Engineering
Juniper |

Simplicity

Juniper Apstra 4.2.0 Custom Telemetry
Collection In Focus Guide

Published
2023-11-06

Table of Contents

Introduction
Apstra Telemetry and Intent-Based Analytics
Custom Telemetry Collection Overview
Creating a Custom Telemetry Collector
Execute the CLI Command | 10
Identify the Key and Value of Interest from the CLI Output | 13
Create a Service Schema | 14
Create a Collector | 15
Validate That the Collector Is Working | 19
Using Custom Telemetry Data in an IBA Probe
Create a Probe | 22
Customize a Probe | 26
Performance Analytics | 27
Raising Anomalies and Storing Historical Data | 29
Monitoring the Health of the Telemetry Service

Summary

Introduction

Juniper Apstra is a powerful automation solution that manages the full life cycle of data center switching
fabrics. Apstra’s Intent-Based Networking (IBN) approach to automation helps you design, build, deploy,
operate and validate your network.

Apstra validates that:

e The user-supplied inputs are valid.

e The user inputs are consistent and compatible with the constraints of the network.
o The expected telemetry outputs are correct when the network is stable.

e There are no gaps between the expected and actual telemetry.

Once you deploy your network, Apstra collects various telemetry data from its managed devices. This
data is automatically aggregated and validated against the intended state of each telemetry type, such
as interfaces, LLDP, BGP, and so on. This capability in Apstra is called /ntent-Based Analytics, or IBA. IBA
is an invaluable tool for obtaining accurate and relevant data for robust operations and informed
decision-making.

Starting with Release 4.2.0, Apstra introduces its Custom Telemetry Collection. This collection enables
you to easily configure Apstra to collect new telemetry data from managed devices. Apstra then uses
that data in IBA probes to visualize and analyze your data.

In this document, you will learn:

e The fundamentals of IBA.

e How to define a custom telemetry service.

e How to create a new IBA probe to visualize and analyze data from your telemetry service.
We'll also walk you through an example use case that shows you how to:

o Define a custom telemetry service that gathers the BFD session state from managed devices.
o Create an IBA probe that ingests and visualizes the BFD session state data.

e Customize your IBA probe to raise anomalies for BFD sessions that are down.

e Store the history of anomalies in a time-series database.

Let’s dive in!

Apstra Telemetry and Intent-Based Analytics

IN THIS SECTION

What Is Intent-Based Analytics? | 2
Telemetry Services | 4
Auto-Enabled Probes | 4
Predefined Probes Catalog | 5
Custom Probes | 7

What If Apstra Doesn'’t Collect the Data You're Looking For? | 8

What Is Intent-Based Analytics?

Intent-Based Analytics (IBA) helps you with any operational status changes in your infrastructure by
extracting knowledge out of raw telemetry data.

You configure IBA in the Apstra GUI. From the left navigation menu, click Blueprints. Select your
blueprint and then navigate to the Analytics tab in the dashboard.

7 @ » Blueprints » zz-gmat-evpnvex.2485377892356-1794799864 - evpn-vex-virtual » Analytics » Dashboards ‘\

(D Dashboard |~ Analytics [&) staged & Uncommitted (@) Active D Time Voyager
@ D 3 05 wvidgets D Probes [=) Reports
2 Configure Auto-Enabled Dashboards © Create Dashboard ~
Display mode
1-50f5
Expanded -
Page Size: 25
Device Health Summary £ System amonthago Default [c4 - W
The dashboard presents the data of utilization of system cpu, system memory and maximum disk utilization of a partition on every system present.
Systems with high cpu utilization Systems with high memory utilization Systems with high disk utilization
Value® Value® Value®
[} / 5 o / 5 [/ 5
IBA Probes

In IBA, probes represent a single analytics pipeline. A probe is a configurable data-processing pipeline
that enables you to set up conditions of interest (situations to watch). IBA probes fetch data, apply
processing, and then compares the result against expectations.

IBA probes:
e Collect different types of telemetry data from managed devices.
e Enrich the data with contextual information from the blueprint.

e Aggregate and process the raw data into more meaningful data such as average over time, state in
time, standard deviation, and so forth.

e Generate anomalies when the network deviates from an intended state and streams the anomalies as
alerts to external systems, as necessary.

Probes are available as either predefined probes or user-defined (custom) probes. When you deploy a
blueprint, some predefined probes are enabled automatically. You can enable other predefined probes
on-demand from a catalog as described in the "Predefined Probes Catalog" on page 5.

I Telemetry Services

You can view a list of telemetry services currently activated in your Apstra deployment. Each service
represents a different type of data that Apstra collects from managed devices. For each telemetry
service, Apstra issues different CLI show commands over the device API to ingest the data utilized in
IBA. CLI show commands are also used to configure a gRPC sensor path. See the Junos Telemetry
Interface User Guide.

From the left navigation menu, click Device > Telemetry > Services.

17 @ » Devices » Services

ARP BGP DISK UTIL HOSTNAME

Configured on: 5 devices Configured on: 5 devices Configured on: 5 devices Configured on: 5 devices
Errors during enabling: 0 devices Errors during enabling: O devices Errors during enabling: 0 devices Errors during enabling: 0 devices
Last collection cydle 0 devices Last collection cycle O devices Last collection cycle 0 devices Last collection cycle 0 devices
errors: errors: errors; errors:

Used by collectors: 0 collectors Used by collectors: 0 collectors Used by collectors: 0 collectors Used by collectors: 0 collectors
INTERFACE INTERFACE COUNTERS LAG LLDP

Configured on: 5 devices Configured on: 5 devices Configured on: 2 devices Configured on: 5 devices
Errors during enabling: 0 devices Errors during enabling: O devices Errors during enabling: 0 devices Errors during enabling: 0 devices
Last collection cycle 0 devices Last collection cycle 0 devices Last collection cycle 0 devices Last collection cycle 0 devices
errors: errors: errors: errors:

Used by collectors: O collectors Used by collectors: O collectors Used by collectors: O collectors Used by collectors: 0 collectors
MAC RESOURCE UTIL ROUTE CVR

Configured on: 5 devices Configured on: 5 devices Configured on: 5 devices Configured on: 5 devices
Errors during enabling: 0 devices Errors during enabling: 0 devices Errors during enabling: 0 devices Errors during enabling: 0 devices

NOTE: The raw data that Apstra collects does not appear in the Telemetry Services page. The
raw data output is only shown and visualized in IBA probes.

I Auto-Enabled Probes

When you deploy a blueprint, several IBA probes are automatically enabled. IBA probes are used to
monitor essential information about the managed fabric and generates anomalies when it detects
degradations in the device health or fabric performance.

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-grpc-sensors.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-grpc-sensors.html

To view all existing probes for your blueprint, navigate to the Analytics dashboard and click the Probes
tab.

The following probes are enabled by default:

Name = Anomalies % State ¢

0 selected
Device System Health @ No anomalies
Device Telemetry Health @ Operational
Device Traffic @ No anomalies @ Operational
ECMP Imbalance (Fabric Interfaces) @ No anomalies @ Operational

I Predefined Probes Catalog

In addition to auto-enabled probes, you can select predefined probes from a built-in catalog and enable
these probes based on your monitoring requirements.

Some predefined probes (such as EVPN or Optical Transceivers probes) activate additional services that
start collecting the necessary data from devices and add this data into the probe for analysis.

You can access the list of predefined probes from the Instantiate Predefined Probe dialog box.

© Create Probe ~

[New Probe
@ |Instantiate Predefined Probe
o

Import Probes

Instantiate Predefined Probe

Predefined Probe On every leaf probe monitors MAC addresses that are being
learned alternately from local and VTEP interfaces more often than
it is allowed by constraints configured in the system.

EVPN Host Flapping

EVPN VXLAN Type-3 Route Validation b
EVPN VXLAN Type-5 Route Validation

External Routes

Hot/Cold Interface Counters (Fabric Interfaces)

Hot/Cold Interface Counters (Specific Interfaces)

If MAC address is suppressed for more than or equal to percentage of Anomaly
Time Window, an anomaly will be raised.

Collection period
2 Minutes v
Controls how often flapping MAC addresses will be collected on devices.

Enable flapping hosts history

If enabled, probe will keep history of which leaf suppresses flapping MAC
addresses and which specific addresses were suppressed.

History retention period
7 Days -

Duration to maintain flapping MAC adresses historical data.

Create Another?

For detailed information about probes, see Predefined Probes (Analytics) in the Juniper Apstra User
Guide.

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/concept/probes-predefined.html
https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html
https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

Custom Probes

If you have a monitoring use case not addressed by any of the default or predefined probes, you must

create a new probe.

D Dashboards £ Anomalies 05 widgets € Probes [¢) Reports

Probes » New Probe

Name *

My Probe

Description

Start creation of a new probe by adding a processor.

X Import Probe

4 Add Processor

For a probe to be functional, you need to add at least one processor. A processor adds data to your
probe from one of the existing telemetry services. A pipeline starts when the processor(s) injects the raw
data into the pipeline and is sent to the analytics processor. Analytic processors are also referred to as

source processors.

Here is an example of a source processor, whose processor type is Interface Counters.

Add Processor

Processor Type *

Interface Counters

Processor Name

Interface Counters

Output Stage Name: out *

Interface Counters

Probes » My Probe

admin a few seconds ago

Interface Counters Processor.

Selects interfaces according to the configuration and outputs
counter stats of the specified types (e.g. 'tx_bytes’).

Has no inputs.

Enabled m

Stage: Interface Counters

» Query: All

Interface Counters

System ID® =

Interface Counters

5254001BFCOD
spine2

Spine

5254001BFCOD
spine2

Spine

5254001BFCOD
spine2

Spine

Interface

o s Value® 2
ge-0/0/0 1
ge-0/0/1 2
ge-0/0/2 1

I What If Apstra Doesn’t Collect the Data You're Looking For?

If Apstra did not collect the data you want to monitor, we recommend that you use Apstra's custom
telemetry collection feature. Proceed to the next section "Custom Telemetry Collection Overview" on

page 9.

Custom Telemetry Collection Overview

IN THIS SECTION

Example Use Cases | 9

Apstra's custom telemetry collection is a new feature introduced in Apstra 4.2.0. You can now define
new telemetry services for monitoring data for Apstra to analyze. This feature enables you to tailor
analytics on your data based on your specific business needs.

Previously, adding a telemetry service to collect new data involved substantial development work that
required advanced programming and familiarity with the IBA software development kit (SDK).

With the custom telemetry collection, you can do the following:
e Run the Junos CLI show commands that provides you with the data you want analyzed.

¢ Identify the specific key and value you want to extract from the show command based on its XML
output.

e Create a telemetry collector definition.

e Create an IBA probe that utilizes the data from the telemetry collector.

Example Use Cases

Here are some examples of what you can do with the custom telemetry collection:
¢ Monitor various counters (firewall filter match count, IRB interface statistics, and so forth).
¢ Monitor device health (line card status or other environmental statuses)

e Monitor protocol status or features enabled with configlets (BFD, MACsec, QoS, multicast, OSPF,
RPM and so forth).

In the following sections, we'll walk you through the end-to-end workflow of creating your own custom
telemetry service. In this walkthrough, we'll monitor BFD sessions as an example.

Let's go!

Creating a Custom Telemetry Collector

SUMMARY IN THIS SECTION

This topic describes the steps that are required to Execute the CLI Command | 10

create a custom telemetry collector. Identify the Key and Value of Interest from
the CLI Output | 13

Create a Service Schema | 14
Create a Collector | 15

Validate That the Collector Is
Working | 19

In this topic, we'll walk you through creating your own custom telemetry service using BFD as an
example. In our example, the telemetry service collects the state of the BFD sessions you just
configured. Our goal is to alert operations that a BFD session is down.

Execute the CLI Command

Starting in Apstra version 4.2.0, you can run CLI show commands for Junos devices directly from the
Apstra GUI. Although you can run show commands without opening a CLI session, its primary purpose is
to help you create your own custom telemetry collectors.

You can execute CLI commands from within the staged or active blueprint (shown in our example), or

from the Devices > Managed Devices page.
To use the CLI command feature, navigate to a deployed Junos device in your blueprint as follows:

1. From your blueprint, select Analytics > Staged Physical Topology (or Staged > Physical > Nodes) and
then select your Juniper device node.

° o]
(D Dashboard |~ Analytics [&) staged S5 Uncommitted (@) Active D Time Voyager

2] Q

[©]

Physical o Virtual & Policies & Dol [E Catalog = Tasks A, Connectivity Templates @ Fabric Settings

* Nodes: Al * Links: All

Topology Nodes Links Interfaces Racks Pods Layer Uncommitted Changes x
Oz 3 1 Has Uncommitted Changes
Selected Rack Selected Node Topology Labs

tiarne

Expand Nodes? ([Show Links?

rir_leafl_leaf2
evpoesi 001 L e “vpe, singe 001
leaf1 leaf2 leafd ‘
rackl-serverl switch3-serverl
switchl-serverl
switch2-serverl

2. In the Selection section that appears in the right panel, on the Device tab, click Execute CLI

&] 2 (o] Lo] &]
B Physical - Wirtual @ Polickes W ool [E Catalog E Tsks 2. Connectivity Templates & Fabric Settings
Nodes: A ks A Selecticn Buid
leaf3
Topology Modes Uniks Interfaces Racks Pods Rote: Lead
Group labek: evpr-single
0 o
Drde Prpate Bp Vieal
Seteeted Kach ‘Setacte Node Topelogy Label
p Deploy Mode
p— M st frat} " M s
deploy. -4
Meighbors Unks inferfaces s
52540052300 ®
Device info
leal
> _Execute CLI Command
Managermant B 02810915
os Anen 2228115
R—
p Hostrame
keaf3 @z
Config
Rendered
Incrementa

Brictine

In the dialog box that opens, select how you want to view the results: Text Mode, XML Mode, or
JSON mode. Here we show examples of Text Mode and XML Mode.

11

Accepts “Show” commands only o

.. Supports auto-completion of arguments®.

i - Most piping command supported, so you can filter the command's output through ex ressions.e
Execute CLI Command R e ! 4 grog

i - Supports executing the command also in XML e
5/N: 52540011DEFF Management IP: 1028.126.13 Hostname: leaf1 i
I - 4

Text Mode

v

Copy to clipboard o

XML Mode

JSON Mode

NOTE: The CLI supports only Junos show commands. You cannot run commands that affect
the device state, such as request system reboot. For information about the various show
commands, see the CLI User Guide for Junos OS.

Now, run the same show command (show route summary), but choose XML Mode.

12

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/ref/command/pipe.html

13

Execute CLI Command

S/N: 525400€52300 Management IP: 10.28.109.15 Hostname: beafd \

show bfd session XML Mode ¥ m

1" junos:styles’briet”>

<session-neighbor>10.0.0.0</session-neighbor>

<session-state>Up</session-state>

0>9,000</sension-det
interval>1.000< -interval>

aultiplier>1</sessio

In the XML output, the XML path (BDF session) information is highlighted. This session information is
what we'll use to create our telemetry collection service.

Identify the Key and Value of Interest from the CLI Output

This example shows you how to use the Execute CLI Command to view the neighbor addresses and
state information (Up or Down) for your BDF session.

1. Enter the show command (in this example, show bfd session).

2. Click Execute to view the CLI output.

Execute CLI Command

S/N: 525400E523DD nagement IP: 10.28.109.15 Hostname: leaf3

show bfd session

Address Interface

ge-0/0/0.0
ge-0/0/1.0

ative transmit rate 2.7 pps, cumulat

I Create a Service Schema

Text Mode -

Detect Transmit

Time Interval Multiplier

9.000
9.000
3.000
3.000

ve rate 2.

3.
3.000
1.

1.000

000

ooo

3

To create your custom service collector, you first need to create a service schema to define how you

want the returned data to be structured and stored.

NOTE: A single telemetry service schema can have multiple collectors associated with it.

1. From the left navigation menu, navigate to Devices > Service Registry and click the Create Service

Schema button.

% + Service Registry

Storage Schema Path &

Collectors.

Syrtem Agants

Agent Profies

© Create Service Schema & Import Service Schemas

Page Sire: 25

Description Builtin? = Actions

Naitems

2. In the dialog box that opens, define your schema. This step identifies how the collector output is to

be structured.

14

Execute CLI Command

S/N: SISSIOLIDEFF Manapement 12 102013617 Hostrame leaf]

| want this as the Service's value Edit Service Schema

| want this as the Service's key e Vakoe Type "

BFD_Stahs]

waring
" 9
Descrigtion

Telemetry Keys

. o

The telemetry key and value type is collection of key-value pairs that gets posted to Apstra.

3. Map the Telemetry Keys and Value Type.

e The telemetry key is a string that identifies the interface name.

e The value type is the piece of data that the probe executes against. The value type is usually a
string (text), but could also be an integer (whole number).

In our example, we defined the Service's key as neijghbor and the Value Type as string.
4. Click Update.

Now, let's proceed to the final step, Create a Collector.

I Create a Collector

We've defined the data to collect and how we want this data to be organized and structured. Now we'll
map these parts together.

NOTE: A single telemetry service schema can have multiple collectors associated with it.

1. From the left navigation pane, navigate to Devices > Collectors > Create Collector.

15

ices

Maruged Devices

O5Type 3 05 Version & ©F Variant Model & Actions.

Ko iterms.

Services

Dvwvice Profiles

2. Select the existing service schema (BFD) you created in the previous step and click Next.

Create Telemetry Collector x
Service
Select existing service BFD x ﬁ:r Create a new service schema

3. Select the platform (OS, OS Variant, OS version, and Model) and devices to target for telemetry
collection. Defining a mix of these inputs enables you to be very broad or very granular. For example,
you might have a use case where you only want to apply telemetry on the border leaf devices.

16

Create Telemetry Collector

1-50f5

Device Key =

525400E9FBCF
5254008BC&0E
525400E542CF
5254008F80E5

525400E523DD

Hostname =

spinel
spine2
leaf1
leaf2

leaf3

Vendor %

Juniper
Juniper
Juniper
Juniper

Juniper

o5 =

Junos 22.2R3.15

Junos 22.2R3.15

Junos 22.2R3.15

Junos 22.2R3.15

Junos 22.2R3.15

Hardware Model =

VIRTUAL-EX7214

VIRTUAL-EX7214

VIRTUAL-EX9214

VIRTUAL-EX9214

VIRTUAL-EX7214

o Service Platform
059 * Target Devices
junos -
0S5 Variant® * Management IP =
o Junos » 10.28.109.11
10.28.109.12
05 Version® *
10.28.109.13
22.2r2 x
(3] 10.28.109.14
Model® 10.28.109.15

Previous

a. Select the OS type, either junos or junos-evo.

For more information on Junos-evo (also known as Junos OS Evolved) see the Junos OS Evolved

documentation.

NOTE: If you do not define a Junos-evo collector for Junos-evo devices, the collector uses
the corresponding Junos definition. This means if you use the same command between
Junos and Junos-evo, you can create a single Junos collector definition for that service. If
the command exists only on Junos-evo, you create a single collector definition for Junos-

€vo.

b. Select the OS Variant the device belongs to and determine the CLI schema for a given device.

c. Select the minimum OS Version the device must run for the collector to execute. If multiple
collector definitions with different OS versions exist for the same service, the collector

automatically chooses the one closest to the version the device is running.

d. (Optional) Specify a Model or a regular expression to filter based on a device model or series.

The table shows a list of target devices currently managed in Apstra and matches the applied

combination of filters.

e. Click Next.

Run the CLI command.

Use the show command to gather the date you want to collect from the device (in this example, show

bdf session).

https://www.juniper.net/documentation/us/en/software/junos/overview-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/index.html

Create Telemetry Collector *
o' Servics W’ Platiom Command
1
10.26.109.11
get-bfd-session-information (10.28109.12
Show all BFD sesskons. 10.28.109.13

10.268.109.14

10.28.109.1

5. Map the Keys and Value.

So far, we've defined the service schema, the target platforms, and the command the custom
telemetry collector will execute. Next, we'll map the key(s) you defined in your schema and the value
you want to track.

To map the keys:

a. Click Expand All to search for the RPC value you want to map.

In the previous step, we established session-neighbor as the key value.

Create Telemetry Collector x
W Service W Plattorm o Command Mapping
Mapping View: (O Default Advanced Filter: Al fekds - Command: show bid session m
S colie Mapging Sample Value
sestion-neighbor @ Add Mapping = /
Mag to Key neighbiour
Enable relaxed schema validation® Value source: Field 1O Static

b. Click Add Mapping.

18

c. Assign session-neighbor to the key (in this example, neighbor).

We defined this value earlier when we created a service schema.

To map the value:

a. Select the Value Source. In our example, we want to populate the value based on the dynamic
session-state field returned by this CLI command.

Create Telemetry Collector

o Service o Patiom W' Command Mapping

Mapping View: © Defwult Advanced Filter: Al ficids ’ Command: show bid session m

 callp Mapping Sample Vakue

B bfd-session

Map to Vakue

session-state® Add Mapping Ao

b. Search for the session-state field.
c. Click Add Mapping.
d. Assign session-state to map the value.

e. Click Submit.

Validate That the Collector Is Working

Finally, in Advanced view, validate that the collector is working. Verify that the query and test results
match your expected results.

Create Telemetry Collector x

oW Serdce o' Platiorm o/ Command Mapping
MappingView: Default | © Advanced !D ? Expression Reference Command: show bfd session K
- 102810911
Doty fcomts nQunrY Resalts 10.28109.12
-
g S
Narme Path neighbour Value 1028.109.13
10.28.109.14
100.0.2 up
neighbour /bid-session-information// bid-session/session-neighbor x
’ 5 10:28.109.15
10003 uo
alue Hoid-sessian-infor d-sessinn/s ®]
10004 up
& Add Accessor 1721601 ™
1721603 ™
Keys
172 Up
Mame Data Expression
neightiour netghbour

Value Expression

walue

Congratulations! You successfully created a collector.

NOTE: When you define the integer (humber) values for a collector, you might need to enter a
value expression for the collector to function. This is because Junos occasionally reports number
data as a string. Before the collector can be processed, you must perform a conversion from
string to integer on the Apstra side.

To define the integer (number) values for a collector, enter int{value) into the Value Expression field and
click Submit.

Edit Telemetry Collector

LY w' Comeund LLTERE T
" 7 Expression Refersnce
Mlapping Wirw: Diplaul : P i
Diata Accessent
Mg Patk
Fable Sresate- it atmation roule- Lablo Labde: fume
walue frete-indommation route-{able 1otal- ronfg-Coaont
+ A
Kirys
Parme [Crata Expression

Fllter Exgereszion

Enable relaned schema valdabion @

Using Custom Telemetry Data in an IBA Probe

SUMMARY

This topic describes how to create an IBA probe
and detect and store any anomalies in a historical
database for reference.

IN THIS SECTION

® Create a Probe | 22

® Customize a Probe | 26

® Performance Analytics | 27

® Raising Anomalies and Storing Historical

Data | 29

21

In our walkthrough, we've created a custom telemetry collector service that defines the data you want
to collect from your devices. Now let's ingest this data into IBA probes in your blueprint so that Apstra
can visualize and analyze the data.

Create a Probe

First, we'll create a new probe in your deployed blueprint so that Apstra can ingest data from your
custom telemetry collector. In this example, we'll focus on a minimal set of configurations for the simple
use case of visualizing BFD session data and generating anomalies (alerts) when sessions are down.

NOTE: Both data center and Freeform blueprints support IBA probes with the custom telemetry
collection.

1. From your blueprint, navigate to Analytics > Probes, and then click Create Probe > New Probe.

() Dashboard ~ Analytics Staged == Uncommitted (B)) Active D Time Voyager
(=]
€D Dashboards I* Anomalies 05 wWidgets €D Probes [2) Reports
3

1-120f12

Page Size: 25

2. Enter a name and (optional) description (in this example, BFD-Example-Probe) and then click Add
Processor.

22

23

o]

€D Dashboard E Analytics @ Staged EB Uncommitted ((E!}) Active D Time Voyager

@D Dashboards 5% Anomalies 15 Widgets € Probes [2) Reports

Probes + New Probe

Name Tags
BFD-Example-Probe | -

Description Enabled

> @

Disabled probes don't produce data and don't raise anomalies

Start creation of a new probe by adding a processor. Alternatively, you can import a probe from JSON.

X Import Probe

4+ Add Processor <

Select a processor type.

For our example, we chose the Extensible Service Data Collector processor.

Add Processor

Processor Type * Extensible Service Data Collector Processor.

Extensible Service Data Collector Collects data supplied by a custom service, that is not one of 'lidp/,
'bgp’, or ‘interface’.

Processor Name . .
This processor has no inputs.

BFD Status

Output Stage Name: out

BFD Status

Click Add to add the processor to the probe.
For more information about the different processors, see the Juniper Apstra User Guide.
Click Create to create the probe and return to the table view.

To the right of the Graph Query field click the Select a predefined graph query button, then select
DC - All managed devices (any role) from the Predefined Query drop-down.

This query determines the scope within the blueprint in which the telemetry collection is executed.
This means if a device in your blueprint is not matched by the graph query, the telemetry collection
service will not start for that device.

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/concept/probe-processors.html

Update Graph Query

Once selected, a pre-defined query is not kept synchronized, any

: : match (
change to the query is not automatically reflected here

node('system', name='system', deploy_mode='deploy’,
role=is_in(['leaf’, 'access', 'spine’,
Predefined Query 'superspine’]))

DC - All managed devices (any role) -

Update

The graph query specifically matches all system nodes in the graph database of your blueprint. Each
managed device, such as a leaf switch or spine switch, shows as a system node in the graph.

In the Predefined Query we selected above, the query matches all nodes of the type system, which in
deploy mode has a role of leaf, access, spine, or superspine.

Click Update to return to the table view.

24

, role=is_in(('leaf’, ‘spine’])}

.lyul:em_.td

Expression mapping from graph query to a system_id, e.g. "system.system_id" if "system" is a name in the graph query.

Service name * e

BFD

Name of the custom collector service,

Data Type " o

Dynamic Text

Type of values produced from graph query results: numbers, strings or discrete states

Create Prob

25

8. Inthe System ID field, enter system.system_id.

This entry tells the probe that the graph query will match on your managed devices under the name

system (name="system’).

The attribute system_id on each system nodes refers to the system ID of each device. This attribute
is what Apstra uses to uniquely identify each device.

9. Select BDF from the Service name drop-down.

10. Select the Data Type.

e Select Dynamic Text if your telemetry service collects string as the value type.
e Select Dynamic Number if the service collects integer as the value type.

In our example, we chose Dynamic Text because the BDF session state contains the string values
Up and Down.
11. Click Create Probe.

12. Navigate to the output stage of the data collector processor to verify that the probe is correctly
ingesting data from your custom telemetry collector.

Probes » BFD-Example-Probe [P B ondsago Enabled (G) e ® §
Stage: BFD Status & Dynamic &
Data source: Real Time
% BFD Status
Y~ 1250136 3 PageSie: 25
BFD Status &f

System ID¥ 2 Neighbor® ¢ Value® 2 Updated &
5254001 BFCOC

spine2 10002 up a few secands ago
Spir

spine2 10.00.3 up a few seconds ago
spine2 10.0.0.4 up a few seconds ago

spine2 17216011 up a fiew seconds ago

Congratulations! You successfully create a probe!

Customize a Probe

So far we've created a working probe that collects the BFD state for every device in your network. Now,
let's explore a couple of useful customization options to fine-tune your probe.

Service Interval

The service interval determines how often your telemetry collection service fetches data from devices
and ingests them into the probe.

The service interval is an important parameter to be aware of because an overly aggressive interval can
cause excessive load on your devices. The optimal interval will depend on the data you are collecting.
For example, a collector fetching the content of a large routing table with thousands of entries can cause
a higher load than collecting the status of a handful of BFD sessions.

Service interval

1 Minute - >
1 Minute
2 Minutes
5 Minutes
10 Minutes

30 Minutes

1 Hour

Query Tag Filter

Another useful customization option is the Query Tag Filter. Let’s say you tagged some switches in your
blueprint as storage for a specific monitoring use case. You can configure this filter to perform the
telemetry collection only on devices with the matching tag as shown in the following example:

Query Tag Filter

Tag Filter Operation

and -
Depending on this parameter graph queries return results that satisfy all tag filters for "and” and at least only one of them for "or”.
MNode Name Matcher Tags

system - Is In v @ storage x x

Filters named nodes in the graph queries by assigned tags.

Displaying the raw data from your custom telemetry collector shows just the raw data, so it may be
difficult to conclude whether it signifies your network's normal or anomalous state. With Asptra, you are
proactively notified when any anomaly is detected

Performance Analytics

An IBA probe functions as an analytics pipeline. All IBA probes have at least one source processor at the
start of their pipeline. In our example, we added an Extensible Service Data Collector processor that
ingests data from your custom telemetry collector.

You can chain additional processors in the probe to perform additional analytics on the data to provide
more meaningful insight into your network’s health. These processors are referred to as analytics
processors.

Analytics processors allow you to aggregate and apply logic to your data and define an intended state
(or a reference state) to raise anomalies. For example, you might not be interested in instantaneous
values of raw telemetry data, but rather in an aggregation or trends.

Analytics processors aggregate information such as calculating average, min/max, standard deviation,
and so on. You can then compare the aggregated data against expectations so that you can identify
whether the data is inside or outside a specified range, in which case an anomaly is raised. You may also
want to check whether this anomaly is sustained for a period of time and exceeds a specific threshold.
An anomaly is flagged only when the threshold is exceeded to avoid flagging anomalies for transient or
temporary conditions. You can achieve this by configuring a Time_In_State processor.

Table 1 on page 28 describes the different types of analytics processors.

Table 1: Analytics Processors

Type of Processor Description

Range processors Range processors define reference state and generate
anomalies.

Processor names: Range, State, Time_In_State,

Match_String

Grouping processors Group processors aggregate and process data before
feeding into the range processors. These processors

Processor names: Match_Count, Match_perc, can:

Set_Count, Sum, Avg, Min, Max, and Std_Dev

e Produce a per-device count of protocol states.

e Produce a sum of counters from multiple devices to
represent a total over the fabric.

Multi-input processors Analytics processors take input from multiple stages.

These processors can:
Processor names: Match_Count, Match_perc,

Set_Count, Sum, Avg, Min, Max, and Std_Dev e Produce a single output data set that is a union of
input from multiple stages.

e Perform a logical comparison between input from
multiple stages.

For detailed descriptions of all analytic processors, see Probe Processor (Analytics) in the Juniper Apstra
User Guide.

NOTE: Multi-input processors are not supported for dynamic data types (dynamic text or
dynamic number). These processors are typically used for IBA probes that leverage the custom
telemetry collection.

In the next section, we'll configure our BFD example probe to detect and raise anomalies.

Raising Anomalies and Storing Historical Data

Now, we'll configure our example probe to detect and raise anomalies if a BDF session goes down. We'll
then store the anomalies in a historical database for reference.

1. Add a second processor to the probe you created in "Create a Probe" on page 22 and then click
Add Processor.

2. Select the Match Count processor and give the processor a descriptive name (for example, Down
sessions count).

The match count processor counts the number of BFD sessions in the Down state and groups the
count by device.

3. Configure the second processor.

This processor configures the probe pipeline so that data from the previous processor is fed into
each other.

Enter Down in the Reference State field.

Processor: Down sessions count [0 Muteh Counst - ¥ & W

Inputs

Inpat Stage "

Input Mame Stape Mama Condurmn Mame

Reference State
O rete staie tewt v wihich is

Erabibe Steeaming

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/concept/probe-processors.html

When you update the probe, the output shows the number of BFD sessions in the Down state by
each device.

Stage: Down sessions count & D

u Shenw Cortewt

StemD® = Totsl count® 3 Ve ® 3 Upddated &

Add a third processor.

We'll now add a third and final processor. This processor produces anomalies to alert you when
there are one or more BFD sessions in the Down state.

Click Add Processor and select the Match Count processor.

Give the processor a descriptive name (for example, BFD anomaly (down > 0)) and then click Add.

Add Processor

Processor Type

Range -

Processor Name ©

BFD anomaly (down = 0)

Output Stage Name: gut ™

BFD anomaly (down > Q)

Checks that a value is in a range.

According to the specified range, configures a check for the input
series. This check returns an anomaly value if 3 series aggregation
walue, such as a last value, sum, avg, etc, is in the range. This
aggregation type Is configured by the 'property’ attribute, which is
set to value' if not specified. The output seres contains anomaly
walues, such as “true’ and 'false’

6. Configure the processor.

Processor: BFD anomaly ([down > 0) & faege

frputs

Inpust Stage

Inpid Wamae Stape Mame Colamn Mame
Ini 4 Drowirm sessions Cowunt

Properises

Anomalous Range

a. Enter the Input Stage - Stage Name and select value for the Column name. In our example, we

defined the stage name as Down sessions count.

b. Set the Anomalous Range to More than equal to and 1.

c. Click Raise Anomaly.

7. While still in the probe configuration interface, clic
stage for your second processor.

This action enables historical logging of data.

k Enable Metric Logging and select the output

31

8. Click Update the Probe.

If you have any BFD sessions in the Down state, the probe generates anomalies for the BDF
sessions.

Stage: Down sessions count & O

]
B Show Context
i 1-5of 8 Page Sizez 25 »
StemD® ¢ Total coumt® 3 Vahe® 3 Updated §
JECTE
Apired & & few setonds
Selra /
o &
CILADDOAANA
L k] 4 & o St s
Last /
o a4
£
S254000ED ’
Wl 10 & W Soconds Bpo
Leat
\
o a
igare] 1 a tew seConds age
P /’
o &
8
lnsfd 10 / » Tirws Sisconels g
Laai
L1
o a

9. Check Enable Streaming in the probe configuration.

Enable Streaming

Makes samphis of outpud siapes sireamed i enabled

Additional keys
Mo exira keys for graph query defined,

Each additional key/valoe par bs used to extend properties of output stages where value i3

with respactive kry
Update Probe Cancel

10. Finally, select the Data source: Time Series view to see the history of changes in the data value
monitored by this stage.

Stage: Detect BFD Down @ Oyan B Peruind

1250/ 34 ¥ Page Sire: 25 -

Stem 0 @ Meighae® 3 Arsmaly)

Monitoring the Health of the Telemetry Service

An important factor to consider when creating your custom telemetry collection is to ensure that the
service does not cause excessive load on your devices. Some telemetry services can cause a higher load
on your devices depending on the CLI show command and the data you are collecting. When you
configure a collector to execute at short intervals you can possibly overload your devices, potentially
impacting traffic forwarding.

By default, Apstra provides an IBA telemetry health probe that enables you to monitor the health of
telemetry services, including any custom services and collectors you configured.

1. From the blueprint, navigate to Analytics > Probes.
2. Select the Device Telemetry Health probe from the table.

3. Click Query: All to filter the data in the table.

@ Dashboards £ Anomalies 05 widgets @ Probes [#) Reports

Probes »

Device Telemetry Health @ © Sptem amonthage & 19026M8 Ensbled () e =z & ¥

The probe verifies telemetry collector health

Stage: Telemetry Stats & Dyramic £ Persisted 30 days / 190.26 MB

Data source: Real Time .
/- Tetemetry stats
¥ Query: Al ’— 1-250f79 > PageSize: 25 ~
W Telemetry Stats &f =}
e
] Degraded Wait Time H. Did Last Did Last
gy Veer as
o . Servicename® ColectionType | service [0 UOCORE ||/ IR | | Tmmotk w'":" PHLAR | Eacution: | ‘Bacution
Degraded Walt Time &8 A Systemi0 8 || oz Seang | [HE0ME | [Comt | | Sk || CouL || o DAaRon | yiecat | Undaeun
® L ® s o3 ¢ Fail® 2
© 3 o 3 o3
> [[J service Enablement Failures
Service Enablement Failures &f A A NRED
spine2 BFD polling true 4427 4427 0 0 [fakse false false
Spina
e o Sustained Execution Failures
52540016FCOD
Siretminart Evaristioun Gxilarme 42 A oot . I - -

For example, to display data for your new custom telemetry service, select a service name from the
Service name drop-down filter. In our example, the service name is BFD.

* Query: Service name = BFD

System ID

System Hostname

System Role

Service name

= - BFD

Click Apply. The table now shows the health metric for your custom telemetry service.

34

Has Did Last Did Last
Service . R Run Success Failure Timeout Underrun Did Last .
© Collection Service ° - Execution Execution B .
System ID¥ 2 name Count Count Count Count Count Execution 7 Execution Time
P Type® % Started © o o ® iy Timeout Underrun
3 @ .4 s s s s $ Fail® = ia 0 -

- - -

5254001BFCOD

spine2 BFD polling true 4439 4439 0] 0 false false false 0.1608336661(
Spine

52540030AAAA

leaf3 BFD polling true 4732 4732 0 4] (4] false false false 0.1845839512!
Leaf

52540039E27C

leafl BFD polling true 4439 4439]]] false false false 0.1687121880:
Leaf

52540078E1F0

spinel BFD polling true 4439 4439 0 0 0 false false false 0.1853731549:
Spine

525400F0A234
leaf2 BFD polling true 4439 4439 0 0 0 false false false 0.2065631197.

Leaf

Check the following:

e Ensure that the Success Count value has increased. If this value has not increased, this could mean
that your service is failing or that your custom collector is misconfigured.

e Check the Execution Time. Although the execution time can vary, if the time is close to or higher
than the service interval, this might indicate a problem. If this is the case, tune your probe settings
and set a higher service interval. For instructions, see "Customize a Probe" on page 26.

Similarly, a sustained nonzero Waiting Time can indicate that the device is taking too long to
complete your service request.

To see how your metrics are trending, switch to Time Series view under the Data Source drop-down.

35

Stage: Telemetry Stats £ Dynamic £ Persisted 30 days / 190.36 MB -
(=]
Data source: Time Series v Execution Time v Separate graphs v
Aggregation type: average x Aggregation: 2 Minutes - Last 1 Hour -
» Query: Service name = BFD ’— 1-50f5 Page Size: 25 ~
Service
System D9 2 name Execution Time®
0 2
5254001BFCOD
spine2 BFD
Spine 200 ms —
52540030AAAA
leaf3 BFD
Leaf 200 ms OIO‘Q‘O—O—OWW—O\CVW
52540039E27C
leafl BFD
Leaf 200 15 QOO ~O—0—0—0—0—0—0—0—0-—0- 6000000000~ 00000
52540078E1FO
spinel BFD
Spine 200ms o OO0 00 O0—0-—0- 606 000000000000

For more information about each of these columns and their definitions, see Telemetry Collection

Statistics in the Juniper Apstra User Guide.

Summary

Congratulations! In this document, you learned:

e The fundamentals of Apstra Intent-Based Analytics.

e How to define a custom telemetry service to collect data from managed devices.

e How to create an IBA probe that visualizes and analyzes your data, and detect anomalies.

For more information about Apstra and the Apstra GUI, see the Juniper Apstra User Guide.

36

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/concept/telemetry-services-collection-statistics.html
https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/concept/telemetry-services-collection-statistics.html
https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,

modify, transfer, or otherwise revise this publication without notice. Copyright © 2023 Juniper Networks,
Inc. All rights reserved.

	Table of Contents
	Introduction
	Apstra Telemetry and Intent-Based Analytics
	Custom Telemetry Collection Overview
	Creating a Custom Telemetry Collector
	Execute the CLI Command
	Identify the Key and Value of Interest from the CLI Output
	Create a Service Schema
	Create a Collector
	Validate That the Collector Is Working

	Using Custom Telemetry Data in an IBA Probe
	Create a Probe
	Customize a Probe
	Performance Analytics
	Raising Anomalies and Storing Historical Data

	Monitoring the Health of the Telemetry Service
	Summary

