=63 time=1.919 ms
^C

Good, the line seems to work and the server is responding! Let’s set up a SSH ses-
sion to this server:

root@CLIENT> ssh 10.1.2.2
Password:
Last login: Tue May 29 17:33:54 2018 from 10.31.5.66
--- JUNOS 18.1R2.5 built 2018-05-25 20:42:45 UTC
root@EX:RE:0%
root@EX:RE:0% packet_write_wait: Connection to 10.1.2.2 port 22: Broken pipe

That’s strange: it seems we can log in, but quickly after we do the session becomes
non-responsive! After that we get a broken pipe message.

“Quickly” in this case means around 20 seconds after the connection is estab-
lished, so about 15 seconds after the login.

The ping got its reply (directly from SRX-2), but the TCP session was cancelled
after the SRX didn’t see a SYN-ACK after 20 seconds. For ICMP (and UDP) you
won’t notice a problem because both are stateless and the client and the server are
able to reach each other. In the security log you will see packets from client to serv-
er, but no return packets and the reason will be a timeout.

Recognizing the Problem
The easiest way to find asymmetric routing in an open environment is to do a trac-
eroute from client to server, and another one from server to client. The same hops
should be seen in reverse order. Unfortunately the biggest problems with asym-
metric routing arise in environments where SRXs (or other stateful firewalls) are
used. And because of NAT rules or policies traceroute just might not work. So this
is not reliable enough.

Let’s take a look at the traffic log on SRX-1 from this recipe’s reference topology
and try to carefully examine what we can see. Of course, you have to make sure
traffic is logged.

NOTE Enabling logging may sound obvious, but traffic isn’t logged by default. Be
careful not to enable event-based logging on all traffic when you’re not sure of the
impact of logging. To enable logging on the box:

set security log mode event

Add then log session-close to the policy you want logging on. If that policy might
be hit by too much traffic just place a more specific one before it.

All that’s left to enable the logging now is this:

 21 Solution

set system syslog file traffic-log any any
set system syslog file traffic-log match "RT_FLOW_SESSION”

We’re looking for a ping from 10.1.1.2 to 10.1.2.2. It’s a good idea to use the
available tools on the CLI to help here. In the logging, a source-ip is logged first,
then a destination-ip in the same line. So matching with the regular expression
<source-ip>.*<destination-IP> should show all log entries for traffic from this
source to this destination:

root@SRX-1> show log policy_session | match "10.1.1.2.*10.1.2.2"
<14>1 2018-06-12T13:12:21.082Z SRX-1 RT_FLOW - RT_FLOW_SESSION_
CLOSE [junos@2636.1.1.1.2.135 reason="idle Timeout" source-address="10.1.1.2" source-
port="0" destination-address="10.1.2.2" destination-port="4642" connection-tag="0" service-
name="icmp" nat-source-address="10.1.1.2" nat-source-port="0" nat-destination-
address="10.1.2.2" nat-destination-port="4642" nat-connection-tag="0" src-nat-rule-type="N/A" src-
nat-rule-name="N/A" dst-nat-rule-type="N/A" dst-nat-rule-name="N/A" protocol-id="1" policy-
name="trust-to-trust" source-zone-name="trust" destination-zone-name="trust" session-
id-32="8" packets-from-client="1" bytes-from-client="84" packets-from-server="0" bytes-from-
server="0" elapsed-time="59" application="UNKNOWN" nested-
application="UNKNOWN" username="N/A" roles="N/A" packet-incoming-
interface="irb.0" encrypted="UNKNOWN" application-category="N/A" application-sub-
category="N/A" application-risk="-1"] session closed idle Timeout: 10.1.1.2/0-
>10.1.2.2/4642 0x0 icmp 10.1.1.2/0->10.1.2.2/4642 0x0 N/A N/A N/A N/A 1 trust-to-
trust trust trust 8 1(84) 0(0) 59 UNKNOWN UNKNOWN N/A(N/A) irb.0 UNKNOWN N/A N/A -1

What’s in this structured formatted log line?:

 � It’s a session closed log: RT_FLOW_SESSION_CLOSE

 � The reason for closing the session is a time out: reason="idle Timeout"

 � The source IP: source-address="10.1.1.2"

 � The destination IP: destination-address="10.1.2.2"

 � The service of this packet: service-name="icmp"

 � The amount of data from client to server: packets-from-client="1" bytes-from-
client="84"

 � The amount of data from server to client by SRX-1: packets-from-server="0"
bytes-from-server="0”

To summarize: it’s a successful ping but the SRX only saw the initial packet, not
the return packet. You know this because the close reason would otherwise have
been response received, and you would have seen return traffic from the server to
the client. This alone should make you suspect asymmetric routing. To confirm
let’s look at the SSH log line:

root@SRX-1>show log policy_session |match "10.1.1.2.*10.1.2.2.*ssh"
<14>1 2018-06-12T14:06:23.084Z SRX-1 RT_FLOW - RT_FLOW_SESSION_
CLOSE [junos@2636.1.1.1.2.135 reason="idle Timeout" source-address="10.1.1.2" source-
port="60328" destination-address="10.1.2.2" destination-port="22" connection-tag="0" service-
name="junos-ssh" nat-source-address="10.1.1.2" nat-source-port="60328" nat-destination-
address="10.1.2.2" nat-destination-port="22" nat-connection-tag="0" src-nat-rule-type="N/A" src-nat-

 22 Recipe 2: Identifying and Resolving Asymmetric Routing Problems

rule-name="N/A" dst-nat-rule-type="N/A" dst-nat-rule-name="N/A" protocol-id="6" policy-name="trust-
to-trust" source-zone-name="trust" destination-zone-name="trust" session-id-32="62" packets-from-
client="60" bytes-from-client="5445" packets-from-server="0" bytes-from-server="0" elapsed-
time="19" application="UNKNOWN" nested-application="UNKNOWN" username="N/A" roles="N/A" packet-
incoming-interface="irb.0" encrypted="UNKNOWN" application-category="N/A" application-sub-
category="N/A" application-risk="-1"] session closed idle Timeout: 10.1.1.2/60328-
>10.1.2.2/22 0x0 junos-ssh 10.1.1.2/60328->10.1.2.2/22 0x0 N/A N/A N/A N/A 6 trust-to-
trust trust trust 62 60(5445) 0(0) 19 UNKNOWN UNKNOWN N/A(N/A) irb.0 UNKNOWN N/A N/A -1

This log shows a session, with a reason of idle timeout, a duration of 19 seconds
(elapsed-time="19"), 60 packets from client to server, but no return packets, and not
one returned byte, not even the SYN-ACK. The SRX is being bypassed in the re-
turn flow. There must be asymmetric routing going on here.

Implementing the Solution
Let’s move to the solution. There are some very good solutions, some very bad so-
lutions, and some in between. Some of the possible good solutions are:

 � Redesign the routing. Connect SRX-2 to a free port on SRX-1 and use a /30
network in between. This is probably the cleanest solution.

 � Fix it on the client. Create a routing entry on the client instructing it to use
10.1.1.3 as the gateway to reach 10.1.2/24.

 � Fix it on SRX-2 by setting a /32 route to reach 10.1.1.2 to gateway 10.1.1.1:
set routing-options static route 10.1.1.2 next-hop 10.1.1.1. This will work for a
few clients but it is not scalable.

 � Fix it using source-nat on SRX-1. If you NAT the traffic on SRX-1 to the outgo-
ing IP address, the server sees SRX-1 as the source. Return traffic is sent to
SRX-1 and then forwarded to the client. The routing is solved, but the logging
on the server is ruined. Also, traffic coming in from the client network gets
10.1.1.1 as its source IP in the logging. An example for the NAT configuration
is here:

root@SRX-1# show security nat source rule-set trust-to-trust
from zone trust;
to zone trust;
rule intrazone-trust {
 match {
 source-address 0.0.0.0/0;
 }
 then {
 source-nat {
 interface;
 }
 }
}

 23 Discussion

NOTE The ugliest solution is to instruct SRX-1 to forget about SYN checking at
all (set security flow tcp-session no-syn-check). It will work but it is very insecure.
Never tell your security officer if you opt for this one.

You might consider disabling syn-check globally and use apply-groups on the policy
hierarchy to enable again on a per policy basis. On the one policy you don’t want
syn-checking on you then use apply-group-accept on that particular policy’s level. It
works, but stays an ugly solution!

Discussion
Recognizing asymmetric routing might still be a little difficult. It takes some prac-
tice to interpret the traffic log correctly. But remember that whenever you have
TCP connections failing after about 20 seconds asymmetric routing is most likely
your primary suspect!

Choosing the right solution depends on circumstances and personal preferences. In
general, redesigning the network is always the best solution, with NAT as a sec-
ond. Just look at the pros and cons from every angle.

Recipe 3: Configuring Filter-Based Forwarding
Inside a Junos Routing Instance

By Steve Puluka

 � Junos OS Used: 13.3

 � Juniper Platforms General Applicability: SRX; MX; EX; QFX

The Junos OS uses the technique of filter-based forwarding (FBF) to override the
normal, destination-based routing used by all protocols. These techniques allow
routing to occur based on other features of the traffic such as source address, or
protocol and ports, or combinations of destination, source, and protocol and port.

Problem
All of Juniper’s Junos documentation shows how to configure FBF based on the
forwarding action occurring in the main, or base, Junos routing instance. But how
do you implement FBF when the traffic being processed arrives at an interface in-
side of a virtual router’s (VR) routing instance?

Solution
You can configure FBF within a Junos routing instance by following a few configu-
ration steps. First, let’s look at the example network topology and forwarding
problem in Figure 3.1.

 25 Solution

Figure 3.1 Network Diagram Monitoring Application Server with Dual ISP

You can see Figure 3.1 has two ISP connections, A and B, that terminate in a Junos
VR routing instance. The monitoring application has two IP addresses assigned and
uses a different IP address to send probes out to each of the connected ISP links.
This allows the same destination address to be probed and tested for performance
from the server overriding the single routing choice for that single destination cur-
rently installed in the shared VR routing instance. So, in this use case, the match cri-
teria for the FBF function will be the source address coming from the probe server,
one for each ISP.

The configuration needed for the forwarding process contains the following
elements:

First is the filter. The match criteria filter is used to select which traffic is affected.
You create a single filter that has the two match conditions, one for the IP address
associated with each ISP. Then there is a final term that passes all other traffic
unaffected:

set firewall family inet filter isp_fbf term ispa from source-address 192.0.2.2/32
set firewall family inet filter isp_fbf term ispa then routing-instance ispa
set firewall family inet filter isp_fbf term ispb from source-address 192.0.2.3/32
set firewall family inet filter isp_fbf term ispb then routing-instance ispb
set firewall family inet filter isp_fbf term final then accept

The second part is the interface. Here the filter is applied to the interface where the
traffic enters the VR routing instance:

set interfaces ge-0/0/0 unit 0 family inet filter input isp_fbf

Third are the base Junos routing options. This creates a rib-group for the route leak-
ing with the forwarding routing instances that are referenced in the forwarding
routing instance:

 26 Recipe 3: Configuring Filter-Based Forwarding Inside a Junos Routing Instance

set routing-options rib-groups isp_fbf import-rib upstream.inet.0
set routing-options rib-groups isp_fbf import-rib ispa.inet.0
set routing-options rib-groups isp_fbf import-rib ispb.inet.0

Next is the forwarding routing instance. There is a forwarding routing instance for
each ISP that you want to use FBF for forwarding. This contains the route forcing
traffic to the respective ISP:

set routing-instances ispa instance-type forwarding
set routing-instances ispa routing-options static route 0.0.0.0/0 next-hop 203.0.103.3
set routing-instances ispb instance-type forwarding
set routing-instances ispb routing-options static route 0.0.0.0/0 next-hop 198.51.100.3

Fifth is the VR routing instance rib-group. In the existing upstream VR routing in-
stance, you add the rib-group created in the base routing options to leak the routes
from our forwarding routing instances. This also shows that the three interfaces
are all assigned to the upstream VR routing instance:

set routing-instances upstream instance-type virtual-router
set routing-instances upstream interface ge-0/0/0.0
set routing-instances upstream interface ge-0/0/1.0
set routing-instances upstream interface ge-0/0/2.0
set routing-instances upstream routing-options interface-routes rib-group inet isp_fbf

Now for verification. Check the routing tables to confirm the new forwarding in-
stance’s default routes are present. The forwarding instance’s routing tables should
contain all the interface routes from the upstream VR plus the default route that
was installed in the routing table. This insures that when the filter forwards the
matching packets to this forwarding instance, they will be sent to the desired ISP:

root@upstream-1> show route table ispa

ispa.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:00:27
 > to 203.0.103.3 via ge-0/0/1.0
192.0.2.1/31 *[Direct/0] 00:00:41
 > via ge-0/0/0.0
192.0.2.1/32 *[Local/0] 00:00:41
 Local via ge-0/0/0.0
203.0.103.2/31 *[Direct/0] 00:00:41
 > via ge-0/0/1.0
203.0.103.2/32 *[Local/0] 00:00:41
 Local via ge-0/0/1.0
198.51.100.2/31 *[Direct/0] 00:00:41
 > via ge-0/0/2.0
198.51.100.2/32 *[Local/0] 00:00:41
 Local via ge-0/0/2.0

root@upstream-1> show route table ispb

ispa.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 27 Discussion

0.0.0.0/0 *[Static/5] 00:00:27
 > to 198.51.100.3 via ge-0/0/1.0
192.0.2.1/31 *[Direct/0] 00:00:41
 > via ge-0/0/0.0
192.0.2.1/32 *[Local/0] 00:00:41
 Local via ge-0/0/0.0
203.0.103.2/31 *[Direct/0] 00:00:41
 > via ge-0/0/1.0
203.0.103.2/32 *[Local/0] 00:00:41
 Local via ge-0/0/1.0
198.51.100.2/31 *[Direct/0] 00:00:41
 > via ge-0/0/2.0
198.51.100.2/32 *[Local/0] 00:00:41
 Local via ge-0/0/2.0

Discussion
This example used matching conditions of the specific source address used by the
host traffic. Its application is making sure monitoring probes go down specified
paths regardless of the installed routing table. Network facilities like Noction
Route Optimizers use this type of function.

The same source address matching can also be used to allocate ISP by LAN subnet.
Instead of using the /32 match, you can match on the /24 allocated to various
VLANs and assign different groups of users to particular ISP connections. You can
also reference prefix lists in the filter so that subnets can be added and removed
without changing the filter itself.

The same technique can also be used for other match conditions in the filter, for
example, to use make sure ISP A has all web browsing traffic while ISP B is the
source for SMTP traffic outbound. For these types of situations you modify the
filter to match on protocols instead of source address:

set firewall family inet filter isp_fbf term ispa from destination-port http
set firewall family inet filter isp_fbf term ispa from destination-port https
set firewall family inet filter isp_fbf term ispa then routing-instance ispa
set firewall family inet filter isp_fbf term ispb from destination-port smtp
set firewall family inet filter isp_fbf term ispb then routing-instance ispb
set firewall family inet filter isp_fbf term final then accept

In a similar way, many criteria for the forwarding of the traffic are available. Using
DSCP markings allows you to manipulate via class of service filters, and a variety
of other criteria are possible. Using the ? in the filter as you configure will show
you the many options you can match on:

edit firewall family inet filter isp_fbf
Set term ispa from ?
Possible completions:
> address Match IP source or destination address
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> destination-address Match IP destination address

 28 Recipe 3: Configuring Filter-Based Forwarding Inside a Junos Routing Instance

+ destination-port Match TCP/UDP destination port
+ destination-port-except Do not match TCP/UDP destination port
> destination-prefix-list Match IP destination prefixes in named list
+ dscp Match Differentiated Services (DiffServ) code point
+ dscp-except Do not match Differentiated Services (DiffServ) code point
+ esp-spi Match IPSec ESP SPI value
+ esp-spi-except Do not match IPSec ESP SPI value
 first-fragment Match if packet is the first fragment
+ forwarding-class Match forwarding class
+ forwarding-class-except Do not match forwarding class
 fragment-flags Match fragment flags (in symbolic or hex formats) - (Ingress only)
+ fragment-offset Match fragment offset
+ fragment-offset-except Do not match fragment offset
+ icmp-code Match ICMP message code
+ icmp-code-except Do not match ICMP message code
+ icmp-type Match ICMP message type
+ icmp-type-except Do not match ICMP message type
> interface Match interface name
+ interface-group Match interface group
+ interface-group-except Do not match interface group
> interface-set Match interface in set
+ ip-options Match IP options
+ ip-options-except Do not match IP options
 is-fragment Match if packet is a fragment
+ packet-length Match packet length
+ packet-length-except Do not match packet length
+ port Match TCP/UDP source or destination port
+ port-except Do not match TCP/UDP source or destination port
+ precedence Match IP precedence value
+ precedence-except Do not match IP precedence value
> prefix-list Match IP source or destination prefixes in named list
+ protocol Match IP protocol type
+ protocol-except Do not match IP protocol type
 service-filter-hit Match if service-filter-hit is set
> source-address Match IP source address
+ source-port Match TCP/UDP source port
+ source-port-except Do not match TCP/UDP source port
> source-prefix-list Match IP source prefixes in named list
 tcp-established Match packet of an established TCP connection
 tcp-flags Match TCP flags (in symbolic or hex formats)
 tcp-initial Match initial packet of a TCP connection
+ ttl Match IP ttl type
+ ttl-except Do not match IP ttl type

Recipe 4: Configuring DHCP Services on the EX2300/
EX4300 Series with Enhanced Layer 2
Software

By Jeffrey Fry

 � EX4200 Version Used: 12.3R12.4

 � EX4300 Version Used: 14.1X53-D46.7

This recipe will help you convert your legacy EX4200/EX2200 DHCP configura-
tion over to the new Enhanced Layer 2 Software (ELS).

Problem
Traditionally the EX2200 and EX4200 Series were the go-to switches for an enter-
prise or small business. Businesses ran these as their core switches, and commonly
had DHCP configured on them to serve IP addresses to the end workstations.

Now businesses are replacing their EX2200s and EX4200s with the next genera-
tion of switches, the EX2300 and EX4300. With this new hardware comes new
versions of Junos that support a new syntax called ELS. One of the services that
has changed in ELS is DHCP, meaning that the legacy DHCP configuration is no
longer compatible with the ELS version of Junos.

The new DHCP process, called JDHCP, brings the DHCP configuration of ELS-
based switches in line with other Juniper products such as the MX. This new pro-
cess also brings advanced features such as easier configuration of DHCP services in
virtual routing instances, and a single configuration point for both DHCPv4 and
DHCPv6 as a few examples.

This recipe will allow you to convert your legacy DHCP configuration the new
ELS syntax. Let’s get started!

 30 Recipe 4: Configuring DHCP Services on the EX2300/EX4300 Series with Enhanced Layer 2 Software

Solution
To address this problem you must convert your existing EX2200/EX4300 Series
configuration over to an ELS configuration. This recipe will cover the common
configuration elements to help get your new switches to act as a DHCP server or
forward the DHCP packets to a server.

In the first example, let’s use the switch as a DHCP server and take the EX4200
DHCP server configuration and convert it to an EX4300 configuration.

Figure 4.1 depicts what our network looks like for this lab. There’s a client on each
switch so that we can see active leases.

Figure 4.1 An EX Series Acting as DHCP Server

Here is the DHCP configuration for an EX4200 that is acting as the DHCP server.
You will convert the configuration to show what it looks like on an EX4300.The
DHCP pool is configured with the subnet of 192.0.2.0/24, all the ports are as-
signed to a VLAN called WIRED, and there is an IP address of 192.0.2.1/24 on the
vlan.100 interface:

system {
 services {
 pool 192.0.2.0/24 {
 address-range low 192.0.2.25 high 192.0.2.250;
 name-server {
 192.0.2.5;
 192.0.2.6;
 }
 router {
 192.0.2.1;
 }
 }
 }
 }
}
interfaces {
 interface-range ACCESS-PORTS {
 member-range ge-0/0/0 to ge-0/0/47;
 unit 0 {

 31 Solution

 family ethernet-switching {
 vlan {
 members WIRED;
 }
 }
 }
 }
 vlan {
 unit 100 {
 family inet {
 address 192.0.2.1/24;
 }
 }
 }
}
vlans {
 WIRED {
 vlan-id 100;
 l3-interface vlan.100;
 }
}

The first thing that is different in ELS software is that DHCP is enabled on the irb
interface under system services dhcp-local-server stanza. DHCP features, such as
the address pool, any options such as DNS/Gateway/TFTP servers are configured
under the access stanza. The configuration to enable a local DHCP server on the
WIRED VLAN is shown below.

IMPORTANT One of the major differences between the legacy and ELS software
is that the L3 VLAN interfaces has changed from vlan to irb. While ELS will allow
you to configure and commit a vlan interface configuration, the VLAN interfaces
will not work.

To help simplify your configuration you should configure the DHCP group name
to match the name of your configured VLAN. From there add the irb interface to
the group under the system services dhcp-local-server group WIRED section.

The pool-match-order is used to determine where to pull the DHCP IP address from.
You are able to configure ip-address-first, external-authority, and option-82. The
example here is ip-address-first which uses the gateway IP in the DHCP client
PDU:

system {
 services {
 dhcp-local-server {
 pool-match-order {
 ip-address-first;
 }
 group WIRED {
 interface irb.100;
 }
 }
 }
}

 32 Recipe 4: Configuring DHCP Services on the EX2300/EX4300 Series with Enhanced Layer 2 Software

interfaces {
 interface-range ACCESS-PORTS {
 member-range ge-0/0/0 to ge-0/0/47;
 unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members WIRED;
 }
 }
 }
 }
 irb {
 unit 100 {
 family inet {
 address 192.0.2.1/24;
 }
 }
 }
}
vlans {
 WIRED {
 vlan-id 100;
 l3-interface irb.100;
 }
}

The access configuration is similar to what we had before, but instead of DHCP,
you place it under address-assignment. Define your network, range, and any addi-
tional DHCP attributes:

access {
 address-assignment {
 pool WIRED {
 family inet {
 network 192.0.2.0/24;
 range WIRED_CLIENTS {
 low 192.0.2.25;
 high 192.0.2.250;
 }
 dhcp-attributes {
 name-server {
 192.0.2.5;
 192.0.2.6;
 }
 router {
 192.0.2.1;
 }
 }
 }
 }
 }
}

To check to see if your switch is working and acting as a DHCP server, issue the
show dhcp server statistics command. This is the same command that we used on
non-ELS Junos:

 33 Solution

user1@lab> show dhcp server statistics
Packets dropped:
 Total 0

Messages received:
 BOOTREQUEST 1
 DHCPDECLINE 0
 DHCPDISCOVER 0
 DHCPINFORM 1
 DHCPRELEASE 0
 DHCPREQUEST 0

Messages sent:
 BOOTREPLY 1
 DHCPOFFER 0
 DHCPACK 1
 DHCPNAK 0
 DHCPFORCERENEW 0

Everything is up and running.

Your next step is to configure the EX4300 as a DHCP relay. Take a look at Figure
4.2 – the DHCP service is running on an external server instead of locally on the
switch. This means that the EX4300 will be forwarding DHCP requests to the
DHCP Server.

Figure 4.2 EX Series Forwards DHCP to an External Server

In the EX4200/2200 Series switches the DHCP Relay feature is configured under
forwarding-options helpers stanza as shown below:

forwarding-options {
 helpers {
 bootp {
 server 192.0.2.9;
 interface {
 vlan.100;
 }
 }
 }
}

 34 Recipe 4: Configuring DHCP Services on the EX2300/EX4300 Series with Enhanced Layer 2 Software

In ELS the DHCP Relay feature is configured under forwarding-options server-group
and the forwarding-options group stanzas.

You will need to create a DHCP_SERVER group that lists the IP address of one or more
DHCP servers. From there you can configure the group by setting the previously
configured server-group as the active-server-group, and assign one or more IRB
interfaces to the configuration:

dhcp-relay {
 server-group {
 DHCP_SERVER {
 192.0.2.9;
 }
 }
 group DHCP-SERVER {
 active-server-group DHCP_SERVER;
 interface irb.100;
 }

Once that is committed your switch will be forwarding DHCP requests to the
DHCP server. You can check to see if it is working by issuing the show dhcp relay
statistics command:

user1@lab> show dhcp relay statistics
Packets dropped:
 Total 0
 dhcp-service total 0

Messages received:
 BOOTREQUEST 1
 DHCPDECLINE 0
 DHCPDISCOVER 0
 DHCPINFORM 1
 DHCPRELEASE 0
 DHCPREQUEST 0

Messages sent:
 BOOTREPLY 1
 DHCPOFFER 0
 DHCPACK 1
 DHCPNAK 0
 DHCPFORCERENEW 0

Some network devices such as printers need to lease the same IP Address consis-
tently. You can accomplish this by creating a DHCP reservation. Using our exam-
ple above you can create this reservation under the dhcp-attributes using host. In
this next example, a host PRINTER with a MAC address of 00:00:5E:00:53:00 is as-
signed an IP address of 192.0.2.15:

access {
 address-assignment {
 pool WIRED {
 family inet {
 network 192.0.2.0/24;
 dhcp-attributes {

 35 Discussion

 host PRINTER {
 hardware-address 00:00:5E:00:53:00;
 ip-address 192.0.2.15;
 }
 }
 }
 }
 }
}

Once you have that configured and the client comes online, you can see the lease
by using the show dhcp server binding 192.0.2.15 command:

user1@lab> show dhcp server binding 192.0.2.15

IP address Session Id Hardware address Expires State Interface
192.0.2.15 4 00:00:5E:00:53:00 13114 BOUND irb.100

Some devices use DHCP Option to configure services such as a where to find a
wireless controller. A common use case is DHCP Option 43, which is used by
Wireless Access Points (WAPs) to find a centralized wireless controller. DHCP op-
tions are configured for an entire DHCP pool under the dhcp-attributes stanza.
The example below shows how to configure DHCP Option 43 using the
192.0.2.10 as the wireless controller’s IP address:

access {
 address-assignment {
 pool WIRED {
 family inet {
 network 192.0.2.0/24;
 dhcp-attributes {
 option 43 ip-address 192.0.2.10;
 }
 }
 }
 }
 }
}

Discussion
You can find more information about pool-match-order and its options in the Juni-
per TechLibrary: https://www.juniper.net/documentation/en_US/junos/topics/ref-
erence/configuration-statement/pool-match-order-edit-system-services.html.

Security is critical in any infrastructure, understanding DHCP Snooping is some-
thing that will help to prevent rogue DHCP servers. You can read more about that
here: https://www.juniper.net/documentation/en_US/junos/topics/concept/port-
security-dhcp-snooping-els.html.

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/pool-match-order-edit-system-services.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/pool-match-order-edit-system-services.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/port-security-dhcp-snooping-els.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/port-security-dhcp-snooping-els.html

Recipe 5: Exceeding the MTU and GRE Tunnels
By Martin Brown

 � Junos OS Used: 12.3X48-D40.5

 � Juniper Platforms General Applicability: SRX Series

Without the niceties of QoS, modern networks attempt to make bandwidth alloca-
tion fair for all network users, and restricting the size of the packet being sent is
one of the methods employed to ensure all users can send data on the network
when they need to. While this method solves a few issues, it can also create issues
with other network services such as GRE tunnels. This recipe looks at how re-
stricting packet sizes can affect GRE tunnels and how you can overcome these re-
strictions so that they don’t bring your tunnel down.

Problem
If a router is about to send a packet, and that packet exceeds the MTU set on an
interface, the router has only two choices: drop the packet or fragment the packet.

Solution
A number of years ago, when Ethernet and Internet Protocol were first being de-
veloped, designers struggled to decide what the maximum size of packets and
frames should be. While they were deciding on this, another decision was made to
add a field to the packet header which described to the receiving device how big
the packet was, this in turn allowed the receiver to check if anything was missing
and how much more of the packet to expect.

The size of this field is two bytes in length, which, if you know binary, means the
value can be anything between 0 and 65535. As this field is the size in bytes, it
means the maximum theoretical packet size is up to 65535 bytes or 63KB. In to-
day’s modern networks, 63KB isn’t a huge deal. A 1GB network has a throughput

 37 Solution

of around 118MB per second, but back when IP was being developed, some cor-
porate networks were 4Mb/s for Token Ring, or 10Mb/s for 10Base2, and these
networks were shared media, meaning only one host could send data at any one
time.

Imagine, then, as in Figure 5.1, that you have two clients connected to a shared
media network. Both of these clients wish to send a packet to a database server
on another subnet.

Figure 5.1 Two Clients On a 10Base2 Network and a Database Server

Now imagine that both clients wish to send data to the database server at the
same time. Client A wants to send a packet that is only 100 bytes in size, how-
ever, Client B wishes to send a packet that is 65535 bytes in size, and Client B got
there first. Client A will now need to wait an unreasonable amount of time for
Client B to finish sending his frame to the router, but will need to wait for the
router to then process and forward the packet as well.

As you can see, having a packet that is too large on a slow network could have an
adverse effect on other network users, however, it wasn’t just the network speed
that was a factor in deciding how large a packet should be. At the time memory
was expensive, and a 1MB SIMM was, weight for weight, worth more than gold
(and when a router receives a packet, it must first place this in a buffer before pro-
cessing). Because a buffer is basically memory, the smaller you can make the buf-
fer the cheaper the router will be, not only to manufacture, but for the end user to
purchase.

Recognizing that having packets as large as 63KB wasn’t ideal, the designers in-
troduced a mechanism to restrict packet sizes. This method became known as
maximum transmission unit (MTU). Basically, packet sizes were restricted to
whatever the MTU was set to and the default was usually set to 1500 bytes.

 38 Recipe 5: Exceeding the MTU and GRE Tunnels

NOTE Having the MTU set to 1500 bytes is not a hard and fast rule. Network
administrators can, and do, change MTUs when needed, and it is possible to find an
MTU on one interface on one router in a network path set to less than 1500 bytes.

Normally, having the MTU set as default isn’t a huge issue. Most applications and
routers expect the MTU to be that size and will send packets accordingly. Most ap-
plications and routers, however, do not expect a device or service in the network
path to add an additional overhead to the MTU and unfortunately, this can and
does happen, especially when that service is a GRE tunnel.

GRE tunnels are great; they allow network traffic to be sent inside another IP pack-
et. The possibilities when using GRE tunnels are almost endless, however the com-
mon uses for GRE tunnels include:

 � Obfuscation of network traffic

 � Sending data with private IP addresses across the public Internet

 � Sending non-IP traffic such as AppleTalk over an IP network

 � Adding cloud-based proxy services to a corporate network

 � Connecting branch offices to HQs

GRE tunnels don’t perform their magic by actually digging a tunnel through the
Internet; first, where would you put the bits of cloud you just dug up, and second, it
would take too long to actually dig the tunnel. No, in fact, GRE tunnels work by
encapsulating IP packets inside another IP packet, or in the case of IPv6 packets and
protocol data units (PDUs), just inside a single IP packet. In real terms, this basi-
cally means putting an additional header in front of the existing packet or PDU.

Imagine, therefore, that your client in a branch has just sent a packet to a server lo-
cated in the HQ. Your company is connecting the branch to the HQ using a GRE
tunnel, which is traversing the public Internet, as shown in Figure 5.2.

Figure 5.2 Branch and HQ Connected via a GRE Tunnel

 39 Solution

The client in this situation is sending a packet, which is 1500 bytes in size. Under
normal circumstances this wouldn’t be a problem, but because the IP packet from
the client is already equal to the MTU, when the packet is encapsulated inside an-
other IP packet the MTU is then exceeded (though not by much, as you can see in
Figure 5.3).

Figure 5.3 GRE Encapsulated IP Packet

The GRE tunnel header is basically an IP header without the data, which is 20
bytes in length, and an additional GRE header, which is 4 bytes in length. The ad-
ditional 24 bytes will increase the packet size to 1524 bytes. If you were buying
groceries from a shop and the goods came to $15.24 and you only had $15, the
cashier might say, “It’s okay, I’ll let you off the 24 cents.” Routers, however, are
not so generous. They have no leniency and they are almost always black and
white. If a packet exceeds the MTU set on an interface, the router has only one of
two choices:

 � Drop the packet

or

 � Fragment the packet

If a packet is a part of a GRE tunnel and the packet is fragmented, then this isn’t
too much of an issue, the packet will be delivered. If, however, the packet is
dropped, then the tunnel may go down.

Routers will only fragment the packet if they are allowed to do so, and the way
you can tell is if the DF, or “Do Not Fragment,” bit in the header is turned off.
If this bit is turned on, then the router has no choice but to drop the packet, mean-
ing your tunnel will go down.

For some reason, when routers encapsulate a packet within a GRE header, they
have a habit of automatically turning the DF bit on, meaning the router will itself
cause a packet that the router knows will exceed the MTU to be dropped. This is
unacceptable.

Happily, within the Junos OS, there is a solution.

 40 Recipe 5: Exceeding the MTU and GRE Tunnels

Imagine that we are configuring a GRE tunnel between ACME’s HQ and branch
office. In the HQ and branch office are SRX Series firewalls connected directly to
the Internet, with a static default route going to the ISP. At the moment, ACME is
not bothered about encryption, they just want the basic tunnel configured, so let’s
configure these tunnels now.

Similar to most interfaces in Junos OS, GRE tunnel interfaces always start with
‘gr’ followed by numbers which represent the FPC the interface is on, the PIC the
interface is on, and the port number itself. GRE tunnel interfaces always have a
sub interface number, too. In ACME’s case, the HQ’s interface will be named gr-
0/0/0 and it will have a sub interface of 10:

edit interface gr-0/0/0.10

The tunnel source is the HQ firewall’s external interface address, which is
203.0.113.16 and the destination is the IP address of the branch SRX’s external
interface, which is 192.0.2.10:

set tunnel source 203.0.113.16
set tunnel destination 192.0.2.10

Finally, in order to allow the interfaces to become part of an OSPF domain, the
tunnel interface is given an IP address of 192.168.1.1/30:

set family inet address 192.168.1.1/30

Once this is done, you need to perform the opposite on the branch SRX with the
tunnel source and destination addresses reversed. The interface address will be set
to 192.168.1.2/30, and the interface will also be named gr-0/0/0 but with a sub
interface of 0:

edit interface gr-0/0/0.0
set tunnel source 192.0.2.10
set tunnel destination 203.0.113.16
set family inet address 192.168.1.2/30

If you left the configuration as it is, you will probably start suffering from packet
loss due to packets exceeding the MTU and therefore being dropped. Therefore,
the first thing you should do is tell Junos OS to turn the “DF” bit off. In addition,
you should also tell Junos OS to allow fragmentation on tunneled traffic. Assum-
ing you are at the top of the configuration hierarchy, turning the DF bit off is
achieved by running the following command on the HQ SRX:

set interface gr-0/0/0.10 clear-dont-fragment-bit
set interface gr-0/0/0.10 tunnel allow-fragmentation

On the branch SRX, you would change the command due to the different interface
name:

set interface gr-0/0/0.0 clear-dont-fragment-bit
set interface gr-0/0/0.0 tunnel allow-fragmentation

 41 Solution

In addition to clearing the DF bit, one should also attempt to prevent the packet
from exceeding the MTU in the first place. This can be done by increasing the
MTU itself. Juniper recommends setting the MTU to 1524 bytes, which, if you
recall, is the default MTU size of 1500 bytes plus the 24 bytes of the tunnel header.
This is set within the interface configuration hierarchy under family inet:

set interface gr-0/0/0.10 family inet mtu 1524

And the branch would be configured as follows:
set interface gr-0/0/0.0 family inet mtu 1524

Finally, Junos OS also has a rather useful feature called path maximum transmis-
sion unit discovery (path MTU discovery), which is a method that allows a Junos
OS based device to find out what the lowest MTU is set to in a network path. So
when the SRX sends a packet to the destination, it will deliberately turn the DF bit
on. This seems counterproductive when you have specified that the DF bit should
be turned off, but Junos OS does this for a very good reason as shown in Figure
5.4.

Figure 5.4 Four Routers With Different MTUs

If you look at Figure 5.4, you will notice a client and a server and in-between a net-
work path consisting of four routers. Above each router is number representing
the value of the MTU that the router interfaces are set to. Router A has path
MTU discovery enabled and it will send a packet and then listen for an ICMP
Fragmentation Needed message.

Router B has its interfaces set with an MTU of 1524 so it will just forward the
packet on. Router C’s interfaces, however, have an MTU of 1300. This will be
smaller than the packet sent by router A, therefore router C will respond with the
Fragmentation Needed message router A was waiting for. Router A will automati-
cally adjust the MTU accordingly and in addition, periodically send a probe to see
if the MTU has increased or not.

The way you would enable path MTU discovery on the HQ SRX is to run the fol-
lowing command:

set interface gr-0/0/0.10 tunnel path-mtu-discovery

 42 Recipe 5: Exceeding the MTU and GRE Tunnels

On the branch SRX, you run the same command, changing the interface to the one
used in the branch:

set interface gr-0/0/0.10 tunnel path-mtu-discovery

NOTE One caveat with path MTU discovery is occasionally administrators
prevent network devices from sending ICMP messages. In that situation, the
router will simply need to revert back to fragmentation.

In theory, that’s all you need to do in order to try to prevent packets from being
fragmented or to allow them to be fragmented if absolutely necessary. In either
case, this should stop packets from being dropped due to them exceeding the MTU
size. You should, however, add the gr-0/0/0.10 interface on the HQ SRX and gr-
0/0/0.0 interface on the branch SRX to the trusted security zone of the SRX, and in
addition, add them to OSPF so that they can form adjacencies and exchange rout-
ing information.

On both of the SRX Series firewalls, the trusted zone is called TRUST and all inter-
faces will be in area 0.0.0.0 of OSPF. On the HQ SRX you would add this con-
figuration as follows:

set security zones security-zone TRUST interfaces gr-0/0/0.10
set security zones security-zone TRUST interfaces gr-0/0/0.10 host-inbound-traffic protocols ospf
set protocols ospf area 0.0.0.0 interface gr-0/0/0.10

When running the command on the branch SRX, you would need to simply
change the interface name:

set security zones security-zone TRUST interfaces gr-0/0/0.0
set security zones security-zone TRUST interfaces gr-0/0/0.0 host-inbound-traffic protocols ospf

set protocols ospf area 0.0.0.0 interface gr-0/0/0.0

All that remains now is to commit the changes and test to see if everything works.

Testing
Once you committed the changes, you need to test to make sure traffic is passing
over the GRE tunnel. First ping the IP address of the tunnel interface in the branch
from HQ. As the default route is going to an ISP, the ISP will drop any traffic com-
ing from a private IP address. This means if you do have a response, it must have
travelled over the GRE tunnel. In our case, you want to check if large packets are
allowed, therefore let’s set the size of the ping to 1496 bytes:

root@ACME-HQ-SRX> ping size 1496 192.168.1.2 count 4
PING 192.168.1.2 (192.168.1.2): 1496 data bytes
1504 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=4.134 ms
1504 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=4.638 ms

 43 Solution

1504 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=3.857 ms
1504 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=4.212 ms

--- 192.168.1.2 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.857/4.210/4.638/0.280 ms

This worked great, however, the question is: was this packet fragmented or not?
To confirm this question, run the ping again but enable the do-not-fragment option:

root@ACME-HQ-SRX> ping size 1496 192.168.1.2 count 4 do-not-fragment
PING 192.168.1.2 (192.168.1.2): 1496 data bytes

--- 192.168.1.2 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

As you can see the packet was dropped, indicating the initial ping sent was frag-
mented; but at least it wasn’t dropped.

The next thing you should check is that OSPF has formed an adjacency over the
tunnel. The show ospf neighbor command can easily check this:

root@ACME-HQ-SRX> show ospf neighbor
Address Interface State ID Pri Dead
192.168.1.2 gr-0/0/0.10 Full 172.23.7.2 128 31

Finally, you can also monitor the traffic using the monitor traffic interface gr-0/0/0
command to see if traffic destined for the SRX (therefore OSPF hello packets) is
being sent across the tunnel:

root@ACME-HQ-SRX> monitor traffic interface gr-0/0/0 no-resolve
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Address resolution is OFF.
Listening on gr-0/0/0, capture size 96 bytes

20:52:59.495444 In IP 192.168.1.2 > 224.0.0.5: OSPFv2, Hello, length 60
20:53:08.135786 In IP 192.168.1.2 > 224.0.0.5: OSPFv2, Hello, length 60
20:53:15.813676 In IP 192.168.1.2 > 224.0.0.5: OSPFv2, Hello, length 60

And, as you can clearly see from the output, they are being sent. This means our
tunnel is up and passing traffic. In addition, if absolutely necessary, the router will
fragment the packet in order to prevent them from being dropped.

Recipe 6: Application-based Routing
By Michel Tepper

 � Junos OS Used: 18.1R2.5

 � Juniper Platforms General Applicability: SRX, vSRX

This recipe shows how to configure advanced policy-based routing (APBR) based
on the application being used by the end user.

Problem
When your SRX has multiple connections to the Internet, you may want to dif-
ferentiate mission-critical traffic from less important traffic. In this case we want to
route social media traffic through a secondary ISP.

Solution
Starting from Junos 15.1X49-D110, the SRX Series can route based on an applica-
tion definition as opposed to Layer 3 and Layer 4 information. The functionality is
part of the Juniper AppSecure feature set and is included with any SRX that has
the Secure Edge software. Officially it’s called advanced policy-based routing
(APBR), but most engineers will talk about application-based routing when refer-
ring to the feature set.

Let’s review Figure 6.1 to illustrate our current network.

 45 Solution

Figure 6.1 Application-based Routing Setup

In Figure 6.1 default routing is done to ISP-A, where all social media traffic should
be routed using ISP-B.

SRX-1 shows the following:
user@SRX-1> show interfaces terse
......
ge-0/0/1 up up
ge-0/0/1.0 up up inet 10.1.2.2/24
ge-0/0/2 up up
ge-0/0/2.0 up up inet 10.1.3.2/24
......

user@SRX-1> show route
inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 06:09:55
 > to 10.1.2.1 via ge-0/0/1.0
.......

When you want to route certain traffic to 10.1.3.1 (ISP-B), you need to create a
forwarding routing instance:

set routing-instances SocMedInstance instance-type forwarding
set routing-instances SocMedInstance routing-options static route 0.0.0.0/0 next-hop 10.1.3.1
set routing-instances SocMedInstance routing-options static route 0.0.0.0/0 qualified-next-
hop 10.1.2.1 metric 10

 46 Recipe 6: Application-based Routing

In routing instance SocMediaInstance the connected route from ge-0/0/2 is not
known yet, so you need to “route leak” the connected route from the instance
master to this instance. To do this use the instance import statement in the newly
created routing instance and filter out the desired connected route. To create the
route filter use this statement:

set policy-options policy-statement ImportConnected term 1 from instance master
set policy-options policy-statement ImportConnected term 1 then next term
set policy-options policy-statement ImportConnected term 2 from protocol direct
set policy-options policy-statement ImportConnected term 2 then accept
set policy-options policy-statement ImportConnected term 3 then reject

The filter is then applied to the routing instance SocMediaInstance:
set routing-instances SocMedInstance routing-options instance-import ImportConnected

The configuration so far should look like this:
user@SRX-1# show routing-instances
SocMedInstance {
 instance-type forwarding;
 routing-options {
 static {
 route 0.0.0.0/0 {
 next-hop 10.1.3.1;
 qualified-next-hop 10.1.2.1 {
 metric 10;
 }
 }
 }
 instance-import ImportConnected;
 }
}

user@SRX-1# show policy-options
policy-statement ImportConnected {
 term 1 {
 from instance master;
 then next term;
 }
 term 2 {
 from protocol direct;
 then accept;
 }
 term 3 {
 then reject;
 }

The relevant parts of the routing table now look like:
user@SRX-1> show route

inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 06:09:55

 47 Solution

 > to 10.1.2.1 via ge-0/0/1.0
.......
10.1.2.0/24 *[Direct/0] 06:11:03
 > via ge-0/0/1.0
10.1.2.2/32 *[Local/0] 06:11:03
 Local via ge-0/0/1.0
10.1.3.0/24 *[Direct/0] 06:11:03
 > via ge-0/0/2.0
10.1.3.2/32 *[Local/0] 06:11:03
 Local via ge-0/0/2.0
.......
SocMedInstance.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 01:24:59
 > to 10.1.3.1 via ge-0/0/2.0
 [Static/5] 01:24:59, metric 10
 > to 10.1.2.1 via ge-0/0/1.0
10.1.2.0/24 *[Direct/0] 01:24:59
 > via ge-0/0/1.0
10.1.3.0/24 *[Direct/0] 01:24:59
 > via ge-0/0/2.0
........

Just to recap: we have a forwarding routing instance that sets its route towards
ISP-B. The directly connected routes are also present in the forwarding routing in-
stance. Now we can configure APBR to direct traffic to this forwarding routing
instance.

With filter-based forwarding (FBF) you would configure a stateless firewall filter to
intercept interesting traffic based off of Layer 3 and Layer 4 information, and send
it to the forwarding routing instance. However we want to use the App-Route fea-
ture to recognize and re-route applications. App-Route is part of the AppSecure
suite, and a license is provided if the SRX was purchased with the Secure Edge
software.

NOTE SRX1500+ have the AppSecure suite on by default. Same for the SRX300
series if you purchased the Secure Edge software: https://www.juniper.net/docu-
mentation/en_US/junos/topics/topic-map/security-application-identification-pre-
defined-signatures.html.

Let’s load the AppSecure signatures by first acquiring the license and then running
the operational commands to download and install the Application-ID signatures:

request system license update
request system services application-identification download
request system services application-identification install

Now you need to create an APBR profile to route social networking traffic through
ISP-B:

set security advance-policy-based-routing profile MyProfile rule social-media match dynamic-
application-group junos:web:social-networking

https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-identification-predefined-signatures.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-identification-predefined-signatures.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-identification-predefined-signatures.html

 48 Recipe 6: Application-based Routing

set security advance-policy-based-routing profile MyProfile rule social-media then routing-
instance SocMedInstance

So now we have an APBR profile that detects social media applications and for-
wards them to the SocMedInstance forwarding routing instance. From there the ap-
plications will leave the SRX through ISP-B. The configuration should look like
this:

user@SRX-1# show security advance-policy-based-routing
profile MyProfile {
 rule social-media {
 match {
 dynamic-application-group junos:web:social-networking;
 }
 then {
 routing-instance SocMedInstance;
 }
 }
}

Just having a profile configured won’t actually forward traffic to ISP-B. We need to
apply the profile based on where traffic comes into to the SRX; in this case we will
apply the profile on the trust security zone:

Set security zones security-zone trust advance-policy-based-routing-profile MyProfile

The configuration should look like:
user@SRX-1# show security zones security-zone trust
host-inbound-traffic {

advance-policy-based-routing-profile {
 MyProfile;
}

After the final commit everything should be set. Let’s connect a laptop to SRX-1
on the trust side of the SRX and access a social media application like Facebook.
All traffic should use ge-0/0/1 as the outgoing interface, but the Facebook traffic
should leave SRX-1 on interface ge-0/0/2. Let’s verify using the show security flow
session command:

Session ID: 231, Policy name: trust-to-untrust/5, Timeout: 1762, Valid
 In: 10.1.1.2/54050 --> 54.68.233.232/443;tcp, Conn Tag: 0x0, If: irb.0, Pkts: 26, Bytes: 5952,
 Out: 54.68.233.232/443 --> 10.1.2.2/18313;tcp, Conn Tag: 0x0, If: ge-
0/0/1.0, Pkts: 26, Bytes: 15576,

So indeed ge-0/0/1 – that is, the path through ISP-A – is still being used as the de-
fault path. Let’s check the Facebook session with the following: show security flow
session dynamic-application junos:FACEBOOK-ACCESS.

Session ID: 577, Policy name: trust-to-untrust/5, Timeout: 1778, Valid
 In: 10.1.1.2/52769 --> 31.13.92.38/443;tcp, Conn Tag: 0x0, If: irb.0, Pkts: 1065, Bytes: 202471,
 Out: 31.13.92.38/443 --> 10.1.2.2/3559;tcp, Conn Tag: 0x0, If: ge-

 49 Discussion

0/0/2.0, Pkts: 865, Bytes: 778279

The Facebook session uses ge-0/0/2 as egress interface, so yes: our configuration is
working!

You can check this further by using the statistics option:
user@SRX-1> show security advance-policy-based-routing statistics
 Advance Profile Based Routing statistics:
 Sessions Processed 794
 AppID cache hits 652
 AppID requested 165
 Rule matches 36
 Route changed on cache hits 0
 Route changed midstream 36
 Zone mismatch 0
 Drop on zone mismatch 0
 Next hop not found 0

And you can see that things are configured correctly.

Discussion
The functionality of advanced policy-based routing (AppRoute) is doing what it’s
supposed to do. While the routing is now working as we expected, if you take a
closer look at the session table you’ll see that the return traffic is sent to 10.1.1.2
– the IP address of ge-0/0/1.

This means that the Source NAT IP has not changed when routing is changed mid-
session; otherwise the server would receive traffic from a new IP address while
handling an existing session. This obviously isn’t desirable, but the consequence is
that the return traffic will be routed to ge-0/0/1.

By default the SRX will not re-route an existing session towards ISP-B, but any
new session will be redirected. If you want to change this behavior the command
to do so is below:

user@SRX-1> set security advance-policy-based-routing tunables max-route-change 1

MORE? Information on this setting can be found in the following KB article:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB32303. Additional
resources on logging and troubleshooting APBR can be found at: https://www.
juniper.net/documentation/en_US/junos/topics/topic-map/security-application-
advanced-policy-based-routing.html.

https://kb.juniper.net/InfoCenter/index?page=content&id=KB32303
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-advanced-policy-based-routing.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-advanced-policy-based-routing.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-application-advanced-policy-based-routing.html

Recipe 7: Automating Junos with Salt
by Peter Klimai

 � Salt Version Used: 2018.3 (Oxygen)

 � Juniper Platforms General Applicability: All Junos-based platforms

 � Junos OS required: 11.4 or later

This recipe will help you to get started automating Junos devices with Salt, the
powerful configuration management and remote execution software platform.
You will work through Salt installation and basic settings step-by-step, then you
will remotely execute some of the related Junos commands and apply some Junos
device configurations. This allows you to learn relevant Salt concepts while prac-
ticing with it.

Problem
You want to automate certain operational and configuration tasks on your Junos
network devices.

Solution
Salt (https://saltstack.com/) is one of the most powerful, scalable, and flexible plat-
forms that allows you automate key operational and configuration tasks, and it
already comes with modules supporting Junos OS.

NOTE Yet another reason to start learning and using Salt is its native support for
event-driven infrastructure (EDI). With Salt, you can automatically react on
certain Junos events in certain ways, as you see fit. Generally, it is recommended to
first automate provisioning and monitoring, so this recipe does not go into any
EDI details.

NOTE This recipe is intended to get you started. Salt has extensive documenta-
tion available at https://docs.saltstack.com.

https://saltstack.com/
https://docs.saltstack.com

 51 Solution

Setting up Salt and configuring it to work with Junos is quite easy if you follow the
steps in this recipe. The terminology used by Salt and the basics of its architecture,
as it applies to managing Junos devices, is explained in-line.

The lab setup used for this recipe is shown in Fig. 7.1.

Figure 7.1 This Recipe’s Lab Setup

The setup includes a Salt Master server (master) and a Salt Minion server (minion1)
running two proxy minions, one for each of two vMX devices in the topology.
Management IP addresses are shown.

Some details on the setup are:

 � There are two Linux Servers, specifically running Ubuntu 16.04.4 LTS, master
and minion1. Other UNIX flavors should work as well. Servers run as virtual
machines using VMWare ESXi hypervisor but you can use any other option,
such as KVM or VirtualBox.

 � Two Juniper vMX devices, vMX-1 and vMX-2, are also being used.

NOTE Day One: vMX Up and Running by Matt Dinham explains the architec-
ture and installation of vMX for KVM hypervisor: https://www.juniper.net/us/en/
training/jnbooks/day-one/automation-series/vmx-up-running/. The following blog
post by Clay Haynes shows how to run the vMX on VMWare Fusion:
https://alostrealist.com/2018/04/16/running-the-vmx-on-vmware-fusion/.

NOTE This recipe will not use any vMX-specific functionality, so replacing the
vMXs in this recipe with any other Junos devices, such as physical MX/EX/SRX/
QFX Series, or vSRX, will also work for the examples discussed here.

NETCONF over SSH must be enabled on both Junos devices, as follows (this
shows for one device – make sure you perform this on both devices):

https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/
https://alostrealist.com/2018/04/16/running-the-vmx-on-vmware-fusion/

 52 Recipe 7: Automating Junos with Salt

lab@vMX-1> configure
Entering configuration mode

[edit]
lab@vMX-1# set system services netconf ssh

[edit]
lab@vMX-1# commit
commit complete

Installing Salt
At this point let’s assume you have two Linux servers (VMs) ready for Salt installa-
tion, as per Fig. 7.1. When provisioning Linux, it is enough to install standard file
system utilities and OpenSSH server.

Here is some key terminology: Salt Master is the control server for the main Salt.
Salt Minion is a machine managed by Salt. Salt is generally agent-based architec-
ture, so devices managed by Salt need to run Salt Minion process. As you will see
in the next steps, devices that can’t run the Salt Minion process for some reason
can still be managed by using proxy minions.

NOTE Generally, Salt is very flexible and every component is customizable and
replaceable. The Salt setup may differ greatly depending on the use case – for
example, masterless setup is possible. Also, new features are being introduced
regularly. In particular, salt-ssh package allows Salt to work in agentless mode (no
minion required). This option is not currently used for Junos device management,
so it’s not discussed here.

The easiest way to set up Salt is through a bootstrap script: (https://docs.saltstack.
com/en/latest/topics/tutorials/salt_bootstrap.html). To install Salt on the master
server, issue the following commands:

lab@master:~$ curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
lab@master:~$ sudo sh bootstrap_salt.sh -M

Output is omitted for brevity. The installation will take a minute or so. When it
completes, you can check the Salt version by using the following command:

lab@master:~$ salt --version
salt 2018.3.1 (Oxygen)

On the minion1 server, install Salt by performing similar steps, but this time do not
use the –M key:

lab@minion1:~$ curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
lab@minion1:~$ sudo sh bootstrap_salt.sh

... OMITTED ...

lab@minion1:~$ salt-minion --version
salt-minion 2018.3.1 (Oxygen)

https://docs.saltstack.com/en/latest/topics/tutorials/salt_bootstrap.html
https://docs.saltstack.com/en/latest/topics/tutorials/salt_bootstrap.html

 53 Solution

NOTE By default, bootstrap script installs the latest stable Salt version, so it may
differ from 2018.3.1 that we use for this recipe. This will typically not be a
problem. However, you can enforce installation of the specific Salt version, if you
wish, by modifying the second command as follows: sudo sh bootstrap_salt.sh -M
git v2018.3.1 (this is for master; for minion, just omit the –M key).

Performing Basic Salt Configuration and Verification
There’s one thing you definitely want to configure on the minion, and that’s to tell
it where the master is:(the default is actually to look for host named “salt”, which
does not readily meet the needs of this recipe).

So, start configuring the minion on minion1 server:
lab@minion1:~$ sudo vi /etc/salt/minion

NOTE Although the examples show you using the vi text editor, any other text
editor of your choice will work.

Add the following line (in bold) to the file. (Note that lines starting with a hash are
treated as comments):

...
Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt
master: 10.254.0.200

...

Here, the IP address is the master server’s address in the lab setup. Replace it with
the address in your lab.

Finally, restart the Salt minion process so it re-reads the configuration:
lab@minion1:~$ sudo service salt-minion restart

Now move to the master and issue the following command to view minion’s pub-
lic key status:

lab@master:~$ sudo salt-key --list-all
Accepted Keys:
Denied Keys:
Unaccepted Keys:
minion1.edu.example.com
Rejected Keys:

Note the ID of the minion with an unaccepted key. The security system of Salt will
not allow communication until you accept minion’s key on master – so let’s do that
now:

 54 Recipe 7: Automating Junos with Salt

lab@master:~$ sudo salt-key --accept=minion1.edu.example.com
The following keys are going to be accepted:
Unaccepted Keys:
minion1.edu.example.com
Proceed? [n/Y] y
Key for minion minion1.edu.example.com accepted.

Now let’s execute some Salt commands, using its remote execution capabilities.
Note we are testing basic Salt features here - at this point no Junos is involved at
all.

First, let’s “ping” our minion:
lab@master:~$ sudo salt '*' test.ping
minion1.edu.example.com:
 True

Here, you called the test.ping execution function that is used to make sure the
minion is up and responding. The communication happens over Salt’s ZeroMQ
message bus (so this is not an ICMP ping). The argument ‘*’ means that you want
to execute on all minions, but so far we have only one.

Generally speaking, various Salt execution modules allow you to perform (exe-
cute) some specific tasks on minions: test is just one of such modules.

Let’s now try the cmd.run function - it allows running arbitrary commands on min-
ions. Let’s check minion’s Python version:

lab@master:~$ sudo salt minion* cmd.run 'python -V'
minion1.edu.example.com:
 Python 2.7.12

You can run any other commands on the minions the same way. Check out the full
Salt module index at https://docs.saltstack.com/en/latest/salt-modindex.html for
more examples.

Enabling Junos Proxy Minion
You do not run Salt minion on-box with Junos devices, instead a proxy minion
process is used. The proxy minion process may run either on the master server or
on a separate server. The latter option allows for load distribution in scaled setups
and seems a bit clearer from the educational point of view, so let’s use it here:
proxy minions will run on the minion1 server.

A proxy minion is just a software process (daemon) used to manage, in this case, a
networking device. You need one proxy process per device, and for Junos one such
process requires about 100MB of RAM, so plan accordingly. Refer again at Figure
7.1. From one “side”, proxy minion connects to Salt master using the ZeroMQ
bus, while from the other side it is connected to the Junos device using NETCONF
protocol (Junos PyEZ library is used under the hood).

https://docs.saltstack.com/en/latest/salt-modindex.html

 55 Solution

To start configuring Salt proxy, edit the /etc/salt/proxy file on minion1 server:
lab@minion1:~$ sudo vi /etc/salt/proxy

And add a new line to it, telling where the master is:
master: 10.254.0.200

Before proceeding, it’s time to get familiar with one more Salt concept: pillar. The
pillar system provides various data associated with minions. In the simplest case,
pillar files will be YAML files with defined variable values, but pillar data can also
be stored in a database such as SQL, obtained via REST API from some external
system, etc.

The location where pillar files are stored can vary. By default, it is in /srv/pillar
directory of the master server (this is defined by pillar_roots parameter in /etc/
salt/master configuration file on the Salt master). Let’s just use the default directory
– to do so, you will have to create it first:

lab@master:~$ sudo mkdir /srv/pillar

In this directory, create the /srv/pillar/proxy-1.sls file with the following content
(just replace host IP, username, and password with values matching your setup, if
they are different):

lab@master:~$ cat /srv/pillar/proxy-1.sls
proxy:

 proxytype: junos

 host: 10.254.0.41

 username: lab

 password: lab123

 port: 830

NOTE Salt certainly has ways to better secure your passwords, but that is beyond
the scope of this beginning Salt recipe.

Similarly, create the /srv/pillar/proxy-2.sls file:
lab@master:~$ cat /srv/pillar/proxy-2.sls
proxy:

 proxytype: junos

 host: 10.254.0.42

 username: lab

 password: lab123

 port: 830

The two files that you just created essentially contain some mappings (pairs of
keys and corresponding values). For example, the key username maps to value lab,
etc. The key proxy has a nested mapping as a value, which is shown by indentation.
The format that you just used for these files is YAML (http://yaml.org/), while the
file extension is SLS (SaLt State).

http://yaml.org/

 56 Recipe 7: Automating Junos with Salt

Generally, SLS files can be in various formats: in the simplest case it is YAML, or it
can be YAML+Jinja (where Jinja is a templates format – see http://jinja.pocoo.
org/), or something else if properly customized (maybe even Python code – Salt is
very flexible).

Now let’s create the pillar top file. This file will define which minions have access
to which pillar data. In our case, the content will be as follows:

lab@master:~$ cat /srv/pillar/top.sls
base:

 'vMX-1':

 - proxy-1

 'vMX-2':

 - proxy-2

Here, base is the name of what is called environment in Salt. For example, you can
have testing/staging/production environments – but in this recipe we will only use
the default base environment.

Now it’s time to perform settings on the minion side. Switch to the minion1 server.
Remember, this server will host a couple of Junos proxy minion processes. For Ju-
nos proxy to successfully communicate with Junos devices, a couple of Python
packages are needed – namely, Junos PyEZ and jxmlease (and their dependencies as
well). To install those libraries, first install the Python PIP tool, and then the pack-
ages themselves (output omitted for brevity):

lab@minion1:~$ sudo apt-get install python-pip

lab@minion1:~$ sudo pip install junos-eznc

lab@minion1:~$ sudo python -m easy_install --upgrade pyOpenSSL

lab@minion1:~$ sudo pip install jxmlease

NOTE Upgrade the pyopenssl package before installing jxmlease is used here as a
workaround, otherwise you may see an error message like this: “AttributeError:
'module' object has no attribute 'SSL_ST_INIT'”.

Okay it’s time to launch the Junos Salt proxy processes:
lab@minion1:~$ sudo salt-proxy --proxyid=vMX-1 -d
lab@minion1:~$ sudo salt-proxy --proxyid=vMX-2 -d

And, on the master, accept the minion keys, just as you did before:
lab@master:~$ sudo salt-key -a vMX-1
The following keys are going to be accepted:
Unaccepted Keys:
vMX-1
Proceed? [n/Y] y
Key for minion vMX-1 accepted.
lab@master:~$ sudo salt-key -a vMX-2
The following keys are going to be accepted:

http://jinja.pocoo.org/
http://jinja.pocoo.org/

 57 Solution

Unaccepted Keys:
vMX-2
Proceed? [n/Y] y
Key for minion vMX-2 accepted.

How many minions do you think you have now? Let’s check with test.ping:
lab@master:~$ sudo salt '*' test.ping
minion1.edu.example.com:
 True
vMX-1:
 True
vMX-2:
 True

So, you have two more minions (proxies) in addition to minion1.

Using the Junos Execution Module
Salt includes several execution functions for Junos, such as junos.cli (executes the
CLI commands and returns the output in the specified format), junos.install_config
(installs the given configuration), and junos.install_os (installs the given software
image on the device), and more.

NOTE The complete documentation for the Junos execution module, named
salt.modules.junos, is available at https://docs.saltstack.com/en/latest/ref/modules/
all/salt.modules.junos.html.

Let’s first use the junos.facts execution function to collect a basic information bun-
dle from our managed devices:

lab@master:~$ sudo salt vMX* junos.facts
vMX-2:

 facts:

 2RE:
 False
 HOME:
 /var/home/lab
 RE0:

 last_reboot_reason:
 Router rebooted after a normal shutdown.
...
vMX-1:

 facts:

 2RE:
 False
 HOME:
 /var/home/lab
 RE0:

https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html

 58 Recipe 7: Automating Junos with Salt

 last_reboot_reason:
 Router rebooted after a normal shutdown.
...

As you can see, a bunch of information is collected and displayed for each device
(output is abbreviated). Needless to say, the tasks on different devices are per-
formed in parallel.

A noteworthy thing about facts collected by junos.facts is that they are stored in
the Salt grains. Grains generally contain data about the managed system, and you
can use that data in various places while working with Salt—let’s say filtering
when running execution functions, for example—as shown below:

lab@master:~$ sudo salt -G 'os_family:junos' junos.cli "show interfaces fxp0.0 terse"
vMX-1:

 message:

 Interface Admin Link Proto Local Remote
 fxp0.0 up up inet 10.254.0.41/24
 out:
 True
vMX-2:

 message:

 Interface Admin Link Proto Local Remote
 fxp0.0 up up inet 10.254.0.42/24
 out:
 True

In this example the CLI command was only executed on devices that had os_family
grain equal to junos (without that filter Salt would also try to execute the junos.cli
module on minion1 – that operation would be unsuccessful).

Junos Configuration Management with Salt
Now it’s time to apply some configurations. Let’s say you want to configure gen-
eral infrastructure services on your vMX devices – namely, DNS and NTP. One
basic idea that you want to take advantage of with automation systems like Salt is
configuration templating. That is, network device feature configuration must be
separated from variable data like IP addresses, VLAN numbers, etc.

With Salt, the variable data is naturally stored in the pillar system. Let’s create a
separate file infrastructure_data.sls in the pillar root directory, containing lists
with all the NTP and DNS servers that you use:

lab@master:~$ cat /srv/pillar/infrastructure_data.sls
ntp_servers:

 - 192.168.0.250

 - 192.168.0.251

dns_servers:

 - 192.168.0.253

 - 192.168.0.254

 59 Solution

This SLS file uses YAML syntax that should, for the most part, already be familiar
to you. Dashes represent list elements (a list is just a number of ordered values,
such as IP addresses in this example). Remember that indentation is important as it
shows structure (nesting of objects) in YAML.

Then, you want to allow your proxy minions to use the data from the infrastruc-
ture_data.sls file. To do so, edit the pillar top file as follows (new lines that you
need to add are in bold; realize there are really many other ways you could achieve
the same result):

lab@master:~$ cat /srv/pillar/top.sls
base:
 'vMX-1':
 - proxy-1
 - infrastructure_data

 'vMX-2':
 - proxy-2
 - infrastructure_data

And also refresh the pillar data as follows:
lab@master:~$ sudo salt vMX* saltutil.refresh_pillar
vMX-1:
 True
vMX-2:
 True

Now let’s create a configuration template – but you need to figure out where to
place it first. Salt has a concept of file roots directory (actually, it could be a list of
directories). It’s configured as file_roots parameter in the /etc/salt/master configu-
ration file on the Salt master, and this location is /srv/salt by default, so let’s just
use it for this recipe. Create the directory as follows:

lab@master:~$ sudo mkdir /srv/salt

The important thing about file roots is that Salt runs a lightweight file server over
the ZeroMQ bus, and minions have access to the files. So placing template files in
file roots directories automatically allows minions to read them, which is what you
want.

Now back to the template. There are multiple options for how you can create it:
Junos text configuration, XML, or set commands. In this example let’s create a
text configuration template as follows:

lab@master:~$ cat /srv/salt/infrastructure_config.conf
system {

 replace: name-server {

{%- for dns_server in pillar.dns_servers %}

 {{ dns_server }};

{%- endfor %}

 }

 replace: ntp {

{%- for ntp_server in pillar.ntp_servers %}

 60 Recipe 7: Automating Junos with Salt

 server {{ ntp_server }};

{%- endfor %}

 }

}

Let’s pause to clarify a few points here:

 � The file is placed in the file roots directory on the master. It will be downloaded
by minions as needed.

 � The file extension is conf, which will tell the Junos state module that the con-
figuration should be treated as text format.

 � Because of the replace: tag, you are removing the previously existing DNS and
NTP configurations (if any) from the devices. This approach to configuration
can be called “declarative” because this way you unambiguously define what
exactly will be in those configuration stanzas after change is applied. Alterna-
tively you could do merge load, so other DNS or NTP servers configured previ-
ously would remain in configuration.

 � You use Jinja syntax for loops (for – endfor keywords) and variable value sub-
stitution (double curly braces {{ }} around a variable).

 � Variables—namely lists of servers that are stored in pillar files—are accessed as
pillar.var_name.

The next step is to create a state SLS file. This file will describe what state you want
your network devices to be in. In this file, you will use the Junos state module
(named salt.states.junos), in particular its function install_config to provision the
configuration template.

NOTE Functions of the execution modules could also be used to load Junos
device configurations, but Salt states are much more powerful.

Now let’s create the state SLS file in the files root directory on the master as
follows:

lab@master:~$ cat /srv/salt/provision_infrastructure.sls
Install the infrastructure services config:

 junos.install_config:

 - name: salt:///infrastructure_config.conf

 - replace: True

 - timeout: 100

In this file:

 � Install the infrastructure services config is a state name (essentially, an arbi-
trary string).

 � junos.install_config is a state function from a salt.states.junos state module,
the job of this function is to load and commit configurations on Junos devices.

 61 Solution

 � name refers to the path where the configuration (template) file is located.

 � replace: True specifies that the configuration file uses replace: statements.

 � timeout is NETCONF RPC timeout in seconds. It is especially relevant for com-
mands that take a while to execute.

MORE? The documentation on Salt state modules for Junos is available at: https://
docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html.

Finally, to apply the configuration state described in the SLS file that you just cre-
ated, you need to execute a state.apply function (in this example, vMX devices ini-
tially have no NTP or DNS configuration):

lab@master:~$ sudo salt vMX* state.apply provision_infrastructure
vMX-2:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 02:30:16.026562
 Duration: 8464.559 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 8.465 s
vMX-1:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 02:30:16.024659
 Duration: 8818.0 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html

 62 Recipe 7: Automating Junos with Salt

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 8.818 s

For both vMX devices you can see reports that configuration was successfully
loaded and committed – let’s check on one of them:

lab@vMX-1> show configuration | compare rollback 1
[edit system]
+ name-server {
+ 192.168.0.253;
+ 192.168.0.254;
+ }
+ ntp {
+ server 192.168.0.250;
+ server 192.168.0.251;
+ }

So far, looks good!

And if you applied the same state again, the following would happen:
lab@master:~$ sudo salt vMX* state.apply provision_infrastructure
vMX-1:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 02:33:28.329635
 Duration: 533.32 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 533.320 ms
vMX-2:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 02:33:28.406416

 63 Discussion

 Duration: 463.954 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 463.954 ms

As nothing needed to be changed on the devices, no configuration change hap-
pened, and no commit was performed, which is natural.

Discussion
This recipe aimed to show you the basics of how Salt works with Junos OS, using
specialized Junos modules that give you all the flexibility you need when managing
these devices.

Salt also includes NAPALM (http://napalm.readthedocs.io/en/latest/) modules
support. NAPALM stands for Network Automation and Programmability Ab-
straction Layer with Multivendor support and allows you to manage Junos, as
well as the equipment of other vendors, using an uniform interface. As normally
happens when abstraction layers are added, with NAPALM your work becomes
more high level (you don’t have to think of fine details, such as vendor-specific
configurations), but you also lose some flexibility, compared to working with spe-
cialized vendor modules. Choose the ones that best fit your needs.

Hopefully, this recipe helped you to grasp the basics of Salt. For more details, visit
the Salt Documentation site at https://docs.saltstack.com. It includes a lot of clear
tutorials and great examples. My new book (coming soon, and listed below) will
also help you advance your Salt skills.

EDITOR’S NOTE This recipe has been excerpted from a new Day One book by
Peter Klimai, Day One: Automating Junos with Salt, with a publication date of
December 2018. Peter takes the introduction provided here and expands on all the
concepts, plus plenty more. See https://www.juniper.net/dayone.

http://napalm.readthedocs.io/en/latest/
https://docs.saltstack.com
https://www.juniper.net/dayone

Recipe 8: Configuring EVPN Anycast Gateway with
Intra-Tenant Inter-Subnet Routing

By Dan Hearty

 � Junos OS Used: 15.1X53-D60.4

 � Juniper Platforms General Applicability: QFX Series

Problem
Two hosts are members of the same tenant but reside in different subnets and there
is a requirement to provide a Layer 3 gateway in order for the two hosts to com-
municate with one another. They must also retain IP connectivity with one another
in the event of a gateway failure. The hosts are connected via different leaf switch-
es in an EVPN-VXLAN fabric. How do you provide redundant L3 Gateway in an
EVPN-VXLAN fabric with inter-tenant intra-subnet connectivity?

Solution
EVPN Anycast Gateway with inter-subnet routing techniques can be implemented
to help solve this problem. But first a little background.

During the initial conception of EVPN Layer 3 gateways, it was assumed that all
PE devices would be configured with a Layer 3 interface (IRB) for a given virtual
network. It was also intended that all IRB interfaces would be configured with the
same IP address, thus creating a redundant gateway mechanism. This worked
great until EVPN-VXLAN came along, and the hardware that was being deployed
at the leaf layer no longer provided crucial support for VXLAN L3 Gateway
(IRB). As a result, anycast gateway, or virtual gateway address, was created to
overcome this limitation.

Typically an EVPN anycast gateway is deployed at the spine layer in an IP fabric
architecture. However, recent switch hardware, such as the QFX5110 (Broadcom
Trident II+) from Juniper Networks, now supports Layer 3 VXLAN gateways,
meaning anycast gateway can be deployed at the leaf. This provides some benefits
such as eliminating the need to route traffic up to the spine when routing between
tenant subnets.

 65 Solution

EVPN anycast gateway works in a fashion very similar to VRRP, whereby a virtual
IP and a virtual MAC are used by hosts to forward traffic out of a local virtual net-
work. The significant difference, however, is that EVPN is all-active by design,
meaning traffic can be processed by any switch that is configured with a Virtual
Gateway Address (VGA). VRRP can only support a single gateway in a given clus-
ter. EVPN type-1 and type-2 routes are significant and provide leaf devices with
the information they need to forward traffic towards the gateway.

So, in order to do this, it’s necessary to provide each host with a Layer 3 gateway
and to ensure that each Layer 3 gateway is redundant. Tenant3 also needs to be
enabled for inter-subnet routing. To meet these requirements we’re going to imple-
ment EVPN anycast gateway on our vQFX10k spine switches. EVPN anycast
gateway is enabled via the virtual-gateway-address feature.

As shown in Figure 8.1, host T3-1 is connected to DC1-LEAF1 in subnet
192.168.31.0/24. There is another host, T3-8, that is connected to DC1-LEAF2 in
subnet 192.168.38.0/24.

Figure 8.1 EVPN-VXLAN Lab Topology

 66 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

The network is based on an EVPN-VXLAN 3-stage CLOS IP-Fabric. BGP is used
in both the underlay network and the overlay network as described in the follow-
ing sections.

Underlay Network
The underlay network that is used in this solution is based on an ECMP IP-fabric
utilizing EBGP. There are a number of plausible options for the underlay. An IGP
such as OSPF or ISIS could be used, for example, or you might also consider using
BGP. In fact, whether you are working with a very large deployment or a small
four-node solution, such as the one in this recipe, BGP serves as a very good option
for the underlay. More specifically, EBGP is a popular choice given the inherent
behavior of the protocol. The configuration statements have been omitted for the
underlay in this recipe as it bears little relevance to the EVPN anycast gateway
solution.

Overlay Network
The overlay network is based on EVPN with VXLAN overlay tunnels. IBGP is
used for signaling EVPN in a route-reflector architecture, whereas the spine
switches act as BGP route reflectors and the leaf switches act as BGP route reflec-
tor clients. IBGP with route reflection makes the solution very scalable, and ad-
ditional leaf nodes can be added with relative ease (this same argument can
effectively be made in a service provider environment with regard to PE scaling).

DC1 Spine Switches

To kick things off let’s start with the configuration elements required to enable the
EVPN overlay network on the spine switches. This includes IBGP route reflection,
IBGP peering between spine nodes, EVPN, and global switch-options.

Configure RR IBGP Overlay for Spine Switches

Configure the spine switches with IBGP towards the leaf switches. As the spine
switches are providing route reflector functionality, you must enable a cluster-ID
on both spine switches. This BGP peering is specifically dedicated for the overlay,
thus you only need to enable family EVPN.

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn-rr
type internal;
local-address 10.0.255.1;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 1.1.1.1;
local-as 65001;
multipath;

 67 Solution

neighbor 10.0.255.3;
neighbor 10.0.255.4;

lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.1
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 1.1.1.1
set protocols bgp group overlay-evpn-rr local-as 65001
set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.3
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.4

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn-rr
type internal;
local-address 10.0.255.2;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 1.1.1.1;
local-as 65001;
multipath;
neighbor 10.0.255.3;
neighbor 10.0.255.4;

lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.2
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 1.1.1.1
set protocols bgp group overlay-evpn-rr local-as 65001
set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.3
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.4

Configure iBGP Overlay for Peer Spine Switch

Here you’ll configure another BGP group that looks pretty much identical to the
previous group, except this time you don’t need to enable a cluster-ID as this is the
session between the spine switches.

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.1;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.2;

 68 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.1
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.2

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.2;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;

lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.2
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1

Configure EVPN
Next configure the initial EVPN parameters required in order to build the overlay.
Additional parameters will be added to this section when we come to enabling the
two tenant subnets.

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;
default-gateway no-gateway-community;

lab@DC1-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;
default-gateway no-gateway-community;

lab@DC1-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community

 69 Solution

Configure Switch-options
Next we need to configure the default switch instance to support VXLAN, define
the EVPN import policy, and assign the VRF target that is used for EVPN type-1
routes.

NOTE Type-2 and type-3 EVPN routes are tagged with the community defined
under protocols EVPN when enabling the tenant.

DC1-SPINE1
lab@DC1-SPINE1> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.1:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-SPINE1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.1:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

DC1-SPINE2
lab@DC1-SPINE2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.2:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-SPINE2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.2:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

Configure EVPN Import Policy and ESI Community
This policy is used to define what is can be imported into the EVPN instance.

NOTE The ESI community defined below is the same as the vrf-target (tar-
get:9999:9999) that was defined in the previous step. This community is used for all
type-1 EVPN routes.

DC1-SPINE1

EVPN Import Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;

 70 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

}
term last {
 then reject;
}

lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-SPINE1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-SPINE1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1-SPINE2

EVPN Import Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T1-1 {
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-SPINE2> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-SPINE2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1 Leaf Switches
Now let’s move to the leaf switches and enable the equivalent feature set as config-
ured on the spine switches.

 71 Solution

Configure iBGP Overlay to Spine Switches
Here we’re configuring the leaf switches with IBGP towards the spines. There’s
nothing special here other than the only address family required is family EVPN.

DC1-LEAF1
lab@DC1-LEAF1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.3;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;
neighbor 10.0.255.2;

lab@DC1-LEAF1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.3
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1
set protocols bgp group overlay-evpn neighbor 10.0.255.2

DC1-LEAF2
lab@DC1-LEAF2> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.4;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;
neighbor 10.0.255.2;

lab@DC1-LEAF2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.4
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1
set protocols bgp group overlay-evpn neighbor 10.0.255.2

Configure EVPN
Now configure the initial EVPN parameters required to build the overlay. Again,
we’ll be adding additional parameters to this section once we get to enabling the
tenant subnets.

 72 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

DC1-LEAF1
lab@DC1-LEAF1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC1-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

DC1-LEAF2
lab@DC1-LEAF2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC1-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Configure Switch-options
Next up is to configure the default switch instance of the leaf switch to support
VXLAN, define the EVPN import policy, and assign the VRF target that is used for
EVPN Type-1 routes.

DC1-LEAF1
lab@DC1-LEAF1> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.3:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-LEAF1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.3:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

DC1-LEAF2
lab@DC1-LEAF2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.4:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-LEAF2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.4:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

 73 Solution

Configure EVPN Import Policy and ESI Community
The EVPN import policy on the leaf switches is identical to the EVPN import poli-
cy on the spine switches, so at this stage we’re only allowing the community as-
signed for type-1 EVPN routes. Additional terms will be added later when
enabling the tenant overlay.

DC1-LEAF1

EVPN Import Policy
lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-LEAF1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-LEAF1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1-LEAF2

EVPN Import Policy
lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-LEAF2> show configuration policy-options community ESI
members target:9999:9999;

 74 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

lab@DC1-LEAF2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

Configure Tenant
Now it’s time to configure tenant3 as part of the overlay. In this recipe we are using
Tenant3 host 1 and host 8, or T3-1 and T3-8. Both T3-1 and T3-8 reside in their
own virtual network but are members of the same tenancy.

DC1 Leaf Switches
Let’s start off by configuring the leaf switches.

Configure Host Access Interface

On each leaf switch you need to configure the access ports that attach to each of
the hosts.

DC1-LEAF1
lab@DC1-LEAF1> show configuration interfaces xe-0/0/3
description "t3-1 ens192";
unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members T3-1;
 }
 }
}

lab@DC1-LEAF1> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-1 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-1

DC1-LEAF2
lab@DC1-LEAF2> show configuration interfaces xe-0/0/3
description "t3-8 ens192";
unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members T3-8;
 }
 }
}

lab@DC1-LEAF2> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-8 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-8

 75 Solution

Configure Host VLAN and VXLAN Settings
Next let’s create the VLAN and assign a virtual network identifier (VNI) to iden-
tify the virtual network in the overlay.

NOTE It is only necessary to add the VLAN and VNI for the locally attached
network for each given leaf switch.

DC1-LEAF1
lab@DC1-LEAF1> show configuration vlans
T3-1 {
 vlan-id 301;
 vxlan {
 vni 301;
 ingress-node-replication;
 }
}

lab@DC1-LEAF1> show configuration vlans | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication

DC1-LEAF2
lab@DC1-LEAF2> show configuration vlans
T3-8 {
 vlan-id 308;
 vxlan {
 vni 308;
 ingress-node-replication;
 }
}

lab@DC1-LEAF2> show configuration vlans | display set
set vlans T3-8 vlan-id 308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

Configure Host-specific EVPN Parameters
In order to add the virtual networks to the overlay you now need to configure
some additional parameters to the initial EVPN configuration that was set earlier.
Take note that each host is only attached to a single leaf switch, thus you are only
required to enable the locally attached virtual network for a given leaf switch.

NOTE The vrf-target export option is deprecated in Junos OS release 17.3.

DC1-LEAF1
lab@DC1-LEAF1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301];

 76 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

multicast-mode ingress-replication;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
}

lab@DC1-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 301 vrf-target export target:1:301

DC1-LEAF2
lab@DC1-LEAF2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [308];
multicast-mode ingress-replication;
vni-options {
 vni 308 {
 vrf-target export target:1:308;
 }
}

lab@DC1-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 308 vrf-target export target:1:308

Configure EVPN Import Policy
There are two elements to consider when adding to the EVPN import policy. The
first is that you need to add an additional term to the existing policy created earlier.
This new term is only relevant to the locally attached virtual network, therefore
there is no need to create a term for the virtual network that is attached to the oth-
er leaf switch. This new term also needs to be inserted before the last default reject
term. The second thing to consider is that you need to create a community and at-
tach it to the locally connected virtual network for each given leaf switch.

DC1-LEAF1

EVPN Import Policy
lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {
 from community T3-1;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;

 77 Solution

}

lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

Tenant Community
lab@DC1-LEAF1> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-LEAF1> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

DC1-LEAF2

EVPN Import Policy
lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8
set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

Tenant Community
lab@DC1-LEAF2> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-LEAF2> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

DC1 Spine Switches

Configure Host VLAN and VXLAN Settings

Now we need to add the VLAN and VNI for each of the virtual networks. How-
ever, this time you add both VLANs and VNIs to both spine switches. The configu-
ration on DC1-SPINE1 and DC1-SPINE2 is identical for this step.

 78 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

DC1-SPINE1
lab@DC1-SPINE1> show configuration vlans
T3-1 {
 vlan-id 301;
 l3-interface irb.301;
 vxlan {
 vni 301;
 ingress-node-replication;
 }
}
T3-8 {
 vlan-id 308;
 l3-interface irb.308;
 vxlan {
 vni 308;
 ingress-node-replication;
 }
}

lab@DC1-SPINE1> show configuration vlans | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 l3-interface irb.301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication
set vlans T3-8 vlan-id 308
set vlans T3-8 l3-interface irb.308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

DC1-SPINE2
lab@DC1-SPINE2> show configuration vlans
T3-1 {
 vlan-id 301;
 l3-interface irb.301;
 vxlan {
 vni 301;
 ingress-node-replication;
 }
}
T3-8 {
 vlan-id 308;
 l3-interface irb.308;
 vxlan {
 vni 308;
 ingress-node-replication;
 }
}

lab@DC1-SPINE2> show configuration vlans | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 l3-interface irb.301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication
set vlans T3-8 vlan-id 308
set vlans T3-8 l3-interface irb.308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

 79 Solution

Configure Host-specific EVPN Parameters

As you did with the leaf switches, you need to add some additional parameters to
the initial EVPN configuration that was set earlier. However, this time you need to
add both virtual networks on each spine switch as they are both attached to each
virtual network.

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301 308];
multicast-mode ingress-replication;
default-gateway no-gateway-community;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
 vni 308 {
 vrf-target export target:1:308;
 }
}

lab@DC1-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community
set protocols evpn vni-options vni 301 vrf-target export target:1:301
set protocols evpn vni-options vni 308 vrf-target export target:1:308

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301 308];
multicast-mode ingress-replication;
default-gateway no-gateway-community;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
 vni 308 {
 vrf-target export target:1:308;
 }
}

lab@DC1-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community
set protocols evpn vni-options vni 301 vrf-target export target:1:301
set protocols evpn vni-options vni 308 vrf-target export target:1:308

 80 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

Configure EVPN Import Policy

Now let’s amend the EVPN import policy. Remember to insert each term before
the last default reject term. You also need to create a community for each virtual
network on both spine switches.

DC1-SPINE1

EVPN Import Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {
 from community T3-1;
 then accept;
}
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8
set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-1 Community
lab@DC1-SPINE1> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-SPINE1> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

T3-8 Community
lab@DC1-SPINE1> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-SPINE1> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

DC1-SPINE1

EVPN Import Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {

 81 Solution

 from community T3-1;
 then accept;
}
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8
set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-1 Community
lab@DC1-SPINE2> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-SPINE2> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

T3-8 Community
lab@DC1-SPINE2> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-SPINE2> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

Configure EVPN Virtual Gateway Address - Anycast Gateway
Now that both virtual networks are configured, it’s time to focus on the main re-
quirement: provide intra-tenant, inter-subnet routing via a redundant anycast
gateway.

NOTE No changes or special configurations are required on the leaf switches for
this solution.

 82 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

DC1 Hosts
Configure Host Gateways

To kick things off let’s start by configuring each of our hosts. On each host you
need to configure a default gateway that points towards the VGA. The address to
use is the address that is assigned as the VGA for each given tenant subnet: T3-1 =
192.168.31.254; T3-8 = 192.168.38.254.

Host T3-1
lab@t3-1:~$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

auto ens192
iface ens192 inet static
 address 192.168.31.1
 netmask 255.255.255.0
 network 192.168.31.0
 broadcast 192.168.31.255
 gateway 192.168.31.254

lab@t3-1:~$ ifconfig
ens192 Link encap:Ethernet HWaddr 00:0c:29:f4:41:bb
 inet addr:192.168.31.1 Bcast:192.168.31.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fef4:41bb/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:74150 errors:0 dropped:20 overruns:0 frame:0
 TX packets:76410 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:6796536 (6.7 MB) TX bytes:6837020 (6.8 M)

Host T3-8
lab@t3-8:~$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

auto ens192
iface ens192 inet static
 address 192.168.38.1
 netmask 255.255.255.0
 network 192.168.38.0
 broadcast 192.168.38.255
 gateway 192.168.38.254

 83 Solution

lab@t3-8:~$ ifconfig
ens192 Link encap:Ethernet HWaddr 00:0c:29:8e:e8:6d
 inet addr:192.168.38.1 Bcast:192.168.38.255 Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe8e:e86d/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:15689 errors:0 dropped:0 overruns:0 frame:0
 TX packets:16326 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1416436 (1.4 MB) TX bytes:1397112 (1.3 MB)

DC1 Spine Switches

Configure IRB with VGA for Each Subnet

It’s time to configure the VGA feature on the spine switches in order to enable
EVPN Anycast Gateway. VGA is configured at the IRB level for each given virtual
network. You need to configure an IRB interface for each of the virtual networks
on both spine switches. Before configuring virtual-gateway-address, you need to
assign a unique IP address that resides in the same network. The VGA is shared
between the spine switches per virtual network.

NOTE As of Junos OS version 16.1, Juniper introduced the virtual-gateway-ac-
cept-data knob that allows you to send traffic, such as ICMP, directly to the VGA.
This feature is synonymous to the VRRP accept-data feature.

DC1-SPINE1
lab@DC1-SPINE1> show configuration interfaces irb
unit 301 {
 proxy-macip-advertisement;
 description " * T3 - vlan 301 - vni 301 ";
 family inet {
 address 192.168.31.252/24 {
 virtual-gateway-address 192.168.31.254;
 }
 }
}
unit 308 {
 proxy-macip-advertisement;
 description " * T3 - vlan 308 - vni 308 ";
 family inet {
 address 192.168.38.252/24 {
 virtual-gateway-address 192.168.38.254;
 }
 }
}

lab@DC1-SPINE1> show configuration interfaces irb | display set
set interfaces irb unit 301 proxy-macip-advertisement
set interfaces irb unit 301 description " * T3 - vlan 301 - vni 301 "
set interfaces irb unit 301 family inet address 192.168.31.252/24 virtual-gateway-
address 192.168.31.254
set interfaces irb unit 308 proxy-macip-advertisement
set interfaces irb unit 308 description " * T3 - vlan 308 - vni 308 "

 84 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

set interfaces irb unit 308 family inet address 192.168.38.252/24 virtual-gateway-
address 192.168.38.254

DC1-SPINE2
lab@DC1-SPINE2> show configuration interfaces irb
unit 301 {
 proxy-macip-advertisement;
 description " * T3 - vlan 301 - vni 301 ";
 family inet {
 address 192.168.31.253/24 {
 virtual-gateway-address 192.168.31.254;
 }
 }
}
unit 308 {
 proxy-macip-advertisement;
 description " * T3 - vlan 308 - vni 308 ";
 family inet {
 address 192.168.38.253/24 {
 virtual-gateway-address 192.168.38.254;
 }
 }
}

lab@DC1-SPINE2> show configuration interfaces irb | display set
set interfaces irb unit 301 proxy-macip-advertisement
set interfaces irb unit 301 description " * T3 - vlan 301 - vni 301 "
set interfaces irb unit 301 family inet address 192.168.31.253/24 virtual-gateway-
address 192.168.31.254
set interfaces irb unit 308 proxy-macip-advertisement
set interfaces irb unit 308 description " * T3 - vlan 308 - vni 308 "
set interfaces irb unit 308 family inet address 192.168.38.253/24 virtual-gateway-
address 192.168.38.254

Configure Tenant VRF

So, now that the IRB interfaces are configured, you need to configure a VRF for
the tenant. In theory you could just use the global routing instance, but there’s an
assumption that multiple tenants will be present, which means that there will be
multiple VRFs. The point here is that we’re placing both IRB interfaces into the
VRF. This is what enables inter-subnet routing within the tenant as both networks
become locally attached and routable.

DC1-SPINE1
lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;
interface lo0.30;
route-distinguisher 10.0.255.1:30;
vrf-target target:1:300;

lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf

 85 Verification

set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.1:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

DC1-SPINE2
lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;
interface lo0.30;
route-distinguisher 10.0.255.2:30;
vrf-target target:1:300;

lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.2:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

Verification
Now that all of the configuration is in place, it’s time to verify. We won’t go into
great detail here, but you can find very comprehensive explanations, detail, and
workable configurations in Deepti Chandra’s book This Week: Data Center De-
ployment with EVPN/VXLAN that can be found here: https://www.juniper.net/
us/en/training/jnbooks/day-one/data-center-technologies/
data-center-deployment-evpn-vxlan/.

Verify IRB Interfaces on Spine Switches
First verify that the IRB interfaces that we configured for VNI 301 and VNI 308
are up on both spine switches. Interestingly you won’t see the VGA in this output
but you will see the inet address that we assigned to each logical unit. You will also
see that each IRB logical unit interface is a member of their respective bridge
domains.

DC1-SPINE1
lab@DC1-SPINE1> show interfaces irb.301
 Logical interface irb.301 (Index 552) (SNMP ifIndex 558)
 Description: * T3 - vlan 301 - vni 301
 Flags: Up SNMP-Traps 0x4004000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: T3-1
 Input packets : 0
 Output packets: 123
 Protocol inet, MTU: 1514
 Flags: Sendbcast-pkt-to-re, Is-Primary

https://www.juniper.net/us/en/training/jnbooks/day-one/data-center-technologies/data-center-deployment-evpn-vxlan/
https://www.juniper.net/us/en/training/jnbooks/day-one/data-center-technologies/data-center-deployment-evpn-vxlan/
https://www.juniper.net/us/en/training/jnbooks/day-one/data-center-technologies/data-center-deployment-evpn-vxlan/

 86 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.31/24, Local: 192.168.31.252, Broadcast: 192.168.31.255

lab@DC1-SPINE1> show interfaces irb.308
 Logical interface irb.308 (Index 553) (SNMP ifIndex 547)
 Description: * T3 - vlan 308 - vni 308
 Flags: Up SNMP-Traps 0x4000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: T3-8
 Input packets : 0
 Output packets: 119
 Protocol inet, MTU: 1514
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.38/24, Local: 192.168.38.252, Broadcast: 192.168.38.255

DC1-SPINE2
lab@DC1-SPINE2> show interfaces irb.301
 Logical interface irb.301 (Index 552) (SNMP ifIndex 558)
 Description: * T3 - vlan 301 - vni 301
 Flags: Up SNMP-Traps 0x4004000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: T3-1
 Input packets : 0
 Output packets: 1437
 Protocol inet, MTU: 1514
 Flags: Sendbcast-pkt-to-re, Is-Primary
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.31/24, Local: 192.168.31.253, Broadcast: 192.168.31.255

lab@DC1-SPINE2> show interfaces irb.308
 Logical interface irb.308 (Index 553) (SNMP ifIndex 542)
 Description: * T3 - vlan 308 - vni 308
 Flags: Up SNMP-Traps 0x4000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: T3-8
 Input packets : 0
 Output packets: 1460
 Protocol inet, MTU: 1514
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.38/24, Local: 192.168.38.253, Broadcast: 192.168.38.255

Verify Type-1 Routes That are Generated on Spine Switches and
Advertised to Leaf Switches.

Next let’s verify the VGA that we configured for each virtual network and take a
look at how this is passed to the leaf switches.

When a Virtual Gateway is configured, a type-1 EVPN route is generated for the
shared segment. Junos generates a random ESI that is used to identify the shared
gateway. This type-1 EVPN route is then advertised via BGP to the leaf switches.

A quick way to identify the ESI value is to check the EVPN database on the spine.

 87 Verification

In the example below, you can see that VNI 301 has an ESI value of
05:00:00:fe:4f:00:00:01:2d:00 and VNI 308 has an ESI value of
05:00:00:fe:4f:00:00:01:34:00. You can also see the VGA that we assigned earlier.

You should notice that the MAC address used for each of the Virtual Gateways is
the same MAC address that is used in VRRP.

DC1-SPINE1
lab@DC1-SPINE1> show evpn database
Instance: default-switch
VLAN VNI MAC address Active source Timestamp IP address
 301 00:00:5e:00:01:01 05:00:00:fe:4f:00:00:01:2d:00 May 22 14:40:52 192.168.31.254
 301 00:0c:29:f4:41:bb 10.0.255.3 May 22 14:41:25 192.168.31.1
 301 02:05:86:71:03:00 10.0.255.2 May 22 14:41:20 192.168.31.253
 301 02:05:86:71:d1:00 irb.301 May 22 14:40:53 192.168.31.252
 308 00:00:5e:00:01:01 05:00:00:fe:4f:00:00:01:34:00 May 22 14:40:53 192.168.38.254
 308 00:0c:29:8e:e8:6d 10.0.255.4 May 22 14:41:24 192.168.38.1
 308 02:05:86:71:03:00 10.0.255.2 May 22 14:41:20 192.168.38.253
 308 02:05:86:71:d1:00 irb.308 May 22 14:40:53 192.168.38.252

DC1-SPINE2
lab@DC1-SPINE2> show evpn database
Instance: default-switch
VLAN VNI MAC address Active source Timestamp IP address
 301 00:00:5e:00:01:01 05:00:00:fe:50:00:00:01:2d:00 May 22 14:41:20 192.168.31.254
 301 00:0c:29:f4:41:bb 10.0.255.3 May 15 07:31:04 192.168.31.1
 301 02:05:86:71:03:00 irb.301 May 22 14:41:21 192.168.31.253
 301 02:05:86:71:d1:00 10.0.255.1 May 22 14:40:53 192.168.31.252
 308 00:00:5e:00:01:01 05:00:00:fe:50:00:00:01:34:00 May 22 14:41:20 192.168.38.254
 308 00:0c:29:8e:e8:6d 10.0.255.4 May 15 07:38:01 192.168.38.1
 308 02:05:86:71:03:00 irb.308 May 22 14:41:21 192.168.38.253
 308 02:05:86:71:d1:00 10.0.255.1 May 22 14:40:53 192.168.38.252

Now that you’ve identified the ESI values for each of the virtual networks, let’s
take a look at how this is advertised to the leaf switches. You can do this by check-
ing the BGP RIB OUT table with the EVPN ESI tag identified in the previous step.

DC1-SPINE1
lab@DC1-SPINE1> show route advertising-protocol bgp 10.0.255.3 evpn-esi-
value 05:00:00:fe:4f:00:00:01:2d:00

bgp.evpn.0: 114 destinations, 198 routes (114 active, 0 holddown, 84 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
* Self 100 I

default-switch.evpn.0: 40 destinations, 52 routes (40 active, 0 holddown, 12 hidden)

__default_evpn__.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
* Self 100 I

{master:0}
lab@DC1-SPINE1> show route advertising-protocol bgp 10.0.255.3 evpn-esi-value 05:00:00:fe:

 88 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

4f:00:00:01:34:00

bgp.evpn.0: 114 destinations, 198 routes (114 active, 0 holddown, 84 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
* Self 100 I

default-switch.evpn.0: 40 destinations, 52 routes (40 active, 0 holddown, 12 hidden)

__default_evpn__.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
* Self 100 I

DC1-SPINE2
lab@DC1-SPINE2> show route advertising-protocol bgp 10.0.255.3 evpn-esi-
value 05:00:00:fe:4f:00:00:01:2d:00

bgp.evpn.0: 114 destinations, 198 routes (114 active, 0 holddown, 84 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
* 10.0.255.1 100 I

default-switch.evpn.0: 40 destinations, 52 routes (40 active, 0 holddown, 12 hidden)

__default_evpn__.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

{master:0}
lab@DC1-SPINE2> show route advertising-protocol bgp 10.0.255.3 evpn-esi-value 05:00:00:fe:
4f:00:00:01:34:00

bgp.evpn.0: 114 destinations, 198 routes (114 active, 0 holddown, 84 hidden)
 Prefix Nexthop MED Lclpref AS path
 1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
* 10.0.255.1 100 I

default-switch.evpn.0: 40 destinations, 52 routes (40 active, 0 holddown, 12 hidden)

__default_evpn__.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

Verify Type-1 ESI for T3-1 and T3-8
Now let’s jump onto the leaf switches and verify the type-1 EVPN route that was
sent by the spine switches for the VGA for each of our virtual networks. One thing
to note here is that type-1 EVPN routes for both virtual gateways are advertised to
both leaf switches. This is despite DC1-LEAF1 only being interested in VNI301
and DC1-LEAF2 in VNI308. EVPN import policy details exactly what is imported
from BGP into the EVPN instance.

DC1-LEAF1
lab@DC1-LEAF1> show route evpn-esi-value 05:00:00:fe:4f:00:00:01:2d:00

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

 89 Verification

:vxlan.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

bgp.evpn.0: 27 destinations, 54 routes (14 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
 *[BGP/170] 10w6d 06:40:48, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0
 [BGP/170] 10w6d 05:52:06, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0

default-switch.evpn.0: 29 destinations, 56 routes (16 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
 *[BGP/170] 10w6d 06:40:48, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0
 [BGP/170] 10w6d 05:52:06, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0

{master:0}
lab@DC1-LEAF1> show route evpn-esi-value 05:00:00:fe:4f:00:00:01:34:00

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

:vxlan.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

bgp.evpn.0: 27 destinations, 54 routes (14 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
 *[BGP/170] 10w6d 06:54:17, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0
 [BGP/170] 10w6d 06:05:35, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0

default-switch.evpn.0: 29 destinations, 56 routes (16 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
 *[BGP/170] 10w6d 06:54:17, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0
 [BGP/170] 10w6d 06:05:35, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.14 via xe-0/0/0.0

 90 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

DC1-LEAF2
lab@DC1-LEAF2> show route evpn-esi-value 05:00:00:fe:4f:00:00:01:2d:00

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

:vxlan.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

bgp.evpn.0: 27 destinations, 54 routes (14 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
 *[BGP/170] 10w6d 08:18:37, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0
 [BGP/170] 10w6d 06:05:02, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0

default-switch.evpn.0: 29 destinations, 56 routes (16 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000012d00::FFFF:FFFF/304
 *[BGP/170] 10w6d 08:18:37, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0
 [BGP/170] 10w6d 06:05:02, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0

{master:0}
lab@DC1-LEAF2> show route evpn-esi-value 05:00:00:fe:4f:00:00:01:34:00

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)

:vxlan.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)

inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

bgp.evpn.0: 27 destinations, 54 routes (14 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
 *[BGP/170] 10w6d 08:21:13, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0
 [BGP/170] 10w6d 06:07:38, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0

default-switch.evpn.0: 29 destinations, 56 routes (16 active, 0 holddown, 26 hidden)
+ = Active Route, - = Last Active, * = Both

1:10.0.255.1:0::050000fe4f0000013400::FFFF:FFFF/304
 *[BGP/170] 10w6d 08:21:13, localpref 100, from 10.0.255.1

 91 Verification

 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0
 [BGP/170] 10w6d 06:07:38, localpref 100, from 10.0.255.2
 AS path: I, validation-state: unverified
 > to 172.16.0.16 via xe-0/0/0.0

Verify EVPN Database on Leaf Switches
Now let’s check out the EVPN database on the leaf switches. Here we can see the
Virtual Gateway MAC address and IP address. You can also see the ESI (active
source) for the Virtual Gateway segment.

DC1-LEAF1
lab@DC1-LEAF1> show evpn database
Instance: default-switch
VLAN VNI MAC address Active source Timestamp IP address
 301 00:00:5e:00:01:01 05:00:00:fe:50:00:00:01:2d:00 Mar 19 01:34:09 192.168.31.254
 301 00:0c:29:f4:41:bb xe-0/0/3.0 May 15 07:31:03
 301 02:05:86:71:03:00 10.0.255.2 May 22 14:41:20 192.168.31.253
 301 02:05:86:71:d1:00 10.0.255.1 Mar 19 00:45:31 192.168.31.252

DC1-LEAF2
lab@DC1-LEAF2> show evpn database
Instance: default-switch
VLAN VNI MAC address Active source Timestamp IP address
 308 00:00:5e:00:01:01 05:00:00:fe:50:00:00:01:34:00 Mar 19 01:34:13 192.168.38.254
 308 00:0c:29:8e:e8:6d xe-0/0/3.0 May 15 07:38:00
 308 02:05:86:71:03:00 10.0.255.2 May 22 14:41:20 192.168.38.253
 308 02:05:86:71:d1:00 10.0.255.1 Mar 18 23:22:49 192.168.38.252

Verify Tenant Routing Table on Spine Switches
Next let’s jump back to the spine switches to verify the tenant VRF has both tenant
subnets reachable locally via the IRB interfaces.

DC1-SPINE1
lab@DC1-SPINE1> show route table TENANT_3_VRF.inet.0

TENANT_3_VRF.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.30.255.1/32 *[Direct/0] 31w3d 16:14:55
 > via lo0.30
192.168.31.0/24 *[Direct/0] 1w4d 18:08:05
 > via irb.301
192.168.31.252/32 *[Local/0] 1w4d 18:08:05
 Local via irb.301
192.168.38.0/24 *[Direct/0] 1w4d 18:08:05
 > via irb.308
192.168.38.252/32 *[Local/0] 1w4d 18:08:05
 Local via irb.308

 92 Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing

DC1-SPINE2
lab@DC1-SPINE2> show route table TENANT_3_VRF.inet.0

TENANT_3_VRF.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.30.255.2/32 *[Direct/0] 31w3d 16:26:15
 > via lo0.30
192.168.31.0/24 *[Direct/0] 1w4d 18:19:03
 > via irb.301
192.168.31.253/32 *[Local/0] 1w4d 18:19:03
 Local via irb.301
192.168.38.0/24 *[Direct/0] 1w4d 18:19:03
 > via irb.308
192.168.38.253/32 *[Local/0] 1w4d 18:19:03
 Local via irb.308

Send IP Flow Between Hosts
Now that we’ve completed the verification, let’s send an IP flow between T3-1 and
T3-8.

T3-1
root@t3-1:~# ping 192.168.38.1 -c 5
PING 192.168.38.1 (192.168.38.1) 56(84) bytes of data.
64 bytes from 192.168.38.1: icmp_seq=1 ttl=63 time=122 ms
64 bytes from 192.168.38.1: icmp_seq=2 ttl=63 time=32.9 ms
64 bytes from 192.168.38.1: icmp_seq=3 ttl=63 time=832 ms
64 bytes from 192.168.38.1: icmp_seq=4 ttl=63 time=445 ms
64 bytes from 192.168.38.1: icmp_seq=5 ttl=63 time=35.0 ms

Capture ARP Request for IP Flow Between Tenant Hosts
Lastly, we’ll capture the traffic for the above flow at host T3-8. Here you can see
an ARP request is sent from T3-8 for 192.168.38.254. A response is received from
both spine switches, but, crucially, they respond with the same anycast gateway
MAC 00:00:5e:00:01:01.

T3-8
12:14:53.126066 ARP, Ethernet (len 6), IPv4 (len 4), Request who-
has 192.168.38.254 tell 192.168.38.1, length 28
12:14:53.155379 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.38.254 is-
at 00:00:5e:00:01:01 (oui IANA), length 46
12:14:53.348585 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.38.254 is-
at 00:00:5e:00:01:01 (oui IANA), length 46

 93 Discussion

Discussion
EVPN anycast gateway is an extremely useful feature that can be used to provide a
L3 gateway for virtual networks. It also provides a mechanism for making the
gateway redundant. Typically anycast gateway is deployed at the spine layer in an
IP fabric, but as switch hardware evolves you may start to see the feature deployed
at the leaf.

Recipe 9: Configuring Redundant DCI Using EVPN
Route Type-5 on Juniper QFX10K

By Dan Hearty

 � Junos OS Used: 15.1X53-D60.4

 � Juniper Platforms General Applicability: QFX Series Switches

EVPN route type-5 provides a mechanism for aggregating multiple host MAC+IP
routes for tenants behind a single IP prefix for a given bridge domain. This can be
very useful with regard to Data Center Interconnect (DCI), whereby MAC+IP
routes no longer have to be sent over DCIs and a single IP prefix route can be used
instead.

Problem
In this scenario there are two data centers, DC1 and DC2, with two DCI circuits
connected between two pairs of spine switches. Hosts in each DC utilize EVPN
virtual gateway to reach remote subnets. Hosts may use either spine switch as a
gateway, thus each spine switch must maintain connectivity to the remote DC,
even in the event of a single DCI failure. There is no requirement to provide
stretched Layer 2 between the data centers, so host MAC+IP routes should be ag-
gregated behind a single IP prefix.

Solution
To solve this problem, EVPN route type-5 will be used to aggregate host MAC+IP
routes behind a single IP prefix for each given bridge domain. EVPN type-5 routes
will be exchanged over both data center interconnects and between spine switches
within a given data center. Figures 9.1 through 9.3 illustrate the data center fabrics
and DCIs used in this recipe.

 95 Solution

Figure 9.1 DC1 IP Fabric

Figure 9.2 DC2 IP Fabric

 96 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

Figure 9.3 Data Center Interconnect

Each data center network is based on an EVPN-VXLAN IP fabric. BGP is used in
both the underlay network and the overlay network, as well as on the data center
interconnects.

Data Center Underlay Network
DC1 and DC2 are both based on an ECMP IP fabric utilizing EBGP. The architec-
ture of the data centers is identical with the exception of IP addressing, ASN as-
signments, and various EVPN variables.

The configuration statements for the underlay network used within each data cen-
ter have been omitted, as they bear little relevance to the EVPN type-5 solution.
However, the configuration statements required to enable the underlay network
for the data center interconnects, which are also based on EBGP, are included.

Data Center Interconnect Underlay Network
This section details the configuration steps for enabling the DCI underlay network.
The objective of the DCI underlay network is to exchange loopback information
with the remotely connected spine switch.

The following section details the configuration steps to enable the DCI underlay
for both DC1 and DC2 spine switches.

Configure DCI EBGP Underlay
Here we configure an EBGP peering on the physical DCI link between spine
switches for each given data center interconnect.

 97 Solution

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols bgp group dci-underlay
type external;
mtu-discovery;
import bgp-ipclos-in;
export bgp-dci-out;
local-as 65103;
neighbor 172.16.99.1 {
 peer-as 65203;
}

lab@DC1-SPINE1> show configuration protocols bgp group dci-underlay | display set
set protocols bgp group dci-underlay type external
set protocols bgp group dci-underlay mtu-discovery
set protocols bgp group dci-underlay import bgp-ipclos-in
set protocols bgp group dci-underlay export bgp-dci-out
set protocols bgp group dci-underlay local-as 65103
set protocols bgp group dci-underlay neighbor 172.16.99.1 peer-as 65203

DC2-SPINE1
lab@DC2-SPINE1> show configuration protocols bgp group dci-underlay
type external;
mtu-discovery;
import bgp-ipclos-in;
export bgp-dci-out;
local-as 65203;
neighbor 172.16.99.0 {
 peer-as 65103;
}

lab@DC2-SPINE1> show configuration protocols bgp group dci-underlay | display set
set protocols bgp group dci-underlay type external
set protocols bgp group dci-underlay mtu-discovery
set protocols bgp group dci-underlay import bgp-ipclos-in
set protocols bgp group dci-underlay export bgp-dci-out
set protocols bgp group dci-underlay local-as 65203
set protocols bgp group dci-underlay neighbor 172.16.99.0 peer-as 65103

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols bgp group dci-underlay
type external;
mtu-discovery;
import bgp-ipclos-in;
export bgp-dci-out;
local-as 65104;
neighbor 172.16.99.3 {
 peer-as 65204;
}

lab@DC1-SPINE2> show configuration protocols bgp group dci-underlay | display set
set protocols bgp group dci-underlay type external
set protocols bgp group dci-underlay mtu-discovery
set protocols bgp group dci-underlay import bgp-ipclos-in
set protocols bgp group dci-underlay export bgp-dci-out

 98 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

set protocols bgp group dci-underlay local-as 65104
set protocols bgp group dci-underlay neighbor 172.16.99.3 peer-as 65204

DC2-SPINE2
lab@DC2-SPINE2> show configuration protocols bgp group dci-underlay
type external;
mtu-discovery;
import bgp-ipclos-in;
export bgp-dci-out;
local-as 65204;
neighbor 172.16.99.2 {
 peer-as 65104;
}

lab@DC2-SPINE2> show configuration protocols bgp group dci-underlay | display set
set protocols bgp group dci-underlay type external
set protocols bgp group dci-underlay mtu-discovery
set protocols bgp group dci-underlay import bgp-ipclos-in
set protocols bgp group dci-underlay export bgp-dci-out
set protocols bgp group dci-underlay local-as 65204
set protocols bgp group dci-underlay neighbor 172.16.99.2 peer-as 65104

Configure DCI EBGP Underlay Import and Export Policy
In the previous step we defined an import and export policy for the underlay DCI
EBGP peering. The export policy is used to announce the local /32 loopback and
the remote spine /32 loopback into BGP. The import policy is used to define what
should be imported; in this example it’s the subnet that is used for loopback
interfaces.

DC1-SPINE1

Export Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement bgp-ipclos-out
term loopback {
 from {
 family inet;
 protocol direct;
 route-filter 0.0.0.0/0 prefix-length-range /32-/32;
 }
 then {
 community add MYCOMMUNITY;
 next-hop self;
 accept;
 }
}
term remote-loopback {
 from {
 protocol bgp;
 route-filter 10.0.255.5/32 exact;
 }
 then accept;
}
term reject {
 then reject;
}

 99 Solution

lab@DC1-SPINE1> show configuration policy-options policy-statement bgp-ipclos-out | display set
set policy-options policy-statement bgp-ipclos-out term loopback from family inet
set policy-options policy-statement bgp-ipclos-out term loopback from protocol direct
set policy-options policy-statement bgp-ipclos-out term loopback from route-filter 0.0.0.0/0 prefix-
length-range /32-/32
set policy-options policy-statement bgp-ipclos-out term loopback then community add MYCOMMUNITY
set policy-options policy-statement bgp-ipclos-out term loopback then next-hop self
set policy-options policy-statement bgp-ipclos-out term loopback then accept
set policy-options policy-statement bgp-ipclos-out term remote-loopback from protocol bgp
set policy-options policy-statement bgp-ipclos-out term remote-loopback from route-
filter 10.0.255.5/32 exact
set policy-options policy-statement bgp-ipclos-out term remote-loopback then accept
set policy-options policy-statement bgp-ipclos-out term reject then reject

Import Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement bgp-ipclos-in
term loopbacks {
 from {
 route-filter 10.0.255.0/24 orlonger;
 }
 then accept;
}
term reject {
 then reject;
}

lab@DC1-SPINE1> show configuration policy-options policy-statement bgp-ipclos-in | display set
set policy-options policy-statement bgp-ipclos-in term loopbacks from route-
filter 10.0.255.0/24 orlonger
set policy-options policy-statement bgp-ipclos-in term loopbacks then accept
set policy-options policy-statement bgp-ipclos-in term reject then reject

DC2-SPINE1

Export Policy
lab@DC2-SPINE1> show configuration policy-options policy-statement bgp-ipclos-out
term loopback {
 from {
 family inet;
 protocol direct;
 route-filter 0.0.0.0/0 prefix-length-range /32-/32;
 }
 then {
 community add MYCOMMUNITY;
 next-hop self;
 accept;
 }
}
term remote-loopback {
 from {
 protocol bgp;
 route-filter 10.0.255.1/32 exact;
 }
 then accept;
}
term reject {
 then reject;
}

 100 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC2-SPINE1> show configuration policy-options policy-statement bgp-ipclos-out | display set
set policy-options policy-statement bgp-ipclos-out term loopback from family inet
set policy-options policy-statement bgp-ipclos-out term loopback from protocol direct
set policy-options policy-statement bgp-ipclos-out term loopback from route-filter 0.0.0.0/0 prefix-
length-range /32-/32
set policy-options policy-statement bgp-ipclos-out term loopback then community add MYCOMMUNITY
set policy-options policy-statement bgp-ipclos-out term loopback then next-hop self
set policy-options policy-statement bgp-ipclos-out term loopback then accept
set policy-options policy-statement bgp-ipclos-out term remote-loopback from protocol bgp
set policy-options policy-statement bgp-ipclos-out term remote-loopback from route-
filter 10.0.255.1/32 exact
set policy-options policy-statement bgp-ipclos-out term remote-loopback then accept
set policy-options policy-statement bgp-ipclos-out term reject then reject

Import Policy
lab@DC2-SPINE1> show configuration policy-options policy-statement bgp-ipclos-in
term loopbacks {
 from {
 route-filter 10.0.255.0/24 orlonger;
 }
 then accept;
}
term reject {
 then reject;
}

lab@DC2-SPINE1> show configuration policy-options policy-statement bgp-ipclos-in | display set
set policy-options policy-statement bgp-ipclos-in term loopbacks from route-
filter 10.0.255.0/24 orlonger
set policy-options policy-statement bgp-ipclos-in term loopbacks then accept
set policy-options policy-statement bgp-ipclos-in term reject then reject

DC1-SPINE2

Export Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement bgp-ipclos-out
term loopback {
 from {
 family inet;
 protocol direct;
 route-filter 0.0.0.0/0 prefix-length-range /32-/32;
 }
 then {
 community add MYCOMMUNITY;
 next-hop self;
 accept;
 }
}
term remote-loopback {
 from {
 protocol bgp;
 route-filter 10.0.255.6/32 exact;
 }
 then accept;
}
term reject {
 then reject;
}

 101 Solution

lab@DC1-SPINE2> show configuration policy-options policy-statement bgp-ipclos-out | display set
set policy-options policy-statement bgp-ipclos-out term loopback from family inet
set policy-options policy-statement bgp-ipclos-out term loopback from protocol direct
set policy-options policy-statement bgp-ipclos-out term loopback from route-filter 0.0.0.0/0 prefix-
length-range /32-/32
set policy-options policy-statement bgp-ipclos-out term loopback then community add MYCOMMUNITY
set policy-options policy-statement bgp-ipclos-out term loopback then next-hop self
set policy-options policy-statement bgp-ipclos-out term loopback then accept
set policy-options policy-statement bgp-ipclos-out term remote-loopback from protocol bgp
set policy-options policy-statement bgp-ipclos-out term remote-loopback from route-
filter 10.0.255.6/32 exact
set policy-options policy-statement bgp-ipclos-out term remote-loopback then accept
set policy-options policy-statement bgp-ipclos-out term reject then reject

Import Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement bgp-ipclos-in
term loopbacks {
 from {
 route-filter 10.0.255.0/24 orlonger;
 }
 then accept;
}
term reject {
 then reject;
}

lab@DC1-SPINE2> show configuration policy-options policy-statement bgp-ipclos-in | display set
set policy-options policy-statement bgp-ipclos-in term loopbacks from route-
filter 10.0.255.0/24 orlonger
set policy-options policy-statement bgp-ipclos-in term loopbacks then accept
set policy-options policy-statement bgp-ipclos-in term reject then reject

DC2-SPINE2

Export Policy
lab@DC2-SPINE2> show configuration policy-options policy-statement bgp-ipclos-out
term loopback {
 from {
 family inet;
 protocol direct;
 route-filter 0.0.0.0/0 prefix-length-range /32-/32;
 }
 then {
 community add MYCOMMUNITY;
 next-hop self;
 accept;
 }
}
term remote-loopback {
 from {
 protocol bgp;
 route-filter 10.0.255.2/32 exact;
 }
 then accept;
}
term reject {
 then reject;
}

 102 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC2-SPINE2> show configuration policy-options policy-statement bgp-ipclos-out | display set
set policy-options policy-statement bgp-ipclos-out term loopback from family inet
set policy-options policy-statement bgp-ipclos-out term loopback from protocol direct
set policy-options policy-statement bgp-ipclos-out term loopback from route-filter 0.0.0.0/0 prefix-
length-range /32-/32
set policy-options policy-statement bgp-ipclos-out term loopback then community add MYCOMMUNITY
set policy-options policy-statement bgp-ipclos-out term loopback then next-hop self
set policy-options policy-statement bgp-ipclos-out term loopback then accept
set policy-options policy-statement bgp-ipclos-out term remote-loopback from protocol bgp
set policy-options policy-statement bgp-ipclos-out term remote-loopback from route-
filter 10.0.255.2/32 exact
set policy-options policy-statement bgp-ipclos-out term remote-loopback then accept
set policy-options policy-statement bgp-ipclos-out term reject then reject

Import Policy
lab@DC2-SPINE2> show configuration policy-options policy-statement bgp-ipclos-in
term loopbacks {
 from {
 route-filter 10.0.255.0/24 orlonger;
 }
 then accept;
}
term reject {
 then reject;
}

lab@DC2-SPINE2> show configuration policy-options policy-statement bgp-ipclos-in | display set
set policy-options policy-statement bgp-ipclos-in term loopbacks from route-
filter 10.0.255.0/24 orlonger
set policy-options policy-statement bgp-ipclos-in term loopbacks then accept
set policy-options policy-statement bgp-ipclos-in term reject then reject

Data Center Overlay Network
The overlay network for DC1 and DC2 is based on EVPN with VXLAN overlay
tunnels. IBGP is used in each data center for signalling EVPN in a route-reflector
architecture, whereby the spine switches act as BGP route reflectors and the leaf
switches act as BGP route-reflector clients in each given data center.

The configuration steps required to enable the overlay network within each DC
matches that of Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant
Inter-Subnet Routing. Refer to that recipe for a detailed description of each step.

Configure Data Center Overlay Network
The following section details the configuration steps to enable the overlay network
in DC1 and DC2.

DC1-SPINE1

BGP RR Overlay
lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn-rr
type internal;

 103 Solution

local-address 10.0.255.1;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 1.1.1.1;
local-as 65001;
multipath;
neighbor 10.0.255.3;
neighbor 10.0.255.4;

lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.1
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 1.1.1.1
set protocols bgp group overlay-evpn-rr local-as 65001
set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.3
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.4

BGP Overlay
lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.1;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.2;

lab@DC1-SPINE1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.1
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.2

EVPN
lab@DC1-SPINE1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;
default-gateway no-gateway-community;

lab@DC1-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community

Switch Options
lab@DC1-SPINE1> show configuration switch-options
vtep-source-interface lo0.0;

 104 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

route-distinguisher 10.0.255.1:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-SPINE1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.1:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-SPINE1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-SPINE1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1-SPINE2

BGP RR Overlay
lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn-rr
type internal;
local-address 10.0.255.2;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 1.1.1.1;
local-as 65001;
multipath;
neighbor 10.0.255.3;
neighbor 10.0.255.4;

lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.2
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 1.1.1.1
set protocols bgp group overlay-evpn-rr local-as 65001

 105 Solution 105

set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.3
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.4

BGP Overlay
lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.2;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;

lab@DC1-SPINE2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.2
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1

EVPN
lab@DC1-SPINE2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;
default-gateway no-gateway-community;

lab@DC1-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community

Switch Options
lab@DC1-SPINE2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.2:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-SPINE2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.2:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}

 106 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

term last {
 then reject;
}

lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-SPINE2> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-SPINE2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1-LEAF1

BGP Overlay
lab@DC1-LEAF1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.3;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;
neighbor 10.0.255.2;

lab@DC1-LEAF1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.3
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1
set protocols bgp group overlay-evpn neighbor 10.0.255.2

EVPN
lab@DC1-LEAF1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC1-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch-Options
lab@DC1-LEAF1> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.3:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

 107 Solution

lab@DC1-LEAF1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.3:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-LEAF1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-LEAF1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC1-LEAF2

BGP Overlay
lab@DC1-LEAF2> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.4;
family evpn {
 signaling;
}
local-as 65001;
multipath;
neighbor 10.0.255.1;
neighbor 10.0.255.2;

lab@DC1-LEAF2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.4
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65001
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.1
set protocols bgp group overlay-evpn neighbor 10.0.255.2

EVPN
lab@DC1-LEAF2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

 108 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC1-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch Options
lab@DC1-LEAF2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.4:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC1-LEAF2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.4:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC1-LEAF2> show configuration policy-options community ESI
members target:9999:9999;

lab@DC1-LEAF2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC2-SPINE1

BGP RR Overlay
lab@DC2-SPINE1> show configuration protocols bgp group overlay-evpn-rr
type internal;
local-address 10.0.255.5;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 2.2.2.2;
local-as 65002;
multipath;
neighbor 10.0.255.7;

 109 Solution

neighbor 10.0.255.8;

lab@DC2-SPINE1> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.5
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 2.2.2.2
set protocols bgp group overlay-evpn-rr local-as 65002
set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.7
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.8

BGP Overlay
lab@DC2-SPINE1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.5;
family evpn {
 signaling;
}
local-as 65002;
multipath;
neighbor 10.0.255.6;

lab@DC2-SPINE1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.5
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65002
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.6

EVPN
lab@DC2-SPINE1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC2-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch Options
lab@DC2-SPINE1> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.5:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC2-SPINE1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.5:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

 110 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

EVPN Import Policy
lab@DC2-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC2-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC2-SPINE1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC2-SPINE1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC2-SPINE2

BGP RR Overlay
lab@DC2-SPINE2> show configuration protocols bgp group overlay-evpn-rr
type internal;
local-address 10.0.255.6;
family evpn {
 signaling;
}
vpn-apply-export;
cluster 2.2.2.2;
local-as 65002;
multipath;
neighbor 10.0.255.7;
neighbor 10.0.255.8;

lab@DC2-SPINE2> show configuration protocols bgp group overlay-evpn-rr | display set
set protocols bgp group overlay-evpn-rr type internal
set protocols bgp group overlay-evpn-rr local-address 10.0.255.6
set protocols bgp group overlay-evpn-rr family evpn signaling
set protocols bgp group overlay-evpn-rr vpn-apply-export
set protocols bgp group overlay-evpn-rr cluster 2.2.2.2
set protocols bgp group overlay-evpn-rr local-as 65002
set protocols bgp group overlay-evpn-rr multipath
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.7
set protocols bgp group overlay-evpn-rr neighbor 10.0.255.8

BGP Overlay
lab@DC2-SPINE2> show configuration protocols bgp group overlay-evpn
show configuration protocols bgp group overlay-evpn | display set type internal;
local-address 10.0.255.6;
family evpn {

 111 Solution

 signaling;
}
local-as 65002;
multipath;
neighbor 10.0.255.5;

lab@DC2-SPINE2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.6
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65002
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.5

EVPN
lab@DC2-SPINE2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC2-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch Options
lab@DC2-SPINE2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.6:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC2-SPINE2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.6:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC2-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC2-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC2-SPINE2> show configuration policy-options community ESI
members target:9999:9999;

 112 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC2-SPINE2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC2-LEAF1

BGP Overly
lab@DC2-LEAF1> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.7;
family evpn {
 signaling;
}
multipath;
neighbor 10.0.255.5;
neighbor 10.0.255.6;

lab@DC2-LEAF1> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.7
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65002
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.5
set protocols bgp group overlay-evpn neighbor 10.0.255.6

EVPN
lab@DC2-LEAF1> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC2-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch Options
lab@DC2-LEAF1> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.7:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC2-LEAF1> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.7:1
set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC2-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {

 113 Solution

 then reject;
}

lab@DC2-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC2-LEAF1> show configuration policy-options community ESI
members target:9999:9999;

lab@DC2-LEAF1> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

DC2-LEAF2

BGP Overlay
lab@DC2-LEAF2> show configuration protocols bgp group overlay-evpn
type internal;
local-address 10.0.255.8;
family evpn {
 signaling;
}
local-as 65002;
multipath;
neighbor 10.0.255.5;
neighbor 10.0.255.6;

lab@DC2-LEAF2> show configuration protocols bgp group overlay-evpn | display set
set protocols bgp group overlay-evpn type internal
set protocols bgp group overlay-evpn local-address 10.0.255.8
set protocols bgp group overlay-evpn family evpn signaling
set protocols bgp group overlay-evpn local-as 65002
set protocols bgp group overlay-evpn multipath
set protocols bgp group overlay-evpn neighbor 10.0.255.5
set protocols bgp group overlay-evpn neighbor 10.0.255.6

EVPN
lab@DC2-LEAF2> show configuration protocols evpn
encapsulation vxlan;
multicast-mode ingress-replication;

lab@DC2-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn multicast-mode ingress-replication

Switch Options
lab@DC2-LEAF2> show configuration switch-options
vtep-source-interface lo0.0;
route-distinguisher 10.0.255.8:1;
vrf-import EVPN_IMPORT;
vrf-target target:9999:9999;

lab@DC2-LEAF2> show configuration switch-options | display set
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.255.8:1

 114 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

set switch-options vrf-import EVPN_IMPORT
set switch-options vrf-target target:9999:9999

EVPN Import Policy
lab@DC2-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC2-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

ESI Community
lab@DC2-LEAF2> show configuration policy-options community ESI
members target:9999:9999;

lab@DC2-LEAF2> show configuration policy-options community ESI | display set
set policy-options community ESI members target:9999:9999

Data Center Interconnect Overlay Network
The only real difference between the data center overlay network and the data cen-
ter interconnect overlay network is now we’re using EBGP as opposed to IBGP
with route reflection. The main reason for this is that each DC is assigned a unique
ASN for administration purposes.

The other element to consider is that the data center interconnect overlay network
is only used to exchange EVPN route type-5 between the spine switches.

NOTE Because we are not stretching Layer 2 between data centers, there is no
problem with the default next hop behavior of EBGP. If Type-2 EVPN routes were
required between data centers then we would need to use the no-nexthop-change
knob.

Configure EBGP Overlay Network
Now let’s create a new BGP group named dci-overlay-evpn and configure DC1-
SPINE1 to peer with DC2-SPINE1, and likewise DC1-SPINE2 with DC2-SPINE2.
Only family EVPN is required in the overlay and the peering is between loopback
interfaces. Note that loopback information is exchanged using the underlay
network.

 115 Solution

DC1-SPINE1
lab@DC1-SPINE1> show configuration protocols bgp group dci-overlay-evpn
type external;
multihop;
local-address 10.0.255.1;
family evpn {
 signaling;
}
local-as 65103;
neighbor 10.0.255.5 {
 peer-as 65203;
}

lab@DC1-SPINE1> show configuration protocols bgp group dci-overlay-evpn | display set
set protocols bgp group dci-overlay-evpn type external
set protocols bgp group dci-overlay-evpn multihop
set protocols bgp group dci-overlay-evpn local-address 10.0.255.1
set protocols bgp group dci-overlay-evpn family evpn signaling
set protocols bgp group dci-overlay-evpn local-as 65103
set protocols bgp group dci-overlay-evpn neighbor 10.0.255.5 peer-as 65203

DC2-SPINE1
lab@DC2-SPINE1> show configuration protocols bgp group dci-overlay-evpn
type external;
multihop;
local-address 10.0.255.5;
family evpn {
 signaling;
}
local-as 65203;
neighbor 10.0.255.1 {
 peer-as 65103;
}

lab@DC2-SPINE1> show configuration protocols bgp group dci-overlay-evpn | display set
set protocols bgp group dci-overlay-evpn type external
set protocols bgp group dci-overlay-evpn multihop
set protocols bgp group dci-overlay-evpn local-address 10.0.255.5
set protocols bgp group dci-overlay-evpn family evpn signaling
set protocols bgp group dci-overlay-evpn local-as 65203
set protocols bgp group dci-overlay-evpn neighbor 10.0.255.1 peer-as 65103

DC1-SPINE2
lab@DC1-SPINE2> show configuration protocols bgp group dci-overlay-evpn
type external;
multihop;
local-address 10.0.255.2;
family evpn {
 signaling;
}
local-as 65104;
neighbor 10.0.255.6 {
 peer-as 65204;
}

 116 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC1-SPINE2> show configuration protocols bgp group dci-overlay-evpn | display set
set protocols bgp group dci-overlay-evpn type external
set protocols bgp group dci-overlay-evpn multihop
set protocols bgp group dci-overlay-evpn local-address 10.0.255.2
set protocols bgp group dci-overlay-evpn family evpn signaling
set protocols bgp group dci-overlay-evpn local-as 65104
set protocols bgp group dci-overlay-evpn neighbor 10.0.255.6 peer-as 65204

DC2-SPINE2
lab@DC2-SPINE2> show configuration protocols bgp group dci-overlay-evpn
type external;
multihop;
local-address 10.0.255.6;
family evpn {
 signaling;
}
local-as 65204;
neighbor 10.0.255.2 {
 peer-as 65104;
}

lab@DC2-SPINE2> show configuration protocols bgp group dci-overlay-evpn |display set
set protocols bgp group dci-overlay-evpn type external
set protocols bgp group dci-overlay-evpn multihop
set protocols bgp group dci-overlay-evpn local-address 10.0.255.6
set protocols bgp group dci-overlay-evpn family evpn signaling
set protocols bgp group dci-overlay-evpn local-as 65204
set protocols bgp group dci-overlay-evpn neighbor 10.0.255.2 peer-as 65104

Configure Tenant
Now it’s time to configure a tenant as part of the overlay. In this recipe we are us-
ing Tenant3 host1, host2, host8, and host9. Each host resides in its own virtual
network, but all are members of the same tenancy. Each virtual network is enabled
with a VGA to provide gateway for the hosts. The IRB interfaces used for gateway
are placed in a dedicated VRF for tenent3 in order to support multi-tenancy. For a
detailed explanation of the various configuration steps to enable a tenant, please
refer to Recipe 8.

Configure Tenant3 in DC1 and DC2
The various configuration elements required for enabling Tenant3 hosts T3-1, T3-
2, T3-8, and T3-9 are included below. This does not include the EVPN type-5
steps, which will be subsequently covered.

DC1-LEAF1

Access Interface
lab@DC1-LEAF1> show configuration interfaces xe-0/0/3
description "t3-1 ens192";
unit 0 {

 117 Solution

 family ethernet-switching {
 interface-mode access;
 vlan {
 members T3-1;
 }
 }
}

lab@DC1-LEAF1> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-1 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-1

VXLAN
lab@DC1-LEAF1> show configuration vlans T3-1
vlan-id 301;
vxlan {
 vni 301;
 ingress-node-replication;
}

lab@DC1-LEAF1> show configuration vlans T3-1 | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication

EVPN
lab@DC1-LEAF1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301];
multicast-mode ingress-replication;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
}

lab@DC1-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 301 vrf-target export target:1:301

EVPN Import Policy
lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {
 from community T3-1;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

 118 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC1-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-1 Community
lab@DC1-LEAF1> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-LEAF1> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

DC1-LEAF2

Access Interface
lab@DC1-LEAF2> show configuration interfaces xe-0/0/3
description "t3-8 ens192";
unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members T3-8;
 }
 }
}

lab@DC1-LEAF2> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-8 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-8

VXLAN
lab@DC1-LEAF2> show configuration vlans T3-8
vlan-id 308;
vxlan {
 vni 308;
 ingress-node-replication;
}

lab@DC1-LEAF2> show configuration vlans T3-8 | display set
set vlans T3-8 vlan-id 308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

EVPN
lab@DC1-LEAF2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [308];
multicast-mode ingress-replication;
vni-options {
 vni 308 {
 vrf-target export target:1:308;
 }
}

 119 Solution

lab@DC1-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 308 vrf-target export target:1:308

EVPN Import Policy
lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8
set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-8 Community
lab@DC1-LEAF2> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-LEAF2> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

DC1-SPINE1

VXLAN
lab@DC1-SPINE1> show configuration vlans
T3-1 {
 vlan-id 301;
 l3-interface irb.301;
 vxlan {
 vni 301;
 ingress-node-replication;
 }
}
T3-8 {
 vlan-id 308;
 l3-interface irb.308;
 vxlan {
 vni 308;
 ingress-node-replication;
 }
}

 120 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC1-SPINE1> show configuration vlans | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 l3-interface irb.301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication
set vlans T3-8 vlan-id 308
set vlans T3-8 l3-interface irb.308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

EVPN
lab@DC1-SPINE1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301 308];
multicast-mode ingress-replication;
default-gateway no-gateway-community;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
 vni 308 {
 vrf-target export target:1:308;
 }
}

lab@DC1-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community
set protocols evpn vni-options vni 301 vrf-target export target:1:301
set protocols evpn vni-options vni 308 vrf-target export target:1:308

EVPN Import Policy
lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {
 from community T3-1;
 then accept;
}
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8

 121 Solution

set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options politcy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-1 Community
lab@DC1-SPINE1> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-SPINE1> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

T3-8 Community
lab@DC1-SPINE1> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-SPINE1> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

IRB Interface
lab@DC1-SPINE1> show configuration interfaces irb
unit 301 {
 proxy-macip-advertisement;
 description " * T3 - vlan 301 - vni 301 ";
 family inet {
 address 192.168.31.252/24 {
 virtual-gateway-address 192.168.31.254;
 }
 }
}
unit 308 {
 proxy-macip-advertisement;
 description " * T3 - vlan 308 - vni 308 ";
 family inet {
 address 192.168.38.252/24 {
 virtual-gateway-address 192.168.38.254;
 }
 }
}

lab@DC1-SPINE1> show configuration interfaces irb | display set
set interfaces irb unit 301 proxy-macip-advertisement
set interfaces irb unit 301 description " * T3 - vlan 301 - vni 301 "
set interfaces irb unit 301 family inet address 192.168.31.252/24 virtual-gateway-
address 192.168.31.254
set interfaces irb unit 308 proxy-macip-advertisement
set interfaces irb unit 308 description " * T3 - vlan 308 - vni 308 "
set interfaces irb unit 308 family inet address 192.168.38.252/24 virtual-gateway-
address 192.168.38.254

Tenant 3 VRF
lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;

 122 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

interface lo0.30;
route-distinguisher 10.0.255.1:30;
vrf-target target:1:300;

lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.1:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

DC1-SPINE2

VXLAN
lab@DC1-SPINE2> show configuration vlans
T3-1 {
 vlan-id 301;
 l3-interface irb.301;
 vxlan {
 vni 301;
 ingress-node-replication;
 }
}
T3-8 {
 vlan-id 308;
 l3-interface irb.308;
 vxlan {
 vni 308;
 ingress-node-replication;
 }
}

lab@DC1-SPINE2> show configuration vlans | display set
set vlans T3-1 vlan-id 301
set vlans T3-1 l3-interface irb.301
set vlans T3-1 vxlan vni 301
set vlans T3-1 vxlan ingress-node-replication
set vlans T3-8 vlan-id 308
set vlans T3-8 l3-interface irb.308
set vlans T3-8 vxlan vni 308
set vlans T3-8 vxlan ingress-node-replication

EVPN
lab@DC1-SPINE2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [301 308];
multicast-mode ingress-replication;
default-gateway no-gateway-community;
vni-options {
 vni 301 {
 vrf-target export target:1:301;
 }
 vni 308 {
 vrf-target export target:1:308;
 }
}

 123 Solution

lab@DC1-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 301
set protocols evpn extended-vni-list 308
set protocols evpn multicast-mode ingress-replication
set protocols evpn default-gateway no-gateway-community
set protocols evpn vni-options vni 301 vrf-target export target:1:301
set protocols evpn vni-options vni 308 vrf-target export target:1:308

EVPN Import Policy
lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-1 {
 from community T3-1;
 then accept;
}
term import_T3-8 {
 from community T3-8;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC1-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-1 from community T3-1
set policy-options policy-statement EVPN_IMPORT term import_T3-1 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-8 from community T3-8
set policy-options policy-statement EVPN_IMPORT term import_T3-8 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-1 Community
lab@DC1-SPINE2> show configuration policy-options community T3-1
members target:1:301;

lab@DC1-SPINE2> show configuration policy-options community T3-1 | display set
set policy-options community T3-1 members target:1:301

T3-8 Community
lab@DC1-SPINE2> show configuration policy-options community T3-8
members target:1:308;

lab@DC1-SPINE2> show configuration policy-options community T3-8 | display set
set policy-options community T3-8 members target:1:308

 124 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

IRB Interface
lab@DC1-SPINE2> show configuration interfaces irb
unit 301 {
 proxy-macip-advertisement;
 description " * T3 - vlan 301 - vni 301 ";
 family inet {
 address 192.168.31.253/24 {
 virtual-gateway-address 192.168.31.254;
 }
 }
}
unit 308 {
 proxy-macip-advertisement;
 description " * T3 - vlan 308 - vni 308 ";
 family inet {
 address 192.168.38.253/24 {
 virtual-gateway-address 192.168.38.254;
 }
 }
}

lab@DC1-SPINE2> show configuration interfaces irb | display set
set interfaces irb unit 301 proxy-macip-advertisement
set interfaces irb unit 301 description " * T3 - vlan 301 - vni 301 "
set interfaces irb unit 301 family inet address 192.168.31.253/24 virtual-gateway-
address 192.168.31.254
set interfaces irb unit 308 proxy-macip-advertisement
set interfaces irb unit 308 description " * T3 - vlan 308 - vni 308 "
set interfaces irb unit 308 family inet address 192.168.38.253/24 virtual-gateway-
address 192.168.38.254

Tenant 3 VRF
lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;
interface lo0.30;
route-distinguisher 10.0.255.2:30;
vrf-target target:1:300;

lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.2:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

DC2-LEAF1

Access Interface
lab@DC2-LEAF1> show configuration interfaces xe-0/0/3
description "t3-2 ens192";
unit 0 {
 family ethernet-switching {

 125 Solution

 interface-mode access;
 vlan {
 members T3-2;
 }
 }
}

lab@DC2-LEAF1> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-2 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-2

VXLAN
lab@DC2-LEAF1> show configuration vlans T3-2
vlan-id 302;
vxlan {
 vni 302;
 ingress-node-replication;
}

lab@DC2-LEAF1> show configuration vlans T3-2 | display set
set vlans T3-2 vlan-id 302
set vlans T3-2 vxlan vni 302
set vlans T3-2 vxlan ingress-node-replication

EVPN
lab@DC2-LEAF1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [302];
multicast-mode ingress-replication;
vni-options {
 vni 302 {
 vrf-target export target:1:302;
 }
}

lab@DC2-LEAF1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 302
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 302 vrf-target export target:1:302

EVPN Import Policy
lab@DC2-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-2 {
 from community T3-2;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

 126 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC2-LEAF1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-2 from community T3-2
set policy-options policy-statement EVPN_IMPORT term import_T3-2 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-2 Community
lab@DC2-LEAF1> show configuration policy-options community T3-2
members target:1:302;

lab@DC2-LEAF1> show configuration policy-options community T3-2 | display set
set policy-options community T3-2 members target:1:302

DC2-LEAF2

Access Interface
lab@DC2-LEAF2> show configuration interfaces xe-0/0/3
description "t3-9 ens192";
unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members T3-9;
 }
 }
}

lab@DC2-LEAF2> show configuration interfaces xe-0/0/3 | display set
set interfaces xe-0/0/3 description "t3-9 ens192"
set interfaces xe-0/0/3 unit 0 family ethernet-switching interface-mode access
set interfaces xe-0/0/3 unit 0 family ethernet-switching vlan members T3-9

VXLAN
lab@DC2-LEAF2> show configuration vlans T3-9
vlan-id 309;
vxlan {
 vni 309;
 ingress-node-replication;
}

lab@DC2-LEAF2> show configuration vlans T3-9 | display set
set vlans T3-9 vlan-id 309
set vlans T3-9 vxlan vni 309
set vlans T3-9 vxlan ingress-node-replication

EVPN
lab@DC2-LEAF2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [309];
multicast-mode ingress-replication;
vni-options {
 vni 309 {
 vrf-target export target:1:309;
 }
}

 127 Solution

lab@DC2-LEAF2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 309
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 309 vrf-target export target:1:309

EVPN Import Policy
lab@DC2-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T1-3 {
 from community T1-3;
 then accept;
}
term import_T1-4 {
 from community T1-4;
 then accept;
}
term import_T2-3 {
 from community T2-3;
 then accept;
}
term import_T2-4 {
 from community T2-4;
 then accept;
}
term import_T3-9 {
 from community T3-9;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC2-LEAF2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T1-3 from community T1-3
set policy-options policy-statement EVPN_IMPORT term import_T1-3 then accept
set policy-options policy-statement EVPN_IMPORT term import_T1-4 from community T1-4
set policy-options policy-statement EVPN_IMPORT term import_T1-4 then accept
set policy-options policy-statement EVPN_IMPORT term import_T2-3 from community T2-3
set policy-options policy-statement EVPN_IMPORT term import_T2-3 then accept
set policy-options policy-statement EVPN_IMPORT term import_T2-4 from community T2-4
set policy-options policy-statement EVPN_IMPORT term import_T2-4 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-9 from community T3-9
set policy-options policy-statement EVPN_IMPORT term import_T3-9 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-9 Community
lab@DC2-LEAF2> show configuration policy-options community T3-9
members target:1:309;

lab@DC2-LEAF2> show configuration policy-options community T3-9 | display set
set policy-options community T3-9 members target:1:309

 128 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

DC2-SPINE1

VXLAN
lab@DC2-SPINE1> show configuration vlans
T3-2 {
 vlan-id 302;
 l3-interface irb.302;
 vxlan {
 vni 302;
 ingress-node-replication;
 }
}
T3-9 {
 vlan-id 309;
 l3-interface irb.309;
 vxlan {
 vni 309;
 ingress-node-replication;
 }
}

lab@DC2-SPINE1> show configuration vlans | display set
set vlans T3-2 vlan-id 302
set vlans T3-2 l3-interface irb.302
set vlans T3-2 vxlan vni 302
set vlans T3-2 vxlan ingress-node-replication
set vlans T3-9 vlan-id 309
set vlans T3-9 l3-interface irb.309
set vlans T3-9 vxlan vni 309
set vlans T3-9 vxlan ingress-node-replication

EVPN
lab@DC2-SPINE1> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [103 104 203 204 302 309];
multicast-mode ingress-replication;
vni-options {
 vni 103 {
 vrf-target export target:1:103;
 }
 vni 104 {
 vrf-target export target:1:104;
 }
 vni 203 {
 vrf-target export target:1:203;
 }
 vni 204 {
 vrf-target export target:1:204;
 }
 vni 302 {
 vrf-target export target:1:302;
 }
 vni 309 {
 vrf-target export target:1:309;
 }
}

 129 Solution

lab@DC2-SPINE1> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 302
set protocols evpn extended-vni-list 309
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 302 vrf-target export target:1:302
set protocols evpn vni-options vni 309 vrf-target export target:1:309

EVPN Import Policy
lab@DC2-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-2 {
 from community T3-2;
 then accept;
}
term import_T3-9 {
 from community T3-9;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

lab@DC2-SPINE1> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-2 from community T3-2
set policy-options policy-statement EVPN_IMPORT term import_T3-2 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-9 from community T3-9
set policy-options policy-statement EVPN_IMPORT term import_T3-9 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-2 Community
lab@DC2-SPINE1> show configuration policy-options community T3-2
members target:1:302;

lab@DC2-SPINE1> show configuration policy-options community T3-2 | display set
set policy-options community T3-2 members target:1:302

T3-9 Community
lab@DC2-SPINE1> show configuration policy-options community T3-9
members target:1:309;

lab@DC2-SPINE1> show configuration policy-options community T3-9 | display set
set policy-options community T3-9 members target:1:309

IRB Interface
lab@DC2-SPINE1> show configuration interfaces irb
unit 302 {
 description " * T3 - vlan 302 - vni 302 ";

 130 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

 proxy-arp;
 family inet {
 address 192.168.32.252/24 {
 virtual-gateway-address 192.168.32.254;
 }
 }
}
unit 309 {
 description " * T3 - vlan 309 - vni 309 ";
 proxy-arp;
 family inet {
 address 192.168.39.252/24 {
 virtual-gateway-address 192.168.39.254;
 }
 }
}

lab@DC2-SPINE1> show configuration interfaces irb | display set
set interfaces irb unit 302 description " * T3 - vlan 302 - vni 302 "
set interfaces irb unit 302 proxy-arp
set interfaces irb unit 302 family inet address 192.168.32.252/24 virtual-gateway-
address 192.168.32.254
set interfaces irb unit 309 description " * T3 - vlan 309 - vni 309 "
set interfaces irb unit 309 proxy-arp
set interfaces irb unit 309 family inet address 192.168.39.252/24 virtual-gateway-
address 192.168.39.254

Tenant 3 VRF
lab@DC2-SPINE1> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.302;
interface irb.309;
interface lo0.30;
route-distinguisher 10.0.255.5:30;
vrf-target target:1:300;

lab@DC2-SPINE1> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.302
set routing-instances TENANT_3_VRF interface irb.309
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.5:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

DC2-SPINE2

VXLAN
lab@DC2-SPINE2> show configuration vlans
T3-2 {
 vlan-id 302;
 l3-interface irb.302;
 vxlan {
 vni 302;
 ingress-node-replication;
 }
}

 131 Solution

T3-9 {
 vlan-id 309;
 l3-interface irb.309;
 vxlan {
 vni 309;
 ingress-node-replication;
 }
}

lab@DC2-SPINE2> show configuration vlans | display set
set vlans T3-2 vlan-id 302
set vlans T3-2 l3-interface irb.302
set vlans T3-2 vxlan vni 302
set vlans T3-2 vxlan ingress-node-replication
set vlans T3-9 vlan-id 309
set vlans T3-9 l3-interface irb.309
set vlans T3-9 vxlan vni 309
set vlans T3-9 vxlan ingress-node-replication

EVPN
lab@DC2-SPINE2> show configuration protocols evpn
encapsulation vxlan;
extended-vni-list [302 309];
multicast-mode ingress-replication;
vni-options {
 vni 302 {
 vrf-target export target:1:302;
 }
 vni 309 {
 vrf-target export target:1:309;
 }
}

lab@DC2-SPINE2> show configuration protocols evpn | display set
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list 302
set protocols evpn extended-vni-list 309
set protocols evpn multicast-mode ingress-replication
set protocols evpn vni-options vni 302 vrf-target export target:1:302
set protocols evpn vni-options vni 309 vrf-target export target:1:309

EVPN Import Policy
lab@DC2-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT
term import_T3-2 {
 from community T3-2;
 then accept;
}
term import_T3-9 {
 from community T3-9;
 then accept;
}
term import_ESI {
 from community ESI;
 then accept;
}
term last {
 then reject;
}

 132 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

lab@DC2-SPINE2> show configuration policy-options policy-statement EVPN_IMPORT | display set
set policy-options policy-statement EVPN_IMPORT term import_T3-2 from community T3-2
set policy-options policy-statement EVPN_IMPORT term import_T3-2 then accept
set policy-options policy-statement EVPN_IMPORT term import_T3-9 from community T3-9
set policy-options policy-statement EVPN_IMPORT term import_T3-9 then accept
set policy-options policy-statement EVPN_IMPORT term import_ESI from community ESI
set policy-options policy-statement EVPN_IMPORT term import_ESI then accept
set policy-options policy-statement EVPN_IMPORT term last then reject

T3-2 Community
lab@DC2-SPINE2> show configuration policy-options community T3-2
members target:1:302;

lab@DC2-SPINE2> show configuration policy-options community T3-2 | display set
set policy-options community T3-2 members target:1:302

T3-9 Community
lab@DC2-SPINE2> show configuration policy-options community T3-9
members target:1:309;

lab@DC2-SPINE2> show configuration policy-options community T3-9 | display set
set policy-options community T3-9 members target:1:309

IRB Interface
lab@DC2-SPINE2> show configuration interfaces irb
unit 302 {
 description " * T3 - vlan 302 - vni 302 ";
 proxy-arp;
 family inet {
 address 192.168.32.253/24 {
 virtual-gateway-address 192.168.32.254;
 }
 }
}
unit 309 {
 description " * T3 - vlan 309 - vni 309 ";
 proxy-arp;
 family inet {
 address 192.168.39.253/24 {
 virtual-gateway-address 192.168.39.254;
 }
 }
}

lab@DC2-SPINE2> show configuration interfaces irb | display set
set interfaces irb unit 302 description " * T3 - vlan 302 - vni 302 "
set interfaces irb unit 302 proxy-arp
set interfaces irb unit 302 family inet address 192.168.32.253/24 virtual-gateway-
address 192.168.32.254
set interfaces irb unit 309 description " * T3 - vlan 309 - vni 309 "
set interfaces irb unit 309 proxy-arp
set interfaces irb unit 309 family inet address 192.168.39.253/24 virtual-gateway-
address 192.168.39.254

 133 Solution

Tenant 3 VRF
lab@DC2-SPINE2> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.302;
interface irb.309;
interface lo0.30;
route-distinguisher 10.0.255.6:30;
vrf-target target:1:300;

lab@DC2-SPINE2> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.302
set routing-instances TENANT_3_VRF interface irb.309
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.6:30
set routing-instances TENANT_3_VRF vrf-target target:1:300

Configure EVPN Route Type-5
Now that Tenant3 is configured in both DC1 & DC2, and all hosts are able to
reach their gateways, it’s time to enable EVPN route type-5 for data center
interconnect.

The IRB virtual gateways that were configured in the previous section are key.
EVPN route type-5 requires a locally connected interface in order to generate the
IP prefix. For example, the VRF routing table for Tenent3 must have an interface
directly connected (IRB) for the IP prefix that we want to send via EVPN route
type-5.

NOTE No changes or special configurations are required on the leaf switches for
this solution.

Configure EVPN Route Type-5 on Spine Switches for Tenant-3
Configuring EVPN route type-5 is relatively simple and is completed under the
protocols evpn hierarchy for a given tenant VRF.

DC1-SPINE1
lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;
interface lo0.30;
route-distinguisher 10.0.255.1:30;
vrf-target target:1:300;
protocols {
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;

 134 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

 vni 5001;
 }
 }
}

lab@DC1-SPINE1> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.1:30
set routing-instances TENANT_3_VRF vrf-target target:1:300
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes advertise direct-nexthop
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes encapsulation vxlan
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes vni 5001

DC1-SPINE2
lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.301;
interface irb.308;
interface lo0.30;
route-distinguisher 10.0.255.2:30;
vrf-target target:1:300;
protocols {
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 5001;
 }
 }
}

lab@DC1-SPINE2> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.301
set routing-instances TENANT_3_VRF interface irb.308
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.2:30
set routing-instances TENANT_3_VRF vrf-target target:1:300
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes advertise direct-nexthop
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes encapsulation vxlan
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes vni 5001

DC2-SPINE1
lab@DC2-SPINE1> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.302;
interface irb.309;
interface lo0.30;
route-distinguisher 10.0.255.5:30;
vrf-target target:1:300;
protocols {
 evpn {
 ip-prefix-routes {

 135 Solution

 advertise direct-nexthop;
 encapsulation vxlan;
 vni 5001;
 }
 }
}

lab@DC2-SPINE1> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.302
set routing-instances TENANT_3_VRF interface irb.309
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.5:30
set routing-instances TENANT_3_VRF vrf-target target:1:300
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes advertise direct-nexthop
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes encapsulation vxlan
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes vni 5001

DC2-SPINE2
lab@DC2-SPINE2> show configuration routing-instances TENANT_3_VRF
instance-type vrf;
interface irb.302;
interface irb.309;
interface lo0.30;
route-distinguisher 10.0.255.6:30;
vrf-target target:1:300;
protocols {
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 5001;
 }
 }
}

lab@DC2-SPINE2> show configuration routing-instances TENANT_3_VRF | display set
set routing-instances TENANT_3_VRF instance-type vrf
set routing-instances TENANT_3_VRF interface irb.302
set routing-instances TENANT_3_VRF interface irb.309
set routing-instances TENANT_3_VRF interface lo0.30
set routing-instances TENANT_3_VRF route-distinguisher 10.0.255.6:30
set routing-instances TENANT_3_VRF vrf-target target:1:300
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes advertise direct-nexthop
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes encapsulation vxlan
set routing-instances TENANT_3_VRF protocols evpn ip-prefix-routes vni 5001

Verification
In order to make the solution redundant, it is necessary to ensure that each spine
switch retains reachability to the remote subnets, received via EVPN route type-5,
in the event of data center interconnect failure. This is achieved by announcing the
remote EVPN type-5 routes, received from the remote spine switch, to the peer
spine switch within a given DC, as shown in Figure 9.4.

 136 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

Under normal operation, DC1-SPINE2 receives a type-5 EVPN route for remote
T3-2 and T3-9 subnets via DC2-SPINE2 and also from DC1-SPINE1. Traffic des-
tined to the remote DC2 subnets traverses the locally connected DCI circuit due to
a shorter AS-Path.

Figure 9.4 DCI Type-5 Routing No Failure

DC1-SPINE2 TENANT_3 Routing Table
lab@DC1-SPINE2> show route table TENANT_3_VRF.evpn.0

TENANT_3_VRF.evpn.0: 8 destinations, 12 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

5:10.0.255.1:30::0::192.168.31.0::24/304
 *[BGP/170] 1w0d 01:46:01, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.1:30::0::192.168.38.0::24/304
 *[BGP/170] 1w0d 01:46:01, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.2:30::0::192.168.31.0::24/304
 *[EVPN/170] 1w1d 05:38:42
 Indirect
5:10.0.255.2:30::0::192.168.38.0::24/304
 *[EVPN/170] 1w1d 05:38:42
 Indirect
5:10.0.255.5:30::0::192.168.32.0::24/304

 *[BGP/170] 1d 01:29:19, localpref 100, from 10.0.255.6

 137 Solution

 AS path: 65204 65002 I, validation-state: unverified

 > to 172.16.99.3 via xe-0/0/4.0

 [BGP/170] 08:50:11, localpref 100, from 10.0.255.1
 AS path: 65103 65203 I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.5:30::0::192.168.39.0::24/304

 *[BGP/170] 1d 01:29:19, localpref 100, from 10.0.255.6

 AS path: 65204 65002 I, validation-state: unverified

 > to 172.16.99.3 via xe-0/0/4.0

 [BGP/170] 08:50:11, localpref 100, from 10.0.255.1
 AS path: 65103 65203 I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.6:30::0::192.168.32.0::24/304

 *[BGP/170] 1d 01:29:19, localpref 100, from 10.0.255.6

 AS path: 65204 I, validation-state: unverified

 > to 172.16.99.3 via xe-0/0/4.0

 [BGP/170] 08:50:11, localpref 100, from 10.0.255.1
 AS path: 65103 65203 65002 I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.6:30::0::192.168.39.0::24/304

 *[BGP/170] 1d 01:29:19, localpref 100, from 10.0.255.6

 AS path: 65204 I, validation-state: unverified

 > to 172.16.99.3 via xe-0/0/4.0

 [BGP/170] 08:50:11, localpref 100, from 10.0.255.1
 AS path: 65103 65203 65002 I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0

DC1-SPINE2 DC2-SPINE2 DCI Link Failure

Figure 9.5 DCI Type-5 Routing Link Failure

 138 Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

In the event of a DCI failure between DC1-SPINE2 and DC2-SPINE2, shown in
Figure 9.5, the route via DC2-SPINE2 is withdrawn and traffic is routed via
DC1-SPINE1.

lab@DC1-SPINE2> show route table TENANT_3_VRF.evpn.0

TENANT_3_VRF.evpn.0: 8 destinations, 12 routes (8 active, 0 holddown, 4 hidden)
+ = Active Route, - = Last Active, * = Both

5:10.0.255.1:30::0::192.168.31.0::24/304
 *[BGP/170] 1w0d 01:51:39, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.1:30::0::192.168.38.0::24/304
 *[BGP/170] 1w0d 01:51:39, localpref 100, from 10.0.255.1
 AS path: I, validation-state: unverified
 > to 172.16.0.40 via xe-0/0/5.0
5:10.0.255.2:30::0::192.168.31.0::24/304
 *[EVPN/170] 1w1d 05:44:20
 Indirect
5:10.0.255.2:30::0::192.168.38.0::24/304
 *[EVPN/170] 1w1d 05:44:20
 Indirect
5:10.0.255.5:30::0::192.168.32.0::24/304

 *[BGP/170] 00:00:54, localpref 100, from 10.0.255.1

 AS path: 65103 65203 I, validation-state: unverified

 > to 172.16.0.40 via xe-0/0/5.0

5:10.0.255.5:30::0::192.168.39.0::24/304

 *[BGP/170] 00:00:54, localpref 100, from 10.0.255.1

 AS path: 65103 65203 I, validation-state: unverified

 > to 172.16.0.40 via xe-0/0/5.0

5:10.0.255.6:30::0::192.168.32.0::24/304

 *[BGP/170] 00:00:54, localpref 100, from 10.0.255.1

 AS path: 65103 65203 65002 I, validation-state: unverified

 > to 172.16.0.40 via xe-0/0/5.0

5:10.0.255.6:30::0::192.168.39.0::24/304

 *[BGP/170] 00:00:54, localpref 100, from 10.0.255.1

 AS path: 65103 65203 65002 I, validation-state: unverified

 > to 172.16.0.40 via xe-0/0/5.0

You can see in this example that the link between DC1-SPINE2 and DC2-SPINE2
has failed. However DC1-SPINE2 still has reachability to remote DC2 subnets via
the EVPN type-5 routes received from DC1-SPINE1. This is important, particu-
larly when using EVPN anycast gateway, whereby hosts may send traffic to either
spine switch.

Discussion
In this recipe EVPN route type-5 was used to aggregate tenant EVPN type-2
MACs behind a single EVPN type-5 IP prefix for a given virtual network. The
type-5 routes were then advertised over DCI interconnects to provide a redundant
DCI setup.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright
	Contributing Ambassadors
	Preface
	Recipe 1: Extending Layer 2 Over Layer 3 VPN MPLS with EVPN-VXLAN
	Recipe 2: Identifying and Resolving Asymmetric Routing Problems
	Recipe 3: Configuring Filter-Based Forwarding Inside a Junos Routing Instance
	Recipe 4: Configuring DHCP Services on the EX2300/EX4300 Series with Enhanced Layer 2 Software
	Recipe 5: Exceeding the MTU and GRE Tunnels
	Recipe 6: Application-based Routing
	Recipe 7: Automating Junos with Salt
	Recipe 8: Configuring EVPN Anycast Gateway with Intra-Tenant Inter-Subnet Routing
	Recipe 9: Configuring Redundant DCI Using EVPN Route Type-5 on Juniper QFX10K

