
Juniper Cloud-Native Router Deployment
Guide

Published

2024-11-04

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Juniper Cloud-Native Router Deployment Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

JCNR vRouter Datapath | 11

JCNR Deployment Modes | 13

JCNR Interfaces Overview | 14

2 Install Cloud-Native Router on Baremetal Server

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 27

Install Juniper Cloud-Native Router Using Helm Chart | 27

Verify Installation | 31

System Requirements for Baremetal Servers | 35

Customize JCNR Helm Chart for Bare Metal Servers | 46

Customize JCNR Configuration | 59

3 Install Cloud-Native Router on Red Hat OpenShift

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment | 69

Install Juniper Cloud-Native Router Using Helm Chart | 69

Verify Installation | 73

System Requirements for OpenShift Deployment | 79

Customize JCNR Helm Chart for OpenShift Deployment | 92

Customize JCNR Configuration | 105

4 Install Cloud-Native Router on Amazon EKS

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 115

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 115

iii

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL) | 119

Verify JCNR Installation on Amazon EKS | 123

System Requirements for EKS Deployment | 128

Customize JCNR Helm Chart for EKS Deployment | 136

Customize JCNR Configuration | 145

Deploy JCNR as a VPC Gateway | 154

JCNR VPC Gateway Overview | 154

Install the JCNR VPC Gateway | 155

Prepare the MetalLB Cluster | 167

Prepare the JCNR VPC Gateway Cluster | 170

Prepare the On-Premises Cluster | 172

5 Install Cloud-Native Router on Google Cloud Platform

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 175

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 175

Install Juniper Cloud-Native Router Via Google Cloud Marketplace | 179

Verify Installation | 181

System Requirements for GCP Deployment | 185

Customize JCNR Helm Chart for GCP Deployment | 195

Customize JCNR Configuration | 204

6 Install Cloud-Native Router on Wind River Cloud Platform

Install and Verify Juniper Cloud-Native Router for Wind River Deployment | 214

Install Juniper Cloud-Native Router Using Helm Chart | 214

Verify Installation | 218

System Requirements for Wind River Deployment | 222

Customize JCNR Helm Chart for Wind River Deployment | 234

Customize JCNR Configuration | 245

iv

7 Install Cloud-Native Router on Microsoft Azure Cloud Platform

Install and Verify Juniper Cloud-Native Router for Azure Deployment | 256

Install Juniper Cloud-Native Router Using Helm Chart | 256

Verify Installation | 260

System Requirements for Azure Deployment | 264

Customize JCNR Helm Chart for Azure Deployment | 274

Customize JCNR Configuration | 283

8 Install Cloud-Native Router on VMWare Tanzu

Install and Verify Juniper Cloud-Native Router for VMWare Tanzu | 293

System Requirements for Tanzu Deployment | 293

Customize JCNR Helm Chart for Tanzu Deployment | 304

Customize JCNR Configuration | 304

9 Deploying Service Chain (cSRX) with JCNR

Deploying Service Chain (cSRX) with JCNR | 307

Install cSRX on an Existing JCNR Installation | 307

Install cSRX During JCNR Installation | 308

Apply the cSRX License and Configure cSRX | 309

Customize cSRX Helm Chart | 310

10 Manage

Manage JCNR Software | 315

Upgrading JCNR | 315

Downgrading JCNR | 318

Uninstalling JCNR | 318

Manage JCNR Licenses | 319

Installing Your License | 319

Renewing Your License | 320

v

Allocate CPUs to the JCNR Forwarding Plane | 322

Allocate CPUs Using the Kubernetes CPU Manager | 322

Allocate CPUs Using Static CPU Allocation | 325

11 Troubleshoot

Troubleshoot Deployment Issues | 328

Troubleshoot Deployment Issues | 328

12 Appendix

Kubernetes Overview | 334

JCNR Software Download Packages | 335

JCNR Default Helm Chart | 336

Configure Repository Credentials | 344

Deploy Prepackaged Images | 346

CloudFormation Template for EKS Cluster | 347

Juniper Technology Previews (Tech Previews) | 359

vi

1
CHAPTER

Introduction

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

JCNR vRouter Datapath | 11

JCNR Deployment Modes | 13

JCNR Interfaces Overview | 14

Juniper Cloud-Native Router Overview

SUMMARY

This topic provides an overview of the Juniper
Cloud-Native Router (JCNR) overview, use cases, and
features.

IN THIS SECTION

Overview | 2

Use Cases | 2

Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.
The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos containerized routing protocol daemon (cRPD) as the controller and a high-
performance Data Plane Development Kit (DPDK) or extended Berkley Packet Filter (eBPF) eXpress
Data Path (XDP) datapath based vRouter forwarding plane. It is implemented in Kubernetes and
interacts seemlessly with a Kubernetes container network interface (CNI) framework.

Use Cases

The Cloud-Native Router has the following use cases:

• Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

2

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

• Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (JCNR Controller), providing topology discovery, route advertisement and
forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses the
Data Plane Development Kit (DPDK) or eBPF XDP datapath enabled vRouter as a forwarding plane,
providing packet forwarding for applications in a pod and host path I/O for protocol sessions. The third
component is the JCNR container network interface (CNI) that interacts with Kubernetes as a secondary
CNI to create pod interfaces, assign addresses and generate the router configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

The extended Berkley Packet Filter (eBPF) is a Linux kernel technology that executes user-defined
programs inside a sandbox virtual machine. It enables low-level networking programs to execute with
optimal performance. The eXpress Data Path (XDP) frameworks enables high-speed packet processing
for the eBPF programs. JCNR supports eBPF XDP datapath based vRouter.

In this integrated solution, the JCNR Controller uses gRPC, a high performance Remote Procedure Call,
based services to exchange messages and to communicate with the vRouter, thus creating the fully
functional Cloud-Native Router. This close communication allows you to:

• Learn about fabric and workload interfaces.

• Provision DPDK or kernel-based interfaces for Kubernetes pods as needed.

• Configure IPv4 and IPv6 address allocation for pods.

3

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

• Run routing protocols such as ISIS, BGP, and OSPF and much more.

Features

• Easy deployment, removal, and upgrade on general purpose compute devices using Helm.

• Higher packet forwarding performance with DPDK-based JCNR-vRouter.

• Full routing, switching, and forwarding stacks in software.

• Out-of-the-box software-based open radio access network (O-RAN) support.

• Quick spin up with containerized deployment.

• Highly scalable solution.

• L3 features such as transit gateway, support for routing protocols, BFD, VRRP, VRF-Lite, EVPN
Type-5, ECMP and BGP Unnumbered, access control lists, SRv6.

• L2 functionality, such as MAC learning, MAC aging, MAC limiting, native VLAN, L2 statistics, and
access control lists (ACLs).

• L2 reachability to Radio Units (RU) for management traffic.

• L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs.

• VLAN tagging and bridge domains.

• Trunk and access ports.

• Support for multiple virtual functions (VF) on Ethernet NICs.

• Support for bonded VF interfaces.

• Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces.

• IPv4 and IPv6 routing.

4

Juniper Cloud-Native Router Components

SUMMARY

The Juniper Cloud-Native Router solution consists of
several components including the JCNR controller,
the Data Plane Development Kit (DPDK) or extended
Berkley Packet Filter (eBPF) eXpress Data Path (XDP)
datapath based JCNR vRouter and the JCNR-CNI.
This topic provides a brief overview of the
components of the Juniper Cloud-Native Router.

IN THIS SECTION

JCNR Components | 5

JCNR Controller | 7

JCNR vRouter | 8

JCNR-CNI | 9

Syslog-NG | 11

JCNR Components

The Juniper Cloud-Native Router has primarily three components—the JCNR Controller control plane,
the JCNR vRouter forwarding plane, and the JCNR-CNI for Kubernetes integration. All JCNR
components are deployed as containers.

Figure 1 on page 6 shows the components of the Juniper Cloud-Native Router inside a Kubernetes
cluster when implemented with DPDK based vRouter.

5

Figure 1: Components of Juniper Cloud-Native Router (DPDK Datapath)

Figure 2 on page 7 shows the components of the Juniper Cloud-Native Router inside a Kubernetes
cluster when implemented with eBPF XDP based vRouter.

6

Figure 2: Components of Juniper Cloud-Native Router (eBPF XDP Datapath)

JCNR Controller

The JCNR Controller is the control-plane of the cloud-native router solution that runs the Junos
containerized routing protocol Daemon (cRPD). It is implemented as a statefulset. The controller
communicates with the other elements of the cloud-native router. Configuration, policies, and rules that
you set on the controller at deployment time are communicated to the JCNR vRouter and other
components for implementation.

For example, firewall filters (ACLs) configured on the controller are sent to the JCNR vRouter (through
the vRouter agent).

Juniper Cloud-Native Router Controller Functionality:

• Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

• Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

7

• Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

• Supports configuration of bridge domains, VLANs, and virtual-switches.

• Advertises DPDK application reachability to core network using routing protocols primarily with
BGP, IS-IS and OSPF.

• Distributes L3 network reachability information of the pods inside and outside a cluster.

• Maintains configuration for L2 firewall.

• Passes configuration information to the vRouter through the vRouter-agent.

• Stores license key information.

• Works as a BGP Speaker, establishing peer relationships with other BGP speakers to exchange
routing information.

• Exports control plane telemetry data to Prometheus and gNMI.

Configuration Options

Use the "configlet resource" on page 59 to configure the cRPD pods.

JCNR vRouter

The JCNR vRouter is a high-performance datapath component. It is an alternative to the Linux bridge or
the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process. The vRouter
functionality is implemented in two pods, one for the vrouter-agent and the vrouter-telemetry-exporter,
and the other for the vrouter-agent-dpdk. This split gives you the flexibility to tailor CPU resources to
the different vRouter components as needed.

The vRouter supports both Data Plane Development Kit (DPDK) and extended Berkley Packet Filter
(eBPF) eXpress Data Path (XDP) datapath.

NOTE: JCNR eBPF XDP Datapath is a Juniper Technology Preview (Tech Preview) feature.
Limited features are supported. See "JCNR vRouter Datapath" on page 11 for more details.

JCNR vRouter Functionality:

• Performs routing with Layer 3 virtual private networks.

• Performs L2 forwarding.

8

• Supports high-performance DPDK-based forwarding.

• Supports high performance eBPF XDP datapath based forwarding.

• Exports data plane telemetry data to Prometheus and gNMI.

Benefits of vRouter:

• High-performance packet processing.

• Forwarding plane provides faster forwarding capabilities than kernel-based forwarding.

• Forwarding plane is more scalable than kernel-based forwarding.

• Support for the following NICs:

• Intel E810 (Columbiaville) family

• Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with JCNR controller and the vRouter to setup DPDK interfaces. When a pod is removed,
JCNR-CNI is invoked to de-provision the pod interface, configuration, and associated state in
Kubernetes and cloud-native router components. JCNR-CNI works as a secondary CNI, along with the
Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:

• Manages the networking tasks in Kubernetes pods such as:

• assigning IP addresses.

• allocating MAC addresses.

• setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster.

• creating VLAN sub-interfaces.

• creating L3 interfaces.

• Acts on pod events such as add and delete.

9

• Generates cRPD configuration.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

• Instantiating different kinds of pod interfaces.

• Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

• Creating veth pair interfaces that allow pods to communicate using the Linux Kernel networking
stack.

• Creating pod interfaces in access or trunk mode.

• Attaching pod interfaces to bridge domains and virtual routers.

• Supporting IPAM plug-in for Dynamic IP address allocation.

• Allocating unique socket interfaces for virtio interfaces.

• Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in a Kubernetes cluster.

• Connecting pod interface to a network including pod-to-pod and pod-to-network.

• Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

• Improved pod interface management

• Customizable administrative and monitoring capabilities

• Increased performance through tight integration with the controller and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into the controller.

10

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

JCNR vRouter Datapath

SUMMARY

JCNR supports both Data Plane Development Kit
(DPDK) and extended Berkley Packet Filter (eBPF)
eXpress Data Path (XDP) datapath based vRouter
forwarding plane.

IN THIS SECTION

Data Plane Development Kit (DPDK) | 11

eBPF XDP | 12

The JCNR vRouter forwarding plane supports both the Data Plane Development Kit (DPDK) and
extended Berkley Packet Filter (eBPF) eXpress Data Path (XDP) datapath for high-speed packet
processing.

Data Plane Development Kit (DPDK)

DPDK is an open-source set of libraries and drivers for rapid packet processing. DPDK enables fast
packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. This method of packet routing lets the application
poll for packets, which prevents the overhead of interrupts from the NIC.

DPDK's poll mode drivers (PMDs) use the physical interface (NIC) of a VM's host instead of the Linux
kernel's interrupt-based drivers. The NIC's registers operate in user space, which makes them accessible
by DPDK’s PMDs. As a result, the host OS does not need to manage the NIC's registers. This means that
the DPDK application manages all packet polling, packet processing, and packet forwarding of a NIC.
Instead of waiting for an I/O interrupt to occur, a DPDK application constantly polls for packets and
processes these packets immediately upon receiving them.
DPDK datapath has high CPU usage due to the poll mode and has high maintenance costs. Also, when
implementing DPDK, the NIC is no longer available in the kernel, hence sockets and forwarding plane
code must be re-implemented.

11

eBPF XDP

NOTE: This is a Juniper Technology Preview (Tech Preview) feature.

JCNR also supports an eBPF XDP datapath based vRouter. eBPF (extended Berkley Packet Filter) is a
Linux kernel technology that executes user-defined programs inside a sandbox virtual machine. It
enables low-level networking programs to execute with optimal performance. The eXpress Data Path
(XDP) frameworks enables high-speed packet processing for the eBPF programs. JCNR supports XDP in
native (driver) mode on Baremental server deployments for limited drivers only. Please see the "System
Requirements" on page 35 for more details.

Benefits of eBPF XDP Datapath

Benefits of eBPF XDP Datapath include:

• An eBPF XDP kernel program and its custom library is easier to maintain across kernel versions and
has wider kernel compatibility. The kernel dependencies are limited to a small set of eBPF helper
functions.

• The program is safer since it is analysed by the in-built Linux eBPF verifier before it is loaded into the
kernel.

• Offers higher performance using kernel bypass and omitting socket buffer (skb) allocation.

Supported JCNR Features for eBPF XDP

The following JCNR Features are supported with eBPF XDP for IPv4 traffic only:

• L3 traffic with JCNR deployed as a sending, receiving or transit router

• VRF-Lite

• MPLSoUDP

• IGPs—OSPF, IS-IS

• BGP route advertisements

NOTE: When deploying JCNR, you can configure the agentModeType attribute in the helmchart to
select either a DPDK based or eBPF XDP datapath based vRouter.

12

JCNR Deployment Modes

SUMMARY

Read this topic to know about the various modes of
deploying the cloud-native router.

IN THIS SECTION

Deployment Modes | 13

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes, auto-derived based on the interface configuration in the
values.yaml file prior to deployment.

NOTE: In the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of deployment
would be L2.

• When one or more interfaces have an interface_mode key configured and some of the interfaces
do not have the interface_mode key configured, then the mode of deployment would be L2-L3.

• When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPv6 underlay network and an IPv4 or IPv6 overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode provides the functionality of both the switch and the router at the same time. It
enables JCNR to act as both a switch and a router simultaneously by performing switching in a set of
interfaces and routing in the other set of interfaces. Cell site routers in a 5G deployment need to handle
both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an example of L2 traffic and data
packets moving from outdoor unit (ODU) to central unit (CU) is an example of L3 traffic.

13

JCNR Interfaces Overview

SUMMARY

This topic provides information on the network
communication interfaces provided by the JCNR-
Controller. Fabric interfaces are aggregated
interfaces that receive traffic from multiple
interfaces. Interfaces to which different workloads
are connected are called workload interfaces.

IN THIS SECTION

Juniper Cloud-Native Router Interface
Types | 14

JCNR Interface Details | 15

Read this topic to understand the network communication interfaces provided by the JCNR-Controller.
We cover interface names, what they connect to, how they communicate and the services they provide.

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports two types of interfaces:

• Fabric interfaces—Aggregated interfaces that receive traffic from multiple interfaces. Fabric interfaces
are always physical interfaces. They can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher, hence multiple hardware queues are
allocated to them. Each hardware queue is allocated with a dedicated CPU core . The interfaces are
configured for the cloud-native router using the appropriate values.yaml file in the deployer
helmcharts. You can view the interface mapping using the dpdkinfo -c command (View the
Troubleshoot using the vRouter CLI topic for more details). You also have fabric workload interfaces
that have low throughput requirement. Only one hardware queue is allocated to the interface,
thereby saving precious CPU resources. These interfaces can be configured using the appropriate
values.yaml file in the deployer helmcharts.

• Workload interfaces—Interfaces to which different workloads are connected. They can either be
software-based or hardware-based interfaces. Software-based interfaces (pod interfaces) are either
high-performance interfaces using the Data Plane Development Kit (DPDK) poll mode driver (PMD)
or a low-performance interfaces using the kernel driver. Typically the DPDK interfaces are used for
data traffic such as the GPRS Tunneling Protocol for user data (GTP-U) traffic and the kernel-based
interfaces are used for control plane data traffic such as TCP. The kernel pod interfaces are typically
for the operations, administration and maintenance (OAM) traffic or are used by non-DPDK pods.
The kernel pod interfaces are configured as a veth-pair, with one end of the interface in the pod and
the other end in the Linux kernel on the host. The DPDK native pod interfaces (virtio interfaces) are
plumbed as vhost-user interfaces to the DPDK vRouter by the CNI. JCNR also supports bonded

14

interfaces via the link bonding PMD. These interfaces can be configured using the appropriate
values.yaml file in the deployer helmcharts.

JCNR supports different types of VLAN interfaces including trunk, access and sub-interfaces across
fabric and workload interfaces.

JCNR Interface Details

The different JCNR interfaces are provided in detail below:

Agent Interface

The vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter containers. On the vRouter CLI when you issue the vif --list command,
the agent interface looks like this:

vif0/0 Socket: unix
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:650 bytes:99307 errors:0
 Drops:0

L3 Fabric Interface (DPDK)

A layer-3 fabric interface bound to the DPDK.

L3 fabric interface in cRPD can be reviewed on the cRPD shell using the junos show interfaces command:

show interfaces routing ens2f2
Interface State Addresses
ens2f2 Up MPLS enabled
 ISO enabled
 INET 192.21.2.4
 INET6 2001:192:21:2::4
 INET6 fe80::c5da:7e9c:e168:56d7
 INET6 fe80::a0be:69ff:fe59:8b58

15

The corresponding physical and tap interfaces can be seen on the vRouter using the vif --list command
on the vRouter shell.

vif0/1 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000 <- PCI
Address
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Physical interface
 IP6addr:2001:192:21:2::4 <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/2 PMD: ens2f2 NH: 12 MTU: 9000 <- Tap interface name as seen by cRPD
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Tap interface type
 IP6addr:2001:192:21:2::4
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:1 <-cross-connected to
vif 1
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0
 TX packets:307489 bytes:25880250 errors:0
 Drops:0
 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

L3 Bond Interface (DPDK)

A layer 3 bond interface bound to DPDK.

show interfaces routing bond34
Interface State Addresses
bond34 Up INET6 2001:192:7:7::4

16

 ISO enabled
 INET 192.7.7.4
 INET6 fe80::527c:6fff:fe48:7574

vif0/3 PCI: 0000:00:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 1514 <- Bond interface (PCI id
0)
 Type:Physical HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Physical interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:TcL3L2Vof QOS:0 Ref:18
 RX port packets:402183888 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond34 Status: UP Driver: net_bonding <- Bonded master
 Slave Interface(0): 0000:5e:00.0 Status: UP Driver: net_ice <- Bond slave - 1
 Slave Interface(1): 0000:af:00.0 Status: UP Driver: net_ice <- Bond slave - 2
 RX packets:402183888 bytes:49519387070 errors:0
 TX packets:79226 bytes:7330912 errors:0
 Drops:1393
 TX port packets:79226 errors:0

vif0/4 PMD: bond34 NH: 11 MTU: 9000
 Type:Host HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Tap interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:3 <- Tap interface for
bond
 RX device packets:76357 bytes:7101918 errors:0
 RX queue packets:76357 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:76357 bytes:7101918 errors:0
 TX packets:75349 bytes:6946908 errors:0
 Drops:0
 TX queue packets:75349 errors:0
 TX device packets:75349 bytes:6946908 errors:0

L3 Pod VLAN Sub-Interface (DPDK)

Starting in Juniper Cloud-Native Router Release 23.2, the cloud-native router supports the use of VLAN
sub-interfaces in L3 mode, bound to DPDK.

17

Corresponding interface state in cRPD:

show interfaces routing ens1f0v1.201
Interface State Addresses
ens1f0v1.201 Up MPLS enabled
 ISO enabled
 INET6 fe80::b89c:fff:feab:e2c9

vif0/2 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/5 PMD: ens1f0v1 NH: 12 MTU: 9000
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:2 <- L3 (only) tap
interface
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0
 TX packets:307489 bytes:25880250
errors:0

 Drops:0

18

 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

vif0/9 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/2 NH: 36 MTU: 1514 <- VLAN
fabric sub-intf with parent as vif 2 and VLAN tag as 201
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/10 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/5 NH: 21 MTU: 9000
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:4 TxXVif:9 <- VLAN tap sub-intf
cross connected to fabric sub-intf vif 9 and parent as tap intf vif 5
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/50 PMD: vhostnet1-9403fd77-648a-47 NH: 177 MTU: 9160 ---> pod
interface
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:65535 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:20
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/51 Virtual: vhostnet1-9403fd77-648a-47.201 Vlan(o/i)(,S): 201/201 NH: 17 MTU: 1514
 Parent:vif0/50 ---->L3 pod

19

sub-interface, parent is the pod interface
 Type:Virtual(Vlan) HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
 IP6addr:1234::633e:2
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:PL3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

L3 Pod Kernel Interface

These are non-DPDK L3 pod interfaces. Interface state in the cRPD:

show interfaces routing jvknet1-0af476e
Interface State Addresses
jvknet1-0af476e Up INET6 enabled
 INET6 abcd:2:51:1::4
 ISO enabled
 INET enabled
 INET 2.51.1.4

vif0/13 Ethernet: jvknet1-0af476e NH: 35 MTU: 9160 <- Kernel interface (jvk) of CNF
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.4 <- pod/ workload
 IP6addr:abcd:2:51:1::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:PL3DVofProxyEr QOS:-1 Ref:11
 RX port packets:47 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:47 bytes:13012 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:47

L2 Fabric Interface (DPDK, Physical Trunk)

DPDK L2 fabric interfaces, which are associated with the physical network interface card (NIC) on the
host server, accept traffic from multiple VLANs. The trunk interfaces accept only tagged packets. Any
untagged packets are dropped. These interfaces can accept a VLAN filter to allow only specific VLAN
packets. A trunk interface can be a part of multiple bridge-domains (BD). A bridge domain is a set of

20

logical ports that share the same flooding or broadcast characteristics. Like a VLAN, a bridge domain
spans one or more ports of multiple devices.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 ens786f0v0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the DPDK VF fabric interface looks like
this:

vif0/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:d6:22:c5:42:de:c3
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:12
 RX queue packets:11813 errors:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:0 bytes:0 errors:49962
 TX packets:18188356 bytes:2037400554 errors:0
 Drops:49963

DPDK L2 Bond Interface (Active-Standby, Trunk)

Layer-2 Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or
standby mode (mode 0). You define the bond interface in the helm chart configuration as follows:

bondInterfaceConfigs:
- name: "bond0"
 mode: 1 # ACTIVE_BACKUP MODE

21

 slaveInterfaces:
 - "ens2f0v1"
 - "ens2f1v1"

 - bond0:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [1001-1100]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 1001
 no-local-switching: true

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 bond0 {
 unit 0 {
 family bridge
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the bond interface looks like this:

vif0/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:32:f8:ad:8c:d3:bc
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:8
 RX queue packets:1882 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(0): 0000:81:01.0 Status: UP Driver: net_iavf
 Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:8108366000 bytes:486501960000 errors:4234
 TX packets:65083776 bytes:4949969408 errors:0
 Drops:8108370394

22

DPDK L2 Pod Interface (Virtio Trunk)

The trunk interfaces accept only tagged packets. Any untagged packets are dropped. These interfaces
can accept a VLAN filter to allow only specific VLAN packets. A trunk interface can be a part of multiple
bridge-domains (BD). A bridge domain is a set of logical ports that share the same flooding or broadcast
characteristics. Like a VLAN, a bridge domain spans one or more ports of multiple devices. Virtio
interfaces are associated with pod interfaces that use virtio on the DPDK data plane.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 vhost242ip-93883f16-9ebb-4acf-b {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1003;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane interface
looks like this:

vif0/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
 Type:Virtual HWaddr:00:16:3e:7e:84:a3
 Vrf:65535 Flags:L2 QOS:-1 Ref:13
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Trunk Vlan: 1001-1003
 RX packets:0 bytes:0 errors:0
 TX packets:10604432 bytes:1314930908 errors:0
 Drops:0
 TX port packets:0 errors:10604432

L2 Pod Kernel Interface (Access)

The access interfaces accept both tagged and untagged packets. Untagged packets are tagged with the
access VLAN or access BD. Any tagged packets other than the ones with access VLAN are dropped. The
access interfaces is a part of a single bridge-domain. It does not have any parent interface.

23

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd1001 {
 vlan-id 1001;
 interface jvknet1-eed79ff;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the veth pair interface looks like this:

vif0/4 Ethernet: jvknet1-88c44c3
 Type:Virtual HWaddr:02:00:00:3a:8f:73
 Vrf:0 Flags:L2Vof QOS:-1 Ref:10
 RX queue packets:524 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Access Vlan Id: 1001 OVlan Id: 1001
 RX packets:9 bytes:802 errors:515
 TX packets:0 bytes:0 errors:0
 Drops: 525

L2 Pod VLAN Sub-interface (DPDK)

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the JCNR instance.
VLAN sub-interfaces are like logical interfaces on a physical switch or router. They access only tagged
packets that match the configured VLAN tag. A sub-interface has a parent interface. A parent interface
can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-native router, you must
associate each sub-interface with a specific VLAN.

The cRPD interface configuration viewed using the show configuration command is as shown below (the
output is trimmed for brevity).

24

For L2:

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd3003 {
 vlan-id 3003;
 interface vhostnet1-71cd7db1-1a5e-49.3003;
 }
 }
 }
}

On the vRouter, a VLAN sub-interface configuration is as shown below:

vif0/4 PMD: vhostnet1-71cd7db1-1a5e-49 MTU: 9160
 Type:Virtual HWaddr:02:00:00:84:dc:42
 DDP: OFF SwLB: ON
 Vrf:65535 Flags:L2 QOS:-1 Ref:14
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0
 TX port packets:0 errors:293

vif0/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vif0/4
 Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
 Vrf:0 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

RELATED DOCUMENTATION

JCNR Use-Cases and Configuration Overview

25

2
CHAPTER

Install Cloud-Native Router on
Baremetal Server

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 27

System Requirements for Baremetal Servers | 35

Customize JCNR Helm Chart for Bare Metal Servers | 46

Customize JCNR Configuration | 59

Install and Verify Juniper Cloud-Native Router for
Baremetal Servers

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 27

Verify Installation | 31

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Baremetal Servers" on page 35 section to ensure the cluster
has all the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the downloaded package.

tar xzvf <sw_package>.tar.gz

4. Change directory to the main installation directory.

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

27

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

28

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The JCNR container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
JCNR software package. See "Deploy Prepackaged Images" on page 346 for instructions on how
to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

29

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for Bare Metal Servers" on page 46 for descriptions of the Helm
chart configurations.

13. Optionally, customize JCNR configuration.

See "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

30

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
jcnr default 1 <date-time> deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful JCNR deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

31

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1 <none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1 <none> 90m

jcnr syslog-ng 1 1 1 1 1 <none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/os=linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section for instructions to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry

32

 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section for instruction to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

33

 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

34

System Requirements for Baremetal Servers

IN THIS SECTION

Minimum Host System Requirements for Bare Metal | 35

Resource Requirements for Bare Metal | 39

Miscellaneous Requirements for Bare Metal | 40

Port Requirements | 44

Download Options | 46

JCNR Licensing | 46

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a baremetal server.

Minimum Host System Requirements for Bare Metal

Table 1 on page 35 and Table 2 on page 37 list the host system requirements for installing JCNR on
bare metal servers.

Table 1: Minimum Host System Requirements (DPDK) for Bare Metal

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS RedHat Enterprise Linux Version 8.4, 8.5, 8.6

Rocky Linux 8.6, 8.7, 8.8, 8.9

35

Table 1: Minimum Host System Requirements (DPDK) for Bare Metal (Continued)

Component Value/Version Notes

Kernel Version RedHat Enterprise Linux
(RHEL): 4.18.X

Rocky Linux: 4.18.X

The tested kernel
version for RHEL is
4.18.0-305.rt7.72.el8.x
86_64

The tested kernel
version for Rocky Linux
is
4.18.0-372.19.1.rt7.17
6.el8_6.x86_64 and
4.18.0-372.32.1.rt7.18
9.el8_6.x86_64

NIC • Intel E810 CVL with
Firmware 4.22
0x8001a1cf 1.3346.0

• Intel E810 CPK with
Firmware 2.20
0x80015dc1 1.3083.0

• Intel E810-CQDA2
with Firmware 4.20
0x80017785
1.3346.0

• Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 359)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

IAVF driver Version 4.8.2 

ICE_COMMS Version 1.3.35.0

ICE Version 1.11.20.13 ICE driver is used only
with the Intel E810
NIC

36

Table 1: Minimum Host System Requirements (DPDK) for Bare Metal (Continued)

Component Value/Version Notes

i40e Version 2.22.18.1 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) Version 1.22.x, 1.23.x,
1.25x

The tested K8s version
is 1.22.4. K8s version
1.22.2 also works.

JCNR supports an all-
in-one or multinode
Kubernetes cluster,
with master and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

Calico Version 3.22.x

Multus Version 3.8

Helm 3.9.x

Container-RT containerd 1.7.x Other container
runtimes may work but
have not been tested
with JCNR.

Table 2: Minimum Host System Requirements (eBPF) for Bare Metal

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS Ubuntu Version 22.04

37

Table 2: Minimum Host System Requirements (eBPF) for Bare Metal (Continued)

Component Value/Version Notes

Kernel Version Recommended Linux
5.10.x or higher

The tested kernel
version is 5.15.x

NIC • Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

Drivers virtio

i40e version 2.22.18.1

Kubernetes (K8s) Version 1.22.x, 1.23.x,
1.25x

The tested K8s version
is 1.22.4. K8s version
1.22.2 also works.

JCNR supports an all-
in-one or multinode
Kubernetes cluster,
with control plane and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

Calico Version 3.22.x

Multus Version 3.8

Helm 3.9.x

Container-RT containerd 1.7.x Other container
runtimes may work but
have not been tested
with JCNR.

38

NOTE: JCNR eBPF XDP Datapath is a Juniper Technology Preview (Tech Preview) feature.
Limited features are supported. Please review "JCNR vRouter Datapath" on page 11 for more
details.

Resource Requirements for Bare Metal

Table 3 on page 39 lists the resource requirements for installing JCNR on bare metal servers.

Table 3: Resource Requirements for Bare Metal

Resource Value Usage Notes

Data plane forwarding
cores

2 cores (2P +
2S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

39

Table 3: Resource Requirements for Bare Metal (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub on the
host. For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"
Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Verify the hugepage is set by executing the following commands:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

NOTE: This 6 x 1GB hugepage requirement is the minimum for a
basic L2 mode setup. Increase this number for more elaborate
installations. For example, in an L3 mode setup with 2 NUMA
nodes and 256k descriptors, set the number of 1GB hugepages to
10 for best performance.

JCNR Controller cores .5

JCNR vRouter Agent
cores

.5

Miscellaneous Requirements for Bare Metal

Table 4 on page 41 lists additional requirements for installing JCNR on bare metal servers.

40

Table 4: Miscellaneous Requirements for Bare Metal

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

41

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

Disable spoofcheck on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 spoofcheck off.

Set trust on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 trust on

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

42

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

Exclude JCNR interfaces from NetworkManager
control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with JCNR
interface configuration, exclude JCNR interfaces from
NetworkManager control. Here's an example on how
to do this in some Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your JCNR interfaces.

NOTE:
enp*enp

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

43

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 5: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

44

Table 5: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

45

Table 5: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "JCNR Software Download Packages" on page 335.

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for Bare Metal Servers

IN THIS SECTION

Helm Chart Description for Bare Metal Deployment | 47

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on bare metal servers.
You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode on a bare metal
server. You configure the deployment mode by editing the appropriate attributes in the values.yaml file
prior to deployment.

NOTE:

46

• In the fabricInterface key of the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

• When one or more interfaces have an interface_mode key configured along with the rest of
the interfaces not having the interface_mode key, then the mode of deployment would be
L2-L3.

• When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

Helm Chart Description for Bare Metal Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

Table 6 on page 47 contains a description of the configurable attributes in values.yaml for a bare metal
deployment.

Table 6: Helm Chart Description for Bare Metal Deployment

Key Description

global

registry Defines the Docker registry for the JCNR container images. The
default value is enterprise-hub.juniper.net. The images provided
in the tarball are tagged with the default registry name. If you
choose to host the container images to a private registry, replace
the default value with your registry URL.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

47

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various JCNR container
images. Use defaults unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from
transmitting and receiving Ethernet frame copies. Enter one or
more comma separated VLAN IDs to ensure that the interfaces
belonging to the VLAN IDs do not transmit frames to one
another. This key is specific to L2 and L2-L3 deployments.
Enabling this key provides the functionality on all access
interfaces. To enable the functionality on trunk interfaces,
configure no-local-switching in fabricInterface. See Prevent Local
Switching for more details.

iamRole Not applicable.

48

https://enterprise.hub.juniper.net

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

fabricInterface Aggregated interfaces that receive traffic from multiple
interfaces. Fabric interfaces are always physical interfaces. They
can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher —
hence multiple hardware queues are allocated to them. Each
hardware queue is allocated with a dedicated CPU core. See
"JCNR Interfaces Overview" on page 14 for more information.

Use this field to provide a list of fabric interfaces to be bound to
the DPDK. You can also provide subnets instead of interface
names. If both the interface name and the subnet are specified,
then the interface name takes precedence over the subnet/
gateway combination. The subnet/gateway combination is useful
when the interface names vary in a multi-node cluster.

NOTE:

• When all the interfaces have an interface_mode key
configured, then the mode of deployment is L2.

• When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having
the interface_mode key, then the mode of deployment is L2-
L3.

• When none of the interfaces have the interface_mode key
configured, then the mode of deployment is L3.

For example:

 # L2 only
 - eth1:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

 # L3 only
 - eth1:
 ddp: "off"

49

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

 # L2L3
 - eth1:
 ddp: "auto"
 - eth2:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. For a
bond interface, all slave interface NICs must support DDP for the
DDP configuration to be enabled. See Enabling Dynamic Device
Personalization (DDP) on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

50

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

interface_mode Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

vlan-id-list Provide a list of VLAN IDs associated with the interface.

storm-control-profile Use storm-control-profile to associate the desired storm control
profile to the interface. Profiles are defined under jcnr-
vrouter.stormControlProfiles.

native-vlan-id Configure native-vlan-id with any of the VLAN IDs in the vlan-
id-list to associate it with untagged data packets received on
the physical interface of a fabric trunk mode interface. For
example:

fabricInterface:
 - bond0:
 interface_mode: trunk
 vlan-id-list: [100, 200, 300]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100 

See Native VLAN for more details.

no-local-switching Prevents interfaces from communicating directly with each other
when configured. Allowed values are true or false. See Prevent
Local Switching for more details.

fabricWorkloadInterface (Optional) Defines the interfaces to which different workloads
are connected. They can be software-based or hardware-based
interfaces.

51

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
JCNR pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

52

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is
to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

53

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS in your EC2 instance.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

54

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs (Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

name Name of the bond interface.

mode Set to 1 (active-backup).

slaveInterfaces List of fabric interfaces to be bonded.

primaryInterface (Optional) Primary interface for the bond.

slaveNetworkDetails Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

55

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric
interfaces in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to
be enabled. See Enabling Dynamic Device Personalization (DDP)
on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

56

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

qosEnable Set to true or false to enable or disable QoS. See Quality of
Service (QoS) for more details.

NOTE: QoS is not supported on Intel X710 NIC.

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Options are dpdk or xdp. Set to dpdk to bring up the DPDK
datapath. Set to xdp to use eBPF. Default is dpdk.

Note: xdp is supported for bare metal deployments only. See
"JCNR vRouter Datapath" on page 11 for more details.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric
interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

57

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

58

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 59

Configuration Examples | 59

Applying the Configlet Resource | 61

Modifying the Configlet | 66

Troubleshooting | 67

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

59

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:

60

 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

61

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample

62

 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr

63

spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

64

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

65

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

66

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

67

3
CHAPTER

Install Cloud-Native Router on Red
Hat OpenShift

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment | 69

System Requirements for OpenShift Deployment | 79

Customize JCNR Helm Chart for OpenShift Deployment | 92

Customize JCNR Configuration | 105

Install and Verify Juniper Cloud-Native Router for
OpenShift Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router on
Red Hat OpenShift Container Platform (OCP).

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 69

Verify Installation | 73

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for OpenShift Deployment" on page 79 to ensure the cluster
has all the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

69

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md scripts secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

70

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The JCNR container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
JCNR software package. See "Deploy Prepackaged Images" on page 346 for instructions on how
to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

71

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for OpenShift Deployment" on page 92 for descriptions of the
Helm chart configurations.

13. Optionally, customize JCNR configuration.

See "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

16. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION

72

jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful JCNR deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY

STATUS RESTARTS AGE

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2

Running 0 16d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1

Running 0 16d

jcnr jcnr-0-crpd-0 1/1

Running 0 16d

jcnr syslog-ng-vh89p 1/1

Running 0 16d

openshift-cluster-node-tuning-operator tuned-zccwc 1/1

Running 8 69d

openshift-dns dns-default-wmchn 2/2

Running 14 69d

openshift-dns node-resolver-dm9b7 1/1

Running 8 69d

openshift-image-registry image-pruner-28212480-bpn9w 0/1

Completed 0 2d11h

73

openshift-image-registry image-pruner-28213920-9jk74 0/1

Completed 0 35h

openshift-image-registry node-ca-jbwlx 1/1

Running 8 69d

openshift-ingress-canary ingress-canary-k6jqs 1/1

Running 8 69d

openshift-ingress router-default-55dff9cbc5-kz8bg 1/1

Running 1 62d

openshift-kni-infra coredns-node-warthog-41 2/2

Running 16 69d

openshift-kni-infra keepalived-node-warthog-41 2/2

Running 14 69d

openshift-machine-config-operator machine-config-daemon-w8fbh 2/2

Running 16 69d

openshift-monitoring alertmanager-main-1 6/6

Running 7 62d

openshift-monitoring node-exporter-rbht9 2/2

Running 15 69d

openshift-monitoring prometheus-adapter-7d77cfb894-nx29s 1/1

Running 0 6d18h

openshift-monitoring prometheus-k8s-1 6/6

Running 6 62d

openshift-monitoring prometheus-operator-admission-webhook-7d4759d465-mv98x 1/1

Running 1 62d

openshift-monitoring thanos-querier-6d77dcb87-c4pr6 6/6

Running 6 62d

openshift-multus multus-additional-cni-plugins-jbrv2 1/1

Running 8 69d

openshift-multus multus-x2ddp 1/1

Running 8 69d

openshift-multus network-metrics-daemon-tg528 2/2

Running 16 69d

openshift-network-diagnostics network-check-target-mqr4t 1/1

Running 8 69d

openshift-operator-lifecycle-manager collect-profiles-28216020-66xqc 0/1

Completed 0 6m8s

openshift-ovn-kubernetes ovnkube-node-d4g2s 5/5

Running 37 69d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

74

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE

AVAILABLE NODE SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1

1 <none> 16d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1

1 <none> 16d

jcnr syslog-ng 1 1 1 1

1 <none> 16d

openshift-cluster-node-tuning-operator tuned 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-dns dns-default 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-dns node-resolver 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-image-registry node-ca 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-ingress-canary ingress-canary 2 2 2 2

2 kubernetes.io/os=linux 69d

openshift-machine-api ironic-proxy 3 3 3 3

3 node-role.kubernetes.io/master= 69d

openshift-machine-config-operator machine-config-daemon 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-machine-config-operator machine-config-server 3 3 3 3

3 node-role.kubernetes.io/master= 69d

openshift-monitoring node-exporter 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus multus 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus multus-additional-cni-plugins 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus network-metrics-daemon 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-network-diagnostics network-check-target 5 5 5 5

5 beta.kubernetes.io/os=linux 69d

openshift-ovn-kubernetes ovnkube-master 3 3 3 3

75

3 beta.kubernetes.io/os=linux,node-role.kubernetes.io/master= 69d

openshift-ovn-kubernetes ovnkube-node 5 5 5 5 5

beta.kubernetes.io/os=linux 69d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 16d
openshift-monitoring alertmanager-main 2/2 69d
openshift-monitoring prometheus-k8s 2/2 69d

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the access the cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard

76

features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the access the vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with two fabric interfaces configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX port packets:864 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:864 bytes:75536 errors:0

77

 TX packets:13609 bytes:1419892 errors:0
 Drops:0

vif0/1 PCI: 0000:17:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:40:a6:b7:a0:f0:6c IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof QOS:0 Ref:9
 RX port packets:243886 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:00.0 Status: UP Driver: net_ice
 RX packets:243886 bytes:20529529 errors:0
 TX packets:243244 bytes:20010274 errors:0
 Drops:2675
 TX port packets:243244 errors:0

vif0/2 PCI: 0000:17:00.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:40:a6:b7:a0:f0:6d IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof QOS:0 Ref:8
 RX port packets:129173 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:00.1 Status: UP Driver: net_ice
 RX packets:129173 bytes:11623158 errors:0
 TX packets:129204 bytes:11624377 errors:0
 Drops:0
 TX port packets:129204 errors:0

vif0/3 PMD: ens1f0 NH: 10 MTU: 9000
 Type:Host HWaddr:40:a6:b7:a0:f0:6c IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:1
 RX device packets:242329 bytes:19965464 errors:0
 RX queue packets:242329 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:242329 bytes:19965464 errors:0
 TX packets:241163 bytes:20324343 errors:0
 Drops:0
 TX queue packets:241163 errors:0
 TX device packets:241163 bytes:20324343 errors:0

vif0/4 PMD: ens1f1 NH: 15 MTU: 9000
 Type:Host HWaddr:40:a6:b7:a0:f0:6d IPaddr:0.0.0.0
 DDP: OFF SwLB: ON

78

 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:2
 RX device packets:129204 bytes:11624377 errors:0
 RX queue packets:129204 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:129204 bytes:11624377 errors:0
 TX packets:129173 bytes:11623158 errors:0
 Drops:0
 TX queue packets:129173 errors:0
 TX device packets:129173 bytes:11623158 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for OpenShift Deployment

IN THIS SECTION

Minimum Host System Requirements for OCP | 79

Resource Requirements for OCP | 81

Miscellaneous Requirements for OCP | 84

Port Requirements | 88

Interface Naming for Mellanox NICs | 90

Download Options | 91

JCNR Licensing | 92

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on the Red Hat OpenShift Container Platform (OCP).

Minimum Host System Requirements for OCP

Table 7 on page 80 lists the host system requirements for installing JCNR on OCP.

79

Table 7: Minimum Host System Requirements for OCP

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel(R) Xeon(R)
Silver 4314 CPU @ 2.40GHz 64 core

Host OS RHCOS 4.12

Kernel Version RedHat Enterprise Linux
(RHEL): 4.18.X

The tested kernel version for RHEL is
4.18.0-372.40.1.el8_6.x86_64

NIC • Intel E810 with
Firmware 4.00
0x80014411 1.3236.0

• Intel E810-CQDA2
with Firmware
4.000x800144111.32
36.0

• Intel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox NICs is
considered a Juniper Technology
Preview ("Tech Preview" on page 359)
feature.

When using Mellanox NICs, ensure
your interface names do not exceed
11 characters in length.

When using Mellanox NICs, follow the
interface naming procedure in
"Interface Naming for Mellanox NICs"
on page 90.

IAVF driver Version 4.5.3.1

ICE_COMMS Version 1.3.35.0

ICE Version 1.9.11.9 ICE driver is used only with the Intel
E810 NIC

i40e Version 2.18.9 i40e driver is used only with the Intel
XL710 NIC

OCP Version 4.13

OVN-Kubernetes CNI

80

Table 7: Minimum Host System Requirements for OCP (Continued)

Component Value/Version Notes

Multus Version 3.8

Helm 3.12.x

Container-RT crio 1.25x Other container runtimes may work
but have not been tested with JCNR.

Resource Requirements for OCP

Table 8 on page 81 lists the resource requirements for installing JCNR on OCP.

Table 8: Resource Requirements for OCP

Resource Value Usage Notes

Data plane
forwarding cores

2 cores (2P + 2S)

Service/Control
Cores

0

81

Table 8: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

UIO Driver VFIO-PCI To enable, follow the steps below:

Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI
device to the VFIO driver.

variant: openshift
version: 4.8.0
metadata:
 name: 100-worker-vfiopci
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 files:
 - path: /etc/modprobe.d/vfio.conf
 mode: 0644
 overwrite: true
 contents:
 inline: |
 options vfio-pci ids=10de:1eb8
 - path: /etc/modules-load.d/vfio-pci.conf
 mode: 0644
 overwrite: true
 contents:
 inline: vfio-pci

Create and apply the machine config:

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

82

Table 8: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Configure hupages on the worker nodes using the following
commands:

oc create -f hugepages-tuned-boottime.yaml

cat hugepages-tuned-boottime.yaml
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=1G hugepages=8
 name: openshift-node-hugepages
 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

oc create -f hugepages-mcp.yaml 

cat hugepages-mcp.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator:
In, values: [worker,worker-hp]}
 nodeSelector:

83

Table 8: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

NOTE: This 6 x 1GB hugepage requirement is the minimum for a
basic L2 mode setup. Increase this number for more elaborate
installations. For example, in an L3 mode setup with 2 NUMA
nodes and 256k descriptors, set the number of 1GB hugepages to
10 for best performance.

JCNR Controller
cores

.5

JCNR vRouter Agent
cores

.5

Miscellaneous Requirements for OCP

Table 9 on page 84 lists additional requirements for installing JCNR on OCP.

Table 9: Miscellaneous Requirements for OCP

Cloud-Native Router Release Miscellaneous
Requirements

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

84

Table 9: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT. Create a MachineConfig object that sets IOMMU and
IOMMU-PT:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 100-worker-iommu
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on iommmu=pt

$ oc create -f 100-worker-kernel-arg-iommu.yaml

Disable spoofcheck on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 spoofcheck off.

Set trust on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 trust on

85

Table 9: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a conf file and add the kernel modules:

cat /etc/modules-load.d/crpd.conf
tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

86

Table 9: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Exclude JCNR interfaces from NetworkManager
control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with JCNR
interface configuration, exclude JCNR interfaces from
NetworkManager control. Here's an example on how
to do this in some Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your JCNR interfaces.

NOTE:
enp*enp

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

87

Table 9: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

88

Table 10: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

89

Table 10: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Interface Naming for Mellanox NICs

When deploying Mellanox NICs in an OpenShift cluster, a conflict can arise between how OCP and
JCNR use interface names on those NICs. This might prevent your cluster from coming up.

Prior to installing JCNR, either disable predictable interface naming ("Option 1: Disable predictable
interface naming" on page 90) or rename the JCNR interfaces ("Option 2: Rename the JCNR interfaces"
on page 91). The JCNR interfaces are the interfaces that you want JCNR to control.

Option 1: Disable predictable interface naming

1. Before you start, ensure you have console access to the node.

2. Edit /etc/default/grub and append net.ifnames=0 to GRUB_CMDLINE_LINUX_DEFAULT.

GRUB_CMDLINE_LINUX_DEFAULT="<existing_parameter_settings> net.ifnames=0"

3. Update grub.

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot the node.

5. Log back into the node. You might have to do this through the console if the network interfaces don't
come back up.

90

6. List the interfaces and take note of the names of the non-JCNR and JCNR interfaces.

ip address

7. For all the non-JCNR interfaces, update NetworkManager (or your network renderer) with the new
interface names and restart NetworkManager.

8. Repeat on all the nodes where you’re installing the JCNR vRouter.

NOTE: Remember to update the fabric interfaces in your JCNR installation helm chart with the
new names of the JCNR interfaces (or use subnets).

Option 2: Rename the JCNR interfaces

1. Create a /etc/udev/rules.d/00-persistent-net.rules file to contain the rules.

2. Add the following line to the file:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="<mac_address>",
ATTR{dev_id}=="0x0", ATTR{type}=="1", NAME="<new_ifname>"

where <mac_address> is the MAC address of the interface you’re renaming and <new_ifname> is the
new name you want to assign to the interface (for example, jcnr-eth1).

3. Add a corresponding line for each interface you’re renaming. (You’re renaming all the interfaces that
JCNR controls.)

4. Reboot the node.

5. Repeat on all the nodes where you’re installing the JCNR vRouter.

NOTE: Remember to update the fabric interfaces in your JCNR installation helm chart with the
new names of the JCNR interfaces (or use subnets).

Download Options

See "JCNR Software Download Packages" on page 335.

91

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for OpenShift
Deployment

IN THIS SECTION

Helm Chart Description for OpenShift Deployment | 93

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router.
You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode. You configure
the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

NOTE:

• In the fabricInterface key of the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

• When one or more interfaces have an interface_mode key configured along with the rest of
the interfaces not having the interface_mode key, then the mode of deployment would be
L2-L3.

• When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the helm chart are shown in the table below.

92

Helm Chart Description for OpenShift Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

Table 11 on page 93 contains a description of the configurable attributes in values.yaml for an
OpenShift deployment.

Table 11: Helm Chart Description for OpenShift Deployment

Key Description

global

registry Defines the Docker registry for the JCNR container images. The
default value is enterprise-hub.juniper.net. The images provided in
the tarball are tagged with the default registry name. If you choose
to host the container images to a private registry, replace the
default value with your registry URL.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various JCNR container
images. Use default unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

93

https://enterprise.hub.juniper.net

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from transmitting
and receiving Ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific to L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. To enable the
functionality on trunk interfaces, configure no-local-switching in
fabricInterface. See Prevent Local Switching for more details.

iamRole Not applicable.

94

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

fabricInterface Aggregated interfaces that receive traffic from multiple interfaces.
Fabric interfaces are always physical interfaces. They can either be
a physical function (PF) or a virtual function (VF). The throughput
requirement for these interfaces is higher — hence multiple
hardware queues are allocated to them. Each hardware queue is
allocated with a dedicated CPU core. See "JCNR Interfaces
Overview" on page 14 for more information.

Use this field to provide a list of fabric interfaces to be bound to
the DPDK. You can also provide subnets instead of interface
names. If both the interface name and the subnet are specified,
then the interface name takes precedence over the subnet/
gateway combination. The subnet/gateway combination is useful
when the interface names vary in a multi-node cluster.

NOTE:

• When all the interfaces have an interface_mode key configured,
then the mode of deployment is L2.

• When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having the
interface_mode key, then the mode of deployment is L2-L3.

• When none of the interfaces have the interface_mode key
configured, then the mode of deployment is L3.

For example:

 # L2 only
 - eth1:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

 # L3 only
 - eth1:
 ddp: "off"

95

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

 # L2L3
 - eth1:
 ddp: "auto"
 - eth2:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary in a multi-
node cluster.

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. For a bond
interface, all slave interface NICs must support DDP for the DDP
configuration to be enabled. See Enabling Dynamic Device
Personalization (DDP) on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global ddp
configuration.

96

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

interface_mode Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

vlan-id-list Provide a list of VLAN IDs associated with the interface.

storm-control-
profile

Use storm-control-profile to associate the desired storm control
profile to the interface. Profiles are defined under jcnr-
vrouter.stormControlProfiles.

native-vlan-id Configure native-vlan-id with any of the VLAN IDs in the vlan-id-
list to associate it with untagged data packets received on the
physical interface of a fabric trunk mode interface. For example:

fabricInterface:
 - bond0:
 interface_mode: trunk
 vlan-id-list: [100, 200, 300]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100 

See Native VLAN for more details.

no-local-switching Prevents interfaces from communicating directly with each other
when configured. Allowed values are true or false. See Prevent
Local Switching for more details.

fabricWorkloadInterface (Optional) Defines the interfaces to which different workloads are
connected. They can be software-based or hardware-based
interfaces.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

97

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

log_path The defined directory stores various JCNR-related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then JCNR
pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

98

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is to
be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

On an OCP setup, node affinity must be configured to bring up
JCNR on worker nodes only. For example:

 nodeAffinity:
 - key: node-role.kubernetes.io/worker
 operator: Exists
 - key: node-role.kubernetes.io/master
 operator: DoesNotExist

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotIn, Exists, DoesNotExist, Lt, or Gt.

cni_bin_dir For Red Hat OpenShift, don't leave this field empty. Set
to /var/lib/cni/bin, which is the default path on any OCP
deployment.

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

99

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

cpu_core_mask If present, this indicates that you want to use static CPU allocation
to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU cores
that you want to statically allocate to the forwarding plane (for
example, cpu_core_mask: "2,3,22,23"). Use the cores not used by
the host OS in your EC2 instance.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes CPU
Manager at the same time. Using both can lead to unpredictable
behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes CPU
Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes CPU
Manager at the same time. Using both can lead to unpredictable
behavior.

100

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs (Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

name Name of the bond interface.

101

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

mode Set to 1 (active-backup).

slaveInterfaces List of fabric interfaces to be bonded.

primaryInterface (Optional) Primary interface for the bond.

slaveNetworkDetail
s

Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default is 9000.

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric interfaces
in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

102

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

loggingInterval Specifies the log generation interval in seconds.

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled. See Enabling Dynamic Device Personalization (DDP) on
Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global ddp
configuration.

qosEnable Set to true or false to enable or disable QoS. See Quality of
Service (QoS) for more details.

NOTE: QoS is not supported on Intel X710 NIC.

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric interfaces.
By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

103

Table 11: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry exporter
listens to Prometheus queries on. Default is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

104

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 105

Configuration Examples | 105

Applying the Configlet Resource | 107

Modifying the Configlet | 112

Troubleshooting | 113

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

105

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:

106

 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

107

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample

108

 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr

109

spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

110

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

111

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

112

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

113

4
CHAPTER

Install Cloud-Native Router on
Amazon EKS

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 115

System Requirements for EKS Deployment | 128

Customize JCNR Helm Chart for EKS Deployment | 136

Customize JCNR Configuration | 145

Deploy JCNR as a VPC Gateway | 154

Install and Verify Juniper Cloud-Native Router on
Amazon EKS

IN THIS SECTION

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 115

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL) | 119

Verify JCNR Installation on Amazon EKS | 123

The Juniper Cloud-Native Router uses the the JCNR-Controller (cRPD) to provide control plane
capabilities and JCNR-CNI to provide a container network interface. Juniper Cloud-Native Router uses
the DPDK-enabled vRouter to provide high-performance data plane capabilities and Syslog-NG to
provide notification functions. This section explains how you can install these components of the Cloud-
Native Router.

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for EKS Deployment" on page 128 to ensure the setup has all
the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the file Juniper_Cloud_Native_Router_<release-number>.tgz.

tar xzvf Juniper_Cloud_Native_Router_<release-number>.tgz

4. Change directory to the main installation directory.

115

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmcharts images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

116

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

8. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

9. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

10. Create the "JCNR ConfigMap" on page 132 if using the Virtual Router Redundancy Protocol (VRRP)
for your JCNR cluster. A sample jcnr-aws-config.yaml manifest is provided in cRPD_examples directory in
the installation bundle. Apply the jcnr-aws-config.yaml to the Kubernetes system.

kubectl apply -f jcnr-aws-config.yaml
configmap/jcnr-aws-config created

117

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for EKS Deployment" on page 136 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

13. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Install Multus CNI using the following command:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/master/config/
multus/v3.7.2-eksbuild.1/aws-k8s-multus.yaml

16. Install the Amazon Elastic Block Storage (EBS) Container Storage Interface (CSI) driver.

17. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal key1=jcnr --overwrite

18. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed

118

REVISION: 1
TEST SUITE: None

19. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription
(BYOL)

Use this procedure to install JCNR (BYOL) from AWS Marketplace using Helm charts.

This procedure installs JCNR on your existing Amazon EKS cluster. Ensure you've set up your Amazon
EKS cluster prior to running this procedure. You can use any method to create an EKS cluster as long as
it meets the system requirements described in "System Requirements for EKS Deployment" on page
128.

For convenience, we've provided a CloudFormation template that you can use to quickly get a cluster up
and running. This template is provided in "CloudFormation Template for EKS Cluster" on page 347.

1. Review the "System Requirements for EKS Deployment" on page 128 to ensure the setup has all
the required configuration.

2. Log in to and search for JCNR products from the AWS Marketplace.

3. Select the JCNR (BYOL) product and subscribe to it.

4. Scroll down on the selected product's landing page to view the usage instructions.

The instructions show you how to log in to the ECR Helm registry and download the JCNR helm
chart.

119

https://aws.amazon.com/marketplace/search/results?searchTerms=jcnr

5. Copy and run the provided usage instructions on the setup where you issue your AWS CLI
commands.

aws configure
aws ecr get-login-password <...>
helm pull oci: <...>

This downloads the jcnr-<version>.tgz file onto your setup.

6. Expand the file jcnr-<version>.tgz.

tar xzvf jcnr-<version>.tgz

7. Change directory to jcnr.

cd jcnr

NOTE: All remaining steps in the installation assume that your current working directory is
now jcnr.

8. View the contents in the current directory.

ls
Chart.yaml charts cRPD_examples scripts secrets values.yaml

9. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

10. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

120

11. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

12. Create the "JCNR ConfigMap" on page 132 if using the Virtual Router Redundancy Protocol (VRRP)
for your JCNR cluster. Apply the jcnr-aws-config.yaml to the Kubernetes system.

kubectl apply -f jcnr-aws-config.yaml
configmap/jcnr-aws-config created

13. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

14. Customize the helm chart for your deployment using the values.yaml file.

See, "Customize JCNR Helm Chart for EKS Deployment" on page 136 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

15. Optionally, customize JCNR configuration.

See "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

16. Verify that the Amazon EBS CSI driver role policy has been attached to the EKS cluster node role.

aws iam list-attached-role-policies --role-name <EKS_Cluster_Node_Role_Name>

Look for arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy in the output. If this policy is not
listed, add it as follows:

aws iam attach-role-policy --role-name <EKS_Cluster_Node_Role_Name> --policy-arn
arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy

17. Verify that the Amazon VPC CNI role policy has been attached to the EKS cluster node role.

aws iam list-attached-role-policies --role-name <EKS_Cluster_Node_Role-Name>

121

Look for arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy in the output. If this policy is not listed, add it as
follows:

aws iam attach-role-policy --role-name <EKS_Cluster_Node_Role_Name> --policy-arn
arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

18. Verify that the Amazon EBS CSI driver and Amazon VPC CNI add-ons are installed.

aws eks describe-addon-versions --addon-name aws-ebs-csi-driver

aws eks describe-addon-versions --addon-name vpc-cni

If any of the add-ons is not installed, you can install them respectively as follows:

aws eks create-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver --addon-
version <version> --service-account-role-arn <EKS_Cluster_Node_IAM_role_ARN>

aws eks create-addon --cluster-name my-cluster --addon-name vpc-cni --addon-version
<version> --service-account-role-arn <EKS_Cluster_Node_IAM_role_ARN>

Be sure to install the versions listed in "Minimum Host System Requirements for EKS" on page 128.

19. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal key1=jcnr --overwrite

20. Deploy the Juniper Cloud-Native Router using the helm chart.

Run the following command:

helm install jcnr .

NAME: jcnr
LAST DEPLOYED: <date_time>
NAMESPACE: default
STATUS: deployed

122

REVISION: 1
TEST SUITE: None

21. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

jcnr default 1 <date_time> deployed jcnr-<version> <version>

Verify JCNR Installation on Amazon EKS

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command. The output of the
kubectl command shows all of the pods in the Kubernetes cluster in all namespaces. Successful
deployment means that all pods are in the running state. In this example we have marked the Juniper
Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-5b6c9656d5-nw9t9 1/1 Running 0 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 13d

jcnr jcnr-0-crpd-0 1/1 Running 0 13d

jcnr syslog-ng-tct27 1/1 Running 0 13d

kube-system aws-node-k8hxl 1/1 Running 1 (15d ago) 15d

kube-system ebs-csi-node-c8rbh 3/3 Running 3 (15d ago) 15d

123

kube-system kube-multus-ds-8nzhs 1/1 Running 1 (13d ago) 13d

kube-system kube-proxy-h669c 1/1 Running 1 (15d ago) 15d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command. Use the kubectl get ds -A
command to get a list of daemonsets. The JCNR daemonsets are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 13d

jcnr syslog-ng 1 1 1 1 1

<none> 13d

kube-system aws-node 8 8 8 8 8

<none> 15d

kube-system ebs-csi-node 8 8 8 8 8 kubernetes.io/

os=linux 15d

kube-system ebs-csi-node-windows 0 0 0 0 0 kubernetes.io/

os=windows 15d

kube-system kube-multus-ds 8 8 8 8 8

<none> 13d

kube-system kube-proxy 8 8 8 8 8

<none> 15d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command. The command output
provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations.

a. View the Access the cRPD CLI section for instructions to access the cRPD CLI.

124

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration.

a. View the Access the vRouter CLI section for instructions on how to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

125

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:00:07.0 (Speed 1000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2 QOS:0 Ref:8
 RX device packets:20476 bytes:859992 errors:0
 RX port packets:20476 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:00:07.0 Status: UP Driver: net_ena
 RX packets:20476 bytes:859992 errors:0
 TX packets:2 bytes:180 errors:0
 Drops:0
 TX port packets:2 errors:0
 TX device packets:8 bytes:740 errors:0

vif0/2 PCI: 0000:00:08.0 (Speed 1000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:0e:6a:9e:04:da:6f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2 QOS:0 Ref:8
 RX device packets:20476 bytes:859992 errors:0
 RX port packets:20476 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0

126

 Fabric Interface: 0000:00:08.0 Status: UP Driver: net_ena
 RX packets:20476 bytes:859992 errors:0
 TX packets:2 bytes:180 errors:0
 Drops:0
 TX port packets:2 errors:0
 TX device packets:8 bytes:740 errors:0

vif0/3 PMD: eth2 NH: 10 MTU: 9000
 Type:Host HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:1
 RX device packets:2 bytes:180 errors:0
 RX queue packets:2 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:2 bytes:180 errors:0
 TX packets:20476 bytes:859992 errors:0
 Drops:0
 TX queue packets:20476 errors:0
 TX device packets:20476 bytes:859992 errors:0

vif0/4 PMD: eth3 NH: 15 MTU: 9000
 Type:Host HWaddr:0e:6a:9e:04:da:6f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:2
 RX device packets:2 bytes:180 errors:0
 RX queue packets:2 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:2 bytes:180 errors:0
 TX packets:20476 bytes:859992 errors:0
 Drops:0
 TX queue packets:20476 errors:0
 TX device packets:20476 bytes:859992 errors:0

c. Type exit to exit from the pod shell.

127

System Requirements for EKS Deployment

IN THIS SECTION

Minimum Host System Requirements for EKS | 128

Resource Requirements for EKS | 129

Miscellaneous Requirements for EKS | 131

JCNR ConfigMap for VRRP | 132

Port Requirements | 134

Download Options | 136

JCNR Licensing | 136

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Amazon Elastic Kubernetes Service (EKS).

Minimum Host System Requirements for EKS

Table 12 on page 128 lists the host system requirements for installing JCNR on EKS.

Table 12: Minimum Host System Requirements for EKS

Component Value/Version

EKS Deployment Self-managed nodes or managed node group

Host OS Amazon Linux 2

EKS version / Kubernetes 1.26.3, 1.28.x

Instance Type Any instance type with ENA adapters

Kernel Version The tested kernel version is
5.10.210-201.852.amzn2.x86_64

128

Table 12: Minimum Host System Requirements for EKS (Continued)

Component Value/Version

NIC Elastic Network Adapter (ENA)

AWS CLI version 2.11.9

VPC CNI v1.14.0-eksbuild.3

EBS CSI Driver v1.28.0-eksbuild.1

Node Role AmazonEBSCSIDriverPolicy

AmazonEKS_CNI_Policy

Multus 3.7.2

(kubectl apply -f https://
raw.githubusercontent.com/aws/amazon-vpc-cni-
k8s/master/config/multus/v3.7.2-eksbuild.1/
aws-k8s-multus.yaml)

Helm 3.11

Container-RT containerd 1.7.x

Resource Requirements for EKS

Table 13 on page 129 lists the resource requirements for installing JCNR on EKS.

Table 13: Resource Requirements for EKS

Resource Value Usage Notes

Data plane
forwarding cores

2 cores (2P +
2S)

Service/Control Cores 0

129

Table 13: Resource Requirements for EKS (Continued)

Resource Value Usage Notes

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Enable Unsafe IOMMU mode

echo Y > /sys/module/vfio_iommu_type1/parameters/
allow_unsafe_interrupts
echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub on the
host. For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G hugepages=8
intel_iommu=on iommu=pt"
Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Verify the hugepage is set by executing the following commands:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

NOTE: This 6 x 1GB hugepage requirement is the minimum for a
basic L2 mode setup. Increase this number for more elaborate
installations. For example, in an L3 mode setup with 2 NUMA nodes
and 256k descriptors, set the number of 1GB hugepages to 10 for
best performance.

JCNR Controller
cores

.5

130

Table 13: Resource Requirements for EKS (Continued)

Resource Value Usage Notes

JCNR vRouter Agent
cores

.5

Miscellaneous Requirements for EKS

Table 14 on page 131 lists additional requirements for installing JCNR on EKS.

Table 14: Miscellaneous Requirements for EKS

Requirement Example

Disable source/destination checks. Disable source/destination checks on the AWS Elastic
Network Interfaces (ENI) interfaces attached to JCNR.
JCNR, being a transit router, is neither the source nor
the destination of any traffic that it receives.

Attach IAM policy. Attach the AmazonEBSCSIDriverPolicy IAM policy to the
role assigned to the EKS cluster.

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

131

Table 14: Miscellaneous Requirements for EKS (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

JCNR ConfigMap for VRRP

You can enable Virtual Router Redundancy Protocol (VRRP) for your JCNR cluster.

NOTE: When running VRRP, the AWS IAM role for the node hosting the JCNR instance needs
permission to modify the VPC route table. To provide that permission, add the
NetworkAdministrator policy to that IAM role.

132

You must create a JCNR ConfigMap to define the behavior of VRRP for your JCNR cluster in an EKS
deployment. Considering that AWS VPC supports exactly one next-hop for a prefix, the ConfigMap
defines how the VRRP mastership status is used to copy prefixes from routing tables in JCNR to specific
routing tables in AWS.

We provide an example jcnr-aws-config.yaml manifest below:

apiVersion: v1
kind: ConfigMap
metadata:
 name: jcnr-aws-config
 namespace: jcnr
data:
 aws-rttable-map.json: |
 [
 {
 "jcnr-table-name":"default-rt.inet.0",
 "jcnr-policy-name": "default-rt-to-aws-export",
 "jcnr-nexthop-interface-name":"eth4",
 "vpc-table-tag":"jcnr-aws-vpc-internal-table"
 },
 {
 "jcnr-table-name":"default-rt.inet6.0",
 "jcnr-policy-name":"default-rt-to-aws-export",
 "jcnr-nexthop-interface-name":"eth4",
 "vpc-table-tag":"jcnr-aws-vpc-internal-table"
 }
]

Table 15 on page 133 describes the ConfigMap elements:

Table 15: JCNR ConfigMap Elements

Element Description

jcnr-table-name The routing table in JCNR from which prefixes should
be copied.

jcnr-policy-name A routing policy in JCNR that imports the prefixes in
the named routing table to copy to the AWS routing
table.

133

Table 15: JCNR ConfigMap Elements (Continued)

Element Description

jcnr-nexthop-interface-name Name of the JCNR interface which should be used as
the next-hop by the AWS VPC route table when this
instance of the JCNR is VRRP master.

vpc-table-tag A freeform tag applied to the VPC route table in AWS
to which the prefixes should be copied.

Apply jcnr-aws-config.yaml to the cluster before installing JCNR. The JCNR CNI deployer renders the
cRPD configuration based on the ConfigMap.

NOTE: When not using VRRP, provide an empty list as the data for aws-rttable-map.json.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 16: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

134

Table 16: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

135

Download Options

To deploy JCNR on an EKS cluster, you can either download the Helm charts from the Juniper Networks
software download site (see "JCNR Software Download Packages" on page 335) or subscribe via the
AWS Marketplace.

NOTE:
https://enterprise.hub.juniper.net

JCNR Licensing

You can purchase BYOL licenses for the Juniper Cloud-Native Router software through your Juniper
Account Team.

For information on BYOL licenses, see "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for EKS Deployment

IN THIS SECTION

Helm Chart Description for Amazon EKS Deployment | 137

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Amazon EKS.
You can deploy and operate Juniper Cloud-Native Router in the L3 mode on Amazon EKS. You configure
the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

136

https://aws.amazon.com/marketplace/search/results?searchTerms=jcnr
https://enterprise.hub.juniper.net

Helm Chart Description for Amazon EKS Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

Table 17 on page 137 contains a description of the configurable attributes in values.yaml for an Amazon
EKS deployment.

Table 17: Helm Chart Description for Amazon EKS Deployment

Key Description

global

registry Defines the Docker registry for the JCNR container images.

The default value is set to:

• enterprise-hub.juniper.net in Helm charts downloaded from
the Juniper Networks software download site.

• Amazon Elastic Container Registry (ECR) for Helm charts
downloaded from the AWS Marketplace.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

Not applicable for AWS Marketplace subscriptions.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use the defaults.

137

https://enterprise.hub.juniper.net

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

repository Defines the repository path. The global repository key takes
precedence if defined.

The default value is set to:

• jcnr-container-prod/ in Helm charts downloaded from the
Juniper Networks software download site.

• juniper-networks for AWS Marketplace subscriptions.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching Not applicable.

iamrole Not applicable.

fabricInterface Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces for
Amazon EKS. The L2 only and L2-L3 sections are not applicable
for EKS deployments.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

138

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

With the subnet mode of input, interfaces are auto-detected in
each subnet. Specify either subnet/gateway or the interface name.
Do not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-
profile

Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
Default is /var/log/jcnr/.

139

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then JCNR
pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods. By default the vRouter pods are deployed to all
nodes of a cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is to
be deployed:

nodeAffinity:
 - key: key1
 operator: In
 values:
 - jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotIn, Exists, DoesNotExist, Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

140

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

cpu_core_mask If present, this indicates that you want to use static CPU allocation
to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU cores
that you want to statically allocate to the forwarding plane (for
example, cpu_core_mask: "2,3,22,23"). Use the cores not used by
the host OS in your EC2 instance.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes CPU
Manager at the same time. Using both can lead to unpredictable
behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes CPU
Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes CPU
Manager at the same time. Using both can lead to unpredictable
behavior.

141

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default is 9000.

142

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

stormControlProfiles Not applicable.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp Not applicable.

qosEnable Set to false for EKS deployments.

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric interfaces.
By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

143

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry exporter
listens to Prometheus queries on. Default is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

144

Table 17: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 145

Configuration Examples | 146

Applying the Configlet Resource | 147

Modifying the Configlet | 153

Troubleshooting | 153

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

145

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:

146

 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet

147

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr

148

Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

149

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

150

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

151

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

152

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

153

Deploy JCNR as a VPC Gateway

SUMMARY

Deploy JCNR as a VPC gateway between your
Amazon EKS cluster and your on-premises
Kubernetes cluster.

IN THIS SECTION

JCNR VPC Gateway Overview | 154

Install the JCNR VPC Gateway | 155

Prepare the MetalLB Cluster | 167

Prepare the JCNR VPC Gateway
Cluster | 170

Prepare the On-Premises Cluster | 172

JCNR VPC Gateway Overview

We provide a custom resource that installs JCNR (with a BYOL license) on an Amazon EKS cluster and
configures it to act as an EVPN-VXLAN VPC Gateway between a separate Amazon EKS cluster running
MetalLB and an on-premises Kubernetes cluster (Figure 3 on page 155).

Once you configure the VPC Gateway custom resource with information on your MetalLB cluster and
your on-premises Kubernetes cluster, the VPC Gateway establishes a BGP session with your MetalLB
cluster and establishes a BGP EVPN session with your on-premises Kubernetes cluster. Routes learned
from the MetalLB cluster are re-advertised to the on-premises cluster using EVPN Type 5 routes. Routes
learned from the on-premises cluster are leaked into the route tables of the routing instance for the
MetalLB cluster.

The configuration example we'll use in this section connects workloads at 10.4.230.4/32 in the on-
premises cluster to services at 10.14.220.1/32 in the MetalLB cluster.

NOTE: Configuring the connectivity between the AWS Cloud and the Customer Data Center is
not covered in this procedure. Use your preferred AWS method for connectivity.

154

Figure 3: JCNR VPC Gateway

NOTE: The VPC Gateway custom resource automatically installs JCNR with a configuration that
is specific to this application. You don't need to install JCNR explicitly and you don't need to
configure the JCNR installation Helm chart.

Install the JCNR VPC Gateway

1. Prepare the clusters.

a. Prepare the JCNR VPC Gateway cluster. See "Prepare the JCNR VPC Gateway Cluster" on page
170.

b. Prepare the MetalLB cluster. See "Prepare the MetalLB Cluster" on page 167.

c. Prepare the on-premises cluster. See "Prepare the On-Premises Cluster" on page 172

After preparing the clusters, you can start installation of the JCNR VPC Gateway. Execute the
remaining steps in the JCNR VPC Gateway cluster.

2. Download and install the JCNR VPC Gateway Helm chart on the cluster.

You can download the JCNR VPC Gateway Helm chart from the Juniper Networks software
download site. See "JCNR Software Download Packages" on page 335.

155

3. Install the downloaded Helm chart.

helm install vpcgwy Juniper_Cloud_Native_Router_Service_Module_<release>.tgz

NOTE: The provided Helm chart installs the JCNR VPC Gateway on cores 2, 3, 22, and 23.
Therefore ensure that the nodes in your cluster have at least 24 cores and that the specified
cores are free to use.

Check that the controller-manager and the contrail-k8s-deployer pods are up.

kubectl get pods -A

NAMESPACE NAME READY STATUS
svcmodule-system controller-manager-67898d794d-4cpsw 2/2 Running
cert-manager cert-manager-5bd57786d4-mf7hq 1/1 Running
cert-manager cert-manager-cainjector-57657d5754-5d2xc 1/1 Running
cert-manager cert-manager-webhook-7d9f8748d4-p482n 1/1 Running
contrail-deploy contrail-k8s-deployer-546587dcbc-bjbrg 1/1 Running
kube-system aws-node-dhsgv 2/2 Running
kube-system aws-node-n6kcx 2/2 Running
kube-system coredns-54d6f577c6-m7q8h 1/1 Running
kube-system coredns-54d6f577c6-qc76c 1/1 Running
kube-system eks-pod-identity-agent-6k6xj 1/1 Running
kube-system eks-pod-identity-agent-rvqz7 1/1 Running
kube-system kube-proxy-nqpsd 1/1 Running
kube-system kube-proxy-vzbnv 1/1 Running

4. Configure the JCNR VPC Gateway custom resource.

This custom resource contains information on the MetalLB cluster and the on-premises cluster.

a. Create a YAML file that contains the desired configuration. We'll put our JCNR VPC Gateway
pods into a namespace that we'll call gateway.

The YAML file has the following format:

apiVersion: v1
kind: Namespace
metadata:
 name: gateway

156

apiVersion: workflow.svcmodule.juniper.net/v1
kind: VpcGateway
metadata:
 name: vpc-gw
 namespace: gateway
spec:
 <see table>

Table 18 on page 157 describes the main configuration fields for the spec section. In the spec
definition, application refers to the MetalLB cluster and client refers to the on-premises cluster.
Table 18: Spec Descriptions

Spec Field Description

applicationTopology This section contains information on the MetalLB
cluster.

applicationInterface The name of the interface connecting to the MetalLB
cluster.

bgpSpeakerType Specify metallb when connecting to the MetalLB cluster.

clusters

kubeconfigSecretName The secret containing the kubeconfig of the MetalLB
cluster.

name The name of the MetalLB cluster.

enableV6 (Optional) True or false.

Enables or disables IPv6 in the MetalLB cluster. Default
is false.

157

Table 18: Spec Descriptions (Continued)

Spec Field Description

neighbourDiscovery (Optional) True or false.

Governs how BGP neighbors (BGP speakers from the
MetalLB cluster) are determined.

When set to true, BGP neighbors with addresses
specified in sessionPrefix or with addresses in the
application interface's subnet are accepted.

When set to false, the remote MetalLB cluster's cRPD
pod IP is used as the BGP neighbor. Default is false.

routePolicyOverride (Optional) True or false.

When set to true, a route policy called "export-onprem"
is used to govern what MetalLB cluster routes are
exported to the on-premises cluster. This gives you the
opportunity to create your own export policy. You must
create this policy manually and call it "export-onprem".

Default is false, which means that all MetalLB cluster
routes are exported to the on-premises cluster.

sessionPrefix (Optional) Used when neighbourDiscovery is set to true.

When present, it indicates the CIDR from which BGP
sessions from the MetalLB cluster are accepted.

Default is to accept BGP sessions from BGP neighbors
in the application interface's subnet.

client Information related to the on-premises cluster.

address The BGP speaker IP address of the on-premises cluster.

The JCNR VPC Gateway establishes a direct eBGP
session with this address. This eBGP session is used to
learn the route to the loopback address, which is used to
establish the subsequent BGP EVPN session.

158

Table 18: Spec Descriptions (Continued)

Spec Field Description

asn The AS number of the eBGP speaker in the client
cluster.

The JCNR VPC Gateway validates this when
establishing the direct eBGP session with the BGP
speaker in the on-premises cluster.

loopbackAddress The loopback address of the BGP speaker in the on-
premises cluster.

The JCNR VPC Gateway uses this IP address to
establish a BGP EVPN session with the BGP speaker in
the on-premises cluster.

myASN The local AS number that the JCNR VPC Gateway uses
for the direct eBGP session with the BGP speaker in the
on-premises cluster.

routeTarget The route target for the EVPN routes in the on-premises
cluster.

vrrp Always set to true.

This enables VRRP on interfaces towards the on-
premises cluster.

clientInterface The name of the interface connecting to the on-
premises cluster.

dpdkDriver Set to vfio-pci.

loopbackIPPool The IP address pool used for assigning IP addresses to
the cRPD instances created in the cluster (in CIDR
format).

NOTE: The number of addresses in the pool must be at
least one more than the number of replicas.

159

Table 18: Spec Descriptions (Continued)

Spec Field Description

nodeSelector (Optional) Used in conjunction with a node's labels to
determine whether the VPC Gateway pod can run on a
node.

This selector must match a node's labels for the pod to
be scheduled on that node.

replicas (Optional) The number of JCNRs created. Default is 1.

NOTE: Armed with the MetalLB kubeconfig, the JCNR VPC Gateway has sufficient
information to configure BGP sessions automatically with the MetalLB cluster. You don't
need to provide any parameters other than what's listed in the table.

Here's an example of a working configuration:

apiVersion: v1
kind: Namespace
metadata:
 name: jcnr-gateway

apiVersion: workflow.svcmodule.juniper.net/v1
kind: VpcGateway
metadata:
 name: vpc-gw
 namespace: gateway
spec:
 dpdkDriver: vfio-pci
 replicas: 1
 clientInterface: eth3
 loopbackIPPool: 10.14.140.0/28
 applicationTopology:
 applicationInterface: eth2
 bgpSpeakerType: metallb
 clusters:
 - name: metallb-1

160

 kubeconfigSecretName: metallb-cluster-kubeconfig
 client:
 asn: 65010
 myASN: 65000
 address: 10.14.205.158
 loopbackAddress: 10.14.140.200
 routeTarget: target-1-4
 vrrp: true

b. Apply the YAML file to the cluster.

kubectl apply -f vpcGateway.yaml

where vpcGateway.yaml is the YAML file defining the JCNR VPC Gateway.

c. Check the pods.

kubectl get pods -A

NAMESPACE NAME READY STATUS
svcmodule-system controller-manager-67898d794d-4cpsw 2/2
Running
cert-manager cert-manager-5bd57786d4-mf7hq 1/1
Running
cert-manager cert-manager-cainjector-57657d5754-5d2xc 1/1
Running
cert-manager cert-manager-webhook-7d9f8748d4-p482n 1/1
Running
contrail-deploy contrail-k8s-deployer-546587dcbc-bjbrg 1/1
Running
contrail vpc-gw-crpdgroup-0-x-contrail-vrouter-nodes-s9wkk 2/2
Running
contrail vpc-gw-crpdgroup-0-x-contrail-vrouter-nodes-vrdpdk-jczh5 1/1
Running
jcnr jcnr-gateway-vpc-gw-crpdgroup-0-0 2/2
Running
kube-system aws-node-dhsgv 2/2
Running
kube-system aws-node-n6kcx 2/2
Running

161

kube-system coredns-54d6f577c6-m7q8h 1/1
Running
kube-system coredns-54d6f577c6-qc76c 1/1
Running
kube-system eks-pod-identity-agent-6k6xj 1/1
Running
kube-system eks-pod-identity-agent-rvqz7 1/1
Running
kube-system kube-proxy-nqpsd 1/1
Running
kube-system kube-proxy-vzbnv 1/1
Running

5. Verify your installation.

Find the name of the configlet:

kubectl get nodeconfiglet -n jcnr

NAME AGE
vpc-gw-crpdgroup-0 8h

See how the configlet is configured. For example:

kubectl describe nodeconfiglet -n jcnr vpc-gw-crpdgroup-0

Name: vpc-gw-crpdgroup-0
Namespace: jcnr
Labels: core.juniper.net/nodeName=ip-10-75-66-162.us-west-2.compute.internal
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-24T23:32:35Z
 Finalizers:
 node-configlet.finalizers.deployer.juniper.net
 Generation: 26
 Managed Fields:
 API Version: configplane.juniper.net/v1
 Fields Type: FieldsV1

162

 fieldsV1:
 f:status:
 .:
 f:message:
 f:status:
 Manager: manager
 Operation: Update
 Subresource: status
 Time: 2024-06-24T23:32:36Z
 API Version: configplane.juniper.net/v1
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:finalizers:
 .:
 v:"node-configlet.finalizers.deployer.juniper.net":
 f:ownerReferences:
 .:
 k:{"uid":"00c67217-87e7-434d-8d6a-8256f2d9d206"}:
 f:spec:
 .:
 f:clis:
 f:nodeName:
 Manager: manager
 Operation: Update
 Time: 2024-06-25T02:22:26Z
 Owner References:
 API Version: configplane.juniper.net/v1
 Block Owner Deletion: true
 Controller: true
 Kind: JcnrInstance
 Name: vpc-gw-crpdgroup-0
 UID: 00c67217-87e7-434d-8d6a-8256f2d9d206
 Resource Version: 133907
 UID: 340a19d0-9de5-414d-b2ac-c3831203877c
Spec:
 Clis:
 set interfaces eth2 unit 0 family inet address 10.14.207.30/22
 set interfaces eth2 mac 52:54:00:a4:c3:85
 set interfaces eth2 mtu 9216
 set interfaces eth3 unit 0 family inet address 10.14.205.159/22
 set interfaces eth3 mac 52:54:00:ee:4b:3f
 set interfaces eth3 mtu 9216

163

 set interfaces lo0 unit 0 family inet address 10.14.140.1/32
 set interfaces lo0 mtu 9216
 set policy-options policy-statement default-rt-to-aws-export then reject
 set policy-options policy-statement default-rt-to-aws-export term awsv4 from family inet
 set policy-options policy-statement default-rt-to-aws-export term awsv4 from protocol evpn
 set policy-options policy-statement default-rt-to-aws-export term awsv4 then accept
 set policy-options policy-statement default-rt-to-aws-export term awsv6 from family inet6
 set policy-options policy-statement default-rt-to-aws-export term awsv6 from protocol evpn
 set policy-options policy-statement default-rt-to-aws-export term awsv6 then accept
 set policy-options policy-statement export-direct then reject
 set policy-options policy-statement export-direct term directly-connected from protocol
direct
 set policy-options policy-statement export-direct term directly-connected then accept
 set policy-options policy-statement export-evpn then reject
 set policy-options policy-statement export-evpn term evpn-connected from protocol evpn
 set policy-options policy-statement export-evpn term evpn-connected then accept
 set policy-options policy-statement export-onprem then reject
 set policy-options policy-statement export-onprem term learned-from-bgp from protocol bgp
 set policy-options policy-statement export-onprem term learned-from-bgp then accept
 set routing-instances application-ri protocols bgp group vpc-gw-application local-address
10.14.207.30
 set routing-instances application-ri protocols bgp group vpc-gw-application export export-
evpn
 set routing-instances application-ri protocols bgp group vpc-gw-application peer-as 64513
 set routing-instances application-ri protocols bgp group vpc-gw-application local-as 64512
 set routing-instances application-ri protocols bgp group vpc-gw-application multihop
 set routing-instances application-ri protocols bgp group vpc-gw-application allow
10.14.207.29/22
 set routing-instances application-ri protocols evpn ip-prefix-routes advertise direct-
nexthop
 set routing-instances application-ri protocols evpn ip-prefix-routes encapsulation vxlan
 set routing-instances application-ri protocols evpn ip-prefix-routes vni 4096
 set routing-instances application-ri protocols evpn ip-prefix-routes export export-onprem
 set routing-instances application-ri protocols evpn ip-prefix-routes route-attributes
community export-action allow
 set routing-instances application-ri protocols evpn ip-prefix-routes route-attributes
community import-action allow
 set routing-instances application-ri interface eth2
 set routing-instances application-ri vrf-target target:1:4
 set routing-instances application-ri instance-type vrf
 set routing-options route-distinguisher-id 10.14.140.1
 set routing-options router-id 10.14.140.1
 set protocols bgp group vpc-gw-client-lo local-address 10.14.140.1

164

 set protocols bgp group vpc-gw-client-lo peer-as 64512
 set protocols bgp group vpc-gw-client-lo local-as 64512
 set protocols bgp group vpc-gw-client-lo family evpn signaling
 set protocols bgp group vpc-gw-client-lo neighbor 10.14.140.200
 set protocols bgp group vpc-gw-client-direct export export-direct
 set protocols bgp group vpc-gw-client-direct peer-as 65010
 set protocols bgp group vpc-gw-client-direct local-as 65000
 set protocols bgp group vpc-gw-client-direct multihop
 set protocols bgp group vpc-gw-client-direct neighbor 10.14.205.158
 Node Name: ip-10-75-66-162.us-west-2.compute.internal
Status:
 Message: Configuration committed
 Status: True
Events: <none>

6. Verify your installation.

a. Access the cRPD pod.

kubectl exec -n jcnr jcnr-gateway-vpc-gw-crpdgroup-0-0 -c crpd -it -- sh

b. Enter CLI mode.

cli

c. Check the BGP peers.

show bgp summary
Threading mode: BGP I/O
Default eBGP mode: advertise - accept, receive - accept
Groups: 3 Peers: 3 Down peers: 0
Unconfigured peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp.evpn.0
 2 2 0 0 0 0
inet.0
 4 1 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
#Active/Received/Accepted/Damped...
10.14.140.200 64512 6514 6471 0 1 2d 0:49:34 Establ
 bgp.evpn.0: 2/2/2/0

165

 application-ri.evpn.0: 2/2/2/0
10.14.205.158 65010 6386 6363 0 3 2d 0:01:56 Establ
 inet.0: 1/4/4/0
10.14.207.29 64513 5758 6352 0 0 1d 23:56:40 Establ
 application-ri.inet.0: 1/1/1/0

In the output above, the JCNR VPC Gateway has the following BGP sessions:

• with the iBGP speaker in the on-premises cluster at 10.14.140.200 for EVPN routes

• with the eBGP speaker in the on-premises cluster at 10.14.205.158 for the direct eBGP
session

• with the MetalLB cluster at 10.14.207.29

d. Check the routes to the MetalLB cluster and the on-premises cluster.

Check the route to the Nginx service in the MetalLB cluster:

show route 10.14.220.1

application-ri.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.14.220.1/32 *[BGP/170] 1d 00:24:25, localpref 100
 AS path: 64513 I, validation-state: unverified
 > to 10.14.207.29 via eth2

Check the route to the workloads in the on-premises cluster:

show route 10.4.230.4

application-ri.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.4.230.4/32 *[EVPN/170] 1d 17:51:00
 > to 10.14.205.158 via eth3

With the routes successfully exchanged, the on-premises workloads at 10.4.230.4 can access the
MetalLB cluster at 10.14.220.1.

166

Prepare the MetalLB Cluster

The MetalLB cluster is the Amazon EKS cluster that you ultimately want to connect to your on-premises
cluster. Follow this procedure to prepare your MetalLB cluster to establish a BGP session with the JCNR
VPC Gateway.

1. Create the Amazon EKS cluster where you'll be running the MetalLB service.

2. Deploy MetalLB on that cluster. MetalLB provides a network load balancer implementation for your
cluster.

See https://metallb.universe.tf/configuration/ for information on deploying MetalLB.

3. Create the necessary MetalLB resources. As a minimum, you need to create the MetalLB
IPAddressPool resource and the MetalLB BGPAdvertisement resource.

a. Create the MetalLB IPAddressPool resource.

Here's an example of a YAML file that defines the IPAddressPool resource.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: first-pool
 namespace: metallb-system
spec:
 addresses:
 - 10.14.220.0/24
 avoidBuggyIPs: true

In this example, MetalLB will assign load balancer IP addresses from the 10.14.220.0/24 range.

Apply the above YAML to the cluster to create the IPAddressPool.

kubectl apply -f ipaddresspool.yaml

where ipaddresspool.yaml is the name of the YAML file defining the IPAddressPool resource.

b. Create the MetalLB BGPAdvertisement resource.

Here's an example of a YAML file that defines the BGPAdvertisement resource.

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:

167

https://metallb.universe.tf/configuration/

 name: example
 namespace: metallb-system

The BGPAdvertisement resource advertises your service IP addresses to external routers (for
example, to your JCNR VPC Gateway).

Apply the above YAML to the cluster to create the BGPAdvertisement resource.

kubectl apply -f bgpadvertisement.yaml

where bgpadvertisement.yaml is the name of the YAML file defining the BGPAdvertisement
resource.

4. Create the LoadBalancer service. The LoadBalancer service provides the entry point for external
workloads to reach the cluster. You can create any LoadBalancer service of your choice.

Here's an example YAML for an Nginx LoadBalancer service.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: <image repo URL>
 ports:
 - name: http
 containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: nginx

168

spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: nginx
 type: LoadBalancer

Apply the above YAML to the cluster to create the Nginx LoadBalancer service.

kubectl apply -f nginx.yaml

where nginx.yaml is the name of the YAML file defining the Nginx service.

5. Verify your installation.

a. Take a look at the pods in your cluster.

For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE
default nginx-6d66d85dc4-h6dng 1/1 Running 0 9d
kube-system aws-node-vdhv9 2/2 Running 2 (28d ago) 28d
kube-system coredns-54d6f577c6-lbznn 1/1 Running 1 (28d ago) 29d
kube-system coredns-54d6f577c6-stljk 1/1 Running 1 (28d ago) 29d
kube-system eks-pod-identity-agent-kqtcb 1/1 Running 1 (28d ago) 28d
kube-system kube-proxy-fxcjq 1/1 Running 1 (28d ago) 28d
metallb-system controller-5c6b6c8447-2jdzc 1/1 Running 0 28d
metallb-system speaker-xhkpd 1/1 Running 0 28d

The example output shows that both MetalLB and Nginx are up.

b. Check the assigned external IP address for the Nginx service.

169

For example:

kubectl get svc nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx LoadBalancer 10.100.65.169 10.14.220.1 80:30623/TCP 9d

In this example, MetalLB has assigned 10.14.220.1 to the Nginx LoadBalancer service. This is the
overlay IP address that workloads in the on-premises cluster can use to reach services in the
MetalLB cluster.

Prepare the JCNR VPC Gateway Cluster

1. Create the Amazon EKS cluster that you want to act as the JCNR VPC Gateway.

The cluster must meet the system requirements described in "System Requirements for EKS
Deployment" on page 128.

Since you're not installing JCNR explicitly, you can ignore any requirement that relates to
downloading the JCNR software package or configuring the JCNR Helm chart.

2. Ensure all worker nodes in the cluster have identical interface names and identical root passwords.

In this example, we'll use eth2 to connect to the MetalLB cluster and eth3 to connect to the on-
premises cluster.

3. Once the cluster is up, create a jcnr-secrets.yaml file with the below contents.

apiVersion: v1
kind: Namespace
metadata:
 name: jcnr

apiVersion: v1
kind: Secret
metadata:
 name: jcnr-secrets
 namespace: jcnr
data:
 root-password: <add your password in base64 format>

170

 crpd-license: |
 <add your license in base64 format>

4. Follow the steps in "Installing Your License" on page 319 to install your JCNR BYOL license in the
jcnr-secrets.yaml file.

5. Enter the base64-encoded form of the root password for your nodes into the jcnr-secrets.yaml file at
the following line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into the designated location in jcnr-secrets.yaml.

6. Apply jcnr-secrets.yaml to the cluster.

kubectl apply -f jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

7. Create the secret for accessing the MetalLB cluster.

a. Base64-encode the MetalLB cluster kubeconfig file.

base64 -w0 <metalLB-kubeconfig>

where <metalLB-kubeconfig> is the kubeconfig file for the MetalLB cluster.

The output of this command is the base64-encoded form of the MetalLB cluster kubeconfig.

b. Create the YAML defining the MetalLB cluster kubeconfig secret. We'll use a namespace called
jcnr-gateway, which we'll define later.

apiVersion: v1
data:
 kubeconfig: |-
<base64-encoded kubeconfig of MetalLB cluster>
kind: Secret
metadata:

171

 name: metallb-cluster-kubeconfig
 namespace: jcnr-gateway
type: Opaque

where <base64-encoded kubeconfig of MetalLB cluster> is the base64-encoded output from the previous
step.

c. Apply the YAML.

kubectl apply -f metallb-cluster-kubeconfig-secret.yaml

where metallb-cluster-kubeconfig-secret.yaml is the name of the YAML file defining the secret.

8. Install webhooks.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.12.0/cert-manager.yaml

9. Create the jcnr-aws-configmap. See "JCNR ConfigMap for VRRP" on page 132.

Your cluster is now ready for you to install the JCNR VPC Gateway, but let's prepare the on-premises
cluster first.

Prepare the On-Premises Cluster

The JCNR VPC Gateway sets up an eBGP session and an iBGP session with the on-premises cluster:

• The JCNR VPC Gateway uses the eBGP session to learn the loopback IP address of the BGP speaker
in the on-premises cluster. The JCNR VPC Gateway then uses the loopback IP address to establish
the subsequent iBGP session.

• The JCNR VPC Gateway uses the iBGP session to learn routes to the workloads in the on-premises
cluster. For the iBGP session, you must configure the local and peer AS number to be 64512.

The JCNR VPC Gateway does not impose any restrictions on the on-premises cluster as long as you
configure it to establish the BGP sessions with the JCNR VPC Gateway as described above and to
expose routes to the desired workloads.

We don't cover configuring the on-premises cluster because that's very device-specific. You should
configure the following, however, in order to be consistent with our ongoing example:

• an eBGP speaker at 10.14.205.158 for the eBGP session

• an iBGP speaker at 10.14.140.200 for exchanging EVPN routes

172

• workloads reachable at 10.4.230.4/32

173

5
CHAPTER

Install Cloud-Native Router on Google
Cloud Platform

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 175

System Requirements for GCP Deployment | 185

Customize JCNR Helm Chart for GCP Deployment | 195

Customize JCNR Configuration | 204

Install and Verify Juniper Cloud-Native Router for
GCP Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Juniper Support Site Package | 175

Install Juniper Cloud-Native Router Via
Google Cloud Marketplace | 179

Verify Installation | 181

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for GCP Deployment" on page 185 section to ensure the setup
has all the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

175

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

176

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The JCNR container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
JCNR software package. See "Deploy Prepackaged Images" on page 346 for instructions on how
to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

177

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for GCP Deployment" on page 195 for descriptions of the Helm
chart configurations.

13. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

178

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Install Juniper Cloud-Native Router Via Google Cloud Marketplace

Read this section to learn the steps required to deploy the cloud-native router.

1. Launch the Juniper Cloud-Native Router (PAYG) deployment wizard from the Google Cloud
Marketplace.

2. The table below lists the settings to be configured:

Settings Value

Deployment name Name of your deployment.

Zone GCP zone.

Series N2

Machine Type n2-standard-32 (32 vCPU, 16 core, 128 GB)

SSH-Keys SSH key pair for Compute Engine virtual machine
(VM) instances.

JCNR License Base64 encoded license key.

To encode the license, copy the license key into a file
on your host server and issue the command:

base64 -w 0 licenseFile

Copy and paste the base64 encoded license key in
the JCNR license field.

179

(Continued)

Settings Value

cRPD Config Template Create a config template to customize JCNR
configuration. See, No Link Title for sample cRPD
template. The config template must be saved in the
GCP bucket as an object. Provide the gsutil URI for
the object in the cRPD Config Template field.

cRPD Config Map Create a config template to customize JCNR
configuration. See, No Link Title for sample cRPD
config map. The config template must be saved in the
GCP bucket as an object. Provide the gsutil URI for
the object in the cRPD Config Map field.

Boot disk type Standard Persistent Disk

Boot disk size in GB 50

Network Interfaces Define additional network interface. An interface in
the VPC network is available by default.

3. Review the "System Requirements for GCP Deployment" on page 185 section for additional
minimum system requirements. Please note that the settings are pre-configured for the JCNR
deployment via Google Cloud Marketplace.

4. Click Deploy to complete the JCNR deployment.

5. Once deployed, you can customize the JCNR helm chart. Review the "Customize JCNR Helm Chart
for GCP Deployment" on page 195 topic for more information. Once configured issue the helm upgrade
command to deploy the customizations.

helm upgrade jcnr .
Release "jcnr" has been upgraded. Happy Helming!
NAME: jcnr
LAST DEPLOYED: Thu Dec 21 03:58:28 2023
NAMESPACE: default
STATUS: deployed
REVISION: 2
TEST SUITE: None

180

Verify Installation

This section enables you to confirm a successful JCNR deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

181

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section to access the cRPD CLI.

182

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

183

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0

184

 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for GCP Deployment

IN THIS SECTION

Minimum Host System Requirements for GCP Deployment | 185

Resource Requirements for GCP Deployment | 186

Miscellaneous Requirements for GCP Deployment | 189

Port Requirements | 193

Download Options | 195

JCNR Licensing | 195

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Google Cloud Platform (GCP).

Minimum Host System Requirements for GCP Deployment

Table 19 on page 186 lists the host system requirements for installing JCNR on GCP.

NOTE: The settings below are pre-configured when you deploy JCNR via the Google Cloud
Marketplace.

185

Table 19: Minimum Host System Requirements for GCP Deployment

Component Value/Version Notes

GCP Deployment VM-based

Instance Type n2-standard-16

CPU Intel x86 The tested CPU is Intel
Cascade Lake

Host OS Rocky Linux 8.8 (Green Obsidian)

Kernel Version Rocky Linux: 4.18.X The tested kernel version is
4.18.0-477.15.1.el8_8.clou
d.x86_64

NIC VirtIO NIC

Kubernetes (K8s) Version 1.25.x The tested K8s version is
1.25.5.

The K8s version for Google
Cloud Marketplace JCNR
subscription is v1.27.5.

Calico Version 3.25.1

Multus Version 4.0

Helm 3.9.x

Container-RT containerd 1.7.x Other container runtimes
may work but have not
been tested with JCNR.

Resource Requirements for GCP Deployment

Table 20 on page 187 lists the resource requirements for installing JCNR on GCP.

186

Table 20: Resource Requirements for GCP Deployment

Resource Value Usage Notes

Data plane forwarding cores 2 cores

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Enable Unsafe IOMMU mode

echo Y > /sys/module/
vfio_iommu_type1/parameters/
allow_unsafe_interrupts
echo Y > /sys/module/vfio/
parameters/
enable_unsafe_noiommu_mode

187

Table 20: Resource Requirements for GCP Deployment (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub. For
example:

GRUB_CMDLINE_LINUX_DEFAULT="consol
e=tty1 console=ttyS0
default_hugepagesz=1G
hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"

Update grub and reboot the host.
For example:

grub2-mkconfig -o /boot/grub2/
grub.cfg

reboot

Verify the hugepage is set by
executing the following commands:

cat /proc/cmdline
grep -i hugepages /proc/meminfo

NOTE: This 6 x 1GB hugepage
requirement is the minimum for a
basic L2 mode setup. Increase this
number for more elaborate
installations. For example, in an L3
mode setup with 2 NUMA nodes
and 256k descriptors, set the
number of 1GB hugepages to 10
for best performance.

JCNR Controller cores .5

JCNR vRouter Agent cores .5

188

Miscellaneous Requirements for GCP Deployment

Table 21 on page 189 lists additional requirements for deploying JCNR on GCP.

Table 21: Miscellaneous Requirements for GCP Deployment

Requirement Example

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

189

Table 21: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Enable IP Forwarding for VMs in GCP. Use one of these two methods to enable IP
forwarding:

1. Specify it as an option while creating the VM. For
example:

gcloud compute instances create instance-name --
can-ip-forward

2. For an exisiting VM, enable IP forwarding by
updating the compute instance via a file. For
example:

gcloud compute instances export transit-jcnr01 --
project jcnr-ci-admin --zone us-west1-a --
destination=instance_file_1

Edit the instance file to set the value
canIpForward=true.

Update the compute instance from the file:

gcloud compute instances update-from-file transit-
jcnr01 --project jcnr-ci-admin --zone us-west1-a
--source=instance_file_1 --most-disruptive-
allowed-action ALLOWED_ACTION

Enable Multi-IP subnet on Guest OS.
gcloud compute images create debian-9-multi-ip-
subnet \
 --source-disk debian-9-disk \
 --source-disk-zone us-west1-a \
 --guest-os-features MULTI_IP_SUBNET

190

Table 21: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Add firewall rules for loopback address for VPC. Configure the VPC firewall rule to allow ingress traffic
with source filters set to the subnet range to which
JCNR is attached, along with the IP ranges or
addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the GCP console and
create a firewall rule with the following attributes:

1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24, 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, 10.13.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which JCNR is
attached and 10.51.2.0/24, 10.51.1.0/24,
10.12.2.2/32, and 10.13.3.3/32 are loopback IP
ranges.

191

Table 21: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Exclude JCNR interfaces from NetworkManager
control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with JCNR
interface configuration, exclude JCNR interfaces from
NetworkManager control. Here's an example on how
to do this in some Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your JCNR interfaces.

NOTE:
enp*enp

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

192

Table 21: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

NOTE: Here are additional restrictions:

• JCNR supports only IPv4 for GCP.

• JCNR deployment on GCP supports only N8-standard for VM deployments. The N16-standard is not
supported.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 22: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

193

Table 22: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

194

Download Options

To deploy JCNR on GCP, you can either download the Helm charts from the Juniper Networks software
download site (see "JCNR Software Download Packages" on page 335) or subscribe via the Google
Cloud Marketplace.

NOTE:
https://enterprise.hub.juniper.net

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for GCP Deployment

IN THIS SECTION

Helm Chart Description for GCP Deployment | 195

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on GCP.
You can deploy and operate Juniper Cloud-Native Router in L3 mode on GCP. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Description for GCP Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

195

https://enterprise.hub.juniper.net

Table 23 on page 196 contains a description of the configurable attributes in values.yaml for a GCP
deployment.

Table 23: Helm Chart Description for GCP Deployment

Key Description

global

registry Defines the Docker registry for the JCNR container images. The
default value is enterprise-hub.juniper.net. The images provided
in the tarball are tagged with the default registry name. If you
choose to host the container images to a private registry, replace
the default value with your registry URL.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the JCNR container images.
Use defaults unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

196

https://enterprise.hub.juniper.net

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

noLocalSwitching Not applicable.

iamRole Not applicable.

fabricInterface Provide a list of interfaces to be bound to the DPDK. You can
also provide subnets instead of interface names. If both the
interface name and the subnet are specified, then the interface
name takes precedence over subnet/gateway combination. The
subnet/gateway combination is useful when the interface names
vary in a multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces for
GCP. The L2 only and L2-L3 sections are not applicable for GCP
deployments. Do not configure interface_mode for any of the
interfaces.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

See "JCNR Interfaces Overview" on page 14 for more
information.

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

197

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
JCNR pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

198

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is
to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

199

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS in your EC2 instance.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

200

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

stormControlProfiles Not applicable.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

201

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp Not applicable.

qosEnable Set to false.

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric
interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

202

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

203

Table 23: Helm Chart Description for GCP Deployment (Continued)

Key Description

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 204

Configuration Examples | 205

Applying the Configlet Resource | 206

Modifying the Configlet | 212

Troubleshooting | 212

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

204

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

205

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:

206

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...

207

Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

208

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

209

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

210

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

211

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

212

6
CHAPTER

Install Cloud-Native Router on Wind
River Cloud Platform

Install and Verify Juniper Cloud-Native Router for Wind River Deployment | 214

System Requirements for Wind River Deployment | 222

Customize JCNR Helm Chart for Wind River Deployment | 234

Customize JCNR Configuration | 245

Install and Verify Juniper Cloud-Native Router for
Wind River Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 214

Verify Installation | 218

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Wind River Deployment" on page 222 section to ensure the
server has all the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

214

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

215

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The JCNR container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
JCNR software package. See "Deploy Prepackaged Images" on page 346 for instructions on how
to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

216

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for Wind River Deployment" on page 234 for descriptions of the
Helm chart configurations.

13. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

217

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful JCNR deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 1 (3h13m ago) 4h2m

kube-system calico-node-28w98 1/1 Running 3 (4d1h ago) 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 3 (4d1h ago) 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 4 (4d1h ago) 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 8 (4d1h ago) 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 3 (4d1h ago) 86d

218

kube-system kube-proxy-qm5bl 1/1 Running 3 (4d1h ago) 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 9 (4d1h ago) 86d

kube-system nodelocaldns-bntfp 1/1 Running 4 (4d1h ago) 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

219

a. View the Access cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

220

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON

221

 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for Wind River Deployment

IN THIS SECTION

Minimum Host System Requirements on a Wind River Deployment | 222

Resource Requirements on a Wind River Deployment | 224

Miscellaneous Requirements on a Wind River Deployment | 225

Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment | 227

Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River Deployment | 231

Port Requirements | 232

Download Options | 233

JCNR Licensing | 234

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a Wind River deployment. We provide requirements for both pre-bound
and non-pre-bound SR-IOV interfaces.

Minimum Host System Requirements on a Wind River Deployment

Table 24 on page 223 lists the host system requirements for installing JCNR on a Wind River
deployment.

222

Table 24: Cloud-Native Router Minimum Host System Requirements on a Wind River Deployment

Component Value/Version Notes

CPU Intel x86 The tested CPU is
Intel(R) Xeon(R) Silver
4314 CPU @ 2.40GHz

Host OS Debian GNU/Linux
(depends on Wind River
Cloud Platform version)

Kernel Version 5.10 5.10.0-6-amd64

NIC • Intel E810 with
Firmware 4.00
0x80014411
1.3236.0

• Intel E810-CQDA2
with Firmware
4.000x800144111.32
36.0

• Intel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 359)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

Wind River Cloud Platform 22.12

IAVF driver Version 4.5.3.1

ICE_COMMS Version 1.3.35.0

ICE Version 1.9.11.9 ICE driver is used only
with the Intel E810
NIC

223

Table 24: Cloud-Native Router Minimum Host System Requirements on a Wind River Deployment
(Continued)

Component Value/Version Notes

i40e Version 2.18.9 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) Version 1.24 The tested K8s version
is 1.24.4

Calico Version 3.24.x

Multus Version 3.8

Helm 3.9.x

Container-RT containerd 1.4.x Other container
runtimes may work but
have not been tested
with JCNR.

Resource Requirements on a Wind River Deployment

Table 25 on page 224 lists the resource requirements for installing JCNR on a Wind River deployment.

Table 25: Resource Requirements on a Wind River Deployment

Resource Value Usage Notes

Data plane forwarding
cores

2 cores (2P +
2S)

Service/Control Cores 0

224

Table 25: Resource Requirements on a Wind River Deployment (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Lock the controller and get the memory processors using below
command:

source /etc/platform/openrc
system host-lock controller-0
system host-memory-list controller-0

To set the huge pages, run the following command for each
controller:

system host-memory-modify controller-0 0 -1G 64
system host-memory-modify controller-0 1 -1G 64

View the huge pages with the following command:

system host-memory-list controller-0

Unlock the controller:

system host-unlock controller-0

NOTE: This 6 x 1GB hugepage requirement is the minimum for a
basic L2 mode setup. Increase this number for more elaborate
installations. For example, in an L3 mode setup with 2 NUMA
nodes and 256k descriptors, set the number of 1GB hugepages to
10 for best performance.

JCNR Controller cores .5

JCNR vRouter Agent
cores

.5

Miscellaneous Requirements on a Wind River Deployment

Table 26 on page 226 lists the additional requirements for installing JCNR on a Wind River deployment.

225

Table 26: Miscellaneous Requirements on a Wind River Deployment

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Isolate CPUs from the kernel scheduler.
source /etc/platform/openrc
system host-lock controller-0
system host-cpu-list controller-0
system host-cpu-modify -f application-isolated -c
4-59 controller-0
system host-unlock controller-0

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a conf file and add the kernel modules:

cat /etc/modules-load.d/crpd.conf
tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

226

Table 26: Miscellaneous Requirements on a Wind River Deployment (Continued)

Requirement Example

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Requirements for Pre-Bound SR-IOV Interfaces on a Wind River
Deployment

In a Wind River deployment, you typically bind all your JCNR interfaces to the vfio DPDK driver before
you deploy JCNR. Table 27 on page 228 shows an example of how you can do this on an SR-IOV-
enabled interface on a host.

NOTE: We support pre-binding interfaces for JCNR L3 mode deployments only.

227

Table 27: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment

Requirement Example

Pre-bind the JCNR interfaces to the
vfio DPDK driver.

source /etc/platform/openrc

system host-lock controller-0
system host-label-assign controller-0 sriovdp=enabled # <-- Label node to accept SR-IOV-enabled
 # deployments.

system host-label-assign controller-0 kube-cpu-mgr-policy=static
system host-label-assign controller-0 kube-topology-mgr-policy=restricted # <-- see note below

system datanetwork-add datanet0 flat # <-- Create datanet0 network. You'll define this in a NAD
 # later.

DTNIF=enp175s0f0
system host-if-modify -m 1500 -n $DTNIF -c pci-sriov -N 8 controller-0 $DTNIF --vf-driver=netdevice
 # ^ Enable 8 (for example) VFs on enp175s0f0.

system host-if-add -c pci-sriov controller-0 srif0 vf $DTNIF -N 1 --vf-driver=vfio
 # ^ Create srif0 interface that uses one of the VFs
 # and bind to vfio driver.

IFUUID=$(system host-if-list 1 | awk '{if ($4 == "srif0") {print $2}}')
system interface-datanetwork-assign 1 $IFUUID datanet0 # <-- Attach srif0 interface to datanet0
network.

system host-unlock 1

NOTE: On hosts with a single NUMA node or where all NICs are attached
to the same NUMA node, set kube-topology-mgr-policy=restricted.

On hosts with multiple NUMA nodes where the NICs are spread across
NUMA nodes, set kube-topology-mgr-policy=best-effort.

228

Table 27: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

Create and apply the Network
Attachment Definition that
attaches the datanet0 network
defined above.

Create a yaml file for the Network Attachment Definition. For example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: srif0net0
 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/pci_sriov_net_datanet0
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "sriov",
 "spoofchk": "off",
 "trust": "on"
 }'

Apply the yaml to attach the datanet0 network:

kubectl apply -f srif0net0.yaml

where srif0net0.yaml is the file that contains the Network Attachment
Definition above.

229

Table 27: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

Update the Helm chart values.yaml
to use the defined networks.

Here's an example of using two networks, datanet0/srif0net0 and
datanet1/srif1net1.

jcnr-vrouter:
 guaranteedVrouterCpus: 4
 interfaceBoundType: 1

 networkDetails:
 - ddp: "off"
 name: srif0net0
 namespace: default
 - ddp: "off"
 name: srif1net1
 namespace: default

 networkResources:
 limits:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 requests:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"

Here's an example of using a bond interface attached to two networks
(datanet0/srif0net0 and datanet1/srif1net1) and a regular interface
attached to a third network (datanet2/srif2net2).

jcnr-vrouter:
 guaranteedVrouterCpus: 4
 interfaceBoundType: 1

 bondInterfaceConfigs:
 - mode: 1
 name: bond0
 slaveNetworkDetails:
 - name: srif0net0
 namespace: default
 - name: srif1net1
 namespace: default

 networkDetails:

230

Table 27: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

 - ddp: "off"
 name: bond0
 - ddp: "off"
 name: srif2net2
 namespace: default

 networkResources:
 limits:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 intel.com/pci_sriov_net_datanet2: "1"
 requests:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 intel.com/pci_sriov_net_datanet2: "1"

Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River
Deployment

In some situations, you might want to run with non-pre-bound interfaces. Table 28 on page 232 shows
the requirements for non-pre-bound interfaces.

231

Table 28: Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River Deployment

Requirement Example

Configure IPv4 and IPv6 addresses for the non-pre-
bound interfaces allocated to JCNR. source /etc/platform/openrc

system host-lock controller-0
system host-if-modify -n ens1f0 -c platform --ipv4-
mode static controller-0 ens1f0
system host-addr-add 1 ens1f0 11.11.11.29 24
system host-if-modify -n ens1f0 -c platform --ipv6-
mode static controller-0 ens1f0
system host-addr-add 1 ens1f0 abcd::11.11.11.29 112
system host-if-list controller-0
system host-addr-list controller-0
system host-unlock controller-0

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 29: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

232

Table 29: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "JCNR Software Download Packages" on page 335.

233

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for Wind River
Deployment

IN THIS SECTION

Helm Chart Description for Wind River Deployment | 234

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on a Wind River Deployment.
You can deploy and operate Juniper Cloud-Native Router in the L3 mode on a Wind River deployment.
You configure the deployment mode by editing the appropriate attributes in the values.yaml file prior to
deployment.

Helm Chart Description for Wind River Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

Table 30 on page 234 contains a description of the configurable attributes in values.yaml for a Wind
River deployment.

Table 30: Helm Chart Description for Wind River Deployment

Key Description

global

234

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

registry Defines the Docker registry for the JCNR container images. The
default value is enterprise-hub.juniper.net. The images provided
in the tarball are tagged with the default registry name. If you
choose to host the container images to a private registry, replace
the default value with your registry URL.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various JCNR container
images. Use default unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

235

https://enterprise.hub.juniper.net

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from
transmitting and receiving Ethernet frame copies. Enter one or
more comma separated VLAN IDs to ensure that the interfaces
belonging to the VLAN IDs do not transmit frames to one
another. This key is specific to L2 and L2-L3 deployments.
Enabling this key provides the functionality on all access
interfaces. To enable the functionality on trunk interfaces,
configure no-local-switching in fabricInterface. See Prevent Local
Switching for more details.

iamRole Not applicable.

fabricInterface Provide a list of interfaces to be bound to DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in
a multi-node cluster.

For example:

L3 only
- eth1:
 ddp: "off"

This attribute and all of its child attributes are only applicable
when running with non-pre-bound SR-IOV interfaces.

Comment out these attributes when running with pre-bound SR-
IOV interfaces.

236

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. See
Enabling Dynamic Device Personalization (DDP) on Individual
Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

fabricWorkloadInterface Not applicable.

237

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
JCNR pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

238

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is
to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir Set to /var/opt/cni/bin.

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

239

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23").

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

240

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs (Optional) Enable bond interface configurations for L3 mode
deployments.

NOTE: The bondInterfaceConfigs attribute and its child attributes
are only applicable when running with pre-bound SR-IOV
interfaces.

Comment out these attributes when running with non-pre-bound
SR-IOV interfaces.

name Name of the bond interface.

mode Set to 1 (active-backup).

slaveInterfaces Not applicable.

primaryInterface Not applicable.

241

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

slaveNetworkDetails Information on the slave network interfaces (in name /
namespace pairs) when using Network Attachment Definitions
for L3 mode deployments. For an example on how to use this,
see "Requirements for Pre-Bound SR-IOV Interfaces on a Wind
River Deployment" on page 227.

name Name of the slave interface.

namespace Namespace for the slave interface.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default value is 9000.

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric
interfaces in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

242

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to
be enabled. See Enabling Dynamic Device Personalization (DDP)
on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

qosEnable Set to false for Wind River deployment.

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric
interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

243

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

interfaceBoundType Set to 1 to indicate a pre-bound SR-IOV interface. Default is 0.

244

Table 30: Helm Chart Description for Wind River Deployment (Continued)

Key Description

networkDetails Configures attributes related to the network attachment
definitions.

ddp Options are on or off. Default is off.

name Specify the name of the network attachment definition.

namespace Specify the namespace where the network attachment definition
is created.

networkResources Configures network device resources for the network attachment
definitions.

limits Set the limit for the number of SR-IOV interfaces used for each
network attachment definition.

requests Set the requested number of SR-IOV interfaces for each network
attachment definition.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 246

Configuration Examples | 246

Applying the Configlet Resource | 248

245

Modifying the Configlet | 253

Troubleshooting | 254

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32

246

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

247

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

248

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

249

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master

250

 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

251

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

252

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

253

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

254

7
CHAPTER

Install Cloud-Native Router on
Microsoft Azure Cloud Platform

Install and Verify Juniper Cloud-Native Router for Azure Deployment | 256

System Requirements for Azure Deployment | 264

Customize JCNR Helm Chart for Azure Deployment | 274

Customize JCNR Configuration | 283

Install and Verify Juniper Cloud-Native Router for
Azure Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 256

Verify Installation | 260

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for Azure Deployment" on page 264 section to ensure the setup
has all the required configuration.

2. Download the desired JCNR software package to the directory of your choice.

You have the option of downloading the package to install JCNR only or downloading the package
to install JNCR together with Juniper cSRX. See "JCNR Software Download Packages" on page 335
for a description of the packages available. If you don't want to install Juniper cSRX now, you can
always choose to install Juniper cSRX on your working JCNR installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

256

This directory contains the Helm chart for JCNR only.

• If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For JCNR only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

257

• For the combined JCNR and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The JCNR container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
JCNR software package. See "Deploy Prepackaged Images" on page 346 for instructions on how
to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 319 to install your JCNR license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. To encode the password, create a file with
the plain text password on a single line. Then issue the command:

base64 -w 0 rootPasswordFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

258

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the JCNR Forwarding Plane" on page 322.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for Azure Deployment" on page 274 for descriptions of the Helm
chart configurations.

13. Optionally, customize JCNR configuration.

See, "Customize JCNR Configuration " on page 59 for creating and applying the cRPD
customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 309.

15. Label the nodes where you want JCNR to be installed based on the nodeaffinity configuration (if
defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

259

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful JCNR deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes in the
cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the JCNR pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

260

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the JCNR daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The JCNR daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the JCNR statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

261

a. View the Access cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the JCNR
deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

262

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the JCNR deployment mode and configuration. An
example for L3 mode deployment, with one fabric interface configured, is provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1500
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 1500
 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 1500
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON

263

 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for Azure Deployment

IN THIS SECTION

Minimum Host System Requirements for Azure | 264

Resource Requirements for Azure | 265

Miscellaneous Requirements for Azure | 268

Port Requirements | 272

Download Options | 274

JCNR Licensing | 274

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Microsoft Azure Cloud Platform.

Minimum Host System Requirements for Azure

Table 31 on page 265 lists the host system requirements for installing JCNR on Azure.

264

Table 31: Minimum Host System Requirements for Azure

Component Value/Version Notes

Azure Deployment VM-based

Instance Type Standard_F16s_v2

CPU Intel x86 The tested CPU is Intel
Cascade Lake

Host OS Rocky Linux 8.7

Kernel Version Rocky Linux: 4.18.X The tested kernel version is
4.18.0-477.15.1.el8_8.clou
d.x86_64

Kubernetes (K8s) Version 1.25.x The tested K8s version is
1.25.5

Calico Version 3.25.1

Multus Version 4.0

Helm 3.9.x

Container-RT containerd 1.7.x Other container runtimes
may work but have not
been tested with JCNR.

Resource Requirements for Azure

Table 32 on page 265 lists the resource requirements for installing JCNR on Azure.

Table 32: Resource Requirements for Azure

Resource Value Usage Notes

Data plane forwarding cores 2 cores (2P + 2S)

265

Table 32: Resource Requirements for Azure (Continued)

Resource Value Usage Notes

Service/Control Cores 0

UIO Driver uio_hv_generic To enable, add the following
modules to be loaded at boot:

cat /etc/modules-load.d/k8s.conf
uio
uio_hv_genericib_uverbs
mlx4_ib

The above libraries are provided by
ibverbs package.

266

Table 32: Resource Requirements for Azure (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub. For
example:

GRUB_CMDLINE_LINUX_DEFAULT="consol
e=tty1 console=ttyS0
default_hugepagesz=1G
hugepagesz=1G hugepages=6
intel_iommu=on iommu=pt"

Update grub and reboot the host.
For example:

grub2-mkconfig -o /boot/grub2/
grub.cfg

reboot

Verify the hugepage is set by
executing the following commands:

cat /proc/cmdline
grep -i hugepages /proc/meminfo

NOTE: This 6 x 1GB hugepage
requirement is the minimum for a
basic L2 mode setup. Increase this
number for more elaborate
installations. For example, in an L3
mode setup with 2 NUMA nodes
and 256k descriptors, set the
number of 1GB hugepages to 10
for best performance.

JCNR Controller cores .5

JCNR vRouter Agent cores .5

267

Miscellaneous Requirements for Azure

Table 33 on page 268 lists additional requirements for installing JCNR on Azure.

Table 33: Miscellaneous Requirements for Azure

Requirement Example

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

268

Table 33: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Add firewall rules for loopback address for VPC. Configure the VPC firewall rule to allow ingress traffic
with source filters set to the subnet range to which
JCNR is attached, along with the IP ranges or
addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the Azure console and
create a firewall rule with the following attributes:

1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24, 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, 10.13.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which JCNR is
attached and 10.51.2.0/24, 10.51.1.0/24,
10.12.2.2/32, and 10.13.3.3/32 are loopback IP
ranges.

Set the MTU on all fabric interfaces to 1500 bytes. After JCNR comes up, use the cRPD CLI to set the
MTU size on all fabric interfaces to 1500 bytes.
Microsoft Azure Cloud Platform recommends an MTU
size less than or equal to 1500 bytes on all interfaces
that connect directly to the Azure infrastructure. These
interfaces are the JCNR fabric interfaces. Failure to
follow this rule might lead to packet drops.

For information on how to access the cRPD CLI, see
Access cRPD CLI.

269

Table 33: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Ensure accelerated networking is enabled for the fabric
interface.

If accelerated networking is enabled properly, two
interfaces become available for the fabric interface. For
example:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000
 link/ether 00:22:48:23:3b:9e brd
ff:ff:ff:ff:ff:ff
 inet 10.225.0.6/24 brd 10.225.0.255 scope global
eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::222:48ff:fe23:3b9e/64 scope link
 valid_lft forever preferred_lft forever
4: enP22960s2:
<BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500
qdisc mq master eth1 state UP group default qlen 1000
 link/ether 00:22:48:23:3b:9e brd
ff:ff:ff:ff:ff:ff
 altname enP22960p0s2

When configuring the fabric interface in the Helm
chart, you must provide the interface with hv_netvsc
bound to it. Issue the ethtool -i interface_name
command to verify it. For example:

user@jcnr01:~# ethtool -i eth1
driver: hv_netvsc
version: 5.15.0-1049-azure
firmware-version: N/A
expansion-rom-version:
bus-info:
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

NOTE: Do not enable accelerated networking for the
management interface.

270

Table 33: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Exclude JCNR interfaces from NetworkManager
control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with JCNR
interface configuration, exclude JCNR interfaces from
NetworkManager control. Here's an example on how
to do this in some Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your JCNR interfaces.

NOTE:
enp*enp

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

271

Table 33: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

NOTE: JCNR supports only IPv4 for Azure.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 34: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

272

Table 34: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

273

Download Options

See "JCNR Software Download Packages" on page 335.

NOTE:
https://enterprise.hub.juniper.net

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for Azure Deployment

IN THIS SECTION

Helm Chart Description for Azure Deployment | 274

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Microsoft Azure Cloud Platform.
You can deploy and operate Juniper Cloud-Native Router in L3 mode on Azure. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Description for Azure Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "JCNR Default Helm Chart" on page
336.

Table 35 on page 275 contains a description of the configurable attributes in values.yaml for an Azure
deployment.

274

https://enterprise.hub.juniper.net

Table 35: Helm Chart Description for Azure Deployment

Key Description

global

registry Defines the Docker registry for the JCNR container images. The
default value is enterprise-hub.juniper.net. The images provided
in the tarball are tagged with the default registry name. If you
choose to host the container images to a private registry, replace
the default value with your registry URL.

repository (Optional) Defines the repository path for the JCNR container
images. This is a global key that takes precedence over the
repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 344 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the JCNR container images.
Use defaults unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the JCNR release version.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching Not applicable.

275

https://enterprise.hub.juniper.net

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

iamRole Not applicable.

fabricInterface Provide a list of interfaces to be bound to the DPDK.

NOTE: Use the L3 only section to configure fabric interfaces for
Azure. The L2 only and L2-L3 sections are not applicable for
Azure deployments. Do not configure interface_mode for any of
the interfaces.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

See "JCNR Interfaces Overview" on page 14 for more
information.

subnet Not applicable.

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

fabricWorkloadInterface Not applicable.

276

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
JCNR pods will not overwrite the default pattern on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

277

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where JCNR is
to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

278

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS in your EC2 instance.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

279

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if JCNR is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

stormControlProfiles Not applicable.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

280

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp Not applicable.

qosEnable Set to false.

vrouter_dpdk_uio_driver The uio driver is uio_hv_generic.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all JCNR fabric
interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

281

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want JCNR operator generated pod
configuration to persist even after uninstallation. This option can
only be set for L2 mode deployments. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

282

Table 35: Helm Chart Description for Azure Deployment (Continued)

Key Description

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize JCNR Configuration

SUMMARY

Read this topic to understand how to customize
JCNR configuration using a Configlet custom
resource.

IN THIS SECTION

Configlet Custom Resource | 283

Configuration Examples | 284

Applying the Configlet Resource | 285

Modifying the Configlet | 291

Troubleshooting | 291

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing JCNR
configuration using a configlet custom resource. The configlet can be generated either by rendering a
predefined template of supported Junos configuration or using raw configuration. The generated
configuration is validated and deployed on the JCNR controller (cRPD) as one or more Junos
configuration groups.

NOTE: We do not recommend configuring JCNR controller (cRPD) directly through the CLI. You
must perform all configuration using the configlet custom resource. The configuration performed
directly through the cRPD CLI does not persist through node reboots or pod crashes.

283

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

284

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
JCNR is deployed or once the cRPD pods are up and running. Let us look at configlet deployment in
detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:

285

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...

286

Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when specifying
your configlet.

287

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

288

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

289

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

290

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

291

8
CHAPTER

Install Cloud-Native Router on
VMWare Tanzu

Install and Verify Juniper Cloud-Native Router for VMWare Tanzu | 293

System Requirements for Tanzu Deployment | 293

Customize JCNR Helm Chart for Tanzu Deployment | 304

Customize JCNR Configuration | 304

Install and Verify Juniper Cloud-Native Router for
VMWare Tanzu

The procedure for installing and verifying JCNR on VMWare Tanzu is the same as the procedure for
installing and verifying JCNR on baremetal.

See "Install and Verify Juniper Cloud-Native Router for Baremetal Servers" on page 27.

System Requirements for Tanzu Deployment

IN THIS SECTION

Minimum Host System Requirements for Tanzu | 293

Resource Requirements for Tanzu | 296

Miscellaneous Requirements for Tanzu | 297

Port Requirements | 302

Download Options | 304

JCNR Licensing | 304

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a VMWare Tanzu platform.

Minimum Host System Requirements for Tanzu

Table 36 on page 294 lists the host system requirements for installing JCNR on Tanzu.

293

Table 36: Minimum Host System Requirements for Tanzu

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS RedHat Enterprise Linux Version 8.4, 8.5, 8.6

Rocky Linux 8.6, 8.7, 8.8, 8.9

Kernel Version RedHat Enterprise Linux
(RHEL): 4.18.X

Rocky Linux: 4.18.X

The tested kernel
version for RHEL is
4.18.0-305.rt7.72.el8.x
86_64

The tested kernel
version for Rocky Linux
is
4.18.0-372.19.1.rt7.17
6.el8_6.x86_64 and
4.18.0-372.32.1.rt7.18
9.el8_6.x86_64

NIC • Intel E810 CVL with
Firmware 4.22
0x8001a1cf 1.3346.0

• Intel E810 CPK with
Firmware 2.20
0x80015dc1 1.3083.0

• Intel E810-CQDA2
with Firmware 4.20
0x80017785
1.3346.0

• Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 359)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

294

Table 36: Minimum Host System Requirements for Tanzu (Continued)

Component Value/Version Notes

IAVF driver Version 4.8.2 

ICE_COMMS Version 1.3.35.0

ICE Version 1.11.20.13 ICE driver is used only
with the Intel E810
NIC

i40e Version 2.22.18.1 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) Version 1.22.x, 1.23.x,
1.25x

The tested K8s version
is 1.22.4. K8s version
1.22.2 also works.

JCNR supports an all-
in-one or multinode
Kubernetes cluster,
with control plane and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

NOTE: When you
install JCNR on a
VMWare Tanzu
Kubernetes cluster, the
cluster must contain at
least one worker node.

Calico Version 3.22.x

Multus Version 3.8

Helm 3.9.x

295

Table 36: Minimum Host System Requirements for Tanzu (Continued)

Component Value/Version Notes

Container-RT containerd 1.7.x Other container
runtimes may work but
have not been tested
with JCNR.

Resource Requirements for Tanzu

Table 37 on page 296 lists the resource requirements for installing JCNR on Tanzu.

Table 37: Resource Requirements for Tanzu

Resource Value Usage Notes

Data plane forwarding
cores

2 cores (2P +
2S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

296

Table 37: Resource Requirements for Tanzu (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub on the
host. For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G hugepages=64
intel_iommu=on iommu=pt"
Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Verify the hugepage is set by executing the following commands:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

NOTE: This 6 x 1GB hugepage requirement is the minimum for a
basic L2 mode setup. Increase this number for more elaborate
installations. For example, in an L3 mode setup with 2 NUMA
nodes and 256k descriptors, set the number of 1GB hugepages to
10 for best performance.

JCNR Controller cores .5

JCNR vRouter Agent
cores

.5

Miscellaneous Requirements for Tanzu

Table 38 on page 297 lists additional requirements for installing JCNR on Tanzu.

Table 38: Miscellaneous Requirements for Tanzu

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

297

Table 38: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

298

Table 38: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying JCNR in L3 mode. These
modules are usually available in linux-modules-extra or
kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

299

Table 38: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Exclude JCNR interfaces from NetworkManager
control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with JCNR
interface configuration, exclude JCNR interfaces from
NetworkManager control. Here's an example on how
to do this in some Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your JCNR interfaces.

NOTE:
enp*enp

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

300

Table 38: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Enable iommu unsafe interrupts and unsafe noiommu
mode. echo Y > /sys/module/vfio_iommu_type1/parameters/

allow_unsafe_interrupts

echo Y > /sys/module/vfio/parameters/
enable_unsafe_noiommu_mode

301

Table 38: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Configure iptables to accept specified traffic.
 iptables -I INPUT -p tcp --dport 830 -j ACCEPT
 iptables -I INPUT -p tcp --dport 24 -j ACCEPT
 iptables -I INPUT -p tcp --dport 8085 -j ACCEPT
 iptables -I INPUT -p tcp --dport 8070 -j ACCEPT

 iptables -I INPUT -p tcp --dport 8072 -j ACCEPT
 iptables -I INPUT -p tcp --dport 50053 -j ACCEPT

iptables -A INPUT -p icmp -j ACCEPT
iptables -A OUTPUT -p icmp -j ACCEPT

iptables -A INPUT -s 224.0.0.0/4 -j ACCEPT
iptables -A FORWARD -s 224.0.0.0/4 -d 224.0.0.0/4 -j
ACCEPT
iptables -A OUTPUT -d 224.0.0.0/4 -j ACCEPT

On the ESXi Hypervisor, enable 16 queues.
set esxcli system module parameters set -m icen -p
NumQPsPerVF=16,16,16,16

On the ESXi Hypervisor, enable trust and disable
spoofcheck: esxcli intnet sriovnic vf set -s false -t true -v

0 -n vmnic2

Check the settings:

esxcli intnet sriovnic vf get -n vmnic2

VF ID Trusted Spoof Check
0 true false

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

302

Table 39: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the JCNR
vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from JCNR control
plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–JCNR listens on both
IPv4 and IPv6

TCP 8081 JCNR Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

303

Table 39: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "JCNR Software Download Packages" on page 335.

JCNR Licensing

See "Manage JCNR Licenses" on page 319.

Customize JCNR Helm Chart for Tanzu Deployment

The way that you configure the installation Helm chart for JCNR on VMWare Tanzu is the same as the
way that you configure the installation Helm chart for JCNR on baremetal servers.

See "Customize JCNR Helm Chart for Bare Metal Servers" on page 46.

Customize JCNR Configuration

The procedure for customizing cRPD for JCNR on VMWare Tanzu is the same as the procedure for
customizing cRPD for JCNR on baremetal.

304

See "Customize JCNR Configuration " on page 59.

305

9
CHAPTER

Deploying Service Chain (cSRX) with
JCNR

Deploying Service Chain (cSRX) with JCNR | 307

Deploying Service Chain (cSRX) with JCNR

SUMMARY

Read this section to learn how to customize and
deploy a security services instance (cSRX) with the
Cloud-Native Router.

IN THIS SECTION

Install cSRX on an Existing JCNR
Installation | 307

Install cSRX During JCNR Installation | 308

Apply the cSRX License and Configure
cSRX | 309

Customize cSRX Helm Chart | 310

You can integrate the Juniper Cloud-Native Router (JCNR) with Juniper's containerized SRX (cSRX)
platform to provide security services such as IPsec. Using host-based service chaining, the cloud-native
router is chained with a security service instance (cSRX) in the same Kubernetes cluster. The cSRX
instance runs as a pod service in L3 mode. The cSRX instance is customized and deployed via a Helm
chart.

You have the option of deploying Juniper cSRX when you're installing JCNR or after you've installed
JCNR. See "JCNR Software Download Packages" on page 335 for a description of the available
packages.

Install cSRX on an Existing JCNR Installation

Follow this procedure to install a cSRX instance on an existing JCNR installation. Ensure all JCNR
components are up and running before you start this procedure.

1. Download and expand the software package for installing Juniper cSRX on an existing JCNR
installation. See "JCNR Software Download Packages" on page 335 for a description of the software
packages available.

tar -xzvf junos_csrx_<release>.tar.gz

307

https://www.juniper.net/us/en/products/security/srx-series/csrx-containerized-firewall.html

2. Change to the junos_csrx_<release>/helmchart directory and expand the Helm chart.

cd junos_csrx_<release>/helmchart

ls
junos-csrx-<release>.tgz

tar -xzvf junos-csrx-<release>.tgz

ls
junos-csrx junos-csrx-<release>.tgz

The Helm chart is located in the junos-csrx directory.

3. The cSRX container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 344 for example instructions on how
to configure repository credentials in Helm charts.

• Configure your cluster to deploy images from the image tarball included in the downloaded cSRX
software package. See "Deploy Prepackaged Images" on page 346 for example instructions on
how to import images to the local containerd runtime.

4. Follow the steps in "Apply the cSRX License and Configure cSRX" on page 309 to apply your cSRX
license and configure the cSRX Helm chart.

5. Install cSRX.

Navigate to the junos_csrx_<release>/helmchart/junos-csrx directory and issue the following
command to install the cSRX instance.

helm install junos-csrx .

Install cSRX During JCNR Installation

Follow the steps in the respective JCNR installation sections to install JCNR. One of the steps will refer
you to "Apply the cSRX License and Configure cSRX" on page 309.

308

Apply the cSRX License and Configure cSRX

Follow this procedure to apply your cSRX license and configure Juniper cSRX.

The following steps assume you're in the Juniper_Cloud_Native_Router_CSRX_<release> directory if
installing cSRX and JCNR together, or in the junos_csrx_<release> directory if installing cSRX on an
existing JCNR installation.

1. Replace /etc/kubernetes/kubelet.conf with the cluster kubeconfig on all nodes where you want to
install the JCNR and cSRX combination. This applies to both installing cSRX during JCNR installation
and installing cSRX on an existing JCNR installation. If you don't perform this step, the installation
may fail.

For example (assuming your kubeconfig is at the default ~/.kube/config location):

scp ~/.kube/config <worker-node-ip>:/etc/kubernetes/kubelet.conf

where <worker-node-ip> is the IP address of a node where you want to install both JCNR and cSRX.
Repeat for all nodes where you want to install both JCNR and cSRX.

2. Apply your Juniper cSRX license.

a. If the secrets/csrx-secrets.yaml doesn't exist in your software package, create it with the contents
below:

apiVersion: v1
kind: Secret
metadata:
 name: service-chain-instance
 namespace: jcnr
data:
 csrx_license: |
 <add your license in base64 format>

b. Encode your license in base64.

Copy your Juniper cSRX license file onto your host server and issue the command:

base64 -w 0 licenseFile

The output of this command is your base64-encoded license.

c. Replace <add your license in base64 format> with your base64-encoded license.

309

NOTE: You must obtain your license file from your account team and install it in the
secrets/csrx-secrets.yaml file as instructed above. The csrx-init container performs a
license check and proceeds only if the required secret service-chain-instance is found.

d. Apply the secrets/csrx-secrets.yaml to the Kubernetes cluster.

kubectl apply -f secrets/csrx-secrets.yaml
secret/service-chain-instance created

3. Configure the cSRX Helm chart.

• If you're installing cSRX at the same time you're installing JCNR, then you're configuring the junos-
csrx section of the combination Helm chart in Juniper_Cloud_Native_Router_CSRX_<release>/
helmchart/jcnr_csrx/values.yaml.

• If you're installing cSRX on an existing JCNR installation, then you're configuring the csrx section
of the standalone Helm chart in junos_csrx_<release>/helmchart/junos-csrx/values.yaml.

Refer to the cSRX parameter descriptions in "Customize cSRX Helm Chart" on page 310.

Customize cSRX Helm Chart

The cSRX service chaining instance is deployed via a Helm chart, either a standalone Helm chart or a
combined Helm chart with JCNR. The deployment consists of two essential components:

• csrx-init: This is an init container that prepares the configuration for the main cSRX application. It
extracts the necessary information from the values.yaml file, processes it, and generates the
configuration data for cSRX. This ensures that the main cSRX application starts with a valid, up-to-
date configuration.

• csrx: The csrx is the main application container and the core component of the cSRX deployment. It
relies on the configuration provided by the csrx-init container to function correctly.

You can customize the cSRX deployment by specifying a range of configuration parameters in the
values.yaml file. Key configuration options include:

• interfaceType: This is the type of interface on the cSRX to connect to JCNR. Must be set to vhost only.

• interfaceConfigs: This is an array defining the interface IP address, gateway address and optionally
routes. The interface IP must match the localAddress element in the ipSecTunnelConfigs array. The routes
should contain prefixes to steer decrypted traffic to JCNR and reachability route for IPSec gateway.

310

• ipSecTunnelConfigs: This is an array defining the IPsec configuration details such as ike-phase1,
proposal, policy and gateway configuration. Traffic selector should contain traffic that is expected to
be encrypted.

• jcnr_config: This is an array defining the routes to be configured in JCNR to steer traffic from JCNR
to cSRX and to steer IPsec traffic from the remote IPsec gateway to the cSRX to apply the security
service chain.

Here is the default values.yaml for standalone cSRX deployment:

Default values for cSRX.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

common:
 registry: enterprise-hub.juniper.net/
 repository: jcnr-container-prod/

 csrxInit:
 image: csrx-init
 tag: f4tgt33
 imagePullPolicy: IfNotPresent
 resources:
 #limits:
 # memory: 1Gi
 # cpu: 1
 #requests:
 # memory: 1Gi
 # cpu: 1

 csrx:
 image: csrx
 tag: 24.2R1.14
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 hugepages-1Gi: 4Gi
 memory: 4Gi
 requests:
 hugepages-1Gi: 4Gi
 memory: 4Gi

311

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:
 #registryCredentials: <base64-encoded-credential>
 #secretName: regcred

nodeAffinity: Can be used to inject nodeAffinity for cSRX
you may label the nodes where we wish to deploy cSRX and inject affinity accordingly
#nodeAffinity:
#- key: node-role.kubernetes.io/worker
operator: Exists
#- key: node-role.kubernetes.io/master
operator: DoesNotExist
#- key: kubernetes.io/hostname
operator: In
values:
- example-host-1

replicas: 1

interfaceType: "vhost"

interfaceConfigs:
 #- name: eth1
 # ip: 181.1.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
 # gateway: 181.1.1.2 # gateway configuration
 # ip6: 181:1:1::1/64 # optional
 # ip6Gateway: 181:1:1::2 # optional
 # routes: # this field is optional
 # - "191.1.1.0/24"
 # - "200.1.1.0/24"
 #- name: eth2
 # ip: 1.21.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
 # gateway: 1.21.1.2 # gateway configuration
 # ip6: 181:2:1::1/64 # optional
 # ip6Gateway: 181:2:1::2 # optional
 # routes: # this field is optional
 # - "111.1.1.0/24"
 # - "192.1.1.0/24"

312

ipSecTunnelConfigs: # untrust
 #- interface: eth1 ## section ike-phase1, proposal, policy, gateway
 # gateway: 171.1.1.1
 # localAddress: 181.1.1.1
 # authenticationAlgorithm: sha-256
 # encryptionAlgorithm: aes-256-cbc
 # preSharedKey: "9zt3l3AuIRhev8FnNVsYoaApu0RcSyev8XO1NVYoDj.P5F9AyrKv8X"
 # trafficSelector:
 # - name: ts1
 # localIP: 111.1.1.0/24 ## IP cannot be 0.0.0.0/0
 # remoteIP: 222.1.1.0/24 ## IP cannot be 0.0.0.0/0

jcnr_config:
 #- name: eth1
 # routes:
 # - "121.1.1.0/24"

#csrx_flavor: specify the csrx deployment model. Corresponding values for csrx control and data
cpus
#must be provided based on the flavor mentioned below. Following are possible options:
CSRX-2CPU-4G
CSRX-4CPU-8G
CSRX-6CPU-12G
CSRX-8CPU-16G
CSRX-16CPU-32G
CSRX-20CPU-48G
csrx_flavor: CSRX-2CPU-4G

csrx_ctrl_cpu: "0x01"

csrx_data_cpu: "0x02"

313

10
CHAPTER

Manage

Manage JCNR Software | 315

Manage JCNR Licenses | 319

Allocate CPUs to the JCNR Forwarding Plane | 322

Manage JCNR Software

SUMMARY

This topic provides information on the available
upgrade, downgrade and uninstall options for JCNR.

IN THIS SECTION

Upgrading JCNR | 315

Downgrading JCNR | 318

Uninstalling JCNR | 318

Upgrading JCNR

Upgrading to JCNR release 24.2 is not supported. You must uninstall your existing JCNR release before
you can install JCNR release 24.2. We show you how to do this below.

NOTE: Starting with JCNR release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal if your existing JCNR release is earlier than release 23.2.

1. Save your current configuration.

a. Save the JCNR Helm chart values.yaml customizations that you made.

b. Access the cRPD pods and save the Junos cRPD CLI configuration.

To see the set of commands used to create the current configuration,

show configuration | display set

To save the configuration, use the Junos CLI save command.

2. Uninstall JCNR.

See "Uninstalling JCNR" on page 318 but don't delete the jcnr namespace or the jcnr-secrets.

3. Download the <sw_package>.tar.gz tarball to the directory of your choice. See "JCNR Software
Download Packages" on page 335 for the available package options.

315

4. Expand the downloaded package.

tar xzvf <sw_package>.tar.gz

5. Change directory to the main installation directory.

If you're installing JCNR only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for JCNR only.

If you're installing JCNR and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for both JCNR and cSRX.

NOTE: All remaining steps in the installation assume that your current working directory is
now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

6. View the contents in the current directory.

ls
helmchart images README.md secrets

316

7. Change to the helmchart directory and expand the Helm chart.

cd helmchart

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

8. Customize the Helm chart helmchart/jcnr/values.yaml file to match the Helm chart configuration you
saved earlier.

9. Install the JCNR Helm chart.

Navigate to the helmchart/jcnr directory and run the following command:

helm install jcnr .

NAME: jcnr
LAST DEPLOYED:
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

10. Confirm the JCNR deployment.

helm ls

317

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

11. Reconfigure cRPD with the saved Junos CLI commands.

Access the cRPD CLI and use the Junos CLI load command to load the previously saved
configuration.

Downgrading JCNR

To downgrade from a current version to an older version, uninstall the current version and install the
older version.

Uninstalling JCNR

Uninstalling JCNR restores interfaces to their original state by unbinding from DPDK and binding back
to the original driver. It also deletes contents of JCNR directories, deletes cRPD created interfaces and
removes any Kubernetes objects created for JCNR. (See the restoreInterfaces attribute in the Helm chart.)

NOTE: Uninstalling JCNR using Helm does not delete the jcnr namespace or the jcnr-secrets.
Delete these manually if needed.

1. Uninstall JCNR.

helm uninstall jcnr

2. Wait for all JCNR resources to be fully deleted before attempting reinstallation.

318

Premature re-installation can lead to installation issues and may require manual steps for recovery. If
this occurs, use one or more of the following commands to clean up the uninstallation:

helm uninstall jcnr --no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>
kubectl delete ns jcnrops

Manage JCNR Licenses

SUMMARY

Learn how to install and renew your JCNR license.

IN THIS SECTION

Installing Your License | 319

Renewing Your License | 320

A JCNR license is required for you to use the containerized Routing Protocol Daemon (cRPD). JCNR
licensing is aligned with the Juniper Agile Licensing (JAL) model. JAL ensures that features are used in
compliance with Juniper's end-user license agreement. You can purchase licenses for JCNR software
through your Juniper Networks representative.

For more information on JAL or for managing multiple license files for multiple JCNR deployments, see
Juniper Agile Licensing Overview.

NOTE: Starting with JCNR Release 23.2, the JCNR license format has changed. Request a new
license key from the JAL portal before deploying or upgrading from a pre-23.2 release to this
release.

Installing Your License

Use this procedure to install your JCNR license.

319

https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as described in the procedures in this section. Without the proper base64-
encoded license key and root password in the jcnr-secrets.yaml file, the cRPD pod may
sometimes not enter Running state, but remain in CrashLoopBackOff state.

1. Encode your license in base64.

base64 -w 0 licenseFile

where licenseFile is the license file that you obtained from Juniper Networks.

The output of this command is your base64-encoded license.

2. Copy and paste your base64-encoded license into secrets/jcnr-secrets.yaml.

The secrets/jcnr-secrets.yaml file contains a parameter called crpd-license:

 crpd-license: |
 <add your license in base64 format>

If this is your first time adding your license, then replace <add your license in base64 format> with your
base64-encoded license.

If you're renewing your license, then replace your old base64-encoded license with your new
base64-encoded license.

Save and quit the file and continue with your installation.

Renewing Your License

Use this procedure to renew your JCNR license.

When your JCNR license expires, you'll receive a License Expired notification through syslog.
Additionally, you can see the License Expired notification event in the JCNR notification log file
(typically /var/log/jcnr/jcnr_notifications.json). The notification looks something like this:
LICENSE_EXPIRED: License for feature Containerized routing protocol daemon with standard features(243) expired.
Contact Juniper partner or account team.

All JCNR features continue to function even after your license expires but will cease to function the
next time the cRPD pod restarts. To prevent this from occurring, contact your Juniper Networks
representative as soon as possible to receive a new license.

320

When you receive your new license, follow these steps to renew your license in the current cluster:

1. Follow "Installing Your License" on page 319 to install your new license.

2. Apply your new license to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml

3. Restart the cRPD pod(s) to pick up the new license.

kubectl delete pod jcnr-xxx-crpd-0 -n jcnr

When you delete a cRPD pod, a new one (with the new license) will be instantiated in its place. If you
have more than one cRPD pod, remember to delete them all.

4. Verify that your license was installed properly.

a. Access the cRPD pod.

kubectl exec -it jcnr-xxx-crpd-0 -n jcnr -- bash

b. Enter CLI mode and show the license.

cli

show system license

The output should show that the containerized-rpd-standard license was installed.

If the output shows that the license was not installed, then double check your steps or call Juniper
Networks for support.

321

Allocate CPUs to the JCNR Forwarding Plane

SUMMARY

Learn how to allocate CPU cores using static CPU
allocation or using the Kubernetes CPU Manager.

IN THIS SECTION

Allocate CPUs Using the Kubernetes CPU
Manager | 322

Allocate CPUs Using Static CPU
Allocation | 325

The JCNR installation Helm chart and the vRouter CRD provide you with a number of controls to
allocate CPU cores to the JCNR vRouter. You can specify the requested number of cores, the core limit,
and the cores to be assigned, either through static CPU allocation or through the Kubernetes CPU
Manager.

Allocate CPUs Using the Kubernetes CPU Manager

Use this procedure to allocate CPU cores to vRouter DPDK pods using the Kubernetes CPU Manager.
This is the recommended approach if your cluster is running the Kubernetes CPU Manager.

1. Specify the resource limits and requests for the contrail-vrouter-kernel-init-dpdk and the
contrail_vrouter_agent_dpdk containers.

a. Locate the helmchart/jcnr/charts/jcnr-vrouter/values.yaml file in your installation directory.

b. Edit that file to specify the resource limits and requests for both the contrail-vrouter-kernel-init-
dpdk and the contrail_vrouter_agent_dpdk containers.

 resources:
 limits:
 cpu: <number_of_cpus>
 memory: <memory>
 requests:
 cpu: <number_of_cpus>
 memory: <memory>

322

To guarantee that each container gets what it's asking for, set the same cpu value in both the limits
and requests sections, and set the same memory value in both the limits and requests sections for each
container.

2. Configure the Helm chart to specify the number of guaranteed vRouter CPUs that you want for the
vRouter pods.

In the main values.yaml file:

a. Disable the static CPU allocation method of assigning CPU cores by commenting out the
following lines:

#cpu_core_mask: "2,3,22,23"
#dpdkCtrlThreadMask: "2,3"
#serviceCoreMask: "2,3"

b. Configure the vRouter DPDK pods to use the guaranteed CPUs reserved by the Kubernetes CPU
Manager.

For example, to reserve 5 CPU cores:

guaranteedVrouterCpus: 5

This value must be:

• greater or equal to the number of CPU cores configured for the contrail-vrouter-kernel-init-dpdk
and the contrail_vrouter_agent_dpdk containers in helmchart/charts/jcnr/jcnr-vrouter/
values.yaml, and

• smaller or equal to the number of CPU cores reserved by the Kubernetes CPU Manager.

The minimum recommended number is one more than the desired number of forwarding cores.

c. Specify the number of CPU cores to use for vRouter DPDK service/control threads.

For example, to reserve 1 core for vRouter DPDK service/control threads:

numServiceCtrlThreadCPU: 1

This leaves the remaining cores (four, in this example) for forwarding.

3. Proceed with your JCNR installation.

323

4. After JCNR is installed, check to make sure the vRouter DPDK pods has a QoS Class of Guaranteed.

kubectl get pod -n contrail contrail-vrouter-masters-vrdpdk-<xxxx> -o yaml | grep -i qosclass

The output should look like this:

qosClass: Guaranteed

5. To find out which CPUs are allocated to the vRouter DPDK container:

kubectl exec -n contrail contrail-vrouter-masters-vrdpdk-<xxxx> -c contrail-vrouter-agent-
dpdk -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

The output should list the cores assigned to the container.

6. To view the CPU assignment from the Kubernetes CPU Manager:

a. SSH into a node where JCNR is running.

b. Look at the Kubernetes CPU Manager state.

For example:

 cat /var/lib/kubelet/cpu_manager_state | jq
{
 "policyName": "static",
 "defaultCpuSet": "0-1,7-11",
 "entries": {
 "915d338f-c013-4984-a53c-51db78476dbf": {
 "contrail-vrouter-agent-dpdk": "2-6",
 "contrail-vrouter-kernel-init-dpdk": "2"
 }
 },
 "checksum": 3199431349
}

NOTE: You'll need to install jq (dnf install -y jq) in order to see formatted output.

324

Allocate CPUs Using Static CPU Allocation

Use this procedure to allocate CPU cores to vRouter DPDK pods using static CPU allocation.
We recommend you use this method only when your cluster is not running the Kubernetes CPU
Manager.

1. Specify the resource limits and requests for the contrail-vrouter-kernel-init-dpdk and the
contrail_vrouter_agent_dpdk containers.

a. Locate the helmchart/jcnr/charts/jcnr-vrouter/values.yaml file in your installation directory.

b. Edit that file to specify the resource limits and requests for both the contrail-vrouter-kernel-init-
dpdk and the contrail_vrouter_agent_dpdk containers.

 resources:
 limits:
 cpu: <number_of_cpus>
 memory: <memory>
 requests:
 cpu: <number_of_cpus>
 memory: <memory>

To guarantee that each container gets what it's asking for, set the same cpu value in both the limits
and requests sections, and set the same memory value in both the limits and requests sections for each
container.

2. Configure the Helm chart to specify the cores that you want the vRouter DPDK to use.

a. Disable the use of the Kubernetes CPU Manager for vRouter core allocation by commenting out
the following:

#guaranteedVrouterCpus: 5
#numServiceCtrlThreadCPU: 1

b. Specify the CPU cores to use for static CPU allocation.

For example, to specify cores 2, 3, 22, and 23:

cpu_core_mask: "2,3,22,23"

c. Specify the CPU cores to use for vRouter DPDK service/control threads.

325

For example, to reserve cores 2 and 3 for vRouter DPDK service/control threads:

dpdkCtrlThreadMask: "2,3"
serviceCoreMask: "2,3"

This example leaves cores 22 and 23 for forwarding.

3. Proceed with your JCNR installation.

326

11
CHAPTER

Troubleshoot

Troubleshoot Deployment Issues | 328

Troubleshoot Deployment Issues

SUMMARY

This topic provides information about how to
troubleshoot deployment issues using Kubernetes
commands and how to view the cloud-native router
configuration files.

IN THIS SECTION

Troubleshoot Deployment Issues | 328

Troubleshoot Deployment Issues

IN THIS SECTION

Verify Cloud-Native Router Controller Configuration | 330

View Log Files | 331

Uninstallation Issues | 332

This topic provides information on some of the issues that might be seen during deployment of the
cloud-native router components and provides a number of Kubernetes (K8s) and shell commands that
you run on the host server to help determine the cause of deployment issues.

Table 40: Investigate Deployment Issues

Potential issue What to check Related Commands

Image not found Check if the images are uploaded to
the local docker using the
command docker images. If not, then
the registry configured in
values.yaml should be accessible.
Ensure image tags are correct.

• kubectl -n jcnr describe pod
<crpd-pod-name>

328

Table 40: Investigate Deployment Issues (Continued)

Potential issue What to check Related Commands

Initialization errors Check if jcnr-secrets is loaded and
has a valid license key [root@jcnr-01]# kubectl get

secrets -n jcnr
NAME
TYPE
 DATA AGE
crpd-token-zp8kc
kubernetes.io/service-account-
token 3 29d
default-token-zn6p9
kubernetes.io/service-account-
token 3 29d
jcnr-secrets
Opaque
 2 29d

Confirm that root password and
license key are present in /var/run/
jcnr/juniper.conf

329

Table 40: Investigate Deployment Issues (Continued)

Potential issue What to check Related Commands

cRPD Pod in CrashLoopBackOff
state

• Check if startup/liveness probe
is failing or vrouter pod not
running

• rpd-vrouter-agent gRPC
connection not UP

• Composed configuration is
invalid or config template is
invalid

• kubectl get pods -A

kubectl -n jcnr describe pod
<crpd-pod-name>

tail –f /var/log/jcnr/jcnr-
cni.log

tail –f /var/log/jcnr/
jcnr_notifications.json

• See Access cRPD CLI to enter
the cRPD CLI and run the
following command:

show krt state channel vrouter

• cat /var/run/jcnr/juniper.conf

vRouter Pod in CrashLoopBackOff
state

Check the contail-k8s-deployer pod
for errors kubectl logs contrail-k8s-

deployer-<pod-hash> -n contrail-
deploy

Verify Cloud-Native Router Controller Configuration

The cloud-native router deployment process creates a configuration file for the cloud-native router
controller (cRPD) as a result of entries in the values.yaml file for L2 mode and custom configuration via
node annotations in L3 mode. You can view this configuration file to see the details of the cRPD

330

configuration. To view the cRPD configuration, navigate to the /var/run/jcnr folder to access the
configuration file details and view the contents of the configuration file.

[root@jcnr-01]# ls
cni config containers envars juniper.conf reboot-canary
[root@jcnr-01]# cat juniper.conf

The cRPD configuration may be customized using node annotations. The cRPD pod will stay in pending
state if the applied configuration is invalid.

You can view the rendered custom configuration in the /etc/crpd/ directory.

[root@jcnr-01]# cat /etc/crpd/juniper.conf.master

In an AWS EKS deployment you can review the rendered custom configuration by accessing the cRPD
CLI and reviewing the contents of the /config directory.

View Log Files

You can view the jcnr log files in the default log_path directory, /var/log/jcnr/. You can change the
location of the log files by changing the value of the log_path: or syslog_notifications: keys in the
values.yaml file prior to deployment.

Navigate to the following path and issue the ls command to list the log files for each of the cloud-native
router components.

cd /var/log/jcnr/

[root@jcnr-01 jcnr]# ls
action.log contrail-vrouter-dpdk-init.log filter
l2cos.log __policy_names_rpdc__
contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log
license mgd-api
__policy_names_rpdn__ cos jcnr-cni.log
messages mosquitto
vrouter-kernel-init.log cscript.log jcnr_notifications.json
messages.0.gz na-grpcd

331

Uninstallation Issues

After the triggering of helm uninstall command, please wait for all Kubernetes resources to be fully
deleted before attempting a re-installation. Premature re-installation can lead to installation stalls and
may require manual steps for recovery. The recovery steps are provided below:

helm uninstall jcnr –no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>
kubectl delete ns jcnrops

332

12
CHAPTER

Appendix

Kubernetes Overview | 334

JCNR Software Download Packages | 335

JCNR Default Helm Chart | 336

Configure Repository Credentials | 344

Deploy Prepackaged Images | 346

CloudFormation Template for EKS Cluster | 347

Juniper Technology Previews (Tech Previews) | 359

Kubernetes Overview

IN THIS SECTION

Kubernetes Overview | 334

Kubernetes Overview

NOTE: Juniper Networks refers to primary nodes and backup nodes. Kubernetes refers to master
nodes and worker nodes. References in this guide to primary and backup correlate with master
and worker in the Kubernetes world.

Kubernetes is an orchestration platform for running containerized applications in a clustered computing
environment. It provides automatic deployment, scaling, networking, and management of containerized
applications.

A Kubernetes pod consists of one or more containers, with each pod representing an instance of the
application. A pod is the smallest unit that Kubernetes can manage. All containers in the pod share the
same network name space.

We rely on Kubernetess to orchestrate the infrastructure that the cloud-native router needs to operate.
However, we do not supply Kubernetes installation or management instructions in this documentation.
See https://kubernetes.io for Kubernetes documentation. Currently, Juniper Cloud-Native Router
requires that the Kubernetes cluster be a standalone cluster, meaning that the Kubernetes primary and
backup functions both run on a single node.

The major components of a Kubernetes cluster are:

• Nodes

Kubernetes uses two types of nodes: a primary (control) node and a compute (worker) node. A
Kubernetes cluster usually consists of one or more master nodes (in active/standby mode) and one or
more worker nodes. You create a node on a physical computer or a virtual machine (VM).

• Pods

Pods live in nodes and provide a space for containerized applications to run. A Kubernetes pod
consists of one or more containers, with each pod representing an instance of the application(s). A

334

https://kubernetes.io

pod is the smallest unit that Kubernetes can manage. All containers in a pod share the same network
namespace.

• Namespaces

In Kubernetes, pods operate within a namespace to isolate groups of resources within a cluster. All
Kubernetes clusters have a kube-system namespace, which is for objects created by the Kubernetes
system. Kubernetes also has a default namespace, which holds all objects that don't provide their
own namespace. The last two preconfigured Kubernetes namespaces are kube-public and kube-
node-lease. The kube-public namespace is used to allow authenticated and unauthenticated users to
read some aspects of the cluster. Node leases allow the kubelet to send heartbeats so that the
control plane can detect node failure.

• Kubelet

The kubelet is the primary node agent that runs on each node. In the case of Juniper Cloud-Native
Router, only a single kubelet runs on the cluster since we do not support multinode deployments.

• Containers

A container is a single package that consists of an entire runtime environment including the
application and its:

• Configuration files

• Dependencies

• Libraries

• Other binaries

Software that runs in containers can, for the most part, ignore the differences in the those binaries,
libraries, and configurations that may exist between the container environment and the environment
that hosts the container. Common container types are docker, containerd, and Container Runtime
Interface using Open Container Initiative compatible runtimes (CRI-O).

JCNR Software Download Packages

IN THIS SECTION

JCNR Software Download Packages | 336

335

JCNR Software Download Packages

Table 41 on page 336 shows the software packages available from the Juniper Networks software
download site:

Table 41: JCNR Software Download Packages

Package Description

Juniper_Cloud_Native_Router_<release>.tar.gz This contains the Helm chart for installing JCNR on all
deployments.

Juniper_Cloud_Native_Router_CSRX_<release>.tar.gz This contains the combined Helm chart for installing
JCNR and cSRX on all deployments.

junos_csrx_<release>.tar.gz This contains the Helm chart for installing cSRX on an
existing JCNR installation on all deployments.

Juniper_Cloud_Native_Router_Service_Module_<releas
e>.tar.gz

This contains the Helm chart for installing the JCNR
VPC Gateway on an Amazon EKS deployment.

NOTE: By default, the provided Helm charts download container images from the Juniper
Networks enterprise-hub.juniper.net repository. Be sure to whitelist the https://enterprise-
hub.juniper.net URL if you intend to use this default repository.

JCNR Default Helm Chart

IN THIS SECTION

Default Helm Chart | 337

336

https://support.juniper.net/support/downloads/?p=juniper-cloud-native-router
https://enterprise-hub.juniper.net
https://enterprise-hub.juniper.net

Default Helm Chart

This is the JCNR release 24.2 default Helm chart values.yaml from the Juniper Networks Software
Download site.

NOTE: This is not a working sample. Customize it for your deployment.

##
Common Configuration (global vars)
##
global:

 registry: enterprise-hub.juniper.net/
 # uncomment below if all images are available in the same path; it will
 # take precedence over "repository" paths under "common" section below
 #repository: path/to/allimages/
 repository: jcnr-container-prod/
 # uncomment below if you are using a private registry that needs authentication
 # registryCredentials - Base64 representation of your Docker registry credentials
 # secretName - Name of the Secret object that will be created
 #imagePullSecret:
 #registryCredentials: <base64-encoded-credential>
 #secretName: regcred

 common:
 vrouter:
 repository: jcnr-container-prod/
 tag: 24.2.0.354
 crpd:
 repository: jcnr-container-prod/
 tag: 24.2R1.14
 jcnrcni:
 repository: jcnr-container-prod/
 tag: 24.2-20240510-d06afc1
 telemetryExporter:
 repository: jcnr-container-prod/
 tag: 24.2.0.354
 tools:
 repository:
 tag: 24.2.0.354
 jcnrinit:

337

https://support.juniper.net/support/downloads/?p=juniper-cloud-native-router

 repository: jcnr-container-prod/
 tag: 24.2.0.354

 # Number of replicas for cRPD; this option must be used for multinode clusters
 # JCNR will take 1 as default if replicas is not specified
 #replicas: "3"

 #noLocalSwitching: [700]
 # Set AWS IAM Role for EKS PAYG deployments
 #iamrole: arn:aws:iam::298183613488:role/jcnr-payg-metering-role

 # fabricInterface: provide a list of interfaces to be bound to dpdk
 # You can also provide subnets instead of interface names. Interfaces name take precedence
over
 # Subnet/Gateway combination if both specified (although there is no reason to specify both)
 # Subnet/Gateway combination comes handy when the interface names vary in a multi-node
cluster
 fabricInterface:
 #########################
 # L2 only
 #- eth1:
 # ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off
 # interface_mode: trunk
 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 #- eth2:
 # ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off
 # interface_mode: trunk
 # vlan-id-list: [700]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 #- bond0:
 # ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
 # interface_mode: trunk

338

 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # #native-vlan-id: 100
 # #no-local-switching: true

 #########################
 # L3 only
 #- eth1:
 # ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off
 #- eth2:
 # ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off
 ########################

 # L2L3
 #- eth1:
 # ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off
 #- eth2:
 # ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off
 # interface_mode: trunk
 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 ##################################

 # Provide subnets instead of interface names
 # Interfaces will be auto-detected in each subnet
 # Only one of the interfaces or subnet range must
 # be configured. This form of input is particularly
 # helpful when the interface names vary in a multi-node
 # K8s cluster
 #- subnet: 10.40.1.0/24
 # gateway: 10.40.1.1
 # ddp: "off" # ddp parameter is optional; options include auto or on
or off; default: off
 #- subnet: 192.168.1.0/24
 # gateway: 192.168.1.1

339

 # ddp: "off" # ddp parameter is optional; options include auto or on
or off; default: off

 ##################################
 # fabricWorkloadInterface is applicable only for Pure L2 deployments
 #
 #fabricWorkloadInterface:
 #- enp59s0f1v0:
 # interface_mode: access
 # vlan-id-list: [700]
 #- enp59s0f1v1:
 # interface_mode: trunk
 # vlan-id-list: [800, 900]
 #########################

 # defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
 log_level: "INFO"

 # "log_path": this directory will contain various jcnr related descriptive logs
 # such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.
 log_path: "/var/log/jcnr/"
 # "syslog_notifications": absolute path to the file that will contain syslog-ng
 # generated notifications in json format
 syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

 # core pattern to denote how the core file will be generated
 # if left empty, JCNR pods will not overwrite the default pattern
 #corePattern: "core.%e.%h.%t"

 # path for the core file; vrouter considers /var/crash as default value
 #coreFilePath: /var/crash

 # nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
 # You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
 #nodeAffinity:
 #- key: node-role.kubernetes.io/worker
 # operator: Exists
 #- key: node-role.kubernetes.io/master
 # operator: DoesNotExist
 #- key: kubernetes.io/hostname
 # operator: In

340

 # values:
 # - example-host-1

 # cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
 # this may be overriden in distributions other than vanilla K8s
 # e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
 #cni_bin_dir: /var/lib/cni/bin

 # grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port
of 50053
 #grpcTelemetryPort: 50053

 # grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
 #grpcVrouterPort: 50060

 # vRouterDeployerPort: use this parameter to override vRouter deployer port default port of
8081
 #vRouterDeployerPort: 8082

jcnr-vrouter:
 # do not configure cpu_core_mask if you wish to use Kubernetes CPU manager static policy
(pod with Guaranteed QoS) for vRouter DPDK
 # cpu_core_mask is the vRouter forward core mask i.e. if specified, vRouter will be run
using the mentioned cores
 cpu_core_mask: "2,3,22,23"

 # configure guaranteedVrouterCpus if you wish to use CPU manager static policy (pod with
Guaranteed QoS) for vRouter DPDK
 #guaranteedVrouterCpus: 4

 # configurable parameter for dpdk control threads
 #dpdkCtrlThreadMask: "2,3"

 # configurable parameter for service core mask
 #serviceCoreMask: "2,3"

 # no of cpus to be assigned to service and control threads if serviceCoreMask,
dpdkCtrlThreadMask and cpuCoreMask are not provided
 #numServiceCtrlThreadCPU: 1

341

 # restoreInterfaces: setting this to true will restore the interfaces
 # back to their original state in case vrouter pod crashes or restarts
 restoreInterfaces: false

 # Enable bond interface configurations L2 only or L2 L3 deployment

 #bondInterfaceConfigs:
 # - name: "bond0"
 # mode: 1 # ACTIVE_BACKUP MODE
 # slaveInterfaces:
 # - "enp59s0f0v0"
 # - "enp59s0f0v1"
 # primaryInterface: "enp59s0f0v0"
 # slaveNetworkDetails: # This section only applies, when network
attachment definition is used as the input
 # - name: srif0net0
 # namespace: default

 # MTU for all physical interfaces(all VF’s and PF’s)
 mtu: "9000"

 # rate limit profiles for bum traffic on fabric interfaces in bytes per second
 stormControlProfiles:
 rate_limit_pf1:
 bandwidth:
 level: 0
 #rate_limit_pf2:
 # bandwidth:
 # level: 0

 dpdkCommandAdditionalArgs: "--yield_option 0"

 # enable monitoring thread example:
 # - logs appear every 100 seconds
 # - log nl_counter & profile_histogram
 # loggingMask explanation:
 # 0b001 = nl_counter
 # 0b010 = lcore_timestamp
 # 0b100 = profile_histogram
 # dpdk_monitoring_thread_config:
 # loggingMask: 5

342

 # loggingInterval: 100

 # Set ddp to enable Dynamic Device Personalization (DDP)
 # Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
 # Options include auto or on or off; default: off
 ddp: "auto"

 # Set true/false to Enable or Disable QOS, note: QOS is not supported on X710 NIC.
 qosEnable: false

 # uio driver will be vfio-pci or uio_pci_generic
 vrouter_dpdk_uio_driver: "vfio-pci"

 # agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk datapath. set
agentModeType to xdp to use ebpf.
 agentModeType: dpdk

 # fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the fabric
interfaces of the JNCR, by default RPF check is disabled
 #fabricRpfCheckDisable: false

 #telemetry:
 # disable: false
 # metricsPort: 8072
 # logLevel: info #Possible options: warn, warning, info, debug, trace, or verbose
 # gnmi:
 # enable: true
 # port: 8076
 #vrouter:
 # telemetry:
 # metricsPort: 8070
 # logLevel: info #Possible options: warn, warning, info, debug, trace, or verbose
 # gnmi:
 # enable: true
 # port: 8075
 # persistConfig: set this flag to true if you wish jcnr-operator generated pod
configuration to persist even after uninstallation
 # use this option only in case of l2 mode
 # default value is false if not specied
 # to enable persist config
 #persistConfig: true

343

 ################### jcnr-operator/windriver section ###################
 # Interface bound type (0 - unbound interface, 1 - sriov pre-bound interface)
 # For WRCP deployment with pre-bound interface please set the field (interfaceBoundType: 1)
 #interfaceBoundType: 1

 # NetworkDetails - list of network attachment definition
 #networkDetails:
 # - ddp: "off" # ddp parameter is optional; options include on or off; default:
off
 # name: srif0net0 # network attachment definition name
 # namespace: default # namespace name where the network attachment definition is
created
 # - ddp: "on"
 # name: srif1net1
 # namespace: default

 # NetworkDeviceResources
 #networkResources:
 # limits:
 # intel.com/pci_sriov_net_datanet0: "1"
 # intel.com/pci_sriov_net_datanet1: "1"
 # requests:
 # intel.com/pci_sriov_net_datanet0: "1"
 # intel.com/pci_sriov_net_datanet1: "1"
 #

contrail-tools:
#set it to true to install contrail-tools
 install: false

Configure Repository Credentials

SUMMARY

344

Read this topic to understand how to configure the enterprise-hub.juniper.net repository credentials
for JCNR installation.

Use this procedure to configure your repository login credentials in your JCNR Helm chart.

The JCNR Helm chart uses your enterprise-hub.juniper.net credentials to pull images from the enterprise-
hub.juniper.net repository.

The JCNR Helm chart expects your credentials to be in a specific format. One way of ensuring your
credentials are in the proper format is to use docker (podman).

1. Install docker if you don't already have docker installed.

For example, for Rocky Linux:

dnf install -y docker

2. Create a .docker directory. This is where you'll store our credentials.

mkdir ~/.docker

3. Log in to the Juniper Networks enterprise-hub.juniper.net repository.

docker login enterprise-hub.juniper.net --authfile=/root/.docker/config.json

Enter your enterprise-hub.juniper.net username and password when prompted. Your credentials are
now stored in ~/.docker/config.json.

4. Encode your credentials in base64 and store the resulting string.

ENCODED_CREDS=$(base64 -w 0 config.json)

Take a look at the encoded credentials.

echo $ENCODED_CREDS

5. Navigate to the Juniper_Cloud_Native_Router_<release-number>/helmchart/jcnr directory. Replace the
credentials placeholder in values.yaml with the encoded credentials.

345

The values.yaml file has a <base64-encoded-credential> credentials placeholder. Simply replace the
placeholder with the encoded credentials.

sed -i s/'<base64-encoded-credential>'/$ENCODED_CREDS/ values.yaml

Double check by searching for the encoded credentials in values.yaml.

grep $ENCODED_CREDS values.yaml

You should see the encoded credentials.

Deploy Prepackaged Images

Use this procedure to import JCNR images to the container runtime from the downloaded JCNR
software package .
Your cluster can pull JCNR images from the enterprise-hub.juniper.net repository or your cluster can use
the JCNR images that are included in the downloaded JCNR software package.

This latter option is useful if your cluster doesn't have access to the Internet or if you want to set up
your own repository.

Setting up your own repository is beyond the scope of this document, but your cluster can still use the
included images if you manually import them to the container runtime on each cluster node running
JCNR. Simply use the respective container runtime commands. We show you how to do this in the
procedure below.

1. Locate the images tarball in the Juniper_Cloud_Native_Router_<release>/images directory.

The images tarball is in a gzipped file (jcnr-images.tar.gz).

2. Copy the gzipped images tarball to every node where you're installing JCNR.

3. SSH to one of the nodes and go to the directory where you copied the gzipped images tarball.

4. Gunzip the gzipped images tarball that you just copied over.

gunzip jcnr-images.tar.gz

ls
jcnr-images.tar

346

5. Import the images to the container runtime.

• containerd: ctr -n k8s.io images import jcnr-images.tar

• docker: docker load -i jcnr-images.tar

6. Check that the images have been imported.

• containerd: ctr -n k8s.io images ls

• docker: docker images

7. Repeat steps 3 to 6 on each node where you're installing JCNR.

When you install JCNR later on, the cluster first searches locally for the required images before reaching
out to enterprise-hub.juniper.net. Since you manually imported the images locally on each node, the
cluster finds the images locally and does not need to download them from an external source.

CloudFormation Template for EKS Cluster

You can use the CloudFormation template below to bring up an Amazon EKS cluster. This template
creates a cluster that meets all the system requirements in "Minimum Host System Requirements for
EKS" on page 128. Use it to quickly get a cluster up and running.

This template assumes you have a VPC and you have subnets associated with at least two availability
zones (AZs).

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Amazon EKS Cluster with Node Group'

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 -
 Label:
 default: "EKS Configuration"
 Parameters:
 - ClusterName
 - ClusterVersion
 - NodeImageIdSSMParam
 - VpcId
 - SubnetIds
 - ExistingClusterSecurityGroups

347

 -
 Label:
 default: "NodeGroup Configuration"
 Parameters:
 - NodeGroupName
 - NodeInstanceType
 - NodeImageId
 - KeyName
 - ASGAutoAssignPublicIp
 - NodeAutoScalingGroupMinSize
 - NodeAutoScalingGroupDesiredSize
 - NodeAutoScalingGroupMaxSize
 - NodeVolumeSize
 - HugePageSize
 - ExistingNodeSecurityGroups
 - ExtraNodeSecurityGroups
 - ExtraNodeLabels

Parameters:
 ClusterName:
 Description: "Provide EKS cluster name for JCNR deployment. Ex: jcnr-payg-cloud-1"
 Type: String

 ClusterVersion:
 Description: Cluster Version
 Type: String
 Default: "1.28"
 AllowedValues:
 - "1.24"
 - "1.25"
 - "1.26"
 - "1.27"
 - "1.28"
 - "latest"

 VpcId:
 Description: "Provide VPC for JCNR EKS cluster"
 Type: AWS::EC2::VPC::Id

 SubnetIds:
 Description: Select minimum 2 subnets from each AvailabilityZones in above VPC

348

 Type: List<AWS::EC2::Subnet::Id>
 ConstraintDescription: Must be a list of at least two existing subnets associated with at
least two different availability zones. They should be residing in the selected Virtual Private
Cloud

 KeyName:
 Description: Key Pair to access Worker Nodes via SSH
 Type: AWS::EC2::KeyPair::KeyName

 NodeImageId:
 Type: String
 Default: ""
 Description: OPTIONAL - Only Specify AMI id for custom AMI to overwrite NodeImageIdSSMParam

 NodeImageIdSSMParam:
 Type: "AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>"
 Default: /aws/service/eks/optimized-ami/1.28/amazon-linux-2/recommended/image_id
 Description: "Match ClusterVersion in default value Ex: If ClusterVersion is 1.27 , replace
1.28 with 1.27"
 AllowedValues:
 - /aws/service/eks/optimized-ami/1.24/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.25/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.26/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.27/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.28/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/latest/amazon-linux-2/recommended/image_id
 ConstraintDescription: Must matches with ClusterVersion parameter

 NodeInstanceType:
 Description: Worker Node Instance Type
 Type: String
 Default: m5.8xlarge
 ConstraintDescription: Must be a valid EC2 instance type

 NodeVolumeSize:
 Type: Number
 Description: Worker Node volume size
 Default: 30

 NodeAutoScalingGroupMinSize:
 Type: Number
 Description: Minimum size of Node Group ASG.
 Default: 1

349

 NodeAutoScalingGroupDesiredSize:
 Type: Number
 Description: Desired size of Node Group ASG.
 Default: 2

 NodeAutoScalingGroupMaxSize:
 Type: Number
 Description: Maximum size of Node Group ASG.
 Default: 2

 ASGAutoAssignPublicIp:
 Type: String
 Description: "auto assign public IP address for ASG instances"
 AllowedValues:
 - "yes"
 - "no"
 Default: "no"

 ExistingClusterSecurityGroups:
 Type: String
 Description: OPTIONAL - attach existing security group ID(s) for your nodegroup
 Default: ""

 ExtraNodeSecurityGroups:
 Type: String
 Description: OPTIONAL - attach extra existing security group ID(s) for your nodegroup
 Default: ""

 ExistingNodeSecurityGroups:
 Type: String
 Description: OPTIONAL - attach extra existing security group ID(s) for your nodegroup
 Default: ""

 ExtraNodeLabels:
 Description: Extra Node Labels(seperated by comma)
 Type: String
 Default: "jcnrcluster=cloud"

 NodeGroupName:
 Description: "Provide Worker Node group name. Ex: jcnr-nodegroup-1"
 Type: String

350

 HugePageSize:
 Type: Number
 Description: Huge Page size, minimum is 8GB
 Default: 8

Conditions:
 CreateLatestVersionCluster: !Equals [!Ref ClusterVersion, latest]
 CreateCustomVersionCluster: !Not [!Equals [!Ref ClusterVersion, latest]]
 HasNodeImageId: !Not [!Equals [!Ref NodeImageId, ""]]
 IsASGAutoAssignPublicIp: !Equals [!Ref ASGAutoAssignPublicIp , "yes"]
 AddExistingSG: !Not [!Equals [!Ref ExistingClusterSecurityGroups, ""]]
 CreateNewNodeSG: !Equals [!Ref ExistingNodeSecurityGroups, ""]
 AttachExistingNodeSG: !Not [!Equals [!Ref ExistingNodeSecurityGroups, ""]]
 AttachExtraNodeSG: !Not [!Equals [!Ref ExtraNodeSecurityGroups, ""]]

Rules:
 SubnetsInVPC:
 Assertions:
 - Assert:
 Fn::EachMemberIn:
 - Fn::ValueOfAll:
 - AWS::EC2::Subnet::Id
 - VpcId
 - Fn::RefAll: AWS::EC2::VPC::Id
 AssertDescription: All subnets must in the VPC

#
Control Plane
#

Resources:
 EKSCluster:
 Type: "AWS::EKS::Cluster"
 Properties:
 Name: !Ref ClusterName
 ResourcesVpcConfig:
 SecurityGroupIds:
 !If
 - AddExistingSG
 - !Split [",", !Sub "${ControlPlaneSecurityGroup},${ExistingClusterSecurityGroups}"]
 -
 - !Ref ControlPlaneSecurityGroup
 SubnetIds: !Ref SubnetIds

351

 RoleArn: !GetAtt EksServiceRole.Arn
 AccessConfig:
 AuthenticationMode: "API_AND_CONFIG_MAP"
 Version:
 Fn::If:
 - CreateCustomVersionCluster
 - !Ref ClusterVersion
 - 1.28

 EksServiceRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service: "eks.amazonaws.com"
 Action: "sts:AssumeRole"
 Path: "/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonEKSClusterPolicy
 - arn:aws:iam::aws:policy/AmazonEKSServicePolicy
 RoleName: !Sub "EksSvcRole-${ClusterName}"

 ControlPlaneSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster communication with worker nodes
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Sub "${ClusterName}-ControlPlaneSecurityGroup"

 ControlPlaneIngressFromWorkerNodesHttps:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow incoming HTTPS traffic (TCP/443) from worker nodes (for API server)
 GroupId: !Ref ControlPlaneSecurityGroup
 SourceSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443

352

 ControlPlaneEgressToWorkerNodesKubelet:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 Description: Allow outgoing kubelet traffic (TCP/10250) to worker nodes
 GroupId: !Ref ControlPlaneSecurityGroup
 DestinationSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 10250
 ToPort: 10250

 ControlPlaneEgressToWorkerNodesHttps:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 Description: Allow outgoing HTTPS traffic (TCP/442) to worker nodes (for pods running
extension API servers)
 GroupId: !Ref ControlPlaneSecurityGroup
 DestinationSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 443
 ToPort: 443

#
Worker Nodes
#

 NodeSecurityGroup:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for all nodes in the cluster
 VpcId:
 !Ref VpcId
 Tags:
 - Key: !Sub "kubernetes.io/cluster/${ClusterName}"
 Value: "owned"
 - Key: Name
 Value: !Sub "${ClusterName}-cluster/NodeSecurityGroup"

 NodeSecurityGroupIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:

353

 Description: Allow node to communicate with each other
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: '-1'

 NodeSecurityGroupFromControlPlaneIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow worker Kubelets and pods to receive communication from the cluster
control plane
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref ControlPlaneSecurityGroup
 IpProtocol: tcp
 FromPort: 10250
 ToPort: 10250

 NodeSecurityGroupFromControlPlaneOn443Ingress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow pods running extension API servers on port 443 to receive communication
from cluster control plane
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref ControlPlaneSecurityGroup
 IpProtocol: tcp
 FromPort: 443
 ToPort: 443

 NodeSecurityGroupFromSSHIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow ssh to worker nodes
 GroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: 0.0.0.0/0

 NodeInstanceRole:
 DependsOn: EKSCluster
 Type: AWS::IAM::Role

354

 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service: "ec2.amazonaws.com"
 Action: "sts:AssumeRole"
 Path: "/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 - arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly
 - arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy
 - arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore

 TG:
 DependsOn: EKSCluster
 Type: "AWS::ElasticLoadBalancingV2::TargetGroup"
 Properties:
 HealthCheckIntervalSeconds: 15
 HealthCheckPath: /
 # HealthCheckPort: String
 HealthCheckProtocol: HTTP
 HealthCheckTimeoutSeconds: 5
 HealthyThresholdCount: 2
 # Matcher: Matcher
 Name: !Sub "${ClusterName}"
 Port: 31742
 Protocol: HTTP
 TargetType: instance
 UnhealthyThresholdCount: 2
 VpcId: !Ref VpcId

 NodeGroup:
 DependsOn: EKSCluster
 Type: "AWS::EKS::Nodegroup"
 Properties:
 UpdateConfig:
 MaxUnavailable: 1
 ScalingConfig:
 MinSize: !Ref NodeAutoScalingGroupMinSize
 DesiredSize: !Ref NodeAutoScalingGroupDesiredSize

355

 MaxSize: !Ref NodeAutoScalingGroupMaxSize
 Labels: {}
 Taints: []
 CapacityType: "ON_DEMAND"
 NodegroupName: !Ref NodeGroupName
 NodeRole: !GetAtt NodeInstanceRole.Arn
 Subnets: !Ref SubnetIds
 AmiType: "CUSTOM"
 LaunchTemplate:
 Version: !GetAtt MyLaunchTemplate.LatestVersionNumber
 Id: !Ref MyLaunchTemplate
 ClusterName: !Ref ClusterName
 InstanceTypes: []

 CSIDriverAddon:
 DependsOn: EKSCluster
 Type: "AWS::EKS::Addon"
 Properties:
 AddonName: "aws-ebs-csi-driver"
 AddonVersion: "v1.28.0-eksbuild.1"
 ClusterName: !Ref ClusterName

 VPCCNIAddon:
 DependsOn: EKSCluster
 Type: "AWS::EKS::Addon"
 Properties:
 AddonName: "vpc-cni"
 AddonVersion: "v1.15.1-eksbuild.1"
 ClusterName: !Ref ClusterName

#
Launch Template
#
 MyLaunchTemplate:
 Type: AWS::EC2::LaunchTemplate
 Properties:
 LaunchTemplateName: !Sub "eksLaunchTemplate-${AWS::StackName}"
 LaunchTemplateData:
 # SecurityGroupIds:
 # - !Ref NodeSecurityGroup
 TagSpecifications:
 -
 ResourceType: instance

356

 Tags:
 - Key: ltname
 Value: !Sub "eksLaunchTemplate-${AWS::StackName}"
 - Key: "eks:cluster-name"
 Value: !Sub "${ClusterName}"
 - Key: !Sub "kubernetes.io/cluster/${ClusterName}"
 Value: "owned"
 UserData:
 Fn::Base64:
 !Sub |
 #!/bin/bash
 echo '#!/bin/bash
 modprobe vfio-pci
 modprobe vfio_iommu_type1
 modprobe allow_unsafe_interrupts=1
 modprobe 8021q
 echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
 echo Y > /sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts
 cd /sys/module/vfio/parameters/
 echo Y > enable_unsafe_noiommu_mode
 exit 0' > /usr/local/bin/jcnr_startup
 chmod +x /usr/local/bin/jcnr_startup

 echo '[Unit]
 Description=/usr/local/bin/jcnr_startup Compatibility
 ConditionPathExists=/usr/local/bin/jcnr_startup

 [Service]
 Type=forking
 ExecStart=/usr/local/bin/jcnr_startup start
 TimeoutSec=0
 StandardOutput=tty
 RemainAfterExit=yes
 SysVStartPriority=99

 [Install]
 WantedBy=multi-user.target' > /etc/systemd/system/jcnr-startup.service
 sudo systemctl enable jcnr-startup
 sudo systemctl start jcnr-startup

 if [! -f /var/jcnr_startup_flag]; then
 sudo sed -i 's/\(GRUB_CMDLINE_LINUX_DEFAULT=".*\)"/\1 default_hugepagesz=1G
hugepagesz=1G hugepages=${HugePageSize} intel_iommu=on iommu=pt"/' /etc/default/grub

357

 grub2-mkconfig -o /boot/grub2/grub.cfg
 set -o xtrace
 /etc/eks/bootstrap.sh ${ClusterName}
 /opt/aws/bin/cfn-signal \
 --exit-code $? \
 --stack ${AWS::StackName} \
 --resource NodeGroup \
 --region ${AWS::Region}
 touch /var/jcnr_startup_flag
 sleep 2m
 reboot
 fi
 KeyName: !Ref KeyName
 NetworkInterfaces:
 - DeviceIndex: 0
 AssociatePublicIpAddress:
 !If
 - IsASGAutoAssignPublicIp
 - 'true'
 - 'false'
 Groups:
 !If
 - CreateNewNodeSG
 - !If
 - AttachExtraNodeSG
 - !Split [",", !Sub "${NodeSecurityGroup},${ExtraNodeSecurityGroups}"]
 -
 - !Ref NodeSecurityGroup
 - !Split [",", !Ref ExistingNodeSecurityGroups]
 ImageId:
 !If
 - HasNodeImageId
 - !Ref NodeImageId
 - !Ref NodeImageIdSSMParam
 InstanceType: !Ref NodeInstanceType
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: !Ref NodeVolumeSize
 VolumeType: gp2
 DeleteOnTermination: true

358

Juniper Technology Previews (Tech Previews)

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain
wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

359

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper Cloud-Native Router Overview
	Juniper Cloud-Native Router Components
	JCNR vRouter Datapath
	JCNR Deployment Modes
	JCNR Interfaces Overview

	Install Cloud-Native Router on Baremetal Server
	Install and Verify Juniper Cloud-Native Router for Baremetal Servers
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Baremetal Servers
	Customize JCNR Helm Chart for Bare Metal Servers
	Customize JCNR Configuration

	Install Cloud-Native Router on Red Hat OpenShift
	Install and Verify Juniper Cloud-Native Router for OpenShift Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for OpenShift Deployment
	Customize JCNR Helm Chart for OpenShift Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Amazon EKS
	Install and Verify Juniper Cloud-Native Router on Amazon EKS
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL)
	Verify JCNR Installation on Amazon EKS

	System Requirements for EKS Deployment
	Customize JCNR Helm Chart for EKS Deployment
	Customize JCNR Configuration
	Deploy JCNR as a VPC Gateway
	JCNR VPC Gateway Overview
	Install the JCNR VPC Gateway
	Prepare the MetalLB Cluster
	Prepare the JCNR VPC Gateway Cluster
	Prepare the On-Premises Cluster

	Install Cloud-Native Router on Google Cloud Platform
	Install and Verify Juniper Cloud-Native Router for GCP Deployment
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Via Google Cloud Marketplace
	Verify Installation

	System Requirements for GCP Deployment
	Customize JCNR Helm Chart for GCP Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Wind River Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Wind River Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Wind River Deployment
	Customize JCNR Helm Chart for Wind River Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on Microsoft Azure Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Azure Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Azure Deployment
	Customize JCNR Helm Chart for Azure Deployment
	Customize JCNR Configuration

	Install Cloud-Native Router on VMWare Tanzu
	Install and Verify Juniper Cloud-Native Router for VMWare Tanzu
	System Requirements for Tanzu Deployment
	Customize JCNR Helm Chart for Tanzu Deployment
	Customize JCNR Configuration

	Deploying Service Chain (cSRX) with JCNR
	Deploying Service Chain (cSRX) with JCNR
	Install cSRX on an Existing JCNR Installation
	Install cSRX During JCNR Installation
	Apply the cSRX License and Configure cSRX
	Customize cSRX Helm Chart

	Manage
	Manage JCNR Software
	Upgrading JCNR
	Downgrading JCNR
	Uninstalling JCNR

	Manage JCNR Licenses
	Installing Your License
	Renewing Your License

	Allocate CPUs to the JCNR Forwarding Plane
	Allocate CPUs Using the Kubernetes CPU Manager
	Allocate CPUs Using Static CPU Allocation

	Troubleshoot
	Troubleshoot Deployment Issues
	Troubleshoot Deployment Issues

	Appendix
	Kubernetes Overview
	JCNR Software Download Packages
	JCNR Default Helm Chart
	Configure Repository Credentials
	Deploy Prepackaged Images
	CloudFormation Template for EKS Cluster
	Juniper Technology Previews (Tech Previews)

