- General Workflow
- play_arrow Apstra GUI
- play_arrow Design
- Logical Devices (Datacenter Design)
- Interface Maps (Datacenter Design)
- Rack Types (Datacenter Design)
- Templates (Datacenter Design)
- Config Templates (Freeform Design)
- play_arrow Configlets (Datacenter Design)
- play_arrow Property Sets (Datacenter Design)
- TCP/UDP Port Aliases (Datacenter Design)
- Tags (Design)
- play_arrow Devices
- Device Configuration Lifecycle
- play_arrow Managed Devices
- play_arrow System Agents
- play_arrow Pristine Configuration
- play_arrow Telemetry
- play_arrow Apstra ZTP
- play_arrow Resources Introduction
- play_arrow Datacenter Reference Design
- Create / Delete Datacenter Blueprint
- Datacenter Blueprint Summary and Dashboard
- Assign Physical Resources (Datacenter)
- Assign Device Profiles
- play_arrow Configlets (Datacenter Blueprint)
- Topology (Datacenter)
- play_arrow Nodes (Datacenter)
- Assign Device (Datacenter)
- Unassign Device (Datacenter)
- Set Deploy Mode (Datacenter)
- Generic Systems vs. External Generic Systems
- Add Generic System
- Add External Generic System
- Add Access Switch
- Update Node Tags
- Update Port Channel ID Range
- Edit Hostname (Datacenter)
- Edit Generic System Name
- Edit Device Properties (Datacenter)
- View Node's Static Routes
- Delete Node
- play_arrow Links (Datacenter)
- Add Links to Leaf
- Add Links to Spine
- Add Links to Generic System
- Add Links to External Generic System
- Add Leaf Peer Links
- Form LAG
- Break LAG
- Update LAG Mode
- Update Link Tags
- Update Link Speed
- Update Link Properties
- Delete Link (Datacenter)
- Import / Export Cabling Map (Datacenter)
- Edit Cabling Map (Datacenter)
- Fetch Discovered LLDP Data (Datacenter)
- play_arrow Racks (Datacenter)
- play_arrow Pods (Datacenter)
- play_arrow Planes (Datacenter)
- play_arrow Virtual Networks
- play_arrow Routing Zones
- Static Routes (Virtual)
- Protocol Sessions (Virtual)
- Data Center Interconnect (DCI) / Remote EVPN Gateways (Virtual)
- play_arrow Virtual Infra (Virtual)
- play_arrow Endpoints Overview (Virtual)
- play_arrow Policies (Datacenter) Staged
- Logical Devices (Datacenter Blueprint)
- Interface Maps (Datacenter Blueprint)
- play_arrow Property Sets (Datacenter Blueprint)
- AAA Servers (Datacenter Blueprint)
- Tags (Datacenter Blueprint)
- Tasks (Datacenter) Staged
- play_arrow Connectivity Templates
- play_arrow Primitives
- Virtual Network (Single) Primitive
- Virtual Network (Multiple) Primitive
- IP Link Primitive
- Static Route Primitive
- Custom Static Route Primitive
- BGP Peering (IP Endpoint) Primitive
- BGP Peering (Generic System) Primitive
- Dynamic BGP Peering Primitive
- Routing Policy Primitive
- Routing Zone Constraint Primitive
- User-defined
- Pre-defined
- Create Connectivity Template for Multiple VNs on Same Interface (Example)
- Create Connectivity Template for Layer 2 Connected External Router (Example)
- Assign Connectivity Template
- Edit Connectivity Template
- Delete Connectivity Template
- play_arrow Active (Datacenter Blueprint)
- BGP Route Tagging
- play_arrow Freeform Reference Design
- Create / Delete Freeform Blueprint
- Freeform Blueprint Summary and Dashboard
- Topology (Freeform)
- play_arrow Systems (Freeform)
- Device Context (Freeform)
- play_arrow Links (Freeform)
- play_arrow Resource Management
- play_arrow Config Templates (Freeform Blueprint)
- Import Device Profile (Freeform)
- play_arrow Property Sets (Freeform Blueprints)
- play_arrow Tags (Freeform Blueprint)
- Tasks - Staged (Freeform)
- play_arrow Active
- Commit Blueprint
- Time Voyager
- play_arrow Analytics
- Configure Auto-Enabled Dashboards
- Instantiate Predefined Dashboard
- Create Analytics Dashboard
- Edit / Delete Dashboard
- Anomalies (Analytics)
- Widgets Overview
- Create Anomaly Heat Map Widget
- Create Stage Widget
- Edit / Delete Widget
- Probes
- Instantiate Predefined Probe
- Create Probe
- Import / Export Probe
- Edit / Delete Probe
- play_arrow Providers (External Systems)
- play_arrow Platform
- play_arrow User/Role Management (Platform)
- play_arrow Security (Platform)
- Syslog Configuration (Platform)
- Receivers (Platform)
- Global Statistics (Platform)
- Event Log (Platform)
- play_arrow Apstra VM Clusters
- play_arrow Developers (Platform)
- play_arrow Juniper Technical Support
- Favorites & User
- play_arrow Apstra Server Management
- Monitor Apstra Server via CLI
- Restart Apstra Server
- Reset Apstra Server VM Password
- Reinstall Apstra Server
- Apstra Database Overview
- Back up Apstra Database
- Restore Apstra Database
- Reset Apstra Database
- Migrate Apstra Database
- Replace SSL Certificate on Apstra Server with Signed One
- Replace SSL Certificate on Apstra Server with Self-Signed One
- Change Apstra Server Hostname
- Apstra CLI Utility
- play_arrow Guides
VMs without Fabric Configured VLANs Probe (Virtual Infra)
Purpose | Calculate VMs missing a VLAN and calculate VMs not backed by VLANs on managed leaf devices connected to hypervisors. | ||||||
Source Processors |
| ||||||
Additional Processor(s) |
| ||||||
Example Usage | NSX-T Integration - VMs participating in a particular network are attached to an NSX logical switch. In NSX transport zone controls to which hypervisors or ESXi host an NSX logical switch can span. To have VXLAN connectivity for these VMs they need to be part of the same transport zone. This predefined anomaly helps validate that all VLAN backend interfaces defined for NSX-T nodes are also configured on the ToR interfaces connecting that node to the fabric. VLAN probe anomaly checks for VLAN specification in case of NSX-T via one of the two methods below: Method One: When you have VMs that are connected to the NSX-T overlay, you can configure a bridge-backed logical switch to provide layer 2 connectivity with other devices or VMs. So via VLAN specification on NSX-T layer 2 bridges and fabric if respective VXLAN VN is not there, then an anomaly is raised. Method Two: Edge uplinks go out through VLAN logical switches. So let's say if the uplink VLAN logical switch has a particular VLAN ID and respective VLAN on ToR port connected to the hypervisor host is not configured then also this VLAN probe will raise anomalies and help detect such misconfiguration. The following is a simple topology where nsxcompute_001_server_001 and
nsxedge_001_server001 are ESXi hosting VMs that are connected to the NSX-T
overlay network. There is one VM on each ESXi host that needs a VXLAN VN endpoint on each leaf, i.e. nsxcompute_001_leaf1 and nsxedge_001_leaf1 to communicate on the overlay network. When VXLAN VNs assigned to ToR leaf devices are deleted, VLAN misconfig
anomalies are raised as below under Fabric Health in the dashboard. VMs not backed by Fabric VLANs shows VMs with VLAN missing. Affected VM Anomalies shows VLAN missing in the fabric. |