
Cloud Native Contrail Networking

Cloud-Native Contrail Networking
Feature Guide

Published

2022-09-26

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Cloud Native Contrail Networking Cloud-Native Contrail Networking Feature Guide
Copyright © 2022 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Configure Kubernetes and Contrail

Enable IP Fabric Forwarding and Fabric Source NAT | 2

Enable Pods with Multiple Network Interfaces | 7

Overview: IPv4 and IPv6 Dual-Stack Networking | 14

Kubernetes Network Policy Support | 17

Encrypt Secret Data at Rest | 23

Lens Install with CN2 Extension | 24

Benefits | 24

Install Lens | 25

Download and Install CN2 Extension for Lens | 25

Connect Your Cloud-Native Contrail Networking Cluster to Lens | 26

Uninstall the CN2 Extension | 26

2 Advanced Virtual Networking

Kubernetes Ingress Support | 29

Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking | 33

Configure Inter-Virtual Network Routing Through Route Targets | 52

Enable BGP as a Service | 56

Configure IPAM for Pod Networking | 69

Create an Isolated Namespace | 74

Namespace Overview | 74

Example: Isolated Namespace Configuration | 76

Isolated Namespace Objects | 79

iii

Create an Isolated Namespace | 79

Optional Configuration: IP Fabric Forwarding and Fabric Source NAT | 81

Enable IP Fabric Forwarding | 81

Enable Fabric Source NAT | 83

Configure Allowed Address Pairs | 85

Enable Packet-Based Forwarding on Virtual Interfaces | 87

Configure Reverse Path Forwarding on Virtual Interfaces | 90

Enable VLAN Subinterface Support on Virtual Interfaces | 92

Health Check | 99

Health Check Overview | 100

Create a Health Check Object | 100

Health Check Process | 105

3 Configure DPDK

Deploy Kubevirt DPDK Dataplane Support for VMs | 107

Deploy DPDK vRouter for Optimal Container Networking | 119

Control Pod Scheduling on DPDK Nodes | 127

4 Configure Services

Display Microservice Status in Cloud-Native Contrail Networking | 136

NodePort Service Support in Cloud-Native Contrail Networking | 141

Create a LoadBalancer Service | 152

LoadBalancer Service Overview | 152

Create a LoadBalancer Service | 153

Configure LoadBalancer Services without Selectors | 160

Dual-Stack Networking Support | 164

5 Analytics

Contrail Networking Analytics | 166

iv

Contrail Networking Metric List | 172

Kubernetes Metric List | 186

Cluster Node Metric List | 225

Contrail Networking Alert List | 242

vRouter Session Analytics in Contrail Networking | 252

Centralized Logging | 260

Port-Based Mirroring | 263

Overview: Port-Based Mirroring | 263

Example: Configure Port-Based Mirroring | 264

Summary | 267

Configurable Categories of Metrics Collection and Reporting (Tech Preview) | 268

Overview: Configurable Categories of Metrics Collection and Reporting | 269

Install and Upgrade | 270

Manage MetricGroup with Kubectl Commands | 271

Manage Metric Groups with UI | 272

Juniper CN2 Technology Previews (Tech Previews) | 274

v

About This Guide

This guide provides an understanding of the features and tasks that you can configure for Juniper Cloud-
Native Contrail® Networking™ (CN2). This guide is appropriate for administrators and operators who
need to know how to use CN2.

Cloud-Native Contrail Networking brings Contrail's rich software-defined network (SDN) feature set to
Kubernetes as a networking platform and container network interface (CNI). Redesigned for cloud native
architectures, Cloud-Native Contrail Networking takes advantage of the benefits that Kubernetes offers,
from ease of management to high scalability to high availability and more. This includes leveraging
standard Kubernetes tools and practices to manage Contrail Networking throughout its life cycle.

Refer to Table 1 on page vi for additional CN2 documentation resources.

Table 1: Additional CN2 Documentation Resources

Title Description

Installation and Life Cycle Management Guide for
OpenShift Container Platform

Provides step-by-step instructions to install CN2 for
OpenShift cluster(s).

Installation and Life Cycle Management Guide for
UpStream Kubernetes

Provides step-by-step instructions to install CN2 for
Kubernetes cluster(s).

Both LCM guides include information regarding terminology, components of CN2, fabric requirements, and
deployment models.

Cloud-Native Contrail Networking Supported
Platforms

CN2 Supported Platforms.

Cloud-Native Contrail Networking Release Notes Describes new features, limitations, platform
compatibility requirements, known behavior, and
resolved issues.

vi

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/en_US/release-independent/contrail-cloud-native/topics/reference/cloud-native-contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail-cloud-native/topics/reference/cloud-native-contrail-supported-platforms.pdf
https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking#cat=release_notes

1
CHAPTER

Configure Kubernetes and Contrail

Enable IP Fabric Forwarding and Fabric Source NAT | 2

Enable Pods with Multiple Network Interfaces | 7

Overview: IPv4 and IPv6 Dual-Stack Networking | 14

Kubernetes Network Policy Support | 17

Encrypt Secret Data at Rest | 23

Lens Install with CN2 Extension | 24

Enable IP Fabric Forwarding and Fabric Source NAT

IN THIS SECTION

Overview: IP Fabric Forwarding | 2

Overview: Fabric Source NAT | 3

Example: Configure Fabric Source NAT | 3

Example: Configure External Networks with IP fabric forwarding | 5

This topic show you enable IP fabric forwarding and fabric source NAT in Kubernetes-orchestrated
environments using Juniper Networks' Cloud-Native Contrail® Networking™ Release 22.1 or later.

Cloud-Native Contrail Networking supports IP fabric forwarding and fabric source NAT. IP fabric
forwarding provides clusters running in the overlay network with a path to the underlay network
through the external virtual network. Fabric source NAT allows a gateway device in a fabric to translate
the source IP address of data plane node traffic exiting the fabric into a public-side IP address.

You can use IP fabric forwarding and fabric source NAT in cloud-networking environments to provide
access to the underlay network. This network access is provided without adding significant network
complexity like other underlay network options, such as complex BGP topologies or firewall setups.

The underlay network access provided by IP fabric forwarding or fabric source NAT enables resources
within pods to directly access the Internet or to pull external artifacts from the underlay network.

Overview: IP Fabric Forwarding

IP fabric forwarding is supported in Kubernetes environments using Cloud-Native Contrail starting in
Release 22.1.

You enable IP fabric forwarding within virtual networks that have access to the external network. These
virtual networks require direct access to the underlay network.

A virtual network that has access to the external network is named the default-externalnetwork by
default. You can create a customized user-defined external network name, if you choose. When you
enable IP fabric forwarding, the path to the underlay network is directly available to clusters running in
the overlay network through this external virtual network. This direct connection between the overlay
network and the underlay network gives hosts in the overlay network access to the underlay network.

2

Because IP fabric forwarding enables a virtual network to span both the overlay network and the
underlay network, data packets traversing the two networks are not encapsulated and de-encapsulated.
Packet processing, therefore, is more efficient.

IP fabric forwarding is also extremely useful for load balancing network traffic. A LoadBalancer service
automatically detects any external virtual network that has enabled IP fabric forwarding when load-
balancing external network traffic.

Overview: Fabric Source NAT

Fabric source NAT is supported in Kubernetes environments using Cloud-Native Contrail Networking
starting in Release 22.1. Fabric source NAT provides a method for traffic from a data plane node in a
Kubernetes environment to directly access the Internet without traversing a separate NAT firewall. You
can also use source NAT to pull external artifacts into pods when needed.

Traffic from data plane nodes destined for the Internet must traverse a gateway device. This gateway
device is a member device in the fabric that also has at least one interface connected to the public
network. When fabric source NAT is enabled, the gateway device translates the source IP address of the
originating packet from the data plane node into its own public side IP address. This address translation
allows traffic from the data plane node to access the Internet.

The IP address translation performed by source NAT also updates the source port in the packet.
Multiple data plane nodes can reach the public network through a single gateway public IP address using
fabric source NAT.

You need fabric source NAT to translate the IP addresses of traffic exiting the fabric to the Internet. You
are not using NAT to translate incoming traffic with this feature.

Example: Configure Fabric Source NAT

Fabric source NAT is disabled by default in user-created virtual networks.

You can enable fabric source NAT manually in any individual virtual network by setting the fabricsource
NAT: variable in the VirtualNetwork object to true. You can disable fabric source NAT by setting this
value to false.

The following is an example of a virtual network object that has enabled fabric source NAT:

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork

3

metadata:
 namespace: contrail
 name: virtualnetwork-sample
 annotations:
 core.juniper.net/display-name: Sample Virtual Network
 core.juniper.net/description:
 VirtualNetwork is a collection of end points (interface or ip(s) or MAC(s))
 that can communicate with each other by default. It is a collection of
 subnets whose default gateways are connected by an implicit router
spec:
 ...
 fabricsource NAT: true

You can also configure your environment to enable fabric source NAT in any user-created virtual
network when the virtual network is created. If you want to enable fabric source NAT in any user-
created virtual network upon creation, set the enablesource NAT variable in the ApiServer resource to
true when initially deploying your environment.

You must set this configuration in the ApiServer resource during initial deployment. You cannot change
this setting in your environment after you apply the deployment YAML file. If you want to change the
fabric source NAT setting for an individual virtual network after initial deployment, you must change the
configuration manually for that network.

Following is a representative YAML file configuration:

 apiVersion: configplane.juniper.net/v1alpha1
 kind: ApiServer
 metadata:
 ...
 spec:
 enablesource NAT: true
 common:
 containers:
 ...

Fabric source NAT is enabled in any user-created virtual network upon creation when the enablesource
NAT variable is true. You can disable fabric source NAT when user-created virtual networks are created
by setting the enablesource NAT variable to false. Fabric source NAT is disabled by default.

Fabric source NAT automatically selects the IP addresses for translation. You do not need to configure
address pools for fabric source NAT in most Cloud-Native Contrail Networking use cases. Address pools

4

are configurable, however, using the portTranslationPools: hierarchy within the GlobalVrouterConfig
resource.

Example: Configure External Networks with IP fabric forwarding

IP fabric forwarding is disabled by default.

You can enable IP fabric forwarding in any virtual network by setting the fabricForwarding: variable in
the v4SubnetReference: or v6SubnetReference: hierarchies to true.

Following is an example of how to enable IP fabric forwarding in an external virtual network that
accesses the Internet through an IPv4 gateway:

kind: VirtualNetwork
metadata:
 namespace: contrail
 name: external-vn
 labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external
 annotations:
 core.juniper.net/display-name: Sample Virtual Network
 core.juniper.net/description:
 VirtualNetwork is a collection of end points (interface or ip(s) or MAC(s))
 that can communicate with each other by default. It is a collection of
 subnets whose default gateways are connected by an implicit router
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: contrail
 name: external-subnet
 fabricForwarding: true

You can also enable IP fabric forwarding while creating the external virtual network that has a path to
the Internet.

You configure a virtual network's path to an external network through the Kubemanager resource in
environments using Contrail Networking.

5

You enable external access for a virtual network by connecting the virtual network to an IPv4 or IPv6
gateway IP subnet address. You enable IP fabric forwarding for the external traffic in the virtual network
using the same Kubemanager resource.

NOTE: You must configure the external network subnets and this IP fabric forwarding setting
during the initial Cloud-Native Contrail deployment. You cannot configure these parameters after
the initial deployment YAML is applied.

The following example shows a representative YAML file used to configure a Kubemanager resource
that creates a virtual network with external network access. The virtual network in this example runs
with IP fabric forwarding. You would have to commit this YAML file during initial deployment.

 apiVersion: configplane.juniper.net/v1alpha1
 kind: Kubemanager
 metadata:
 ...
 spec:
 externalNetworkV4Subnet: # Fill V4 Subnet of an external network if any
 externalNetworkV6Subnet: # Fill V6 Subnet of an external network if any
 ipFabricFowardingExtSvc: true
 common:
 containers:
 ...

You specify the IPv4 subnet or the IPv6 subnet of the external network using the
externalNetworkV4Subnet or externalNetworkV6Subnet: variable in this YAML file. The subnet address
is a public-side IP address that is reachable from the Internet through the gateway device. When you
configure a Kubemanager resource using this YAML file, a new virtual network to the specified external
network is created. This virtual network is named default-externalnetwork in the default namespace for
Contrail Networking.

IP fabric forwarding runs in the virtual network with external network access when the
ipFabricFowardingExtSvc variable is true. You can disable IP fabric forwarding for the external subnet by
setting the ipFabricFowardingExtSvc variable to false.

6

Enable Pods with Multiple Network Interfaces

IN THIS SECTION

Multiple Network Interfaces in Cloud-Native Contrail Benefits | 7

Multiple Network Interfaces in Cloud-Native Contrail Overview | 8

Cloud-Native Contrail Integration with Multus Overview | 9

Create a Network Attachment Definition Object | 9

Configure a Pod to Use Multiple Interfaces | 12

Disable the Network Attachment Definition Controller | 13

Cloud-Native Contrail® Networking™ (CN2) supports multiple network interfaces for a pod within
Kubernetes.

Cloud-Native Contrail Networking natively supports multiple network interfaces for a pod.

You can also enable multiple network interfaces in Cloud-Native Contrail Networking using Multus.
Multus is a container network interface (CNI) plugin for Kubernetes developed by the Kubernetes
Network Plumbing Working Group. Cloud-Native Contrail can interoperate with Multus to provide
support for multiple interfaces provided by multiple CNIs in a pod.

This document provides the steps to enable multiple interfaces for a pod in environments using Release
22.1 or later in Kubernetes-orchestrated environments. It includes information about when and how to
enable multiple networking interfaces.

Multiple Network Interfaces in Cloud-Native Contrail Benefits

Support for multiple network interfaces is useful or required in many cloud-networking environments. A
few common examples:

• Pods routinely require a data interface to carry data traffic and a separate interface for management
traffic.

• Virtualized network functions (VNFs) typically need three interfaces—a left, a right, and a
management interface—to provide network functions. A VNF often can't provide its function with a
single network interface.

7

• Cloud network topologies routinely need to support two or more network interfaces to isolate
management networks from tenant networks.

• In customized or high-scale cloud-networking environments, you often must use a cloud-networking
product that supports multiple network interfaces to meet a variety of environment-specific
requirements.

A pod in a Kubernetes cluster using the default CNI has a single network interface for sending and
receiving network traffic. Cloud-Native Contrail Networking provides native support for multiple
network interfaces. Cloud-Native Contrail also supports Multus integration, allowing environments using
Cloud-Native Contrail for networking to support multiple network interfaces using Multus.

Multiple Network Interfaces in Cloud-Native Contrail Overview

You can enable multiple network interfaces in Cloud-Native Contrail using Multus and without using
Multus. Multus is a container network interface (CNI) plugin for Kubernetes that enables support for
multiple network interfaces on a pod as well as multihoming between pods. Multus can simultaneously
support interfaces from multiple delegate CNIs, allowing for the creation of cloud-networking
environments interconnected using CNIs provided by different vendors including Cloud-Native Contrail.
Multus is often called a "meta-plugin" because of this multi-vendor support.

You should enable multiple network interfaces using the native Cloud-Native Contrail Networking
support for multiple interfaces for the following reasons;

• You do not want the overhead of enabling and maintaining Multus in your environment.

• You are using Cloud-Native Contrail Networking as your only container networking interface (CNI).

• You do not want to create and maintain Network Attachment Definition (NAD) objects to support
multiple network interfaces in your environment.

You must create a NAD object to enable multiple network interfaces with Multus. You do not have to
configure a NAD object to enable multiple network interfaces if you are not using Multus.

Each NAD object, notably, creates a virtual network and a subnet that have to be monitored and
maintained.

You should enable multiple network interfaces using Multus for the following reasons:

• You are using Cloud-Native Contrail in an environment that is already using Multus. Multus is
especially common in environments using Openshift orchestration.

• You need the "meta-plugin" capabilities provided by Multus. You are using Cloud-Native Contrail in
an environment where a pod is using multiple interfaces and the multiple interfaces are being
managed by Cloud-Native Contrail and other CNIs.

8

• You need some of the other Multus features in your environment.

Cloud-Native Contrail Integration with Multus Overview

A Contrail vRouter is natively Multus-aware. No Cloud-Native Contrail Networking-specific
configuration is required to enable Multus interoperability with Cloud-Native Contrail.

This list summarizes Cloud-Native Contrail support interoperability options with Multus.

• Cloud-Native Contrail is compatible with Multus CNI version 0.3.1.

• Cloud-Native Contrail is supported as a primary CNI with Multus. It is not supported with Multus as
the secondary CNI.

• Cloud-Native Contrail is supported as a delegate CNI for Multus. Cloud-Native Contrail should
function as the default CNI or as one of the delegate CNIs when it is interoperating in a cluster with
Multus.

• Cloud-Native Contrail supports interoperability with Multus when in vRouter kernel mode or DPDK
mode.

Multus is a third-party plugin. You enable and configure Multus within Kubernetes but entirely outside
of Cloud-Native Contrail. To enable Multus, you can apply the multus-daemonset.yml files provided by
the Kubernetes Network Plumbing Working Group. The Kubernetes Network Plumbing Working Group
is the open-source group that develops Multus.

For detailed information about Multus, see the Multus CNI Usage Guide from the Kubernetes Network
Plumbing Working Group.

Create a Network Attachment Definition Object

You do not need to create a NetworkAttachmentDefinition (NAD) object to enable multiple interfaces
using the native multiple interfaces support in Cloud-Native Contrail Networking. You can skip this
section if you are not using Multus to enable multiple network interfaces in your environment. If you are
not using NAD objects but need to create a virtual network, see https://www.juniper.net/
documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-
network-feature/topics/concept/Contrail_Network_Policy_Implementation_in_CN2.html.

This section illustrates how to create a NAD object using a YAML file. You configure Cloud-Native
Contrail into the NAD object using the juniper.net/networks annotation. We provide a representative
example of the YAML file that creates the NAD object and a field descriptions table later in this section.

9

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/deployments/multus-daemonset.yml
https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/how-to-use.md
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/concept/Contrail_Network_Policy_Implementation_in_CN2.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/concept/Contrail_Network_Policy_Implementation_in_CN2.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/concept/Contrail_Network_Policy_Implementation_in_CN2.html

Be sure to include the juniper.net/networks annotation when you create the
NetworkAttachmentDefinition object. If you define the YAML file to create the
NetworkAttachmentDefinition object without using the juniper.net/networks annotation, the
NetworkAttachmentDefinition object is treated as a third-party object. No Contrail-related objects will
be created in the network, including the VirtualNetwork object and the Subnet object.

You create the NetworkAttachmentDefinition object in a Kubernetes environment using the network
attachment definition (NAD) controller. The NAD controller runs in kube-manager and either creates a
VirtualNetwork object or updates an existing VirtualNetwork object when a
NetworkAttachmentDefinition is successfully created. The NAD controller is enabled by default but you
can disable it; see "Disable the Network Attachment Definition Controller" on page 13.

Following is a representative example of the YAML file used to create a NetworkAttachmentDefinition
object:

 apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: networkname-1
 namespace: nm1
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.10.0/24",
 "ipamV6Subnet": "2001:db8::/64",
 "routeTargetList": ["target:23:4561"],
 "importRouteTargetList": ["target:10.2.2.2:561"],
 "exportRouteTargetList": ["target:10.1.1.1:561"],
 "fabricSNAT": true
 }'
 spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "juniper-network",
 "type": "contrail-k8s-cni"
 }'

The NetworkAttachmentDefinition Object Fields table provides usage details for the variables in the
NetworkAttachmentDefinition object file.

10

Table 2: NetworkAttachmentDefinition Object Fields

Variable Usage

ipamV4Subnet (Optional) Specifies the IPv4 subnet address for the
virtual network.

ipamV6Subnet (Optional) Specifies the IPv6 subnet address for the
virtual network.

routeTargetList (Optional) Provides a list of route targets that are used
as both import and export routes.

importRouteTargetList (Optional) Provides a list of route targets that are used
as import routes.

exportRouteTargetList (Optional) Provides a list of route targets that are used
as export routes.

fabricSNAT (Optional) Specifies if you'd like to toggle connectivity
to the underlay network using the port mapping
capabilities provided by fabric source NAT.

Set this parameter to true or false. It is set to false by
default.

You should note the following network activities related to the NetworkAttachmentDefinition object:

• The network attachment definition controller works in kube-manager and handles processing of all
network attachment definition objects.

• You can monitor network attachment definition controller updates in juniper.net/network-status.

• IPAM updates are not allowed to the network attachment definition object.

The network attachment definition object creates a virtual network. The Network Attachment Definition
Object Impact on Virtual Networks table provides an overview of how events related to the network
attachment definition object impact virtual networks.

11

Table 3: Network Attachment Definition Object Impact on Virtual Networks

If You Define Then

A namespace for a network attachment definition
object in a single cluster topology,

A VirtualNetwork is created in the same namespace as
the network attachment definition.

This VirtualNetwork will have the same name as the
Network Attachment Definition object. The NAD
object is named using the name: field in the metadata:
hierarchy.

A namespace for a network attachment definition
object in a multi-cluster topology,

The VirtualNetwork namespace is cluster-name-ns..

If a namespace is not defined for a network attachment
definition object in a multi-cluster topology,

The VirtualNetwork namespace is cluster-name-
default.

If you delete a network attachment definition resource, The associated VirtualNetwork object is also deleted.

If you delete a virtual network that was created by the
network attachment definition resource,

The network attachment definition controller
reconciles the issue and recreates the virtual network.

Configure a Pod to Use Multiple Interfaces

You configure multiple interfaces in the pod object. If you are using Multus, you must also configure the
NAD object as outlined in "Create a Network Attachment Definition Object" on page 9.

In the following example, you create two interfaces for network traffic in the juniper-pod-1 pod; tap1
and tap2.

apiVersion: v1
kind: Pod
metadata:
 name: juniper-pod-1
 namespace: juniper-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [

12

 {
 "name":"juniper-network1",
 "namespace":"juniper-ns",
 "cni-args":null,
 "ips":["172.16.20.42"],
 "mac":"de:ad:00:00:be:ef",
 "interface":"tap1"
 },
 [
 {
 "name":"juniper-network2",
 "namespace":"juniper-ns",
 "cni-args":null,
 "ips":["172.16.21.42"],
 "mac":"de:ad:00:00:be:ee",
 "interface":"tap2"
 }
]

Disable the Network Attachment Definition Controller

The network attachment definition controller is part of the kube-manager object. You enable and disable
this controller using the enableNad: variable within the YAML file that defines the kubemanager object.
The network attachment definition controller is enabled by default.

You might want to disable the network attachment definition controller to prevent the application of
NetworkAttachmentDefinion objects.

In the following example, the network attachment definition controller is disabled:

kind: Kubemanager
metadata:
 name: remote-cluster
 namespace: contrail
spec:
 common:
 nodeSelector:
 node-role.kubernetes.io/master: ""
 enableNad: false

13

Overview: IPv4 and IPv6 Dual-Stack Networking

SUMMARY

Cloud-Native Contrail® Networking™ supports dual-
stack networking for your Kubernetes cluster. When
you bring up a Kubernetes cluster, dual stack is
enabled by default. The Cloud-Native Contrail
Networking deployer then creates dual-stack (IPv4,
IPv6) pod networks and service networks.

IN THIS SECTION

IPv4 and IPv6 Overview | 14

Dual-Stack Networking Prerequisites | 14

Enable Dual-Stack Networking | 15

IPv4 and IPv6 Overview

The ever-increasing scale and complexity of small, medium, and enterprise networks means that the
demand for IP addresses is greater than ever before. As a result of the increasing demand for IP
addresses, the number of IPv4 addresses that service providers allocate is scarce. In addition, service
providers must serve current IPv4 customers and new IPv6 customers simultaneously. Since IPv4
comprises the majority of current network infrastructure, most of these IPv6 networks attempt to
communicate with IPv4 destinations.

The scarcity of IPv4 addresses is not new, and modern solutions like dual-stack virtual networking
facilitate the transition between IPv4 and IPv6 efficiently. A dual-stack device has network interfaces
that send and receive both IPv4 and IPv6 packets. In the case of virtual networking, the dual-stack
feature of your Kubernetes cluster assigns both IPv4 addresses and IPv6 addresses to pods.

Dual-Stack Networking Prerequisites

Dual-stack networking requires the following:

• Kubernetes version 1.20 or later

• Provider support for dual-stack networking

Your provider must be able to provide Kubernetes nodes with routable IPv4 and IPv6 networking
interfaces.

• A network plug-in that supports dual stack (provided with Cloud-Native Contrail Networking)

14

Enable Dual-Stack Networking

The following Kubernetes distributions support dual-stack networking:

• Kubeadm

• Kubespray

You must set up a Kubeadm or Kubespray Kubernetes cluster with dual-stack featureGate enabled.

Consider the following YAML file. Note that the dual-stack featureGate flag is IPv6DualStack: true and that
the IPv6 Classless Inter-Domain Routing (CIDR) subnet is present as podSubnet and serviceSubnet.

apiVersion: kubeadm.k8s.io/v1beta2
bootstrapTokens:
- groups:
 - system:bootstrappers:kubeadm:default-node-token
 token: abcdef.0123456789abcdef
 ttl: 24h0m0s
 usages:
 - signing
 - authentication
kind: InitConfiguration
localAPIEndpoint:
 advertiseAddress: 0.0.0.0
 bindPort: 6443
nodeRegistration:
 name: hostname
 criSocket: unix:///var/run/crio/crio.sock
 kubeletExtraArgs:
 fail-swap-on: "false"
 network-plugin: "cni"
 cni-conf-dir: "/etc/cni/net.d"
 cni-bin-dir: "/opt/cni/bin"

apiServer:
 timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta2
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes-contrail-dev
controllerManager: {}
dns:
 type: CoreDNS

15

etcd:
 local:
 dataDir: /var/lib/etcd
imageRepository: k8s.gcr.io
kind: ClusterConfiguration
kubernetesVersion: v1.20.0
networking:
 dnsDomain: cluster.local
 serviceSubnet: 10.96.0.0/12,2222:0:0:0::/108
 podSubnet: 192.168.0.0/16,2001:0:0:0::/64
scheduler: {}
featureGates:
 IPv6DualStack: true

apiVersion: kubelet.config.k8s.io/v1beta1
authentication:
 anonymous:
 enabled: false
 webhook:
 cacheTTL: 0s
 enabled: true
 x509:
 clientCAFile: /etc/kubernetes/pki/ca.crt
authorization:
 mode: Webhook
 webhook:
 cacheAuthorizedTTL: 0s
 cacheUnauthorizedTTL: 0s
cgroupDriver: systemd
clusterDNS:
- 10.96.0.10
clusterDomain: cluster.local
cpuManagerReconcilePeriod: 0s
evictionPressureTransitionPeriod: 0s
fileCheckFrequency: 0s
healthzBindAddress: 127.0.0.1
healthzPort: 10248
httpCheckFrequency: 0s
imageMinimumGCAge: 0s
kind: KubeletConfiguration
logging: {}
nodeStatusReportFrequency: 0s
nodeStatusUpdateFrequency: 0s

16

rotateCertificates: true
runtimeRequestTimeout: 0s
shutdownGracePeriod: 0s
shutdownGracePeriodCriticalPods: 0s
staticPodPath: /etc/kubernetes/manifests
streamingConnectionIdleTimeout: 0s
syncFrequency: 0s
volumeStatsAggPeriod: 0s

Cloud-Native Contrail Networking deployer uses the IPv6 CIDR to create an IPv6 subnet for the
podNetwork. Subsequent pod networks that you create contain an IPv6 subnet. As a result, pods receive
IPv4 and IPv6 addresses.

NOTE: Cloud-Native Contrail Networking does not currently support IPv6 for services. The
service network is IPv4 only.

RELATED DOCUMENTATION

IPv4/IPv6 dual-stack

Dual-stack support with kubeadm

Deploy a Production Ready Kubernetes Cluster

Kubernetes Network Policy Support

SUMMARY

Juniper Cloud-Native Contrail® Networking™ (CN2)
lets you deploy Kubernetes network policies within
the Contrail firewall security policy framework. You
must use a CNI that supports NetworkPolicy, like
Contrail, to deploy a network policy. This topic
provides information about how to deploy a
Kubernetes network policy in environments running
Cloud-Native Contrail Networking.

IN THIS SECTION

Kubernetes Network Policy Overview | 18

Deploy a Kubernetes Network Policy in
Cloud-Native Contrail Networking | 20

Kubernetes Network Policy matchExpressions
 | 23

17

https://kubernetes.io/docs/concepts/services-networking/dual-stack/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/dual-stack-support/
https://github.com/kubernetes-sigs/kubespray#usage

Kubernetes Network Policy Overview

Kubernetes network policies let you specify how pods communicate with other pods and network
endpoints. A Kubernetes NetworkPolicy resource enables a pod to communicate with:

• Other pods in the allowlist (a pod cannot block access to itself).

• Namespaces in the allowlist.

• IP blocks, or Classless Inter-Domain Routing (CIDRs).

Kubernetes network policies apply only to pods within a namespace and define ingress (source) and
egress (destination) rules. Kubernetes network policies have the following characteristics when applied
to a pod:

• Pod specific and apply to a single pod or a group of pods. Network policy rules dictate the traffic to
that pod.

• Define traffic rules for a pod for ingress traffic, egress traffic, or both. If you don't specify a direction
explicitly, the policy applies to the ingress direction by default.

• Must contain explicit rules that specify traffic from the allowlist in the ingress and egress directions.
Traffic that does not match the allowlist rules is denied.

• Permitted traffic includes traffic matching any of the network policies applied to a pod.

Kubernetes network policies have the following additional characteristics:

• When not applied to a pod, that pod accepts traffic from all sources.

• Act on connections rather than individual packets. For example, if traffic from pod A to pod B is
allowed by the configured policy, then the packets from pod B to pod A are also allowed, even if the
policy in place does not allow pod B to initiate a connection to pod A.

A Kubernetes network policy comprises the following sections:

• spec: Describes the desired state of a Kubernetes object. For a network policy, the podSelector and
policyTypes fields within the spec specify the rules for that policy.

• podSelector: Selects the groups of pods to which the policy applies. An empty podSelector selects all
pods in the namespace.

• policyTypes: Specifies whether the policy applies to ingress traffic from selected pods or egress traffic
to selected pods. If no policyTypes are specified, the ingress direction is selected by default.

• ingress: Allows ingress traffic that matches the from and ports sections. In the following example, the
ingress rule allows connections to all pods in the dev namespace with the label app: webserver-dev on
TCP port 80 from:

18

• Any pod in the default namespace with the label app: client1-dev.

• All IP addresses within the 10.169.25.20/32 range.

• Any pod in the default namespace with the label project: jtac.

• egress: Allows egress traffic that matches the to and portssections. In Example 1, the egress rule allows
connections from any pod in the default namespace with the label app: dbserver-dev to port TCP 80.

• ipBlock: Selects IP CIDR ranges to allow as ingress sources or egress destinations. The ipBlock section
of a network policy contains the following two fields:

• cidr (ipBlock.cidr): The network policy allows egress traffic to, or ingress traffic from the specified
IP range.

• except (ipBlock.except): Kubernetes expects traffic in the specified IP range to not match the
policy. The network policy denies ingress traffic to, or egress traffic from the IP range specified in
except.

NOTE:
exceptexceptexceptexcept

The following NetworkPolicy resource example shows ingress and egress rules:

#policy1-do.yaml
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: policy1
namespace: dev
spec:
podSelector:
matchLabels:
app: webserver-dev
policyTypes: - Ingress - Egress
ingress: -
from: - ipBlock:
cidr: 10.169.25.20/32 -
namespaceSelector:
matchLabels:
project: jtac -
podSelector:
matchLabels:

19

app: client1-dev
ports:
- protocol: TCP
port: 80
egress:
- to:
- podSelector:
matchLabels:
app: dbserver-dev
ports: -
protocol:
TCP port: 80

In this example, ingress TCP traffic from IPs within CIDR 10.169.25.20/32 from port: 80 is allowed. Egress
traffic to pods with matchLabels app: dbserver-dev to TCP port: 80 is allowed.

Deploy a Kubernetes Network Policy in Cloud-Native Contrail
Networking

In CN2, after you configure and deploy a Kubernetes network policy, that policy is created automatically
in Contrail. Here's an example of a Kubernetes network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default
spec:
podSelector:
matchLabels:
role: db
app: webserver-dev
policyTypes:
- Ingress
- Egress
ingress:
from:
ipBlock:

20

cidr: 172.17.0.0/16
except:
- 172.17.1.0/24
namespaceSelector:
matchLabels:
project: myproject -
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: TCP
port: 6379
egress:
- to:
- ipBlock:
cidr: 10.0.0.0/24
ports:
- protocol: TCP
TCP port: 5978

This policy results in the following objects being created in CN2:

Tags on page 21

Address Groups on page 22

Firewall Rules on page 22

Firewall Policy on page 23

Table 4: Tags

Key Value

role db

namespace default

project myproject

role frontend

21

Table 5: Address Groups

Name Prefix

test-network-policy-except 172.17.1.0/24

test-network-policy 172.17.0.0/16

test-network-policy-egress 10.0.0.0/24

Table 6: Firewall Rules

Rule Name Action Service Endpoint1 Direction Endpoint2

default-ingress-
test-network-
policy-0-
ipBlock-0-17x.x
x.1.0/24-0

deny tcp:6379 role=db &&
namespace=def
ault

ingress Address Group:
172.17.1.0/24

default-ingress-
test-network-
policy-0-
ipBlock-0-
cidr-17x.xx.0.0/
16-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress Address Group:
172.17.0.0/16

default-ingress-
test-network-
policy-0-
namespaceSelec
tor-1-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress project=myproje
ct

default-ingress-
test-network-
policy-0-
podSelector-2-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress namespace=def
ault &&
role=frontend

22

Table 6: Firewall Rules (Continued)

Rule Name Action Service Endpoint1 Direction Endpoint2

default-egress-
test-network-
policy-
ipBlock-0-
cidr-10.0.0.0/24
-0

pass tcp:5978 role=db &&
namespace=def
ault

egress Address Group:
10.0.0.0/24

Table 7: Firewall Policy

Name Rules

default-test-network-policy default-ingress-test-network-policy-0-
ipBlock-0-172.17.1.0/24-0, default-ingress-test-
network-policy-0-ipBlock-0-cidr-172.17.0.0/16-0

default-ingress-test-network-policy-0-
namespaceSelector-1-0

default-ingress-test-network-policy-0-
podSelector-2-0, default-egress-test-network-policy-
ipBlock-0-cidr-10.0.0.0/24-0

Kubernetes Network Policy matchExpressions

Starting in Cloud-Native Contrail Networking 22.3, CN2 supports Kubernetes Network Policy with
matchExpressions. For more information about matchExpressions, see "Resources that support set-based
requirements" in the Kubernetes documentation.

Encrypt Secret Data at Rest

Juniper Cloud-Native Contrail Networking automatically encrypts secret data at rest in your Kubernetes
cluster and encrypts and any password that you configure. A secret is an object that contains a small
amount of sensitive data such as a password, a token, or a key. Data at rest encryption is a cybersecurity
practice of encrypting stored data to prevent unauthorized access.

23

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements

See the Kubernetes documentation Encrypting Secret Data at Rest for more information.

Lens Install with CN2 Extension

SUMMARY

This document describes the install procedure for
both Lens and the CN2 extension for Lens, as well as
how to connect a Juniper Cloud-Native Contrail®
Networking™ (CN2) cluster to Lens.

IN THIS SECTION

Benefits | 24

Install Lens | 25

Download and Install CN2 Extension for
Lens | 25

Connect Your Cloud-Native Contrail
Networking Cluster to Lens | 26

Uninstall the CN2 Extension | 26

Benefits

Lens is an integrated development environment (IDE) for Kubernetes. The Lens open source tool is
implemented as an interface to manage, monitor, and troubleshoot Contrail Networking clusters.
Benefits include:

• Ease of usability and rich end-user experience.

• Unified, secure, multi-cluster management on any platform: support for hundreds of clusters.

• Standalone application: no need to install anything in-cluster.

• Real-time cluster state visualization.

• Resource utilization charts and trends with history powered by built-in Prometheus.

• Smart terminal access to nodes and containers.

• Clusters can be local (for example, minikube) or external (for example, EKS, GKE, AKS).

24

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Install Lens

Use the following steps to download and install Lens.

1. Navigate to Lens and select your OS from the drop-down list to download Lens.

NOTE: Lens v5.4.4 is the supported and tested version with CN2 extension.

The file looks similar to Lens Setup 5.4.4-latest.20220602.2.

2. Double-click the file you just downloaded from the Lens website and follow the setup wizard
onscreen prompts. Click Finish to complete the install.

Lens is now installed and is listed as Lens on your machine.

Download and Install CN2 Extension for Lens

The CN2 extension is a Lens Custom Extension.

• Lens extensions are used to add custom visualizations and functionality to accelerate development
workflows for all the technologies and services that integrate with Kubernetes.

• Extensions are a plug-in uploaded directly to the Lens UI.

• Extensions are developed using the Lens Extensions API.

Use the following steps to install the CN2 extension for Lens:

1. Download the CN2 extension for Lens from Juniper Networks Software Downloads.

The file name is similar to cn2_lens_extension-VERSION_TAG.tar.

2. Click Launch Lens to start Lens. You are in the Lens application for the remainder of this section.

3. Sign in with your Lens ID user name and password. Follow the prompts to create a Lens ID if you do
not have one.

4. From the top menu bar, select File > Extensions.

5. In the Extensions window, click the folder icon to select the CN2 extension tar file you downloaded
in Step 1 and click Install.

Lens begins installing the CN2 extension. This process takes approximately 10 minutes. You are
notified with a successful installation message and the installed extension showing status Enabled is
displayed on your screen. If Status is Disabled, right click the ":" symbol and select Enable to enable
the extension.

25

https://k8slens.dev/
https://support.juniper.net/support/downloads/

Connect Your Cloud-Native Contrail Networking Cluster to Lens

Use the following steps to connect your Contrail Networking cluster to Lens.

1. Click Launch Lens to start Lens. You are in the Lens application for the remainder of this section.

2. Select File > Add Cluster.

The Add Clusters from Kubeconfig window displays.

3. In the Add Clusters from Kubeconfig window, copy and paste the contents of your kubeconfig file or
your YAML file(s) for the clusters you want to manage. Click Add clusters.

You are now in the Clusters window. Lens automatically populates the Clusters window with all of
the valid clusters Lens finds in your folder. You can have multiple Contrail Networking cluster
configurations in your folder (multiple clusters).

4. Click the cluster you want to connect to and Lens automatically connects to that cluster.

You are now connected to the Contrail Networking cluster.

5. In the left pane, where the Lens options are listed, click CN2 to interact with your cluster.

If you don't see the CN2 menu, select Lens > View > Reload.

CN2 is your extension for Lens. You can select: CN2 > Infrastructure, Networking, Workloads, or
Monitoring.

NOTE: Known Limitation: Lens supports two theme modes, which are Dark and Light. CN2
extension supports Light mode only.

Uninstall the CN2 Extension

To uninstall the CN2 extension:

1. Select Lens > Extensions.

26

2. In Installed extensions, click the " : " and select Uninstall.

Figure 1: Uninstall Lens

27

2
CHAPTER

Advanced Virtual Networking

Kubernetes Ingress Support | 29

Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking | 33

Configure Inter-Virtual Network Routing Through Route Targets | 52

Enable BGP as a Service | 56

Configure IPAM for Pod Networking | 69

Create an Isolated Namespace | 74

Configure Allowed Address Pairs | 85

Enable Packet-Based Forwarding on Virtual Interfaces | 87

Configure Reverse Path Forwarding on Virtual Interfaces | 90

Enable VLAN Subinterface Support on Virtual Interfaces | 92

Health Check | 99

Kubernetes Ingress Support

SUMMARY

Cloud-Native Contrail® Networking™ supports the
Container Network Interface (CNI) for integration
with Kubernetes. This topic provides an overview of
Kubernetes ingress service implementation in Cloud-
Native Contrail Networking. This topic also contains
a list of validated Kubernetes ingress controllers and
their installation instructions.

IN THIS SECTION

Ingress Controller Overview | 29

Validated Ingress Controllers | 31

NGINX Ingress Controller | 31

HAProxy Ingress Controller | 32

Contour Ingress Controller | 32

Ingress Controller Overview

You must have a Kubernetes ingress controller for an ingress to function properly. An ingress controller
receives traffic from outside a Kubernetes cluster and routes and load-balances that traffic to containers
within a cluster. Ingress controllers also manage egress traffic between services within a cluster and
external services. Controllers automatically route traffic to containers depending on service
requirements.

Ingress controllers deploy ingress resources. Ingress resources comprise rules that specify which
inbound traffic connections reach which services (pods). Ingress resources, combined with ingress
controllers, route Layer 7 traffic to containers in a cluster.

Here's an example of an NGINX ingress resource:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: apple-app-echo
 namespace: ingress-nginx-test
spec:
 selector:
 matchLabels:
 app: apple-echo
 replicas: 1
 template:
 metadata:

29

 labels:
 app: apple-echo
 spec:
 containers:
 - name: apple-echo
 image: svl-artifactory.juniper.net/atom-docker/cn2/http-echo:latest
 args:
 - "-text=apple-echo"

Ingress resources contain spec fields such as type: NodePort and type: LoadBalancer. These service types
determine a controller's traffic routing and forwarding behavior. For example, if you enter a NodePort in
the type field, the control plane allocates a port from a range (default 30000–32767) of ports to your
service.

Consider the following example:

apiVersion: v1
kind: Service
metadata:
 name: envoy
 namespace: projectcontour
 annotations:
spec:
 #externalTrafficPolicy: Local
 ports:
 - port: 80
 name: http
 protocol: TCP
 nodePort: 30080
 targetPort: 8080
 - port: 443
 name: https
 protocol: TCP
 targetPort: 8443
 nodePort: 30443
 selector:
 app: envoy
 type: NodePort

Some highlights from the example above include:

• selector: The label selector that determines which set of pods this service targets. In this example, this
service selects any pod with the label app: envoy.

30

https://kubernetes.io/docs/concepts/overview/components/

• port: The service port (80).

• targetPort: The actual port used by the application in the container (8080).

• nodePort: The port on the host of each node in the cluster that your service is exposed to (30080).

Different ingress controllers require different configurations. Review the documentation of your ingress
controller for annotation, specification, and configuration information.

Validated Ingress Controllers

Cloud-Native Contrail Networking supports many ingress controllers. We've validated the following
three popular third party controllers for use with cloud-native Contrail Networking:

• NGINX

• HAProxy

• Contour

NGINX Ingress Controller

NGINX is an open-source HTTP server that also functions as a reverse proxy, load balancer, and IMAP
or POP3 proxy server. The NGINX ingress controller is a Kubernetes controller that deploys an NGINX
configuration using a ConfigMap resource. Other than endpoint-only changes, you must reload NGINX
after any change to the configuration file occurs. This reload mechanism is powered by a lua-nginx-
module. NGINX requires Kubernetes v1.22 or later.

NOTE: We support the NGINX ingress controller in environments using Cloud-Native Contrail
Networking as the SDN (software-defined networking) solution starting in Contrail Networking
Release 21.4.

See the NGINX Ingress Controller installation guide for installation instructions. This guide contains
instructions for installing NGINX using several different methods (Docker, minikube, Helm).

31

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://docs.nginx.com/nginx-ingress-controller/
https://haproxy-ingress.github.io/docs/
https://projectcontour.io/docs/v1.16.0/config/annotations/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#understanding-configmaps-and-pods
https://github.com/openresty/lua-nginx-module
https://github.com/openresty/lua-nginx-module
https://kubernetes.github.io/ingress-nginx/deploy/
https://docs.docker.com/desktop/#download-and-install
https://minikube.sigs.k8s.io/docs/start/#:~:text=minikube%20start%201%20Installation.%20Click%20on%20the%20buttons,4%20Deploy%20applications.%20...%205%20Manage%20your%20cluster
https://helm.sh/

HAProxy Ingress Controller

The HAProxy ingress controller provides TCP and HTTP routing and high availability (HA) load balancing.
HAProxy offers features such as Runtime API, Data Plane API, and hitless reloads. These features excel
in dynamic, high-traffic environments where users constantly deploy, configure, and terminate pods,
services, and microservices. The HAProxy ingress controller v0.13 requires Kubernetes v1.19 or later.

NOTE: Starting in Contrail Networking Release 21.4, we support the HAProxy ingress controller
in environments using Cloud-Native Contrail Networking as the SDN solution.

See the HAProxy Getting Started guide for installation instructions.

NOTE: You must use Helm to install and to configure the HAProxy ingress controller. See
Installing Helm for more information.

Contour Ingress Controller

Contour ingress controller deploys an Envoy proxy as a reverse proxy and load balancer. Envoy is a Layer
7 bus network for proxy services and communication. Envoy deploys as a self-contained proxy instead
of a library. As a result, any application can access Envoy’s load-balancing features. This implementation
is suitable for a distributed system such as a Kubernetes cluster. Other benefits of Contour include:

• Easy installation and integration of Envoy

• Stable ingress support in multi-team Kubernetes clusters.

• Dynamic updates and ingress configuration without interruptions or dropped connections.

Contour requires Kubernetes 1.16 or later. You must enable role-based access control (RBAC) in your
cluster for Contour to function properly.

NOTE: Starting in Contrail Networking Release 21.4, we support the Contour ingress controller
in environments using Cloud-Native Contrail Networking as the SDN solution.

See the Getting Started guide for instructions on how to install the Contour ingress controller. This guide
contains instructions about how to install and configure Contour with either kind or Docker. Install
Contour after installing kind or Docker to run your ingress controller.

32

https://www.haproxy.com/blog/dynamic-configuration-haproxy-runtime-api/
https://www.haproxy.com/blog/new-haproxy-data-plane-api/
https://www.haproxy.com/blog/hitless-reloads-with-haproxy-howto/
https://haproxy-ingress.github.io/docs/getting-started/
https://helm.sh/
https://helm.sh/docs/intro/install/
https://projectcontour.io/getting-started/
https://kind.sigs.k8s.io/docs/user/quick-start/
https://docs.docker.com/desktop/#download-and-install

Deploy VirtualNetworkRouter in Cloud-Native
Contrail Networking

SUMMARY

Cloud-Native Contrail® Networking™ supports the
VirtualNetworkRouter (VNR) construct. This construct
provides connectivity between VirtualNetworks.

IN THIS SECTION

VirtualNetworkRouter Overview | 34

VirtualNetworkRouter Use Cases | 34

Mesh Use Cases | 34

Hub-spoke Use Cases | 35

Mesh VNR That Connects Two or More
Virtual Networks in the Same
Namespace | 35

Add New Virtual Networks Within the Same
Namespace to an Existing Mesh-Type
VNR | 36

Two Mesh VNRs in the Same
Namespace | 37

Two Mesh VNRs with Different
Namespaces | 38

Hub and Spoke VNRs in the Same
Namespace | 39

Hub and Spoke VNRs in Different
Namespaces | 40

Same Virtual Networks Under Multiple
VNRs | 40

Use Case Explanation | 41

Standard Use Case: Single VNR Connecting
Two Virtual Networks | 41

Update Use Case: Single VNR Connecting
Two Additional Virtual Networks | 45

VirtualNetworkRouter Configuration | 48

API Type (Schema) | 48

Mesh VNR | 49

33

Spoke VNR | 50

Hub VNR | 51

VirtualNetworkRouter Overview

Typically, VirtualNetwork traffic is isolated to maintain tenant separation. In Cloud-Native Contrail
Networking, VirtualNetworkRouter (VNR) performs route leaking. Route leaking establishes connectivity
between VirtualNetworks by importing routing instances (RI) and the routing tables associated with these
instances. As a result, devices on one routing table can access resources from devices on another routing
table.

The VNR provides connectivity for the following two common network models:

• Mesh: Pods in all connected VirtualNetworks communicate with each other.

• Hub-spoke: VirtualNetworks connect to two different VNR types (spoke, hub). VirtualNetworks connected
to spoke-type VNRs communicate with VirtualNetworks connected to hub-type VNRs and vice versa.
VirtualNetworks connected to spoke VNRs cannot communicate with other VirtualNetworks attached to
spoke VNRs.

VNR is a Kubernetes construct deployed within Cloud-Native Contrail Networking.

VirtualNetworkRouter Use Cases

The following examples are common use cases that demonstrate the functionality of VNR in Cloud-
Native Contrail Networking.

Mesh Use Cases

• "Mesh VNR That Connects Two or More Virtual Networks in the Same Namespace" on page 35

• "Add New Virtual Networks Within the Same Namespace to an Existing Mesh-Type VNR" on page
36

• "Two Mesh VNRs in the Same Namespace" on page 37

34

• "Two Mesh VNRs with Different Namespaces" on page 38

Hub-spoke Use Cases

• "Hub and Spoke VNRs in the Same Namespace" on page 39

• "Hub and Spoke VNRs in Different Namespaces" on page 40

• "Same Virtual Networks Under Multiple VNRs" on page 40

Mesh VNR That Connects Two or More Virtual Networks in the Same
Namespace

1. Figure-1: The user creates VN1 and VN2 in namespace-1. Pods in VN1 cannot connect to pods in
VN2. This is the default behavior of VirtualNetworks in Cloud-Native Contrail Networking.

2. Figure-2: The user defines a VNR of type mesh that selects VN1 and VN2. This VNR allows Pods in
VN1 to communicate with Pods in VN2 and vice-versa.

3. Figure-3: Pods in VN1 connect to Pods in VN2. The route-target of VNR is importExported to both
VirtualNetworks.

"Back to VirtualNetworkRouter Use Cases" on page 34

35

Add New Virtual Networks Within the Same Namespace to an Existing
Mesh-Type VNR

1. Figure-1: Two VirtualNetworks (VN1, VN2) connect to VNR in namespace-1.

2. Figure-2: The user creates two new VirtualNetworks (VN3, VN4).

3. Figure-3: VN3 and VN4 connect to VNR. As a result, all VirtualNetworksconnected to the VNR receive
connectivity.

"Back to VirtualNetworkRouter Use Cases" on page 34

36

Two Mesh VNRs in the Same Namespace

1. Figure-1: VNR-web and VNR-db of type mesh already exist in namespace-1. Only VNRs connected
to respective VNRs communicate with each other.

2. Figure-2: VNR-web and VNR-db communicate with each other.

3. Figure-3: All VirtualNetworks connected to both VNR-web and VNR-db communicate with each other.

"Back to VirtualNetworkRouter Use Cases" on page 34

37

Two Mesh VNRs with Different Namespaces

1. Fig-1: VNR-web selects VN1 and VN2. Pods in VN1 and VN2 communicate with each other. VN1
and VN2 cannot communicate with VN3 and VN4.

2. Fig-2: VNR-db selects VN3 and VN4. Pods in VN3 and VN4 communicate with each other. VN3 and
VN4 cannot communicate with VN1 and VN2.

3. Fig-3: The user updates VNR-web to select VNR-db.

4. Fig-3: The user updates VNR-db to select VNR-web.

5. Fig-3: Since two VNRs select each other, VNR-web's RT (route target) is added to VN3 and VN4.
VNR-db's RT is added to VN1 and VN2. Pods in VN1, VN2, VN3, and VN4 communicate with each
other.

"Back to VirtualNetworkRouter Use Cases" on page 34

38

Hub and Spoke VNRs in the Same Namespace

• Figure-1: Pods in VN1 cannot communicate with pods in VN2. VN1 and VN2 cannot communicate
with VN3.

• Figure-2: The user creates a VNR of type "spoke" and "hub". VNR-spoke and VNR-hub import each
other's RTs.

• Figure-3: VNR-spoke and VNR-hub's RTs are added to VN1, VN2, and VN3 because they import each
other's RTs. As a result, pods in VN1 and VN2 communicate with VN3. Pods in VN1 and VN2 cannot
communicate.

"Back to VirtualNetworkRouter Use Cases" on page 34

39

Hub and Spoke VNRs in Different Namespaces

• Figure-1-Figure-3 are the same as "Hub and Spoke VNRs in the Same Namespace" on page 39,
except VNR-spoke and VNR-hub operate in different namespaces.

"Back to VirtualNetworkRouter Use Cases" on page 34

Same Virtual Networks Under Multiple VNRs

40

• Figure-1: Pods in VN1 and VN2 cannot communicate with each other. but VN3, VN4. Also resources
on VN3, VN4 can communicate each other

• Figure-2: Create VNR-spoke selecting VN1, VN2, VNR-hub selecting VN3, VN4, VNR-mesh selecting
VN3, VN4

• Figure-3: VNR-spoke ensures VN1, VN2 can not communicate each other, VNR-hub lets VN1, VN2
to reach VN3, VN4 while VNR-mesh enable communication between VN3, VN4

"Back to VirtualNetworkRouter Use Cases" on page 34

Use Case Explanation

This section comprises the following two VNR use cases along with end-to-end explanations of each use
case:

• "Standard Use Case: Single VNR Connecting Two Virtual Networks" on page 41

• "Update Use Case: Single VNR Connecting Two Additional Virtual Networks" on page 45

Standard Use Case: Single VNR Connecting Two Virtual Networks

apiVersion: v1
kind: Namespace
metadata:
 name: ns-single-mesh
 labels:
 ns: ns-single-mesh
spec:
 finalizers:
 - kubernetes

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-1
 annotations:
 core.juniper.net/display-name: subnet_vn_1
spec:

41

 cidr: "10.10.1.0/24"
 defaultGateway: 10.10.1.254

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-2
 annotations:
 core.juniper.net/display-name: subnet_vn_2
spec:
 cidr: "10.10.2.0/24"
 defaultGateway: 10.10.2.254

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-1
 annotations:
 core.juniper.net/display-name: vn-1
 labels:
 vn: web
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-1

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-2
 annotations:
 core.juniper.net/display-name: vn-2
 labels:
 vn: web
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet

42

 namespace: ns-single-mesh
 name: subnet-2

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-single-mesh
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: web
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: vn
 operator: In
 values:
 - web

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-1
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-1
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-1
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:

43

 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-2
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-2
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-2
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

This use case comprises two VirtualNetworks (vn-1, vn-2) in namespace ns-single-mesh. Both virtual networks
have the label vn: web. Each VirtualNetwork contains a single pod. The VirtualNetwork vn-1 contains pod-vn-1.
The VirtualNetwork vn-2 contains pod-vn-2. A type: mesh VNR with the name vnr-1 establishes connectivity
between the two VirtualNetworks using matchExpressions vn: web. The VNR imports the RI and routing table
of vn-1 to vn-2 and vice versa. Since vnr-1 is a mesh-type VNR, all pods in connected VirtualNetworks
communicate with each other.

44

Update Use Case: Single VNR Connecting Two Additional Virtual
Networks

apiVersion: v1
kind: Namespace
metadata:
 name: ns-single-mesh
 labels:
 ns: ns-single-mesh
spec:
 finalizers:
 - kubernetes

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-2
 annotations:
 core.juniper.net/display-name: subnet_vn_1
spec:
 cidr: "10.10.3.0/24"
 defaultGateway: 10.10.3.254

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-4
 annotations:
 core.juniper.net/display-name: subnet_vn_2
spec:
 cidr: "10.10.4.0/24"
 defaultGateway: 10.10.4.254

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-3
 annotations:

45

 core.juniper.net/display-name: vn-1
 labels:
 vn: db
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-3

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-4
 annotations:
 core.juniper.net/display-name: vn-2
 labels:
 vn: middleware
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-4

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-single-mesh
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: db
 vnr: middleware
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: vn
 operator: In
 values:

46

 - db, middlware

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-3
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-1
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-3
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-4
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-2
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn

47

 values:
 - dpdk
 containers:
 - name: pod-vn-4
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

This use case is similar to the standard use case, except that in this use case the user updates the YAML
with an additional type: mesh VNR to connect two new VirtualNetworks (vn-3, vn-4) in namespace ns-single-
mesh. The VNR shown has the name vnr-2 in namespace ns-single-mesh with matchExpressions: db, middlware.
The VirtualNetwork vn-3 has the label vn: db and vn-4 has the label vn: middleware. As a result, vnr-2 imports
the RI and routing table of vn-3 to vn-4 and vice versa.

VirtualNetworkRouter Configuration

The following section provides YAML configuration information for the following resources:

• "API Type (Schema)" on page 48

• "Mesh VNR" on page 49

• "Spoke VNR" on page 50

• "Hub VNR" on page 51

API Type (Schema)

type VirtualNetworkRouterSpec struct {
 // Common spec fields
 CommonSpec `json:",inline" protobuf:"bytes,1,opt,name=commonSpec"`

 // Type of VirtualNetworkRouter. valid types - mesh, spoke, hub
 Type VirtualNetworkRouterType `json:"type,omitempty" protobuf:"bytes,2,opt,name=type"`

 // Select VirtualNetworks to which this VNR's RT be shared

48

 VirtualNetworkSelector *metav1.LabelSelector `json:"virtualNetworkSelector,omitempty"
protobuf:"bytes,3,opt,name=virtualNetworkSelector"`

 // Import Router targets from other virtualnetworkrouters
 Import ImportVirtualNetworkRouter `json:"import,omitempty"
protobuf:"bytes,4,opt,name=import"`
}

type ImportVirtualNetworkRouter struct {
 VirtualNetworkRouters []VirtualNetworkRouterEntry `json:"virtualNetworkRouters,omitempty"
protobuf:"bytes,1,opt,name=virtualNetworkRouters"`
}

type VirtualNetworkRouterEntry struct {
 VirtualNetworkRouterSelector *metav1.LabelSelector
`json:"virtualNetworkRouterSelector,omitempty"
protobuf:"bytes,1,opt,name=virtualNetworkRouterSelector"`
 NamespaceSelector *metav1.LabelSelector `json:"namespaceSelector,omitempty"
protobuf:"bytes,2,opt,name=namespaceSelector"`
}

Mesh VNR

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: frontend
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: web
 ns: frontend
spec:
 type: mesh
 virtualNetworkSelector:
 matchLabels:
 vn: web
 import:

49

 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: db
 namespaceSelector:
 matchLabels:
 ns: backend

This YAML is an example of a mesh VNR with the name vnr-1 in namespace frontend, with the labels vnr:
web and ns: frontend. This VNR imports its route-target to any VNR in the namespace backend with
matchLabel vnr: db.

Spoke VNR

kind: VirtualNetworkRouter
metadata:
 namespace: frontend
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnrgroup: spokes
 ns: frontend
spec:
 type: spoke
 virtualNetworkSelector:
 matchLabels:
 vngroup: spokes
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnrgroup: hubs
 namespaceSelector:
 matchLabels:
 ns: backend

This YAML is an example of a spoke VNR with the name vnr-1 in namespace frontend with the labels
vnrgroup: spokes and ns: frontend. This VNR imports its route-targets to any VNR in the namespace backend
with matchLabel vnrgroup: hubs.

50

Hub VNR

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: backend
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-2
 labels:
 vnrgroup: hubs
 ns: backend
spec:
 type: hub
 virtualNetworkSelector:
 matchLabels:
 vngroup: hubs
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnrgroup: spokes
 namespaceSelector:
 matchLabels:
 ns: frontend

This YAML is an example of a hub VNR with the name vnr-2 in the namespace backend with labels vnrgroup:
hubs and ns: backend. This VNR imports its route-targets to any VNR in the namespace frontend with
matchLabels vnrgroup: spokes.

51

Configure Inter-Virtual Network Routing Through
Route Targets

SUMMARY

Cloud-Native Contrail Networking supports inter-
virtual network routing using route targets. Specify
common route targets to route traffic between your
virtual networks.

IN THIS SECTION

Virtual Networks and Routing Instances
Overview | 52

Route Target Overview | 52

Enable Inter-Virtual Network Routing
Through Route Targets with NAD | 53

Virtual Networks and Routing Instances Overview

A routing instance is a collection of routing tables, interfaces, and routing protocol parameters. The set
of interfaces in a routing instance belongs to the routing tables, and the routing protocol parameters
control the information in the routing tables. A single routing instance might have multiple routing tables
—for example, unicast IPv4, unicast IPv6, and multicast IPv4 routing tables can exist in a single routing
instance.

In virtual networking, a physical networking device might be split into multiple virtual routers, each with
its own interfaces, routing instances, and associated virtual networks. Routing instances isolate traffic
within a VirtualNetwork. If you want to route traffic between your virtual networks, you can define
common route targets for those networks.

Route Target Overview

Route targets enable your virtual networks (namespaces) to exchange virtual routing and forwarding
(VRF) routing tables in an MPLS (Multiprotocol Label Switching) configuration. A route target is a BGP
Extended Communities Attribute that defines VPN membership. In other words, all routes defined
within an Extended Communities Attribute are shared by other members of that VPN. You define the
following two route targets in your VRF policy:

• Route-target import list: Defines a list of acceptable route targets for a VRF to import. When a
provider edge (PE) router receives a route from another PE router, it compares the route targets

52

attached to each route against the route-target import list defined for each of its VRFs. If no new
route target matches the route targets defined in the import list, the VRF rejects the route.

• Route-target export list: Defines a list of route targets attached to every route advertised to other PE
routers in your VPN.

Depending on your network configuration, the import and export lists might be identical. Typically, you
do the following:

• Allocate one route target extended-community value per VPN.

• Configure the import list and the export list to include the same information: the set of VPNs
comprising the sites associated with the VRF.

For more complicated configurations like hub-and-spoke VPNs, the route-target import list and the
route-target export list might not be identical.

Enable Inter-Virtual Network Routing Through Route Targets with NAD

Establish route-target communities by defining matching route targets in your VirtualNetwork resource.
This enables you to route traffic between your virtual networks (namespaces). Add route targets to a
VirtualNetwork resource object using NAD (Network Attachment Definition).

The Network Attachment Definition (NAD) is a Custom Resource Definition (CRD) specified by the
Kubernetes Network Plumbing Working Group. This CRD, NAD, defines how a pod attaches to a logical
(virtual) or physical network referenced by the NAD object. In other words, the NAD object contains
networking information (namespace, subnet, routing, interface) for a pod in relation to a network. You
can define the following options for your VirtualNetwork resource in the annotations of a NAD YAML:

• ipamV4Subnet (optional): Specifies an IPv4 CIDR subnet for your VirtualNetwork.

• ipamV6Subnet (optional): Specifies an IPv6 CIDR subnet for your VirtualNetwork.

• routeTargetList (optional): Lists import and export route targets.

• importRouteTargetList (optional): Lists route targets used as import.

• exportRouteTargetList (optional): Lists route targets used as export.

• fabricSNAT (optional): Toggles connectivity to the underlay network by port mapping. The default
setting is false.

Additionally, the NAD-Controller monitors NAD object creation events and creates and updates a
VirtualNetwork accordingly. The juniper.net/networks-status annotation of the NAD updates success or error
events during VirtualNetwork creation.

53

NOTE: If you do not specify a juniper.net/networks annotation, then Cloud-Native Contrail
Networking treats the NAD resource as a third party resource and does not create Contrail
resources (such as VirtualNetwork and Subnet).

The following example shows a sample NAD YAML file with several annotations defined:

Example 1:

 apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: nasa-network
 namespace: nm1
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.10.0/24",
 "ipamV6Subnet": "2001:db8::/64",
 "routeTargetList": ["target:23:4561"],
 "importRouteTargetList": ["target:10.2.2.2:561"],
 "exportRouteTargetList": ["target:10.1.1.1:561"],
 "fabricSNAT": true
 }'
 juniper.net/networks-status: # should be updated by Kube-Manager to status of NAD object.
 spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "nasa-network",
 "type": "contrail-k8s-cni"
 }'

The NAD-Controller automatically updates the VirtualNetwork resource after you apply your NAD YAML file.

The following example shows a VirtualNetwork resource with several route-target options defined:

Example 2:

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: project-sample

54

 name: virtualnetwork-sample
spec:
 routeTargetList:
 - target:23:4561
 - target:21L:7000
 - target:871:6540
 importRouteTargetList:
 - target:10.2.2.2:561
 - target:97:651
 exportRouteTargetList:
 - target:10.1.1.1:561
 - target:97:651

After establishing your desired network annotations, you can create a pod with custom interfaces that
are attached to networks with shared route targets. These networks route traffic between one another
as a result of the shared route targets defined in the NAD and VirtualNetwork objects.

The following example shows a pod YAML file with custom interfaces derived from the annotations in
Example 1.

Example 3:

apiVersion: v1
 kind: Pod
 metadata:
 name: nasa-pod-1
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name":"nasa-network1",
 "namespace":"nasa-ns",
 "cni-args":null,
 "ips":["172.16.20.42"],
 "mac":"de:ad:00:00:be:ef",
 "interface":"tap1"
 },
 {
 "name":"nasa-network2",
 "namespace":"nasa-ns",
 "cni-args":null,
 "ips":["172.16.21.42"],
 "mac":"de:ad:00:00:be:ee",

55

 "interface":"tap2"
 }
]

Note that the two interfaces shown in the preceding code example (nasa-network1 and nasa-network2) attach
to different networks. As a result of NAD functionality, you can route traffic between these networks.

RELATED DOCUMENTATION

Understanding Route Targets

Routing Instances Overview

Virtual Routing Instances

Enable BGP as a Service

IN THIS SECTION

Benefits of BGP as a Service in Cloud-Native Contrail | 57

Prerequisites | 57

Overview of BGP as a Service in Cloud-Native Contrail Networking | 57

Enable BGPaaS in a Pod | 58

Configure the IP Address Allocation Method for BGPasaS | 62

Configure the BGPasaService Object | 64

Validate the BGP as a Service Configuration | 67

Configure BGP in Pod | 68

Cloud-Native Contrail® Networking™ supports Border Gateway Protocol (BGP) as a Service (BGPaaS).
This document should be used to enable BGPaaS in environments using Release 22.1 or later.

The BGPaaS feature in Cloud-Native Contrail Networking provides the network support for BGP to
operate within a virtual network in cloud networking environments using Cloud-Native Contrail
Networking.

56

https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/bgp-route-targets-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-overview/topics/concept/routing-instances-overview.html#:~:text=Each%20routing%20instance%20consists%20of%20sets%20of%20the,both%20layer%202%20...%203%20Routing%20option%20configurations
https://www.juniper.net/documentation/us/en/software/junos/multicast-l2/topics/topic-map/virtual-routing-instances.html

Benefits of BGP as a Service in Cloud-Native Contrail

With BGPaaS in Kubernetes environments using Cloud-Native Contrail Networking, you gain the
following functionality:

• A BGP protocol service that runs in the virtual network. This BGP service creates BGP neighbor
sessions to pods, virtual machines, and other workloads in the virtual network.

• A routing protocol that supports IPv4 neighbors, the IPv4 and IPv6 unicast address family, and IPv6-
over-IPv4 next-hop mapping.

• A BGP protocol service that is user-configurable using most well-known BGP configuration
parameters.

You can use BGPaaS in any cloud networking environment that needs the functionality provided by a
routing protocol. You may find BGPaaS especially useful in the following scenarios:

• If you manage a large cloud networking environment that runs multiple workloads, you may want to
use BGPaaS to scale network services.

• If you use tunneling protocols that need network reachability information from a routing protocol to
create and maintain tunnels, BGPaaS can help.

Prerequisites

We assume that before you enable BGP as a service:

• You are operating in a working cloud networking environment using Kubernetes orchestration, and
Cloud-Native Contrail Networking is operational.

• You have a working knowledge of BGP.

Overview of BGP as a Service in Cloud-Native Contrail Networking

Cloud-Native Contrail provides the networking support for BGPaaS.

You have to find a BGP service to run BGP in your cloud networking environment. This document shows
how to enable networking support for BGPaaS with Cloud-Native Contrail Networking using the BGP
service provided by the BIRD Internet Routing Daemon (BIRD). This daemon is available as a built-in
development tool on many versions of Unix. You can also download it to your environment using a
separate image.

57

In the examples that follow, you see that the BGP daemon from BIRD runs in a pod when BGPaaS is
enabled. That daemon then sends BGP messages over the network using the networking capabilities
provided by Cloud-Native Contrail Networking. For additional information on BIRD, see the BIRD
Internet Routing Daemon homepage.

When BGPaaS is operational, the BGP daemon runs in a pod and manages BGPaaS. The BGP daemon is
directly connected to a Contrail vRouter.

The Contrail vRouter has a connection to at least one control plane node and connects the BIRD
daemon to the control plane. A BGP peering session between at least one control node and the BIRD
daemon is established through this connection with the Contrail vRouter.

After a peering session is created between the control nodes and the BGP daemon, the BGP daemon
can manage BGPaaS and send routes to BGP clients over the control plane. The BGPaaS management
tasks include assigning IP addresses to workloads, pods, VMs, or other objects.

Enable BGPaaS in a Pod

To enable BGPaaS, you must create a pod to host the BGP service. You must then associate the pod
hosting the BGP service with the virtual networks where BGPaaS will run.

You can use either of two methods of associating a pod hosting the BGP service with a virtual network:

• Virtual Machine Interfaces Selector—The pod running the BGP service is directly associated with the
virtual network. The pod hosting the BGP service is discovered automatically after the virtual
network association is defined.

• Virtual Machine Interface References—The pod running the BGP service is directly associated with
the virtual network by explicitly providing the namespace and the name of the virtual machine
interface of the pod hosting the BGP service.

The following sections provide the steps for each association method.

Enable BGPaaS in a Pod Using the Virtual Machine Interfaces Selector

You must create a pod to host the BGP service, and then you can enable BGPaaS with the Virtual
Machine Interfaces Selector.

The pod must:

• Include at least one IPv4 interface.

• Include annotations using core.juniper.net/bgpaas-networks to specify the associated virtual network
names. The value in this annotation must includes at least one virtual network name. If you are

58

https://bird.network.cz/?index
https://bird.network.cz/?index

associated the pod hosting the BIRD daemon with multiple virtual networks, enter the virtual
network names as a comma-separated list.

In this example YAML file, a pod is created to host the BGP service. The pod is associated with two
virtual networks and BGPaaS is enabled to run on both virtual networks. The image: variable in the
containers: hierarchy points to the BIRD image file that will provide the BGP service in this example.

apiVersion: v1
kind: Pod
metadata:
 name: bird-pod-shared-1
 namespace: bgpaas-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [{
 "name": "bgpaas-vn-1",
 "namespace": "bgpaas-ns",
 "cni-args": null
 "interface": "eth1"
 },{
 "name": "bgpaas-vn-2",
 "namespace": "bgpaas-ns",
 "cni-args": null
 "interface": "eth2"
 }]
 core.juniper.net/bgpaas-networks: bgpaas-vn-1,bgapss-vn-2
spec:
 containers:
 - name: bird-pod-c
 image: somewhere.juniper.net/cn2/bazel-build/dev/bird-sut:1.0
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true

Enter the kubectl get vmi -n virtual-network-name to confirm that the pod and it's associated virtual
machine interfaces have been created. You can also enter the kubectl describe command to ensure the
virtual machine interfaces exist.

59

You can confirm the virtual network was created by reviewing the bgpaasVN= output in the label
section of the kubectl describe command.

kubectl get vmi -n bgpaas-ns
 CLUSTERNAME NAME NETWORK PODNAME
IFCNAME STATE AGE
 contrail-k8s-kubemanager-kubernetes bird-pod-1-abb881a8 bgpaas-vn-1 bird-pod-1
eth1 Success 13s
 contrail-k8s-kubemanager-kubernetes bird-pod-1-e3f93f05 default-podnetwork bird-pod-1
eth0 Success 13s

 kubectl describe vmi bird-pod-1-abb881a8 -n bgpaas-ns
 Name: bird-pod-1-abb881a8
 Namespace: bgpaas-ns
 Labels: core.juniper.net/bgpaasVN=bgpaas-vn-1
 namespace=bgpaas-ns

You must then create a BGPaaS object to configure BGPaaS. The BGPaaS object references the virtual
networks in the virtualMachineInterfacesSelector: section.

 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: BGPAsAService
 metadata:
 namespace: bgpaas-ns
 name: bgpaas-test
 spec:
 shared: false
 autonomousSystem: 10
 bgpAsAServiceSessionAttributes:
 loopCount: 2
 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet
 - inet6
 virtualMachineInterfacesSelector:
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-1
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-2

60

Enable BGPaaS in a Pod Using Virtual Machine Interface References

You must first create a pod to host the BIRD daemon to enable BGPaaS with Virtual Machine Interface
references. The pod must include at least one IPv4 interface.

In the following example, a pod is created in the bgpaas-ns namespace. The annotation associates the
pod with the bgpaas-vn-1 virtual network. The image: variable in the containers: hierarchy points to the
BIRD image file that will provide the BGP service in this example.

apiVersion: v1
kind: Pod
metadata:
 name: bird-pod-1
 namespace: bgpaas-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: bgpaas-vn-1
spec:
 containers:
 - name: bird-pod-c
 image: somewhere.juniper.net/cn2/bazel-build/dev/bird-sut:1.0
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true

Confirm that the pod was created after committing the pod object configuration file by entering the
kubectl get vmi -n bgpaas-ns command.

Note the name of the virtual machine interface for the pod in this command output. You will need to
specify the virtual machine interface name later in this procedure when configuring the BGPaaS object.

kubectl get vmi -n bgpaas-ns
 CLUSTERNAME NAME NETWORK PODNAME
IFCNAME STATE AGE
 contrail-k8s-kubemanager-kubernetes bird-pod-1-abb881a8 bgpaas-vn-1 bird-pod-1
eth1 Success 13s
 contrail-k8s-kubemanager-kubernetes bird-pod-1-e3f93f05 default-podnetwork bird-pod-1
eth0 Success 13s

61

The Virtual Machine interface references are defined while creating the BGPaaS object using the
virtualMachineInterfaceReferences: hierarchy. The namespace: is the pod namespace and the name: is
the virtual machine interface name that you retrieved using the kubectl get vmi -n bgpaas-ns command.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: BGPAsAService
metadata:
 namespace: bgpaas-ns
 name: bgpaas-sample
spec:
 shared: false
 autonomousSystem: 100
 bgpAsAServiceSessionAttributes:
 localAutonomousSystem: 10
 loopCount: 2
 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet
 - inet6
 virtualMachineInterfaceReferences:
 - apiVersion: core.contrail.juniper.net/v1alpha1
 kind: VirtualMachineInterface
 namespace: bgpaas-ns
 name: bird-pod-1-abb881a8

Configure the IP Address Allocation Method for BGPasaS

You can configure BGPaaService with one of the following IP address allocation methods:

• automatic IP address allocation—the BGP service assigns IP addresses.

• user-specified IP address allocation—you assign the IP address.

You configure the IP address allocation method in the Subnet object.

Automatic IP address allocation is enabled by default. If you enable BGPaaS without manually disabling
automatic IP address allocation, BGPaaS uses automatic IP address allocation.

62

You disable automatic IP address allocation by setting the disableBGPaaSIPAutoAllocation: variable in
the Subnet object to true. If the disableBGPaaSIPAutoAllocation: variable is not present in the Subnet
object file, automatic IP address allocation is enabled.

In the following configuration sample, automatic IP address allocation is enabled because the
disableBGPaaSIPAutoAllocation: variable isn't present in the Subnet object configuration file.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: bgpaas-ns
 name: bgpaas-subnet-1
spec:
 cidr: "172.20.10.0/24"

In this configuration sample, automatic IP address allocation is enabled because the
disableBGPaaSIPAutoAllocation: variable is set to false.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: bgpaas-ns
 name: bgpaas-subnet-2
spec:
 cidr: "172.20.20.0/24"
 disableBGPaaSIPAutoAllocation: false

To enable user-specified IP address allocation, set the disableBGPaaSIPAutoAllocation: variable to true.
When user-specified IP address allocation is enabled, you must also configure the BGP addresses that
BGPaaS can assign to endpoints within the subnet. You must set a primary IP address using the
bgpaasPrimaryIP: variable. You can also set an optional secondary IP address, which is done in this
example using the bgpaasSecondaryIP: variable.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: bgpaas-ns
 name: bgpaas-subnet-2
spec:
 cidr: "172.20.20.0/24"
 disableBGPaaSIPAutoAllocation: true

63

 bgpaasPrimaryIP: 172.20.20.3
 bgpaasSecondaryIP: 172.20.20.4

Configure the BGPasaService Object

You enable BGPaaS in a cluster by creating a BGPAsAService object.

Create the BGPAsAService object by creating a YAML file that uses BGPAsAService in the kind: field:

 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: BGPAsAService
 metadata:
 namespace: bgpaas-ns
 name: bgpaas-test
 spec:
 shared: false
 autonomousSystem: 10
 bgpAsAServiceSessionAttributes:
 loopCount: 2
 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet
 - inet6
 virtualMachineInterfacesSelector:
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-1
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-2

Table 8: Spec Field Variables for BGPaaS

This table provides a description of each Spec field variable in the BGPaaS object file.

64

Field Variable Description

shared: Specifies whether a common BGP router object can be
shared with multiple virtual machine interfaces in the
same virtual network.

When this field is set to true, one BGP client router
can be shared with multiple virtual machine interfaces
in the same virtual network. This setting limits the total
number of BGP client routers that have to be created
in a virtual network for a VMI.

When this field is set to false, one BGP client router is
created for each virtual machine interface.

autonomousSystem: Specifies the global Autonomous System number for
the BGP instance. The Autonomous System number
can be any whole number between 1 and
4294967295.

bgpAsAServiceSessionAttributes: Defines the BGP session attributes for BGPaaS.

See Table 9 on page 65

VirtualMachineInterfaceReferences: Defines the virtual machine interface parameters to
associate with BGPaaS when using virtual machine
interface references.

See Table 10 on page 66

virtualMachineInterfacesSelector: Defines the virtual networks where BGPaaS runs when
using the virtual machine interfaces selector.

See Table 11 on page 67

Table 9: BgpAsAServiceSessionAttributes Fields for BGPaaS

The bgpAsAServiceSessionAttributes: in the spec: hierarchy are used in all BGPaaS setups. The
bgpAsAServiceSessionAttributes: hierarchy includes these fields:

65

Field Description

localAutonomousSystem: Specifies the local Autonomous System number for
BGP.

LoopCount: Specifies the number of times that the same ASN can
be seen in a route update before the route is discarded.
The LoopCount: can be any whole number up to 16.

routeOriginOverride: Overrides the original setting and sets the origin
attribute to Incomplete when forwarding routes.

If you set this field to false, routes are advertised into
BGP based on the origin setting. The origin is either
IGP or EGP and is set using the origin: field in this file.

If you set this field to true, the origin is set to
Incomplete for advertised routes.

Use this field if you want to change how BGP networks
prioritize routes received from the BGP service. By
default, BGP networks prioritize routes based on
origin, and routes with an Incomplete origin receive
lower priority than routes received from IGP or EGP.

Origin: Specifies if BGP operates as an interior gateway
protocol—igp—or exterior gateway protocol (egp). The
default route origin is igp.

AddressFamilies: Specifies the address family. You can specify the family
as inet for IPv4 or inet6 for IPv6. Both address families
can be specified simultaneously.

Table 10: virtualMachineInterfaceReferences: in BGPaaS

The virtualMachineInterfaceReferences: in the spec: hierarchy include the following fields:

Field Description

apiVersion: Specifies the API version for the virtual machine
interface reference.

66

Table 10: virtualMachineInterfaceReferences: in BGPaaS (Continued)

Field Description

kind: Always set this field to VirtualMachineInterface.

namespace: Specifies the namespace associated with the virtual
machine interface reference. You define this
namespace while creating the Pod object. See .

name: Specifies the name of the pod associated with the
virtual machine interface reference. You can retrieve
the pod name by entering the kubectl get vmi -n
bgpaas-ns command. See "Enable BGPaaS in a Pod
Using Virtual Machine Interface References" on page
61.

Table 11: The virtualMachineInterfacesSelector: Fields in BGPaaS

The virtualMachineInterfacesSelector: in the spec: hierarchy includes the following fields:

Field Description

matchLabels: Define the match labels for the Virtual Machine
Interfaces selector.

The match labels in this context are always used to
reference the virtual networks where the Virtual
Machine interfaces selector is running.

The match label values in this section are always
entered as core.juniper.net/bgpaasVN:virtual-network-
name. See "Enable BGPaaS in a Pod Using the Virtual
Machine Interfaces Selector" on page 58.

Validate the BGP as a Service Configuration

You should confirm that the BGPaaS object is successfully running after committing the BGPAsAService
object file.

67

Enter the kubectl get BGPAsAService command after creating the BGPAsAService object to confirm the
object state. The object is successfully created when the State field indicates Success.

kubectl get BGPAsAService -n bgpaas-ns
 NAME AS IPADDRESS SHARED STATE AGE
 bgpaas-sample 100 false Success 33s

You should also ensure the BGPaaS server and the BGPaaS client are created and are in the Success
state.

Enter the kubectl get BGPRouter command to confirm the presence and operational state of the
BGPaaS servers and clients.

kubectl get BGPRouter -n bgpaas-ns
 NAME TYPE IDENTIFIER STATE AGE
 bgpaas-ns-bgpaas-vn-1-bgpaas-server bgpaas-server Success 2m57s
 bgpaas-ns-bgpaas-vn-1-bird-pod-1-abb881a8 bgpaas-client 172.20.10.2 Success 2m57s

Configure BGP in Pod

You must also configure the networking parameters for the BGP service running in the pod. The
configuration for each individual BGP service is unique and documenting the required networking
configuration parameters is beyond the scope of this document.

In this example, the BGP network configuration is configured using BIRD.

You configure BGP using the BIRD CLI in this example. The parameters of the BGP configuration that
need to match the BGPaaS objects defined in Cloud-Native Contrail Networking are noted. Although
not shown in this example, you should know that the default location to access the BIRD configuration
file in most deployments is /etc/bird.conf or /etc/bird/bird.conf.

 # Change the router id to your BIRD router ID. It's a world-wide unique identification
 # of your router, usually one of router's IPv4 addresses.
 router id 172.20.10.2;

 protocol direct {
 interface "eth1*"; -> interface on which BGPAsAService needs to be configured
 }

68

 protocol bgp bgp1_1 {
 import all;
 export all;
 local as 10; -> AS configured in BGPAsAService
 neighbor 172.20.10.3 as 64512; -> neighbor for primary BGP session, use
BGPaaSPrimaryIP from subnet
 neighbor 172.20.10.3 as 64512; -> neighbor for secondary BGP session, use
BGPaaSSecondaryIP from subnet

You can also verify that the BGP protocol is running from your BGP service.

In this example from BIRD, the show protocol command is entered to verify that the BGP protocol is
established.

birdc show protocol bgp1_1
 BIRD 1.6.8 ready.
 name proto table state since info
 bgp1_1 BGP master up 10:31:27 Established

Configure IPAM for Pod Networking

SUMMARY

Cloud-Native Contrail® Networking™ supports IPAM
(IP address management) for pods and services.
Configure a Subnet resource to facilitate IP address
allocation.

IN THIS SECTION

IPAM in Cloud-Native Contrail
Networking | 70

SubnetPool Overview | 70

Subnet Overview | 71

VirtualNetwork Overview | 72

BGP as a Service Session IP Addresses
Overview | 72

69

IPAM in Cloud-Native Contrail Networking

Cloud-Native Contrail Networking introduces the Subnet and SubnetPool resources for the purpose of
IPAM for pods and services. Each Subnet has an associated SubnetPool. These resources enable you to
configure IPv4 and IPv6 address allocation in your cluster. A VirtualNetwork references a Subnet resource to
determine available subnets for new pods and services. Multiple VirtualNetworks can reference the same
Subnet. The Subnet resource is translated into IPAM and consumed by the control node and vRouter agent.

SubnetPool Overview

The SubnetPool manages a pool of addresses from which Subnets are allocated. When a request for an IP
address occurs, that IP address is allocated from a virtual network's associated SubnetPool. CIDR
parameters (prefix length, capacity, range) for IP address allocation are determined when a SubnetPool is
created. You are able to allocate additional prefixes if you exhaust a SubnetPool.

Consider the following SubnetPool example:

kparmar-mbp:cn2 kparmar$ kubectl get pool subnet-id-pool-Subnet-contrail-k8s-kubemanager-ocp-
rdang-q8roaw-contrail-default-podnetwork-pod-v4-subnet -oyaml

apiVersion: idallocator.contrail.juniper.net/v1alpha1

capacity: 262144

count: 157

kind: Pool

max: 262143

metadata:

 creationTimestamp: null

 name: subnet-id-pool-Subnet-contrail-k8s-kubemanager-ocp-rdang-q8roaw-contrail-default-
podnetwork-pod-v4-subnet

reserved:

- 0

70

- 262143

- 1

The capacity parameter denotes the total number of possible IDs in the pool. The count parameter
denotes the number of used IDs in the pool. The max parameter denotes the maximum number of IDs
available to be allocated from the pool. A given ID maps to an IP address in the Subnet pool.

Subnet Overview

The Subnet is a block of IP addresses and the configurations associated with those addresses. A Subnet is
based on a single address family (IPv4, IPv6) at a time. You must create separate IPv4 and IPv6 Subnets. If
you do not specify a SubnetPool, the Subnet functions as Contrail Classic IPAM. This means that the Subnet is
isolated to a single namespace.

Consider the following Subnet spec example:

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 name: default-servicenetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-ocp-kparmar-4yu0qk-contrail
spec:
 cidr: 10.128.0.0/16
 defaultGateway: 10.128.0.1
 ranges:
 - ipRanges:
 - from: 10.128.0.0
 to: 10.128.0.255
 key: contrail-k8s-kubemanager-ocp-kparmar-4yu0qk-ocp-kparmar-4yu0qk-ctrl-1

The cidr and defaultGateway parameters are the main parameters that define a Subnet resource. The cidr
parameter determines the range of IPs available for allocation in that Subnet. The defaultGateway parameter
defines the IP address of the defaultGateway for the Subnet. Specifying a defaultGateway address is optional. If
you do not specify a defaultGateway address, it is automatically set as the first IP address in the Subnet.

A Kubernetes node configuration can have a podCIDR configuration parameter. The podCIDR is a subset of
the default-podnetwork-subnet. When the podCIDR is present, the IP address of any pod created on that node
will have an IP address allocated from the podCIDR. If no podCIDR is present, all of the IP addresses in the

71

CIDR of the Subnet are able to be allocated for the node. The podCIDR can also reference a wildcard key. In
the example, IP address allocation requests choose from IPs 10.128.0.0 to 10.128.0.255 as long as the
requesting pod is created on the node with the key contrail-k8s-kubemanager-ocp-kparmar-4yu0qk-ocp-
kparmar-4yu0qk-ctrl-1 .

Alternatively, you can define a ranges parameter . The ranges parameter defines a list of IPs available for
allocation. The ranges parameter overrides the CIDR parameter when it is present in a spec. The ranges
parameter does not override the podCIDR parameter.

VirtualNetwork Overview

Cloud-Native Contrail Networking updates the VirtualNetwork resource to be compatible with IPAM
implementation. Consider the following example:

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: contrail
 name: virtualnetwork-sample
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: contrail
 name: v4subnet
 v6SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: contrail
 name: v6subnet

Note the separate Subnet references for the IPv4 address family and the IPv6 address family. You cannot
update the Subnet reference of a VirtualNetwork through the entire lifecycle of that VirtualNetwork.

BGP as a Service Session IP Addresses Overview

BGP (Border Gateway Protocol) as a Service (BGPaaS) enables the establishment of a BGP session
between a control node to a workload or pod's IP address. You are able to create a Subnet with the

72

DisableBGPaaSIPAutoAllocation flag set to false or true. When you set the DisableBGPaaSIPAutoAllocation to false,
the following occurs:

• No IP address is allocated for BGPaaSPrimaryIP and BGPaaSSecondaryIP immediately. These IPs are only
allocated (within Subnet CIDR range) when the first BGPAsAService is configured within the network of
this Subnet.

• When you delete all of the BGPAsAService resources associated with a Subnet, the IP addresses assigned
to BGPaaSPrimaryIP and BGPaaSSecondaryIP are released from the pool and set to empty values. These
addresses are re-allocated from the pool when a BGPAsAService is configured again.

When you set the DisableBGPaaSIPAutoAllocation flag to true, the following occurs:

• You are able to use user-defined values for the BGPaaSPrimaryIP and BGPaaSSecondaryIP fields. These IP
fields are mandatory and cannot be left empty. User-defined values for these fields are also reserved
in the Subnet pool.

• The IP addresses used for BGPaaSPrimaryIP and BGPaaSSecondaryIP still remain reserved in the Subnet pool
even if no BGPAsAService is configured or if all BGPAsAService resources are deleted.

When you change the DisableBGPaaSIPAutoAllocation field from false to true, BGPaaSPrimaryIP and
BGPaaSSecondaryIP become mandatory fields. If the IPs were auto allocated before changing this flag from
false to true, then those IPs are released from the pool and new user-provided IPs are reserved in the
pool.

When you change DisableBGPaaSIPAutoAllocation from true to false the following occurs:

• If there is no BGPAsAService configured within the Subnet, BGPaaSPrimaryIP and BGPaaSSecondaryIP values are
released from the pool and these fields become empty

.

• If there is at least one BGPAsAService configured, no change happens to the existing values of
BGPaaSPrimaryIP and BGPaaSSecondaryIP.

For more information about BGP (Border Gateway Protocol) as a Service (BGPaaS), see the "Enable BGP
as a Service" on page 56 section.

73

Create an Isolated Namespace

SUMMARY

This topic shows you how to create an isolated
namespace in Cloud-Native Contrail® Networking™.
Juniper Networks supports isolated namespaces
using Contrail Networking Release 22.1 or later in a
Kubernetes-orchestrated environment.

IN THIS SECTION

Namespace Overview | 74

Example: Isolated Namespace
Configuration | 76

Isolated Namespace Objects | 79

Create an Isolated Namespace | 79

Optional Configuration: IP Fabric Forwarding
and Fabric Source NAT | 81

Enable IP Fabric Forwarding | 81

Enable Fabric Source NAT | 83

Namespace Overview

NOTE: In this document, we use the term "isolated" and "non-isolated" in the context of Contrail
networking only.

Non-isolated Namespaces

Namespaces, or non-isolated namespaces, provide a mechanism for isolating a group of resources within
a single cluster. By default, namespaces are not isolated.

Non-isolated namespaces are intended for use in environments with many users spread across multiple
teams, or projects. Non-isolated namespaces enable each team to exist in their own virtual cluster
without impacting each other's work. Let's say you created all your resources in the default namespace
that Kubernetes provides. If you have a complex application with multiple deployments, the default
namespace can be hard to maintain. An easier way to manage this deployment is to group all your
resources into different namespaces within the cluster. For example, the cluster can contain separate
namespaces, such as a database namespace or a monitoring database. Names of resources must be
unique within a namespace, but not across namespaces.

Pods in a non-isolated namespace exhibit the following network behavior:

74

• Pods in non-isolated namespaces can communicate with other pods in the cluster without using
NAT.

• Pods and services in non-isolated namespaces share the same default-podnetwork and default-
servicenetwork.

Isolated Namespaces

An isolated namespace enables you to run customer-specific applications that you want to keep private.
You can create an isolated namespace to isolate a pod from other pods, without explicitly configuring a
network policy.

Isolated namespaces are similar to non-isolated namespaces, except that each isolated namespace has
its own pod network and service network. This means that pods in isolated namespaces cannot reach
pods or services in other isolated or non isolated namespaces.

Pods in isolated namespace can only communicate with pods in the same namespace. The only
exception is when a pod in an isolated namespace needs access to a Kubernetes service, such as Core
DNS. In this case, the pod uses the cluster's default-servicenetwork to access the services.

Pods in an isolated namespace exhibit the following network behavior:

• Pods in isolated namespaces can only communicate with pods in the same namespace.

• Pods in isolated namespaces can reach services in non-isolated namespaces.

• The IP addresses and service IP addresses of pods in isolated namespaces are allocated from the
same subnet as the cluster's pod and service subnet.

• Pods in an isolated namespace can access the underlay network, or IP fabric network, though IP
fabric forwarding and fabric source NAT.

NOTE: You cannot covert a non-isolated namespace to an isolated namespace, and vice versa.

75

Example: Isolated Namespace Configuration

This sample configuration demonstrates an isolated namespace configuration in Cloud-Native Contrail
Networking.

Figure 2: Isolated Namespace Configuration

In this isolated namespace configuration:

• Pod-1 (non-isolated-1) is in a non-isolated namespace created by the user.

• Pod-2 (kube-system) and Pod-3 (contrail) are in non-isolated namespaces created by the controller.

• Pod-4 (isolated-1) and Pod-5 (isolated-2) are in isolated namespaces created by the user.

• The interfaces for Pod-1, Pod-2, Pod-3 are created from the cluster's default-podnetwork and default-
servicenetwork.

76

• The interfaces for Pod-4 and Pod-5 are created on the default-podnetwork and default-servicenetwork in
their own isolated namespaces. Both Pod-4 and Pod-5 interfaces share the same subnet as the
cluster’s default-podnetwork and default-servicenetwork.

• Pods in isolated namespaces cannot communicate with pods in non-isolated namespaces. In this
example, Pod-4 and Pod-5 in isolated namespaces cannot communicate with Pod-1, Pod-2, Pod-3 in
non-isolated namespaces.

• Pods in isolated namespaces (Pod-4, Pod 5) can access any service through the cluster's default-
servicenetwork.

• Pods in all namespaces (non-isolated and isolated) are able to connect to the fabric through the
cluster's ip-fabric-network.

Notes

• Isolated namespaces affect only the pod's default interface. This is because the default interface of
pods in an isolated namespace are created on the default-podnetwork of the isolated namespace.
However, interfaces from user-defined VirtualNetworks behave the same way in both isolated and non-
isolated namespaces.

• You can create network policies on isolated namespaces to fine-tune the isolation of pods. The
network policy behaves the same for both isolated and non-isolated namespaces.

• Two or more isolated namespaces can be interconnected through the VirtualNetworkRouter (VNR). See
"VirtualNetworkRouter Overview" on page 34.

Here is an example of a VNR configuration used to interconnect the default-podnetworks of two isolated
namespaces (ns-isolated-1 and ns-isolated-2). In this configuration, the VirtualNetworkRouter connects to ns-
isolated-1 and ns-isolated-2, so pods in these isolated namespaces can communicate with each other.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-isolated-1
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: vnr-1
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: core.juniper.net/virtualnetwork

77

 operator: In
 values:
 - isolated-namespace-pod-virtualnetwork
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: vnr-2
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: ns-isolated-2

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-isolated-2
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-2
 labels:
 vnr: vnr-2
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: core.juniper.net/virtualnetwork
 operator: In
 values:
 - isolated-namespace-pod-virtualnetwork
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: vnr-1
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: ns-isolated-1

78

Isolated Namespace Objects

This table describes the namespace objects (API resources) the controller creates when you create an
isolated namespace.

Table 12: Isolated Namespace Objects

Isolated Namespace Object Description

default-podnetwork (VirtualNetwork) The default interfaces of pods in an isolated
namespace are created in this default-podnetwork,
instead of the cluster's default-network.

default-servicenetwork (VirtualNetwork) The cluster IP of services in isolated namespaces are
created in this default-servicenetwork, instead of the
cluster's default-servicenetwork.

IsolatedNamespacePodServiceNetwork
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork and default-
servicenetwork.

IsolatedNamespaceIPFabricNetwork
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork and default-
servicenetworkto the cluster's ip-fabricnetwork.

IsolatedNamespacePodToDefaultService
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork to the cluster’s
default-servicenetwork.

Create an Isolated Namespace

Follow these steps to create an isolated namespace:

1. Create a YAML file called ns-isolated.yml.

2. Add the label core.juniper.net/isolated-namespace to the namespace metadata and set the variable to
"true".

apiVersion: v1
kind: Namespace

79

metadata:
 name: ns-isolated
 labels:
 core.juniper.net/isolated-namespace: "true"

3. Issue the kubectl apply command to apply the configuration.

kubectl apply -f ns.yaml

4. To verify your configuration, issue the kubectl get ns ns-isolated -o yaml command.

apiVersion: v1
kind: Namespace
metadata: `\
 annotations:
 core.juniper.net/forwarding-mode: "false"
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"v1","kind":"Namespace","metadata":{"annotations":{"core.juniper.net/
forwarding-mode":"false"},"labels":{"core.juniper.net/isolated-namespace":"true"},"name":"ns-
isolated"}}
 creationTimestamp: "2021-10-04T21:47:40Z"
 finalizers:
 - finalizers.core.juniper.net/isns-virtualnetworks-delete
 - finalizers.core.juniper.net/isns-virtualnetworkrouters-delete
 labels:
 core.juniper.net/isolated-namespace: "true"
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 …
 …
 …
 name: ns-isolated
 resourceVersion: "4183"
 uid: d25d2b71-2051-4ac5-a738-e9b344235818
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

80

Success! You created an isolated namespace.

Optional Configuration: IP Fabric Forwarding and Fabric Source NAT

Optionally, you can enable IP fabric forwarding and fabric source NAT on an isolated namespace.

IP fabric forwarding enables virtual networks to be created as part of the underlay network and
eliminates the need for encapsulation and decapsulation of data. Fabric source NAT allows pods in the
overlay to reach the Internet without floating IPs or a logical router.

When you create an isolated namespace, two virtual networks are created, a default-podnetwork and a
default-servicenetwork. By default, IP fabric forwarding and fabric source NAT in these two virtual
networks are disabled. You enable IP fabric forwarding or fabric source NAT in the virtual networks by
adding “forwarding-mode” annotations for each feature in your isolated namespace YAML file.

Here is an example of the default-podnetwork for an isolated namespace with forwarding-mode set to
fabricSNAT.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 annotations:
 core.juniper.net/description: Default Pod Network for IsolatedNamespace (ns-isolated)
 core.juniper.net/display-name: default-podnetwork
 ...
spec:
 ...
 fabricSNAT: true
 ...

Enable IP Fabric Forwarding

Follow these steps to enable IP fabric forwarding on an isolated namespace:

1. Add the annotation core.juniper.net/forwarding-mode: "ip-fabric" to the namespace metadata.

81

2. Set the label for the isolated namespace to "true".

apiVersion: v1
kind: Namespace
metadata:
 name: ns-isolated
 annotations:
 core.juniper.net/forwarding-mode: "ip-fabric"
 labels:
 "core.juniper.net/isolated-namespace": "true"

3. Issue the kubectl apply command to enable IP fabric forwarding.

kubectl apply -f ns-isolated.yaml

4. Verify your configuration.

get vn -n ns-isolated default-podnetwork -o yaml

spec:
 fabricForwarding: true
 fabricSNAT: false
 fqName:
 - default-domain
 - ns-isolated
 - default-podnetwork
 providerNetworkReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 fqName:
 - default-domain
 - contrail
 - ip-fabric
 kind: VirtualNetwork
 name: ip-fabric
 namespace: contrail
 resourceVersion: "5629"
 uid: bdb0ae55-d5e5-49b2-803d-d93eea206df0
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 fqName:

82

 - default-domain
 - contrail-k8s-kubemanager-mycluster-contrail
 - default-podnetwork-pod-v4-subnet
 kind: Subnet
 name: default-podnetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-mycluster-contrail
 resourceVersion: "4999"
 uid: fc9b9471-3b3e-4a57-80ac-5b9ed806fe94
 virtualNetworkProperties:
 forwardingMode: l3
 rpf: enable
status:
 observation: ""
 state: Success
 virtualNetworkNetworkId: 5

Success! You enabled IP fabric forwarding on the isolated namespace.

Enable Fabric Source NAT

NOTE: You can only enable fabric source NAT on the default-podnetwork.

Follow these steps to enable fabric source NAT on an isolated namespace:

1. Add the annotation core.juniper.net/forwarding-mode: "fabric-snat" to the namespace metadata.

2. Set the label for the isolated namespace to "true".

apiVersion: v1
kind: Namespace
metadata:
 name: ns-isolated
 annotations:
 core.juniper.net/forwarding-mode: "fabric-snat"
 labels:
 "core.juniper.net/isolated-namespace": "true"

83

3. Issue the kubectl apply command to enable fabric source NAT.

kubectl apply -f ns-isolated.yaml

4. Verify your configuration.

kubectl get vn -n <isolated-namespace-name> default-podnetwork

Success! You enabled fabric source NAT on the isolated namespace.

spec:
 fabricSNAT: true
 fqName:
 - default-domain
 - ns-isolated-snat
 - default-podnetwork
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 fqName:
 - default-domain
 - contrail-k8s-kubemanager-mycluster-contrail
 - default-podnetwork-pod-v4-subnet
 kind: Subnet
 name: default-podnetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-mycluster-contrail
 resourceVersion: "4999"
 uid: fc9b9471-3b3e-4a57-80ac-5b9ed806fe94
 virtualNetworkProperties:
 forwardingMode: l3
 rpf: enable
status:
 observation: ""
 state: Success
 virtualNetworkNetworkId: 7

SEE ALSO

Enable IP Fabric Forwarding and Fabric Source NAT | 2

84

Configure Allowed Address Pairs

Juniper Networks supports Allowed Address Pairs (AAPs) using Cloud-Native Contrail® Networking™
Release 22.1 or later in a Kubernetes-orchestrated environment.

Allowed address pairs in Contrail Networking enables you to add IP/MAC (CIDR) addresses to the guest
interface (VirtualMachineInterface) by using a secondary IP address.

When you create a pod in a cluster, each pod automatically obtains its IP address from the virtual
machine interface. If your pod is not on the same virtual network, you can add an AAP to allow traffic to
flow through the port regardless of the subnet. For example, let's say that your pod's IP address is
192.168.2.0. If you define an AAP with subnet 192.168.2.0/24, the AAP allows the pods to
communicate with the guest interface. The vRouter forwards the traffic and advertises reachability to
the pod.

To configure an AAP, insert the following attribute into your pod YAML file, as shown in the code block
that follows:

kind: Pod
metadata:
 name: my-pod
 namespace: my-namespace
 annotations:
 k8s.v1.cni.cncf.op/networks: |
 [
 {
 "name": "net-a",
 "cni-args": {
 "net.juniper.contrail.allowedAddressPairs": [{
 "ip": 192.168.2.0/24
 "mac": "02:3f:66:ad:00:e9",
 "addressMode": "active-active"
 }],}
 ...
 },
 {
 "name": "net-b",
 ...
 },

The AllowedAddressPairs attribute contains a list of allowed address pair definitions, as described in the
following table.

85

Table 13: Allowed Address Pair Definitions

Definition Description

ip Specify the external pod IP address through which you
want to allow traffic to pass.

mac (Optional) Specify the MAC address of the external
pod.

addressMode (Optional) Specify a high availability (HA) mode.
Choose from active/active or active/standby. Active/
standby is the default.

The addressMode default value is an empty string.
Active/standby is used for VRRP addresses. Active/
active is used for ECMP.

In Kubemanager, the PodController watching for Pod events, reads the interface definitions for each new
AAP. The controller then generates an AllowedAddressPair and adds it to the list of interfaces in the
VirtualMachineInterface.

Alternative Configuration

Alternatively, you can configure AAP interfaces directly from the VirtualMachineInterface.To apply an AAP
this configuration, run the following command from the kubectl command-line tool:

kubectl patch --namespace project-kubemanager VirtualMachineInterface $VMINAME -p "$(cat ./
aap.yaml)"

The preceding command updates the existing VirtualMachineInterface with the AAP configuration, as
shown in the following code block:

spec:
 allowedAddressPairs:
 allowedAddressPair:
 - ip:
 ipPrefix: 192.0.2.0
 ipPrefixLen: 24

86

Enable Packet-Based Forwarding on Virtual
Interfaces

IN THIS SECTION

Overview | 87

Configure Packet Mode on a Virtual Interface | 87

Juniper Networks supports packet-based forwarding on virtual interfaces using Cloud-Native Contrail®
Networking™ Release 22.1 or later in a Kubernetes-orchestrated environment.

Overview

By default, Contrail compute nodes use flow mode for packet forwarding on a virtual interface. This
means that every vRouter has a flow table to keep track of all flows that passes through it. In flow mode,
the virtual interface processes all traffic by analyzing the state or session of traffic. However, there might
be instances when you want to switch from flow mode to packet mode. Specifically, to achieve higher
traffic forwarding performance, or to get around certain limitations of flow mode.

In packet mode, the virtual interface processes the traffic on a per-packet basis and ignores all flow
information. The main advantage of this mode is that the processing type is stateless. Stateless mode
means that the virtual interface does not keep track of session information or go through traffic analysis
to determine how a session is established.

NOTE: Features that require a network policy (such as ACLs, security groups, floating IP's) are
unable to work in packet mode.

Configure Packet Mode on a Virtual Interface

Follow these steps to enable packet mode on a virtual interface.

1. Verify that you are running flow mode. Flow mode is the default forwarding mode.

87

Generate some traffic by pinging another pod in the same network. In this example, the pod's IP
address is 25.26.27.2.

root@pod-vn-1:/# ping -q -c5 25.26.27.2
PING 25.26.27.2 (25.26.27.2) 56(84) bytes of data.

--- 25.26.27.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4057ms
rtt min/avg/max/mdev = 0.059/1.721/7.620/2.955 ms

2. Use the flow command-line tool to check for flows. The following example indicates that the
virtualMachineInterface is in flow mode.

root@minikube:/# flow -l --match 25.26.27.3
...
...
Listing flows matching ([25.26.27.3]:*)

 Index Source:Port/Destination:Port Proto(V)

 159692<=>400664 25.26.27.2:28 1 (3)
 25.26.27.3:0
(Gen: 1, K(nh):39, Action:F, Flags:, QOS:-1, S(nh):39, Stats:5/490, SPort 64222,
 TTL 0, UnderlayEcmpIdx:0, Sinfo 7.0.0.0)

 400664<=>159692 25.26.27.3:28 1 (3)
 25.26.27.2:0
(Gen: 1, K(nh):33, Action:F, Flags:, QOS:-1, S(nh):33, Stats:5/490, SPort 56567,
 TTL 0, UnderlayEcmpIdx:0, Sinfo 5.0.0.0)

3. Enable packet mode on the virtualMachineInterface.

Create a patch file named packet-mode-patch.yaml and set the VMI policy to true.

spec:
 virtualMachineInterfaceDisablePolicy:true

88

4. Apply the patch.

[user@machine:~]$ kubectl -n vmi-disablepolicy patch vmi pod-vn-1-7d622c4d --patch "$(cat
packet-mode-patch.yaml)"
virtualmachineinterface.core.contrail.juniper.net/pod-vn-1-7d622c4d patched

5. After you apply the patch, flow mode switches to packet mode.

[user@machine:~]$ kubectl -n vmi-disablepolicy get vmi pod-vn-1-7d622c4d -oyaml |
yq .spec.virtualMachineInterfaceDisablePolicy
true

6. Verify that packet mode is active.

Generate traffic by pinging another pod in the same network that you pinged in Step 1.

root@pod-vn-1:/# ping -q -c5 25.26.27.2
PING 25.26.27.2 (25.26.27.2) 56(84) bytes of data.

--- 25.26.27.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4105ms
rtt min/avg/max/mdev = 0.051/2.725/13.388/5.331 ms

7. Use the flow command-line tool to check for flows.

root@minikube:/# flow -l --match 25.26.27.3
...
...
Listing flows matching ([25.26.27.3]:*)

 Index Source:Port/Destination:Port Proto(V)

Success! No flows exist which indicates you are in packet mode.

89

Configure Reverse Path Forwarding on Virtual
Interfaces

IN THIS SECTION

Overview | 90

Enable RPF on a Virtual Interface | 91

Juniper Networks supports reverse path forwarding (RPF) on virtual interfaces using Cloud-Native
Contrail® Networking™ Release 22.1 or later in a Kubernetes-orchestrated environment.

Overview

Unicast reverse-path-forwarding (RPF) verifies that a packet is sent from a valid source address by
performing an RPF check. RPF check is a validation tool that uses the IP routing table to verify whether
the source IP address of an incoming packet is arriving from a valid path. RPF helps reduce forwarding of
IP packets that might be spoofing an IP address.

When a packet arrives on an interface, RPF performs a forwarding table lookup on the packet's source
IP address and checks the incoming interface. The incoming interface must match the interface on which
the packet arrived. If the interface does not match, the vRouter drops the packet. If the packet is from a
valid path, the vRouter forwards the packet to the destination address.

You can enable or disable source RPF on a per-virtual network basis. By default, RPF is disabled.

• RPF enable

Whenever a packet reaches the interface, RPF performs a check on the packet's source IP address.
All packets are dropped if the route is not learned by the vRouter. Only packets received from the
MAC/IP address allocated to the workload are permitted on an interface.

• RPF disable

Packets from any source are accepted on the interface. A forwarding table lookup is not performed
on the incoming packet source IP address.

90

Enable RPF on a Virtual Interface

Here is an example of a Namespace YAML file you use to configure RPF on a virtual interface. To enable
RPF, set the rpf variable under virtualNetworkProperties to enable.

apiVersion: v1
kind: Namespace
metadata:
 name: rpf-ns

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: rpf-ns
 name: rpf-subnet-1
 annotations:
 core.juniper.net/display-name: Sample Subnet
 core.juniper.net/description:
 Subnet represents a block of IP addresses and its configuration.
 IPAM allocates and releases IP address from that block on demand.
 It can be used by different VirtualNetwork in the mean time.
spec:
 cidr: "172.20.10.0/24"

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 namespace: rpf-ns
 name: rpf-vn-1
 annotations:
 core.juniper.net/display-name: Sample Virtual Network
 core.juniper.net/description:
 VirtualNetwork is a collection of end points (interface or ip(s) or MAC(s))
 that can communicate with each other by default. It is a collection of
 subnets whose default gateways are connected by an implicit router
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: Subnet
 namespace: rpf-ns
 name: rpf-subnet-1

91

 fabricSNAT: true
 virtualNetworkProperties:
 rpf: enable

Enable VLAN Subinterface Support on Virtual
Interfaces

SUMMARY

Virtualized Network Function (VNF) and
Containerized Network Function (CNF) workloads
often require multiple virtual network services on a
single interface. Cloud-Native Contrail® Networking™

supports VLAN subinterfaces on virtual interfaces.

IN THIS SECTION

VLAN Subinterface Overview | 92

API Changes | 93

Network Definition Changes | 93

Configuration Use Cases | 94

Valid Configuration 1: One Parent, One
Subinterface: | 95

Valid Configuration 2: One Parent, Multiple
Subinterfaces: | 96

Valid Configuration 3: Multiple Parents,
Multiple Subinterfaces: | 97

Invalid Configuration 1: Multiple Interfaces on
Same Network: | 98

Invalid Configuration 2: Two Interfaces with
Same interfacegroup but no VLAN | 99

VLAN Subinterface Overview

A VLAN subinterface is a logical division of a virtual (or physical) interface at the network level. VLAN
subinterfaces are Layer 3 interfaces that receive and forward 802.1Q VLAN tags. You can assign
multiple VLAN tags to a single virtual interface. When a packet arrives at that interface, the packet's
associated VLAN tags designate which VLAN the packet routes to. You can use VLAN subinterfaces to
route traffic to multiple VLANs for your services.

92

https://en.wikipedia.org/wiki/IEEE_802.1Q

API Changes

This section provides information about API calls that occur when configuring a VLAN subinterface.

When configuring VLAN subinterfaces in Cloud-Native Contrail Networking, Kubernetes updates the
VirtualMachineInterface field with new properties, or VLAN tags. After an update occurs, the
VirtualMachineInterface object references other VirtualMachineInterface objects based on existing VLAN tags.

NOTE: Cloud-Native Contrail Networking defines the properties field from Contrail Classic as
virtualMachineInterfaceProperties.

Network Definition Changes

This section provides information about the network definition enhancements necessary when creating
a subinterface for a virtual interface within a pod.

In kube-manager, the PodController watching for pod events reads the network definition applied to it. Kube-
manager parses each network selection element and creates an associated VMI (virtual machine interface).
Parent VMIs are the network elements with only the net.juniper.contrail.interfacegroup tag attached in the
YAML file. Subinterfaces are the network elements with the net.juniper.contrail.interfacegroup and
net.juniper.contrail.vlan tags attached in the YAML file.

The following two tags enhance the network definition in the cni-args section:

• net.juniper.contrail.interfacegroup

• Interface Group groups two or more interfaces.

• The parent interface is the network selection element associated with only this tag.

• The subinterface is the network selection element associated with this tag and a VLAN tag.

• net.juniper.contrail.vlan

• Specifies the VLANID on the subinterface.

A VLAN subinterface belongs to its parent interface. Users must specify the namespace to which the
subinterface attaches. Consider the following example:

93

Example 1

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: my-namespace
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "parent-vn",
 "namespace": "vn-ns",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"}
 ...
 },
 {
 "name": "subitf-vn",
 "namespace": "vn-ns",
 "cni-args": {
 "net.juniper.contrail.vlan": 100,
 "net.juniper.contrail.interfacegroup": "eth1"},
 ...
 },
 ...

Example 1 shows specified pod annotations for cni-args. This example configuration creates the
following three VMIs and three IIPs (interface IPs) within the pod:

• VMI, IIP for eth0 on default pod network

• VMI, IIP for eth1 on parent-vn (parent interface)

• VMI, IIP for eth1.100 on subitf-vn (subinterface)

Configuration Use Cases

This section provides examples of different valid and invalid parent and subinterface configurations.

Valid Configurations

94

"Valid Configuration 1: One Parent, One Subinterface:" on page 95

"Valid Configuration 2: One Parent, Multiple Subinterfaces:" on page 96

"Valid Configuration 3: Multiple Parents, Multiple Subinterfaces:" on page 97

Invalid Configurations

"Invalid Configuration 1: Multiple Interfaces on Same Network:" on page 98

"Invalid Configuration 2: Two Interfaces with Same interfacegroup but no VLAN" on page 99

Valid Configuration 1: One Parent, One Subinterface:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 ...

95

Valid Configuration 2: One Parent, Multiple Subinterfaces:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 }
]

96

Valid Configuration 3: Multiple Parents, Multiple Subinterfaces:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn4",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth2"
 }
 },

97

 {
 "name": "vlan-subintf-vn3",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth2"
 }
 }
]

Invalid Configuration 1: Multiple Interfaces on Same Network:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
]

98

Invalid Configuration 2: Two Interfaces with Same interfacegroup but no VLAN

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
]

Health Check

SUMMARY

In Cloud-Native Contrail Networking (CN2) Release
22.3, a new health check custom resource object is
introduced that associates the virtual machine
interface (VMI) to the pod creation and update
workflow. The health check resource is a namespace-
scoped resource.

IN THIS SECTION

Health Check Overview | 100

Create a Health Check Object | 100

Health Check Process | 105

99

Health Check Overview

The health check functionality is provided by the Contrail vRouter agent. You can associate a ping or
HTTP health check to an interface. If the health check fails, based on the timers and intervals configured
in the health check object, the interface is set as administratively down and associated routes are
withdrawn. Health check traffic continues to be transmitted in an administratively down state to allow
for an interface to recover.

Create a Health Check Object

Use this procedure to create a health check object.

1. In the deployment manifests from the Contrail Networking download page, use the hc.yaml file
(shown below) for the YML definition for health check objects. The same folder also includes the
hc_pod.yaml which has the YML definition to associate the health check object with VMI by means of
pod definitions.

Sample hc.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: healthcheck

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
 name: ping-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:
 delay: 2
 enabled: true
 healthCheckType: end-to-end
 maxRetries: 5
 monitorType: PING
 timeout: 5

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck

100

https://support.juniper.net/support/downloads/?p=contrail-networking

metadata:
 name: bfd-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:
 delay: 2
 enabled: true
 healthCheckType: link-local
 maxRetries: 5
 monitorType: BFD
 timeout: 5

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
 name: http-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:
 delay: 2
 enabled: true
 healthCheckType: end-to-end
 maxRetries: 5
 monitorType: HTTP
 timeout: 5
 httpMethod: GET
 expectedCodes: 200
 urlPath: /health

2. Complete the parameters to define the health check. Table 14 on page 101 lists and explains the
parameters.

Table 14: Health Check Configurable Parameters

Field Description

Delay The delay, in seconds, to repeat the health check.

DelayUsecs Time in micro seconds at which health check is
repeated.

101

Table 14: Health Check Configurable Parameters (Continued)

Field Description

Enabled Indicates that health check is enabled. The default is
False.

ExpectedCodes When the monitor protocol is HTTP, the expected
return code for HTTP operations. Must be in the
range of 200-299.

HealthCheckType Indicates the health check type: link-local, end-to-
end, segment, vn-ip-list, and end2end. The default is
link-local.

In both link-local and end-to-end modes, health
check is executed for the pod on the vRouter where
the VMI is running.

HttpMethod When the monitor protocol is HTTP, the type of
HTTP method used is GET.

MaxRetries The number of retries to attempt before declaring an
instance health down.

MonitorType The protocol type to be used: PING, BFD, or TCP.

Timeout The number of seconds to wait for a response.

TimeoutUsecs Time in micro seconds to wait for response.

UrlPath Must be a valid URL. For example, http://
172.16.0.1/<path>, The IP address can be a
placeholder which will be replaced with the pod link-
local IP address or metadata IP address.

Following is an abstract Golang schema for the health check resource.

type ServiceHealthCheckProperties struct {
 Delay *int
 DelayUsecs *int
 Enabled boolean

102

 ExpectedCodes int // Only for http
 HealthCheckType (link-local | end-to-end |segment | vn-ip-list) //end2end
 HttpMethod *string
 MaxRetries int
 MonitorType (ping | BFD |TCP)
 Timeout int
 TimeoutUsecs int

}

type ServiceHealthCheckSpec struct {
 ServiceHealthCheckProperties *ServiceHealthCheckProperties
}

type ServiceHealthCheckStatus struct {
 uuid *string
}

type ServiceHealthCheck struct {
 <kube_specific_objetcs>
 Spec ServiceHealthCheckSpec
 Status ServiceHealthCheckStatus
}

The YML representation for the Golang schema is:

```
apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
  name: ping-hc
  namespace: healthcheck
spec:
  serviceHealthCheckProperties:
    delay: 2
    enabled: true
    healthCheckType: end-to-end  #valid values are link-local|end-to-end|segment|vn-ip-list
    maxRetries: 5
    monitorType: PING  #valid are PING|HTTP|BFD
    timeout: 5

103



```

3. Link the health check object to the VMI by means of the pod annotation reference value
core.juniper.net/health-check. The default behavior is to associate the health check with the primary
interface.

apiVersion: v1
kind: Pod
metadata:
 name: hc_pod
 namespace: hc_ns
 annotations:
 core.juniper.net/health-check: '[{"name": "ping-hc", "namespace": "healthcheck"}]'
spec:
 <>

4. (Optional) To link the health check with multiple interfaces (attached to different NAD or VN), you
can refer the health check object within the cni-args section. Following is an example of configured
cni-args in annotations.

apiVersion: v1
kind: Pod
metadata:
 name: hc_pod
 namespace: hc_ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "hc-vn",
 "namespace": "healthcheck",
 "cni-args": {
 "core.juniper.net/health-check": "[{\"name\": \"ping-hc\", \"namespace\":
\"healthcheck\"}]"
 }
 }
]
spec:
 <>

104

Existing VMI objects will have a new field to reference the HealthCheck object.

type VirtualMachineInterfaceStatus struct {
 <existing_vmi_status_attributes>
 ServiceHealthCheckReference *ResourceReference
}

type VirtualMachineInterface struct {
 <other VMI attributes>
 Status VirtualMachineInterfaceStatus
}

For the PING or HTTP monitoring-based health check minimum interval is 1second. If you need a sub-
second level health check for critical applications,you can opt for the BFD-based monitoring type.

Health Check Process

The Contrail vRouter agent is responsible for providing the health check service. The agent spawns a
health check probe process to monitor the status of a service hosted on the same compute node, and
the process updates the status to the vRouter agent.

The vRouter agent acts on the status provided by the script to withdraw or restore the exported
interface routes. The agent is also responsible for providing a link-local metadata IP address for allowing
the script to communicate with the destination IP address from the underlay network, using appropriate
NAT translations. In a running system, this information is displayed in the vRouter agent introspect at:

http://<compute-node-ip>:8085/Snh_HealthCheckSandeshReq?uuid=

105

3
CHAPTER

Configure DPDK

Deploy Kubevirt DPDK Dataplane Support for VMs | 107

Deploy DPDK vRouter for Optimal Container Networking | 119

Control Pod Scheduling on DPDK Nodes | 127

Deploy Kubevirt DPDK Dataplane Support for VMs

SUMMARY

Cloud-Native Contrail® Networking™ supports the
deployment of the vRouter DPDK dataplane
(Kubevirt) for high-performance VM and container
networking in Kubernetes.

IN THIS SECTION

Kubevirt Overview | 107

Kubevirt DPDK Implementation | 108

Deploy Kubevirt | 108

Launch a VM Alongside a Container | 109

Create a Virtual Network | 114

Launch a VM | 114

Kubevirt Overview

Kubevirt is an open source Kubernetes project that enables the management (scheduling) of virtual
machine workloads (VMs) alongside container workloads within a Kubernetes cluster. Kubevirt provides
a unified development platform where developers build, modify, and deploy applications residing in both
application containers and VMs within a common, shared environment. Kubevirt provides the following
additional functions to your Kubernetes cluster:

• Kubevirt adds additional types of pods, or Custom Resource Definitions (CRDs), to the Kubernetes
API server

• Additional controllers for cluster-wide logic to support the new types of pods

• Additional daemons for node-specific logic to support the new types of pods

As a result of this new functionality, Kubevirt creates and manages VirtualMachineInstance (VMI) objects.
VMIs contain a workload controller called a VirtualMachine (VM). The VM maintains the persistent state of
it’s VMI. This enables users to terminate and initiate VMs at another time with no change in data or
state. Additionally, you can deploy Kubevirt on top of a Kubernetes cluster which lets you manage
traditional container workloads along with VMIs managed by Kubevirt. VMs have access to Kubernetes
cluster features with no additional permissions required.

107

Kubevirt DPDK Implementation

Kubevirt does not typically support user space networking for fast packet processing. In Cloud-Native
Contrail Networking however, enhancements enable Kubevirt to support vhostuser interface types for
VMs. These interfaces perform user space networking with the DPDK vRouter and give pods access to
the increased performance and packet processing the DPDK vRouter provides.

The following are some of the benefits of the DPDK vRouter application:

• Packet processing occurs in user space and bypasses kernel space. This increases packet-processing
efficiency.

• Kernel interrupts and context switches do not occur because packets bypass kernel space. This
results in less CPU overhead and increased data throughput.

• DPDK enhances the forwarding plane of the vRouter in user space, increasing performance.

• DPDK Lcores run in poll mode. This enables the Lcores to receive and process packets immediately
upon receiving them.

Deploy Kubevirt

Prerequisites

You must have an active Kubernetes cluster and the ability to use the kubectl client in order to deploy
Kubevirt.

Deploy the Cloud-Native Contrail Networking Kubevirt Fork

The current Kubevirt release (v0.48.0) doesn't support enhancements to enable the vhostuser interface.
Juniper maintains a Kubevirt fork that supports this DPDK interface. This Kubevirt fork is for use in
environments running Cloud-Native Contrail Networking. Changes to the fork are committed on top of
Kubevirt release version (v0.40.0) and tagged/released as version (v.0.40.0-jnpr) from the fork.

The Kubevirt operator and Kubevirt CR are also released from the fork repository. The Kubevirt operator
manages the life cycle of core Kubevirt components. The Kubevirt operator and CR enable virtualization
in your cluster.

Use the following commands to deploy the Kubevirt fork, Kubevirt CR, and Kubevirt operator. Note the
release version (v0.40.0) and installation file paths.

export RELEASE=v0.40.0-jnpr
kubectl apply -f https://github.com/cijohnson/kubevirt/releases/download/${RELEASE}/kubevirt-

108

operator.yaml
kubectl apply -f https://github.com/cijohnson/kubevirt/releases/download/${RELEASE}/kubevirt-
cr.yaml
kubectl -n kubevirt wait kv kubevirt --for condition=Available

Cloud-Native Contrail Networking Kubevirt fork.

Launch a VM Alongside a Container

With Kubevirt, launching and managing a VM in Kubernetes is similar to deploying a pod. You can create
a VM object using kubectl. After creating a VM object, that VM is active and running in your cluster.

Use the following high-level steps to launch a VM alongside a container:

1. Create a VirtualNetwork

2. Launch a VM

Launch a VM

The following VirtualMachine specs are examples of VirtualMachine instances with a varying amount of
interfaces.

• Single vhostuser interface VM:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-single-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-single-virtio
 app: vm-single-virtio-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30

109

https://github.com/cijohnson/kubevirt/tree/v0.40.0-jnpr

 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

110

• Multi vhostuser interface:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-multi-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-multi-virtio
 app: vm-multi-virtio-app
 spec:
 nodeSelector:
 worker: worker
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}

111

 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Bridge/vhostuser interface VM:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-virtio-veth
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-virtio-veth
 app: vm-virtio-veth-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30

112

 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 bridge: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk

113

 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

Create a Virtual Network

The following net-attach-def object is an example of a virtual network.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vn-blue
 namespace: contrail
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "19.1.1.0/24"
 }'
 labels:
 vn: vn-blue-vn-green
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "nad-blue",
 "type": "contrail-k8s-cni"
}'

Launch a VM

The following VirtualMachine specs are examples of VirtualMachine instances with a varying amount of
interfaces.

• Single vhostuser interface VM:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-single-virtio

114

 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-single-virtio
 app: vm-single-virtio-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue

115

 multus:
 networkName: vn-blue
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Multi vhostuser interface:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-multi-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-multi-virtio
 app: vm-multi-virtio-app
 spec:
 nodeSelector:
 worker: worker
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"

116

 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Bridge/vhostuser interface VM:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-virtio-veth
 namespace: contrail
spec:

117

 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-virtio-veth
 app: vm-virtio-veth-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 bridge: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue

118

 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

Deploy DPDK vRouter for Optimal Container
Networking

IN THIS SECTION

DPDK Overview | 120

DPDK vRouter Support for DPDK and Non-DPDK Workloads | 120

Non-DPDK Pod Overview | 120

DPDK Pod Overview | 121

Mix of Non-DPDK and DPDK Pod Overview | 121

DPDK vRouter Architecture | 121

DPDK Interface Support for Containers | 122

DPDK vRouter Host Prerequisites | 122

Deploy a Kubernetes Cluster with DPDK vRouter in Compute Node | 124

DPDK vRouter Custom Resource Settings | 125

119

DPDK Overview

Cloud-Native Contrail® Networking™ supports the Data Plane Development Kit (DPDK). DPDK is an
open source set of libraries and drivers for rapid packet processing. Cloud-Native Contrail Networking
accelerates container networking with DPDK (Data Plane Development Kit) vRouter technology. DPDK
enables fast packet processing by allowing network interface cards (NICs) to send direct memory access
(DMA) packets directly into an application’s address space. This method of packet routing lets the
application poll for packets which avoids the overhead of interrupts from the NIC.

Utilizing DPDK enables the Cloud-Native Contrail vRouter to process more packets per second than it
could when running as a kernel module DPDK Interface for Container Service Functions. Cloud-Native
Contrail Networking leverages the processing power of the DPDK vRouter to power high-demand
Container Service Functions.

When you provision a Contrail compute node with DPDK, the corresponding YAML file specifies the
number of CPU cores to use for forwarding packets, the number of huge pages to allocate for DPDK,
and the UIO driver to use for DPDK.

DPDK vRouter Support for DPDK and Non-DPDK Workloads

When a container or pod needs access to the DPDK vRouter, the following workload types occur:

1. Non-DPDK workload (pod): This workload includes non-DPDK pod applications that are not aware
of the underlying DPDK vRouter. These applications are not designed for DPDK and do not use
DPDK capabilities. In Cloud-Native Contrail Networking, this workload type functions normally in a
DPDK vRouter-enabled cluster.

2. Containerized DPDK workload: These workloads are built on the DPDK platform. DPDK interfaces
are brought up using vHost protocol, which acts as a datapath for management and control functions.
Pods act as vHost Server and the underlying DPDK vRouter acts as vHost Client.

3. Mix of Non-DPDK and DPDK workoads: The management or control channel on an application in
this pod might be non-DPDK (Veth pair) and the datapath might be a DPDK interface.

Non-DPDK Pod Overview

A virtual ethernet (Veth) pair plumbs the networking of a non-DPDK pod. One end of the Veth pair
attaches to the pod's namespace. The other end attaches to the kernel of the host machine. The CNI
(Container Networking Interface) establishes the Veth pair and allocates IP addresses using IPAM (IP
Address Management).

120

DPDK Pod Overview

A DPDK pod contains a vhost interface and a virtio interface. The pod uses the vhost interface for
management purposes and the virtio interface for high-throughput packet processing applications. A
DPDK application in the pod uses vhost protocol to establish communication with the DPDK vRouter in
the host. The DPDK application receives an argument to establish a filepath for a UNIX socket. The
vRouter uses this socket to establish the control channel, run negotiations, and create vrings over huge
pages shared memory for high-speed datapaths.

Mix of Non-DPDK and DPDK Pod Overview

This pod might contain non-DPDK and DPDK applications. A non-DPDK application uses a non-DPDK
interface (Veth pair) and the DPDK application uses the DPDK interfaces (vhost, virtio). These two
workloads occur simultaneously.

DPDK vRouter Architecture

The Contrail DPDK vRouter is a container that runs inside the Contrail compute node. The vRouter runs
as either a Linux kernel module or a user space DPDK process and is responsible for transmitting
packets between virtual workloads (tenants, guests) on physical devices. The vRouter also transmits
packets between virtual interfaces and physical interfaces.

The Cloud-Native Contrail vRouter supports the following encapsulation protocols:

• MPLS over UDP (MPLSoUDP)

• MPLS over GRE (MPLSoGRE)

• Virtual Extensible LAN (VXLAN)

Compared with the traditional Linux kernel deployment, deploying the vRouter as a user space DPDK
process drastically increases the performance and processing speed of the vRouter application. This
increase in performance is the result of the following factors:

• The virtual network functions (VNFs) operating in user space are built for DPDK and designed to
take advantage of DPDK’s packet processing power.

• DPDK's poll mode drivers (PMD) use the physical interface (NIC) of a VM's host, instead of the Linux
kernel's interrupt-based drivers. The NIC’s registers operate in user space which makes them
accessible by DPDK’s PMDs.

121

As a result, the Linux OS does not need to manage the NIC's registers. This means that the DPDK
application manages all packet polling, packet processing, and packet forwarding of a NIC. Instead of
waiting for an I/O interrupt to occur, a DPDK application constantly polls for packets and processes
these packets immediately upon receiving them.

DPDK Interface Support for Containers

The benefits and architecture of DPDK usually optimize VM networking. Cloud-Native Contrail
Networking lets your Kubernetes containers take full advantage of these features. In Kubernetes, a
containerized DPDK pod typically contains two or more interfaces. The following interfaces form the
backbone of a DPDK pod:

• Vhost user protocol (for management): The vhost user protocol is a backend component that
interfaces with the host. In Cloud-Native Contrail Networking, the vhost interface acts as a datapath
for management and control functions between the pod and vRouter. This protocol comprises the
following two planes:

• The control plane exchanges information (memory mapping for DMA, capability negotiation for
establishing and terminating the data plane) between a pod and vRouter through a Unix socket.

• The data plane is implemented through direct memory access and transmits data packets between
a pod and vRouter.

• Virtio interface (for high-throughput applications): At a high level, virtio is a virtual device that
transmits packets between a pod and vRouter. The virtio interface is a shared memory (shm) solution
that lets pods access DPDK libraries and features.

These interfaces enable the DPDK vRouter to transmit packets between pods. The interfaces give pods
access to advanced networking features provided by the vRouter (huge pages, lockless ring buffers, poll
mode drivers). For more information about these features, visit A journey to the vhost-users realm.

Applications use DPDK to create vhost and virtio interfaces. The application or pod then uses DPDK
libraries directly to establish control channels using Unix domain sockets. The interfaces establish
datapaths between a pod and vRouter using shared memory vrings.

DPDK vRouter Host Prerequisites

In order to deploy a DPDK vRouter, you must perform the following huge pages and NIC configurations
on the host node:

122

https://www.redhat.com/en/blog/journey-vhost-users-realm

• Huge pages configuration: Specify the percentage of host memory to be reserved for the DPDK huge
pages. The following command line shows huge pages set at 2MB:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0 default_hugepagesz=2M hugepagesz=2M
hugepages=8192"

The following example allocates four 1GB huge pages and 1024 2MB huge pages:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=4 hugepagesz=2M hugepages=1024"

NOTE: We recommend that you allocate 1GB for the huge pages size.

• Enable IOMMU (input-output memory management unit): DPDK applications require IOMMU
support. Configure IOMMU settings and enable IOMMU from the BIOS. Apply the following flags as
boot parameters to enable IOMMU:

"intel_iommu=on iommu=pt"

• Ensure that the Kernel driver is loaded onto Port Forward 0 (port 0) of the host's NIC. Ensure that
DPDK PMD drivers are loaded onto Port Forward 1 (port 1) of the host's NIC.

NOTE: In an environment where both DPDK and kernel drivers use different ports of a
common NIC, we strongly recommend that you deploy a DPDK node with kernel drivers
bound to port 0 on the NIC, and DPDK PMD drivers bound to port 1 of that NIC. Other port
assignment configurations might cause performance issues. For more information, see section
24.9.11 of the following DPDK documentation: I40E Poll Mode Driver.

• PCI driver (vfio-pci, uio_pci_generic): Specify which PCI driver to use based on NIC type.

NOTE: The vfio-pci is built-in.

• uio_pci_generic

123

https://doc.dpdk.org/guides/nics/i40e.html

• Manually install the uio_pci_generic module if needed:

root@node-dpdk1:~# apt install linux-modules-extra-$(uname -r)

• Verify that the uio_pci_generic module is installed:

root@node-dpdk1:~# ls /lib/modules/5.4.0-59-generic/kernel/drivers/uio/
uio.ko uio_dmem_genirq.ko uio_netx.ko uio_pruss.ko
uio_aec.ko uio_hv_generic.ko 'uio_pci_generic.ko' uio_sercos3.ko
uio_cif.ko uio_mf624.ko uio_pdrv_genirq.ko

Deploy a Kubernetes Cluster with DPDK vRouter in Compute Node

Cloud-Native Contrail Networking utilizes a DPDK deployer to launch a Kubernetes cluster with DPDK
compatibility. This deployer performs lifecycle management functions and applies DPDK vRouter
prerequisites. A custom resource (CR) for the DPDK vRouter is a subset of the deployer. The CR
contains the following:

• Controllers for deploying Cloud-Native Contrail Networking resources

• Built-in controller logic for the vRouter

Apply the DPDK deployer YAML and deploy the DPDK vRouter CR with agentModeType: dpdk using the
following command:

kubectl apply -f <vrouter_cr.yaml>

After applying the CR YAML, the deployer creates a daemonset for the vRouter. This deamonset spins
up a pod with a DPDK container.

If you get an error message, ensure that your cluster has the custom resource definition (CRD) for the
vRouter using the following command:

kubectl get crds

124

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/?msclkid=f65dc4a3be6d11ecaa50929954d453c9

The following is an example of the output you receive:

NAME CREATED AT
vrouters.dataplane.juniper.net 2021-06-16T16:06:34Z

If no CRD is present in the cluster, check the deployer using the following command:

kubectl get deployment contrail-k8s-deployer -n contrail-deploy -o yaml

Check the image used by the contrail-k8s-crdloader container. This image should be the latest image the
deployer uses. Update the image and ensure that your new pod uses this image.

After you verify that your new pod is running the latest image, verify that the CRD for the vRouter is
present using the following command:

kubectl get crds

After you verify that the CRD for the vRouter is present, apply the vRouter CR using the following
command:

kubectl apply -f <vrouter_cr.yaml>

DPDK vRouter Custom Resource Settings

You are able to configure the following settings of the vRouter's CR:

• service_core_mask: Specify a service core mask. The service core mask enables you to dynamically
allocate CPU cores for services.

You can enter the following input formats:

• Hexadecimal (for example, 0xf)

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

125

NOTE: PMDs require the bulk of your available CPU cores for packet processing. As a result,
we recommend that you reserve a maximum of 1 to 2 CPU cores for service_core_mask and
dpdk_ctrl_thread_mask. These two cores share CPU power.

• cpu_core_mask: Specify a CPU core mask. DPDK's PMDs use these cores for high-throughput packet-
processing applications.

The following are supported input formats:

• Hexadecimal (for example, 0xf)

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

• dpdk_ctrl_thread_mask: Specify a control thread mask. DPDK uses these core threads for internal
processing.

The following are supported input formats:

• Hexadecimal (for example, 0xf)

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

NOTE: PMDs require the bulk of your available CPU cores for packet processing. As a result,
we recommend that you reserve a maximum of 1 to 2 CPU cores for service_core_mask and
dpdk_ctrl_thread_mask. These two cores share CPU power.

• dpdk_command_additional_args: Specify DPDK vRouter settings that are not default settings. Arguments
you enter here are appended to the DPDK PMD command line.

The following is an example argument:--yield_option 0

.

126

Control Pod Scheduling on DPDK Nodes

SUMMARY

Cloud-Native Contrail Networking release 22.2
supports a custom plugin that schedules pods based
on node interface capacity. This plugin is comprised
of several APIs that filter and select optimal DPDK
nodes for pod assignment.

IN THIS SECTION

Pod Scheduling in Kubernetes | 127

Kubernetes Scheduling Framework
Overview | 128

Contrail Custom Scheduler Overview | 128

Contrail Custom Scheduler Implementation in
Cloud-Native Contrail Networking | 129

Filter | 129

Score | 130

NormalizeScore | 130

Deploy the Kubernetes Scheduling
Framework as a Secondary Scheduluer | 130

Create Configuration Files for Your Custom
Scheduler | 130

Create a Vanilla Deployment with Proper
Volume Mounts and Flags for Your Scheduler
Configurations | 132

Verify the Pod(s) That You Want the Custom
Scheduler to Schedule | 134

Pod Scheduling in Kubernetes

In Kubernetes, a scheduler monitors newly-created pods for pods with no node assignment. The
scheduler attempts to assign these pods to suitable nodes using a filtering phase and a scoring phase.
Potential nodes are filtered based on attributes like the resource requirements of a pod. If a node doesn't
have the available resources for a pod, that node is filtered out. If more than one node passes the
filtering phase, Kubernetes scores and ranks the remaining nodes based on their suitability for a given
pod. The scheduler assigns a pod to the node with the highest ranking. If two nodes have the same
score, the scheduler picks a node at random.

127

Kubernetes Scheduling Framework Overview

The Kubernetes Scheduling Framework adds new scheduling APIs to the default cluster scheduler for
extended scheduling functionality. The framework performs a scheduling cycle and a binding cycle for
each pod. The scheduling cycle selects an optimal node for a pod, and the binding cycle applies that
decision to the cluster. The scheduling and binding cycles expose several extension points during the
course of their individual cycles. Plugins are registered to be called at various extension points. For
example, during the scheduling cycle, one of the exposed extension points is called Filter. When the
scheduling cycling reaches the Filter extension point, Filter plugins are called to perform filtering tasks.

Contrail Custom Scheduler Overview

Cloud-Native Contrail Networking supports the deployment of DPDK nodes for high-throughput
applications. DPDK nodes have a 32 VMI (Virtual Machine Interface) limit by default. This means that a
DPDK node hosts a maximum of 32 pods. The Kubernetes default scheduler doesn't currently support a
mechanism for recognizing DPDK node requirements and limitations. As a result, Cloud-Native Contrail
Networking provides a custom scheduler built on top of the Kubernetes Scheduling Framework that
implements a VMICapacity plugin to support pod scheduling on DPDK nodes.

128

Contrail Custom Scheduler Implementation in Cloud-Native Contrail
Networking

Cloud-Native Contrail Networking Custom Scheduler supports a VMICapacity plugin which implements
Filter, Score, and NormalizeScore extension points in the scheduler framework. See the sections below for
more information about these extension points.

Figure 3: Contrail Custom Scheduler Extension Points

Filter

These plugins filter out nodes that cannot run the pod. Nodes are filtered based on VMI capacity. If a
node has the maximum amount of allocated pods, that node is filtered out and the scheduler marks the
pod as unusable on that node. Non-DPDK nodes are also filtered out in this phase based on user-
configured nodeLabels that identify DPDK nodes.

129

Score

These plugins rank nodes that passed the filtering phase. The scheduler calls a series of scoring plugins
for each node. In Cloud-Native Contrail Networking, a node's score is based on the number of VMIs
currently active in the node. If only one node passes the Filter stage, the Score and NormalizeScore
extension points are skipped and the scheduler assigns the pod to that node.

NormalizeScore

These plugins modify node scores before the scheduler computes a final ranking of nodes. The number
of active VMIs on a node determines that node's score. The higher the number of active VMIs, the lower
the score, and vice versa. The score is normalised in the range of 0-100. After the NormalizeScore phase,
the scheduler combines node scores for all plugins according to the configured plugin weights defined in
the scheduler configuration.

Deploy the Kubernetes Scheduling Framework as a Secondary
Scheduluer

Follow these high-level steps to deploy the Contrail Custom Scheduler as a secondary scheduler that
runs alongside your default Kubernetes scheduler:

1. Create configuration files for your custom scheduler.

2. Create a vanilla deployment with proper volume mounts and flags for your scheduler configurations.

3. Verify the pod(s) that you want the custom scheduler to schedule.

See the sections below for more information.

Create Configuration Files for Your Custom Scheduler

The custom scheduler requires a kubeconfig and a scheduler configuration file. Consider the following
sample scheduler configuration file:

apiVersion: kubescheduler.config.k8s.io/v1beta3
clientConnection:

130

 acceptContentTypes: ""
 burst: 100
 contentType: application/vnd.kubernetes.protobuf
 kubeconfig: /tmp/config/kubeconfig
 qps: 50
enableContentionProfiling: true
enableProfiling: true
kind: KubeSchedulerConfiguration
leaderElection:
 leaderElect: false
profiles:
- pluginConfig:
 - args:
 apiVersion: kubescheduler.config.k8s.io/v1beta3
 kind: VMICapacityArgs
 maxVMICount: 32
 nodeLabels:
 agent-mode: dpdk
 name: VMICapacity
 plugins:
 filter:
 enabled:
 - name: VMICapacity
 weight: 0
 score:
 enabled:
 - name: VMICapacity
 weight: 0
 schedulerName: contrail-scheduler

Note the following fields:

• schedulerName: The name of the custom scheduler. This name must be unique to a cluster. You must
define this field if you want a pod to be scheduled using this scheduler.

• kubeconfig: The path to the kubeconfig file mounted on the pod's filesystem.

• maxVMICount: The maximum number of VMIs a DPDK node accommodates.

• nodeLabels: A set of labels identifying a group of DPDK nodes.

• VMICapacity: The name of the plugin that enables Kubernetes to determine VMI capacity for DPDK
nodes.

131

Create a Vanilla Deployment with Proper Volume Mounts and Flags for
Your Scheduler Configurations

Ensure that you don’t have more than one instance of a scheduler deployment running on a single node
as this results in a port conflict. Use node affinity rules or a DaemonSet in order to run multiple
instances of a scheduler on separate node in case of high availability (HA) requirements. Modify the
scheduler configuration as needed in order to enable leader election. For more information about leader
election, see the "Enable leader election section" of the following Kubernetes article: Configure Multiple
Schedulers.

The following YAML file shows an example of a scheduler deployment:

NOTE: You must create a namespace for the scheduler before launching a scheduler deployment
YAML. The scheduler operates under the namespace that your create.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: contrail-scheduler
 namespace: scheduler

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: contrail -scheduler
subjects:
- kind: ServiceAccount
 name: contrail -scheduler
 namespace: scheduler
roleRef:
 kind: ClusterRole
 name: system:kube-scheduler
 apiGroup: rbac.authorization.k8s.io

apiVersion: apps/v1
kind: Deployment
metadata:
 name: contrail-scheduler
 namespace: scheduler
 labels:

132

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/#enable-leader-election
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/#enable-leader-election

 app: scheduler
spec:
 replicas: 1
 selector:
 matchLabels:
 app: scheduler
 template:
 metadata:
 labels:
 app: scheduler
 spec:
 serviceAccountName: contrail-scheduler
 securityContext:
 fsGroup: 2000
 runAsGroup: 3000
 runAsNonRoot: true
 runAsUser: 1000
 containers:
 - name: contrail-scheduler
 image: <scheduler-image>
 command:
 - /contrail-scheduler
 - --kubeconfig=/tmp/config/kubeconfig
 - --authentication-kubeconfig=/tmp/config/kubeconfig
 - --authorization-kubeconfig=/tmp/config/kubeconfig
 - --config=/tmp/scheduler/scheduler-config
 - --secure-port=<metrics-port; defaults to 10259>
 livenessProbe:
 failureThreshold: 8
 httpGet:
 path: /healthz
 port: <secure-port>
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 resources:
 requests:
 cpu: 100m
 readinessProbe:
 failureThreshold: 8
 httpGet:
 path: /healthz

133

 port: <secure-port>
 scheme: HTTPS
 initialDelaySeconds: 10
 periodSeconds: 10
 timeoutSeconds: 15
 volumeMounts:
 - mountPath: /tmp/config
 name: kubeconfig
 readOnly: true
 - mountPath: /tmp/scheduler
 name: scheduler-config
 readOnly: true
 hostNetwork: false
 hostPID: false
 volumes:
 - name: kubeconfig
 <volume for kubeconfig file>
 - name: scheduler-config
 <volume for scheduler configuration file>

Verify the Pod(s) That You Want the Custom Scheduler to Schedule

The following pod manifest shows an example of a pod deployment using the secondary scheduler:

apiVersion: v1
kind: Pod
metadata:
 name: test-pod
spec:
 schedulerName: contrail-scheduler
 containers:
 - name: test
 image: busybox:latest
 command: ["/bin/sh","-c", "while true; do echo hello; sleep 10;done"]

Note the schedulerName. This field tells Kubernetes which scheduler to use when deploying a pod. You
must define this field in each pod's manifest that you want deployed this way. A pod's deployment state
remains pending if the specified scheduler is not present in the cluster.

134

4
CHAPTER

Configure Services

Display Microservice Status in Cloud-Native Contrail Networking | 136

NodePort Service Support in Cloud-Native Contrail Networking | 141

Create a LoadBalancer Service | 152

Display Microservice Status in Cloud-Native Contrail
Networking

IN THIS SECTION

Overview: Microservice Status in Cloud-Native Contrail Networking | 136

Display Microservice Status | 137

Display Deployment Status | 137

Display Resource Status | 138

Juniper Cloud-Native Contrail® Networking™ supports microservices in environments using Contrail
Networking Release 22.1 or later in a Kubernetes-orchestrated environment.

To display service status for the Contrail cluster, you need:

• CLI tool, such as kubectl to provide the overall system status of all the services running.

• The contrailstatus plugin must be installed along with kubectl.

• Use of command kubectl contrailstatus to request the status of various services.

Overview: Microservice Status in Cloud-Native Contrail Networking

Microservices exist as small, independent applications deployed without updating the entire Contrail
Networking deployment and provides better ways to manage to the lifecycles of containers. The
containers and their processes are grouped as services and microservices.

ContrailStatus is a kubectl plugin used to display the status information of Contrail Networking services
in the three different planes (configuration, control, and data). In addition to the usual containers in a
specific service, init (initialization) container status within the service and the relative software status,
such as BGP and XMPP in control_controller are also visible.

The contrailstatus plug-in is categorized into two sections:

• Deployment status

• Resource status

136

Display Microservice Status

The following outputs are examples showing deployment status updates and resource status updates to
the pods for all planes.

Display Deployment Status

Deployment status can be displayed in either short or default form.

All Planes Deployment Status

To display the deployment status for all of the planes and request the short form:

root@helper ~] # kubectl contrailstatus -short

PLANE STATUS
config nok
control ok
data ok

The option -short for short form only displays output for the pod name and status. The following
example outputs are using the default form.

Configuration Plane Deployment Status

To display the deployment status to the configuration plane:

root@helper ~] # kubectl contrailstatus deployment -p config

PODNAME STATUS NODE IP MESSAGE
apiserver-86885bf7d8-q27qk nok node 10.1.1.1 process not up,
init cont…..
apiserver-86885bf7d8-sdsdd ok node2 10.1.1.2
apiserver-86885bf7d8-sdsss ok node3 10.1.1.3
controller-6998bd846f-5cgf7 ok node1 10.1.1.1
controller-6998bd846f-5cgf8 ok node2 10.1.1.2
controller-6998bd846f-5cg10 nok node3 10.1.1.3 o/1 node is not
allocated.

137

cluster1-kubemanager-7cff895-sdfsd ok node2 10.1.1.2
cluster1-kubemanager-7cff895-sdfsa ok node3 10.1.1.3

Data Plane Deployment Status

To display the deployment status to the data plane:

root@helper ~] # kubectl contrailstatus deployment -p data

PODNAME STATUS NODE IP MESSAGE
vrouter-86885bf7d8-q27qk nok node 10.1.1.1 process
not up, init cont.…..
vrouter-86885bf7d8-sdsdd ok node2 10.1.1.2

Control Plane Deployment Status

To display the deployment status to the control plane:

root@helper ~] # kubectl contrailstatus deployment -p control

PODNAME STATUS NODE IP MESSAGE
contrail-control-0 nok node 10.1.1.1 process not
up, init cont.…..
contrail-control-1 ok node2 10.1.1.2

Display Resource Status

The contrailstatus plugin also displays status updates for deployment resources, such as XMPP and BGP.

Data Plane Resource Status

To display the resource status of bgprouter to the data plane:

root@helper ~] kubectl contrailstatus resource bgprouter

PODNAME STATUS SERVICE

138

bgprouter1 nok xmpp, bgp not working/has error..
bgprouter2 nok
bgprouter2 ok

Control Node Resource Status

To display the resource status in the control node, run the following command. The command gives the
output for the XMPP session.

root@helper ~] kubectl contrailstatus resource bgprouter -s xmpp

LOCAL NEIGHBOR STATE POD
bgprouter1 vr1 established (ok) contrail-control-0
bgprouter1 vr2 active (nok) contrail-control-0
bgprouter2 vr1 contrail-control-1
bgprouter2 vr3 contrail-control-1

To display the resource status in the control node, run the following command. The command gives the
output for the BGP session.

root@helper ~] kubectl contrailstatus resource bgprouter -s bgp

LOCAL NEIGHBOR STATE POD
bgprouter1 bgprouter2 established (ok) contrail-control-0
bgprouter1 bgprouter3 active (nok) contrail-control-0
bgprouter2 bgprouter1 established (ok) contrail-control-1
bgprouter2 bgprouter3 established (ok) contrail-control-1

All Planes Resource Status

To display the resource status on all of the planes:

[root@helper ~] # kubectl contrailstatus -all

NAME STATUS PLANE ERRORNOTES
apiserver-86789f7d8-q37qf Active Config

139

NAME STATUS PLANE ERRORNOTES
control-1 Active control
BGP-1 Active control
XMPP-1 Active control

NAME STATUS PLANE ERRORNOTES
vrouter-86789f7d8-q37qk Active data

[root@helper ~] #

Services Status for Multiple Nodes

The following (same) command displays the status of various services running on multiple nodes in a
cluster. If the running controller is active without any errors, the status column next to the service
displays as Active. If the controller has any error the status column of the controller is captured as Not-
Active. The output includes the status of various controllers and containers in the controllers.

To display the status of various services running on multiple nodes in a cluster:

[root@helper ~] # kubectl contrailstatus -all

NAME STATUS ERRORNOTES
apiserver-86885bf7d8-q27qk Active
apiserver-86885bf7d8-sdsdd Active
apiserver-86885bf7d8-sdsss Active
controller-6998bd846f-5cgf7 Active
controller-6998bd846f-5cgf8 Active
controller-6998bd846f-5cg10 Active
cluster1-kubemanager-7cff895-sdfsd Active
cluster1-kubemanager-7cff895-sdfsa Active

NAME STATUS ERRORNOTES
control-1 Active
control-2 Active
control-3 Active
BGP-1 Active
BGP-2 Active
XMPP-1 Active
Xmpp-2 Active

140

NAME STATUS ERRORNOTES
vrouter-86789f7d8-q37qk Active
vrouter-8905bf7d8-q47qk Active
vrouter-8688bf7d8-q57qk Active

[root@helper ~] #

NodePort Service Support in Cloud-Native Contrail
Networking

IN THIS SECTION

Contrail Networking Load Balancer Objects | 143

NodePort Service in Contrail Networking | 145

Workflow of Creating NodePort Service | 147

Kubernetes Probes and Kubernetes NodePort Service | 148

NodePort Service Port Mapping | 148

Example: NodePort Service Request Journey | 149

Local Option Limitation in External Traffic Policy | 151

Update or Delete a Service, or Remove a Pod from Service | 152

Juniper Networks supports Kubernetes NodePort service in environments using Cloud-Native Contrail®
Networking™ Release 22.1 or later in a Kubernetes-orchestrated environment.

In Kubernetes, a service is an abstraction that defines a logical set of pods and the policy, by which you
can access them. The set of pods implementing a service is selected based on the LabelSelector object in
the service definition. NodePort service exposes a service on each node’s IP at a static port. It maps the
static port on each node with a port of the application on the pod.

141

In Contrail Networking, Kubernetes NodePort service is implemented using the InstanceIP resource and
FloatingIP resource, both of which are similar to the ClusterIP service.

Kubernetes provides a flat networking model in which all pods can talk to each other. Network policy is
added to provide security between the pods. Contrail Networking integrated with Kubernetes adds
additional networking functionality, including multi-tenancy, network isolation, micro-segmentation with
network policies, and load-balancing.

The following table lists the mapping between Kubernetes concepts and Contrail Networking resources.

Table 15: Kubernetes Concepts to Contrail Networking Resource Mapping

Kubernetes Concept Contrail Networking Resource

Namespace Shared or single project

Pod Virtual Machine

Service Equal-cost multipath (ECMP) LoadBalancer

Ingress HAProxy LoadBalancer for URL

Network Policy Contrail Security

142

Contrail Networking Load Balancer Objects

Figure 4 on page 144 and the following list describe the load balancer objects in Contrail Networking.

143

Figure 4: Load Balancer Objects

• Each service in Contrail Networking is represented by a load balancer object.

• For each service port, a listener object is created for the same service load balancer.

144

• For each listener there is a pool object.

• The pool contains members. Depending on the number of backend pods, one pool might have
multiple members.

• Each member object in the pool maps to one of the backend pods.

• The contrail-kube-manager listens to kube-apiserver for the Kubernetes service. When a service is created,
a load balancer object with loadbalancer_provider type native is created.

• The load balancer has a virtual IP address (VIP), which is the same as the service IP address.

• The service IP/VIP address is linked to the interface of each backend pod. This is accomplished with
an ECMP load balancer driver.

• The linkage from the service IP address to the interfaces of multiple backend pods creates an ECMP
next hop in Contrail Networking. Traffic is load balanced from the source pod directly to one of the
backend pods.

• The contrail-kube-manager continues to listen to kube-apiserver for any changes. Based on the pod list in
endpoints, contrail-kube-manager knows the most current backend pods and updates members in the
pool.

NodePort Service in Contrail Networking

A controller service is implemented in kube-manager. The kube-manager is the interface between Kubernetes
core resources, such as service and the extended Contrail resources, such as VirtualNetwork and
RoutingInstance. This controller service watchs events going through the resource endpoints. An endpoint
receives an event for any change related to its service. The endpoint also receives an event for pods
created and deleted that match the service selector. The controller service handles creating the Contrail
resources needed: See Figure 5 on page 146.

• InstanceIP resource related to the ServiceNetwork

• FloatingIP resource and the associated VirtualMachineInterfaces

145

When a user creates a service, an associated endpoint is automatically created by Kubernetes, which
allows the controller service to receive new requests.

Figure 5: Controller Service Creates Contrail Resources

146

Workflow of Creating NodePort Service

Figure 6 on page 147 and the steps following detail the workflow when NodePort service is created.

Figure 6: Creating NodePort Service

1. When the NodePort service is created, InstanceIP (IIP) is created. The InstanceIP resource specifies a
fixed IP address and its characteristics that belong to a subnet of a referred virtual network.

2. Once the endpoint is connected to the NodePort service, the FloatingIP is created.The kube-manager
watches for the creation of endpoints connected to a service.

3. When a new endpoint is created, kube-manager then creates an InstanceIP in the ServiceVirtualNetwork
subnet. The kube-manager then creates a FloatingIP using the InstanceIP as the parent.

4. The FloatingIP resource specifies a special kind of IP address that does not belong to a specific
VirtualMachineInterface (VMI). The FloatingIP is assigned from a separate VirtualNetwork subnet and can
be associated with multiple VMIs. When associated with multiple VMIs, traffic destined to the
FloatingIP is distributed using ECMP across all VMIs.

147

Notes about VMIs:

• VMIs are dynamically updated as pods and labels are added and deleted.

• A VMI represents an interface (port) into a virtual network and might or might not have a
corresponding virtual machine.

• A VMI has at minimum a MAC address and an IP address.

Notes about VMs:

• A VM resource represents a compute container. For example VM, baremetal, pod, or container.

• Each VM can communicate with other VMs on the same tenant network, subject to policy
restrictions.

• As tenant networks are isolated, VMs in one tenant cannot communicate with VMs in another tenant
unless specifically allowed by policy.

Kubernetes Probes and Kubernetes NodePort Service

The kubelet, an agent that runs on each node, needs reachability to pods for liveness and readiness
probes. Contrail network policy is created between the IP fabric network and pod network to provide
reachability between node and pods. Whenever the pod network is created, the network policy is
attached to the pod network to provide reachability between node and pods. As a result, any process in
the node can reach the pods.

Kubernetes NodePort service is based on node reachability to pods. Since Contrail Networking provides
connectivity between nodes and pods through the Contrail network policy, NodePort is supported.

NodePort service supports two types of traffic:

• East-West

• Fabric to Pod

NodePort Service Port Mapping

The port mappings for Kubernetes NodePort service are located in the FloatingIp resource in the YAML
file. In FloatingIp, the ports are added in "floatingIpPortMappings".

If the targetPort is not mentioned in the service, then the port value is specified as default.

148

Example spec YAML file for NodePort service with port details:

 spec:
 clusterIP: 10.100.13.106
 clusterIPs:
 - 10.100.13.106
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 run: my-nginx
 sessionAffinity: None

For the above example spec YAML, "floatingIpPortMappings" are created in the FloatingIp resource:

Example "floatingIpPortMappings" YAML:

"floatingIpPortMappings": {
 "portMappings": [
 {
 "srcPort": 80,
 "dstPort": 80,
 "protocol": "TCP"
 }
]
 }

Example: NodePort Service Request Journey

Let's follow the journey of a NodePort service request from when the request gets to the node port until
the service request reaches the backend pod.

Nodeport service relies on kubeproxy. The Kubernetes network proxy (kube-proxy) is a daemon running on
each node. It reflects the services defined in the cluster and manages the rules to load balance requests
to a service’s backend pods.

149

In the following example, the NodePort service apple-service is created and its endpoints are associated.

user@domain ~ % kubectl describe svc apple-service
Name: apple-service
Namespace: default
Labels: <none>
Annotations: <none>
Selector: app=apple
Type: NodePort
IP Families: <none>
IP: 10.105.135.144
IPs: 10.105.135.144
Port: <unset> 5678/TCP
TargetPort: 5678/TCP
NodePort: <unset> 31050/TCP
Endpoints: 10.244.0.4:5678
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

user@domain ~ % kubectl get endpoints apple-service
NAME ENDPOINTS AGE
apple-service 10.244.0.4:5678 2d18h

Each time a service is created, deleted, or the endpoints are modified, kube-proxy updates the iptables
rules on each node of the cluster. View the iptables chains to understand and follow the journey of the
request.

First, the KUBE-NODEPORTS chain takes into account the packets coming on service of type NodePort.

$ sudo iptables -L KUBE-NODEPORTS -t nat
Chain KUBE-NODEPORTS (1 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- anywhere anywhere /* default/apple-service */
tcp dpt:31050
KUBE-SVC-Y4TE457BRBWMNDKG tcp -- anywhere anywhere /* default/apple-
service */ tcp dpt:31050

Each packet coming into port 31050 is first handled by the KUBE-MARK-MASQ, which tags the packet
with a 0x4000 value.

150

Next, the packet is handled by the KUBE-SVC-Y4TE457BRBWMNDKG chain (referenced in the KUBE-
NODEPORTS chain above). If we take a closer look at that one, we can see additional iptables chains:

$ sudo iptables -L KUBE-SVC-Y4TE457BRBWMNDKG -t nat
Chain KUBE-SVC-Y4TE457BRBWMNDKG (2 references)
target prot opt source destination
KUBE-SEP-LCGKUEHRD52LOEFX all -- anywhere anywhere /* default/apple-
service */

Inspect the KUBE-SEP-LCGKUEHRD52LOEFX chains to see that they define the routing to one of the
backend pods running the apple-service application.

$ sudo iptables -L KUBE-SEP-LCGKUEHRD52LOEFX -t nat
Chain KUBE-SEP-LCGKUEHRD52LOEFX (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.0.4 anywhere /* default/apple-service */
DNAT tcp -- anywhere anywhere /* default/apple-service */ tcp
to:10.244.0.4:5678

This completes the journey of a NodePort service request from when the request gets to the node port
until the service request reaches the backend pod.

Local Option Limitation in External Traffic Policy

NodePort service with externalTrafficPolicy set as Local is not supported in Contrail Networking Release
22.1.

The externalTrafficPolicy denotes if this service desires to route external traffic to node-local or cluster-
wide endpoints.

• Local preserves the client source IP address and avoids a second hop for NodePort type services.

• Cluster obscures the client source IP address and might cause a second hop to another node.

Cluster is the default for externalTrafficPolicy.

151

Update or Delete a Service, or Remove a Pod from Service

• Update of service—Any modifiable fields can be changed, excluding Name and Namespace. For example,
Nodeport service can be changed to ClusterIp by changing the Type field in the service YAML
definition.

• Deletion of service—A service, irrespective of Type, can be deleted with the command:

kubectl delete -n <name_space> <service_name>

• Removing pod from service—This can be achieved by changing the Labels and Selector on the service
or pod.

Create a LoadBalancer Service

SUMMARY

This topic describes how to create a Load Balancer
service in Cloud-Native Contrail® Networking™.

IN THIS SECTION

LoadBalancer Service Overview | 152

Create a LoadBalancer Service | 153

Configure LoadBalancer Services without
Selectors | 160

Dual-Stack Networking Support | 164

LoadBalancer Service Overview

Juniper Networks supports LoadBalancer services using Cloud-Native Contrail Networking Release 22.1
or later in a Kubernetes-orchestrated environment.

In Kubernetes, a service is an abstract way to expose an application running on a set of pods as a
network service. See Kubernetes Services.

In Contrail Networking, the Kubernetes LoadBalancer service is implemented using the InstanceIP
resource and FloatingIP resource, both of which are similar to the ClusterIP service.

• The FloatingIP is used in the service implementation to expose an external IP to the LoadBalancer
service. The FloatingIP resource is also associated with the pod's VirtualMachineInterfaces.

152

https://kubernetes.io/docs/concepts/services-networking/service/

• The InstanceIP resource is related to the VirtualNetwork. Two instanceIPs are created, one for the service
network and one for the external network.

A controller service is implemented in Contrail's Kubemanger. Kubemanager is the interface between
Kubernetes core resources, and the extended Contrail resources, such as the VirtualNetwork. When you
create a LoadBalancer service, Kubemanager listens and allocates the IP from an external virtual
network. This external virtual network exposes the LoadBalancer service on the external IPs. Any
requests received through the provisioned external IP is ECMP load-balanced across the pods associated
with the LoadBalancer.

Create a LoadBalancer Service

IN THIS SECTION

Prerequisites | 153

Define an External Virtual Network | 154

Specify the External Networks | 155

Define Service Level Annotations | 157

Examples: External Network Selection | 158

The following sections describe how to create a LoadBalancer service in Cloud-Native Contrail
Networking.

Prerequisites

Before you create a LoadBalancer service, make sure of the following:

• You have set up a working cloud networking environment using Kubernetes orchestration, and
Cloud-Native Contrail Networking is operational.

• You configured Kubemanager to define the external networks to be used by the LoadBalancer
service.

153

Define an External Virtual Network

Before you create a LoadBalancer service, you must define an external virtual network. You can define
the virtual network two ways, by creating a NetworkAttachmentDefinition or by creating a virtual
network.

NOTE: A Multus deployment requires that you only use a NetworkAttachmentDefinition to
define an external network.

The following example illustrates how to define an external virtual network using a
NetworkAttachmentDefinition. In this example, the external IP is allocated from the subnet range
192.168.102.0/24.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: ecmp-default
 namespace: ecmp-project
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "192.168.102.0/24",
 "fabricSNAT": false
 "core.juniper.net/display-name: "External Virtual Network"
 }'
 core.juniper.net/display-name: "External Virtual Network"
labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "ecmp-default",
 "type": "contrail-k8s-cni"
}'

When you apply the NetworkAttachmentDefinition, Kubemanger creates a virtual network with the name
ecmp-default in the namespace ecmp-project.

154

Specify the External Networks

By default, Kubemanager allocates the external IP for a LoadBalancer service from the default-external
network. To allocate the external IP from a different network, you must define the external network
using selectors.

The following is an example of the Kubemanager YAML file specifying the default-external network
selector and user-defined network selectors.

apiVersion: configplane.juniper.net/v1alpha1
kind: Kubemanager
metadata:
 generation: 148
 name: contrail-k8s-kubemanager
 namespace: contrail
spec:
 externalNetworkSelectors:
 default-external:
 networkSelector:
 matchLabels:
 service.contrail.juniper.net/externalNetwork: default-external
 custom-external:
 namespaceSelector:
 matchLabels:
 customNamespaceKey: custom-namespace-value
 networkSelector:
 matchLabels:
 customNetworkKey: custom-network-value
 custom-external-in-service-namespace:
 networkSelector:
 matchLabels:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value

The VirtualNetworks listed below match the labels defined in Kubemanager above (in relative order).

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork # matches example 1
metadata:
 name: default-external-vn
 namespace: contrail
 labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external

155

spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 attributes:
 ipamSubnets:
 - defaultGateway: 10.244.0.1
 enableDHCP: true
 subnet:
 ipPrefix: 10.244.0.0
 ipPrefixLen: "16"

---#this is how you define namespace selector
Namespace must have appropriate label if required by namespaceSelector
apiVersion: v1
kind: Namespace
metadata:
 labels:
 customNamespaceKey: custom-namespace-value #user for your external ip
 name: contrail
 namespace: custom-namespace

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork
metadata:
 name: external-vn-1 # matches example 2 and example 3
 namespace: custom-namespace
 labels:
 customNetworkKey: custom-network-value
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 attributes:
 ipamSubnets:
 - defaultGateway: 10.0.0.1
 enableDHCP: true
 subnet:
 ipPrefix: 10.0.0.0
 ipPrefixLen: "16"

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualNetwork

156

metadata:
 name: external-vn-2 # matches example 4
 namespace: custom-namespace
 labels:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1alpha1
 attributes:
 ipamSubnets:
 - defaultGateway: 192.168.0.1
 enableDHCP: true
 subnet:
 ipPrefix: 192.168.0.0
 ipPrefixLen: "16"

Define Service Level Annotations

Additionally, you can define the following service level annotations to control how an external network
is discovered.

Annotation: externalNetwork

In this example, the externalNetwork annotation allocates an external IP from the evn virtual network in the
namespace ns.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetwork: ns/evn
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Annotation: externalNetworkSelector

157

In this example, the externalNetworkSelector matches the name of the externalNetworkSelector defined in
Kubemanager.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetworkSelector: custom-external
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

NOTE: You can also define service level annotations in the namespace of the Kubernetes cluster,
or in the namespace of the Contrail cluster. The service-level annotations takes precedence.

Examples: External Network Selection

NOTE: The virtual networks defined in "Specify the External Networks" on page 155 are linked
to the annotations in the following examples.

The external virtual network is selected from one of the following in priority order:

Example 1: Default Selector

Kubemanager first looks for the default external network. In this example no annotation is specified, so
the default-external selector is used.

Matches the network contrail/default-external-vn.

apiVersion: v1
kind: Service
metadata:

158

 name: my-service
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 2: Custom namespace

Matches the network custom-namespace/external-vn-1.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetwork: custom-namespace/external-vn-1
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 3: External network matching preconfigured selector in a namespace

Matches the network custom-namespace/external-vn-1.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetworkSelector: custom-external
spec:
 type: LoadBalancer
 selector:

159

 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 4: External network matching preconfigured selector in service namespace

Matches the network custom-namespace/external-vn-2.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 namespace: custom-namespace
 annotation:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Configure LoadBalancer Services without Selectors

In Kubernetes, you can expose an application running on a set of pods as a network service. The set of
pods targeted by a service is usually determined by a selector. Kubernetes uses selectors to
automatically create a LoadBalancer service, but only uses the default primary interface for load
balancing.

Starting in Cloud-Native Contrail Networking Release 22.3, you can load balance a service across
multiple secondary interfaces. You create secondary interfaces in CN2 without using a selector. Because
the LoadBalancer service has no selector, you must create the endpoint manually.

To create a secondary interface for a LoadBalancer service:

1. Create two virtual networks using a NetworkAttachmentDefinition.

160

The following example shows one network for the pod's secondary interface (pod-subnet) and
another network (lb-subnet) for the LoadBalancer service external IP. These networks are connected
by a common route target which routes traffic between the two networks.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pod-subnet
 namespace: my-lb
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.12.0/24",
 "routeTargetList": ["target:64521:1164"]
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "pod-subnet",
 "type": "contrail-k8s-cni"
}'

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: lb-subnet
 namespace: my-lb
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.13.0/24",
 "routeTargetList": ["target:64521:1164"]
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "lb-subnet",
 "type": "contrail-k8s-cni"
}'

2. Create the pods you want to load balance the service on. You can create multiple pods.

161

In this example, we'll create two pods in the my-lb namespace, each with their own IP address.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: my-lb
 labels:
 run: ecmp
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "pod-subnet",
 "namespace": "my-lb",
 "ips": ["172.16.23.0"]
 }
]'
spec:
 containers:
 - name: front01-multiintf
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/
toolbox
 command:
 ["bash", "-c", "ip route add 172.16.23.0/24 via 172.16.23.1 dev eth1;while true; do
echo front01 | nc -w 1 -l -p 8080; done"]
 securityContext:
 privileged: true

apiVersion: v1
kind: Pod
metadata:
 name: my-pod1
 namespace: my-lb
 labels:
 run: ecmp
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "pod-subnet",
 "namespace": "my-lb",
 "ips": ["172.16.24.0"]
 }

162

]'
spec:
 containers:
 - name: front02-multiintf
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/
toolbox
 command:
 ["bash", "-c", "ip route add 172.16.24.0/24 via 172.16.23.1 dev eth1; while true; do
echo front02 | nc -w 1 -l -p 8080; done"]
 securityContext:
 privileged: true
; done"]

3. Create a LoadBalancer service.

In this example, we'll create a LoadBalancer service (service-lb) in the my-lb namespace. Note that
this Service YAML is not using a selector.

kind: Service
metadata:
 name: service-lb
 namespace: my-lb
 annotations:
 service.contrail.juniper.net/externalNetwork: my-lb/lb-subnet
spec:
 type: LoadBalancer
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

4. Specify the endpoints (IP addresses) that you want to load balance the service on. In this example,
two pod endpoints are specified for the secondary interfaces (ip: 172.16.23.0 and ip : 172.16.24.0).

Make sure that the endpoint has the same name as the LoadBalancer service.

apiVersion: v1
kind: Endpoints
metadata:
 name: service-lb
 namespace: my-lb

163

subsets:
 - addresses:
 - ip: 172.16.23.0
 - ip: 172.16.24.0
 ports:
 - port: 8080

Success! You can now load balance a service across multiple pods with the secondary interface.
In addition to creating a LoadBalancer service on the secondary interface, you can use a selector to
create a LoadBalancer service on the default primary interface. The primary interface can work in
tandem with the secondary interface. You can use either interface to load balance across your desired
service.

Dual-Stack Networking Support

Cloud-Native Contrail Networking supports dual-stack networking. When you start a Kubernetes
cluster, dual stack is enabled by default. The Cloud-Native Contrail Networking deployer then creates
dual-stack (IPv4, IPv6) pod networks and service networks. If no IP family is defined, IPv4 is
automatically used.

apiVersion: v1
kind: Service
metadata:
 name: MyService
specs:
 ipFamilies: ["IPv4", "IPv6"]

164

5
CHAPTER

Analytics

Contrail Networking Analytics | 166

Contrail Networking Metric List | 172

Kubernetes Metric List | 186

Cluster Node Metric List | 225

Contrail Networking Alert List | 242

vRouter Session Analytics in Contrail Networking | 252

Centralized Logging | 260

Port-Based Mirroring | 263

Configurable Categories of Metrics Collection and Reporting (Tech Preview) | 268

Juniper CN2 Technology Previews (Tech Previews) | 274

Contrail Networking Analytics

IN THIS SECTION

Overview: Analytics | 166

Metrics | 167

Supported Metrics | 167

Alerts | 168

Architecture | 169

Configuration | 170

Grafana | 171

Overview: Analytics

Analytics is an optional feature set in Juniper Cloud-Native Contrail® Networking™ Release 22.1. It is
packaged separately from the Contrail Networking core CNI components and has its own installation
procedure. The package consists of a combination of open-source software and Juniper developed
software.

The analytics features are categorized into the following high-level functional areas:

• Metrics—Statistical time series data collected from the Contrail Networking components and the
base Kubernetes system.

• Flow and Session Records—Network traffic information collected from the Contrail Networking
vRouter.

• Sandesh User Visible Entities (UVE)—Records representing the system-wide state of externally visible
objects that are collected from the Contrail Networking vRouter and control node components.

• Logs—Log messages collected from Kubernetes pods.

• Introspect—A diagnostic utility that provides an ability to browse the internal state of the Contrail
Networking components.

166

Metrics

Data Model

Metric information is based on a numerical time series data model. Each data point in a series is a
sample of some system state that gets collected at a regular interval. A sampled value is recorded along
with a timestamp at which the collection occurred. A sample record can also contain an optional set of
key-value pairs called labels. Labels provide a dimension capability for metrics where a given
combination of labels for the same metric name identifies a particular dimensional instantiation of that
metric. For example, a metric named api_http_requests_total can utilize labels in order to provide visibility
into the request counts at a URL and method type level. In the following example, the metric record for
a sample value of 10 will include a set of labels that indicate the type of request.

api_http_requests_total{method="POST", handler="/messages"} 10

Metric Data Types

Although all metric sample values are just numbers, there is a concept of type within this numerical data
model. A metric is considered to be one of the following types:

• Counter—A cumulative metric that represents a single monotonically increasing counter whose value
can only increase or be reset to zero on restart.

• Gauge—A metric that represents a single numerical value that can arbitrarily go up and down.

• Histogram—A histogram samples observations (usually things like request durations or response
sizes) and counts them in configurable buckets. The histogram also provides a sum of all observed
values.

• Summary—Similar to a histogram, a summary samples observations (usually things like request
durations and response sizes). While it also provides a total count of observations and a sum of all
observed values, the summary calculates configurable quantiles over a sliding time window.

The metric functionality in Contrail Networking is implemented by Prometheus. For additional details
about the metric data model, refer to the documentation at Prometheus.

Supported Metrics

The set of metrics supported by the analytics solution are categorized as shown below:

• "Contrail Networking Metric List" on page 172—Metrics collected from the vRouter and control node
components.

167

https://prometheus.io/docs/introduction/overview/

• "Kubernetes Metric List" on page 186—Metrics collected from various Kubernetes components, such
as apiserver, etcd, kubelet, and so on.

• "Cluster Node Metrics" on page 225—Host-level metrics collected from the Kubernetes cluster
nodes.

Alerts

Alerts are generated based on an analysis of collected metric data. Every supported alert type is based
on a rule definition that contains the following information:

• Alert Name—A unique string identifier for the alert type.

• Condition Expression—A Prometheus query language expression that gets evaluated against
collected metric values in order to determine if the alert condition exists.

• Condition Duration—The amount of time the problematic condition has to exist in order for the alert
to be generated.

• Severity—The alert level (critical, major, warning, info).

• Summary—A short description of the problematic condition.

• Description—A detailed description of the problematic condition.

The Contrail Networking analytics solution installs a set of "predefined alert rules" on page 242. You can
also define your own custom alert rules. This is supported by the creation of PrometheusRule
Kubernetes resources in the namespace where the analytics helm chart is deployed. An example of a
custom alert rule is shown below.

apiVersion: monitoring.coreos.com/v1
 kind: PrometheusRule
 metadata:
 name: acme-corp-rules
 spec:
 groups:
 - name: acme-corp.rules
 rules:
 - alert: HostUnusualNetworkThroughputOut
 expr: "sum by (instance) (rate(node_network_transmit_bytes_total[2m])) / 1024 / 1024 >
100"
 labels:
 severity: warning

168

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api.md#prometheusrule

 annotations:
 summary: "Host unusual network throughput out (instance {{ $labels.instance }})"
 description: "Host network interfaces are sending too much data (> 100 MB/s)\n VALUE
= {{ $value }}"

Generated alerts are stored as records in Prometheus and can be viewed in the Grafana UI. Integration
with external systems, such as PagerDuty, OpsGenie, email, and so on for alert notification is also
supported with the AlertManager component.

Architecture

As shown in Figure 7 on page 170, Prometheus is the core component of the metrics architecture.
Prometheus implements the following functionality:

• Collection—A periodic polling mechanism that invokes API calls against other components (exporters)
to pull values for a set of metrics.

• Storage—A time series database that provides persistence for the metrics collected from the
exporters.

• Query—An API supporting an expression language called PromQL (Prometheus query language) that
allows the historical metric information to be retrieved from the database.

169

• Alerting—A framework providing an ability to define rules that produce alerts when certain
conditions are observed in the collected metric data.

Figure 7: Metrics Architecture

The other components of the metrics architecture are:

• Grafana—A service that provides a Web UI interface allowing the user to visualize the metric data in
graphs.

• AlertManager—An integration service that notifies external systems of alerts generated by
Prometheus.

Configuration

The metrics functionality does not require any configuration by the end-user. The installation of
analytics takes care of configuring Prometheus to collect from the set of exporters that provide all of the
metrics described in the "Supported Metrics" on page 167 section above. A group of default alerting
rules is also automatically setup as part of the installation. This base functionality, however, can be
extended by the end-user through additional configuration after the installation. For example, customer-
specific alerting rules can be defined and the AlertManager can be configured to integrate with any of
the supported external systems present in your environment.

170

The configuration of Prometheus and AlertManager involves an additional architectural component
called the Prometheus Operator. As shown in Figure 8 on page 171, configuration is specified as
Kubernetes custom resources. The operator is responsible for translating the contents of these
resources into the native configuration understood by the Prometheus components, updating the
components accordingly, and then taking care of restarting the components whenever a particular
configuration change requires a restart.

Figure 8: Prometheus Operator

Documentation for the full set of resources supported by the operator is available at Prometheus
Operator API. It is recommended, however, that customers limit their configurations to the subset of
resource types related to alert rule definition and external system integration.

Grafana

The main UI for viewing metric data and alerts is Grafana. The Grafana service is setup and
automatically configured with Prometheus as a data source as part of the analytics installation. A set of
default dashboards are also created.

Access the Grafana Web UI at: https://<k8sClusterIP>/grafana/login. The default login credentials are user
admin and password prom-operator.

171

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api.md
https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api.md

RELATED DOCUMENTATION

vRouter Session Analytics in Contrail Networking | 252

Centralized Logging | 260

Contrail Networking Metric List

Table 16: Contrail Networking Metric List

Metric Name Type Description

controller_state gauge Controller state (0=Functional, 1=Non-
Functional).

controller_connection_status gauge Connection status (0=Up, 1=Down,
2=Initializing).

controller_bgp_router_output_queue_
depth

gauge BGP router output queue depth.

controller_bgp_router_num_bgp_peers gauge Number of BGP peers.

controller_bgp_router_num_up_bgp_pe
ers

gauge Number of up BGP peers.

controller_bgp_router_num_deleting_
bgp_peers

gauge Number of deleting BGP peers.

controller_bgp_router_num_bgpaas_pe
ers

gauge Number of BGPaas peers.

controller_bgp_router_num_up_bgpaas
_peers

gauge Number of up BGPaas peers.

controller_bgp_router_num_deleting_
bgpaas_peers

gauge Number of deleting BGPaas peers.

172

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_bgp_router_num_xmpp_peer
s

gauge Number of XMPP peers.

controller_bgp_router_num_up_xmpp_p
eers

gauge Number of up XMPP peers.

controller_bgp_router_num_deleting_
xmpp_peers

gauge Number of deleting XMPP peers.

controller_bgp_router_num_routing_i
nstances

gauge BGP router number of routing instances.

controller_bgp_router_num_deleting_
routing_instances

gauge BGP router number of deleting routing
instances.

controller_bgp_router_num_service_c
hains

gauge Number of service chains.

controller_bgp_router_num_down_serv
ice_chains

gauge Number of down service chains.

controller_bgp_router_num_static_ro
utes

gauge Number of static routes.

controller_bgp_router_num_down_stat
ic_routes

gauge Number of down static routes.

controller_bgp_router_ifmap_num_pee
r_clients

gauge Number of IF-MAP peer clients.

controller_bgp_router_config_db_con
n_status

gauge Status of config database connection
(0=Down, 1=Up).

controller_bgp_peer_state gauge BGP peer state (0=Idle, 1=Active,
2=Connect, 3=OpenSent, 4=OpenConfirm,
5=Established).

173

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_flaps_total counter BGP peer total flaps.

controller_bgp_peer_received_messag
es_total

counter Total BGP peer messages received.

controller_bgp_peer_received_open_m
essages_total

counter Total BGP peer open messages received.

controller_bgp_peer_received_keepal
ive_messages_total

counter Total BGP peer keepalive messages
received.

controller_bgp_peer_received_notifi
cation_messages_total

counter Total BGP peer notification messages
received.

controller_bgp_peer_received_update
_messages_total

counter Total BGP peer update messages received.

controller_bgp_peer_received_close_
messages_total

counter Total BGP peer close messages received.

controller_bgp_peer_sent_messages_t
otal

counter Total BGP peer messages sent.

controller_bgp_peer_sent_open_messa
ges_total

counter Total BGP peer open messages sent.

controller_bgp_peer_sent_keepalive_
messages_total

counter Total BGP peer keepalive messages sent.

controller_bgp_peer_sent_notificati
on_messages_total

counter Total BGP peer notification messages sent.

controller_bgp_peer_sent_update_mes
sages_total

counter Total BGP peer update messages sent.

controller_bgp_peer_sent_close_mess
ages_total

counter Total BGP peer close messages sent.

174

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_received_reacha
ble_routes_total

counter Total BGP peer reachable routes received.

controller_bgp_peer_received_unreac
hable_routes_total

counter Total BGP peer unreachable routes
received.

controller_bgp_peer_received_end_of
_rib_total

counter Total BGP peer end-of-RIB markers
received.

controller_bgp_peer_sent_reachable_
routes_total

counter Total BGP peer reachable routes sent.

controller_bgp_peer_sent_unreachabl
e_routes_total

counter Total BGP peer unreachable routes sent.

controller_bgp_peer_sent_end_of_rib
_total

counter Total BGP peer end-of-RIB markers sent.

controller_bgp_peer_received_bytes_
total

counter Total BGP peer bytes received.

controller_bgp_peer_receive_socket_
calls_total

counter Total BGP peer receive socket calls.

controller_bgp_peer_blocked_receive
_socket_calls_microsecond_duration_
total

counter BGP peer total microseconds blocked on
socket receive calls.

controller_bgp_peer_blocked_receive
_socket_calls_total

counter Total BGP peer receive socket calls
blocked.

controller_bgp_peer_sent_bytes_tota
l

counter Total BGP peer bytes sent.

controller_bgp_peer_send_socket_cal
ls_total

counter Total BGP peer send socket calls.

175

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_blocked_send_so
cket_calls_microsecond_duration_tot
al

counter BGP peer total microseconds blocked on
socket send calls.

controller_bgp_peer_blocked_send_so
cket_calls_total

counter Total BGP peer send socket calls blocked.

controller_bgp_peer_route_update_er
ror_bad_inet6_xml_token_total

counter BGP peer total route update errors (bad
inet6 XML token).

controller_bgp_peer_route_update_er
ror_bad_inet6_prefix_total

counter BGP peer total route update errors (bad
inet6 prefix).

controller_bgp_peer_route_update_er
ror_bad_inet6_nexthop_total

counter BGP peer total route update errors (bad
inet6 next hop).

controller_bgp_peer_route_update_er
ror_bad_inet6_afi_safi_total

counter BGP peer total route update errors (bad
inet6 AFI/SAFI).

controller_bgp_peer_received_route_
paths_total

counter Total BGP peer route paths received.

controller_bgp_peer_received_route_
primary_paths_total

counter Total BGP peer route primary paths
received.

controller_xmpp_peer_state counter XMPP peer state (0=Idle, 1=Active,
2=Connect, 3=OpenSent, 4=OpenConfirm,
5=Established).

controller_xmpp_peer_received_messa
ges_total

counter Total messages received from XMPP peer.

controller_xmpp_peer_received_open_
messages_total

counter Total open messages received from XMPP
peer.

controller_xmpp_peer_received_keepa
live_messages_total

counter Total keepalive messages received from
XMPP peer.

176

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_xmpp_peer_received_notif
ication_messages_total

counter Total notification messages received from
XMPP peer.

controller_xmpp_peer_received_updat
e_messages_total

counter Total update messages received from
XMPP peer.

controller_xmpp_peer_received_close
_messages_total

counter Total close messages received from XMPP
peer.

controller_xmpp_peer_sent_messages_
total

counter Total messages sent to XMPP peer.

controller_xmpp_peer_sent_open_mess
ages_total

counter Total open messages sent to XMPP peer.

controller_xmpp_peer_sent_keepalive
_messages_total

counter Total keepalive messages sent to XMPP
peer.

controller_xmpp_peer_sent_notificat
ion_messages_total

counter Total notification messages sent to XMPP
peer.

controller_xmpp_peer_sent_update_me
ssages_total

counter Total update messages sent to XMPP peer.

controller_xmpp_peer_sent_close_mes
sages_total

counter Total close messages sent to XMPP peer.

controller_xmpp_peer_received_reach
able_routes_total

counter Total reachable routes received from
XMPP peer.

controller_xmpp_peer_received_unrea
chable_routes_total

counter Total unreachable routes received from
XMPP peer.

controller_xmpp_peer_received_end_o
f_rib_total

counter Total end-of-RIB markers received from
XMPP peer.

177

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_xmpp_peer_sent_reachable
_routes_total

counter Total reachable routes sent to XMPP peer.

controller_xmpp_peer_sent_unreachab
le_routes_total

counter Total unreachable routes sent to XMPP
peer.

controller_xmpp_peer_sent_end_of_ri
b_total

counter Total end-of-RIB markers sent to XMPP
peer.

controller_xmpp_peer_route_update_e
rror_bad_inet6_xml_token_total

counter XMPP peer total route update errors (bad
inet6 XML token).

controller_xmpp_peer_route_update_e
rror_bad_inet6_prefix_total

counter XMPP peer total route update errors (bad
inet6 prefix).

controller_xmpp_peer_route_update_e
rror_bad_inet6_nexthop_total

counter XMPP peer total route update errors (bad
inet6 next hop).

controller_xmpp_peer_route_update_e
rror_bad_inet6_afi_safi_total

counter XMPP peer total route update errors (bad
inet6 AFI/SAFI).

controller_xmpp_peer_received_route
_paths_total

counter Total XMPP peer route paths received.

controller_xmpp_peer_received_route
_primary_paths_total

counter Total XMPP peer route primary paths
received.

controller_peer_received_reachable_
routes_total

counter Total reachable routes received from peer.

controller_peer_received_unreachabl
e_routes_total

counter Total unreachable routes received from
peer.

controller_peer_received_end_of_rib
_total

counter Total end-of-RIB markers received from
peer.

178

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_peer_sent_reachable_rout
es_total

counter Total reachable routes sent to peer.

controller_peer_sent_unreachable_ro
utes_total

counter Total unreachable routes sent to peer.

controller_peer_sent_end_of_rib_tot
al

counter Total end-of-RIB markers sent to peer.

controller_virtual_network_routing_
instance_ipv4_table_prefixes

gauge Virtual network IPv4 routing table prefixes.

controller_virtual_network_routing_
instance_ipv4_table_primary_paths

gauge Virtual network IPv4 routing table primary
paths.

controller_virtual_network_routing_
instance_ipv4_table_secondary_paths

gauge Virtual network IPv4 routing table
secondary paths.

controller_virtual_network_routing_
instance_ipv4_table_infeasible_path
s

gauge Virtual network IPv4 routing table
infeasible paths.

controller_virtual_network_routing_
instance_ipv4_table_total_paths

gauge Virtual network IPv4 routing table total
paths.

controller_virtual_network_routing_
instance_ipv6_table_prefixes

gauge Virtual network IPv6 routing table prefixes.

controller_virtual_network_routing_
instance_ipv6_table_primary_paths

gauge Virtual network IPv6 routing table primary
paths.

controller_virtual_network_routing_
instance_ipv6_table_secondary_paths

gauge Virtual network IPv6 routing table
secondary paths.

controller_virtual_network_routing_
instance_ipv6_table_infeasible_path
s

gauge Virtual network IPv6 routing table
infeasible paths.

179

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_virtual_network_routing_
instance_ipv6_table_total_paths

gauge Virtual network IPv6 routing table total
paths.

controller_virtual_network_routing_
instance_evpn_table_prefixes

gauge Virtual network EVPN routing table
prefixes.

controller_virtual_network_routing_
instance_evpn_table_primary_paths

gauge Virtual network EVPN routing table
primary paths.

controller_virtual_network_routing_
instance_evpn_table_secondary_paths

gauge Virtual network EVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_evpn_table_infeasible_path
s

gauge Virtual network EVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_evpn_table_total_paths

gauge Virtual network EVPN routing table total
paths.

controller_virtual_network_routing_
instance_ermvpn_table_prefixes

gauge Virtual network ERMVPN routing table
prefixes.

controller_virtual_network_routing_
instance_ermvpn_table_primary_paths

gauge Virtual network ERMVPN routing table
primary paths.

controller_virtual_network_routing_
instance_ermvpn_table_secondary_pat
hs

gauge Virtual network ERMVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_ermvpn_table_infeasible_pa
ths

gauge Virtual network ERMVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_ermvpn_table_total_paths

gauge Virtual network ERMVPN routing table
total paths.

180

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

controller_virtual_network_routing_
instance_mvpn_table_prefixes

gauge Virtual network MVPN routing table
prefixes.

controller_virtual_network_routing_
instance_mvpn_table_primary_paths

gauge Virtual network MVPN routing table
primary paths.

controller_virtual_network_routing_
instance_mvpn_table_secondary_paths

gauge Virtual network MVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_mvpn_table_infeasible_path
s

gauge Virtual network MVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_mvpn_table_total_paths

gauge Virtual network MVPN routing table total
paths.

virtual_router_cpu_1min_load_avg gauge Virtual router CPU 1 minute load average.

virtual_router_cpu_5min_load_avg gauge Virtual router CPU 5 minute load average.

virtual_router_cpu_15min_load_avg gauge Virtual router CPU 15 minute load average.

virtual_router_system_memory_bytes gauge Virtual router total system memory.

virtual_router_system_memory_free_b
ytes

gauge Virtual router system memory free.

virtual_router_system_memory_used_b
ytes

gauge Virtual router system memory used.

virtual_router_system_memory_cached
_bytes

gauge Virtual router system memory cached.

virtual_router_system_memory_buffer
s

gauge Virtual router system memory buffers.

181

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_memory_kilob
ytes

gauge Virtual router virtual memory.

virtual_router_resident_memory_kilo
bytes

gauge Virtual router resident memory.

virtual_router_peak_virtual_memory_
bytes

gauge Virtual router peak virtual memory.

virtual_router_phys_if_input_packet
s_total

counter Total packets received by physical
interface.

virtual_router_phys_if_output_packe
ts_total

counter Total packets sent by physical interface.

virtual_router_phys_if_input_bytes_
total

counter Total bytes received by physical interface.

virtual_router_phys_if_output_bytes
_total

counter Total bytes sent by physical interface.

virtual_router_input_packets_total counter Total packets received by virtual router.

virtual_router_output_packets_total counter Total packets sent by virtual router.

virtual_router_input_bytes_total counter Total bytes received by virtual router.

virtual_router_output_bytes_total counter Total bytes sent by virtual router.

virtual_router_flows_total counter Total virtual router flows.

virtual_router_aged_flows_total counter Total virtual router aged flows.

virtual_router_active_flows gauge Current virtual router active flows.

virtual_router_hold_flows gauge Current virtual router hold flows.

182

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

virtual_router_added_flows_diff_tot
al

gauge Virtual router added flows since last
sample.

virtual_router_exception_packets_to
tal

counter Total virtual router exception packets.

virtual_router_exception_packets_al
lowed_total

counter Total virtual router exception packets
allowed.

virtual_router_exception_packets_dr
opped_total

counter Total virtual router exception packets
dropped.

virtual_router_dropped_packets_tota
l

counter Total packets dropped.

virtual_router_vhost_dropped_packet
s_total

counter Total virtual host packets dropped.

virtual_router_input_bandwidth_util
ization

gauge Ingress bandwidth of physical interface
where the value is obtained by dividing the
bandwidth computed in bps by speed of
the physical interface.

virtual_router_output_bandwidth_uti
lization

gauge Egress bandwidth of physical interface
where the value is obtained by dividing the
bandwidth computed in bps by speed of
the physical interface.

virtual_router_vhost_interface_inpu
t_bytes_total

counter Total bytes received by virtual host
interface.

virtual_router_vhost_interface_outp
ut_bytes_total

counter Total bytes sent by virtual host interface.

virtual_router_vhost_interface_inpu
t_packets_total

counter Total packets received by virtual host
interface.

183

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

virtual_router_vhost_interface_outp
ut_packets_total

counter Total packets sent by virtual host interface.

virtual_router_virtual_networks gauge Current number of virtual networks.

virtual_router_virtual_machines gauge Current number of virtual machines.

virtual_router_virtual_machine_inte
rfaces

gauge Current number of virtual machine
interfaces.

virtual_router_interfaces_down gauge Current number of down interfaces.

virtual_router_agent_state gauge Virtual router agent state (0=Functional,
1=Non-Functional).

virtual_router_connection_status gauge Connection status (0=Up, 1=Down,
2=Initializing).

virtual_router_virtual_network_inpu
t_packets_total

counter Total input packets received.

virtual_router_virtual_network_outp
ut_packets_total

counter Total output packets sent.

virtual_router_virtual_network_inpu
t_bytes_total

counter Total input bytes received.

virtual_router_virtual_network_outp
ut_bytes_total

counter Total output bytes sent.

virtual_router_virtual_network_flow
s

gauge Current number of flows.

virtual_router_virtual_network_ingr
ess_flows

gauge Current number of ingress flows.

184

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_network_egre
ss_flows

gauge Current number of egress flows.

virtual_router_virtual_network_floa
ting_ips

gauge Current number of floating IP addresses.

virtual_router_virtual_network_flow
_policy_rule_hits_total

counter Total number of flow policy rule hits.

virtual_router_virtual_network_vrf_
bridge_route_table_entries

gauge Virtual routing and forwarding bridge route
table current entries.

virtual_router_virtual_network_vrf_
evpn_route_table_entries

gauge Virtual routing and forwarding EVPN route
table current entries.

virtual_router_virtual_network_vrf_
inet4_unicast_route_table_entries

gauge Virtual routing and forwarding inet4
unicast table current entries.

virtual_router_virtual_network_vrf_
inet4_multicast_route_table_entries

gauge Virtual routing and forwarding inet4
multicast table current entries.

virtual_router_virtual_network_vrf_
inet6_unicast_route_table_entries

gauge Virtual routing and forwarding inet6
unicast table current entries.

virtual_router_virtual_machine_inte
rface_input_bytes_total

counter Total input bytes received by virtual
machine interface.

virtual_router_virtual_machine_inte
rface_output_bytes_total

counter Total output bytes sent by virtual machine
interface.

virtual_router_virtual_machine_inte
rface_input_packets_total

counter Total input packets received by virtual
machine interface.

virtual_router_virtual_machine_inte
rface_output_packets_total

counter Total output packets sent by virtual
machine interface.

185

Table 16: Contrail Networking Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_machine_inte
rface_active_flows

gauge Current virtual machine interface active
flows.

virtual_router_virtual_machine_inte
rface_hold_flows

gauge Current virtual machine interface hold
flows.

virtual_router_virtual_machine_inte
rface_added_flows_diff_total

gauge Virtual machine interface added flows
since last sample.

virtual_router_virtual_machine_inte
rface_dropped_packets_total

counter Virtual machine interface total dropped
packets.

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

Kubernetes Metric List | 186

Cluster Node Metric List | 225

Contrail Networking Alert List | 242

Kubernetes Metric List

Table 17: Kubernetes Metric List

Metric Name Type Description

apiextensions_openapi_v2_regenerati
on_count

counter [ALPHA] Counter of OpenAPI v2
spec regeneration count broken
down by causing CRD name and
reason.

186

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_admission_controller_admi
ssion_duration_seconds

histogram [ALPHA] Admission controller
latency histogram in seconds,
identified by name and broken out
for each operation and API
resource and type (validate or
admit).

apiserver_admission_step_admission_
duration_seconds_summary

summary [ALPHA] Admission sub-step
latency summary in seconds,
broken out for each operation and
API resource and step type
(validate or admit).

apiserver_admission_webhook_admissi
on_duration_seconds

histogram [ALPHA] Admission webhook
latency histogram in seconds,
identified by name and broken out
for each operation and API
resource and type (validate or
admit).

apiserver_admission_webhook_rejecti
on_count

counter [ALPHA] Admission webhook
rejection count, identified by name
and broken out for each admission
type (validating or admit) and
operation. Additional labels specify
an error type
(calling_webhook_error or
apiserver_internal_error if an error
occurred; no_error otherwise) and
optionally a non-zero rejection
code if the webhook rejects the
request with an HTTP status code
(honored by the apiserver when the
code is greater or equal to 400).
Codes greater than 600 are
truncated to 600, to keep the
metrics cardinality bounded.

apiserver_audit_event_total counter [ALPHA] Counter of audit events
generated and sent to the audit
backend.

187

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_audit_requests_rejected_t
otal

counter [ALPHA] Counter of apiserver
requests rejected due to an error in
audit logging backend.

apiserver_client_certificate_expira
tion_seconds

histogram [ALPHA] Distribution of the
remaining lifetime on the certificate
used to authenticate a request.

apiserver_current_inflight_requests gauge [ALPHA] Maximal number of
currently used inflight request limit
of this apiserver per request kind in
last second.

apiserver_current_inqueue_requests gauge [ALPHA] Maximal number of
queued requests in this apiserver
per request kind in last second.

apiserver_envelope_encryption_dek_c
ache_fill_percent

gauge [ALPHA] Percent of the cache slots
currently occupied by cached
DEKs.

apiserver_flowcontrol_current_execu
ting_requests

gauge [ALPHA] Number of requests
currently executing in the API
Priority and Fairness system.

apiserver_flowcontrol_current_inque
ue_requests

gauge [ALPHA] Number of requests
currently pending in queues of the
API Priority and Fairness system.

apiserver_flowcontrol_dispatched_re
quests_total

counter [ALPHA] Number of requests
released by API Priority and
Fairness system for service.

apiserver_flowcontrol_priority_leve
l_request_count_samples

histogram [ALPHA] Periodic observations of
the number of requests.

apiserver_flowcontrol_priority_leve
l_request_count_watermarks

histogram [ALPHA] Watermarks of the
number of requests.

188

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_flowcontrol_read_vs_write
_request_count_samples

histogram [ALPHA] Periodic observations of
the number of requests.

apiserver_flowcontrol_read_vs_write
_request_count_watermarks

histogram [ALPHA] Watermarks of the
number of requests.

apiserver_flowcontrol_request_concu
rrency_limit

gauge [ALPHA] Shared concurrency limit
in the API Priority and Fairness
system.

apiserver_flowcontrol_request_execu
tion_seconds

histogram [ALPHA] Duration of request
execution in the API Priority and
Fairness system.

apiserver_flowcontrol_request_queue
_length_after_enqueue

histogram [ALPHA] Length of queue in the
API Priority and Fairness system, as
seen by each request after it is
enqueued.

apiserver_flowcontrol_request_wait_
duration_seconds

histogram [ALPHA] Length of time a request
spent waiting in its queue.

apiserver_init_events_total counter [ALPHA] Counter of init events
processed in watchcache broken by
resource type.

apiserver_longrunning_gauge gauge [ALPHA] Gauge of all active long-
running apiserver requests broken
out by verb, group, version,
resource, scope and component.
Not all requests are tracked this
way.

apiserver_registered_watchers gauge [ALPHA] Number of currently
registered watchers for a given
resources.

189

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_request_duration_seconds histogram [ALPHA] Response latency
distribution in seconds for each
verb, dry run value, group, version,
resource, subresource, scope and
component.

apiserver_request_filter_duration_s
econds

histogram [ALPHA] Request filter latency
distribution in seconds, for each
filter type.

apiserver_request_total counter [ALPHA] Counter of apiserver
requests broken out for each verb,
dry run value, group, version,
resource, scope, component, and
HTTP response contentType and
code.

apiserver_requested_deprecated_apis gauge [ALPHA] Gauge of deprecated APIs
that have been requested, broken
out by API group, version, resource,
subresource, and removed_release.

apiserver_response_sizes histogram [ALPHA] Response size distribution
in bytes for each group, version,
verb, resource, subresource, scope
and component.

apiserver_selfrequest_total counter [ALPHA] Counter of apiserver self-
requests broken out for each verb,
API resource and subresource.

apiserver_storage_data_key_generati
on_duration_seconds

histogram [ALPHA] Latencies in seconds of
data encryption key (DEK)
generation operations.

apiserver_storage_data_key_generati
on_failures_total

counter [ALPHA] Total number of failed
data encryption key (DEK)
generation operations.

190

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_storage_envelope_transfor
mation_cache_misses_total

counter [ALPHA] Total number of cache
misses while accessing key
decryption key (KEK).

apiserver_tls_handshake_errors_tota
l

counter [ALPHA] Number of requests
dropped with 'TLS handshake error
from' error.

apiserver_watch_events_sizes histogram [ALPHA] Watch event size
distribution in bytes.

apiserver_watch_events_total counter [ALPHA] Number of events sent in
watch clients.

authenticated_user_requests counter [ALPHA] Counter of authenticated
requests broken out by username.

authentication_attempts counter [ALPHA] Counter of authenticated
attempts.

authentication_duration_seconds histogram [ALPHA] Authentication duration in
seconds broken out by result.

authentication_token_cache_active_f
etch_count

gauge [ALPHA]

authentication_token_cache_fetch_to
tal

counter [ALPHA]

authentication_token_cache_request_
duration_seconds

histogram [ALPHA]

authentication_token_cache_request_
total

counter [ALPHA]

191

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

cadvisor_version_info gauge A metric with a constant '1' value
labeled by kernel version, OS
version, docker version, cadvisor
version and cadvisor revision.

container_cpu_cfs_periods_total counter Number of elapsed enforcement
period intervals.

container_cpu_cfs_throttled_periods
_total

counter Number of throttled period
intervals.

container_cpu_cfs_throttled_seconds
_total

counter Total time duration the container
has been throttled.

container_cpu_load_average_10s gauge Value of container CPU load
average over the last 10 seconds.

container_cpu_system_seconds_total counter Cumulative system CPU time
consumed in seconds.

container_cpu_usage_seconds_total counter Cumulative CPU time consumed in
seconds.

container_cpu_user_seconds_total counter Cumulative user CPU time
consumed in seconds.

container_file_descriptors gauge Number of open file descriptors for
the container.

container_fs_inodes_free gauge Number of available Inodes.

container_fs_inodes_total gauge Number of Inodes.

container_fs_io_current gauge Number of I/Os currently in
progress.

container_fs_io_time_seconds_total counter Cumulative count of seconds spent
doing I/Os.

192

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

container_fs_io_time_weighted_secon
ds_total

counter Cumulative weighted I/O time in
seconds.

container_fs_limit_bytes gauge Number of bytes that can be
consumed by the container on this
filesystem.

container_fs_read_seconds_total counter Cumulative count of seconds spent
reading.

container_fs_reads_bytes_total counter Cumulative count of bytes read.

container_fs_reads_merged_total counter Cumulative count of reads merged.

container_fs_reads_total counter Cumulative count of reads
completed.

container_fs_sector_reads_total counter Cumulative count of sector reads
completed.

container_fs_sector_writes_total counter Cumulative count of sector writes
completed.

container_fs_usage_bytes gauge Number of bytes that are
consumed by the container on this
filesystem.

container_fs_write_seconds_total counter Cumulative count of seconds spent
writing.

container_fs_writes_bytes_total counter Cumulative count of bytes written.

container_fs_writes_merged_total counter Cumulative count of writes merged.

container_fs_writes_total counter Cumulative count of writes
completed.

193

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

container_last_seen gauge Last time a container was seen by
the exporter.

container_memory_cache gauge Number of bytes of page cache
memory.

container_memory_failcnt counter Number of memory usage hits
limits.

container_memory_failures_total counter Cumulative count of memory
allocation failures.

container_memory_mapped_file gauge Size of memory mapped files in
bytes.

container_memory_max_usage_bytes gauge Maximum memory usage recorded
in bytes.

container_memory_rss gauge Size of RSS in bytes.

container_memory_swap gauge Container swap usage in bytes.

container_memory_usage_bytes gauge Current memory usage in bytes,
including all memory regardless of
when it was accessed.

container_memory_working_set_bytes gauge Current working set in bytes.

container_network_receive_bytes_tot
al

counter Cumulative count of bytes
received.

container_network_receive_errors_to
tal

counter Cumulative count of errors
encountered while receiving.

container_network_receive_packets_d
ropped_total

counter Cumulative count of packets
dropped while receiving.

194

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

container_network_receive_packets_t
otal

counter Cumulative count of packets
received.

container_network_transmit_bytes_to
tal

counter Cumulative count of bytes
transmitted.

container_network_transmit_errors_t
otal

counter Cumulative count of errors
encountered while transmitting.

container_network_transmit_packets_
dropped_total

counter Cumulative count of packets
dropped while transmitting.

container_network_transmit_packets_
total

counter Cumulative count of packets
transmitted.

container_processes gauge Number of processes running
inside the container.

container_scrape_error gauge 1 if there was an error while getting
container metrics, 0 otherwise.

container_sockets gauge Number of open sockets for the
container.

container_spec_cpu_period gauge CPU period of the container.

container_spec_cpu_quota gauge CPU quota of the container.

container_spec_cpu_shares gauge CPU share of the container.

container_spec_memory_limit_bytes gauge Memory limit for the container.

container_spec_memory_reservation_l
imit_bytes

gauge Memory reservation limit for the
container.

container_spec_memory_swap_limit_by
tes

gauge Memory swap limit for the
container.

195

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

container_start_time_seconds gauge Start time of the container since
Unix epoch in seconds.

container_tasks_state gauge Number of tasks in given state.

container_threads gauge Number of threads running inside
the container.

container_threads_max gauge Maximum number of threads
allowed inside the container,
infinity if value is zero.

container_ulimits_soft gauge Soft ulimit values for the container
root process. Unlimited if -1, except
priority and nice.

coredns_build_info gauge A metric with a constant '1' value
labeled by version, revision, and
goversion from which CoreDNS
was built.

coredns_cache_entries gauge The number of elements in the
cache.

coredns_cache_hits_total counter The count of cache hits.

coredns_cache_misses_total counter The count of cache misses.

coredns_dns_request_duration_second
s

histogram Histogram of the time (in seconds)
each request took.

coredns_dns_request_size_bytes histogram Size of the EDNS0 UDP buffer in
bytes (64K for TCP).

coredns_dns_requests_total counter Counter of DNS requests made per
zone, protocol and family.

196

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

coredns_dns_response_size_bytes histogram Size of the returned response in
bytes.

coredns_dns_responses_total counter Counter of response status codes.

coredns_forward_healthcheck_failure
s_total

counter Counter of the number of failed
healthchecks.

coredns_forward_max_concurrent_reje
cts_total

counter Counter of the number of queries
rejected because the concurrent
queries were at maximum.

coredns_forward_request_duration_se
conds

histogram Histogram of the time each request
took.

coredns_forward_requests_total counter Counter of requests made per
upstream.

coredns_forward_responses_total counter Counter of requests made per
upstream.

coredns_health_request_duration_sec
onds

histogram Histogram of the time (in seconds)
each request took.

coredns_panics_total counter A metrics that counts the number
of panics.

coredns_plugin_enabled gauge A metric that indicates whether a
plugin is enabled on per server and
zone basis.

etcd_db_total_size_in_bytes gauge [ALPHA] Total size of the etcd
database file physically allocated in
bytes.

etcd_object_counts gauge [ALPHA] Number of stored objects
at the time of last check split by
kind.

197

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

etcd_request_duration_seconds histogram [ALPHA] Etcd request latency in
seconds for each operation and
object type.

kube_certificatesigningrequest_anno
tations

gauge Kubernetes annotations converted
to Prometheus labels.

kube_certificatesigningrequest_cert
_length

gauge Length of the issued certificate.

kube_certificatesigningrequest_cond
ition

gauge The number of each
certificatesigningrequest condition.

kube_certificatesigningrequest_crea
ted

gauge Unix creation timestamp.

kube_certificatesigningrequest_labe
ls

gauge Kubernetes labels converted to
Prometheus labels.

kube_configmap_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_configmap_created gauge Unix creation timestamp.

kube_configmap_info gauge Information about configmap.

kube_configmap_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_configmap_metadata_resource_ve
rsion

gauge Resource version representing a
specific version of the configmap.

kube_cronjob_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_cronjob_created gauge Unix creation timestamp.

198

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_cronjob_info gauge Info about cronjob.

kube_cronjob_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_cronjob_metadata_resource_vers
ion

gauge Resource version representing a
specific version of the cronjob.

kube_cronjob_next_schedule_time gauge Next time the cronjob should be
scheduled. The time after
lastScheduleTime, or after the cron
job's creation time if it's never been
scheduled. Use this to determine if
the job is delayed.

kube_cronjob_spec_failed_job_histor
y_limit

gauge Failed job history limit tells the
controller how many failed jobs
should be preserved.

kube_cronjob_spec_starting_deadline
_seconds

gauge Deadline in seconds for starting the
job if it misses scheduled time for
any reason.

kube_cronjob_spec_successful_job_hi
story_limit

gauge Successful job history limit tells the
controller how many completed
jobs should be preserved.

kube_cronjob_spec_suspend gauge Suspend flag tells the controller to
suspend subsequent executions.

kube_cronjob_status_active gauge Active holds pointers to currently
running jobs.

kube_cronjob_status_last_schedule_t
ime

gauge LastScheduleTime keeps
information of when was the last
time the job was successfully
scheduled.

199

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_daemonset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_daemonset_created gauge Unix creation timestamp.

kube_daemonset_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_daemonset_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_daemonset_status_current_numbe
r_scheduled

gauge The number of nodes running at
least one daemon pod and are
supposed to.

kube_daemonset_status_desired_numbe
r_scheduled

gauge The number of nodes that should
be running the daemon pod.

kube_daemonset_status_number_availa
ble

gauge The number of nodes that should
be running the daemon pod and
have one or more of the daemon
pod running and available.

kube_daemonset_status_number_missch
eduled

gauge The number of nodes running a
daemon pod but are not supposed
to.

kube_daemonset_status_number_ready gauge The number of nodes that should
be running the daemon pod and
have one or more of the daemon
pod running and ready.

kube_daemonset_status_number_unavai
lable

gauge The number of nodes that should
be running the daemon pod and
have none of the daemon pod
running and available.

200

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_daemonset_status_observed_gene
ration

gauge The most recent generation
observed by the daemon set
controller.

kube_daemonset_status_updated_numbe
r_scheduled

gauge The total number of nodes that are
running updated daemon pod.

kube_deployment_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_deployment_created gauge Unix creation timestamp.

kube_deployment_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_deployment_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_deployment_spec_paused gauge Whether the deployment is paused
and will not be processed by the
deployment controller.

kube_deployment_spec_replicas gauge Number of desired pods for a
deployment.

kube_deployment_spec_strategy_rolli
ngupdate_max_surge

gauge Maximum number of replicas that
can be scheduled above the desired
number of replicas during a rolling
update of a deployment.

kube_deployment_spec_strategy_rolli
ngupdate_max_unavailable

gauge Maximum number of unavailable
replicas during a rolling update of a
deployment.

kube_deployment_status_condition gauge The current status conditions of a
deployment.

201

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_deployment_status_observed_gen
eration

gauge The generation observed by the
deployment controller.

kube_deployment_status_replicas gauge The number of replicas per
deployment.

kube_deployment_status_replicas_ava
ilable

gauge The number of available replicas
per deployment.

kube_deployment_status_replicas_rea
dy

gauge The number of ready replicas per
deployment.

kube_deployment_status_replicas_una
vailable

gauge The number of unavailable replicas
per deployment.

kube_deployment_status_replicas_upd
ated

gauge The number of updated replicas per
deployment.

kube_endpoint_address_available gauge Number of addresses available in
endpoint.

kube_endpoint_address_not_ready gauge Number of addresses not ready in
endpoint.

kube_endpoint_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_endpoint_created gauge Unix creation timestamp.

kube_endpoint_info gauge Information about endpoint.

kube_endpoint_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_endpoint_ports gauge Information about the endpoint
ports.

202

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_horizontalpodautoscaler_annota
tions

gauge Kubernetes annotations converted
to Prometheus labels.

kube_horizontalpodautoscaler_info gauge Information about this autoscaler.

kube_horizontalpodautoscaler_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_horizontalpodautoscaler_metada
ta_generation

gauge The generation observed by the
HorizontalPodAutoscaler controller.

kube_horizontalpodautoscaler_spec_m
ax_replicas

gauge Upper limit for the number of pods
that can be set by the autoscaler;
cannot be smaller than
MinReplicas.

kube_horizontalpodautoscaler_spec_m
in_replicas

gauge Lower limit for the number of pods
that can be set by the autoscaler,
default 1.

kube_horizontalpodautoscaler_spec_t
arget_metric

gauge The metric specifications used by
this autoscaler when calculating the
desired replica count.

kube_horizontalpodautoscaler_status
_condition

gauge The condition of this autoscaler.

kube_horizontalpodautoscaler_status
_current_replicas

gauge Current number of replicas of pods
managed by this autoscaler.

kube_horizontalpodautoscaler_status
_desired_replicas

gauge Desired number of replicas of pods
managed by this autoscaler.

kube_ingress_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_ingress_created gauge Unix creation timestamp.

203

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_ingress_info gauge Information about ingress.

kube_ingress_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_ingress_metadata_resource_vers
ion

gauge Resource version representing a
specific version of ingress.

kube_ingress_path gauge Ingress host, paths and backend
service information.

kube_ingress_tls gauge Ingress TLS host and secret
information.

kube_job_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_job_complete gauge The job has completed its
execution.

kube_job_created gauge Unix creation timestamp.

kube_job_failed gauge The job has failed its execution.

kube_job_info gauge Information about job.

kube_job_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_job_owner gauge Information about the Job's owner.

kube_job_spec_active_deadline_secon
ds

gauge The duration in seconds relative to
the startTime that the job may be
active before the system tries to
terminate it.

204

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_job_spec_completions gauge The desired number of successfully
finished pods the job should be run
with.

kube_job_spec_parallelism gauge The maximum desired number of
pods the job should run at any
given time.

kube_job_status_active gauge The number of actively running
pods.

kube_job_status_completion_time gauge CompletionTime represents time
when the job was completed.

kube_job_status_failed gauge The number of pods which reached
Phase Failed and the reason for
failure.

kube_job_status_start_time gauge StartTime represents time when the
job was acknowledged by the Job
Manager.

kube_job_status_succeeded gauge The number of pods which reached
Phase Succeeded.

kube_limitrange gauge Information about limit range.

kube_limitrange_created gauge Unix creation timestamp.

kube_mutatingwebhookconfiguration_c
reated

gauge Unix creation timestamp.

kube_mutatingwebhookconfiguration_i
nfo

gauge Information about the
MutatingWebhookConfiguration.

kube_mutatingwebhookconfiguration_m
etadata_resource_version

gauge Resource version representing a
specific version of the
MutatingWebhookConfiguration.

205

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_namespace_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_namespace_created gauge Unix creation timestamp.

kube_namespace_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_namespace_status_condition gauge The condition of a namespace.

kube_namespace_status_phase gauge Kubernetes namespace status
phase.

kube_networkpolicy_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_networkpolicy_created gauge Unix creation timestamp of
network policy.

kube_networkpolicy_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_networkpolicy_spec_egress_rule
s

gauge Number of egress rules on the
networkpolicy.

kube_networkpolicy_spec_ingress_rul
es

gauge Number of ingress rules on the
networkpolicy.

kube_node_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_node_created gauge Unix creation timestamp.

kube_node_info gauge Information about a cluster node.

kube_node_labels gauge Kubernetes labels converted to
Prometheus labels.

206

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_node_role gauge The role of a cluster node.

kube_node_spec_taint gauge The taint of a cluster node.

kube_node_spec_unschedulable gauge Whether a node can schedule new
pods.

kube_node_status_allocatable gauge The allocatable for different
resources of a node that are
available for scheduling.

kube_node_status_capacity gauge The capacity for different resources
of a node.

kube_node_status_condition gauge The condition of a cluster node.

kube_persistentvolume_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_persistentvolume_capacity_byte
s

gauge Persistentvolume capacity in bytes.

kube_persistentvolume_claim_ref gauge Information about the Persistent
Volume Claim Reference.

kube_persistentvolume_info gauge Information about
persistentvolume.

kube_persistentvolume_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_persistentvolume_status_phase gauge The phase indicates if a volume is
available, bound to a claim, or
released by a claim.

kube_persistentvolumeclaim_access_m
ode

gauge The access mode(s) specified by the
persistent volume claim.

207

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_persistentvolumeclaim_annotati
ons

gauge Kubernetes annotations converted
to Prometheus labels.

kube_persistentvolumeclaim_info gauge Information about persistent
volume claim.

kube_persistentvolumeclaim_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_persistentvolumeclaim_resource
_requests_storage_bytes

gauge The capacity of storage requested
by the persistent volume claim.

kube_persistentvolumeclaim_status_c
ondition

gauge Information about status of
different conditions of persistent
volume claim.

kube_persistentvolumeclaim_status_p
hase

gauge The phase the persistent volume
claim is currently in.

kube_pod_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_pod_completion_time gauge Completion time in Unix timestamp
for a pod.

kube_pod_container_info gauge Information about a container in a
pod.

kube_pod_container_resource_limits gauge The number of requested limit
resource by a container.

kube_pod_container_resource_request
s

gauge The number of requested request
resource by a container.

kube_pod_container_state_started gauge Start time in Unix timestamp for a
pod container.

208

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_container_status_last_term
inated_reason

gauge Describes the last reason the
container was in terminated state.

kube_pod_container_status_ready gauge Describes whether the containers
readiness check succeeded.

kube_pod_container_status_restarts_
total

counter The number of container restarts
per container.

kube_pod_container_status_running gauge Describes whether the container is
currently in running state.

kube_pod_container_status_terminate
d

gauge Describes whether the container is
currently in terminated state.

kube_pod_container_status_terminate
d_reason

gauge Describes the reason the container
is currently in terminated state.

kube_pod_container_status_waiting gauge Describes whether the container is
currently in waiting state.

kube_pod_container_status_waiting_r
eason

gauge Describes the reason the container
is currently in waiting state.

kube_pod_created gauge Unix creation timestamp.

kube_pod_deletion_timestamp gauge Unix deletion timestamp.

kube_pod_info gauge Information about pod.

kube_pod_init_container_info gauge Information about an init container
in a pod.

kube_pod_init_container_resource_li
mits

gauge The number of requested limit
resource by an init container.

209

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_init_container_resource_re
quests

gauge The number of requested request
resource by an init container.

kube_pod_init_container_status_last
_terminated_reason

gauge Describes the last reason the init
container was in terminated state.

kube_pod_init_container_status_read
y

gauge Describes whether the init
containers readiness check
succeeded.

kube_pod_init_container_status_rest
arts_total

counter The number of restarts for the init
container.

kube_pod_init_container_status_runn
ing

gauge Describes whether the init
container is currently in running
state.

kube_pod_init_container_status_term
inated

gauge Describes whether the init
container is currently in terminated
state.

kube_pod_init_container_status_term
inated_reason

gauge Describes the last reason the init
container was in terminated state.

kube_pod_init_container_status_read
y

gauge Describes whether the init
containers readiness check
succeeded.

kube_pod_init_container_status_rest
arts_total

counter The number of restarts for the init
container.

kube_pod_init_container_status_runn
ing

gauge Describes whether the init
container is currently in running
state.

kube_pod_init_container_status_term
inated

gauge Describes whether the init
container is currently in terminated
state.

210

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_init_container_status_term
inated_reason

gauge Describes the reason the init
container is currently in terminated
state.

kube_pod_init_container_status_wait
ing

gauge Describes whether the init
container is currently in waiting
state.

kube_pod_init_container_status_wait
ing_reason

gauge Describes the reason the init
container is currently in waiting
state.

kube_pod_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_pod_overhead_cpu_cores gauge The pod overhead in regards to
CPU cores associated with running
a pod.

kube_pod_overhead_memory_bytes gauge The pod overhead in regards to
memory associated with running a
pod.

kube_pod_owner gauge Information about the pod's owner.

kube_pod_restart_policy gauge Describes the restart policy in use
by this pod.

kube_pod_runtimeclass_name_info gauge The runtimeclass associated with
the pod.

kube_pod_spec_volumes_persistentvol
umeclaims_info

gauge Information about
persistentvolumeclaim volumes in a
pod.

kube_pod_spec_volumes_persistentvol
umeclaims_readonly

gauge Describes whether a
persistentvolumeclaim is mounted
read only.

211

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_start_time gauge Start time in Unix timestamp for a
pod.

kube_pod_status_phase gauge The pods current phase.

kube_pod_status_ready gauge Describes whether the pod is ready
to serve requests.

kube_pod_status_reason gauge The pod status reasons.

kube_pod_status_scheduled gauge Describes the status of the
scheduling process for the pod.

kube_pod_status_scheduled_time gauge Unix timestamp when pod moved
into scheduled status.

kube_pod_status_unschedulable gauge Describes the unschedulable status
for the pod.

kube_poddisruptionbudget_annotation
s

gauge Kubernetes annotations converted
to Prometheus labels.

kube_poddisruptionbudget_created gauge Unix creation timestamp

kube_poddisruptionbudget_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_poddisruptionbudget_status_cur
rent_healthy

gauge Current number of healthy pods.

kube_poddisruptionbudget_status_des
ired_healthy

gauge Minimum desired number of
healthy pods.

kube_poddisruptionbudget_status_exp
ected_pods

gauge Total number of pods counted by
this disruption budget.

212

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_poddisruptionbudget_status_obs
erved_generation

gauge Most recent generation observed
when updating this PDB status.

kube_poddisruptionbudget_status_pod
_disruptions_allowed

gauge Number of pod disruptions that are
currently allowed.

kube_replicaset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_replicaset_created gauge Unix creation timestamp.

kube_replicaset_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_replicaset_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_replicaset_owner gauge Information about the ReplicaSet's
owner.

kube_replicaset_spec_replicas gauge Number of desired pods for a
ReplicaSet.

kube_replicaset_status_fully_labele
d_replicas

gauge The number of fully labeled replicas
per ReplicaSet.

kube_replicaset_status_observed_gen
eration

gauge The generation observed by the
ReplicaSet controller.

kube_replicaset_status_ready_replic
as

gauge The number of ready replicas per
ReplicaSet.

kube_replicaset_status_replicas gauge The number of replicas per
ReplicaSet.

kube_replicationcontroller_created gauge Unix creation timestamp.

213

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_replicationcontroller_metadata
_generation

gauge Sequence number representing a
specific generation of the desired
state.

kube_replicationcontroller_owner gauge Information about the
ReplicationController's owner.

kube_replicationcontroller_spec_rep
licas

gauge Number of desired pods for a
ReplicationController.

kube_replicationcontroller_status_a
vailable_replicas

gauge The number of available replicas
per ReplicationController.

kube_replicationcontroller_status_f
ully_labeled_replicas

gauge The number of fully labeled replicas
per ReplicationController.

kube_replicationcontroller_status_o
bserved_generation

gauge The generation observed by the
ReplicationController controller.

kube_replicationcontroller_status_r
eady_replicas

gauge The number of ready replicas per
ReplicationController.

kube_replicationcontroller_status_r
eplicas

gauge The number of replicas per
ReplicationController.

kube_resourcequota gauge Information about resource quota.

kube_resourcequota_created gauge Unix creation timestamp.

kube_secret_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_secret_created gauge Unix creation timestamp.

kube_secret_info gauge Information about secret.

214

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_secret_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_secret_metadata_resource_versi
on

gauge Resource version representing a
specific version of secret.

kube_secret_type gauge Type about secret.

kube_service_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_service_created gauge Unix creation timestamp.

kube_service_info gauge Information about service.

kube_service_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_service_spec_external_ip gauge Service external ips. One series for
each IP.

kube_service_spec_type gauge Type about service.

kube_service_status_load_balancer_i
ngress

gauge Service load balancer ingress
status.

kube_statefulset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_statefulset_created gauge Unix creation timestamp.

kube_statefulset_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_statefulset_metadata_generatio
n

gauge Sequence number representing a
specific generation of the desired
state for the StatefulSet.

215

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_statefulset_replicas gauge Number of desired pods for a
StatefulSet.

kube_statefulset_status_current_rev
ision

gauge Indicates the version of the
StatefulSet used to generate Pods
in the sequence [0,currentReplicas).

kube_statefulset_status_observed_ge
neration

gauge The generation observed by the
StatefulSet controller.

kube_statefulset_status_replicas gauge The number of replicas per
StatefulSet.

kube_statefulset_status_replicas_av
ailable

gauge The number of available replicas
per StatefulSet.

kube_statefulset_status_replicas_cu
rrent

gauge The number of current replicas per
StatefulSet.

kube_statefulset_status_replicas_re
ady

gauge The number of ready replicas per
StatefulSet.

kube_statefulset_status_replicas_up
dated

gauge The number of updated replicas per
StatefulSet.

kube_statefulset_status_update_revi
sion

gauge Indicates the version of the
StatefulSet used to generate Pods
in the sequence (replicas-
updatedReplicas,replicas).

kube_storageclass_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_storageclass_created gauge Unix creation timestamp.

kube_storageclass_info gauge Information about storageclass.

216

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_storageclass_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_validatingwebhookconfiguration
_created

gauge Unix creation timestamp.

kube_validatingwebhookconfiguration
_info

gauge Information about the
ValidatingWebhookConfiguration.

kube_validatingwebhookconfiguration
_metadata_resource_version

gauge Resource version representing a
specific version of the
ValidatingWebhookConfiguration.

kube_volumeattachment_created gauge Unix creation timestamp.

kube_volumeattachment_info gauge Information about
volumeattachment.

kube_volumeattachment_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_volumeattachment_spec_source_p
ersistentvolume

gauge PersistentVolume source reference.

kube_volumeattachment_status_attach
ed

gauge Information about
volumeattachment.

kube_volumeattachment_status_attach
ment_metadata

gauge The volumeattachment metadata.

kubelet_certificate_manager_client_
expiration_renew_errors

counter [ALPHA] Counter of certificate
renewal errors.

217

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_certificate_manager_client_
ttl_seconds

gauge [ALPHA] Gauge of the TTL (time-
to-live) of the Kubelet's client
certificate. The value is in seconds
until certificate expiry (negative if
already expired). If client certificate
is invalid or unused, the value will
be +INF.

kubelet_cgroup_manager_duration_sec
onds

histogram [ALPHA] Duration in seconds for
cgroup manager operations. Broken
down by method.

kubelet_container_log_filesystem_us
ed_bytes

gauge [ALPHA] Bytes used by the
container's logs on the filesystem.

kubelet_containers_per_pod_count histogram [ALPHA] The number of containers
per pod.

kubelet_docker_operations_duration_
seconds

histogram [ALPHA] Latency in seconds of
Docker operations. Broken down
by operation type.

kubelet_docker_operations_errors_to
tal

counter [ALPHA] Cumulative number of
Docker operation errors by
operation type.

kubelet_docker_operations_total counter [ALPHA] Cumulative number of
Docker operations by operation
type.

kubelet_http_inflight_requests gauge [ALPHA] Number of the inflight
http requests.

kubelet_http_requests_duration_seco
nds

histogram [ALPHA] Duration in seconds to
serve http requests.

kubelet_http_requests_total counter [ALPHA] Number of the http
requests received since the server
started.

218

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_network_plugin_operations_d
uration_seconds

histogram [ALPHA] Latency in seconds of
network plugin operations. Broken
down by operation type.

kubelet_network_plugin_operations_t
otal

counter [ALPHA] Cumulative number of
network plugin operations by
operation type.

kubelet_node_config_error gauge [ALPHA] This metric is true (1) if
the node is experiencing a
configuration-related error, false (0)
otherwise.

kubelet_node_name gauge [ALPHA] The node's name. The
count is always 1.

kubelet_pleg_discard_events counter [ALPHA] The number of discard
events in PLEG.

kubelet_pleg_last_seen_seconds gauge [ALPHA] Timestamp in seconds
when PLEG was last seen active.

kubelet_pleg_relist_duration_second
s

histogram [ALPHA] Duration in seconds for
relisting pods in PLEG.

kubelet_pleg_relist_interval_second
s

histogram [ALPHA] Interval in seconds
between relisting in PLEG.

kubelet_pod_start_duration_seconds histogram [ALPHA] Duration in seconds for a
single pod to go from pending to
running.

kubelet_pod_worker_duration_seconds histogram [ALPHA] Duration in seconds to
sync a single pod. Broken down by
operation type: create, update, or
sync.

kubelet_pod_worker_start_duration_s
econds

histogram [ALPHA] Duration in seconds from
seeing a pod to starting a worker.

219

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_run_podsandbox_duration_sec
onds

histogram [ALPHA] Duration in seconds of the
run_podsandbox operations.
Broken down by
RuntimeClass.Handler.

kubelet_running_containers gauge [ALPHA] Number of containers
currently running.

kubelet_running_pods gauge [ALPHA] Number of pods currently
running.

kubelet_runtime_operations_duration
_seconds

histogram [ALPHA] Duration in seconds of
runtime operations. Broken down
by operation type.

kubelet_runtime_operations_errors_t
otal

counter [ALPHA] Cumulative number of
runtime operation errors by
operation type.

kubelet_runtime_operations_total counter [ALPHA] Cumulative number of
runtime operations by operation
type.

kubelet_volume_stats_available_byte
s

gauge [ALPHA] Number of available bytes
in the volume.

kubelet_volume_stats_capacity_bytes gauge [ALPHA] Capacity in bytes of the
volume.

kubelet_volume_stats_inodes gauge [ALPHA] Maximum number of
inodes in the volume.

kubelet_volume_stats_inodes_free gauge [ALPHA] Number of free inodes in
the volume.

kubelet_volume_stats_inodes_used gauge [ALPHA] Number of used inodes in
the volume.

220

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_volume_stats_used_bytes gauge [ALPHA] Number of used bytes in
the volume.

kubeproxy_network_programming_durat
ion_seconds

histogram [ALPHA] In Cluster Network
Programming Latency in seconds.

kubeproxy_sync_proxy_rules_duration
_seconds

histogram [ALPHA] SyncProxyRules latency in
seconds.

kubeproxy_sync_proxy_rules_endpoint
_changes_pending

gauge [ALPHA] Pending proxy rules
Endpoint changes.

kubeproxy_sync_proxy_rules_endpoint
_changes_total

counter [ALPHA] Cumulative proxy rules
Endpoint changes.

kubeproxy_sync_proxy_rules_iptables
_restore_failures_total

counter [ALPHA] Cumulative proxy iptables
restore failures.

kubeproxy_sync_proxy_rules_last_que
ued_timestamp_seconds

gauge [ALPHA] The last time a sync of
proxy rules was queued.

kubeproxy_sync_proxy_rules_last_tim
estamp_seconds

gauge [ALPHA] The last time proxy rules
were successfully synced.

kubeproxy_sync_proxy_rules_service_
changes_pending

gauge [ALPHA] Pending proxy rules
Service changes.

kubeproxy_sync_proxy_rules_service_
changes_total

counter [ALPHA] Cumulative proxy rules
Service changes.

kubernetes_build_info gauge [ALPHA] A metric with a constant
'1' value labeled by major, minor, git
version, git commit, git tree state,
build date, Go version, and
compiler from which Kubernetes
was built, and platform on which it
is running.

221

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

prober_probe_total counter [ALPHA] Cumulative number of a
liveness, readiness or startup probe
for a container by result.

process_cpu_seconds_total counter Total user and system CPU time
spent in seconds.

process_max_fds gauge Maximum number of open file
descriptors.

process_open_fds gauge Number of open file descriptors.

process_resident_memory_bytes gauge Resident memory size in bytes.

process_start_time_seconds gauge Start time of the process since Unix
epoch in seconds.

process_virtual_memory_bytes gauge Virtual memory size in bytes.

process_virtual_memory_max_bytes gauge Maximum amount of virtual
memory available in bytes.

rest_client_exec_plugin_certificate
_rotation_age

histogram [ALPHA] Histogram of the number
of seconds the last auth exec plugin
client certificate lived before being
rotated. If auth exec plugin client
certificates are unused, histogram
will contain no data.

rest_client_exec_plugin_ttl_seconds gauge [ALPHA] Gauge of the shortest TTL
(time-to-live) of the client
certificate(s) managed by the auth
exec plugin. The value is in seconds
until certificate expiry (negative if
already expired). If auth exec
plugins are unused or manage no
TLS certificates, the value will be
+INF.

222

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

rest_client_request_duration_second
s

histogram [ALPHA] Request latency in
seconds. Broken down by verb and
URL.

rest_client_requests_total counter [ALPHA] Number of HTTP
requests, partitioned by status
code, method, and host.

serviceaccount_legacy_tokens_total counter [ALPHA] Cumulative legacy service
account tokens used.

serviceaccount_stale_tokens_total counter [ALPHA] Cumulative stale
projected service account tokens
used.

serviceaccount_valid_tokens_total counter [ALPHA] Cumulative valid
projected service account tokens
used.

ssh_tunnel_open_count counter [ALPHA] Counter of ssh tunnel
total open attempts.

ssh_tunnel_open_fail_count counter [ALPHA] Counter of ssh tunnel
failed open attempts.

storage_operation_duration_seconds histogram [ALPHA] Storage operation
duration.

storage_operation_errors_total counter [ALPHA] Storage operation errors.

storage_operation_status_count counter [ALPHA] Storage operation return
statuses count.

volume_manager_total_volumes gauge [ALPHA] Number of volumes in
Volume Manager.

workqueue_adds_total counter [ALPHA] Total number of adds
handled by workqueue.

223

Table 17: Kubernetes Metric List (Continued)

Metric Name Type Description

workqueue_depth gauge [ALPHA] Current depth of
workqueue.

workqueue_longest_running_processor
_seconds

gauge [ALPHA] How many seconds has
the longest running processor for
workqueue been running.

workqueue_queue_duration_seconds histogram [ALPHA] How long in seconds an
item stays in workqueue before
being requested.

workqueue_retries_total counter [ALPHA] Total number of retries
handled by workqueue.

workqueue_unfinished_work_seconds gauge [ALPHA] How many seconds of
work has done that is in progress
and hasn't been observed by
work_duration. Large values
indicate stuck threads. One can
deduce the number of stuck
threads by observing the rate at
which this increases.

workqueue_work_duration_seconds histogram [ALPHA] How long in seconds
processing an item from workqueue
takes.

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

Contrail Networking Metric List | 172

Cluster Node Metric List | 225

Contrail Networking Alert List | 242

224

Cluster Node Metric List

Table 18: Cluster Node Metric List

Metric Name Type Description

node_arp_entries gauge ARP entries by device.

node_authorizer_graph_actions_durat
ion_seconds

histogram [ALPHA] Histogram of duration of
graph actions in node authorizer.

node_boot_time_seconds gauge Node boot time, in Unix time.

node_context_switches_total counter Total number of context switches.

node_cooling_device_cur_state gauge Current throttle state of the cooling
device.

node_cooling_device_max_state gauge Maximum throttle state of the
cooling device.

node_cpu_guest_seconds_total counter Seconds the CPUs spent in guests
(VMs) for each mode.

node_cpu_seconds_total counter Seconds the CPUs spent in each
mode.

node_disk_info gauge info of /sys/block/<block_device>.

node_disk_io_now gauge The number of I/Os currently in
progress.

node_disk_io_time_seconds_total counter Total seconds spent doing I/Os.

node_disk_io_time_weighted_seconds_
total

counter The weighted number of seconds
spent doing I/Os.

node_disk_read_bytes_total counter The total number of bytes read
successfully.

225

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_disk_read_time_seconds_total counter The total number of seconds spent
by all reads.

node_disk_reads_completed_total counter The total number of reads
completed successfully.

node_disk_reads_merged_total counter The total number of reads merged.

node_disk_write_time_seconds_total counter This is the total number of seconds
spent by all writes.

node_disk_writes_completed_total counter The total number of writes
completed successfully.

node_disk_writes_merged_total counter The number of writes merged.

node_disk_written_bytes_total counter The total number of bytes written
successfully.

node_dmi_info gauge A metric with a constant '1' value
labeled by bios_date, bios_release,
bios_vendor, bios_version,
board_asset_tag, board_name,
board_serial, board_vendor,
board_version, chassis_asset_tag,
chassis_serial, chassis_vendor,
chassis_version, product_family,
product_name, product_serial,
product_sku, product_uuid,
product_version, system_vendor if
provided by DMI.

node_entropy_available_bits gauge Bits of available entropy.

node_entropy_pool_size_bits gauge Bits of entropy pool.

226

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_exporter_build_info gauge A metric with a constant '1' value
labeled by version, revision, branch,
and goversion from which
node_exporter was built.

node_filefd_allocated gauge File descriptor statistics: allocated.

node_filefd_maximum gauge File descriptor statistics: maximum.

node_filesystem_avail_bytes gauge Filesystem space available to non-
root users in bytes.

node_filesystem_device_error gauge Whether an error occurred while
getting statistics for the given
device.

node_filesystem_files gauge Filesystem total file nodes.

node_filesystem_files_free gauge Filesystem total free file nodes.

node_filesystem_free_bytes gauge Filesystem free space in bytes.

node_filesystem_readonly gauge Filesystem read-only status.

node_filesystem_size_bytes gauge Filesystem size in bytes.

node_forks_total counter Total number of forks.

node_intr_total counter Total number of interrupts serviced.

node_ipvs_connections_total counter The total number of connections
made.

node_ipvs_incoming_bytes_total counter The total amount of incoming data.

node_ipvs_incoming_packets_total counter The total number of incoming
packets.

227

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_ipvs_outgoing_bytes_total counter The total amount of outgoing data.

node_ipvs_outgoing_packets_total counter The total number of outgoing
packets.

node_load1 gauge 1m load average.

node_load15 gauge 15m load average.

node_load5 gauge 5m load average.

node_memory_Active_anon_bytes gauge Memory information field
Active_anon_bytes.

node_memory_Active_bytes gauge Memory information field
Active_bytes.

node_memory_Active_file_bytes gauge Memory information field
Active_file_bytes.

node_memory_AnonHugePages_bytes gauge Memory information field
AnonHugePages_bytes.

node_memory_AnonPages_bytes gauge Memory information field
AnonPages_bytes.

node_memory_Bounce_bytes gauge Memory information field
Bounce_bytes.

node_memory_Buffers_bytes gauge Memory information field
Buffers_bytes.

node_memory_Cached_bytes gauge Memory information field
Cached_bytes.

node_memory_CmaFree_bytes gauge Memory information field
CmaFree_bytes.

228

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_CmaTotal_bytes gauge Memory information field
CmaTotal_bytes.

node_memory_CommitLimit_bytes gauge Memory information field
CommitLimit_bytes.

node_memory_Committed_AS_bytes gauge Memory information field
Committed_AS_bytes.

node_memory_DirectMap2M_bytes gauge Memory information field
DirectMap2M_bytes.

node_memory_DirectMap4k_bytes gauge Memory information field
DirectMap4k_bytes.

node_memory_Dirty_bytes gauge Memory information field
Dirty_bytes.

node_memory_HardwareCorrupted_bytes gauge Memory information field
HardwareCorrupted_bytes.

node_memory_HugePages_Free gauge Memory information field
HugePages_Free.

node_memory_HugePages_Rsvd gauge Memory information field
HugePages_Rsvd.

node_memory_HugePages_Surp gauge Memory information field
HugePages_Surp.

node_memory_HugePages_Total gauge Memory information field
HugePages_Total.

node_memory_Hugepagesize_bytes gauge Memory information field
Hugepagesize_bytes.

node_memory_Inactive_anon_bytes gauge Memory information field
Inactive_anon_bytes.

229

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_Inactive_bytes gauge Memory information field
Inactive_bytes.

node_memory_Inactive_file_bytes gauge Memory information field
Inactive_file_bytes.

node_memory_KernelStack_bytes gauge Memory information field
KernelStack_bytes.

node_memory_Mapped_bytes gauge Memory information field
Mapped_bytes.

node_memory_MemAvailable_bytes gauge Memory information field
MemAvailable_bytes.

node_memory_MemFree_bytes gauge Memory information field
MemFree_bytes.

node_memory_MemTotal_bytes gauge Memory information field
MemTotal_bytes.

node_memory_Mlocked_bytes gauge Memory information field
Mlocked_bytes.

node_memory_NFS_Unstable_bytes gauge Memory information field
NFS_Unstable_bytes.

node_memory_PageTables_bytes gauge Memory information field
PageTables_bytes.

node_memory_SReclaimable_bytes gauge Memory information field
SReclaimable_bytes.

node_memory_SUnreclaim_bytes gauge Memory information field
SUnreclaim_bytes.

node_memory_ShmemHugePages_bytes gauge Memory information field
ShmemHugePages_bytes.

230

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_ShmemPmdMapped_bytes gauge Memory information field
ShmemPmdMapped_bytes.

node_memory_Shmem_bytes gauge Memory information field
Shmem_bytes.

node_memory_Slab_bytes gauge Memory information field
Slab_bytes.

node_memory_SwapCached_bytes gauge Memory information field
SwapCached_bytes.

node_memory_SwapFree_bytes gauge Memory information field
SwapFree_bytes.

node_memory_SwapTotal_bytes gauge Memory information field
SwapTotal_bytes.

node_memory_Unevictable_bytes gauge Memory information field
Unevictable_bytes.

node_memory_VmallocChunk_bytes gauge Memory information field
VmallocChunk_bytes.

node_memory_VmallocTotal_bytes gauge Memory information field
VmallocTotal_bytes.

node_memory_VmallocUsed_bytes gauge Memory information field
VmallocUsed_bytes.

node_memory_WritebackTmp_bytes gauge Memory information field
WritebackTmp_bytes.

node_memory_Writeback_bytes gauge Memory information field
Writeback_bytes.

node_netstat_Icmp6_InErrors counter Statistic Icmp6InErrors.

231

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_netstat_Icmp6_InMsgs counter Statistic Icmp6InMsgs.

node_netstat_Icmp6_OutMsgs counter Statistic Icmp6OutMsgs.

node_netstat_Icmp_InErrors counter Statistic IcmpInErrors.

node_netstat_Icmp_InMsgs counter Statistic IcmpInMsgs.

node_netstat_Icmp_OutMsgs counter Statistic IcmpOutMsgs.

node_netstat_Ip6_InOctets counter Statistic Ip6InOctets.

node_netstat_Ip6_OutOctets counter Statistic Ip6OutOctets.

node_netstat_IpExt_InOctets counter Statistic IpExtInOctets.

node_netstat_IpExt_OutOctets counter Statistic IpExtOutOctets.

node_netstat_Ip_Forwarding counter Statistic IpForwarding.

node_netstat_TcpExt_ListenDrops counter Statistic TcpExtListenDrops.

node_netstat_TcpExt_ListenOverflows counter Statistic TcpExtListenOverflows.

node_netstat_TcpExt_SyncookiesFaile
d

counter Statistic TcpExtSyncookiesFailed.

node_netstat_TcpExt_SyncookiesRecv counter Statistic TcpExtSyncookiesRecv.

node_netstat_TcpExt_SyncookiesSent counter Statistic TcpExtSyncookiesSent.

node_netstat_TcpExt_TCPSynRetrans counter Statistic TcpExtTCPSynRetrans.

node_netstat_TcpExt_TCPTimeouts counter Statistic TcpExtTCPTimeouts.

node_netstat_Tcp_ActiveOpens counter Statistic TcpActiveOpens.

232

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_netstat_Tcp_CurrEstab counter Statistic TcpCurrEstab.

node_netstat_Tcp_InErrs counter Statistic TcpInErrs.

node_netstat_Tcp_InSegs counter Statistic TcpInSegs.

node_netstat_Tcp_OutRsts counter Statistic TcpOutRsts.

node_netstat_Tcp_OutSegs counter Statistic TcpOutSegs.

node_netstat_Tcp_PassiveOpens counter Statistic TcpPassiveOpens.

node_netstat_Tcp_RetransSegs counter Statistic TcpRetransSegs.

node_netstat_Udp6_InDatagrams counter Statistic Udp6InDatagrams.

node_netstat_Udp6_InErrors counter Statistic Udp6InErrors.

node_netstat_Udp6_NoPorts counter Statistic Udp6NoPorts.

node_netstat_Udp6_OutDatagrams counter Statistic Udp6OutDatagrams.

node_netstat_Udp6_RcvbufErrors counter Statistic Udp6RcvbufErrors.

node_netstat_Udp6_SndbufErrors counter Statistic Udp6SndbufErrors.

node_netstat_UdpLite6_InErrors counter Statistic UdpLite6InErrors.

node_netstat_UdpLite_InErrors counter Statistic UdpLiteInErrors.

node_netstat_Udp_InDatagrams counter Statistic UdpInDatagrams.

node_netstat_Udp_InErrors counter Statistic UdpInErrors.

node_netstat_Udp_NoPorts counter Statistic UdpNoPorts.

233

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_netstat_Udp_OutDatagrams counter Statistic UdpOutDatagrams.

node_netstat_Udp_RcvbufErrors counter Statistic UdpRcvbufErrors.

node_netstat_Udp_SndbufErrors counter Statistic UdpSndbufErrors.

node_network_address_assign_type gauge address_assign_type value of /sys/
class/net/.

node_network_carrier gauge carrier value of /sys/class/net/.

node_network_carrier_changes_total counter carrier_changes_total value of /sys/
class/net/.

node_network_carrier_down_changes_t
otal

counter carrier_down_changes_total value
of /sys/class/net/.

node_network_carrier_up_changes_tot
al

counter carrier_up_changes_total value
of /sys/class/net/.

node_network_device_id gauge device_id value of /sys/class/net/.

node_network_dormant gauge dormant value of /sys/class/net/.

node_network_flags gauge flags value of /sys/class/net/.

node_network_iface_id gauge iface_id value of /sys/class/net/.

node_network_iface_link gauge iface_link value of /sys/class/net/.

node_network_iface_link_mode gauge iface_link_mode value of /sys/class/
net/.

node_network_info gauge Non-numeric data from /sys/class/
net/, value is always 1.

234

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_network_mtu_bytes gauge mtu_bytes value of /sys/class/net/.

node_network_name_assign_type gauge name_assign_type value of /sys/
class/net/.

node_network_net_dev_group gauge net_dev_group value of /sys/class/
net/.

node_network_protocol_type gauge protocol_type value of /sys/class/
net/.

node_network_receive_bytes_total counter Network device statistic
receive_bytes.

node_network_receive_compressed_tot
al

counter Network device statistic
receive_compressed.

node_network_receive_drop_total counter Network device statistic
receive_drop.

node_network_receive_errs_total counter Network device statistic
receive_errs.

node_network_receive_fifo_total counter Network device statistic
receive_fifo.

node_network_receive_frame_total counter Network device statistic
receive_frame.

node_network_receive_multicast_tota
l

counter Network device statistic
receive_multicast.

node_network_receive_packets_total counter Network device statistic
receive_packets.

node_network_speed_bytes gauge speed_bytes value of /sys/class/
net/.

235

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_network_transmit_bytes_total counter Network device statistic
transmit_bytes.

node_network_transmit_carrier_total counter Network device statistic
transmit_carrier.

node_network_transmit_colls_total counter Network device statistic
transmit_colls.

node_network_transmit_compressed_to
tal

counter Network device statistic
transmit_compressed.

node_network_transmit_drop_total counter Network device statistic
transmit_drop.

node_network_transmit_errs_total counter Network device statistic
transmit_errs.

node_network_transmit_fifo_total counter Network device statistic
transmit_fifo.

node_network_transmit_packets_total counter Network device statistic
transmit_packets.

node_network_transmit_queue_length gauge transmit_queue_length value of /sys/
class/net/.

node_network_up gauge Value is 1 if operstate is 'up', 0
otherwise.

node_nf_conntrack_entries gauge Number of currently allocated flow
entries for connection tracking.

node_nf_conntrack_entries_limit gauge Maximum size of connection
tracking table.

236

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_os_info gauge A metric with a constant '1' value
labeled by build_id, id, id_like,
image_id, image_version, name,
pretty_name, variant, variant_id,
version, version_codename,
version_id.

node_os_version gauge Metric containing the major.minor
part of the OS version.

node_power_supply_info gauge info of /sys/class/power_supply/
<power_supply>.

node_power_supply_online gauge online value of /sys/class/
power_supply/<power_supply>.

node_procs_blocked gauge Number of processes blocked
waiting for I/O to complete.

node_procs_running gauge Number of processes in runnable
state.

node_schedstat_running_seconds_tota
l

counter Number of seconds CPU spent
running a process.

node_schedstat_timeslices_total counter Number of timeslices executed by
CPU.

node_schedstat_waiting_seconds_tota
l

counter Number of seconds spent by
processing waiting for this CPU.

node_scrape_collector_duration_seco
nds

gauge node_exporter: Duration of a
collector scrape.

node_scrape_collector_success gauge node_exporter: Whether a collector
succeeded.

237

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_sockstat_FRAG6_inuse gauge Number of FRAG6 sockets in state
inuse.

node_sockstat_FRAG6_memory gauge Number of FRAG6 sockets in state
memory.

node_sockstat_FRAG_inuse gauge Number of FRAG sockets in state
inuse.

node_sockstat_FRAG_memory gauge Number of FRAG sockets in state
memory.

node_sockstat_RAW6_inuse gauge Number of RAW6 sockets in state
inuse.

node_sockstat_RAW_inuse gauge Number of RAW sockets in state
inuse.

node_sockstat_TCP6_inuse gauge Number of TCP6 sockets in state
inuse.

node_sockstat_TCP_alloc gauge Number of TCP sockets in state
alloc.

node_sockstat_TCP_inuse gauge Number of TCP sockets in state
inuse.

node_sockstat_TCP_mem gauge Number of TCP sockets in state mem.

node_sockstat_TCP_mem_bytes gauge Number of TCP sockets in state
mem_bytes.

node_sockstat_TCP_orphan gauge Number of TCP sockets in state
orphan.

node_sockstat_TCP_tw gauge Number of TCP sockets in state tw.

238

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_sockstat_UDP6_inuse gauge Number of UDP6 sockets in state
inuse.

node_sockstat_UDPLITE6_inuse gauge Number of UDPLITE6 sockets in state
inuse.

node_sockstat_UDPLITE_inuse gauge Number of UDPLITE sockets in state
inuse.

node_sockstat_UDP_inuse gauge Number of UDP sockets in state
inuse.

node_sockstat_UDP_mem gauge Number of UDP sockets in state mem.

node_sockstat_UDP_mem_bytes gauge Number of UDP sockets in state
mem_bytes.

node_sockstat_sockets_used gauge Number of IPv4 sockets in use.

node_softnet_dropped_total counter Number of dropped packets.

node_softnet_processed_total counter Number of processed packets

node_softnet_times_squeezed_total counter Number of times processing
packets ran out of quota.

node_textfile_scrape_error gauge 1 if there was an error opening or
reading a file, 0 otherwise.

node_time_clocksource_available_inf
o

gauge Available clocksources read
from /sys/devices/system/
clocksource.

node_time_clocksource_current_info gauge Current clocksource read from /sys/
devices/system/clocksource.

239

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_time_seconds gauge System time in seconds since epoch
(1970).

node_time_zone_offset_seconds gauge System time zone offset in seconds.

node_timex_estimated_error_seconds gauge Estimated error in seconds.

node_timex_frequency_adjustment_rat
io

gauge Local clock frequency adjustment.

node_timex_loop_time_constant gauge Phase-locked loop time constant.

node_timex_maxerror_seconds gauge Maximum error in seconds.

node_timex_offset_seconds gauge Time offset in between local
system and reference clock.

node_timex_pps_calibration_total counter Pulse per second count of
calibration intervals.

node_timex_pps_error_total counter Pulse per second count of
calibration errors.

node_timex_pps_frequency_hertz gauge Pulse per second frequency.

node_timex_pps_jitter_seconds gauge Pulse per second jitter.

node_timex_pps_jitter_total counter Pulse per second count of jitter
limit exceeded events.

node_timex_pps_shift_seconds gauge Pulse per second interval duration.

node_timex_pps_stability_exceeded_t
otal

counter Pulse per second count of stability
limit exceeded events.

node_timex_pps_stability_hertz gauge Pulse per second stability, average
of recent frequency changes.

240

Table 18: Cluster Node Metric List (Continued)

Metric Name Type Description

node_timex_status gauge Value of the status array bits.

node_timex_sync_status gauge Is clock synchronized to a reliable
server (1 = yes, 0 = no).

node_timex_tai_offset_seconds gauge International Atomic Time (TAI)
offset.

node_timex_tick_seconds gauge Seconds between clock ticks.

node_udp_queues gauge Number of allocated memory in the
kernel for UDP datagrams in bytes.

node_uname_info gauge Labeled system information as
provided by the uname system call.

node_vmstat_oom_kill counter /proc/vmstat information field
oom_kill.

node_vmstat_pgfault counter /proc/vmstat information field
pgfault.

node_vmstat_pgmajfault counter /proc/vmstat information field
pgmajfault.

node_vmstat_pgpgin counter /proc/vmstat information field
pgpgin.

node_vmstat_pgpgout counter /proc/vmstat information field
pgpgout.

node_vmstat_pswpin counter /proc/vmstat information field
pswpin.

node_vmstat_pswpout counter /proc/vmstat information field
pswpout.

241

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

Contrail Networking Metric List | 172

Kubernetes Metric List | 186

Contrail Networking Alert List | 242

Contrail Networking Alert List

Table 19: Contrail Networking Alert List

Alert Name Severity Description

VRouterConnectionDown major VRouter <name> <connection_type>
connection to <connection_id> is
down.

VRouterNonFunctional major VRouter <name> is non-functional.

ControllerNonFunctional major Controller <name> is non-functional.

ControllerConnectionDown major Controller <name> <connection_type>
connection to <connection_id> is
down.

ControllerDBConnectionDown major Controller <name> connection to
database is down.

AlertmanagerFailedReload critical Reloading an Alertmanager
configuration has failed.

AlertmanagerMembersInconsistent critical A member of an Alertmanager
cluster has not found all other
cluster members.

AlertmanagerFailedToSendAlerts warning An Alertmanager instance failed to
send notifications.

242

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

AlertmanagerClusterFailedToSendAler
ts

critical All Alertmanager instances in a
cluster failed to send notifications
to a critical integration.

AlertmanagerClusterFailedToSendAler
ts

warning All Alertmanager instances in a
cluster failed to send notifications
to a non-critical integration.

AlertmanagerConfigInconsistent critical Alertmanager instances within the
same cluster have different
configurations.

AlertmanagerClusterDown critical Half or more of the Alertmanager
instances within the same cluster
are down.

AlertmanagerClusterCrashlooping critical Half or more of the Alertmanager
instances within the same cluster
are crashlooping.

ConfigReloaderSidecarErrors warning config-reloader sidecar has not had
a successful reload for 10m.

etcdInsufficientMembers critical etcd cluster "<name>": insufficient
members (<value>).

etcdNoLeader critical etcd cluster "<name>": member
<instance> has no leader.

etcdHighNumberOfLeaderChanges warning etcd cluster "<name>": instance
<instance> has seen <value> leader
changes within the last hour.

etcdHighNumberOfFailedGRPCRequests warning etcd cluster "<name>": <value>% of
requests for <grpc_method> failed on
etcd instance <instance>.

243

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

etcdHighNumberOfFailedGRPCRequests critical etcd cluster "<name>": <value>% of
requests for <grpc_method> failed on
etcd instance <instance>.

etcdGRPCRequestsSlow critical etcd cluster "<name>": gRPC requests
to <grpc_method> are taking <value>s
on etcd instance <instance>.

etcdMemberCommunicationSlow warning etcd cluster "<name>": member
communication with <name> is
taking <value>s on etcd instance
<instance>.

etcdHighNumberOfFailedProposals warning etcd cluster "<name>": <value>
proposal failures within the last
hour on etcd instance <instance>.

etcdHighFsyncDurations warning etcd cluster "<name>": 99th
percentile fsync durations are
<value>s on etcd instance
<instance>.

etcdHighCommitDurations warning etcd cluster "<name>": 99th
percentile commit durations
<value>s on etcd instance
<instance>.

etcdHighNumberOfFailedHTTPRequests warning <value>% of requests for <method>
failed on etcd instance <instance>.

etcdHighNumberOfFailedHTTPRequests critical <value>% of requests for <method>
failed on etcd instance <instance>.

etcdHTTPRequestsSlow warning etcd instance <instance> HTTP
requests to <method> are slow.

244

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

TargetDown warning One or more targets are
unreachable.

KubeAPIErrorBudgetBurn critical The API server is burning too much
error budget.

KubeAPIErrorBudgetBurn warning The API server is burning too much
error budget.

KubeStateMetricsListErrors critical kube-state-metrics is experiencing
errors in list operations.

KubeStateMetricsWatchErrors critical kube-state-metrics is experiencing
errors in watch operations.

KubeStateMetricsShardingMismatch critical kube-state-metrics sharding is
misconfigured.

KubeStateMetricsShardsMissing critical kube-state-metrics shards are
missing.

KubePodCrashLooping warning Pod is crash looping.

KubePodNotReady warning Pod has been in a non-ready state
for more than 15 minutes.

KubeDeploymentGenerationMismatch warning Deployment generation mismatch
due to possible roll-back.

KubeDeploymentReplicasMismatch warning Deployment has not matched the
expected number of replicas.

KubeStatefulSetReplicasMismatch warning Deployment has not matched the
expected number of replicas.

KubeStatefulSetGenerationMismatch warning StatefulSet generation mismatch
due to possible roll-back.

245

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

KubeStatefulSetUpdateNotRolledOut warning StatefulSet update has not been
rolled out.

KubeDaemonSetRolloutStuck warning DaemonSet rollout is stuck.

KubeContainerWaiting warning Pod container waiting longer than 1
hour.

KubeDaemonSetNotScheduled warning DaemonSet pods are not scheduled.

KubeDaemonSetMisScheduled warning DaemonSet pods are misscheduled.

KubeJobCompletion warning Job did not complete in time.

KubeJobFailed warning Job failed to complete.

KubeHpaReplicasMismatch warning HPA has not matched desired
number of replicas.

KubeHpaMaxedOut warning HPA is running at max replicas.

KubeCPUOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeMemoryOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeCPUQuotaOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeMemoryQuotaOvercommit warning Cluster has overcommitted memory
resource requests.

KubeQuotaAlmostFull info Namespace quota is going to be
full.

KubeQuotaFullyUsed info Namespace quota is fully used.

246

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

KubeQuotaExceeded warning Namespace quota has exceeded
the limits.

CPUThrottlingHigh info Processes experience elevated CPU
throttling.

KubePersistentVolumeFillingUp critical PersistentVolume is filling up.

KubePersistentVolumeFillingUp warning PersistentVolume is filling up.

KubePersistentVolumeErrors critical PersistentVolume is having issues
with provisioning.

KubeVersionMismatch warning Different semantic versions of
Kubernetes components running.

KubeClientErrors warning Kubernetes API server client is
experiencing errors.

KubeClientCertificateExpiration warning Client certificate is about to expire.

KubeClientCertificateExpiration critical Client certificate is about to expire.

KubeAggregatedAPIErrors warning Kubernetes aggregated API has
reported errors.

KubeAggregatedAPIDown warning Kubernetes aggregated API is
down.

KubeAPIDown critical Target disappeared from
Prometheus target discovery.

KubeAPITerminatedRequests warning The Kubernetes apiserver has
terminated <value> of its incoming
requests.

KubeControllerManagerDown critical Target disappeared from
Prometheus target discovery.

247

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

KubeProxyDown critical Target disappeared from
Prometheus target discovery.

KubeNodeNotReady warning Node is not ready.

KubeNodeUnreachable warning Node is unreachable.

KubeletTooManyPods info Kubelet is running at capacity.

KubeNodeReadinessFlapping warning Node readiness status is flapping.

KubeletPlegDurationHigh warning Kubelet Pod Lifecycle Event
Generator is taking too long to
relist.

KubeletPodStartUpLatencyHigh warning Kubelet Pod startup latency is too
high.

KubeletClientCertificateExpiration warning Kubelet client certificate is about to
expire.

KubeletClientCertificateExpiration critical Kubelet client certificate is about to
expire.

KubeletServerCertificateExpiration warning Kubelet server certificate is about
to expire.

KubeletServerCertificateExpiration critical Kubelet server certificate is about
to expire.

KubeletClientCertificateRenewalErro
rs

warning Kubelet has failed to renew its
client certificate.

KubeletServerCertificateRenewalErro
rs

warning Kubelet has failed to renew its
server certificate.

KubeletDown critical Target disappeared from
Prometheus target discovery.

248

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

KubeSchedulerDown critical Target disappeared from
Prometheus target discovery.

NodeFilesystemSpaceFillingUp warning Filesystem is predicted to run out
of space within the next 24 hours.

NodeFilesystemSpaceFillingUp critical Filesystem is predicted to run out
of space within the next 4 hours.

NodeFilesystemAlmostOutOfSpace warning Filesystem has less than 5% space
left.

NodeFilesystemAlmostOutOfSpace critical Filesystem has less than 3% space
left.

NodeFilesystemFilesFillingUp warning Filesystem is predicted to run out
of inodes within the next 24 hours.

NodeFilesystemFilesFillingUp critical Filesystem is predicted to run out
of inodes within the next 4 hours.

NodeFilesystemAlmostOutOfFiles warning Filesystem has less than 5% inodes
left.

NodeFilesystemAlmostOutOfFiles critical Filesystem has less than 3% inodes
left.

NodeNetworkReceiveErrs warning Network interface is reporting
many receive errors.

NodeNetworkTransmitErrs warning Network interface is reporting
many transmit errors.

NodeHighNumberConntrackEntriesUsed warning Number of conntrack are getting
close to the limit.

NodeTextFileCollectorScrapeError warning Node Exporter text file collector
failed to scrape.

249

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

NodeClockSkewDetected warning Clock skew detected.

NodeClockNotSynchronising warning Clock not synchronising.

NodeRAIDDegraded critical RAID Array is degraded.

NodeRAIDDiskFailure warning Failed device in RAID array.

NodeFileDescriptorLimit warning Kernel is predicted to exhaust file
descriptors limit soon.

NodeFileDescriptorLimit critical Kernel is predicted to exhaust file
descriptors limit soon.

NodeNetworkInterfaceFlapping warning Network interface is often changing
its status.

PrometheusBadConfig critical Failed Prometheus configuration
reload.

PrometheusNotificationQueueRunningF
ull

warning Prometheus alert notification
queue predicted to run full in less
than 30m.

PrometheusErrorSendingAlertsToSomeA
lertmanagers

warning Prometheus has encountered more
than 1% errors sending alerts to a
specific Alertmanager.

PrometheusNotConnectedToAlertmanage
rs

warning Prometheus is not connected to
any Alertmanagers.

PrometheusTSDBReloadsFailing warning Prometheus has issues reloading
blocks from disk.

PrometheusTSDBCompactionsFailing warning Prometheus has issues compacting
blocks.

250

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

PrometheusNotIngestingSamples warning Prometheus is not ingesting
samples.

PrometheusDuplicateTimestamps warning Prometheus is dropping samples
with duplicate timestamps.

PrometheusOutOfOrderTimestamps warning Prometheus drops samples with
out-of-order timestamps.

PrometheusRemoteStorageFailures critical Prometheus fails to send samples
to remote storage.

PrometheusRemoteWriteBehind critical Prometheus remote write is behind.

PrometheusRemoteWriteDesiredShards warning Prometheus remote write desired
shards calculation wants to run
more than configured max shards.

PrometheusRuleFailures critical Prometheus is failing rule
evaluations.

PrometheusMissingRuleEvaluations warning Prometheus is missing rule
evaluations due to slow rule group
evaluation.

PrometheusTargetLimitHit warning Prometheus has dropped targets
because some scrape configs have
exceeded the targets limit.

PrometheusLabelLimitHit warning Prometheus has dropped targets
because some scrape configs have
exceeded the labels limit.

PrometheusTargetSyncFailure critical Prometheus has failed to sync
targets.

PrometheusErrorSendingAlertsToAnyAl
ertmanager

critical Prometheus encounters more than
3% errors sending alerts to any
Alertmanager.

251

Table 19: Contrail Networking Alert List (Continued)

Alert Name Severity Description

PrometheusOperatorListErrors warning Errors while performing list
operations in controller.

PrometheusOperatorWatchErrors warning Errors while performing list
operations in controller.

PrometheusOperatorSyncFailed warning Last controller reconciliation failed.

PrometheusOperatorReconcileErrors warning Errors while reconciling controller.

PrometheusOperatorNodeLookupErrors warning Errors while reconciling
Prometheus.

PrometheusOperatorNotReady warning Prometheus operator not ready.

PrometheusOperatorRejectedResources warning Resources rejected by Prometheus
operator.

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

Contrail Networking Metric List | 172

Kubernetes Metric List | 186

Cluster Node Metric List | 225

vRouter Session Analytics in Contrail Networking

IN THIS SECTION

Collector Module | 253

252

Collector Deployment | 253

Data Collection | 254

Configure Data Collection | 256

Collector Query | 256

Run a Query | 256

Juniper Networks supports the collection, storage, and query for vRouter traffic in environments using
Cloud-Native Contrail® Networking™ Release 22.1 or later in a Kubernetes-orchestrated environment.

Collector Module

Contrail Networking collects user visible entities (UVEs) and traffic information (session) for traffic
analysis and troubleshooting. The collector module provides the function of storing these objects and
provides APIs to access the collected information.

The Contrail Networking vRouter agent exports data records to the collector when events are created or
deleted.

Collector Deployment

The following components are installed in the Contrail cluster in the contrail namespace (NS):

• Collector Microservice—Collects incoming events.

• InfluxDB—A time series database built specifically for storing time series data. Works with Grafana as
a visualization tool for time series data.

• Fluentd—Logging agent that performs log collection, parsing, and distribution to other services such
asOpenSearch.

• OpenSearch—OpenSearch is the search and analytics engine in the AWS OpenSearch Stack,
providing real-time search and analytics for all types of data.

• OpenSearch Dashboards —User interface that lets you visualize your OpenSearch data and navigate
the OpenSearch Stack.

253

Data Collection

Figure 9 on page 254 shows the data collection.

Figure 9: Cloud Native Contrail Collector: Event and Log Ingestion

UVEs

UVEs are stored in OpenSearch in an index named by the name of the UVE.

Session

Session records are stored in InfluxDB. These records are pushed as events from all agents. This data is
downsampled for longer duration. Retention periods of live, downsampled table, and downsampling
windows are configurable using the configuration.

Table 20: Session Records Information

Column Filterable Detail

vn Yes Client Virtual Network

vmi Yes Interface

254

Table 20: Session Records Information (Continued)

Column Filterable Detail

remote_vn Yes Server Virtual Network

vrouter_ip Yes Agent IP

local_ip Yes Client IP

client_port Yes Client Port

remote_ip Yes Server IP

server_port Yes Server Port

protocol Yes Protocol

label.local.<label-name> Yes Client Pod Labels (For example,
client pod with label site maps to
label.local.site tag in database.)

label.remote.<label-name> Yes Server Pod Labels

forward_sampled_bytes No Bytes Sent

forward_sampled_pkts No Packets Sent

reverse_sampled_bytes No Bytes Received

reverse_sampled_pkts No Packets Received

total_bytes No Total Bytes Exchanged

255

Configure Data Collection

To configure vRouter agents to send SessionEndpoint messages to the fluentd service, run the following
three commands. Replace <cluster-ip> with the IP address of the cluster.

kubectl -n contrail patch vrouter contrail-vrouter-masters --type=merge -p '{"spec":{"agent":
{"default":{"collectors":["<cluster-ip>:24224"]}}}}'

kubectl -n contrail patch vrouter contrail-vrouter-nodes --type=merge -p '{"spec":{"agent":
{"default":{"collectors":["<cluster-ip>:24224"]}}}}'

kubectl -n contrail patch gvc default-global-vrouter-config --type=merge -p '{"spec":
{"flowExportRate": 10000}}'

After running the three configuration commands, restart vRouter for the configuration to take effect. To
restart vRouter, run the following command:

kubectl -n contrail delete $(kubectl get pods -l 'app in (contrail-vrouter-masters, contrail-
vrouter-nodes)' -n contrail -o name)

Collector Query

The collector modules provide a query interface for access.

Run a Query

Example Query

256

The following query gets total bytes exchanged between unique source-destination pairs (by labels) in
the contrail-analytics namespace:

{
 "granularity": 3600,
 "column": [
 {
 "name": "total_bytes",
 "aggregation": "sum"
 },
 {
 "name": "/^label.*/",
 "regex": true
 }
],
 "skip_columns": [
 "label.remote.pod-template-hash",
 "label.local.pod-template-hash"
],
 "range":{
 "start_time": -3600
 },
 "filter": [
 {
 "field": "label.local.namespace",
 "operator": "==",
 "value": "contrail-analytics"
 },
 {
 "field": "label.remote.namespace",
 "operator": "==",
 "value": "contrail-analytics"
 }
]
}

Example Query Response

{
 "status": "success",
 "total": 5,

257

 "data": {
 "resultType": "matrix",
 "result": [
 {
 "metric": {
 "label.local.namespace": "contrail-analytics",
 "label.remote.app": "collector",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 31012095
]
]
 },
 {
 "metric": {
 "label.local.namespace": "contrail-analytics",
 "label.remote.app": "opensearch",
 "label.remote.chart": "opensearch",
 "label.remote.controller-revision-hash": "opensearch-7fcc8df678",
 "label.remote.namespace": "contrail-analytics",
 "label.remote.release": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 221493
]
]
 },
 {
 "metric": {
 "label.local.controller-revision-hash": "5599999fc7",

258

 "label.local.namespace": "contrail-analytics",
 "label.local.pod-template-generation": "1",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 23349247
]
]
 },
 {
 "metric": {
 "label.local.app": "collector",
 "label.local.namespace": "contrail-analytics",
 "label.remote.controller-revision-hash": "influxdb-7bdd86f8c",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 10412552
]
]
 },
 {
 "metric": {
 "label.local.app": "opensearch-dashboards",
 "label.local.namespace": "contrail-analytics",
 "label.local.release": "contrail-analytics",
 "label.remote.app": "opensearch",
 "label.remote.chart": "opensearch",
 "label.remote.controller-revision-hash": "opensearch-7fcc8df678",
 "label.remote.namespace": "contrail-analytics",
 "label.remote.release": "contrail-analytics"

259

 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 25152
]
]
 }
]
 }
}

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

Centralized Logging | 260

Centralized Logging

IN THIS SECTION

Benefits of Centralized Logging | 261

Overview: Centralized Logging | 261

Logs, Events, and Flows with Fluentd | 262

Juniper Networks supports centralized logging using Cloud-Native Contrail® Networking™ Release 22.1
or later in a Kubernetes-orchestrated environment.

260

Benefits of Centralized Logging

• The centralization of all platform logs eases troubleshooting. Allowing you (the administrator) to take
a holistic view of events, or outages, across the many components within the deployment.

• You have one portal, allowing you to monitor, view, filter, and search for events across all platform
components.

Overview: Centralized Logging

Instead of browsing through individual log files, logs from all components of Contrail Networking are
collected and available to the administrator in a centralized location. The centralized location provides
the ability to correlate the log files from multiple software components. For security, there is strict
logging of all create, read, update, and delete (CRUD) actions. These actions are performed by any
administrator with individual access credentials so individuals can be identified.

AWS OpenSearch Stack, an open source log collector and analyzer framework, provides out-of-box log
collection and analysis functionality. The OpenSearch stack allows a single portal for analyzing logs not
only from Contrail Networking; but also logs from other software components and platforms that are
deployed in their cluster. Examples include Linux OS logs, Kubernetes logs, and software components
such as virtualized network functions (VNFs) and container network functions (CNFs).

OpenSearch Stack includes:

• OpenSearch—Real-time and scalable search engine which allows for full-text and structured search,
as well as analytics. This search engine indexes and searches through large volumes of log data.

• OpenSearch Dashboard—Allows you to explore your OpenSearch log data through a web interface,
and build dashboards and queries.

• Fluentd—Logging agent that performs log collection, parsing, and distribution to other services such
as OpenSearch.

• Fluent Bit—Log processor and forwarder that collects data, such as metrics and logs from different
sources. High throughput with low CPU and memory usage. Fluent Bit is installed in every workload
cluster.

The logging components are included and deployed in the optional telemetry node deployment.
Installation commands are integrated in the telemetry installation.

261

Logs, Events, and Flows with Fluentd

Logs, events, and flows are collected using Fluentd running on each Contrail Networking node. Fluentd
is the logging agent that performs log collection, parsing, and distribution to other services such as
OpenSearch.

Figure 10: Logs, Events, and Flows with Fluentd

Logs

Logs are collected from log files or stdout/stderr data streams and directed to the OpenSearch library
stack with cluster quorum. Each Contrail Networking node (configuration, control, compute, Web UI,
and telemetry node) runs Fluent Bit or Fluentd to collect logs. The logs are sent to multiple configured
sinks, such as OpenSearch. Fluentd supports multiple output options to send collected logs.

• Control and compute nodes generate unstructured and structured logs through the Sandesh library.
The Contrail Networking Sandesh library generates structured JSON files.

• Config, Web UI, and telemetry node components produce standard logs to files or to stdout/stderr,
that are then sent to Fluentd or Fluent Bit.

Multiple Kubernetes clusters in any Contrail Networking cluster or in multiple Contrail Networking
clusters will be able to connect with a Fluentd/OpenSearch monitoring component.

Events

vRouter agent and control node produce events through Sandesh. The Sandesh library produces JSON
structured data and sends those files to the configured options. Configured options are stdout, file, or
TCP port (Fluentd). Fluentd is configured with multiple output options to send data either to
OpenSearch or to the telemetry node’s gRPC server. The telemetry node keeps cache for the latest
status events.

262

Flows

The vRouter agent produces flow meta at regular configured intervals. Configuration options for flow
data generation supported by the vRouter agent are syslogs, JSON structure, and the default Sandesh.

RELATED DOCUMENTATION

Contrail Networking Analytics | 166

vRouter Session Analytics in Contrail Networking | 252

Port-Based Mirroring

SUMMARY

This section describes port-based mirroring in
Juniper Cloud-Native Contrail® Networking™
Release 22.2 and later in a Kubernetes-orchestrated
environment.

IN THIS SECTION

Overview: Port-Based Mirroring | 263

Example: Configure Port-Based
Mirroring | 264

Summary | 267

Overview: Port-Based Mirroring

Figure 11: Cloud-Native Contrail Networking Port-Based Mirror Topology

263

Port mirroring sends network traffic from defined ports to a network analyzer where you can monitor
and analyze the data. In Cloud-Native Contrail Networking, the following is supported:

• Mirroring configuration is primarily driven from the pod configuration for both the receiver and
interface being mirrored. You don't need to configure the virtual machine interface (VMI) directly.

• Mirroring configuration involves creating a mirrorDestination resource and associating the
mirrorDestination resource to the pod interface to be mirrored.

• MirrorDestination identifies the mirrored traffic receiver pod and interface. When juniperHeader is
enabled, receiver pod IP address and port are used. When juniperHeader is disabled, receiver pod MAC
address routingInstance is used to forward mirrored traffic.

• A mirrorDestination can be associated with multiple VMIs to be mirrored.

• MirrorDestination resource defines the mirrored traffic receiver such as, IP address, port used for
receiving mirrored traffic, Juniper header configuration, dynamic or static next-hop, and so on.

• A pod interface to be mirrored can be configured when creating the pod or by editing the pod.

Example: Configure Port-Based Mirroring

The following procedure is an example configuration that creates a MirrorDestination resource and
specifies the mirrorDestination resource name, for example mirrordestinationprofile1, on the interface to be
mirrored.

1. Use the MirrorDestination YAML to create a mirrorDestination resource. by adding multiple destination
pods with the label core.juniper.net/analyzer-pod-selector: analyzerpod.

• MirrorDestination resource uses the label core.juniper.net/analyzer-pod-selector: analyzerpod to
calculate and determine the mirrored traffic pod receiver.

Example MirrorDestination YAML file.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: MirrorDestination
metadata:
 name: mirrordestinationprofile1
 labels:
 core.juniper.net/analyzer-pod-selector: analyzerpod
spec:
 trafficDirection: <ingress|egress|both>
 juniperHeader: <boolean>

264

 udpPort: <integer>
 staticNhHeader: <null for dynamic nh|vtep tunnel destip, mac, vxlanid for static nh>
 nextHopMode: <static|dynamic>
 nicAssistedMirroring: <boolean>
 nicAssistedVlanID:
 staticNextHopHeader:
 vTEPDestinationIP:
 vTEPDestinationMac:
 vxlanID:

When the YAML file is deployed, there could be multiple pods matching the label analyzerpod. First
matching pod is selected as the mirrored traffic receiver. The selected pod remains sticky until the
pod or interface is no longer available.

Following is the analyzer pod YAML file with label analyzerpod, indicating MirrorDestination can use this
pod.

• Note the label value for core.juniper.net/analyzer-podanalyzerpod is the same as specified in the
MirrorDestination YAML file.

• The mirrorDestination controller uses this label to calculate the analyzer_ip, macaddress, and
routinginstance.

• The pod interface to be used is specified in annotation below:

core.juniper.net/analyzer-interface: true

To indicate default pod interface, it is specified directly under annotations. For custom VN
interface, it is specified in cni-args of the network. The example Pod/analyzerpod YAML file shows
both examples.

• core.juniper.net/analyzer-interface: true indicates the vn-1 pod interface will receive mirrored traffic.

Example Pod/analyzerpod YAML file.

apiVersion: v1
kind: Pod
metadata:
 name: analyzerpod
 namespace: mirror-ns
 labels:
 core.juniper.net/analyzer-pod: analyzerpod
 annotations:
 core.juniper.net/analyzer-interface: "true"
 k8s.v1.cni.cncf.io/networks: |

265

 [
 {
 "name": "vn-1",
 "namespace": "mirror-ns",
 "cni-args": {
 "core.juniper.net/analyzer-interface": "true"
 }
 }
]

2. Add the pod annotations and specify the mirroringDestination resource name on the interface to be
mirrored.

In the following example YAML file, we are enabling mirroring on the pod vn-1 interface and we
specify the mirrorDestination resource name mirrordestinationprofile1 on the interface to be mirrored.

Example Pod/mirrored-pod YAML file.

apiVersion: v1
kind: Pod
metadata:
 name: mirrored-pod
 namespace: mirror-ns
 annotations:
 core.juniper.net/mirror-destination: "mirrordestinationprofile1"
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn-1",
 "namespace": "mirror-ns",
 "cni-args": {
 "core.juniper.net/mirror-destination": "mirrordestinationprofile1"
 }
 }
]

266

Summary

SUMMARY

This section describes configuration changes for
port-based mirroring in Cloud-Native Contrail
Networking Release 22.2.

IN THIS SECTION

From the analyzer pod annotations and labels, the VM and VMI are associated with the pod to be used
in the mirrorDestination controller.

Analyzer VM Labels:

The VirtualMachine resource corresponding to the pod will have the label core.juniper.net/analyzer-pod label.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachine
metadata:
 annotations:
 kube-manager.juniper.net/pod-cluster-name: contrail-k8s-kubemanager-ocp-kparmar-6mpccd
 kube-manager.juniper.net/pod-name: analyzerpod
 kube-manager.juniper.net/pod-namespace: multinode-ns
 labels:
 core.juniper.net/analyzer-pod: analyzerpod

Analyzer VMI Labels:

The VirtualMachineInterface resource for the analyzer pod will have the label core.juniper.net/analyzer-
interface.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachineInterface
metadata:
 annotations:
 index: 0/1
 interface: eth0
 kube-manager.juniper.net/pod-cluster-name: contrail-k8s-kubemanager-ocp-kparmar-6mpccd
 kube-manager.juniper.net/pod-name: analyzerpod
 kube-manager.juniper.net/pod-namespace: multinode-ns

267

 labels:
 core.juniper.net/analyzer-interface: ""

Source VMI Label indicating mirrorDestination:

Source VirtualMachineInterface corresponding to the pod interface being mirrored will have label
core.juniper.net/mirror-destination. And the annotations will have the mirror configuration.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachineInterface
metadata:
 annotations:
 core.juniper.net/mirroring-configuration:
'{"analyzer_name":"mirrordestinationprofile1","analyzer_ip_address":"10.128.0.200","analyzer_maca
ddress":"02:76:6c:25:f2:8c","ri":"default-
 domain:contrail-k8s-kubemanager-ocp-kparmar-6mpccd-contrail:default-podnetwork:default-
podnetwork"}'
 labels:
 core.juniper.net/mirror-destination: mirrordestinationprofile1

Configurable Categories of Metrics Collection and
Reporting (Tech Preview)

SUMMARY

In Cloud-Native Contrail® Networking™ Release
22.2, you can enable and disable selected metrics for
exporting.

IN THIS SECTION

Overview: Configurable Categories of Metrics
Collection and Reporting | 269

Install and Upgrade | 270

Manage MetricGroup with Kubectl
Commands | 271

Manage Metric Groups with UI | 272

268

Overview: Configurable Categories of Metrics Collection and Reporting

To provide more flexibility in the telemetry export component, Cloud-Native Contrail Networking
Release 22.2 introduces a new Kubernetes custom resource: MetricGroup. MetricGroup allows you to enable
or disable selected metrics for exporting.

• MetricGroup contains and manages a set of metrics for exporting.

• Metrics are grouped by their category. You can choose to enable or disable the metric export
function at the group level.

• MetricGroup is implemented through a Kubernetes custom resource.

MetricGroup provides fine-grained control on what metrics the system collects and reports. You can turn
on and off subset of metrics reporting. Sometimes administrators want to collect only a subset of
metrics for efficiency and the lightest weight possible deployment.

NOTE: This feature is classified as a Juniper CN2 Technology Preview feature. These features are
"as is" and are for voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support
cases. However, Juniper may not provide comprehensive support services to Tech Preview
features.

For additional information, refer to the "Juniper CN2 Technology Previews (Tech Previews)" on
page 274 or contact Juniper Support.

Figure 12: Metrics Collection and Reporting Architecture

Telemetry Operator, see Figure 12 on page 269, monitors any change of metric groups. Based on the
enabled metric groups, a list of enabled metrics is created and sent in the form of ConfigMap to metric
export agents. Metric export agents collect and export these enabled metrics, instead of all metrics on
the system.

269

https://support.juniper.net/support/

• The MetricGroup reconciler builds a ConfigMap for each type of metric (vrouter or controller) from the
enabled MetricGroup(s) and applies the ConfigMap to all clusters.

• The KubeManager reconciler does the same for a new cluster.

Telemetry Exporter combines metric specifications with this ConfigMap to create an enabled metric
specifications. The metric export function only exports metrics from the enabled metric specifications,
instead of all metrics.

Following items list YAML values for ConfigMap and MetricGroup.

ConfigMap: vrouter-export-enabled-metrics

• Revision number.

• Array of enabled metric names.

Custom Resource: MetricGroup

• Type: vrouter or controller

• Name: String

• Export: Boolean

• Metrics: Array of strings (metric name)

Install and Upgrade

MetricGroup is included in the analytics component in the CN2 Release 22.2. The predefined metric groups
are automatically installed during the CN2 analytics deployment. See Install Contrail Analytics for
Upstream Kubernetes or Install Contrail Analytics for OpenShift Container Platform.

Example: Predefined Metric Group

Bgpaas
Controller-bgp
Controller-info
Controller-peer
Controller-xmpp
Ermvpn
Evpn
Ipv4
Ipv6

270

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/cn-cloud-native-upstream-install-and-lcm/topics/task/cn-cloud-native-k8s-install-analytics.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/cn-cloud-native-upstream-install-and-lcm/topics/task/cn-cloud-native-k8s-install-analytics.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/topics/task/cn-cloud-native-ocp-install-contrail-analytics.html

Mvpn
Vrouter-cpu
Vrouter-info
Vrotuer-inv6
Vrouter-mem
Vrouter-traffic
Vrouter vmi

Example predefined MetricGroup: vrouter-cpu YAML file:

apiVersion: telemetry.juniper.net/v1alpha1
kind: MetricGroup
metadata:
 name: vrouter-cpu
 namespace: contrail-analytics
spec:
 export: true
 metricType: VROUTER
 metrics:
 - virtual_router_cpu_1min_load_avg
 - virtual_router_cpu_5min_load_avg
 - virtual_router_cpu_15min_load_avg

Manage MetricGroup with Kubectl Commands

You (the administrator) can manage MetricGroup with kubectl commands. Examples follow.

To delete MetricGroup:

kubectl delete metricgroup ipv6 –n contrail-analytics

To apply MetricGroup:

kubectl apply –f <yaml file with metric group definition>

271

To view MetricGroup resource:

kubectl get metricgroup ipv4 –n contrail-analytics –oyaml

To verify the existence following ConfigMap(s). Each cluster has its own copy of these two ConfigMap(s).

kubectl get cm –n contrail

Names of ConfigMap
 controller-export-enabled-metrics
 vrouter-export-enabled-metrics

Manage Metric Groups with UI

With this Tech Preview, you can manage MetricGroups using the CN2 Manager UI.
To manage Metric Groups in the UI:

1. Access the CN2 Manager UI from your browser:

https://<cluster-ip-address>/

2. Log in to CN2 Manager by either:

• Browse and select a kubeconfig file to upload.

• Log in using a token.

3. From the left-navigation menu, select Configure > Metric Groups.
The Metric Groups window displays.

4. To add a Metric Group, click the "+" icon in the upper right.

272

Add the Name, select Type, and metrics to apply. Click Save.

Figure 13: Add a Metric Group

5. Click the detail icon to display the Metric Group you added.

Figure 14: Display Metric Group Detail

273

Juniper CN2 Technology Previews (Tech Previews)

Tech Previews give you the ability to test functionality and provide feedback during the development
process of innovations that are not final production features. The goal of a Tech Preview is for the
feature to gain wider exposure and potential full support in a future release. Customers are encouraged
to provide feedback and functionality suggestions for a Technology Preview feature before it becomes
fully supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

274

https://support.juniper.net/support/

	Table of Contents
	About This Guide
	Configure Kubernetes and Contrail
	Enable IP Fabric Forwarding and Fabric Source NAT
	Enable Pods with Multiple Network Interfaces
	Overview: IPv4 and IPv6 Dual-Stack Networking
	Kubernetes Network Policy Support
	Encrypt Secret Data at Rest
	Lens Install with CN2 Extension
	Benefits
	Install Lens
	Download and Install CN2 Extension for Lens
	Connect Your Cloud-Native Contrail Networking Cluster to Lens
	Uninstall the CN2 Extension

	Advanced Virtual Networking
	Kubernetes Ingress Support
	Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking
	Configure Inter-Virtual Network Routing Through Route Targets
	Enable BGP as a Service
	Configure IPAM for Pod Networking
	Create an Isolated Namespace
	Namespace Overview
	Example: Isolated Namespace Configuration
	Isolated Namespace Objects
	Create an Isolated Namespace
	Optional Configuration: IP Fabric Forwarding and Fabric Source NAT
	Enable IP Fabric Forwarding
	Enable Fabric Source NAT

	
	Enable Packet-Based Forwarding on Virtual Interfaces
	Configure Reverse Path Forwarding on Virtual Interfaces
	Enable VLAN Subinterface Support on Virtual Interfaces
	Health Check
	Health Check Overview
	Create a Health Check Object
	Health Check Process

	Configure DPDK
	Deploy Kubevirt DPDK Dataplane Support for VMs
	Deploy DPDK vRouter for Optimal Container Networking
	Control Pod Scheduling on DPDK Nodes

	Configure Services
	Display Microservice Status in Cloud-Native Contrail Networking
	NodePort Service Support in Cloud-Native Contrail Networking
	Create a LoadBalancer Service
	LoadBalancer Service Overview
	Create a LoadBalancer Service
	Configure LoadBalancer Services without Selectors
	Dual-Stack Networking Support

	Analytics
	Contrail Networking Analytics
	Contrail Networking Metric List
	Kubernetes Metric List
	Cluster Node Metric List
	Contrail Networking Alert List
	vRouter Session Analytics in Contrail Networking
	Centralized Logging
	Port-Based Mirroring
	Overview: Port-Based Mirroring
	Example: Configure Port-Based Mirroring
	Summary

	Configurable Categories of Metrics Collection and Reporting (Tech Preview)
	Overview: Configurable Categories of Metrics Collection and Reporting
	Install and Upgrade
	Manage MetricGroup with Kubectl Commands
	Manage Metric Groups with UI

	Juniper CN2 Technology Previews (Tech Previews)

