JUDLR@! | Engineering

Simplicity

Juniper Apstra Server and Security

Published
2024-09-03

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Apstra Server and Security
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

10

11

About This Guide | v

Overview

Overview | 2

Components

Apstra Components | 4

Software Architecture Overview

Software Architecture Overview | 7

Apstra Server Overview

Apstra Server Overview | 11

Recommended Apstra Server VM Resources

Recommended Apstra Server VM Resources | 13

Containers

Containers | 17

Scaling

Scaling | 20

Server Administration

Apstra Server Administration | 23

Device Agents

Apstra Device Agents | 26

Agent Network Security

Apstra Agent Network Security | 29

Server Hardening

Apstra Server Hardening | 31

About This Guide

Juniper Apstra™ is a powerful automation and abstraction software solution tailored for data center
network infrastructure. It is designed to assist both network architects and operators by automating the
design, building, deployment, and operation of data center networks. This is achieved through Intent-
Based Networking - an approach that aligns technology with the architect and operator's intentions for
a network, driven by business expectations.

Network operators require the highest levels of security to ensure ongoing availability and reliable
business processes. The Juniper Apstra architecture is designed to adhere to common industry
requirements. Apstra also address customer-specific security needs as they arise.

CHAPTER

Overview

Overview | 2

Overview

Juniper Apstra™ is a powerful automation and abstraction software solution tailored for data center
network infrastructure. It is designed to assist both network architects and operators by automating the
design, building, deployment, and operation of data center networks. This is achieved through Intent-
Based Networking - an approach that aligns technology with the architect and operator's intentions for
a network, driven by business expectations.

Network operators require the highest levels of security to ensure ongoing availability and reliable
business processes. The Juniper Apstra architecture is designed to adhere to common industry
requirements. Apstra also address customer-specific security needs as they arise.

CHAPTER

Components

Apstra Components | 4

Apstra Components

IN THIS SECTION

Apstra Server | 4
Apstra Device Agents | 4
Network Operating System | 4

Management Network | 5

The following sections describe the elements that comprise a Juniper Apstra system.

Apstra Server

Lightweight, scalable VM appliance that serves as the centralized management/configuration system.
Appliance simply requires IP management access to switches, typically via the OOB management
network.

Apstra Device Agents

Software agents are created and installed to manage each switch or server under Apstra management.
Agents are used to both receive and instantiate intent (configuration) from the centralized Apstra server
and to collect analytics from each switch and send it to the Apstra server where that data is stored in
the graphDB.

Network Operating System

A Network Operating System (NOS) is an OS that is primarily designed to support the functionality of an
integrated multi-layer switch or router. Apstra as a multi vendor solution currently supports: Cisco
NXOS, Arista EOS, JunOS, and SONiC.

Management Network

The Juniper Apstra server simply requires IP connectivity between itself and any devices under
management. There are no distance, latency or delay requirements. An OOB Management Network is
required. Apstra does not sit in either the data or control planes.

CHAPTER

Software Architecture Overview

Software Architecture Overview | 7

Software Architecture Overview

Juniper Apstra has the following two major components in its system architecture:
e Apstra Server
e Apstra Device Agents

Every device managed by Apstra will require an Apstra agent installed on it. Apstra server and all the
Apstra agents act as a distributed operating system.

TCP connectivity is the only requirement between nodes.

Apstra translates high-level business requirements, referred to as “intent,” and translates that into a fully
operational data center network environment.

Juniper Apstra architecture is based on distributed state-management infrastructure, which can be
described as a data-centric communication fabric with horizontally scalable and fault-tolerant in-
memory datastore. All the functionalities of the specific reference design application are implemented
via a set of stateless agents. Agents communicate with each other via a logical publish-subscribe-based
communication channel and essentially implement the application’s logic.

Every Apstra reference design application is simply a collection of stateless agents described above.
Broadly speaking, there are three classes of agents in Apstra:

1. Interaction (web) agents are responsible for interacting with users, i.e., taking user input and feeding
users with relevant context from the data store.

2. Application agents are responsible for performing application domain-specific data transformations,
by subscribing to input entities and producing output entities.

3. Device agents reside on (or are proxies for) a managed physical or virtual system such as a switch,
server, firewall, load balancer, or even controller and are used for writing configuration and gathering
telemetry using native (device-specific) interfaces, often vendor's APIs.

Intent s
[1]

| e
Apstra

PUB/SUB PUB/SUB
Web Agent |¢——> < Device Agent

v

PUB/SUB PUB/SUB
App Agent | ¢&——> <

Data

Store Device Agent
Server

PUB/SUB PUB/SUB A
App Agent | ¢——> <4—»| ProxyAgent |« » | Device Agent
PUB/SUB PUB/SUB API 3rd Party System
App Agent | ¢—————> <4—— | ProxyAgent |¢————> (vCenter, k8s,
NSX-T, Azure)

jn-000951

This interaction can be illustrated with an example that describes a portion of the Apstra data center
networking reference design application.

Distributed Data Store

Design

Expeciaors ===

Rendering Device

Status

Anomaly

Telemetry

The web agent takes user input — in this case, a design for an L3 Clos Fabric that contains the number of
spines, leafs, and links between them, and the resource pools to use for fabric IPs and ASN numbers.
The web agent publishes this intent into the data store as a set of graph nodes and relationships and
their respective properties.

The build agent subscribes to this intent and:

e Performs correctness and completeness validations
¢ Allocates resources from resource pools

Assuming the validations pass, the build agent publishes that intent along with resource allocations into
the data store.

The config rendering agent subscribes to the output of the build agent. For each node, the config agent
fetches the relevant data, including resources, and merges it with configuration templates.

The expectations agent also subscribes to the output of the build agent and generates expectations that
need to be met in order to validate the outcome.

The device telemetry agent subscribes to the output of the expectations agent and starts collecting
relevant telemetry. IBA probes process the raw telemetry and compare it against expectations and
publish anomalies.

The Root Cause ldentification (RCI) agent analyzes the anomalies and classifies them into symptoms,
impacts, and identified root causes.

Agents communicate via attribute-based interfaces (hence the term data-centric) by publishing entities
and subscribing to changes in entities. Data-centric also implies that data definition is part of the
framework and is implemented by defining the entities, as opposed to message-based systems, for
example.

The data-centric publish-subscribe system does not suffer from the problems of message-based
systems. In a message-based system, sooner or later the number of messages exceeds the capacity of
the system to store or consume them; dealing with this is hard as one must replay the history of
messages to get to a consistent state. The data-centric system is resilient to surges in state changes as it
is fundamentally dependent only on the last state. This state captures the important context and
abstracts away all the possible (and irrelevant) event sequences that lead to it.

The difficult problems (e.g., elasticity, fault tolerance) are solved once, and on behalf of all agents. Typical
architecture then consists of several stateless agents that can be restarted in case of failure and pick up
where they left off by simply re-reading the state they subscribe to from the database.

CHAPTER

Apstra Server Overview

Apstra Server Overview | 11

Apstra Server Overview

The Apstra Server is built using a microservices architecture and distributed as a packaged virtual
appliance. The core application runs on Ubuntu Linux 18.04 LTS as a collection of seven major
processes. Each process runs in a container to provide fast restarts and in-place upgrades of individual
components. The Apstra Server images are automatically generated by the Apstra build system and
tested against both physical and virtual switches in Apstra’s system testing facility. For each Beta/GA
build, a security scan is completed using Nessus Community Edition (more information about testing is
included later in this document). Issues identified are either resolved/triaged or noted in the
documentation and release notes. All release notes are accessible to customers at https://
www.juniper.net/documentation/product/us/en/apstra/.

Customers can choose from either ESX, KVM or Microsoft Hyper-V hypervisors and should adhere to
the vendor recommendations and best practices for securing management of the hosts.

https://www.juniper.net/documentation/product/us/en/apstra/
https://www.juniper.net/documentation/product/us/en/apstra/

CHAPTER

Recommended Apstra Server VM

Resources

Recommended Apstra Server VM Resources | 13

Recommended Apstra Server VM Resources

The required VM resources for an Apstra server may be greater than the recommendations below.
Requirements are based on the size of the network (blueprint), the number of off-box agents, and the
number of Intent-Based Analytics (IBA) probes. If one VM is insufficient for your needs, you can increase
resources by clustering several VMs (Platform / Apstra Cluster). For more information about Apstra
Server Clustering, see https:/juniper.net/documentation/us/en/software/apstra4.2/Apstra-Server-
Clustering-Guide/Apstra-Server-Clustering-Guide.html

Resource Recommendation

Memory 64 GB RAM + 300 MB per installed off-box agent*
CPU 8 vCPU

Disk 80 GB

Network 1 network adapter, initially configured with DHCP

NOTE: Apstra off-box agent memory usage is dependent on the number of IBA collectors
enabled. We recommend that you use the Apstra Ul to monitor memory/cpu usage in the Cluster
Monitoring tab.

Cluster Cluster

Nodes Management Monitoring

Select a metric Select a monitoring duration Select an aggregation period Select the hierarchy level

Metric: memory v Last 1 Day v Aggregation: 1 Hour - Level: node

Select a node

Node: All

Top 12 nodes memory usage history Linear

https://juniper.net/documentation/us/en/software/apstra4.2/Apstra-Server-Clustering-Guide/Apstra-Server-Clustering-Guide.html
https://juniper.net/documentation/us/en/software/apstra4.2/Apstra-Server-Clustering-Guide/Apstra-Server-Clustering-Guide.html

Cluster . Cluster

Nodes Management Monitoring
Expanded View Compact View
Static Configuration
Address 172.20.75.3
MName controller
Roles controller
Tags ¥ iba ¥ offbox
Capacity Score 119
CPU 4
Usage
. . S U Y
Container Service Usage
Containers Count 10
. 67%]
Memory Usage
1= Show History
CPU Usage
1= Show History
Total
Mame Usage Used, GB)
€ B
a0I--1erver--vg-vartlog (= 0.3% 12.80
Diskls) Usage B0I--IErVEr--VZ-root A 417 994
FoEmsErE @ 012 23.08
war+lib+acs+db
4.34 2647

BOT--TEIVEr--VZ-var

Containers

Q 1-10 of 10
Name % State Debug Mode Memory Usage, Mb % CPU Usage Cumulative File Size, Mb %
aos-offbox-172_20 75_11-f [taunche | Disabled 264.37 2% 32.51
aos-offbox-172_20 75 12-f [taunches | Disabled 271.22 2% 3181
a0s-offbox-172_20 75 13 [taunched | Disabled 268.51 2% 32.56
aos-offbox-172_20 75 14-f [taunched | Disabled 274.22 2% 32.28
aos-offbox-172_20 75_15-f [taunches | Disabled 268.28 2% 3246
205 auth 1 [taunches | Disabled 243.18 1% 44.41
aos_controller_1 m Disabled 5067.98 6% 187.69
[taunches | Disabled 78.21 1% 3325
[taunched | Disabled 464,01 2% 82.73
=== Disabled 24404 1% 2534

NOTE: Although an Apstra server VM might run with fewer resources than specified above, the
CPU and RAM allocations may be insufficient, depending on the size of the Apstra network. In
this case, the system encounters errors or a critical “segmentation fault” (core dump). If this
happens, delete the VM and redeploy it with additional resources.

RELATED DOCUMENTATION

Apstra Server Clustering Guide

https://juniper.net/documentation/us/en/software/apstra4.2/Apstra-Server-Clustering-Guide/Apstra-Server-Clustering-Guide.html

CHAPTER

Containers

Containers | 17

Containers

The Apstra Server application is made up of the following containers:

o NGINX: Provides user interface and REST API. Both methods of interacting with NGINX are request-
based and are therefore stateless.

o Metadb/Centraldb: This container runs processes that manage agent lifecycle and metadata for the
Apstra distributed pub-sub fabric.

e Sysdb: This container runs processes that manage the system running state. There are 3 processes:
(1) MainSysDB hosts data for blueprints; (2) TelemetrySysDB hosts data for collected device
telemetry; (3) CachacaSysDB hosts data for IBA. MainSysDB and CachacaSysDB data is persisted.
When MainSysDB fails, its data is recovered from checkpoint and re-do logs from the filesystem.
Device telemetry data and IBA data is periodically re-collected and re-computed.

e Auth: This container authenticates incoming requests, including all APl requests. The server process
may contact an external authentication source such as LDAP. The server process is the entry point of
the container. If the server process dies, the container is restarted.

o Controller Agent: This container runs processes that run the business logic of Apstra - building
blueprints, managing resource allocations, rendering device configurations, etc. These agents obtain
input/output state from SysDB processes. They are written to be idempotent and restart-safe. In
case of agent failure, the agent is restarted, gets the latest state from SysDB and continues
processing from that point.

o Offbox Agent: Apstra spawns a container on the controller VM for each device managed in off-box
mode. The container runs the device agents collecting telemetry from that device. They publish data
to TelemetrySysDB.

e Credential: This container stores username/password (original, not hashed) needed by Apstra to
authenticate with remote servers. e.g. login username/password for network switches we manage. It
is currently used by offbox and onbox agent manager. An admin is not allowed to browse "Credential"
sysdb using tools like "acons". This resource can only be accessed by internal Apstra processes.

admin@Apstra-server:~$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

b2209f10d499 Apstra:3.3.0-730 "/usr/bin/Apstra_launch..." 3 weeks
ago Up 3 weeks ibaf2c112cf

64d822b8903a Apstra:3.3.0-730 "/usr/bin/Apstra_launch..." 3 weeks
ago Up 3 weeks Apstra_sysdb_1

ae7ef4f91841 Apstra:3.3.0-730 "/usr/bin/Apstra_launch..." 3 weeks

ago Up 3 weeks Apstra_auth_1

916b80178197 Apstra:3.3.0-730 "/usr/bin/Apstra_launch..." 3 weeks
ago Up 3 weeks Apstra_metadb_1

44807197d463 nginx:1.14.2-upload-echo "nginx -g 'daemon of..." 3 weeks ago
Up 3 weeks Apstra_nginx_1

09a7205d3cd7 Apstra:3.3.0-730 "/usr/bin/Apstra_launch..." 3 weeks
ago Up 3 weeks Apstra_controller_1

admin@Apstra-server:~$

CHAPTER

Scaling

Scaling | 20

Scaling

IN THIS SECTION

Growth Without Pain | 20
Scaling the State | 20
Scaling Processing | 21

Scaling Network Traffic | 21

Growth Without Pain

Apstra supports network-transparent distributed state access and management, while parallel execution
is supported by the separate processes. Real-time execution is supported by an event-driven
asynchronous model of execution together with real-time scheduling of execution. Efficiency and
predictability are supported by compilation through C++ as an intermediate language to achieve
machine- level efficiency.

There are three dimensions to scaling:

e State
e Processing

o Network Traffic

Scaling the State

The Juniper Apstra data store scales horizontally, by adding more high-availability (HA) pairs of servers.
In Apstra, intent and telemetry data stores are separated and can scale independently as needed.

Scaling Processing

Juniper Apstra can launch multiple copies of processing agents (per agent type) if and when required
that will share the processing load. More agents can be added by adding more servers to host them, and
an agent’s lifecycle is managed by Apstra.

Apstra’s state-based pub/sub architecture allows agents to react (provide application logic) to a well-
defined subset of state. Coverage of the whole intent is done through separate agents delegated to
dealing with different subsets of state. This means that when there is a change in the intent or
operational state, the agent’s reaction is to “incremental change” and is independent of the size of the
whole state.

Apstra employs the traditional approach to deal with scale and associated complexity — decomposition.
The “everyone knows everything” approach doesn'’t scale, so Apstra distributes the knowledge about the
desired state and lets each agent determine how to reach that state. This eliminates the need for
centralized decision making. Because of this, the Apstra Server is not considered a “controller”. Apstra’s
support for live graph queries implies that clients such as Ul can ask for exactly what they want and get
exactly what they need and nothing more, allowing granular control of the amount of data to be fetched
from the back end.

Scaling Network Traffic

The third dimension is scaling network traffic. Communication between the agents and data store is
using an optimized binary channel, thus significantly reducing the amount of traffic compared to text-
based protocols.

Fault tolerance is achieved by executing the Apstra application as multiple processes, possibly running
on separate hardware devices connected by a network and separating the state from processing with
support for replicated state and fast recovery of state.

Apstra has been tested with production deployments of 400+ switches. Apstra has completed internally
testing of network fabrics comprising up to 1600 virtual devices. Physical fabric size limitations are
based on vendor form factor and software limitations.

CHAPTER

Server Administration

Apstra Server Administration | 23

Apstra Server Administration

IN THIS SECTION

Javascript Web Ul and REST API | 23
SSH | 23
APIs | 24

There are three methods to administer the Apstra Server:
e Web Ul

e SSH

e REST API

Apstra has an advanced RBAC system to define fine grained control of administrative duties.
Information on the authentication and RBAC options is beyond the scope of this document and can be
found in the Apstra standard documentation: https:/www.juniper.net/documentation/product/us/en/
apstra/.

Javascript Web Ul and REST API

SSL is implemented using, but not limited to, AES 128/192/256 (CBC or GCM), RC4. For SSL key
exchange, Apstra uses RSA with a key modulus up to and including 2048-bits and Diffie-Hellman with a
key modulus of up to and including 2048-bits for key exchange.

SSH

SSH is implemented using 3DES, Blowfish, Twofish, CAST-128, IDEA, and ARCFOUR. For SSH key
exchange, Apstra uses RSA with a key modulus up to and including 2048-bits and Diffie-Hellman with a
key modulus of up to and including 2048-bits for key exchange.

https://www.juniper.net/documentation/product/us/en/apstra/
https://www.juniper.net/documentation/product/us/en/apstra/

APIs

Apstra abstracts individual networking hardware and software and presents users with easy-to-parse
industry standard REST APIs which model the entire system state and support the JSON data format
which has a number of ways of keeping specification or configuration in text files:

name: “Create Virtual Network”
Apstra_blueprint_virtnet:
session: “{{ Apstra_session }}”
blueprint: “my-blueprint-12”
content: “{{ lookup(‘file’,
‘resources/virtual-network-05.json’) }}”

state: present

In summary, Juniper Apstra is a powerful tool for traditional networking engineers looking to improve
their automation and programming skills. Instead of focusing on low-level network device actions, you
can quickly interact programmatically with Apstra using declarative API as easy as you would any cloud-
based solution with tools like Ansible, Postman, or automation tool of choice.

CHAPTER

Device Agents

Apstra Device Agents | 26

Apstra Device Agents

The Apstra Device Agents function in one of two ways: Onbox or Offbox.
Option 1: Apstra Agent installed on the switch (Onbox)

In this case the Apstra Agent has been installed onto the device either via the ZTP boot process or using
the Apstra Device Installer. Once the agent is installed it will always run, including after reboots.
Communication between the agent and the Apstra Server are done over a highly optimized binary
protocol.

The Apstra Agent package installs the following processes within the Network Operating System (NOS)
namespace to create an isolated runtime environment:

e Counter Agent: Responsible for retrieving counters from a device and sending them upstream to the
Apstra Server. The majority of traffic is normally generated by this agent.

¢ Deployment Agent: Responsible for accepting configuration pushed down from the Apstra Server
and applying it to the device. This agent is idle most of the time.

¢ Telemetry Agent: Responsible for retrieving LLDP, routing, interface information and other telemetry
and sending it upstream to the Apstra Server. This agent is idle most of the time, except when
important events occur.

e Local Process Spawner: Responsible for instantiation of the agent.

e Local SysDB: Each device maintains a localized version of the SysDB process to store intent for local
purposes.

The port used to connect to devices can be adjusted in the Apstra server. The default ports for this
protocol are:

Agent <==> MetaDB (TCP dst port 29731)

Agent <==> SysDB (TCP dst port 29732)

Agent <==> CentralDB (TCP dst port 29730) (future)
Agent <=> TelemetrySysDB (TCP dst port 29733)

The Apstra agents are installed inside of a protected guestshell or userland in each vendor device. The
agent processes are isolated from the underlying switch hardware and software, Apstra does not directly
talk to the forwarding/data plane or control plane.

Option 2: Apstra Proxy Agent (offbox) connects to the device via the vendor's standard APl or CLI/SSH

The Proxy Agent makes connections on the defined API port (typically 80/443/9443) or standard SSH
(typically 22). Connections are initiated by the proxy agent and this happens on a set time interval or
when updates occur in Apstra. This agent runs as a container directly on the Apstra server.

Apstra implements SSH to secure management data between the product management interface. This
product makes use of the SSH protocol using 3DES, Blowfish, Twofish, CAST-128, IDEA, ARCFOUR.

SSL/SSH Key Exchange

For the SSL and SSH implementations this product uses RSA with a key modulus up to and including
2048-bits and Diffie-Hellman with a key modulus of up to and including 2048-bits for key exchange.

CHAPTER

Agent Network Security

Apstra Agent Network Security | 29

Apstra Agent Network Security

Apstra communicates with the management interfaces of devices via the IP address of the dedicated
management port. Customers typically connect the management ports to an out-of-band (OOB)
network that is restricted to network engineers, NOC management systems, and an emergency “break
glass” IP subnet via ACLs or firewalls.

NOTE: Currently, it's not possible to manage devices via the fabric ports.

CHAPTER

Server Hardening

Apstra Server Hardening | 31

Apstra Server Hardening

IN THIS SECTION

Vulnerability Scanning | 31
Process for Hardening (In-Build Process) | 31

Hardening/Validation Steps | 32

Vulnerability Scanning

A Tenable / Nessus vulnerability scan occurs weekly against all released, supported versions of Juniper
Apstra in addition to the latest build of any version in development. This software is set up to notify
Apstra Engineering and Support for any newfound security vulnerabilities over a particular threshold of
CVSS > 8.0. As part of these security findings, Juniper Apstra formulates a targeted plan to update
security packages in the field.

Juniper Apstra uses an automated CI/CD process for building releases that include bringing in the latest
versions of Ubuntu and updated packages. The SecOps part of the build system then runs a Tenable I.O
Nessus scan for vulnerabilities. We review that report and fix any critical issues and review less critical
problems to cherry-pick those vulnerabilities that we deem that require attention.

Our only path to resolving security issues is a software upgrade where the new Ubuntu release and
related packages, bundled with the Apstra Software, have been tested and placed into longevity tests
for any regression, performance, or functionality issue. The version of Ubuntu and packages are pristine
when we build and ship them. Still, vulnerabilities discovered over time will result in additional problems
that are resolved by the upgrade. For isolated critical issues, we can create and apply a hotfix to a
production deployment or recommend a mitigation procedure.

Process for Hardening (In-Build Process)

Before the customer downloads the Apstra VM, Apstra hardens it against the current CIS Ubuntu
version as a "Level 1" system. This process includes basic security configuration in a few security
domains, summarized here. The VM has the latest versions of all Ubuntu packages as of the date the
Apstra release is available minus six weeks (validation and burn-in time before GA).

The Apstra VM Image is built off a multi build phase process:

1. Apstra creates a base Ubuntu system image from the Ubuntu ISO image from Ubuntu repositories
online.

2. Validation of the authenticity of source ISO with SHA hashes

3. Apply minimum configuration and minimum installation packages for Apstra to install and
automatically assign security policies. The configuration used is similar to the CIS Ubuntu hardening
standards, https:/www.cisecurity.org/benchmark/ubuntu_linux/, which aligns with many security
compliance frameworks in the enterprise space.

4. After hardening scripts run, build artifacts, and cache folders are deleted to minimize disk usage, log
files trimmed, and base system VM is 'closed".

5. As part of the official build release artifacts, we reuse the base system created above installing only
the Apstra-specific packages.

6. Build artifacts for the same, raw VM image is converted into OVA for VMware, QCOW?2 for Linux
KVM, and VHDX for Microsoft Hyper-V and marked as ready for distribution (https:/
support.juniper.net/support/downloads/?p=apstra)

Hardening/Validation Steps

e Source validity
o Ubuntu source ISO is validated with SHA hashes before the build process begins
e HTTPS Encryption

e The Apstra Server provides the Apstra Ul and API using HTTPS on Nginx. Apstra uses Nginx
documented procedures to replace TLS certificates in order to accomplish client to server
authentication and end-to-end encryption. Apstra encourages users to replace the included
insecure, "self-signed" TLS certificates with signed certificates.

e File system security
e Disable unnecessary file system drivers
e Ensure file system mounts are secure
e Apstra services don't share disk space with rest of OS (e.g./var/log/Apstra)

o File system permissions are strong

https://www.cisecurity.org/benchmark/ubuntu_linux/
https://support.juniper.net/support/downloads/?p=apstra
https://support.juniper.net/support/downloads/?p=apstra

Services security
e Disable unnecessary services
e Configure AppArmor
e Harden SSH configuration
Network security
e Ensure iptables is configured with an appropriate 'default deny' policy
e Ensure the system has uRPF, disable IP routing, etc
e Warning banners that state that any action should only be made with support from Apstra.
e Apply login throttles to ssh login attempts (brute force prevention)
Auditing
e Ensure system configuration changes are audited (run auditd)
o Audit login/logout failures and successes
e Audit privilege escalations
Secure server access
e There are three methods to administer the Apstra Server:
1. Javascript Web Ul (443): HTTPS, Basic Authentication and RBAC*
2. REST API (443): HTTPS, Basic Authentication and RBAC*

3. SSH (22): No root login permitted by default

NOTE: IMPORTANT: Change the default admin password. Apstra ships with a default admin
password. It is critical that this password is changed after the server has completed the first
boot process. Apstra recommends using SSH to access the Apstra server to change the
password. For more information, see Reset Apstra GUI Admin Password.

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/topics/task/password-admin-apstra-gui-reset.html

	Table of Contents
	About This Guide
	Overview
	Overview

	Components
	Apstra Components

	Software Architecture Overview
	Software Architecture Overview

	Apstra Server Overview
	Apstra Server Overview

	Recommended Apstra Server VM Resources
	Recommended Apstra Server VM Resources

	Containers
	Containers

	Scaling
	Scaling

	Server Administration
	Apstra Server Administration

	Device Agents
	Apstra Device Agents

	Agent Network Security
	Apstra Agent Network Security

	Server Hardening
	Apstra Server Hardening

