
Cloud Native Contrail Networking

Cloud-Native Contrail Networking
Feature Guide

Published

2023-09-13

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Cloud Native Contrail Networking Cloud-Native Contrail Networking Feature Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | viii

1 Configure Kubernetes and Contrail

Enable IP Fabric Forwarding and Fabric Source NAT | 2

Enable Pods with Multiple Network Interfaces | 7

Display Microservice Status | 14

Lens Install with CN2 Extension | 19

Benefits | 20

Download and Install Lens | 20

Download and Install the CN2 Extension for Lens | 21

Connect Your CN2 Cluster to Lens | 21

Uninstall the CN2 Extension | 22

IPv4 and IPv6 Dual-Stack Networking | 23

Pod Scheduling | 24

2 CN2 Apstra Integration

Extend Virtual Networks to Apstra | 37

Overview | 37

Example: CN2 Kubernetes Deployment with SR-IOV Pods | 38

Prerequisites | 40

Considerations | 41

Installation Workflow | 42

Install and Configure the CN2 Apstra Plug-In | 44

Install the CN2 IPAM Plug-In | 48

Intra-VN and Inter-VN Approaches | 49

iii

Introduction to Configuring Intra-VN Communication | 53

Configure Intra-VN Communication | 56

Before You Begin | 56

Configure Intra-VN Communication Between SR-IOV Pods | 57

Configure Intra-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods | 58

Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS | 64

Introduction to Configuring Inter-VN Communication | 64

Configure Inter-VN Communication | 66

Before You Begin | 66

Configure Inter-VN Communication Between SR-IOV Pods | 67

Configure Inter-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods | 69

Configure Inter-VN Communication Between SR-IOV Pods, Non-SRIOV Pods and BMS | 74

3 CN2 Security

Kubernetes Network Policies | 77

Security Policies | 83

Namespace Security Policies | 83

Encrypt Secret Data at Rest | 88

Configure Management and Control Plane Authentication with TLS Encryption | 88

Overview | 88

Configure TLS Encryption for Contrail Control Plane and vRouter | 89

4 Advanced Virtual Networking

Enable BGP as a Service | 96

Create an Isolated Namespace | 109

Namespace Overview | 109

Example: Isolated Namespace Configuration | 110

Isolated Namespace Objects | 113

Create an Isolated Namespace | 114

Optional Configuration: IP Fabric Forwarding and Fabric Source NAT | 116

iv

Enable IP Fabric Forwarding | 116

Enable Fabric Source NAT | 118

Configure Allowed Address Pairs | 120

Enable Packet-Based Forwarding on Virtual Interfaces | 122

Configure Reverse Path Forwarding on Virtual Interfaces | 125

vRouter Interface Health Check | 127

vRouter Interface Health Check Overview | 127

Create a Health-Check Object | 128

Health-Check Process | 133

Kubernetes Ingress Support | 134

Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking | 138

Configure Inter-Virtual Network Routing Through Route Targets | 157

Configure IPAM for Pod Networking | 162

Enable VLAN Subinterface Support on Virtual Interfaces | 166

EVPN Networking Support | 173

Customize Virtual Networks for Pod Deployments, Services, and Namespaces | 177

Deploy Kubevirt DPDK Dataplane Support for VMs | 185

Pull Kubevirt Images and Deploy Kubevirt Using a Local Registry | 197

Static Routes | 200

VPC to CN2 Communication in AWS EKS | 211

Configure a Service Account to Assume an IAM role | 220

5 Configure DPDK

Deploy DPDK vRouter | 223

6 Configure Services

Configure ClusterIP Service by Assigning Endpoints | 232

v

ClusterIP Service without a Selector and Manually Assigned Endpoints | 232

Configure ClusterIP Service | 233

NodePort Service Support in Cloud-Native Contrail Networking | 236

Create a Load Balancer Service | 246

Load Balancer Service Overview | 246

Create a Load Balancer Service | 247

Dual-Stack Networking Support | 254

Configure Load Balancer Services Without Selectors | 254

FloatingIP/DNAT for IPv6 Addresses | 258

7 Analytics

Contrail Networking Analytics | 263

Contrail Networking Metric List | 269

Kubernetes Metric List | 283

Cluster Node Metric List | 321

Contrail Networking Alert List | 339

vRouter Session Analytics in Contrail Networking | 349

Centralized Logging | 357

Port-Based Mirroring | 360

Overview: Port-Based Mirroring | 360

Example: Configure Port-Based Mirroring | 361

Summary | 364

Configurable Categories of Metrics Collection and Reporting (Tech Preview) | 365

Overview: Configurable Categories of Metrics Collection and Reporting | 366

Install and Upgrade | 367

Manage MetricGroup with Kubectl Commands | 368

Manage Metric Groups with UI | 369

vi

Juniper CN2 Technology Previews (Tech Previews) | 371

vii

About This Guide

This guide provides an understanding of the features and tasks that you can configure for Juniper Cloud-
Native Contrail® Networking™ (CN2) Release 23.1. This guide is appropriate for administrators and
operators who need to know how to use CN2.

viii

1
CHAPTER

Configure Kubernetes and Contrail

Enable IP Fabric Forwarding and Fabric Source NAT | 2

Enable Pods with Multiple Network Interfaces | 7

Display Microservice Status | 14

Lens Install with CN2 Extension | 19

IPv4 and IPv6 Dual-Stack Networking | 23

Pod Scheduling | 24

Enable IP Fabric Forwarding and Fabric Source NAT

IN THIS SECTION

Overview: IP Fabric Forwarding | 2

Overview: Fabric Source NAT | 3

Example: Configure Fabric Source NAT | 3

Example: Configure External Networks with IP Fabric Forwarding | 5

Cloud-Native Contrail® Networking™ (CN2) supports IP fabric forwarding and fabric source Network
Address Translation (NAT) in Kubernetes-orchestrated environments using Juniper Networks' Cloud-
Native Contrail® Networking™ Release 22.1 or later.
Cloud-Native Contrail Networking supports IP fabric forwarding and fabric source NAT. IP fabric
forwarding provides clusters running in the overlay network with a path to access the underlay network
through the external virtual network. Fabric source NAT enables a gateway device in a fabric to translate
the source IP address of data plane node traffic exiting the fabric into a public-side IP address.

You can use IP fabric forwarding and fabric source NAT in cloud-networking environments to provide
access to the underlay network. The underlay network access provided by IP fabric forwarding and
fabric source NAT enables resources within pods to directly access the Internet or to pull external
artifacts from the underlay network. This underlay network access is provided without adding significant
network complexity like other underlay network options, such as complex BGP topologies or firewall
setups.

Overview: IP Fabric Forwarding

Starting with Release 22.1, Cloud-Native Contrail Networking supports IP fabric forwarding.

You enable IP fabric forwarding within virtual networks that have access to the external network. These
virtual networks require direct access to the underlay network.

A virtual network that has access to the external network is named the default-externalnetwork by
default. You can create a customized user-defined external network name, if you choose. When you
enable IP fabric forwarding, the path to the underlay network is directly available to clusters running in
the overlay network through this external virtual network. This direct connection between the overlay
network and the underlay network gives hosts in the overlay network access to the underlay network.

2

Because IP fabric forwarding enables a virtual network to span both the overlay network and the
underlay network, data packets traversing the two networks are not encapsulated and de-encapsulated.
Packet processing, therefore, is more efficient.

IP fabric forwarding is also extremely useful for load balancing network traffic. A LoadBalancer service
automatically detects any external virtual network that has enabled IP fabric forwarding when load-
balancing external network traffic.

Overview: Fabric Source NAT

Starting in Release 22.1, Cloud-Native Contrail Networking supports fabric source NAT. Fabric source
NAT provides a method for traffic from a data plane node in a Kubernetes environment to directly
access the Internet without traversing a separate NAT firewall. You can also use source NAT to pull
external artifacts into pods when needed.

Traffic from data plane nodes destined for the Internet must traverse a gateway device. This gateway
device is a member device in the fabric that also has at least one interface connected to the public
network. When fabric source NAT is enabled, the gateway device translates the source IP address of the
originating packet from the data plane node into its own public side IP address. This address translation
allows traffic from the data plane node to access the Internet.

The IP address translation that source NAT performs also updates the source port in the packet.
Multiple data plane nodes can reach the public network through a single gateway public IP address using
fabric source NAT.

You need fabric source NAT to translate the IP addresses of traffic exiting the fabric to the Internet. You
are not using NAT to translate incoming Internet traffic with this feature.

Example: Configure Fabric Source NAT

Fabric source NAT is disabled by default in user-created virtual networks.

You can enable fabric source NAT manually in any individual virtual network by setting the fabricSNAT:
variable in the VirtualNetwork object to true. You can disable fabric source NAT by setting this value to
false.

3

The following example shows a virtual network object that has enabled fabric source NAT. This example
assumes that a subnet object named virtual-network-subnet1 is configured in a separate YAML file.

apiVersion: core.contrail.juniper.net/v2
kind: VirtualNetwork
metadata:
 name: virtualnetwork1
 namespace: namespace1
 labels:
 vn: virtualnetwork1
 annotations:
 core.juniper.net/display-name: virtualnetwork1
 core.juniper.net/description:
 Virtual Network 1 is a collection of end points that can communicate with each other.
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v2
 kind: Subnet
 namespace: namespace1
 name: virtual-network-subnet1
 fabricSNAT: true

You can also configure your environment to enable fabric source NAT in any user-created virtual
network when the virtual network is created. If you want to enable fabric source NAT in any user-
created virtual network upon creation, set the enableSNAT variable in the ApiServer resource to true
when initially deploying your environment.

You must set this configuration in the ApiServer resource during initial deployment. You cannot change
this setting in your environment after you apply the deployment YAML file. If you want to change the
fabric source NAT setting for an individual virtual network after initial deployment, you must change the
configuration manually for that virtual network.

Following is a representative YAML file configuration:

 kind: ApiServer
 metadata:
 ...
 spec:
 enableSNAT: true
 common:

4

 containers:
 ...

Fabric source NAT is enabled in any user-created virtual network upon creation when the enableSNAT
variable is true. You can disable fabric source NAT when user-created virtual networks are created by
setting the enableSNAT variable to false. Fabric source NAT is disabled by default.

Fabric source NAT automatically selects the IP addresses for translation. You do not need to configure
address pools for fabric source NAT in most Cloud-Native Contrail Networking use cases. Address pools
are configurable, however, using the portTranslationPools: hierarchy within the GlobalVrouterConfig
resource.

Example: Configure External Networks with IP Fabric Forwarding

IP fabric forwarding is disabled by default.

You can enable IP fabric forwarding in any virtual network by setting the fabricForwarding: variable to
true.

The following example shows how to enable IP fabric forwarding in an external virtual network that
accesses the Internet through an IPv4 gateway:

apiVersion: core.contrail.juniper.net/v2
kind: VirtualNetwork
metadata:
 namespace: contrail
 name: external-vn
 labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external
 annotations:
 core.juniper.net/display-name: Sample Virtual Network
 core.juniper.net/description:
 VirtualNetwork is a collection of end points (interface or ip(s) or MAC(s))
 that can communicate with each other by default. It is a collection of
 subnets whose default gateways are connected by an implicit router.
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v2
 kind: Subnet
 namespace: contrail

5

 name: external-subnet
 fabricForwarding: true

You can also enable IP fabric forwarding while creating the external virtual network that has a path to
the Internet.

You configure a virtual network's path to an external network through the Kubemanager resource in
environments using CN2.

You enable external access for a virtual network by connecting the virtual network to an IPv4 or IPv6
gateway IP subnet address. You enable IP fabric forwarding for the external traffic in the virtual network
using the same Kubemanager resource.

NOTE: You must configure the external network subnets and this IP fabric forwarding setting
during the initial Cloud-Native Contrail deployment. You cannot configure these parameters after
the initial deployment YAML file is applied.

The following example shows a YAML file used to configure a Kubemanager resource that creates a
virtual network with external network access. The virtual network in this example runs with IP fabric
forwarding. You would have to commit this YAML file during initial deployment.

 kind: Kubemanager
 metadata:
 ...
 spec:
 externalNetworkV4Subnet: # Fill V4 Subnet of an external network if any
 externalNetworkV6Subnet: # Fill V6 Subnet of an external network if any
 ipFabricFowardingExtSvc: true
 common:
 containers:
 ...

You specify the IPv4 subnet or the IPv6 subnet of the external network using the
externalNetworkV4Subnet or externalNetworkV6Subnet: variable in this YAML file. The subnet address
is a public-side IP address that is reachable from the Internet through the gateway device. When you
configure a Kubemanager resource using this YAML file, a new virtual network to the specified external
network is created. This virtual network is named default-externalnetwork in the default namespace for
CN2.

IP fabric forwarding runs in the virtual network with external network access when the
ipFabricFowardingExtSvc variable is true. You can disable IP fabric forwarding for the external subnet by
setting the ipFabricFowardingExtSvc variable to false.

6

Enable Pods with Multiple Network Interfaces

IN THIS SECTION

Multiple Network Interfaces in Cloud-Native Contrail Benefits | 7

Multiple Network Interfaces in Cloud-Native Contrail Overview | 8

Cloud-Native Contrail Integration with Multus Overview | 9

Create a Network Attachment Definition Object | 9

Configure a Pod to Use Multiple Interfaces | 12

Disable the Network Attachment Definition Controller | 13

Cloud-Native Contrail® Networking™ (CN2) supports multiple network interfaces for a pod within
Kubernetes. Multiple network interface support for a pod in Kubernetes provides a variety of
environment-specific functionality, including the ability to segment traffic over multiple interfaces.

Cloud-Native Contrail Networking natively supports multiple network interfaces for a pod. You can also
enable multiple network interfaces in Cloud-Native Contrail Networking using Multus. Multus is a
container network interface (CNI) plugin for Kubernetes developed by the Kubernetes Network
Plumbing Working Group. Cloud-Native Contrail can interoperate with Multus to provide support for
multiple interfaces provided by multiple CNIs in a pod.

This document provides the steps to enable multiple interfaces for a pod in environments using CN2. It
includes information about when and how to enable multiple networking interfaces. Multiple interface
support for a pod was initially released in Contrail Networking Release 22.1.

Multiple Network Interfaces in Cloud-Native Contrail Benefits

Support for multiple network interfaces is useful or required in many cloud-networking environments.
This list provides a few common examples:

• Pods routinely require a data interface to carry data traffic and a separate interface for management
traffic.

• Virtualized network functions (VNFs) typically need three interfaces—a left, a right, and a
management interface—to provide network functions. A VNF often can't provide its function with a
single network interface.

7

• Cloud network topologies routinely need to support two or more network interfaces to isolate
management networks from tenant networks.

• In customized or high-scale cloud-networking environments, you often must use a cloud-networking
product that supports multiple network interfaces to meet a variety of environment-specific
requirements.

A pod in a Kubernetes cluster using the default CNI has a single network interface for sending and
receiving network traffic. You can use Cloud-Native Contrail Networking to provide multiple network
interfaces. Cloud-Native Contrail Networking also supports Multus integration, allowing environments
using Cloud-Native Contrail for networking to support multiple network interfaces using Multus.

Multiple Network Interfaces in Cloud-Native Contrail Overview

You can enable multiple network interfaces in Cloud-Native Contrail using Multus and without using
Multus. Multus is a container network interface (CNI) plugin for Kubernetes that enables support for
multiple network interfaces on a pod as well as multihoming between pods. Multus can simultaneously
support interfaces from multiple delegate CNIs. This multiple delegate CNI support allows for the
creation of cloud-networking environments that are interconnected using CNIs from different vendors,
including CN2. Multus is often called a "meta-plugin" because of this multi-vendor support.

The following two paragraphs provide information on when to use the two methods of enabling multiple
network interfaces.

You should enable multiple network interfaces using the native Cloud-Native Contrail Networking
support for multiple network interfaces for the following reasons;

• You do not want the overhead of enabling and maintaining Multus in your environment.

• You are using Cloud-Native Contrail Networking as your only container networking interface (CNI).

• You do not want to create and maintain Network Attachment Definition (NAD) objects to support
multiple network interfaces in your environment.

You must create a NAD object to enable multiple network interfaces with Multus. You do not have to
configure a NAD object to enable multiple network interfaces if you are not using Multus.

Each NAD object notably creates a virtual network and a subnet that you have to monitor and
maintain.

You should enable multiple network interfaces using Multus for the following reasons:

• You are using Cloud-Native Contrail in an environment that is already using Multus. Multus is
especially common in environments using Openshift orchestration.

8

• You need the "meta-plugin" capabilities provided by Multus. You are using Cloud-Native Contrail in
an environment where a pod is using multiple interfaces and the multiple interfaces are being
managed by Cloud-Native Contrail and other CNIs.

• You are using Cloud-Native Contrail in an environment where it is integrated with Juniper Networks
Apstra. You must enable Multus in order to enable Cloud-Native Contrail integration with Apstra.

Cloud-Native Contrail integration with Apstra was introduced in Release 22.4. For more information
regarding Cloud-Native Contrail integration with Apstra, see "Extend Virtual Networks to Apstra" on
page 37.

• You need some of the other Multus features in your environment.

Cloud-Native Contrail Integration with Multus Overview

A Contrail vRouter is natively Multus-aware. No Cloud-Native Contrail Networking-specific
configuration is required to enable Multus interoperability with Cloud-Native Contrail.

This list summarizes Cloud-Native Contrail support interoperability options with Multus:

• Cloud-Native Contrail is compatible with Multus CNI version 0.3.1.

• Cloud-Native Contrail must be configured as the primary/default CNI with Multus.

• Cloud-Native Contrail can be configured as a delegate CNI with Multus only when Cloud-Native
Contrail is also configured as the primary/default CNI. Cloud-Native Contrail is not supported as a
delegate CNI when other CNIs are configured as the primary CNI.

• Cloud-Native Contrail supports interoperability with Multus when in vRouter kernel mode or Data
Plane Development Kit (DPDK) mode.

Multus is a third-party plugin. You enable and configure Multus within Kubernetes but entirely outside
of Cloud-Native Contrail. To enable Multus, you can apply the multus-daemonset.yml files provided by
the Kubernetes Network Plumbing Working Group.

For detailed information about Multus, see the Multus CNI Usage Guide from the Kubernetes Network
Plumbing Working Group.

Create a Network Attachment Definition Object

You do not need to create a NetworkAttachmentDefinition (NAD) object to enable multiple interfaces
using the native multiple interfaces support in Cloud-Native Contrail Networking. You can skip this

9

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/deployments/multus-daemonset.yml
https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/how-to-use.md

section if you are not using Multus to enable multiple network interfaces in your environment. If you are
not using NAD objects but need to create a virtual network, see "Deploy VirtualNetworkRouter in
Cloud-Native Contrail Networking" on page 138.

This section illustrates how to create a NAD object using a YAML file. You configure Cloud-Native
Contrail into the NAD object using the juniper.net/networks annotation. We provide a representative
example of the YAML file that creates the NAD object and a field descriptions table later in this section.

Be sure to include the juniper.net/networks annotation when you create the
NetworkAttachmentDefinition object. If you define the YAML file to create the
NetworkAttachmentDefinition object without using the juniper.net/networks annotation, the
NetworkAttachmentDefinition object is treated as a third-party object. No Contrail-related objects will
be created in the network, including the VirtualNetwork object and the Subnet object.

You create the NetworkAttachmentDefinition object in a Kubernetes environment using the NAD
controller. The NAD controller runs in kube-manager and either creates a VirtualNetwork object or
updates an existing VirtualNetwork object when a NetworkAttachmentDefinition is successfully
created. The NAD controller is enabled by default but you can disable it; see "Disable the Network
Attachment Definition Controller" on page 13.

Following is an example of the YAML file used to create a NetworkAttachmentDefinition object:

 apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: networkname-1
 namespace: nm1
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.10.0/24",
 "ipamV6Subnet": "2001:db8::/64",
 "routeTargetList": ["target:23:4561"],
 "importRouteTargetList": ["target:10.2.2.2:561"],
 "exportRouteTargetList": ["target:10.1.1.1:561"],
 "fabricSNAT": true
 }'
 spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "juniper-network",
 "type": "contrail-k8s-cni"
 }'

10

The NetworkAttachmentDefinition Object Fields table provides usage details for the variables in the
NetworkAttachmentDefinition object file.

Table 1: NetworkAttachmentDefinition Object Fields

Variable Usage

ipamV4Subnet (Optional) Specifies the IPv4 subnet address for the
virtual network.

ipamV6Subnet (Optional) Specifies the IPv6 subnet address for the
virtual network.

routeTargetList (Optional) Provides a list of route targets that are used
as both import and export routes.

importRouteTargetList (Optional) Provides a list of route targets that are used
as import routes.

exportRouteTargetList (Optional) Provides a list of route targets that are used
as export routes.

fabricSNAT (Optional) Specifies if you'd like to toggle connectivity
to the underlay network using the port-mapping
capabilities provided by fabric source NAT.

Set this parameter to true or false. It is set to false by
default. If you want to allow connectivity to the
underlay network, set the parameter to true.

You should note the following network activities related to the NetworkAttachmentDefinition object:

• The network attachment definition controller works in kube-manager and handles processing of all
network attachment definition objects.

• You can monitor network attachment definition controller updates in juniper.net/network-status.

• IPAM updates are not allowed to the network attachment definition object.

The network attachment definition object creates a virtual network. The Network Attachment Definition
Object Impact on Virtual Networks table on page 12 provides an overview of how events related to the
network attachment definition object impact virtual networks.

11

Table 2: Network Attachment Definition Object Impact on Virtual Networks

If Then

You define a namespace for a network attachment
definition object in a single cluster topology

A VirtualNetwork is created in the same namespace as
the network attachment definition.

This VirtualNetwork will have the same name as the
Network Attachment Definition object. The NAD
object is named using the name: field in the metadata:
hierarchy.

You define a namespace for a network attachment
definition object in a multi-cluster topology

The VirtualNetwork namespace is cluster-name-ns..

A namespace is not defined for a network attachment
definition object in a multi-cluster topology

The VirtualNetwork namespace is cluster-name-
default.

You delete a network attachment definition resource The associated VirtualNetwork object is also deleted.

You delete a virtual network that was created by the
network attachment definition resource

The network attachment definition controller
reconciles the issue and recreates the virtual network.

Configure a Pod to Use Multiple Interfaces

You configure multiple interfaces in the pod object. If you are using Multus, you must also configure the
NAD object as outlined in "Create a Network Attachment Definition Object" on page 9.

In the following example, you create two interfaces for network traffic in the juniper-pod-1 pod: tap1
and tap2.

apiVersion: v1
kind: Pod
metadata:
 name: juniper-pod-1
 namespace: juniper-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [

12

 {
 "name":"juniper-network1",
 "namespace":"juniper-ns",
 "cni-args":null,
 "ips":["172.16.20.42"],
 "mac":"de:ad:00:00:be:ef",
 "interface":"tap1"
 },
 [
 {
 "name":"juniper-network2",
 "namespace":"juniper-ns",
 "cni-args":null,
 "ips":["172.16.21.42"],
 "mac":"de:ad:00:00:be:ee",
 "interface":"tap2"
 }
]

Disable the Network Attachment Definition Controller

The NAD controller is part of the kube-manager object. You enable and disable this controller using the
enableNad: variable within the YAML file that defines the kubemanager object. The network attachment
definition controller is enabled by default.

If you would prefer to prevent the application of NetworkAttachmentDefinion objects, you can disable
the network attachment definition controller.

In the following example, the network attachment definition controller is disabled:

kind: Kubemanager
metadata:
 name: remote-cluster
 namespace: contrail
spec:
 common:
 nodeSelector:
 node-role.kubernetes.io/master: ""
 enableNad: false

13

Display Microservice Status

IN THIS SECTION

Overview: Microservice Status in Cloud-Native Contrail Networking | 14

Display Microservice Status | 15

Display Deployment Status | 15

Display Resource Status | 16

Juniper® Cloud-Native Contrail Networking (CN2) supports microservices in environments using CN2
Release 22.1 or later in a Kubernetes-orchestrated environment.

To display microservice status in CN2 cluster, you need:

• A CLI tool, such as kubectl to provide the overall system status of all the services running.

• The contrailstatus plugin must be installed along with kubectl.

• The use of command kubectl contrailstatus to request the status of various services.

Overview: Microservice Status in Cloud-Native Contrail Networking

Microservices exist as small, independent applications deployed without updating the entire Contrail
Networking deployment. Microserves provide better ways to manage the life cycle of containers. The
containers and their processes are grouped as services and microservices.

ContrailStatus is a kubectl plugin used to display the status information of Contrail Networking services
in the three different planes (configuration, control, and data). In addition to the usual containers in a
specific service, you can also view:

• init (initialization) container status within the service.

• The relative software status, such as BGP and XMPP, in control_controller.

The contrailstatus plug-in is categorized into two sections:

• Deployment status

14

• Resource status

Display Microservice Status

The following outputs are examples showing deployment status updates and resource status updates to
the pods for all planes.

Display Deployment Status

Display deployment status in either short form or default form.

All Planes Deployment Status

To display the deployment status for all of the planes and request the short form:

root@helper ~] # kubectl contrailstatus -short

PLANE STATUS
config nok
control ok
data ok

The option -short for short form only displays output for the pod name and status. The following
example outputs are using the default form.

Configuration Plane Deployment Status

To display the deployment status to the configuration plane:

root@helper ~] # kubectl contrailstatus deployment -p config

PODNAME STATUS NODE IP MESSAGE
apiserver-86885bf7d8-q27qk nok node 10.1.1.1 process not up,
init cont…..
apiserver-86885bf7d8-sdsdd ok node2 10.1.1.2
apiserver-86885bf7d8-sdsss ok node3 10.1.1.3
controller-6998bd846f-5cgf7 ok node1 10.1.1.1

15

controller-6998bd846f-5cgf8 ok node2 10.1.1.2
controller-6998bd846f-5cg10 nok node3 10.1.1.3 o/1 node is not
allocated.
cluster1-kubemanager-7cff895-sdfsd ok node2 10.1.1.2
cluster1-kubemanager-7cff895-sdfsa ok node3 10.1.1.3

Data Plane Deployment Status

To display the deployment status to the data plane:

root@helper ~] # kubectl contrailstatus deployment -p data

PODNAME STATUS NODE IP MESSAGE
vrouter-86885bf7d8-q27qk nok node 10.1.1.1 process
not up, init cont.…..
vrouter-86885bf7d8-sdsdd ok node2 10.1.1.2

Control Plane Deployment Status

To display the deployment status to the control plane:

root@helper ~] # kubectl contrailstatus deployment -p control

PODNAME STATUS NODE IP MESSAGE
contrail-control-0 nok node 10.1.1.1 process not
up, init cont.…..
contrail-control-1 ok node2 10.1.1.2

Display Resource Status

The contrailstatus plugin also displays status updates for deployment resources, such as XMPP and BGP.

Data Plane Resource Status

16

To display the resource status of bgprouter to the data plane:

root@helper ~] kubectl contrailstatus resource bgprouter

PODNAME STATUS SERVICE
bgprouter1 nok xmpp, bgp not working/has error..
bgprouter2 nok
bgprouter2 ok

Control Node Resource Status

To display the resource status in the control node, run the following command, which displays the
output for the XMPP session:

root@helper ~] kubectl contrailstatus resource bgprouter -s xmpp

LOCAL NEIGHBOR STATE POD
bgprouter1 vr1 established (ok) contrail-control-0
bgprouter1 vr2 active (nok) contrail-control-0
bgprouter2 vr1 contrail-control-1
bgprouter2 vr3 contrail-control-1

To display the resource status in the control node, run the following command, which gives the output
for the BGP session:

root@helper ~] kubectl contrailstatus resource bgprouter -s bgp

LOCAL NEIGHBOR STATE POD
bgprouter1 bgprouter2 established (ok) contrail-control-0
bgprouter1 bgprouter3 active (nok) contrail-control-0
bgprouter2 bgprouter1 established (ok) contrail-control-1
bgprouter2 bgprouter3 established (ok) contrail-control-1

All Planes Resource Status

17

To display the resource status on all of the planes:

[root@helper ~] # kubectl contrailstatus -all

NAME STATUS PLANE ERRORNOTES
apiserver-86789f7d8-q37qf Active Config

NAME STATUS PLANE ERRORNOTES
control-1 Active control
BGP-1 Active control
XMPP-1 Active control

NAME STATUS PLANE ERRORNOTES
vrouter-86789f7d8-q37qk Active data

[root@helper ~] #

Services Status for Multiple Nodes

The following (same) command displays the status of various services running on multiple nodes in a
cluster. If the running controller is active without any errors, the status column next to the service is
displayed as Active. If the controller has any errors, the status column of the controller is displayed as Not-
Active. The output includes the status of various controllers and containers in the controllers.

To display the status of various services running on multiple nodes in a cluster:

[root@helper ~] # kubectl contrailstatus -all

NAME STATUS ERRORNOTES
apiserver-86885bf7d8-q27qk Active
apiserver-86885bf7d8-sdsdd Active
apiserver-86885bf7d8-sdsss Active
controller-6998bd846f-5cgf7 Active
controller-6998bd846f-5cgf8 Active
controller-6998bd846f-5cg10 Active
cluster1-kubemanager-7cff895-sdfsd Active
cluster1-kubemanager-7cff895-sdfsa Active

18

NAME STATUS ERRORNOTES
control-1 Active
control-2 Active
control-3 Active
BGP-1 Active
BGP-2 Active
XMPP-1 Active
Xmpp-2 Active

NAME STATUS ERRORNOTES
vrouter-86789f7d8-q37qk Active
vrouter-8905bf7d8-q47qk Active
vrouter-8688bf7d8-q57qk Active

[root@helper ~] #

RELATED DOCUMENTATION

Kubectl Contrailstatus for Upstream Kubernetes

Kubectl Contrailstatus for OpenShift Container Platform

Kubectl Contrailstatus for Amazon EKS

Lens Install with CN2 Extension

SUMMARY

This document describes the installation procedure
for both Lens and the CN2 extension for Lens, as
well as how to connect a Juniper® Cloud-Native
Contrail Networking (CN2) cluster to Lens.

IN THIS SECTION

Benefits | 20

Download and Install Lens | 20

Download and Install the CN2 Extension for
Lens | 21

19

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-k8s-install-and-lcm/topics/reference/cn-cloud-native-contrail-status.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-ocp-install-and-lcm/cn-cloud-native-k8s-install-and-lcm/topics/reference/cn-cloud-native-contrail-status.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-eks-install-and-lcm/cn-cloud-native-k8s-install-and-lcm/topics/reference/cn-cloud-native-contrail-status.html

Connect Your CN2 Cluster to Lens | 21

Uninstall the CN2 Extension | 22

Benefits

Lens is an integrated development environment (IDE) for Kubernetes. The Lens open source tool is
implemented as an interface to manage, monitor, and troubleshoot CN2 clusters.

Benefits include:

• Ease of usability and rich end-user experience.

• Unified, secure, multi-cluster management on any platform: support for hundreds of clusters.

• Standalone application: no need to install anything in-cluster.

• Real-time cluster state visualization.

• Resource utilization charts and trends with history powered by built-in Prometheus.

• Smart terminal access to nodes and containers.

• Clusters can be local (for example, minikube) or external (for example, EKS, GKE, or AKS).

Download and Install Lens

To download and install Lens:

1. From your browser, navigate to Lens, and select your OS from the drop-down list to download Lens.

NOTE: Lens v5.4.4 is the supported and tested version with CN2 extension.

The download file looks similar to Lens Setup 5.4.4-latest.20220602.2.

2. Double-click the file you just downloaded from the Lens website.

3. Follow the setup wizard onscreen prompts.

4. Click Finish to complete the installation.

20

https://k8slens.dev/

Lens is installed and listed as Lens on your machine.

Download and Install the CN2 Extension for Lens

The CN2 extension is a Lens Custom Extension.

• Use Lens extensions to add custom visualizations and functionality to accelerate development
workflows for all the technologies and services that integrate with Kubernetes.

• Extensions are a plug-in that you can upload directly to the Lens UI.

• Extensions are developed using the Lens Extensions API.

To download and install the CN2 extension for Lens:

1. From your browser, download the CN2 extension for Lens from Juniper Networks Software
Downloads.

The file name is similar to cn2_lens_extension-VERSION_TAG.tar.

2. Click Launch Lens to start Lens. You are in the Lens application for the remainder of this section.

3. Sign in with your Lens ID username and password. Follow the prompts to create a Lens ID if you do
not have one.

4. From the top menu bar, select File > Extensions.

5. In the Extensions window, click the folder icon to select the CN2 extension TAR file you downloaded
in Step 1. Then, click Install.

Lens begins installing the CN2 extension. This process takes approximately 10 minutes. You then see
a message indicating a successful installation. The installed extension status Enabled appears on your
screen. If Status is Disabled, right-click the ":" symbol and select Enable to enable the extension.

Connect Your CN2 Cluster to Lens

To connect your CN2 cluster to Lens:

1. Click Launch Lens in the Lens application to start Lens. You are working in the Lens application for
the remainder of this procedure.

2. Select File > Add Cluster.

3. In the Add Clusters from Kubeconfig window, copy and paste the contents of your kubeconfig file or
your YAML file or files for the clusters you want to manage. Click Add clusters.

21

https://support.juniper.net/support/downloads/
https://support.juniper.net/support/downloads/

You are now in the Clusters window. Lens automatically populates the Clusters window with all of
the valid clusters Lens finds in your folder. You can have multiple CN2 cluster configurations in your
folder (multiple clusters).

4. Click the cluster you want to connect to, and Lens automatically connects to that cluster.

You are now connected to the CN2 cluster.

5. In the left pane, where the Lens options are listed, click CN2 to interact with your cluster.

If you don't see the CN2 menu, select Lens > View > Reload.

CN2 is your extension for Lens. You can select one of the following: CN2 > Infrastructure,
Networking, Workloads, or Monitoring.

NOTE: Known Limitation: Lens supports two theme modes, which are Dark and Light. CN2
extension supports Light mode only.

Uninstall the CN2 Extension

To uninstall the CN2 extension:

1. Select Lens > Extensions in the Lens application.

2. In Installed extensions, click the " : " and select Uninstall.

Figure 1: Uninstall Lens

22

IPv4 and IPv6 Dual-Stack Networking

SUMMARY

Cloud-Native Contrail® Networking™ (CN2) release
23.1 supports dual-stack networking for services.
Previous releases supported dual-stack networking
for pods, but 23.1 enables you to assign IPs to
services from an IPv4 or IPv6 network. This article
provides an overview of dual-stack and information
about configuring dual-stack for pods and services in
your CN2 cluster.

IN THIS SECTION

IPv4 and IPv6 Overview | 23

Dual-Stack Networking Prerequisites | 23

IPv4 and IPv6 Overview

A dual-stack device has network interfaces that send and receive both IPv4 and IPv6 packets. In the
case of CN2 release 23.1, the dual-stack feature of your Kubernetes cluster assigns both IPv4 addresses
and IPv6 addresses to pods and services.

Dual-Stack Networking Prerequisites

Dual-stack networking requires the following:

• Kubernetes version 1.20 or later

• Kubernetes nodes configured with dual stack IPv4/IPv6 network interfaces

• A Kubeadm or Kubespray Kubernetes cluster with dual-stack featureGate enabled

The CN2 deployer uses the IPv6 CIDR (podSubnet and serviceSubnet in the deployment) to create an IPv6
subnet for the podNetwork. Subsequent pod networks that you create contain an IPv6 subnet. As a
result, pods receive IPv4 and IPv6 addresses.

RELATED DOCUMENTATION

IPv4/IPv6 dual-stack

Dual-stack support with kubeadm

23

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kubernetes.io/docs/concepts/services-networking/dual-stack/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/dual-stack-support/

Deploy a Production-Ready Kubernetes Cluster

Pod Scheduling

SUMMARY

Juniper Cloud-Native Contrail Networking (CN2)
release 23.1 supports network-aware pod scheduling
using contrail-scheduler. This feature enhances the
Kubernetes pod scheduler with plugins that analyze
the network metrics of a node before scheduling
pods. This article provides overview, implementation,
and deployment information about network-aware
pod scheduling.

IN THIS SECTION

Pod Scheduling in Kubernetes | 24

Pod Scheduling in CN2 | 25

Network-Aware Pod Scheduling
Overview | 25

Network-Aware Pod Scheduling
Components | 25

Deploy Network-Aware Pod Scheduling
Components | 26

Metrics Collector Deployment | 26

Central Collector Deployment | 27

Contrail Scheduler Deployment | 30

Use the Contrail Scheduler to Deploy
Pods | 35

Pod Scheduling in Kubernetes

In Kubernetes, scheduling refers to the process of matching pods to nodes so that the kubelet is able to
run them. A scheduler monitors requests for pod creation and attempts to assign these pods to suitable
nodes using a series of extension points during a scheduling and binding cycle. Potential nodes are
filtered based on attributes like the resource requirements of a pod. If a node doesn't have the available
resources for a pod, that node is filtered out. If more than one node passes the filtering phase,
Kubernetes scores and ranks the remaining nodes based on their suitability for a given pod. The
scheduler assigns a pod to the node with the highest ranking. If two nodes have the same score, the
scheduler picks a node at random.

24

https://github.com/kubernetes-sigs/kubespray#usage

Pod Scheduling in CN2

CN2 release 22.4 enhanced the default Kubernetes pod scheduler to schedule pods based on the Virtual
Machine Interface (VMI) considerations of DPDK nodes. This enhanced scheduler, called contrail-
scheduler, supports custom plugins that enable the scheduling of pods based on current active VMIs in a
DPDK node.

CN2 release 23.1 improves on this feature by supporting two additional plugins. As a result of these
plugins, contrail-scheduler schedules pods based on the following network metrics:

• Number of active ingress/egress traffic flows

• Bandwidth utilization

• Number of virtual machine interfaces (VMIs)

Network-Aware Pod Scheduling Overview

Many high-performance applications have bandwidth or network interface requirements as well as the
typical CPU or VMI requirements. If contrail-scheduler assigns a pod to a node with low bandwidth
availability, that application cannot run optimally. CN2 release 23.1 addresses this issue with the
introduction of a metrics collector, a central collector, and custom scheduler plugins. These components
collect, store, and process network metrics so that the contrail-scheduler schedules pods based on these
metrics.

Network-Aware Pod Scheduling Components

The following main components comprise CN2's network-aware pod scheduling solution:

• Metrics collector: This runs in a container alongside the vRouter pod that runs on each node in the
cluster. . The vRouter agent sends metrics data to the metrics collector over localhost: 6700 specified
in the agent: default: collectors field of the vRouter CR Deployment. The metrics collector then forwards
requested data to configured sinks which are specified in the configuration. The central collector is
one of the configured sinks and recieves this data from the metrics collector.

• Central collector: This component acts as an aggregator and stores data received from all of the
nodes in a cluster via the metrics collector. The central collector exposes gRPC endpoints which
consumers use to to request this data for nodes in a cluster. For example, the contrail-scheduler uses
these gRPC endpoints to retrieve and process network metrics and schedule pods accordingly.

25

• Contrail scheduler: This custom scheduler introduces the following three custom plugins:

• VMICapacity plugin (available from release 22.4 onwards): Implements Filter, Score, and NormalizeScore
extension points in the scheduler framework. The contrail-scheduler uses these extension points to
determine the best node to assign a pod to based on active VMIs.

• FlowsCapacity plugin: Determines the best node to schedule a pod based on the number of active
flows in a node. Too many traffic flows on a node means more competition for new pod traffic.
Pods and nodes with a lower flow count are ranked higher by the scheduler.

• BandwidthUsage plugin: Determines the best node to assign a pod based on the bandwidth usage of a
node. The node with the least bandwidth usage (ingoing and outgoing traffic) per second is ranked
highest.

NOTE: Depending on the configured plugins, each plugin sends out scores to the
scheduler. The scheduler takes the weighted scores from from all of the plugins and finds
the best node to schedule a pod.

Deploy Network-Aware Pod Scheduling Components

See the following sections for information about deploying the components for network-aware pod
scheduling:
"Metrics Collector Deployment" on page 26

"Central Collector Deployment" on page 27

"Contrail Scheduler Deployment" on page 30

Metrics Collector Deployment

CN2 includes the metrics collector in vRouter pod deployments by default. The agent: default: field of the
vRouter spec contains a collectors: field which is configured with the metric collector reciever address.
The example below shows the value collectors: - localhost: 6700. Since the the metrics collector runs in
the same pod as the vRouter agent, it can communicate over the localhost port. Note that port 6700 is
fixed as the metrics collector reciever address and cannot be changed. The vRouter agent sends metrics
data to this address.

26

The following is a section of a default vRouter deployment with the collector enabled:

apiVersion: dataplane.juniper.net/v1
kind: Vrouter
metadata:
 name: contrail-vrouter-nodes
 namespace: contrail
spec:
 agent:
 default:
 collectors:
 - localhost:6700
 xmppAuthEnable: true
 sandesh:
 introspectSslEnable: true

Central Collector Deployment

The central collector Deployment object must always have a replica count set to 1. The following
Deployment section shows an example:

spec:
 selector:
 matchLabels:
 component: central-collector
 replicas: 1
 template:
 metadata:
 labels:
 component: central-collector

A configMap provides key-value configuration data to the pods in your cluster. Create a configMap for the
central collector configuration. This configuration is mounted in the container.
The following is an example of a central collector config file:

http_port: 9090
tls_config:
 key_file: /etc/config/server.key

27

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/configuration/configmap/

 cert_file: /etc/config/server.crt
 ca_file: /etc/config/ca.crt
service_name: central-collector.contrail
metric_configmap:
 name: mc_configmap
 namespace: contrail
 key: config.yaml

This config file contains the following fields:

• http_port: Specifies the port that the central collector gRPC service runs on.

• tls_config: Specifies what server_name and key_file the central collector service is associated with. This
field contains upstream (northbound API) server information.

• service_name: Specifies the name of the service the central collector exposes. In this case, central-
collector.contrail is exposed as a service on top of the central collector Deployment. Consumers within
the cluster can interact with the central collector using this service name.

• metric_configmap: The fields in this section designate the details of the metrics collector configMap.
Central collector uses this information to configure a metrics-collector sink with the required metrics
the sink wants to receive. The following is a sample command to create a configMap:

kubectl create cm -n contrail central-collector-config –from-file=config.yaml=<path-to-config-
file>

The following is an example of a central collector Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: central-collector
 namespace: contrail
 labels:
 app: central-collector
spec:
 replicas: 1
 selector:
 matchLabels:
 app: central-collector
 template:
 metadata:

28

 labels:
 app: central-collector
 spec:
 securityContext:
 fsGroup: 2000
 runAsGroup: 3000
 runAsNonRoot: true
 runAsUser: 1000
 containers:
 - name: contrail-scheduler
 image: enterprise-hub.juniper.net/contrail-container-prod/central-collector:latest
 command:
 - /central-collector
 - --kubeconfig=/tmp/config/kubeconfig
 - --config=/etc/central-collector/config.yaml
 imagePullPolicy: Always
 volumeMounts:
 - mountPath: /tmp/config
 name: kubeconfig
 readOnly: true
 - mountPath: /etc/central-collector
 name: central-collector-config
 readOnly: true
 - mountPath: /etc/config/tls
 name: tls
 readOnly: true
 volumes:
 - name: kubeconfig
 secret:
 secretName: cc-kubeconfig
 - name: tls
 secret:
 secretName: central-collector-tls
 - name: central-collector-config
 configMap:
 name: central-collector-config

NOTE: Verify the volume and volumeMounts fieds before deploying.

29

The central collector service is exposed on top of the Deployment object. The following YAML file is an
example of a central collector service file:

apiVersion: v1
kind: Service
metadata:
 name: central-collector
 namespace: contrail
spec:
 selector:
 component: central-collector
 ports:
 - name: grpc
 port: <port-as-per-config>
 - name: json
 protocol: TCP
 port: 10000

NOTE: The name field must match the service name specified in the central collector
configuration. The namespace must match the namespace of the central collector Deployment.
For example, namespace: contrail.

Contrail Scheduler Deployment

Perform the following steps to deploy the contrail-scheduler:

• Create a namespace for the contrail-scheduler.

kubectl create ns contrail-scheduler

• Create a ServiceAccount object (required) and configure the cluster roles for the ServiceAccount. A
ServiceAccount assigns a role to a pod or component within a cluster. In this case, the fields kind:
ClusterRole and name: system:kube-scheduler grant the contrail-scheduler ServiceAccount the same
permissions as the default Kubernetes scheduler (kube-scheduler).

30

https://kubernetes.io/docs/concepts/security/service-accounts/

• Create a configMap for the VMI plugin configuration. You must create the configMap within the same
namespace as the contrail-scheduler Deployment.

kubectl create configmap vmi-config -n contrail-scheduler --from-file=vmi-config=<path-to-vmi-
config>

The following is an example of a VMI plugin config:

nodeLabels:
 "test-agent-mode": "dpdk"
maxVMICount: 64
address: "central-collector.contrail:9090"

• Create a Secret for the kubeconfig file. This file is then mounted in the contrail-scheduler Deployment.
Secrets store confidential data as files in a mounted volume or as a container environment variable.

kubectl create secret generic kubeconfig -n contrail-scheduler --from-file=kubeconfig=<path-
to-kubeconfig-file>

• Create a configMap for the contrail-scheduler config.

kubectl create configmap scheduler-config -n contrail-scheduler --from-file=scheduler-
config=<path-to-scheduler-config>

The following is an example of a scheduler config:

apiVersion: kubescheduler.config.k8s.io/v1
clientConnection:
 acceptContentTypes: ""
 burst: 100
 contentType: application/vnd.kubernetes.protobuf
 kubeconfig: /tmp/config/kubeconfig
 qps: 50
enableContentionProfiling: true
enableProfiling: true
kind: KubeSchedulerConfiguration
leaderElection:
 leaderElect: false

31

https://kubernetes.io/docs/concepts/configuration/secret/

profiles:
 - schedulerName: contrail-scheduler
 pluginConfig:
 - args:
 apiVersion: kubescheduler.config.k8s.io/v1
 kind: VMICapacityArgs
 config: /tmp/vmi/config.yaml
 name: VMICapacity
 - args:
 apiVersion: kubescheduler.config.k8s.io/v1
 kind: FlowsCapacityArgs
 address: central-collector.contrail:9090
 name: FlowsCapacity
 - args:
 apiVersion: kubescheduler.config.k8s.io/v1
 kind: BandwidthUsageArgs
 address: central-collector.contrail:9090
 name: BandwidthUsage
 plugins:
 multiPoint:
 enabled:
 - name: VMICapacity
 weight: 50
 - name: FlowsCapacity
 weight: 1
 - name: BandwidthUsage
 weight: 20

Note the following fields:

• schedulerName: The name of the scheduler you want to deploy.

• pluginConfig: Contains information about the plugins included in the contrail-scheduler deployment.
The deployment includes the following plugins:

• VMICapacity

• FlowsCapacity

• BandwidthUsage

• config: This field contains the filepath where the VMI plugin config is mounted.

• multiPoint: You can enable extension points for each of the included plugins. Instead of having to
enable specific extension points for a plugin, the multiPoint field let's you enable or disable all of

32

the extension points that are developed for a given plugin. The weights of a plugin decide the
priority of a particular score from a plugin. This means that at the end of scoring, all of the plugins
send out a weighted score. A pod is scheduled on a node with the highest aggregated score.

• Create a contrail-scheduler Deployment. The following is an example of a Deployment:

apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: contrail-scheduler
 namespace: contrail-scheduler
 labels:
 app: scheduler
 spec:
 replicas: 1
 selector:
 matchLabels:
 app: scheduler
 template:
 metadata:
 labels:
 app: scheduler
 spec:
 serviceAccountName: contrail-scheduler
 securityContext:
 fsGroup: 2000
 runAsGroup: 3000
 runAsNonRoot: true
 runAsUser: 1000
 containers:
 - name: contrail-scheduler
 image: <registry>/contrail-scheduler:<tag>
 command:
 - /contrail-scheduler
 - --authentication-kubeconfig=/tmp/config/kubeconfig
 - --authorization-kubeconfig=/tmp/config/kubeconfig
 - --config=/tmp/scheduler/scheduler-config
 - --secure-port=10271
 imagePullPolicy: Always
 livenessProbe:
 failureThreshold: 8
 httpGet:

33

 path: /healthz
 port: 10271
 scheme: HTTPS
 initialDelaySeconds: 30
 periodSeconds: 10
 timeoutSeconds: 30
 resources:
 requests:
 cpu: 100m
 startupProbe:
 failureThreshold: 24
 httpGet:
 path: /healthz
 port: 10271
 scheme: HTTPS
 initialDelaySeconds: 30
 periodSeconds: 10
 timeoutSeconds: 30
 volumeMounts:
 - mountPath: /tmp/config
 name: kubeconfig
 readOnly: true
 - mountPath: /tmp/scheduler
 name: scheduler-config
 readOnly: true
 - mountPath: /tmp/vmi
 name: vmi-config
 readOnly: true
 hostPID: false
 volumes:
 - name: kubeconfig
 secret:
 secretName: kubeconfig
 - name: scheduler-config
 configMap:
 name: scheduler-config
 - name: vmi-config
 configMap:
 name: vmi-config

After you apply this Deployment, the new contrail-scheduler is active.

34

Use the Contrail Scheduler to Deploy Pods

Enter the name of your contrail-scheduler to the schedulerName field to use the contrail-scheduler to schedule
(deploy) new pods. The following is an example of a pod manifest with the schedulerName defined:

apiVersion: v1
 kind: Pod
 metadata:
 name: my-app
 labels:
 app: web
 spec:
 schedulerName: contrail-scheduler
 containers:
 - name: app
 image: busybox
 command:
 - sh
 - -c
 - sleep 500

35

2
CHAPTER

CN2 Apstra Integration

Extend Virtual Networks to Apstra | 37

Extend Virtual Networks to Apstra

SUMMARY

Starting in CN2 Release 23.1 or later, you can extend
virtual networks from your Kubernetes cluster to the
datacenter fabric managed by Apstra.

IN THIS SECTION

Overview | 37

Example: CN2 Kubernetes Deployment with
SR-IOV Pods | 38

Prerequisites | 40

Installation Workflow | 42

Install and Configure the CN2 Apstra Plug-
In | 44

Install the CN2 IPAM Plug-In | 48

Intra-VN and Inter-VN Approaches | 49

Introduction to Configuring Intra-VN
Communication | 53

Configure Intra-VN Communication | 56

Introduction to Configuring Inter-VN
Communication | 64

Configure Inter-VN Communication | 66

Configure Inter-VN Communication Between
SR-IOV Pods | 67

Configure Inter-VN Communication Between
SR-IOV Pods and Non-SR-IOV Pods | 69

Configure Inter-VN Communication Between
SR-IOV Pods, Non-SRIOV Pods and
BMS | 74

Overview

Data centers typically have a mix of containerized workloads (SR-IOV pods, non-SR-IOV pods) and BMS.
SR-IOV servers are being used extensively in data centers as these servers enable efficient I/O
virtualization. When you create workloads on SR-IOV servers and attach virtual functions to the pods,
the workloads use the fabric underlay directly. However, you might have a scenario where there is a
need for communication between SRIOV pods, non-SRIOV pods, and BMS.

37

The different types of workloads are as follows:

• SR-IOV pods: SR-IOV pods use the IP fabric underlay directly for communication. The SR-IOV
technology enables the physical NIC to be split into several virtual functions. The pods attach to the
virtual functions of the SR-IOV enabled NICs. SR-IOV-enabled NICs on servers are used to deliver
efficient I/O virtualization. These virtual NICs or virtual functions can transmit and receive packets
directly from the fabric to which the CN2 data network is attached.

• Non-SR-IOV pods: Non-SR-IOV pods use the vRouter overlays for communication with other non-
SR-IOV pods.

• BMS: BMS are physical nodes and are not part of the CN2 cluster. BMS use the fabric underlay for
communication with pods. On the BMS, you can run applications directly on the native OS or run
applications on containers.

Juniper Apstra is used to provision the fabric to provide the required underlay connectivity for the
different workloads. Apstra is Juniper’s intent-based networking software that automates and validates
the design, deployment, and operation of data center networks. CN2 integrates with the Apstra
software to provision the fabric underlay. For more information about Apstra, see the Juniper Apstra
User Guide.

NOTE: We refer to primary nodes in our documentation. Kubernetes refers to master nodes.
References in this guide to primary nodes correlate with master nodes in Kubernetes
terminology.

Example: CN2 Kubernetes Deployment with SR-IOV Pods

Figure 1 on page 39 shows an example of a CN2 Kubernetes deployment. This deployment uses Apstra
to provision the IP fabric underlay for the SR-IOV pods. Table 1 on page 39 describes the different
components.

38

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/apstra-user-guide.pdf
https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/apstra-user-guide.pdf

Figure 2: CN2 Kubernetes Deployment

Table 3: CN2 Apstra Components

Component Description

SR-IOV worker nodes The SR-IOV worker nodes connect to the leaf devices
in the IP fabric. These nodes, which are part of the
CN2 cluster, have SRIOV-enabled NICs which can be
split into virtual functions.

When you create a pod on an SR-IOV worker node,
the pod's interface can be attached to a virtual
function on the SR-IOV-enabled NIC. The SRIOV-
enabled NICs are in turn connected to the leaf devices
in the IP fabric.

CN2 Apstra plug-in The CN2 Apstra plug-in extends the virtual network to
the IP fabric. This plug-in listens for CN2 Kubernetes
events such as creating a NAD, attaching pods to the
virtual network, and creating a Virtual Network Router
(VNR). The plug-in then configures the IP fabric for the
underlay through Apstra.

39

Table 3: CN2 Apstra Components (Continued)

Component Description

Apstra Apstra provisions the IP fabric to provide the required
underlay connectivity for SR-IOV pods. Apstra also
provides topology information regarding which leaf
port is connected to which worker node. The CN2
Apstra plug-in uses this information to configure
virtual network membership. The plug-in configures
virtual-network membership on relevant fabric ports
based on the worker node in which the SR-IOV pod is
spawned.

Prerequisites

IN THIS SECTION

Considerations | 41

To use this feature, you must install the following:

• Juniper Apstra version 4.1.2 or higher

• A CN2 cluster with the following items installed:

• SR-IOV worker nodes that have SR-IOV-enabled NICs

• Non-SR-IOV worker nodes

• The following plug-ins:

• Multus Plug-In

• SR-IOV Network Device Plug-In

• CN2 IPAM Plug-In

• Licenses on the switches you are using in your topology

40

Juniper QFX switches require software licenses for advanced features. To ensure your that your IP
fabric has the required licenses, see the Juniper Networks Licensing Guide.

NOTE: Make sure that you onboard the fabric to your Apstra blueprint as described in Step 4
in the "Installation Workflow" on page 42.

Considerations

Read through this list of considerations before you begin the installation:

• This feature assumes:

• CN2 single-cluster deployments

• Basic approaches for Intra-VN and Inter-VN communication between SR-IOV pods, non-SR-IOV
pods, and BMS. Other forms of routing, such as hub-and-spoke routing, are not supported.

• A simple spine-leaf topology where the SR-IOV worker node is connected to only one leaf device.
If an SR-IOV worker node is connected to multiple leaf ports, ensure that you configure all the
leaf ports on all the leaf devices to which this SR-IOV worker node is connected.

• Pods can be SR-IOV pods or non-SR-IOV pods. SR_IOV pods use the fabric underlay whereas Non-
SR-IOV pods use the overlay though the vRouter.

• BMS is not part of the CN2 cluster.

• The entire BMS can be used exclusively for running applications directly on the host OS, where the
IP is configured on the physical interface.

Or

BMS is running multiple VMs or containers, where the IP addresses are configured on the virtual
interface.

• In the Intra-VN approach, the same subnet is used by CN2 for allocating IPs to both SR-IOV and non-
SRI-OV pods. From the same subnet, you must use the unallocated IPs for configuring IPs in the
BMS.

• When you create you a create BMS virtual network in Apstra, you must select all the leaf swtiches in
that blueprint even if the BMS is connected to only one switch.

• You cannot edit the fields in the virtual networks and NADs (such as vlanID and VNI) that were
created in CN2. To change these fields, you must re-create the virtual networks and NADs.

• Apstra accepts only VNIs greater or equal to 4096. Starting in CN2 release 23.1, on newer
installations of CN2, we are allocating VNIs from 4096. Hence, this feature will not work on existing

41

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-install-upgrade/index.html

CN2 setups. If you have an existing CN2 setup upgraded from a previous release, you must run a
script to release free VNIs whose value is less that 4096.

• Ensure that the allocated vlanID does not conflict with those vlanID's allocated in Apstra. For
example, you might want to use VLANs in the higher range (for example, 2000 and above) in CN2.

• The IP addresses for the pods are automatically allocated by the CN2 IPAM plug-in.

• In CN2, you must manually configure the routes on the pods for Inter-VN routing. For example: you
can use the command ip route add 10.30.30.0/8 via 10.20.20.1 to reach the 10.30.30.0/8 subnet.

• Overlapping IP addresses and bonded interfaces (link from the SR-IOV-enabled NICs to the leaf
switches) are not in use.

• Only IPv4 addressing is supported for this feature.

Installation Workflow

Follow the steps in this procedure to install and to configure the CN2 Apstra plug-in and its
prerequisites:

1. Install the Apstra Software.

Install and configure Apstra version 4.1.2 or higher. See the Juniper Apstra Installation and Upgrade
Guide.

If you have an existing data center network, Apstra is already managing the fabric. Make sure that
you assign the required resource pools such as ASNs and loopback IP addresses for the blueprint.

2. Install a CN2 Cluster.

Install and configure a CN2 cluster that contains Kubernetes worker nodes. See the Install sections in
the CN2 Installation Guide for Upstream Kubernetes or CN2 Installation Guide for OpenShift
Container Platforms for instructions.

3. Install the Plug-Ins.

a. Multus Plug-In:

This plug-in enables you to attach multiple network interfaces to pods. See the Multus CNI for
Kubernetes or Multus CNI for OpenShift documentation for installation instructions.

b. SR-IOV Network Device Plug-In:

42

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-install-upgrade/index.html
https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-install-upgrade/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/openshift/multus-cni

This plug-in discovers and advertises networking resources for SR-IOV virtual functions on a
Kubernetes host. See the SR-IOV Network Device Plugin for Kubernetes or SR-IOV Network
Device Plugin for OpenShift documentation for instructions.

c. CN2 Apstra Plug-In:

This plug-in is installed as part of the CN2 deployer. See "Install and Configure the CN2 Apstra
Plug-In" on page 44 to install the plug-in.

d. CN2 IPAM Plug-In:

This plug-in allocates IP addresses for the pods. You install this plug-in on the SR-IOV nodes. See
"Install the CN2 IPAM Plug-In" on page 48 to install the plug-in.

4. Onboard the IP Fabric in Apstra.

You onboard the fabric in Apstra from the Apstra Web GUI. For onboarding instructions, see the
Juniper Apstra User Guide..

• Make sure that you assign the required resource pools such as ASNs and loopback IP addresses to
the blueprint.

• Make sure that the hostnames of the generic systems (that is, servers) in your Apstra blueprint
matches the hostnames of the corresponding CN2 nodes. You must also tag the SR-IOV link that
connects the SRIOV-enabled NICs on the worker nodes to the fabric ports. You'll enter this same
value in the sriov_link_tag in the CN2 Apstra plug-in CRD when you install the plug-in. The
following diagram shows an example of a topology in an Apstra blueprint where the hostnames of
the generic system were edited to match the corresponding hostnames of the CN2 worker nodes.
The diagram also shows the SRIOV tags that were configured for the aforementioned SR-IOV
links.

43

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/openshift/sriov-network-device-plugin
https://github.com/openshift/sriov-network-device-plugin
https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/apstra-user-guide.pdf

5. Verify Your Installation.

See "Verify Your Installation" on page 46 for instructions.

Install and Configure the CN2 Apstra Plug-In

IN THIS SECTION

Verify Your Installation | 46

This section describes how to install and configure the CN2 Apstra plug-in.

The CN2 Apstra plug-in is installed as part of the deployer. The CN2 Apstra plug-in extends the virtual
network to the fabric, listens for CN2 Kubernetes events (such as NAD creation), and configures the
fabric for the underlay through the Apstra SDK.

Depending on your installation, use the following files to install and configure the plug-in:

• For Kubernetes, use the single_cluster_deployer_example.yaml file.

• For OpenShift, copy all the files in the ocp/plugins directory to one level up in the directory structure.

To install and configure the CN2 Apstra plug-in:

1. Uncomment the apstra-plugin-secret and contrail-apstra-plugin in your single_cluster_deployer_example.yaml
file.

2. Enter your Apstra credentials (username and password) in the apstra-plugin-secret section in the
corresponding deployer file. Make sure that your credentials are base64 encoded.

For example:

apiVersion: v1
data:
 password: YWRtaW4K
 username: YWRtaW4K
kind: Secret
metadata:
 name: apstra-plugin-secret

44

 namespace: contrail
type: Opaque

3. Enter the parameters for blueprint name, server_ip, sriov_link tag in the contrail-apstra-plugin as shown
in the following example. Make sure that the parameter for the sriov_link tag is the same parameter
that you specified in the Apstra.

This example also shows the image URL from where it fetches the contrail-apstra-plugin image. You
can edit the image URL, if needed. For example, you can change the value of the release_number in the
image to 23.1.

apiVersion: plugins.juniper.net/v1alpha1
kind: ApstraPlugin
metadata:
 name: contrail-apstra-plugin
 namespace: contrail
spec:
 blueprint: ""
 common:
 containers:
 - image: enterprise-hub.juniper.net/contrail-container-prod/contrail-apstra-
plugin:release_number
 name: contrail-apstra-plugin
 server_ip: ""
 sriov_link_tag: ""

For help in understanding what each field means, run the kubectl explain apstraplugin.spec command.

NOTE: The following example is only for informational purposes. You can run this command
only after you deploy the CN2 Apstra plug-in.

kubectl explain apstraplugin.spec
KIND: ApstraPlugin
VERSION: plugins.juniper.net/v1alpha1

RESOURCE: spec <Object>

DESCRIPTION:
 ApstraPluginSpec defines the desired state of ApstraPlugin

45

FIELDS:
 blueprint <string>
 The BluePrint in Apstra managing the Fabric which acts as underlay for this
 CN2 instance

 common <Object>
 Common configuration for k8s pods and containers

 log_level <string>
 The log level of Apstra plugin

 server_ip <string>
 The Apstra server IP address

 sriov_link_tag <string>
 Contains the tag value(eg: SRIOV) for the SRIOV links in Apstra BluePrint

With the above steps, you have made the required changes in the deployer to install the CN2 Apstra
plug-in. You can now proceed with the CN2 installation by following the instructions in the CN2
Installation Guide for Upstream Kubernetes or the CN2 Installation Guide for OpenShift Container
Platforms.

NOTE: Even after you have completed the CN2 installation, you can still edit the CN2 Apstra
plug-in parameters in the deployer YAML(s) as mentioned in the above steps and then reinstall
CN2.

Verify Your Installation

Run the following kubectl commands to verify that your installation is up and running. For example:

Check for the multus plug-in.
kubectl get pods -A | grep multus
kube-system kube-multus-ds-dn5j8 1/1 Running
1 26d
kube-system kube-multus-ds-mnd4j 1/1 Running
1 26d
kube-system kube-multus-ds-xvt5v 1/1 Running

46

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-ocp-install-and-lcm/index.html

2 26d-

Check for the sriov-device-plugin.
kubectl get pods -A | grep sriov-device-plugin
kube-system kube-sriov-device-plugin-amd64-2l792 1/1 Running
0 6d8h
kube-system kube-sriov-device-plugin-amd64-n2lxv 1/1 Running
1 6d8h
kube-system kube-sriov-device-plugin-amd64-v8tqx 1/1 Running
1 26d

Check if the virtual functions were discovered.
kubectl describe node jfm-qnc-05.lab.juniper.net | grep -A8 Allocatable
Allocatable:
 cpu: 64
 ephemeral-storage: 189217404206
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 intel.com/intel_sriov_netdevice: 7
 memory: 263710404Ki
 pods: 110
System Info:

Check for the Apstra plug-in CRDs.
kubectl api-resources | grep apstra
apstraplugins plugins.juniper.net/v1alpha1 true
ApstraPlugin

Check for the Apstra secret.
kubectl get secrets -A | grep apstra
contrail apstra-plugin-secret Opaque 2 20d

Check for the contrail-apstra-plugin pod.
kubectl get pods -A | grep apstra

47

contrail contrail-apstra-plugin-fd86dd969-5s94s 1/1 Running 8
(6d7h ago) 12d

Install the CN2 IPAM Plug-In

Follow this procedure to install the CN2 IPAM plug-in for both Kubernetes and OpenShift deployments.
This procedure assumes that CN2 is already installed on a Kubernetes cluster. In this procedure, we
show a single-cluster deployment.

To install and configure the CN2 IPAM plug-in:

1. Run the kubectl get nodes command to view the list of available nodes.

2. Add the label sriov:"true" for each worker node with SR-IOV-enabled NICs. For example:

kubectl edit nodes <node name>

 labels:
 beta.kubernetes.io/arch: amd64
 beta.kubernetes.io/os: linux
 kubernetes.io/arch: amd64
 kubernetes.io/hostname: jfm-qnc-02.englab.juniper.net
 kubernetes.io/os: linux
 server: jfm-qnc-02
 sriov: "true"

3. Add the sriovLabelSelector on the contrail-vrouters-nodes CRD.

kubectl edit Vrouters/contrail-vrouter-nodes -n contrail

In the CRD, under the spec field, add the following information:

 sriovLabelSelector:
 matchLabels:
 sriov: "true"

4. Verify the plug-in installation.

48

Wait for the vRouter pod to restart on the master node. Verify that the cn2-ipamand sriov binaries are
installed, as shown in the following example:

ls /opt/cni/bin/
archive bandwidth bridge cn2-ipam contrail-k8s-cni dhcp firewall host-device host-
local ipvlan loopback macvlan multus portmap ptp sbr sriov static tuning vlan vrf

NOTE: The default location of the binary files depends on whether you use Kubernetes or
OpenShift:

• For Kubernetes, the binaries reside in the /opt/cni/bin/ directory.

• For OpenShift, the binaries reside in the /var/lib/cni/bin/ directory.

Intra-VN and Inter-VN Approaches

IN THIS SECTION

Intra-VN Approach | 49

Inter-VN Approach | 52

This section shows the two approaches to configuring communication between SR-IOV pods, non-SR-
IOV pods, and BMS: Intra-VN and Inter-VN.

You can use the Intra-VN approach or the Inter-VN approach depending on your requirement. If you
want to see a summary of the configuration workflow for each approach, see Table 4 on page 55 or
Table 5 on page 65.

Intra-VN Approach

In the Intra-VN approach, pods are attached to the same virtual network. By default, pods on the same
virtual network can communicate with one another, regardless of whether:

The pods are spawned on the same worker nodes or on different worker nodes.

49

Or

The worker nodes are connected to the same leaf device or to a different leaf.

Intra-VN Approach: Communication Between SR-IOV Pods

Figure 2 on page 50 shows an example of an Intra-VN topology where SR-IOV pods are attached to
the same virtual network. This spine-and-leaf topology shows two SR-IOV worker nodes. Each node has
a physical NIC with SR-IOV enabled. These physical NICs (ens801f2 and ens801f3) can be split into
virtual functions and attached to the pods for direct I/O. When packets travel these virtual functions,
the packets are tagged with the appropriate VLAN. In this approach, the packets do not pass through
the vRouter but go directly to the IP fabric underlay provisioned by Apstra.

Figure 3: Intra-VN: Communication Between SR-IOV Pods

Intra-VN Approach: Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS

Figure 3 on page 51 shows an example of SR-IOV pods, non-SR-IOV pods, and BMS attached to the
same virtual network. The pods and BMS in this example use the same VNI and subnet.

50

In this approach, an EVPN session is set up between the CN2 control node and the IP fabric to mutually
exchange EVPN Type-2 routes used by the VXLAN protocol. The VTEP interface for the SR-IOV pods
and BMS is on the fabric. The VTEP interface for the non-SR-IOV pods resides on the vRouter.

In the following figure, BMS is attached to the same virtual network as the SR-IOV and non-SR-IOV
pods, but is not part of the CN2 cluster.

Figure 4: Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS

NOTE: For information on configuring Intra-VN communication, see "Introduction to Configuring
Intra-VN Communication" on page 53.

51

Inter-VN Approach

In the Inter-VN approach, CN2 pods and BMS workloads are attached to different virtual networks. The
following sections shows the configuration required for configuring communication between pods and
BMS.-

Inter-VN Approach: Communication Between SR-IOV Pods

The following figure shows an example of an Inter-VN topology between SR-IOV pods.

Figure 5: Inter-VN: Communication Between SR-IOV Pods

Inter-VN Approach: Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS

In the Inter-VN approach, the pods and BMS belong to different virtual networks. To enable this
communication, we are using EVPN Type-5 route exchanges between the CN2 control node and the
fabric. For example:

52

Figure 6: Example: Inter-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS

NOTE: For information on configuring Inter-VN communication, see "Introduction to Configuring
Inter-VN Communication" on page 64.

Introduction to Configuring Intra-VN Communication

Table 2 on page 55 summarizes the procedures required to configure Intra-VN communication
between:

• SR-IOV pods and other SR-IOV pods

• SR-IOV pods and non-SR-IOV pods

• SR-IOV pods, non-SR-IOV pods and BMS

53

Review "Prerequisites" on page 40 and "Intra-VN Approach" on page 49 before proceeding to the table.

54

Table 4: Summary of Intra-VN Configuration Workflows

SR-IOV Pods Non-SR-IOV Pods Non-SR-IOV Pods and
BMS

SR-IOV Pods 1. Create an SR-IOV
NAD (with the Asptra
plug-in label)

2. Create an SR-IOV pod
and attach the pod to
the SR-IOV NAD.

For detailed information
for each step, see
"Configure Intra-VN
Communication Between
SR-IOV Pods" on page
57.

Pre-configuration setup
(perform only once)

1. Change the
encapsulation priority
to vxlan in CN2.

2. Create a remote EVPN
gateway in Apstra.

3. Configure a BGPRouter
in CN2.

Configuration steps

1. Create a common
VirtualNetwork with
the Apstra plug-in
label.

2. Create an SR-IOV
NAD and reference
the common virtual
network.

3. Create an SR-IOV pod
and attach the pod to
the SR-IOV NAD.

4. Create a non-SR-IOV
NAD and reference
the common
VirtualNetwork .

5. Create a non-SR-IOV
pod and attach the
pod to the non-SR-
IOV NAD.

For detailed information
for each step, see
"Configure Intra-VN
Communication Between

1. Complete the pre-
configuration setup
and follow the
configuration steps in
the previous column
(SR-IOV pod to non-
SR-IOV pods).

2. In Apstra, assign the
fabric port (connecting
to the BMS) to the
virtual network
created in Apstra by
CN2.

For detailed information
for each step, see
"Configure Intra-VN
Communication Between
SR-IOV Pods, Non-SR-
IOV Pods, and BMS" on
page 64.

55

Table 4: Summary of Intra-VN Configuration Workflows (Continued)

SR-IOV Pods Non-SR-IOV Pods Non-SR-IOV Pods and
BMS

SR-IOV Pods and Non-
SR-IOV Pods" on page
58.

Configure Intra-VN Communication

IN THIS SECTION

Before You Begin | 56

Configure Intra-VN Communication Between SR-IOV Pods | 57

Configure Intra-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods | 58

Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS | 64

Follow the procedures in this section to configure Intra-VN communication between SR-IOV pods, non-
SR-IOV pods, and BMS.

Before You Begin

Read through this list of considerations before you begin your configuration:

• In the Intra-VN approach, you use the same subnet across the pods and BMS. When configuring IP
addresses in BMS, it is important to use the unallocated IP addresses to avoid collision with the IPs
allocated by CN2.

For example: If the subnet is 10.20.20.0/24, CN2 allocates IP addresses to the pod from the lower
end, like 10.20.20.2, 10.20.20.3, and so on. For BMS, we suggest that you use IP addresses in the
higher end, like 10.20.20.200, 10.20.20.201, 10.20.20.202 to avoid a collision.

Depending on whether you configure the IP on the physical interface or on the virtual interface, you
must use use the appropriate connectivity template (untagged or tagged, respectively) in Apstra. The
template is used to configure the ports that connect the BMS to the fabric. See the Juniper Apstra
User Guide for more information.

56

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html
https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html

• To configure communication between SR-IOV pods and BMS or communication between non-SR-
IOV pods and BMS, see "Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV
Pods, and BMS" on page 64.

Configure Intra-VN Communication Between SR-IOV Pods

To configure Intra-VN communication between SR-IOV pods:

1. Create a NAD with the Apstra plug-in label, as shown in the following example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: sriov-net20
 namespace: telco
 labels:
 juniper.net/plugin: apstra
 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice
 juniper.net/networks: '{
 "vlanID": 20,
 "ipamV4Subnet": "10.20.20.0/24",
 "virtualNetworkNetworkId": 10020
 }'

spec:
 config: '{
 "type": "sriov",
 "cniVersion": "0.3.1",
 "name": "sriov-net20",
 "vlan": 20,
 "ipam": {
 "type": "cn2-ipam"
 }
}'

When you create this object, the CN2 Apstra plug-in listens to the NAD and extends the
VirtualNetwork to the fabric through Apstra.

2. Issue the kubectl apply -f sriov_net20_nad.yaml command to create the NAD.

When the NAD is created, the CN2 Apstra plug-in listens for changes and provisions the fabric
through the Apstra SDK.

3. Next, create an SR-IOV pod.

57

In the following example, we are referencing the NAD (sriov-net20) that we created in Step 1, in
addition to the resource name (intel.com/intel_sriov_netdevice) for the virtual function.

apiVersion: v1
kind: Pod
metadata:
 name: sriov-pod-20-1
 namespace: telco
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-net20

spec:
 containers:
 - name: sriov-pod-20-1
 image: gcr.io/cos-cloud/toolbox
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 resources:
 requests:
 intel.com/intel_sriov_netdevice: '1'
 limits:
 intel.com/intel_sriov_netdevice: '1'
 nodeSelector:
 server: jfm-qnc-esxi-2

When you create the pod, the CN2 Apstra plug-in listens to the pod-creation event and provisions
the fabric to assign the relevant fabric ports to the VirtualNetwork.

You have now configured Intra-VN communication between SR-IOV pods.

Configure Intra-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods

Configuring Intra-VN communication between SR-IOV pods and non-SR-IOV pods involves two sets of
steps: pre-configuration setup and configuration. You perform the pre-configuration setup only once, no
matter how many virtual networks and pods you configure.

To complete the pre-configuration setup:

58

1. Change the encapsulation priority to vxlan in CN2 using the kubectl edit GlobalVrouterConfig default-
global-vrouter-config command.

2. Create a remote EVPN gateway in Apstra. See the "Remote EVPN Gateways (virtual)" chapter in the
Juniper Apstra User Guide for instructions.

3. In CN2, configure a BGPRouter.

In the following example, we are referencing the fabric's loopback IP address: (10.1.1.3), ASN number
(65003), and family (- e-vpn) used to exchange EVPN Type-2 routes.

apiVersion: core.contrail.juniper.net/v3
kind: BGPRouter
metadata:
 namespace: contrail
 name: bgprouter-qfx
 annotations:
 core.juniper.net/display-name: Sample BGP Router
 core.juniper.net/description:
 Represents configuration of BGP peers. All the BGP peers involved in
 Contrail system are under default Routing Instance of the default
 Virtual Network.
spec:
 parent:
 apiVersion: core.contrail.juniper.net/v3
 kind: RoutingInstance
 namespace: contrail
 name: default
 bgpRouterParameters:
 vendor: Juniper
 routerType: router
 address: 10.1.1.3
 identifier: 10.1.1.3
 autonomousSystem: 65003
 addressFamilies:
 family:
 - e-vpn
 bgpRouterReferences:
 - apiVersion: core.contrail.juniper.net/v3
 kind: BGPRouter
 namespace: contrail
 name: jfm-qnc-06.englab.juniper.net

59

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html

To configure Intra-VN communication between SR-IOV pods and non-SR-IOV pods:

1. Create a common VirtualNetwork (with Apstra plug-in label) to extend the virtual network to the fabric.

In the following example, we are creating a Subnet and a VirtualNetwork that references that subnet.

apiVersion: core.contrail.juniper.net/v3
kind: Subnet
metadata:
 namespace: telco
 name: net20-v4
spec:
 cidr: 10.20.20.0/24

apiVersion: "core.contrail.juniper.net/v3"
kind: VirtualNetwork
metadata:
 name: net20
 namespace: telco
 labels:

 juniper.net/plugin: apstra
spec:
 vlanID: 20
 virtualNetworkNetworkId: 10020
 routeTargetList:
 - target:10020:1
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 kind: Subnet
 name: net20-v4
 namespace: telco

2. Create a NAD for the SR-IOV pod (with Apstra plug-in label).

In the following example, we are referencing the VirtualNetwork (net20) that we created in Step 1.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: sriov-net20
 namespace: telco
 labels:

60

 vn: web
 juniper.net/plugin: apstra
 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice
 juniper.net/networks: '{
 "vlanID": 20,
 "virtualNetworkNetworkId": 10020,
 "virtualNetworkReference": {
 "apiVersion": "core.contrail.juniper.net/v3",
 "kind": "VirtualNetwork",
 "name": "net20",
 "namespace": "telco"
 },
 "routeTargetList": ["target:10020:1"]
 }'
spec:
 config: '{
 "type": "sriov",
 "cniVersion": "0.3.1",
 "name": "net20",
 "vlan": 20,
 "ipam": {
 "type": "cn2-ipam"
 }
}'

3. Create an SR-IOV pod.

In the following example, we are referencing the NAD (sriov-net20) that we created in Step 2.

apiVersion: v1
kind: Pod
metadata:
 name: sriov-pod-20-1
 namespace: telco
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-net20

spec:
 containers:
 - name: sriov-pod-20
 image: gcr.io/cos-cloud/toolbox
 imagePullPolicy: IfNotPresent

61

 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 resources:
 requests:
 intel.com/intel_sriov_netdevice: '1'
 limits:
 intel.com/intel_sriov_netdevice: '1'
 nodeSelector:
 server: jfm-qnc-05

When you create the pod, the CN2 Apstra plug-in listens to the pod-creation event and provisions
the fabric to assign the relevant fabric ports to the VirtualNetwork.

4. Create a NAD for the non-SR-IOV pod.

In the following example, we are referencing the same virtual network (net20) that we created Step 1.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: non-sriov-net20
 namespace: telco
 labels:
 vn: web
 annotations:
 juniper.net/networks: '{
 "virtualNetworkNetworkId": 10020,
 "virtualNetworkReference": {
 "apiVersion": "core.contrail.juniper.net/v3",
 "kind": "VirtualNetwork",
 "name": "net20",
 "namespace": "telco"
 },
 "routeTargetList": ["target:10020:1"]
 }'
spec:
 config: '{
 "type": "contrail-k8s-cni",
 "cniVersion": "0.3.1",

62

 "name": "net20"
}'

5. Create a non-SR-IOV pod.

In the following example, were are referencing the NAD (non-sriov-net20) we created in Step 4.

apiVersion: v1
kind: Pod
metadata:
 name: non-sriov-pod-20-1
 namespace: telco
 annotations:
 k8s.v1.cni.cncf.io/networks: non-sriov-net20

spec:
 containers:
 - name: non-sriov-pod-20-1
 image: gcr.io/cos-cloud/toolbox
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 nodeSelector:
 server: jfm-qnc-06

NOTE: If you are configuring communication between the pods and BMS, proceed with Step
2 in "Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and
BMS" on page 64 to complete the configuration.

You have now configured Intra-VN communication between SR-IOV pods and non-SR-IOV pods.

63

Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and
BMS

NOTE: This procedure describes how to configure Intra-VN communication between SR-IOV
pods, non-SR-IOV pods, and BMS.

• For communication between SR-IOV pods and BMS, follow these steps but do not create a
non-SR-IOV NAD and non-SR-IOV pod.

• For communication between non-SR-IOV pods and BMS, follow these steps but do not create
an SR-IOV NAD and SR-IOV pod.

To configure Intra-VN communication between SR-IOV pods, non-SR-IOV pods, and BMS:

1. Complete the pre-configuration setup and configuration steps in the the procedure "Configure Intra-
VN Communication Between SR-IOV Pods and Non-SR-IOV Pods" on page 58.

2. In Apstra, identify the VirtualNetwork that was created by CN2 based on the VNI.

3. Assign the relevant fabric ports (that connect to the BMS) in Apstra to this virtual network.

Make sure that you use the appropriate connectivity template (untagged or tagged) to assign the
ports to the virtual network. See the Juniper Apstra User Guide for instructions.

You have now configured Intra-VN communication between SR-IOV pods, non-SR-IOV pods, and BMS.

Introduction to Configuring Inter-VN Communication

Table 3 on page 65 summarizes the procedures required to configure Inter-VN communication
between:

• SR-IOV pods and other SR-IOV pods

• SR-IOV pods and non-SR-IOV pods

• SR-IOV pods, non-SR-IOV pods, and BMS

Review the "Prerequisites" on page 40 and "Inter-VN Approach" on page 52 before proceeding to the
table.

64

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html

Table 5: Summary of Inter-VN Configuration Workflows

SR-IOV Pods Non-SR-IOV Pods Non-SR-IOV Pods and
BMS

SR-IOV Pods 1. Create an SR-IOV
NAD (with Asptra
plug-in label and
vnr label).

2. Create an SR-IOV
pod and attach the
pod to the NAD.

3. Create a VNR.

4. Configure the
required routes in
the pods.

For detailed
information for each
step, see "Configure
Inter-VN
Communication
Between SR-IOV
Pods" on page 67.

Pre-configuration setup
(perform only once)

1. Change the
encapsulation priority
to vxlan in CN2.

2. Create a remote EVPN
gateway in Apstra.

3. Create a BGPRouter in
CN2.

Configuration steps

1. Create an SR-IOV
NAD (with Apstra
plug-in label and vnr
label).

2. Create an SR-IOV pod
and attach the pod to
the SR-IOV NAD.

3. Create a non-SR-IOV
NAD (with vnr label).

4. Create a non-SR-IOV
pod and attach the
pod to the non-SR-
IOV NAD.

5. Create a VNR and
specify the routing
type as
routingType:evpn.

6. Configure the required
routes in the pods.

For detailed information
for each step, see
"Configure Inter-VN

1. Complete the pre-
configuration setup
and follow the
configuration steps (1
through 5) in the
previous column (SR-
IOV pod to non-SR-
IOV pods).

2. Manually create a
virtual network for the
BMS in Apstra.

3. In CN2, create a
reference NAD (with
vnr label) to the virtual
network that was
created in Step 2
above.

4. Configure the required
routes in the BMS and
also in the CN2 pods.

For detailed information
for each step, see
"Configure Inter-VN
Communication Between
SR-IOV Pods, Non-SRIOV
Pods and BMS" on page
74.

65

Table 5: Summary of Inter-VN Configuration Workflows (Continued)

SR-IOV Pods Non-SR-IOV Pods Non-SR-IOV Pods and
BMS

Communication Between
SR-IOV Pods and Non-
SR-IOV Pods" on page
69.

Configure Inter-VN Communication

IN THIS SECTION

Before You Begin | 66

Follow the procedures in this section to configure Inter-VN communication between SR-IOV pods, non-
SR-IOV pods, and BMS.

Before You Begin

Read through the this list of considerations before you begin your configuration:

• For Inter-VN routing, you must create a VirtualNetworkRouter in CN2.

• In the Inter-VN approach, you must manually configure the routes on the pods. For example: you can
use the command ip route add 10.30.30.0/8 via 10.20.20.1 to reach the 10.30.30.0/8 subnet.

• The QFX5200 switch does not support EVPN Type-5 routing and edge-routing bridging (ERB). See
Edge-Routing Bridging for QFX Series Switches for more information.

For a list of supported Juniper devices for use in an Inter-VN topology, see Layer 3 connectivity in an
EVPN-VXLAN topology. Also, make sure that the QFX devices are running Junos OS version
20.2R2.11 or above.

66

https://www.juniper.net/documentation/en_US/contrail19/topics/concept/erb-for-qfx-switches.html
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=7926&fn=Layer%203%20connectivity%20in%20an%20EVPN-VXLAN%20topology
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=7926&fn=Layer%203%20connectivity%20in%20an%20EVPN-VXLAN%20topology

Configure Inter-VN Communication Between SR-IOV Pods

To configure Inter-VN communication between SR-IOV pods:

1. Create an SR-IOV NAD (with vn label and Apstra plug-in label), as shown in the following example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: net30
 namespace: telco
 labels:
 vn: web
 juniper.net/plugin: apstra
 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice
 juniper.net/networks: '{
 "vlanID": 30,
 "ipamV4Subnet": "10.30.30.0/24",
 "virtualNetworkNetworkId": 10030
 }'

spec:
 config: '{
 "type": "sriov",
 "cniVersion": "0.3.1",
 "name": "net30",
 "vlan": 30,
 "ipam": {
 "type": "cn2-ipam"
 }
}'

2. Issue the kubectl apply -f sriov_net30_nad.yaml command to create the NAD.

The CN2 Apstra plug-in listens to the NAD event and extends the virtual network to the fabric
through Apstra. You can create additional NADs as needed, following the same pattern.

3. Create an SR-IOV pod and attach the pod to the SR-IOV NAD.

67

In the following example, we are referencing the NAD (sriov-net30) that we created in Step 1 in
addition to the resource name (intel.com/intel_sriov_netdevice) for the virtual function.

apiVersion: v1
kind: Pod
metadata:
 name: sriov-pod-30-1
 namespace: telco
 annotations:
 k8s.v1.cni.cncf.io/networks: net30

spec:
 containers:
 - name: sriov-pod-30-1
 image: gcr.io/cos-cloud/toolbox
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 resources:
 requests:
 intel.com/intel_sriov_netdevice: '1'
 limits:
 intel.com/intel_sriov_netdevice: '1'
 nodeSelector:
 server: jfm-qnc-05

4. Run the kubectl apply -f pod.yaml command to create the pod.

The CN2 Apstra plug-in listens to the pod-creation event and provisions the fabric to assign the
relevant fabric ports to the virtual network.

5. Create a VNR to route the different virtual networks with a common label.

In the following example, the common label is: vn: web.

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetworkRouter
metadata:
 namespace: telco

68

 name: vnr-web
 annotations:
 core.juniper.net/display-name: vnr-web
 labels:
 vnr: web
 ns: telco
spec:
 type: mesh
 routingType: evpn
 l3vxlanNetworkIdentifier: 50000
 virtualNetworkSelector:
 matchLabels:
 vn: web

6. Configure the required routes in the pods to reach the other subnet. For example:

ip route add 10.30.30.0/24 via 10.20.20.1

You have now configured Inter-VN communication between SR-IOV pods.

Configure Inter-VN Communication Between SR-IOV Pods and Non-SR-
IOV Pods

Configuring Inter-VN communication between SR-IOV pods and non-SR-IOV pods involves two sets of
steps: pre-configuration setup and configuration. You perform the pre-configuration setup only once, no
matter how many virtual networks and pods you configure.

To complete the pre-configuration setup:

1. Change the encapsulation priority to vxlan in CN2 using the kubectl edit GlobalVrouterConfig default-
global-vrouter-config command.

2. Create a remote EVPN gateway in Apstra. See the "Remote EVPN Gateways (virtual)" chapter in the
Juniper Apstra User Guide for instructions.

3. In CN2, configure a BGPRouter.

In the following example, we are referencing the fabric's loopback IP address: (10.1.1.3), ASN number
(65003), and family (- e-vpn) used to exchange EVPN Type-2 routes.

apiVersion: core.contrail.juniper.net/v3
kind: BGPRouter

69

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html

metadata:
 namespace: contrail
 name: bgprouter-qfx
 annotations:
 core.juniper.net/display-name: Sample BGP Router
 core.juniper.net/description:
 Represents configuration of BGP peers. All the BGP peers involved in
 Contrail system are under default Routing Instance of the default
 Virtual Network.
spec:
 parent:
 apiVersion: core.contrail.juniper.net/v3
 kind: RoutingInstance
 namespace: contrail
 name: default
 bgpRouterParameters:
 vendor: Juniper
 routerType: router
 address: 10.1.1.3
 identifier: 10.1.1.3
 autonomousSystem: 65003
 addressFamilies:
 family:
 - e-vpn
 bgpRouterReferences:
 - apiVersion: core.contrail.juniper.net/v3
 kind: BGPRouter
 namespace: contrail
 name: jfm-qnc-06.englab.juniper.net

To configure Inter-VN communication between SR-IOV pods and non-SR-IOV pods:

1. Create an SR-IOV NAD (with vn label and Apstra plug-in label), as shown in the following example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: net30
 namespace: telco
 labels:
 vn: web
 juniper.net/plugin: apstra

70

 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/intel_sriov_netdevice
 juniper.net/networks: '{
 "vlanID": 30,
 "ipamV4Subnet": "10.30.30.0/24",
 "virtualNetworkNetworkId": 10030
 }'

spec:
 config: '{
 "type": "sriov",
 "cniVersion": "0.3.1",
 "name": "net30",
 "vlan": 30,
 "ipam": {
 "type": "cn2-ipam"
 }
}'

2. Create an SR-IOV pod and attach the pod to the SR-IOV NAD.

In this example we are referencing the NAD (net30) that we created in Step 1 and the resource name
for the SR-IOV pod (intel.com/intel_sriov_netdevice) for the virtual function.

apiVersion: v1
kind: Pod
metadata:
 name: sriov-pod-30-1
 namespace: telco
 annotations:
 k8s.v1.cni.cncf.io/networks: net30

spec:
 containers:
 - name: sriov-pod-30-1
 image: gcr.io/cos-cloud/toolbox imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true

71

 resources:
 requests:
 intel.com/intel_sriov_netdevice: '1'
 limits:
 intel.com/intel_sriov_netdevice: '1'
 nodeSelector:
 server: jfm-qnc-05

When you create the pod, the CN2 apstra plug-in listens to the pod-creation event and provisions
the fabric to assign the relevant fabric ports to the VirtualNetwork.

3. Create a non-SR-IOV NAD (with vn label), as shown in the following example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: non-sriov-net20
 namespace: telco
 labels:
 vn: web
 juniper.net/plugin: apstra
 annotations:
 juniper.net/networks: '{
 "virtualNetworkNetworkId": 10020,
 "ipamV4Subnet": "10.20.20.0/24",
 "routeTargetList": ["target:10020:1"]
 }'
spec:
 config: '{
 "type": "contrail-k8s-cni",
 "cniVersion": "0.3.1",
 "name": "net20"
}'

4. Create a non-SR-IOV pod and attach the pod to the non-SR-IOV NAD.

Note that we are referencing the NAD (net20) that we created in Step 3.

apiVersion: v1
kind: Pod
metadata:
 name: non-sriov-pod-20-1
 namespace: telco

72

 annotations:
 k8s.v1.cni.cncf.io/networks: net20

spec:
 containers:
 - name: non-sriov-pod-20-1
 image: gcr.io/cos-cloud/toolbox
 imagePullPolicy: IfNotPresent
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 300000; done;"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 nodeSelector:
 server: jfm-qnc-06

5. Create a VNR to route the different virtual networks with a common label. In the following example,
the common label is: vn: web.

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetworkRouter
metadata:
 namespace: telco
 name: vnr-web
 annotations:
 core.juniper.net/display-name: vnr-web
 labels:
 vnr: web
 ns: telco
spec:
 type: mesh
 routingType: evpn
 l3vxlanNetworkIdentifier: 50000
 virtualNetworkSelector:
 matchLabels:
 vn: web

73

NOTE: If you are configuring communication between the pods and BMS, can now proceed
to Step 2 in "Configure Inter-VN Communication Between SR-IOV Pods, Non-SRIOV Pods
and BMS" on page 74 to complete the configuration.

6. Configure the required routes in the pods. For example:

ip route add 10.30.30.0/24 via 10.20.20.1

You have now configured Inter-VN communication between SR-IOV pods and non-SR-IOV pods.

Configure Inter-VN Communication Between SR-IOV Pods, Non-SRIOV
Pods and BMS

To configure Inter-VN communication between SR-IOV pods, non-SR-IOV pods, and BMS:

1. Complete the pre-configuration setup and follow Steps 1 though 5 in the procedure "Configure Inter-
VN Communication Between SR-IOV Pods and Non-SR-IOV Pods" on page 69.

2. Manually create a virtual network for the BMS in Apstra. See the Juniper Apstra User Guide for
instructions.

NOTE: Although the required VirtualNetwork can be created in Apstra using CN2, we are also
addressing the use case where the VirtualNetwork needed for BMS has already been created in
Apstra.

3. In CN2, create a reference NAD (with vn label) with the same name as the BMS virtual network in
Apstra. Also, add the label juniper.net/ssor: apstra to sync this NAD from Apstra into CN2. For
example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bms-net40-vn
 namespace: telco
 labels:
 vn: web
 juniper.net/plugin: apstra
 juniper.net/ssor: apstra

74

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-user-guide/index.html

 annotations:
 juniper.net/networks: '{
 }'

4. Configure the required routes in the BMS and also in the CN2 pods. For example:

ip route add 10.30.30.0/24 via 10.40.40.1

You have now configured Inter-VN communication between SR-IOV pods, non-SR-IOV pods, and BMS.

75

3
CHAPTER

CN2 Security

Kubernetes Network Policies | 77

Security Policies | 83

Encrypt Secret Data at Rest | 88

Configure Management and Control Plane Authentication with TLS Encryption |
 88

Kubernetes Network Policies

SUMMARY

Juniper Cloud-Native Contrail® Networking™ (CN2)
lets you deploy Kubernetes network policies within
the Contrail firewall security policy framework. You
must use a Container Network Interface (CNI) that
supports NetworkPolicy, like Contrail, to deploy a
network policy. This topic provides information
about how to deploy a Kubernetes network policy in
environments running CN2.

IN THIS SECTION

Kubernetes Network Policy Overview | 77

Deploy a Kubernetes Network Policy in
Cloud-Native Contrail Networking | 80

Kubernetes Network Policy matchExpressions
 | 83

Kubernetes Network Policy Overview

Kubernetes network policies let you specify how pods communicate with other pods and network
endpoints. A Kubernetes NetworkPolicy resource enables a pod to communicate with:

• Other pods in the allowlist (a pod cannot block access to itself).

• Namespaces in the allowlist.

• IP blocks, or Classless Inter-Domain Routing (CIDR).

Kubernetes network policies apply only to pods within a namespace and define ingress (source) and
egress (destination) rules. Kubernetes network policies have the following characteristics when applied
to a pod:

• Pod specific and apply to a single pod or a group of pods. Network policy rules dictate the traffic to
that pod.

• Define traffic rules for a pod for ingress traffic, egress traffic, or both. If you don't specify a direction
explicitly, the policy applies to the ingress direction by default.

• Must contain explicit rules that specify traffic from the allowlist in the ingress and egress directions.
Traffic that does not match the allowlist rules is denied.

• Permitted traffic includes traffic matching any of the network policies applied to a pod.

Kubernetes network policies have the following additional characteristics:

• When not applied to a pod, that pod accepts traffic from all sources.

77

• Act on connections rather than individual packets. For example, if traffic from pod A to pod B is
allowed by the configured policy, then the packets from pod B to pod A are also allowed, even if the
policy in place does not allow pod B to initiate a connection to pod A.

A Kubernetes network policy comprises the following sections:

• spec: Describes the desired state of a Kubernetes object. For a network policy, the podSelector and
policyTypes fields within the spec specify the rules for that policy.

• podSelector: Selects the groups of pods to which the policy applies. An empty podSelector selects all
pods in the namespace.

• policyTypes: Specifies whether the policy applies to ingress traffic from selected pods or egress traffic
to selected pods. If no policyTypes are specified, the ingress direction is selected by default.

• ingress: Allows ingress traffic that matches the from and ports sections. In the following example, the
ingress rule allows connections to all pods in the dev namespace with the label app: webserver-dev on
TCP port 80 from:

• Any pod in the default namespace with the label app: client1-dev.

• All IP addresses within the 10.169.25.20/32 range.

• Any pod in the default namespace with the label project: jtac.

• egress: Allows egress traffic that matches the to and portssections. In Example 1, the egress rule allows
connections from any pod in the default namespace with the label app: dbserver-dev to port TCP 80.

• ipBlock: Selects IP CIDR ranges to allow as ingress sources or egress destinations. The ipBlock section
of a network policy contains the following two fields:

• cidr (ipBlock.cidr): The network policy allows egress traffic to, or ingress traffic from, the specified
IP range.

• except (ipBlock.except): Kubernetes expects traffic in the specified IP range not to match the
policy. The network policy denies ingress traffic to, or egress traffic from, the IP range specified in
except.

NOTE:
exceptexceptexceptexcept

The following NetworkPolicy resource example shows ingress and egress rules:

#policy1-do.yaml
apiVersion: networking.k8s.io/v1

78

kind: NetworkPolicy
metadata:
 name: policy1
 namespace: dev
spec:
 podSelector:
 matchLabels:
 app: webserver-dev
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 10.169.25.20/32
 - namespaceSelector:
 matchLabels:
 project: jtac
 - podSelector:
 matchLabels:
 app: client1-dev
 ports:
 - protocol: TCP
 port: 80
 egress:
 - to:
 - podSelector:
 matchLabels:
 app: dbserver-dev
 ports:
 - protocol: TCP
 port: 80

In this example, ingress TCP traffic from IPs within CIDR 10.169.25.20/32 from port: 80 is allowed. Egress
traffic to pods with matchLabels app: dbserver-dev to TCP port: 80 is allowed.

79

Deploy a Kubernetes Network Policy in Cloud-Native Contrail
Networking

In CN2, after you configure and deploy a Kubernetes network policy, that policy is created automatically
in Contrail. Here's an example of a Kubernetes network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 project: myproject
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: TCP
 port: 6379
 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

80

This policy results in the following objects being created in CN2:

Tags on page 81

Address Groups on page 81

Firewall Rules on page 81

Firewall Policy on page 82

Table 6: Tags

Key Value

role db

namespace default

project myproject

role frontend

Table 7: Address Groups

Name Prefix

test-network-policy-except 172.17.1.0/24

test-network-policy 172.17.0.0/16

test-network-policy-egress 10.0.0.0/24

Table 8: Firewall Rules

Rule Name Action Service Endpoint1 Direction Endpoint2

default-ingress-
test-network-
policy-0-
ipBlock-0-17x.x
x.1.0/24-0

deny tcp:6379 role=db &&
namespace=def
ault

ingress Address Group:
172.17.1.0/24

81

Table 8: Firewall Rules (Continued)

Rule Name Action Service Endpoint1 Direction Endpoint2

default-ingress-
test-network-
policy-0-
ipBlock-0-
cidr-17x.xx.0.0/
16-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress Address Group:
172.17.0.0/16

default-ingress-
test-network-
policy-0-
namespaceSelec
tor-1-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress project=myproje
ct

default-ingress-
test-network-
policy-0-
podSelector-2-0

pass tcp:6379 role=db &&
namespace=def
ault

ingress namespace=def
ault &&
role=frontend

default-egress-
test-network-
policy-
ipBlock-0-
cidr-10.0.0.0/24
-0

pass tcp:5978 role=db &&
namespace=def
ault

egress Address Group:
10.0.0.0/24

Table 9: Firewall Policy

Name Rules

default-test-network-policy default-ingress-test-network-policy-0-
ipBlock-0-172.17.1.0/24-0, default-ingress-test-
network-policy-0-ipBlock-0-cidr-172.17.0.0/16-0

default-ingress-test-network-policy-0-
namespaceSelector-1-0

default-ingress-test-network-policy-0-
podSelector-2-0, default-egress-test-network-policy-
ipBlock-0-cidr-10.0.0.0/24-0

82

Kubernetes Network Policy matchExpressions

Starting in Cloud-Native Contrail Networking (CN2) version 22.3, CN2 supports Kubernetes Network
Policy with matchExpressions. For more information about matchExpressions, see "Resources that support set-
based requirements" in the Kubernetes documentation.

Security Policies

SUMMARY

Starting in CN2 Release 23.1, CN2 supports
Namespace Security Polices. Namespace policies
allows you to define security polices from endpoints
within a namespace, or to an external IP address.

IN THIS SECTION

Namespace Security Policies | 83

Namespace Security Policies

IN THIS SECTION

Overview of Namespace Security Policies | 83

Policy Priority: Namespace Security Polices and Kubernetes Network Policies | 85

Example of a Namespace Security Policy | 86

Overview of Namespace Security Policies

CN2 supports Kubernetes network policies to control flow of traffic to and from Kubernetes workloads
to other Kubernetes workloads or IP addresses. Kubernetes network policies are developer-centric
policies where a developer decides which traffic is allowed in and out of their workloads.

Although Kubernetes network policies are useful in restricting the communication between pods in a
namespace, you can only control ingress and egress traffic from a selected set of pods. As an
administrator, these policies can be complex to use, specifically if you are interested in end-to-end traffic
flow based on application or security requirements.

83

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#resources-that-support-set-based-requirements

For end-to-end traffic flow, CN2 supports namespace security policies. Namespace security policies are
administrative-centric policies. These policies allows you to define polices from a source endpoint to a
destination endpoint within a namespace. With Namespace security policies, you can allow or deny
traffic between pods in a namespace or to an external IP address.

Namespace security policies have the following characteristics:

• You can only define security polices within a namespace. By default, security policies can only
manage traffic within its own namespace.

• When you define a security policy, the policy is applied on all pods in a namespace.

• By default, if a pod does not match any user-defined policies, traffic is denied.

• You define security policies within a namespace using rules. Each rule has a source endpoint and
destination endpoint. For ease of use, the security polices use the same endpoints as Kubernetes
network policies (namespace, podselector, IPblock).

• Namespace security polices can contain one or multiple rules. For example:

Rule:
 Allow
 Src:
 (174.16.10.0/16 except 174.16.10.40/28)
 (174.16.10.40/24 except 174.16.10.70/32})

 Dst:
 (175.16.10.0/24 except 175.16.10.40/32)
 (175.16.10.0/24 except 175.16.10.70/32))

 port:[9000:9010])

• Namespace security policies support two actions: pass and deny. The default action is deny. Actions are
per-policy, not per rule. This means that any rules you define follows the same action.

• For each rule, you can define the destination ports or destination port range (combination of source,
destination, and port). For example, let's say you want particular IP address or source to access the
server on a specified destination port or range of ports.

NOTE: Namespace security polices only support IPv4 IP addresses.

A Namespace security policy consists of the following sections:

84

• Spec

The spec field contains the rules and actions you need to define a security policy. The rules contain a
list of user defined source and destination matches.

The rules are categorized, as follows:

• SrcEP: List of source endpoints for a rule match criteria (podSelector or ipBlock).

• DstEP: List of destination endpoints for a rule match criteria (podSelector or ipBlock).

• Ports: List of destination ports to be matched for this rule (contains a combination of ports and
protocol).

• Action: Action to be taken if any policy rule matches (pass or deny). The default action is deny.

To see an example of a security policy, see "Example of a Namespace Security Policy" on page 86.

Policy Priority: Namespace Security Polices and Kubernetes Network Policies

Because CN2 uses both Kubernetes network polices and namespace security policies, we use a
sequence to determine how rules are processed between the two different policies.

Figure 1 on page 86 shows how Kubernetes network policies along with namespace security policies
are prioritized. The rules for namespace security polices are prioritized first, followed by Kubernetes
network policies.

NOTE: All Namespace security policies are user-defined.

Each policy is prioritized, as follows:

1. Namespace Security Policies (Deny): By default, if a pod does not match any policies in CN2, traffic is
denied. The deny policies are given a higher priority over the allow policies.

2. Namespace Security Policies (Allow): If you do not define a policy in CN2, traffic is allowed between
all pods in the corresponding namespace.

3. Kubernetes Network Polices: By default, a Kubernetes network policy allows traffic from all sources.

4. Default (Deny): If a pod does not match any Kubernetes network policies, traffic is denied.

85

Figure 7: Policy Priority: Namespace Security Polices and Kubernetes Network Policies

Example of a Namespace Security Policy

Here is an example of a namespace security policy:

NOTE: When you create a namespace security policy, you only need to provide the namespace
and the source and destination endpoints (namespace, podSelector, ipBlock).

apiVersion: core.contrail.juniper.net/v3
 kind: NamespaceSecurityPolicy
 metadata:
 name: allow-hr11-to-fac12
 namespace: ns-svl
 spec:
 rules:
 - srcEP:
 endPoints:
 - podSelector:
 matchLabels:
 dept: hr
 matchExpressions:
 - {key: tier, operator: In, values: [one]}
 - ipBlock:

86

 cidr: 174.19.12.11/32
 dstEP:
 endPoints:
 - podSelector:
 matchLabels:
 dept: fac
 - ipBlock:
 cidr: 174.19.12.12/32
 ports:
 - protocol: TCP
 port: 3300
 endPort: 3400
 action: pass

In this example, we defined a security policy in namespace: ns-svl. In this policy, we've created a
combination of rules for the source and destination endpoints. Table 1 on page 87 describes the
different combinations.

For example, any traffic generated from the source (podSelector or iBlock) to the destination (podSelector or
ipBlock) is allowed. The remaining traffic in the namespace is denied.

We've also specified the destination ports 3300 and 3400. This allows TCP traffic between the destination
ports and between the source and destination endpoints.

Table 10: Example: Source and Destination Combinations

Source Destination

Pod with label dept:hr to: • Pod with label dept:fac or destination (dstEP).

Or,

• ipBlock cidr:174.19.12.12/32.

ipBlock174.19.12.11/32 to: • Pod with label dept:fac or destination (dstEP).

Or,

• ipBlock: cidr:174.19.12.12/32.

87

SEE ALSO

Kubernetes Network Policies

Encrypt Secret Data at Rest

Starting in CN2 Release 22.1, Juniper supports encryption of secret data at rest. CN2 automatically
encrypts secret data at rest in your Kubernetes cluster and encrypts any password that you configure. A
secret is an object that contains a small amount of sensitive data such as a password, a token, or a key.
Data at rest encryption is a cybersecurity practice of encrypting stored data to prevent unauthorized
access.

Refer to the Kubernetes documentation titled Encrypting Secret Data at Rest for instructions on how to
enable and configure this feature.

Configure Management and Control Plane
Authentication with TLS Encryption

SUMMARY

This topic describes how to configure management
and control plane authentication with TLS
Encryption in CN2 Release 22.4 or later in a
Kubernetes-orchestrated environment.

IN THIS SECTION

Overview | 88

Configure TLS Encryption for Contrail Control
Plane and vRouter | 89

Overview

IN THIS SECTION

Considerations | 89

88

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/concept/Kubernetes_Network_Policy_in_CN2.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

CN2 supports management and control plane authentication with TLS encryption. The TLS protocol is
used for certificate exchange, mutual authentication, and negotiating ciphers to secure the stream from
potential tampering and eavesdropping.

Certificates are part of the deployment used to bring up CN2. In Kubernetes all certificates are
translated to secrets. By default, the certificate and secrets for the Contrail control plane and vRouter
are automatically generated in the ContrailCertificateManager CRD. If desired, you can also create
certificates for other components, such as Sandesh and the Contrail API server.

You can generate certificates using one of the following tools:

• cert-manager (default): The cert-manager tool adds certificates as resource types in Kubernetes
clusters and simplifies the process of obtaining, renewing and using those certificates. By default, the
certificate is valid for 10 years and automatically renews 15 days before its expiration date.

• go-crypto: go-crypto is a cryptographic package you can use to generate certificates. This package is
a lightweight generator that does not use containers. By default, the certificate is valid for 10 years,
but is not automatically renewed.

Considerations

Read through this list of considerations before you begin the configuration:

• When a certificate is renewed, you must restart the pod.

• You must enable TLS encryption for the Contrail control plane and vRouter, even if a certificate is
provided.

• If you are creating your own certificate authority (CA), the secret must contain the keys tls.crt and
tls.key.

Configure TLS Encryption for Contrail Control Plane and vRouter

Follow the steps in this procedure to easily configure TLS encryption for the Contrail control plane and
vRouter.

NOTE: By default, TLS encryption is enabled for XMPP and introspect for control and vRouter.
TLS-based XMPP is used to secure all XMPP communication that occurs in the networking
environment. If you prefer, you can disable TLS encryption by specifying the false variable under
the spec field in your control and vRouter YAML files. For example:

89

xmppAuthEnable: false
 introspectSslEnable: false

To configure TLS encryption for the Contrail control plane and vRouter:

1. Specify the generatortype, either cert-manager or go-crypto in ContrailCertificateManager. The default
generator is cert-manager.

In Kubernetes all certificates are translated to secrets. When you generate the certificate, the secrets
are automatically created when you apply your deployment.yaml file.

The following examples show certificates created in cert-manager and go-crypto for control and vRouter:

Example using cert-manager:

apiVersion: configplane.juniper.net/v1alpha1
kind: ContrailCertificateManager
metadata:
 name: contrail-certificate-manager
 namespace: contrail
spec:
 common:
 containers:
 - image: REGISTRY/contrail-k8s-cert-manager:TAG
 name: contrail-k8s-cm
 - name: cert-manager
 image: REGISTRY/cert-manager:TAG
 - name: cert-manager-webhook
 image: REGISTRY/cert-manager-webhook:TAG
 - name: cert-manager-cainjector
 image: REGISTRY/cert-manager-cainjector:TAG
 generatortype: cert-manager
 casecret:
 name: contrail-ca
 namespace: contrail
 secrets:
 - name: xmpp-tls-vrouter-agent
 namespace: contrail
 components:
 - vrouter-xmpp

90

 duration: 87600 [also default and value in hours]
 renewBefore: 360 [also default and value in hours]

Example using gocrypto:

apiVersion: configplane.juniper.net/v1alpha1
kind: ContrailCertificateManager
metadata:
 name: contrail-go-crypto
 namespace: contrail
spec:
 common:
 containers:
 - image: REGISTRY/contrail-k8s-gocrypto:TAG
 name: contrail-k8s-cm
 generatortype: gocrypto
 secrets:
 - name: xmpp-tls-vrouter-agent
 namespace: contrail
 components:
 - vrouter-xmpp
 duration: 87600 [also default and value in hours]
 - name: xmpp-tls-control
 namespace: contrail
 components:
 - control-xmpp
 - name: contrail-api-tls
 namespace: contrail
 dnsNames:
 - contrail-api.contrail-system.svc
 components:
 - control-sandesh

2. Apply your deployment.yaml file to generate the certificate.

3. Verify your configuration.

Run the following kubectl commands to verify that the certificate and secrets were successfully
generated.

All contrail secrets created by cert-generator in deployer are labeled with contrail=default
and certificate info NotAfter and NotBefore are added in annotation to view secret validity.

91

list secrets
kubectl get secret -l contrail=default -A

list secrets with more info
kubectl get secret -l contrail=default -A | tail +2 | awk '{print "kubectl describe secret
"$2" -n "$1}' | while read line; do $line; done | grep -e "Name:" -e "Namespace:" -e
"NotAfter:" -e "NotBefore:"

Download certificate from secret: [install jq]
kubectl get secret -n contrail contrail-api-tls -o json | jq -r '.data."tls.key"' | base64 -d
> tls.key

View certificate:
openssl x509 -noout -text -in tls.crt

By default, certificates and secrets are automatically generated in ContrailCertificateManager. You can
also create secrets for other components or create your own CA.

To create secrets for other components, specify the component(s) you want to use in either cert-
manager or gocrypto. You can use one secret for multiple components.

The available components are:

• control-xmpp

• vrouter-sandesh

• control-sandesh

• contrail-api-server

• vrouter-xmpp

If you did not enter a casecret in ContrailCertificateManager, a self-signed certificate is automatically
created. This self-signed certificate is valid for 10 years.

If desired, you can specify your own CA certificate as shown in the following example. The secret
must contain the keys tls.crt and tls.key.

apiVersion: v1
kind: Secret
metadata:
 name: ca-key-pair
 namespace: contrail
data:
 tls.crt:

92

 <output of cat cacert.pem | base64 -w0>
 tls.key:
 <output of cat cakey.pem | base64 -w0>

Run the kubectl apply -f ca-key-pair.yaml command to apply the secret.

SEE ALSO

Configuring Transport Layer Security Based XMPP in Contrail

93

https://www.juniper.net/documentation/en_US/contrail20/topics/task/configuration/config-TLS-vncDocument1.html

4
CHAPTER

Advanced Virtual Networking

Enable BGP as a Service | 96

Create an Isolated Namespace | 109

Configure Allowed Address Pairs | 120

Enable Packet-Based Forwarding on Virtual Interfaces | 122

Configure Reverse Path Forwarding on Virtual Interfaces | 125

vRouter Interface Health Check | 127

Kubernetes Ingress Support | 134

Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking | 138

Configure Inter-Virtual Network Routing Through Route Targets | 157

Configure IPAM for Pod Networking | 162

Enable VLAN Subinterface Support on Virtual Interfaces | 166

EVPN Networking Support | 173

Customize Virtual Networks for Pod Deployments, Services, and Namespaces |
 177

Deploy Kubevirt DPDK Dataplane Support for VMs | 185

Pull Kubevirt Images and Deploy Kubevirt Using a Local Registry | 197

Static Routes | 200

VPC to CN2 Communication in AWS EKS | 211

Configure a Service Account to Assume an IAM role | 220

Enable BGP as a Service

IN THIS SECTION

Benefits of BGP as a Service in Cloud-Native Contrail | 96

Prerequisites | 97

Overview of BGP as a Service in Cloud-Native Contrail Networking | 97

Enable BGPaaS in a Pod | 98

Configure the IP Address Allocation Method for BGPasaS | 102

Configure the BGPasaService Object | 103

Validate the BGP as a Service Configuration | 107

Configure BGP in Pod | 108

Cloud-Native Contrail® Networking™ supports BGP as a Service (BGPaaS). This document should be
used to enable BGPaaS in environments using Release 22.1 or later.

The BGPaaS feature in Cloud-Native Contrail Networking provides the network support for BGP to
operate within a virtual network in cloud networking environments using Cloud-Native Contrail
Networking.

Benefits of BGP as a Service in Cloud-Native Contrail

With BGPaaS in Kubernetes environments using Cloud-Native Contrail Networking, you gain the
following functionality:

• A BGP protocol service that runs in the virtual network. This BGP service creates BGP neighbor
sessions to pods, virtual machines, and other workloads in the virtual network.

• A routing protocol that supports IPv4 neighbors, the IPv4 and IPv6 unicast address family, and IPv6-
over-IPv4 next-hop mapping.

• A BGP protocol service that is user-configurable using most well-known BGP configuration
parameters.

You can use BGPaaS in any cloud networking environment that needs the functionality provided by a
routing protocol. You may find BGPaaS especially useful in the following scenarios:

96

• If you manage a large cloud networking environment that runs multiple workloads, you may want to
use BGPaaS to scale network services.

• If you use tunneling protocols that need network reachability information from a routing protocol to
create and maintain tunnels, BGPaaS can help.

Prerequisites

We assume that before you enable BGP as a service:

• You are operating in a working cloud networking environment using Kubernetes orchestration, and
Cloud-Native Contrail Networking is operational.

• You have a working knowledge of BGP.

Overview of BGP as a Service in Cloud-Native Contrail Networking

Cloud-Native Contrail Networking provides the networking support for BGPaaS.

You have to find a BGP service to run BGP in your cloud networking environment. This document shows
how to enable networking support for BGPaaS with Cloud-Native Contrail Networking using the BGP
service provided by the BIRD Internet Routing Daemon (BIRD). This daemon is available as a built-in
development tool on many versions of Unix. You can also download it to your environment using a
separate image.

In the examples that follow, you see that the BGP daemon from BIRD runs in a pod when BGPaaS is
enabled. That daemon then sends BGP messages over the network using the networking capabilities
provided by Cloud-Native Contrail Networking. For additional information on BIRD, see the BIRD
Internet Routing Daemon homepage.

When BGPaaS is operational, the BGP daemon runs in a pod and manages BGPaaS. The BGP daemon is
directly connected to a Contrail vRouter.

The Contrail vRouter has a connection to at least one control plane node and connects the BIRD
daemon to the control plane. A BGP peering session between at least one control node and the BIRD
daemon is established through this connection with the Contrail vRouter.

After a peering session is created between the control nodes and the BGP daemon, the BGP daemon
can manage BGPaaS and send routes to BGP clients over the control plane. The BGPaaS management
tasks include assigning IP addresses to workloads, pods, VMs, or other objects.

97

https://bird.network.cz/?index
https://bird.network.cz/?index

Enable BGPaaS in a Pod

To enable BGPaaS, you must create a pod to host the BGP service. You must then associate the pod
hosting the BGP service with the virtual networks where BGPaaS will run.

You can use either of two methods of associating a pod hosting the BGP service with a virtual network:

• Virtual Machine Interfaces Selector—The pod running the BGP service is directly associated with the
virtual network. The pod hosting the BGP service is discovered automatically after the virtual
network association is defined.

• Virtual Machine Interface References—The pod running the BGP service is directly associated with
the virtual network by explicitly providing the namespace and the name of the virtual machine
interface of the pod hosting the BGP service.

The following sections provide the steps for each association method.

Enable BGPaaS in a Pod Using the Virtual Machine Interfaces Selector

You must create a pod to host the BGP service, and then you can enable BGPaaS with the Virtual
Machine Interfaces Selector.

The pod must:

• Include at least one IPv4 interface.

• Include annotations using core.juniper.net/bgpaas-networks to specify the associated virtual network
names. The value in this annotation must include at least one virtual network name. If you are
associating the pod hosting the BIRD daemon with multiple virtual networks, enter the virtual
network names as a comma-separated list.

In this example YAML file, a pod is created to host the BGP service. The pod is associated with two
virtual networks and BGPaaS is enabled to run on both virtual networks. The image: variable in the
containers: hierarchy points to the BIRD image file that will provide the BGP service in this example.

apiVersion: v1
kind: Pod
metadata:
 name: bird-pod-shared-1
 namespace: bgpaas-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [{
 "name": "bgpaas-vn-1",

98

 "namespace": "bgpaas-ns",
 "cni-args": null
 "interface": "eth1"
 },{
 "name": "bgpaas-vn-2",
 "namespace": "bgpaas-ns",
 "cni-args": null
 "interface": "eth2"
 }]
 core.juniper.net/bgpaas-networks: bgpaas-vn-1,bgapss-vn-2
spec:
 containers:
 - name: bird-pod-c
 image: somewhere.juniper.net/cn2/bazel-build/dev/bird-sut:1.0
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true

Enter the kubectl get vmi -n virtual-network-name to confirm that the pod and its associated virtual
machine interfaces have been created. You can also enter the kubectl describe command to ensure that
the virtual machine interfaces exist.

You can confirm the virtual network was created by reviewing the bgpaasVN= output in the label
section of the kubectl describe command.

kubectl get vmi -n bgpaas-ns
 CLUSTERNAME NAME NETWORK PODNAME
IFCNAME STATE AGE
 contrail-k8s-kubemanager-kubernetes bird-pod-1-abb881a8 bgpaas-vn-1 bird-pod-1
eth1 Success 13s
 contrail-k8s-kubemanager-kubernetes bird-pod-1-e3f93f05 default-podnetwork bird-pod-1
eth0 Success 13s

 kubectl describe vmi bird-pod-1-abb881a8 -n bgpaas-ns
 Name: bird-pod-1-abb881a8
 Namespace: bgpaas-ns
 Labels: core.juniper.net/bgpaasVN=bgpaas-vn-1
 namespace=bgpaas-ns

99

You must then create a BGPaaS object to configure BGPaaS. The BGPaaS object references the virtual
networks in the virtualMachineInterfacesSelector: section.

 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: BGPAsAService
 metadata:
 namespace: bgpaas-ns
 name: bgpaas-test
 spec:
 shared: false
 autonomousSystem: 10
 bgpAsAServiceSessionAttributes:
 loopCount: 2
 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet
 - inet6
 virtualMachineInterfacesSelector:
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-1
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-2

Enable BGPaaS in a Pod Using Virtual Machine Interface References

You must first create a pod to host the BIRD daemon to enable BGPaaS with Virtual Machine Interface
references. The pod must include at least one IPv4 interface.

In the following example, a pod is created in the bgpaas-ns namespace. The annotation associates the
pod with the bgpaas-vn-1 virtual network. The image: variable in the containers: hierarchy points to the
BIRD image file that will provide the BGP service in this example.

apiVersion: v1
kind: Pod
metadata:
 name: bird-pod-1
 namespace: bgpaas-ns
 annotations:
 k8s.v1.cni.cncf.io/networks: bgpaas-vn-1

100

spec:
 containers:
 - name: bird-pod-c
 image: somewhere.juniper.net/cn2/bazel-build/dev/bird-sut:1.0
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true

Confirm that the pod was created after committing the pod object configuration file by entering the
kubectl get vmi -n bgpaas-ns command.

Note the name of the virtual machine interface for the pod in this command output. You will need to
specify the virtual machine interface name later in this procedure when configuring the BGPaaS object.

kubectl get vmi -n bgpaas-ns
 CLUSTERNAME NAME NETWORK PODNAME
IFCNAME STATE AGE
 contrail-k8s-kubemanager-kubernetes bird-pod-1-abb881a8 bgpaas-vn-1 bird-pod-1
eth1 Success 13s
 contrail-k8s-kubemanager-kubernetes bird-pod-1-e3f93f05 default-podnetwork bird-pod-1
eth0 Success 13s

The Virtual Machine interface references are defined while creating the BGPaaS object using the
virtualMachineInterfaceReferences: hierarchy. The namespace: is the pod namespace and the name: is
the virtual machine interface name that you retrieved using the kubectl get vmi -n bgpaas-ns command.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: BGPAsAService
metadata:
 namespace: bgpaas-ns
 name: bgpaas-sample
spec:
 shared: false
 autonomousSystem: 100
 bgpAsAServiceSessionAttributes:
 localAutonomousSystem: 10
 loopCount: 2
 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet

101

 - inet6
 virtualMachineInterfaceReferences:
 - apiVersion: core.contrail.juniper.net/v1alpha1
 kind: VirtualMachineInterface
 namespace: bgpaas-ns
 name: bird-pod-1-abb881a8

Configure the IP Address Allocation Method for BGPasaS

You can configure BGPaaService with one of the following IP address allocation methods:

• automatic IP address allocation—The BGP service assigns IP addresses.

• user-specified IP address allocation—You assign the IP address.

You configure the IP address allocation method in the Subnet object.

Automatic IP address allocation is enabled by default. If you enable BGPaaS without manually disabling
automatic IP address allocation, BGPaaS uses automatic IP address allocation.

You disable automatic IP address allocation by setting the disableBGPaaSIPAutoAllocation: variable in
the Subnet object to true. If the disableBGPaaSIPAutoAllocation: variable is not present in the Subnet
object file, automatic IP address allocation is enabled.

In the following configuration sample, automatic IP address allocation is enabled because the
disableBGPaaSIPAutoAllocation: variable isn't present in the Subnet object configuration file.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: bgpaas-ns
 name: bgpaas-subnet-1
spec:
 cidr: "172.20.10.0/24"

In this configuration sample, automatic IP address allocation is enabled because the
disableBGPaaSIPAutoAllocation: variable is set to false.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:

102

 namespace: bgpaas-ns
 name: bgpaas-subnet-2
spec:
 cidr: "172.20.20.0/24"
 disableBGPaaSIPAutoAllocation: false

To enable user-specified IP address allocation, set the disableBGPaaSIPAutoAllocation: variable to true.
When user-specified IP address allocation is enabled, you must also configure the BGP addresses that
BGPaaS can assign to endpoints within the subnet. You must set a primary IP address using the
bgpaasPrimaryIP: variable. You can also set an optional secondary IP address, which you can see in this
example with the bgpaasSecondaryIP: variable.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: Subnet
metadata:
 namespace: bgpaas-ns
 name: bgpaas-subnet-2
spec:
 cidr: "172.20.20.0/24"
 disableBGPaaSIPAutoAllocation: true
 bgpaasPrimaryIP: 172.20.20.3
 bgpaasSecondaryIP: 172.20.20.4

Configure the BGPasaService Object

You enable BGPaaS in a cluster by creating a BGPAsAService object.

Create the BGPAsAService object by creating a YAML file that uses BGPAsAService in the kind: field:

 apiVersion: core.contrail.juniper.net/v1alpha1
 kind: BGPAsAService
 metadata:
 namespace: bgpaas-ns
 name: bgpaas-test
 spec:
 shared: false
 autonomousSystem: 10
 bgpAsAServiceSessionAttributes:
 loopCount: 2

103

 routeOriginOverride:
 origin: EGP
 addressFamilies:
 family:
 - inet
 - inet6
 virtualMachineInterfacesSelector:
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-1
 - matchLabels:
 core.juniper.net/bgpaasVN: bgpaas-vn-2

Table 11: Spec Field Variables for BGPaaS

This table provides a description of each Spec field variable in the BGPaaS object file.

Field Variable Description

shared: Specifies whether a common BGP router object can be
shared with multiple virtual machine interfaces in the
same virtual network.

When this field is set to true, one BGP client router
can be shared with multiple virtual machine interfaces
in the same virtual network. This setting limits the total
number of BGP client routers that have to be created
in a virtual network for a VMI.

When this field is set to false, one BGP client router is
created for each virtual machine interface.

autonomousSystem: Specifies the global Autonomous System number for
the BGP instance. The Autonomous System number
can be any whole number between 1 and
4294967295.

bgpAsAServiceSessionAttributes: Defines the BGP session attributes for BGPaaS.

See Table 12 on page 105.

104

Table 11: Spec Field Variables for BGPaaS (Continued)

Field Variable Description

virtualMachineInterfaceReferences: Defines the virtual machine interface parameters to
associate with BGPaaS when using virtual machine
interface references.

See Table 13 on page 106.

virtualMachineInterfacesSelector: Defines the virtual networks where BGPaaS runs when
using the virtual machine interfaces selector.

See Table 14 on page 106.

Table 12: BgpAsAServiceSessionAttributes Fields for BGPaaS

The bgpAsAServiceSessionAttributes: in the spec: hierarchy are used in all BGPaaS setups. The
bgpAsAServiceSessionAttributes: hierarchy includes these fields:

Field Description

localAutonomousSystem: Specifies the local Autonomous System number for
BGP.

LoopCount: Specifies the number of times that the same ASN can
be seen in a route update before the route is discarded.
The LoopCount: can be any whole number up to 16.

routeOriginOverride: Overrides the original setting and sets the origin
attribute to Incomplete when forwarding routes.

If you set this field to false, routes are advertised into
BGP based on the origin setting. The origin is either
IGP or EGP and is set using the origin: field in this file.

If you set this field to true, the origin is set to
Incomplete for advertised routes.

Use this field if you want to change how BGP networks
prioritize routes received from the BGP service. By
default, BGP networks prioritize routes based on
origin, and routes with an Incomplete origin receive
lower priority than routes received from IGP or EGP.

105

Table 12: BgpAsAServiceSessionAttributes Fields for BGPaaS (Continued)

Field Description

Origin: Specifies if BGP operates as an interior gateway
protocol (igp) or exterior gateway protocol (egp). The
default route origin is igp.

AddressFamilies: Specifies the address family. You can specify the family
as inet for IPv4 or inet6 for IPv6. You can specify both
address families simultaneously.

Table 13: virtualMachineInterfaceReferences: in BGPaaS

The virtualMachineInterfaceReferences: in the spec: hierarchy include the following fields:

Field Description

apiVersion: Specifies the API version for the virtual machine
interface reference.

kind: Always set this field to VirtualMachineInterface.

namespace: Specifies the namespace associated with the virtual
machine interface reference. You define this
namespace while creating the Pod object. See "Enable
BGPaaS in a Pod Using Virtual Machine Interface
References" on page 100.

name: Specifies the name of the pod associated with the
virtual machine interface reference. You can retrieve
the pod name by entering the kubectl get vmi -n
bgpaas-ns command. See "Enable BGPaaS in a Pod
Using Virtual Machine Interface References" on page
100.

Table 14: The virtualMachineInterfacesSelector: Fields in BGPaaS

The virtualMachineInterfacesSelector: in the spec: hierarchy includes the following fields:

106

Field Description

matchLabels: Define the match labels for the Virtual Machine
Interfaces selector.

The match labels in this context are always used to
reference the virtual networks where the Virtual
Machine interfaces selector is running.

Always enter the match label values in this section as
core.juniper.net/bgpaasVN:virtual-network-name. See
"Enable BGPaaS in a Pod Using the Virtual Machine
Interfaces Selector" on page 98.

Validate the BGP as a Service Configuration

You should confirm that the BGPaaS object is successfully running after you commit the BGPAsAService
object file.

Enter the kubectl get BGPAsAService command after you create the BGPAsAService object to confirm
the object state. The object is successfully created when the State field indicates Success.

kubectl get BGPAsAService -n bgpaas-ns
 NAME AS IPADDRESS SHARED STATE AGE
 bgpaas-sample 100 false Success 33s

You should also ensure the BGPaaS server and the BGPaaS client are created and are in the Success
state.

Enter the kubectl get BGPRouter command to confirm the presence and operational state of the
BGPaaS servers and clients.

kubectl get BGPRouter -n bgpaas-ns
 NAME TYPE IDENTIFIER STATE AGE
 bgpaas-ns-bgpaas-vn-1-bgpaas-server bgpaas-server Success 2m57s
 bgpaas-ns-bgpaas-vn-1-bird-pod-1-abb881a8 bgpaas-client 172.20.10.2 Success 2m57s

107

Configure BGP in Pod

You must also configure the networking parameters for the BGP service running in the pod. The
configuration for each individual BGP service is unique. Documenting the required networking
configuration parameters is beyond the scope of this document. Please check the documentation that
accompanies your BGP service.

In this example, we show you how to configure the BGP network configuration using BIRD.

You configure BGP using the BIRD CLI in this example. The parameters of the BGP configuration that
need to match the BGPaaS objects defined in Cloud-Native Contrail Networking are noted. Although
not shown in this example, you should know that the default location to access the BIRD configuration
file in most deployments is /etc/bird.conf or /etc/bird/bird.conf.

 # Change the router id to your BIRD router ID. It's a world-wide unique identification
 # of your router, usually one of router's IPv4 addresses.
 router id 172.20.10.2;

 protocol direct {
 interface "eth1*"; -> interface on which BGPAsAService needs to be configured
 }

 protocol bgp bgp1_1 {
 import all;
 export all;
 local as 10; -> AS configured in BGPAsAService
 neighbor 172.20.10.3 as 64512; -> neighbor for primary BGP session, use
BGPaaSPrimaryIP from subnet
 neighbor 172.20.10.3 as 64512; -> neighbor for secondary BGP session, use
BGPaaSSecondaryIP from subnet

From your BGP service, verify that the BGP protocol is running.

In this example from BIRD, you enter the show protocol command to verify that the BGP protocol is
established in BIRD.

birdc show protocol bgp1_1
 BIRD 1.6.8 ready.
 name proto table state since info
 bgp1_1 BGP master up 10:31:27 Established

108

Create an Isolated Namespace

SUMMARY

This topic describes how to create an isolated
namespace in CN2 Release 22.1 or later in a
Kubernetes-orchestrated environment.

IN THIS SECTION

Namespace Overview | 109

Example: Isolated Namespace
Configuration | 110

Isolated Namespace Objects | 113

Create an Isolated Namespace | 114

Optional Configuration: IP Fabric Forwarding
and Fabric Source NAT | 116

Enable IP Fabric Forwarding | 116

Enable Fabric Source NAT | 118

Namespace Overview

NOTE: In this document, we use the term "isolated" and "non-isolated" in the context of Contrail
networking only.

Non-isolated Namespaces.

Namespaces, or non-isolated namespaces, provide a mechanism for isolating a group of resources within
a single cluster. By default, namespaces are not isolated.

Non-isolated namespaces are intended for use in environments with many users spread across multiple
teams, or projects. Non-isolated namespaces enable each team to exist in their own virtual cluster
without impacting each other's work. Let's say you created all your resources in the default namespace
that Kubernetes provides. If you have a complex application with multiple deployments, the default
namespace can be hard to maintain. An easier way to manage this deployment is to group all your
resources into different namespaces within the cluster. For example, the cluster can contain separate
namespaces, such as a database namespace or a monitoring database. Names of resources must be
unique within a namespace, but not across namespaces.

Pods in a non-isolated namespace exhibit the following network behavior:

109

• Pods in non-isolated namespaces can communicate with other pods in the cluster without using
NAT.

• Pods and services in non-isolated namespaces share the same default-podnetwork and default-
servicenetwork.

Isolated Namespaces.

An isolated namespace enables you to run customer-specific applications that you want to keep private.
You can create an isolated namespace to isolate a pod from other pods, without explicitly configuring a
network policy.

Isolated namespaces are similar to non-isolated namespaces, except that each isolated namespace has
its own pod network and service network. This means that pods in isolated namespaces cannot reach
pods or services in other isolated or non isolated namespaces.

Pods in isolated namespace can only communicate with pods in the same namespace. The only
exception is when a pod in an isolated namespace needs access to a Kubernetes service, such as Core
DNS. In this case, the pod uses the cluster's default-servicenetwork to access the services.

Pods in an isolated namespace exhibit the following network behavior:

• Pods in isolated namespaces can only communicate with pods in the same namespace.

• Pods in isolated namespaces can reach services in non-isolated namespaces.

• The IP addresses and service IP addresses of pods in isolated namespaces are allocated from the
same subnet as the cluster's pod and service subnet.

• Pods in an isolated namespace can access the underlay network, or IP fabric network, though IP
fabric forwarding and fabric source NAT.

NOTE: You cannot covert a non-isolated namespace to an isolated namespace, and vice versa.

Example: Isolated Namespace Configuration

This sample configuration demonstrates an isolated namespace configuration in CN2.

110

Figure 8: Isolated Namespace Configuration

In the isolated namespace configuration:

• Pod-1 (non-isolated-1) is in a non-isolated namespace created by the user.

• Pod-2 (kube-system) and Pod-3 (contrail) are in non-isolated namespaces created by the controller.

• Pod-4 (isolated-1) and Pod-5 (isolated-2) are in isolated namespaces created by the user.

• The interfaces for Pod-1, Pod-2, Pod-3 are created from the cluster's default-podnetwork and default-
servicenetwork.

• The interfaces for Pod-4 and Pod-5 are created on the default-podnetwork and default-servicenetwork in
their own isolated namespaces. Both Pod-4 and Pod-5 interfaces share the same subnet as the
cluster’s default-podnetwork and default-servicenetwork.

111

• Pods in isolated namespaces cannot communicate with pods in non-isolated namespaces. In this
example, Pod-4 and Pod-5 in isolated namespaces cannot communicate with Pod-1, Pod-2, Pod-3 in
non-isolated namespaces.

• Pods in isolated namespaces (Pod-4, Pod 5) can access any service through the cluster's default-
servicenetwork.

• Pods in all namespaces (non-isolated and isolated) are able to connect to the fabric through the
cluster's ip-fabric-network.

Notes

• Isolated namespaces affect only the pod's default interface. This is because the default interface of
pods in an isolated namespace are created on the default-podnetwork of the isolated namespace.
However, interfaces from user-defined VirtualNetworks behave the same way in both isolated and non-
isolated namespaces.

• You can create network policies on isolated namespaces to adjust the isolation of pods. The network
policy behaves the same for both isolated and non-isolated namespaces.

• Two or more isolated namespaces can be interconnected through the VirtualNetworkRouter (VNR). See
"VirtualNetworkRouter Overview" on page 139.

Here is an example of a VNR configuration used to interconnect the default-podnetworks of two isolated
namespaces (ns-isolated-1 and ns-isolated-2). In this configuration, the VirtualNetworkRouter connects to ns-
isolated-1 and ns-isolated-2. This means that pods in these isolated namespaces can communicate with
each other.

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetworkRouter
metadata:
 namespace: ns-isolated-1
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: vnr-1
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: core.juniper.net/virtualnetwork
 operator: In
 values:

112

 - isolated-namespace-pod-virtualnetwork
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: vnr-2
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: ns-isolated-2

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetworkRouter
metadata:
 namespace: ns-isolated-2
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-2
 labels:
 vnr: vnr-2
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: core.juniper.net/virtualnetwork
 operator: In
 values:
 - isolated-namespace-pod-virtualnetwork
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: vnr-1
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: ns-isolated-1

Isolated Namespace Objects

This table describes the namespace objects (API resources) the controller creates when you create an
isolated namespace.

113

Table 15: Isolated Namespace Objects

Isolated Namespace Object Description

default-podnetwork (VirtualNetwork) The default interfaces of pods in an isolated
namespace are created in this default-podnetwork,
instead of the cluster's default-network.

default-servicenetwork (VirtualNetwork) The cluster IP of services in isolated namespaces are
created in this default-servicenetwork, instead of the
cluster's default-servicenetwork.

IsolatedNamespacePodServiceNetwork
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork and default-
servicenetwork.

IsolatedNamespaceIPFabricNetwork
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork and default-
servicenetworkto the cluster's ip-fabricnetwork.

IsolatedNamespacePodToDefaultService
(VirtualNetworkRouter)

This object establishes connectivity between the
isolated namespace's default-podnetwork to the cluster’s
default-servicenetwork.

Create an Isolated Namespace

Follow these steps to create an isolated namespace:

1. Create a YAML file called ns-isolated.yaml.

2. Add the label core.juniper.net/isolated-namespace to the namespace metadata and set the variable to
"true".

apiVersion: v1
kind: Namespace
metadata:
 name: ns-isolated
 labels:
 core.juniper.net/isolated-namespace: "true"

114

3. Issue the kubectl apply command to apply the configuration.

kubectl apply -f ns.yaml

4. To verify your configuration, issue the kubectl get ns ns-isolated -o yaml command.

apiVersion: v1
kind: Namespace
metadata: `\
 annotations:
 core.juniper.net/forwarding-mode: "false"
 kubectl.kubernetes.io/last-applied-configuration: |
 {"apiVersion":"v1","kind":"Namespace","metadata":{"annotations":{"core.juniper.net/
forwarding-mode":"false"},"labels":{"core.juniper.net/isolated-namespace":"true"},"name":"ns-
isolated"}}
 creationTimestamp: "2021-10-04T21:47:40Z"
 finalizers:
 - finalizers.core.juniper.net/isns-virtualnetworks-delete
 - finalizers.core.juniper.net/isns-virtualnetworkrouters-delete
 labels:
 core.juniper.net/isolated-namespace: "true"
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
 …
 …
 …
 name: ns-isolated
 resourceVersion: "4183"
 uid: d25d2b71-2051-4ac5-a738-e9b344235818
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

Success! You created an isolated namespace.

115

Optional Configuration: IP Fabric Forwarding and Fabric Source NAT

Optionally, you can enable IP fabric forwarding and fabric source NAT on an isolated namespace.

IP fabric forwarding enables virtual networks to be created as part of the underlay network and
eliminates the need for encapsulation and de-encapsulation of data. Fabric source NAT allows pods in
the overlay to reach the Internet without floating IPs or a logical system.

When you create an isolated namespace, two virtual networks are created, a default-podnetwork and a
default-servicenetwork. By default, IP fabric forwarding and fabric source NAT in these two virtual
networks are disabled. You enable IP fabric forwarding or fabric source NAT in the virtual networks by
adding “forwarding-mode” annotations for each feature in your isolated namespace YAML file.

Here is an example of the default-podnetwork for an isolated namespace with forwarding-mode set to
fabricSNAT.

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetwork
metadata:
 annotations:
 core.juniper.net/description: Default Pod Network for IsolatedNamespace (ns-isolated)
 core.juniper.net/display-name: default-podnetwork
 ...
spec:
 ...
 fabricSNAT: true
 ...

Enable IP Fabric Forwarding

Follow these steps to enable IP fabric forwarding on an isolated namespace:

1. Add the annotation core.juniper.net/forwarding-mode: "ip-fabric" to the namespace metadata.

2. Set the label for the isolated namespace to "true".

apiVersion: v1
kind: Namespace
metadata:
 name: ns-isolated

116

 annotations:
 core.juniper.net/forwarding-mode: "ip-fabric"
 labels:
 "core.juniper.net/isolated-namespace": "true"

3. Issue the kubectl apply command to enable IP fabric forwarding.

kubectl apply -f ns-isolated.yaml

4. Verify your configuration.

get vn -n ns-isolated default-podnetwork -o yaml

spec:
 fabricForwarding: true
 fabricSNAT: false
 fqName:
 - default-domain
 - ns-isolated
 - default-podnetwork
 providerNetworkReference:
 apiVersion: core.contrail.juniper.net/v3
 fqName:
 - default-domain
 - contrail
 - ip-fabric
 kind: VirtualNetwork
 name: ip-fabric
 namespace: contrail
 resourceVersion: "5629"
 uid: bdb0ae55-d5e5-49b2-803d-d93eea206df0
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 fqName:
 - default-domain
 - contrail-k8s-kubemanager-mycluster-contrail
 - default-podnetwork-pod-v4-subnet
 kind: Subnet
 name: default-podnetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-mycluster-contrail

117

 resourceVersion: "4999"
 uid: fc9b9471-3b3e-4a57-80ac-5b9ed806fe94
 virtualNetworkProperties:
 forwardingMode: l3
 rpf: enable
status:
 observation: ""
 state: Success
 virtualNetworkNetworkId: 5

Success! You enabled IP fabric forwarding on the isolated namespace.

Enable Fabric Source NAT

NOTE: You can only enable fabric source NAT on the default-podnetwork.

Follow these steps to enable fabric source NAT on an isolated namespace:

1. Add the annotation core.juniper.net/forwarding-mode: "fabric-snat" to the namespace metadata.

2. Set the label for the isolated namespace to "true".

apiVersion: v1
kind: Namespace
metadata:
 name: ns-isolated
 annotations:
 core.juniper.net/forwarding-mode: "fabric-snat"
 labels:
 "core.juniper.net/isolated-namespace": "true"

3. Issue the kubectl apply command to enable fabric source NAT.

kubectl apply -f ns-isolated.yaml

118

4. Verify your configuration.

kubectl get vn -n <isolated-namespace-name> default-podnetwork

Success! You enabled fabric source NAT on the isolated namespace.

spec:
 fabricSNAT: true
 fqName:
 - default-domain
 - ns-isolated-snat
 - default-podnetwork
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 fqName:
 - default-domain
 - contrail-k8s-kubemanager-mycluster-contrail
 - default-podnetwork-pod-v4-subnet
 kind: Subnet
 name: default-podnetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-mycluster-contrail
 resourceVersion: "4999"
 uid: fc9b9471-3b3e-4a57-80ac-5b9ed806fe94
 virtualNetworkProperties:
 forwardingMode: l3
 rpf: enable
status:
 observation: ""
 state: Success
 virtualNetworkNetworkId: 7

SEE ALSO

Enable IP Fabric Forwarding and Fabric Source NAT | 2

119

Configure Allowed Address Pairs

Starting in CN2 Release 22.1 or later, Juniper Networks supports allowed address pairs (AAPs). Allowed
address pairs enables you to add IP/MAC (CIDR) addresses to the guest interface (VirtualMachineInterface)
by using a secondary IP address.

When you create a pod in a cluster, each pod automatically obtains its IP address from the virtual
machine (VM) interface. If your pod is not on the same virtual network, you can add an AAP to allow
traffic to flow through the port regardless of the subnet. For example, let's say that your pod's IP address
is 192.168.2.0. If you define an AAP with subnet 192.168.2.0/24, the AAP allows the pods to
communicate with the guest interface. The vRouter then forwards the traffic and advertises reachability
to the pod.

To configure an allowed address pair, insert the following attributes into your pod YAML file. For
example:

kind: Pod
metadata:
 name: my-pod
 namespace: my-namespace
 annotations:
 k8s.v1.cni.cncf.op/networks: |
 [
 {
 "name": "net-a",
 "cni-args": {
 "net.juniper.contrail.allowedAddressPairs": [{
 "ip": 192.168.2.0/24
 "mac": "02:3f:66:ad:00:e9",
 "addressMode": "active-active"
 }],}
 ...
 },
 {
 "name": "net-b",
 ...
 },

The AllowedAddressPairs attribute contains a list of allowed address pair definitions, as described in the
following table:

120

Table 16: Allowed Address Pair Definitions

Definition Description

ip Specify the external pod IP address through which you
want to allow traffic to pass.

mac (Optional) Specify the MAC address of the external
pod.

addressMode (Optional) Specify a high availability (HA) address
mode. Choose from active/active or active/standby.
Active/standby is the default.

The addressMode default value is an empty string.
Active/standby is used for VRRP addresses. Active/
active is used for ECMP.

In Kubemanager, the PodController watches for Pod events and reads the interface definitions for each
new AAP. The controller then generates an AllowedAddressPair and adds it to the list of interfaces in the
VirtualMachineInterface.

Alternative Configuration

Alternatively, you can configure AAP interfaces directly from the VirtualMachineInterface. For example:

kubectl patch --namespace project-kubemanager VirtualMachineInterface $VMINAME -p "$(cat ./
aap.yaml)"

The preceding command updates the existing VirtualMachineInterface with the AAP configuration, as
follows:

spec:
 allowedAddressPairs:
 allowedAddressPair:
 - ip:
 ipPrefix: 192.0.2.0
 ipPrefixLen: 24

121

Enable Packet-Based Forwarding on Virtual
Interfaces

IN THIS SECTION

Overview | 122

Configure Packet Mode on a Virtual Interface | 122

Juniper Networks supports packet-based forwarding on virtual interfaces using CN2 Release 22.1 or
later in a Kubernetes-orchestrated environment.

Overview

By default, Contrail compute nodes use flow mode for packet forwarding on a virtual interface. This
means that every vRouter has a flow table to keep track of all flows that pass through it. In flow mode,
the virtual interface processes all traffic by analyzing the state or session of traffic. However, in some
instances you might want to switch from flow mode to packet mode. For example, you might want to
achieve higher traffic-forwarding performance or get around certain limitations of flow mode.

In packet mode, the virtual interface processes the traffic on a per-packet basis and ignores all flow
information. The main advantage of packet mode is that the processing type is stateless. Stateless mode
means that the virtual interface does not keep track of session information or goes through traffic
analysis to determine how a session is established.

NOTE: Features that require a network policy (such as ACLs, security groups, and floating IPs) are
unable to work in packet mode.

Configure Packet Mode on a Virtual Interface

To configure packet mode on a virtual interface:

1. Verify that you are running flow mode. For example:

122

Generate some traffic by pinging another pod in the same network. In this example, the pod's IP
address is 25.26.27.2.

root@pod-vn-1:/# ping -q -c5 25.26.27.2
PING 25.26.27.2 (25.26.27.2) 56(84) bytes of data.

--- 25.26.27.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4057ms
rtt min/avg/max/mdev = 0.059/1.721/7.620/2.955 ms

2. Use the flow command-line tool to check for flows. The following example indicates that the
virtualMachineInterface is in flow mode.

root@minikube:/# flow -l --match 25.26.27.3
...
...
Listing flows matching ([25.26.27.3]:*)

 Index Source:Port/Destination:Port Proto(V)

 159692<=>400664 25.26.27.2:28 1 (3)
 25.26.27.3:0
(Gen: 1, K(nh):39, Action:F, Flags:, QOS:-1, S(nh):39, Stats:5/490, SPort 64222,
 TTL 0, UnderlayEcmpIdx:0, Sinfo 7.0.0.0)

 400664<=>159692 25.26.27.3:28 1 (3)
 25.26.27.2:0
(Gen: 1, K(nh):33, Action:F, Flags:, QOS:-1, S(nh):33, Stats:5/490, SPort 56567,
 TTL 0, UnderlayEcmpIdx:0, Sinfo 5.0.0.0)

3. Enable packet mode on the virtualMachineInterface.

Create a patch file named packet-mode-patch.yaml, and set the VMI policy to true.

spec:
 virtualMachineInterfaceDisablePolicy:true

123

4. Apply the patch.

[user@machine:~]$ kubectl -n vmi-disablepolicy patch vmi pod-vn-1-7d622c4d --patch "$(cat
packet-mode-patch.yaml)"
virtualmachineinterface.core.contrail.juniper.net/pod-vn-1-7d622c4d patched

After you apply the patch flow mode switches to packet mode, as shown in the following example:

[user@machine:~]$ kubectl -n vmi-disablepolicy get vmi pod-vn-1-7d622c4d -oyaml |
yq .spec.virtualMachineInterfaceDisablePolicy
true

5. Verify that packet mode is active.

Generate traffic by pinging another pod in the same network that you pinged in Step 1.

root@pod-vn-1:/# ping -q -c5 25.26.27.2
PING 25.26.27.2 (25.26.27.2) 56(84) bytes of data.

--- 25.26.27.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4105ms
rtt min/avg/max/mdev = 0.051/2.725/13.388/5.331 ms

6. Use the flow command-line tool to check for flows.

root@minikube:/# flow -l --match 25.26.27.3
...
...
Listing flows matching ([25.26.27.3]:*)

 Index Source:Port/Destination:Port Proto(V)

Success! No flows exist, which indicates that you are in packet mode.

124

Configure Reverse Path Forwarding on Virtual
Interfaces

IN THIS SECTION

Overview | 125

Enable RPF on a Virtual Interface | 126

Starting in CN2 Release 22.1 or later, Juniper Networks supports reverse path forwarding (RPF) on
virtual interfaces in a Kubernetes-orchestrated environment.

Overview

Unicast reverse-path-forwarding (RPF) verifies that a packet is sent from a valid source address by
performing an RPF check. RPF check is a validation tool that uses the IP routing table to verify whether
the source IP address of an incoming packet is arriving from a valid path. RPF helps reduce forwarding of
IP packets that might be spoofing an IP address.

When a packet arrives on an interface, RPF performs a forwarding table lookup on the packet's source
IP address and checks the incoming interface. The incoming interface must match the interface on which
the packet arrived. If the interface doesn't match, the vRouter drops the packet. If the packet is from a
valid path, the vRouter forwards the packet to the destination address.

You can enable or disable source RPF on a per-virtual network basis. By default, RPF is disabled.

• RPF enable: Whenever a packet reaches the interface, RPF performs a check on the packet's source
IP address. All packets are dropped if the route is not learned by the vRouter. Only packets received
from the MAC/IP address allocated to the workload are permitted on an interface.

• RPF disable: Packets from any source are accepted on the interface. A forwarding table lookup is not
performed on the incoming packet source IP address.

125

Enable RPF on a Virtual Interface

To enable RPF on a virtual interface, set the rpf variable under virtualNetworkProperties to enable. For
example:

apiVersion: v1
kind: Namespace
metadata:
 name: rpf-ns

apiVersion: core.contrail.juniper.net/v3
kind: Subnet
metadata:
 namespace: rpf-ns
 name: rpf-subnet-1
 annotations:
 core.juniper.net/display-name: Sample Subnet
 core.juniper.net/description:
 Subnet represents a block of IP addresses and its configuration.
 IPAM allocates and releases IP address from that block on demand.
 It can be used by different VirtualNetwork in the mean time.
spec:
 cidr: "172.20.10.0/24"

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetwork
metadata:
 namespace: rpf-ns
 name: rpf-vn-1
 annotations:
 core.juniper.net/display-name: Sample Virtual Network
 core.juniper.net/description:
 VirtualNetwork is a collection of end points (interface or ip(s) or MAC(s))
 that can communicate with each other by default. It is a collection of
 subnets whose default gateways are connected by an implicit router
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 kind: Subnet
 namespace: rpf-ns
 name: rpf-subnet-1

126

 fabricSNAT: true
 virtualNetworkProperties:
 rpf: enable

RELATED DOCUMENTATION

Understanding How Unicast Reverse Path Forwarding Prevents Spoofed IP Packet Forwarding

vRouter Interface Health Check

SUMMARY

In Juniper® Cloud-Native Contrail Networking (CN2)
Release 22.3, a new health-check custom resource
object is introduced that associates the virtual
machine interface (VMI) to the pod creation and
update workflow. The health-check resource is a
namespace-scoped resource.

IN THIS SECTION

vRouter Interface Health Check
Overview | 127

Create a Health-Check Object | 128

Health-Check Process | 133

vRouter Interface Health Check Overview

The Contrail vRouter agent provides the health-check functionality. You can associate a ping or HTTP
health check to an interface. If the health check fails, the interface is set as administratively down and
associated routes are withdrawn. Those settings are based on the timers and intervals configured in the
health-check object. Health check traffic continues to be transmitted in an administratively down state
to allow for an interface to recover.

127

https://www.juniper.net/documentation/en_US/junos/topics/concept/unicast-rpf-understanding.html

Create a Health-Check Object

NOTE: These two attributes (targetIpList and targetIpAll) related to VMI health check are not
supported in CN2 Release 22.3. These two attributes will be supported in a future release.

To create a health-check object:

1. In the deployment manifests from the Contrail Networking download page, use the hc.yaml file
(shown below) for the YAML definition for health-check objects. The same folder also includes the
hc_pod.yaml, which has the YAML definition to associate the health-check object with VMI by means
of pod definitions.

Sample hc.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: healthcheck

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
 name: ping-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:
 delay: 2
 enabled: true
 healthCheckType: end-to-end
 maxRetries: 5
 monitorType: PING
 timeout: 5

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
 name: bfd-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:

128

https://support.juniper.net/support/downloads/?p=contrail-networking

 delay: 2
 enabled: true
 healthCheckType: link-local
 maxRetries: 5
 monitorType: BFD
 timeout: 5

apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
 name: http-hc
 namespace: healthcheck
spec:
 serviceHealthCheckProperties:
 delay: 2
 enabled: true
 healthCheckType: end-to-end
 maxRetries: 5
 monitorType: HTTP
 timeout: 5
 httpMethod: GET
 expectedCodes: 200
 urlPath: /health

2. Complete the parameters to define the health check. Table 17 on page 129 lists and explains the
parameters.

Table 17: Health-Check Configurable Parameters

Field Description

Delay The delay, in seconds, to repeat the health check.

DelayUsecs Time in micro seconds at which the health check is
repeated.

Enabled Indicates that the health check is enabled. The
default is False.

ExpectedCodes When the monitor protocol is HTTP, the expected
return code for HTTP operations must be in the
range of 200-299.

129

Table 17: Health-Check Configurable Parameters (Continued)

Field Description

HealthCheckType Indicates the health-check type: link-local, end-to-
end, segment, vn-ip-list, and end2end. The default is
link-local.

In both link-local and end-to-end modes, the health
check is executed for the pod on the vRouter where
the VMI is running.

HttpMethod When the monitor protocol is HTTP, the type of
HTTP method used is GET.

MaxRetries The number of retries to attempt before declaring a
health down instance .

MonitorType The protocol type to be used is PING, BFD, or TCP.

targetIpList NOTE: Attribute is configurable but not supported in
CN2 Release 22.3. This attribute will be supported in
a future release.

targetIpAll NOTE: Attribute is configurable but not supported in
CN2 Release 22.3. This attribute will be supported in
a future release.

Timeout The number of seconds to wait for a response.

TimeoutUsecs Time in micro seconds to wait for response.

UrlPath Must be a valid URL, such as http://172.16.0.1/
<path>. The IP address can be a placeholder that will
be replaced with the pod link-local IP address or
metadata IP address.

Following is an abstract Golang schema for the health-check resource:

type ServiceHealthCheckProperties struct {
 Delay *int
 DelayUsecs *int

130

 Enabled boolean
 ExpectedCodes int // Only for http
 HealthCheckType (link-local | end-to-end |segment | vn-ip-list) //end2end
 HttpMethod *string
 MaxRetries int
 MonitorType (ping | BFD |TCP)
 Timeout int
 TimeoutUsecs int

}

type ServiceHealthCheckSpec struct {
 ServiceHealthCheckProperties *ServiceHealthCheckProperties
}

type ServiceHealthCheckStatus struct {
 uuid *string
}

type ServiceHealthCheck struct {
 <kube_specific_objetcs>
 Spec ServiceHealthCheckSpec
 Status ServiceHealthCheckStatus
}

The YML representation for the Golang schema is:

```
apiVersion: core.contrail.juniper.net/v1alpha1
kind: ServiceHealthCheck
metadata:
  name: ping-hc
  namespace: healthcheck
spec:
  serviceHealthCheckProperties:
    delay: 2
    enabled: true
    healthCheckType: end-to-end  #valid values are link-local|end-to-end|segment|vn-ip-list
    maxRetries: 5
    monitorType: PING  #valid are PING|HTTP|BFD
    timeout: 5

131



```

3. Link the health-check object to the VMI by means of the pod annotation reference value
core.juniper.net/health-check. The default behavior is to associate the health check with the primary
interface.

apiVersion: v1
kind: Pod
metadata:
 name: hc_pod
 namespace: hc_ns
 annotations:
 core.juniper.net/health-check: '[{"name": "ping-hc", "namespace": "healthcheck"}]'
spec:
 <>

4. (Optional) To link the health check with multiple interfaces, attached to a different Network
Attachment Definition (NAD) or virtual network (VN), you can refer the health check object within
the cni-args section. Following is an example of configured cni-args in annotations.

apiVersion: v1
kind: Pod
metadata:
 name: hc_pod
 namespace: hc_ns
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "hc-vn",
 "namespace": "healthcheck",
 "cni-args": {
 "core.juniper.net/health-check": "[{\"name\": \"ping-hc\", \"namespace\":
\"healthcheck\"}]"
 }
 }
]
spec:
 <>

132

Existing VMI objects will have a new field to reference the HealthCheck object.

type VirtualMachineInterfaceStatus struct {
 <existing_vmi_status_attributes>
 ServiceHealthCheckReference *ResourceReference
}

type VirtualMachineInterface struct {
 <other VMI attributes>
 Status VirtualMachineInterfaceStatus
}

For the PING or HTTP monitoring-based health check, the minimum interval is 1second. If you need a
sub-second level health check for critical applications, you can opt for the BFD-based monitoring
type.

Health-Check Process

The Contrail vRouter agent is responsible for providing the health-check service. The agent spawns a
health-check probe process to monitor the status of a service hosted on the same compute node. Then
the process updates the status to the vRouter agent.

The vRouter agent acts on the status provided by the script to withdraw or restore the exported
interface routes. The agent is responsible for providing a link-local metadata IP address for allowing the
script to communicate with the destination IP address from the underlay network, using appropriate
NAT translations. In a running system, this information is displayed in the vRouter agent introspect at:

http://<compute-node-ip>:8085/Snh_HealthCheckSandeshReq?uuid=

133

Kubernetes Ingress Support

SUMMARY

Cloud-Native Contrail® Networking™ supports the
Container Network Interface (CNI) for integration
with Kubernetes. This topic provides an overview of
Kubernetes ingress service implementation in Cloud-
Native Contrail Networking. This topic also contains
a list of validated Kubernetes ingress controllers and
their installation instructions.

IN THIS SECTION

Ingress Controller Overview | 134

Validated Ingress Controllers | 136

NGINX Ingress Controller | 136

HAProxy Ingress Controller | 137

Contour Ingress Controller | 137

Ingress Controller Overview

You must have a Kubernetes ingress controller for an ingress to function properly. An ingress controller
receives traffic from outside a Kubernetes cluster and routes and load-balances that traffic to containers
within a cluster. Ingress controllers also manage egress traffic between services within a cluster and
external services. Controllers automatically route traffic to containers depending on service
requirements.

Ingress controllers deploy ingress resources. Ingress resources comprise rules that specify which
inbound traffic connections reach which services (pods). Ingress resources, combined with ingress
controllers, route Layer 7 traffic to containers in a cluster.

Here's an example of an NGINX ingress resource:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: apple-app-echo
 namespace: ingress-nginx-test
spec:
 selector:
 matchLabels:
 app: apple-echo
 replicas: 1
 template:
 metadata:

134

 labels:
 app: apple-echo
 spec:
 containers:
 - name: apple-echo
 image: <nginx>:<latest>
 args:
 - "-text=apple-echo"

Ingress resources contain spec fields such as type: NodePort and type: LoadBalancer. These service types
determine a controller's traffic routing and forwarding behavior. For example, if you enter a NodePort in
the type field, the control plane allocates a port from a range (default 30000–32767) of ports to your
service.

Consider the following example:

apiVersion: v1
kind: Service
metadata:
 name: envoy
 namespace: projectcontour
 annotations:
spec:
 #externalTrafficPolicy: Local
 ports:
 - port: 80
 name: http
 protocol: TCP
 nodePort: 30080
 targetPort: 8080
 - port: 443
 name: https
 protocol: TCP
 targetPort: 8443
 nodePort: 30443
 selector:
 app: envoy
 type: NodePort

Some highlights from the example above include:

• selector: The label selector that determines which set of pods this service targets. In this example, this
service selects any pod with the label app: envoy.

135

https://kubernetes.io/docs/concepts/overview/components/

• port: The service port (80).

• targetPort: The actual port used by the application in the container (8080).

• nodePort: The port on the host of each node in the cluster that your service is exposed to (30080).

Different ingress controllers require different configurations. Review the documentation of your ingress
controller for annotation, specification, and configuration information.

Validated Ingress Controllers

Cloud-Native Contrail Networking supports many ingress controllers. We've validated the following
three popular third-party controllers for use with Cloud-Native Contrail Networking:

• NGINX

• HAProxy

• Contour

NGINX Ingress Controller

NGINX is an open-source HTTP server that also functions as a reverse proxy, load balancer, and IMAP
or POP3 proxy server. The NGINX ingress controller is a Kubernetes controller that deploys an NGINX
configuration using a ConfigMap resource. Other than endpoint-only changes, you must reload NGINX
after any change to the configuration file occurs. This reload mechanism is powered by a lua-nginx-
module. NGINX requires Kubernetes v1.22 or later.

NOTE: We support the NGINX ingress controller in environments using Cloud-Native Contrail
Networking as the software-defined networking (SND) solution starting in Contrail Networking
Release 21.4.

See the NGINX Ingress Controller installation guide for installation instructions. This guide contains
instructions for installing NGINX using several different methods (Docker, minikube, Helm).

136

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://docs.nginx.com/nginx-ingress-controller/
https://haproxy-ingress.github.io/docs/
https://projectcontour.io/docs/v1.16.0/config/annotations/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#understanding-configmaps-and-pods
https://github.com/openresty/lua-nginx-module
https://github.com/openresty/lua-nginx-module
https://kubernetes.github.io/ingress-nginx/deploy/
https://docs.docker.com/desktop/#download-and-install
https://minikube.sigs.k8s.io/docs/start/#:~:text=minikube%20start%201%20Installation.%20Click%20on%20the%20buttons,4%20Deploy%20applications.%20...%205%20Manage%20your%20cluster
https://helm.sh/

HAProxy Ingress Controller

The HAProxy ingress controller provides TCP and HTTP routing and high availability (HA) load balancing.
HAProxy offers features such as Runtime API, Data Plane API, and hitless reloads. These features excel
in dynamic, high-traffic environments where users constantly deploy, configure, and terminate pods,
services, and microservices. The HAProxy ingress controller v0.13 requires Kubernetes v1.19 or later.

NOTE: Starting in Contrail Networking Release 21.4, we support the HAProxy ingress controller
in environments using Cloud-Native Contrail Networking as the SDN solution.

See the HAProxy Getting Started guide for installation instructions.

NOTE: You must use Helm to install and to configure the HAProxy ingress controller. See
Installing Helm for more information.

Contour Ingress Controller

Contour ingress controller deploys an Envoy proxy as a reverse proxy and load balancer. Envoy is a Layer
7 bus network for proxy services and communication. Envoy is deployed as a self-contained proxy
instead of a library. As a result, any application can access Envoy’s load-balancing features. This
implementation is suitable for a distributed system such as a Kubernetes cluster. Other benefits of
Contour include:

• Easy installation and integration of Envoy.

• Stable ingress support in multi-team Kubernetes clusters.

• Dynamic updates and ingress configuration without interruptions or dropped connections.

Contour requires Kubernetes 1.16 or later. You must enable role-based access control (RBAC) in your
cluster for Contour to function properly.

NOTE: Starting in Contrail Networking Release 21.4, we support the Contour ingress controller
in environments using Cloud-Native Contrail Networking as the SDN solution.

137

https://www.haproxy.com/blog/dynamic-configuration-haproxy-runtime-api/
https://www.haproxy.com/blog/new-haproxy-data-plane-api/
https://www.haproxy.com/blog/hitless-reloads-with-haproxy-howto/
https://haproxy-ingress.github.io/docs/getting-started/
https://helm.sh/
https://helm.sh/docs/intro/install/

See the Getting Started guide for instructions about how to install the Contour ingress controller. This
guide contains instructions about how to install and configure Contour with either kind or Docker. Install
Contour after installing kind or Docker to run your ingress controller.

Deploy VirtualNetworkRouter in Cloud-Native
Contrail Networking

SUMMARY

Cloud-Native Contrail® Networking™ supports the
VirtualNetworkRouter (VNR) construct. This construct
provides connectivity between VirtualNetworks.

IN THIS SECTION

VirtualNetworkRouter Overview | 139

VirtualNetworkRouter Use Cases | 139

Mesh Use Cases | 139

Hub-spoke Use Cases | 140

Mesh VNR That Connects Two or More
Virtual Networks in the Same
Namespace | 140

Add New Virtual Networks Within the Same
Namespace to an Existing Mesh-Type
VNR | 141

Two Mesh VNRs in the Same
Namespace | 142

Two Mesh VNRs with Different
Namespaces | 143

Hub and Spoke VNRs in the Same
Namespace | 144

Hub and Spoke VNRs in Different
Namespaces | 145

Same Virtual Networks Under Multiple
VNRs | 146

Use Case Explanation | 146

Standard Use Case: Single VNR Connecting
Two Virtual Networks | 147

138

https://projectcontour.io/getting-started/
https://kind.sigs.k8s.io/docs/user/quick-start/
https://docs.docker.com/desktop/#download-and-install

Update Use Case: Single VNR Connecting
Two Additional Virtual Networks | 150

VirtualNetworkRouter Configuration | 154

API Type (Schema) | 154

Mesh VNR | 155

Spoke VNR | 156

Hub VNR | 156

VirtualNetworkRouter Overview

Typically, VirtualNetwork (VN) traffic is isolated to maintain tenant separation. In Cloud-Native Contrail
Networking (CN2), VirtualNetworkRouter (VNR) performs route leaking. Route leaking establishes
connectivity between VirtualNetworks by importing routing instances (RI) and the routing tables
associated with these instances. As a result, devices in one routing table can access resources from
devices in another routing table.

The VNR provides connectivity for the following two common network models:

• Mesh: Pods in all connected VirtualNetworks communicate with each other.

• Hub-spoke: VirtualNetworks connect to two different VNR types (spoke, hub). VirtualNetworks connected
to spoke-type VNRs communicate with VirtualNetworks connected to hub-type VNRs and vice versa.
VirtualNetworks connected to spoke VNRs cannot communicate with other VirtualNetworks attached to
spoke VNRs.

VNR is a Kubernetes construct deployed within CN2.

VirtualNetworkRouter Use Cases

The following examples are common use cases that demonstrate the functionality of VNR in CN2.

Mesh Use Cases

• "Mesh VNR That Connects Two or More Virtual Networks in the Same Namespace" on page 140

139

• "Add New Virtual Networks Within the Same Namespace to an Existing Mesh-Type VNR" on page
141

• "Two Mesh VNRs in the Same Namespace" on page 142

• "Two Mesh VNRs with Different Namespaces" on page 143

Hub-spoke Use Cases

• "Hub and Spoke VNRs in the Same Namespace" on page 144

• "Hub and Spoke VNRs in Different Namespaces" on page 145

• "Same Virtual Networks Under Multiple VNRs" on page 146

Mesh VNR That Connects Two or More Virtual Networks in the Same
Namespace

1. Figure-1: The user creates VN1 and VN2 in namespace-1. Pods in VN1 cannot connect to pods in
VN2. This is the default behavior of VirtualNetworks in CN2.

2. Figure-2: The user defines a VNR of type mesh that selects VN1 and VN2. This VNR allows Pods in
VN1 to communicate with Pods in VN2 and vice-versa.

140

3. Figure-3: Pods in VN1 connect to Pods in VN2. The route-target of VNR is importExported to both
VirtualNetworks.

"Back to VirtualNetworkRouter Use Cases" on page 139

Add New Virtual Networks Within the Same Namespace to an Existing
Mesh-Type VNR

1. Figure-1: Two VirtualNetworks (VN1, VN2) connect to VNR in namespace-1.

2. Figure-2: The user creates two new VirtualNetworks (VN3, VN4).

3. Figure-3: VN3 and VN4 connect to VNR. As a result, all VirtualNetworksconnected to the VNR receive
connectivity.

"Back to VirtualNetworkRouter Use Cases" on page 139

141

Two Mesh VNRs in the Same Namespace

1. Figure 1 and Figure 2: VNR-web and VNR-db of type mesh already exist in namespace-1. Only VNRs
connected to respective VNRs communicate with each other.

2. Figure 1 and Figure 2: VNR-web and VNR-db communicate with each other.

3. Figure 3: All VirtualNetworks connected to both VNR-web and VNR-db communicate with each other.

"Back to VirtualNetworkRouter Use Cases" on page 139

142

Two Mesh VNRs with Different Namespaces

143

1. Figure 1: VNR-web selects VN1 and VN2. Pods in VN1 and VN2 communicate with each other. VN1
and VN2 cannot communicate with VN3 or VN4.

2. Figure 2: VNR-db selects VN3 and VN4. Pods in VN3 and VN4 communicate with each other. VN3
and VN4 cannot communicate with VN1 or VN2.

3. Figure 3: The user updates VNR-web to select VNR-db.

4. Figure 3: The user updates VNR-db to select VNR-web.

5. Figure 3: Since two VNRs select each other, VNR-web's RT (route target) is added to VN3 and VN4.
VNR-db's RT is added to VN1 and VN2. Pods in VN1, VN2, VN3, and VN4 communicate with each
other.

NOTE: VNRs select VNs based on matchExpression labels in a virtualNetworkSelector spec. For
example, in the illustration above, VNR-web in namespace-1 selects VN1 and VN2 based on
the label vn: web from namespace-1. A virtualNetworkSelector only looks for matching labels
within it's own namespace.

"Back to VirtualNetworkRouter Use Cases" on page 139

Hub and Spoke VNRs in the Same Namespace

• Figure-1: Pods in VN1 cannot communicate with pods in VN2. VN1 and VN2 cannot communicate
with VN3.

144

• Figure-2: The user creates a VNR of type "spoke" and "hub." VNR-spoke and VNR-hub import each
other's RTs.

• Figure-3: VNR-spoke and VNR-hub's RTs are added to VN1, VN2, and VN3 because they import each
others' RTs. As a result, pods in VN1 and VN2 communicate with VN3. Pods in VN1 and VN2 cannot
communicate with each other.

"Back to VirtualNetworkRouter Use Cases" on page 139

Hub and Spoke VNRs in Different Namespaces

• Figure 1 through Figure 3 are the same as "Hub and Spoke VNRs in the Same Namespace" on page
144, except that VNR-spoke and VNR-hub operate in different namespaces.

"Back to VirtualNetworkRouter Use Cases" on page 139

145

Same Virtual Networks Under Multiple VNRs

• Figure 1: Pods in VN1 and VN2 cannot communicate with each other. Also resources on VN3, VN4
can communicate with each other.

• Figure 2: You create a VNR-spoke by selecting VN1 and VN2. You create a VNR-hub by selecting
VN3 and VN4. You create a VNR-mesh by selecting VN3 and VN4.

• Figure 3: VNR-spoke ensures that VN1 and VN2 cannot communicate each other, VNR-hub lets VN1
and VN2 reach VN3 and VN4, and VNR-mesh enables communication between VN3 and VN4.

"Back to VirtualNetworkRouter Use Cases" on page 139

Use Case Explanation

This section comprises the following two VNR use cases along with end-to-end explanations of each use
case:

• "Standard Use Case: Single VNR Connecting Two Virtual Networks" on page 147

• "Update Use Case: Single VNR Connecting Two Additional Virtual Networks" on page 150

146

Standard Use Case: Single VNR Connecting Two Virtual Networks

apiVersion: v1
kind: Namespace
metadata:
 name: ns-single-mesh
 labels:
 ns: ns-single-mesh
spec:
 finalizers:
 - kubernetes

apiVersion: core.contrail.juniper.net/v1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-1
 annotations:
 core.juniper.net/display-name: subnet_vn_1
spec:
 cidr: "10.10.1.0/24"
 defaultGateway: 10.10.1.254

apiVersion: core.contrail.juniper.net/v1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-2
 annotations:
 core.juniper.net/display-name: subnet_vn_2
spec:
 cidr: "10.10.2.0/24"
 defaultGateway: 10.10.2.254

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-1
 annotations:
 core.juniper.net/display-name: vn-1

147

 labels:
 vn: web
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-1

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-2
 annotations:
 core.juniper.net/display-name: vn-2
 labels:
 vn: web
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-2

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-single-mesh
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: web
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: vn
 operator: In
 values:
 - web

148

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-1
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-1
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-1
 image: gcr.io/cos-cloud/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-2
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-2
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk

149

 containers:
 - name: pod-vn-2
 image: gcr.io/cos-cloud/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

This use case comprises the following:

• Two VirtualNetworks (vn-1 and vn-2) in namespace ns-single-mesh. Both virtual networks have the label vn:
web. Each VirtualNetwork contains a single pod. The VirtualNetwork vn-1 contains pod-vn-1. The
VirtualNetwork vn-2 contains pod-vn-2.

• A type: mesh VNR with the name vnr-1. This VNR establishes connectivity between the two
VirtualNetworks using matchExpressions and vn: web. he VNR imports the RI and routing table of vn-1 to
vn-2 and vice versa. Since vnr-1 is a mesh-type VNR, all pods in connected VirtualNetworks communicate
with each other.

Update Use Case: Single VNR Connecting Two Additional Virtual
Networks

apiVersion: v1
kind: Namespace
metadata:
 name: ns-single-mesh
 labels:
 ns: ns-single-mesh
spec:
 finalizers:
 - kubernetes

apiVersion: core.contrail.juniper.net/v1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-2
 annotations:

150

 core.juniper.net/display-name: subnet_vn_1
spec:
 cidr: "10.10.3.0/24"
 defaultGateway: 10.10.3.254

apiVersion: core.contrail.juniper.net/v1
kind: Subnet
metadata:
 namespace: ns-single-mesh
 name: subnet-4
 annotations:
 core.juniper.net/display-name: subnet_vn_2
spec:
 cidr: "10.10.4.0/24"
 defaultGateway: 10.10.4.254

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-3
 annotations:
 core.juniper.net/display-name: vn-1
 labels:
 vn: db
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-3

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: ns-single-mesh
 name: vn-4
 annotations:
 core.juniper.net/display-name: vn-2
 labels:
 vn: middleware
spec:
 v4SubnetReference:

151

 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: ns-single-mesh
 name: subnet-4

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetworkRouter
metadata:
 namespace: ns-single-mesh
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: db
 vnr: middleware
spec:
 type: mesh
 virtualNetworkSelector:
 matchExpressions:
 - key: vn
 operator: In
 values:
 - db, middlware

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-3
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-1
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-3

152

 image: gcr.io/cos-cloud/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

apiVersion: v1
kind: Pod
metadata:
 name: pod-vn-4
 namespace: ns-single-mesh
 annotations:
 k8s.v1.cni.cncf.io/networks: vn-2
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: agent-mode
 operator: NotIn
 values:
 - dpdk
 containers:
 - name: pod-vn-4
 image: gcr.io/cos-cloud/toolbox
 command: ["bash","-c","while true; do sleep 60s; done"]
 securityContext:
 privileged: true
 imagePullPolicy: IfNotPresent
 restartPolicy: OnFailure

This use case is similar to the standard use case, except that in this use case the user updates the YAML
file with an additional type: mesh VNR to connect two new VirtualNetworks (vn-3 and vn-4) in namespace ns-
single-mesh. Note the following:

• The VNR shown has the name vnr-2 in namespace ns-single-mesh with matchExpressions: db, middlware.

• The VirtualNetwork vn-3 has the label vn: db, and vn-4 has the label vn: middleware.

As a result, vnr-2 imports the RI and routing table of vn-3 to vn-4 and vice versa.

153

VirtualNetworkRouter Configuration

The following section provides YAML configuration information for the following resources:

• "API Type (Schema)" on page 154

• "Mesh VNR" on page 155

• "Spoke VNR" on page 156

• "Hub VNR" on page 156

API Type (Schema)

type VirtualNetworkRouterSpec struct {
 // Common spec fields
 CommonSpec `json:",inline" protobuf:"bytes,1,opt,name=commonSpec"`

 // Type of VirtualNetworkRouter. valid types - mesh, spoke, hub
 Type VirtualNetworkRouterType `json:"type,omitempty" protobuf:"bytes,2,opt,name=type"`

 // Select VirtualNetworks to which this VNR's RT be shared
 VirtualNetworkSelector *metav1.LabelSelector `json:"virtualNetworkSelector,omitempty"
protobuf:"bytes,3,opt,name=virtualNetworkSelector"`

 // Import Router targets from other virtualnetworkrouters
 Import ImportVirtualNetworkRouter `json:"import,omitempty"
protobuf:"bytes,4,opt,name=import"`
}

type ImportVirtualNetworkRouter struct {
 VirtualNetworkRouters []VirtualNetworkRouterEntry `json:"virtualNetworkRouters,omitempty"
protobuf:"bytes,1,opt,name=virtualNetworkRouters"`
}

type VirtualNetworkRouterEntry struct {
 VirtualNetworkRouterSelector *metav1.LabelSelector
`json:"virtualNetworkRouterSelector,omitempty"
protobuf:"bytes,1,opt,name=virtualNetworkRouterSelector"`
 NamespaceSelector *metav1.LabelSelector `json:"namespaceSelector,omitempty"

154

protobuf:"bytes,2,opt,name=namespaceSelector"`
}

Mesh VNR

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetworkRouter
metadata:
 namespace: frontend
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnr: web
 ns: frontend
spec:
 type: mesh
 virtualNetworkSelector:
 matchLabels:
 vn: web
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnr: db
 namespaceSelector:
 matchLabels:
 ns: backend

The preceding YAML file is an example of a mesh VNR with the name vnr-1 in namespace frontend, with
the labels vnr: web and ns: frontend. This VNR imports its route-target to any VNR in the namespace
backend with matchLabel vnr: db.

155

Spoke VNR

kind: VirtualNetworkRouter
metadata:
 namespace: frontend
 name: vnr-1
 annotations:
 core.juniper.net/display-name: vnr-1
 labels:
 vnrgroup: spokes
 ns: frontend
spec:
 type: spoke
 virtualNetworkSelector:
 matchLabels:
 vngroup: spokes
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnrgroup: hubs
 namespaceSelector:
 matchLabels:
 ns: backend

The preceding YAML file is an example of a spoke VNR with the name vnr-1 in namespace frontend with
the labels vnrgroup: spokes and ns: frontend. This VNR imports its route-targets to any VNR in the
namespace backend with matchLabel vnrgroup: hubs.

Hub VNR

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetworkRouter
metadata:
 namespace: backend
 name: vnr-2
 annotations:
 core.juniper.net/display-name: vnr-2
 labels:

156

 vnrgroup: hubs
 ns: backend
spec:
 type: hub
 virtualNetworkSelector:
 matchLabels:
 vngroup: hubs
 import:
 virtualNetworkRouters:
 - virtualNetworkRouterSelector:
 matchLabels:
 vnrgroup: spokes
 namespaceSelector:
 matchLabels:
 ns: frontend

The preceding YAML file is an example of a hub VNR with the name vnr-2 in the namespace backend with
labels vnrgroup: hubs and ns: backend. This VNR imports its route-targets to any VNR in the namespace
frontend with matchLabels vnrgroup: spokes.

Configure Inter-Virtual Network Routing Through
Route Targets

SUMMARY

Cloud-Native Contrail® Networking™ (CN2)
supports inter-virtual network routing using route
targets. Specify common route targets to route traffic
between your virtual networks.

IN THIS SECTION

Virtual Networks and Routing Instances
Overview | 158

Route Target Overview | 158

Enable Inter-Virtual Network Routing
Through Route Targets with NAD | 159

157

Virtual Networks and Routing Instances Overview

A routing instance is a collection of routing tables, interfaces, and routing protocol parameters. The set
of interfaces in a routing instance belongs to the routing tables, and the routing protocol parameters
control the information in the routing tables. A single routing instance might have multiple routing tables
—for example, unicast IPv4, unicast IPv6, and multicast IPv4 routing tables can exist in a single routing
instance.

In virtual networking, a physical networking device might be split into multiple virtual routers, each with
its own interfaces, routing instances, and associated virtual networks. Routing instances isolate traffic
within a VirtualNetwork. If you want to route traffic between your virtual networks, you can define
common route targets for those networks.

Route Target Overview

Route targets enable your virtual networks (namespaces) to exchange virtual routing and forwarding
(VRF) routing tables in a Multiprotocol Label Switching (MPLS) configuration. A route target is a BGP
Extended Communities Attribute that defines VPN membership. In other words, members of that VPN
share all routes defined within an Extended Communities Attribute. You define the following two route
targets in your VRF policy:

• Route-target import list: Defines a list of acceptable route targets for a VRF to import. When a
provider edge (PE) router receives a route from another PE router, it compares the route targets to
the route-target import list. Specifically, the PE router compares the route targets attached to each
route against the route-target import list defined for each of its VRFs. If no new route target matches
the route targets defined in the import list, the VRF rejects the route.

• Route-target export list: Defines a list of route targets attached to every route advertised to other PE
routers in your VPN.

Depending on your network configuration, the import and export lists might be identical. Typically, you
do the following:

• Allocate one route target extended-community value per VPN.

• Configure the import list and the export list to include the same information: the set of VPNs
comprising the sites associated with the VRF.

For more complicated configurations like hub-and-spoke VPNs, the route-target import list and the
route-target export list might not be identical.

158

Enable Inter-Virtual Network Routing Through Route Targets with NAD

Establish route-target communities by defining matching route targets in your VirtualNetwork resource.
This enables you to route traffic between your virtual networks (namespaces). Add route targets to a
VirtualNetwork resource object using the Network Attachment Definition (NAD).

The Network Attachment Definition (NAD) is a Custom Resource Definition (CRD) specified by the
Kubernetes Network Plumbing Working Group. This CRD, NAD, defines how a pod attaches to a logical
(virtual) or physical network that the NAD object refers to. In other words, the NAD object contains
networking information (namespace, subnet, routing, interface) for a pod in relation to a network. You
can define the following options for your VirtualNetwork resource in the annotations of a NAD YAML file:

• ipamV4Subnet (optional): Specifies an IPv4 CIDR subnet for your VirtualNetwork.

• ipamV6Subnet (optional): Specifies an IPv6 CIDR subnet for your VirtualNetwork.

• routeTargetList (optional): Lists import and export route targets.

• importRouteTargetList (optional): Lists route targets used as imports.

• exportRouteTargetList (optional): Lists route targets used as exports.

• fabricSNAT (optional): Toggles connectivity to the underlay network by port mapping. The default
setting is false.

Additionally, the NAD-Controller monitors NAD object-creation events and creates and updates a
VirtualNetwork accordingly. The juniper.net/networks-status annotation of the NAD updates success or error
events during VirtualNetwork creation.

NOTE: If you do not specify a juniper.net/networks annotation, then Cloud-Native Contrail
Networking treats the NAD resource as a third-party resource. Cloud-Native Contrail Networking
does not create Contrail resources (such as VirtualNetwork and Subnet).

The following example shows a NAD YAML file with several annotations defined:

Example 1:

 apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: nasa-network
 namespace: nm1
 annotations:

159

 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.10.0/24",
 "ipamV6Subnet": "2001:db8::/64",
 "routeTargetList": ["target:23:4561"],
 "importRouteTargetList": ["target:10.2.2.2:561"],
 "exportRouteTargetList": ["target:10.1.1.1:561"],
 "fabricSNAT": true
 }'
 juniper.net/networks-status: # should be updated by Kube-Manager to status of NAD object.
 spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "nasa-network",
 "type": "contrail-k8s-cni"
 }'

The NAD-Controller automatically updates the VirtualNetwork resource after you apply your NAD YAML file.

The following example shows a VirtualNetwork resource with several route-target options defined:

Example 2:

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: project-sample
 name: virtualnetwork-sample
spec:
 routeTargetList:
 - target:23:4561
 - target:21L:7000
 - target:871:6540
 importRouteTargetList:
 - target:10.2.2.2:561
 - target:97:651
 exportRouteTargetList:
 - target:10.1.1.1:561
 - target:97:651

After establishing your desired network annotations, you can create a pod with custom interfaces that
are attached to networks with shared route targets. These networks route traffic between one another
as a result of the shared route targets defined in the NAD and VirtualNetwork objects.

160

The following example shows a pod YAML file with custom interfaces derived from the annotations in
Example 1.

Example 3:

apiVersion: v1
 kind: Pod
 metadata:
 name: nasa-pod-1
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name":"nasa-network1",
 "namespace":"nasa-ns",
 "cni-args":null,
 "ips":["172.16.20.42"],
 "mac":"de:ad:00:00:be:ef",
 "interface":"tap1"
 },
 {
 "name":"nasa-network2",
 "namespace":"nasa-ns",
 "cni-args":null,
 "ips":["172.16.21.42"],
 "mac":"de:ad:00:00:be:ee",
 "interface":"tap2"
 }
]

Note that the two interfaces shown in the preceding code example (nasa-network1 and nasa-network2) attach
to different networks. As a result of NAD functionality, you can route traffic between these networks.

RELATED DOCUMENTATION

Understanding Route Targets

Routing Instances Overview

Virtual Routing Instances

161

https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/bgp-route-targets-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-overview/topics/concept/routing-instances-overview.html#:~:text=Each%20routing%20instance%20consists%20of%20sets%20of%20the,both%20layer%202%20...%203%20Routing%20option%20configurations
https://www.juniper.net/documentation/us/en/software/junos/multicast-l2/topics/topic-map/virtual-routing-instances.html

Configure IPAM for Pod Networking

SUMMARY

Cloud-Native Contrail® Networking™ release 22.1
supports IP address management (IPAM) for pods
and services. Configure a Subnet resource to facilitate
IP address allocation.

IN THIS SECTION

IPAM in Cloud-Native Contrail
Networking | 162

SubnetPool Overview | 162

Subnet Overview | 163

VirtualNetwork Overview | 164

BGP as a Service Session IP Addresses
Overview | 165

IPAM in Cloud-Native Contrail Networking

Cloud-Native Contrail Networking introduces the Subnet and SubnetPool resources for the purpose of
IPAM for pods and services. Each Subnet has an associated SubnetPool. These resources enable you to
configure IPv4 and IPv6 address allocation in your cluster. A VirtualNetwork references a Subnet resource to
determine available subnets for new pods and services. Multiple VirtualNetworks can reference the same
Subnet. The Subnet resource is translated into IPAM and consumed by the control node and vRouter agent.

SubnetPool Overview

The SubnetPool manages a pool of addresses from which Subnets are allocated. When a request for an IP
address occurs, that IP address is allocated from a virtual network's associated SubnetPool. CIDR
parameters (prefix length, capacity, range) for IP address allocation are determined when a SubnetPool is
created. You can allocate additional prefixes if you exhaust a SubnetPool.

Consider the following SubnetPool example:

apiVersion: idallocator.contrail.juniper.net/v1
capacity: 262144
count: 157
kind: Pool

162

max: 262143
metadata:
 creationTimestamp: null
 name: subnet-id-pool-Subnet-contrail-k8s-kubemanager-ocp-rdang-q8roaw-contrail-default-
podnetwork-pod-v4-subnet
reserved:
- 0
- 262143
- 1

The capacity parameter denotes the total number of possible IDs in the pool. The count parameter
denotes the number of used IDs in the pool. The max parameter denotes the maximum number of IDs
available to be allocated from the pool. A given ID maps to an IP address in the Subnet pool.

Subnet Overview

The Subnet is a block of IP addresses and the configurations associated with those addresses. A Subnet is
based on a single address family (IPv4, IPv6) at a time. You must create separate IPv4 and IPv6 Subnets. If
you do not specify a SubnetPool, the Subnet functions as Contrail Classic IPAM. This means that the Subnet is
isolated to a single namespace.

Consider the following Subnet spec example:

apiVersion: v13
kind: Subnet
metadata:
 name: default-servicenetwork-pod-v4-subnet
 namespace: contrail-k8s-kubemanager-ocp
spec:
 cidr: 10.128.0.0/16
 defaultGateway: 10.128.0.1
 ranges:
 - ipRanges:
 - from: 10.128.0.0
 to: 10.128.0.255
 key: contrail-k8s-kubemanager-ocp-user-4yu0qk-ocp-user-4yu0qk-ctrl-1

The cidr and defaultGateway parameters are the main parameters that define a Subnet resource. The cidr
parameter determines the range of IPs available for allocation in that Subnet. The defaultGateway parameter

163

defines the IP address of the defaultGateway for the Subnet. Specifying a defaultGateway address is optional. If
you do not specify a defaultGateway address, it is automatically set as the first IP address in the Subnet.

A Kubernetes node configuration can have a podCIDR configuration parameter. The podCIDR is a subset of
the default-podnetwork-subnet. When the podCIDR is present, the IP address of any pod created on that node
will have an IP address allocated from the podCIDR. If no podCIDR is present, all of the IP addresses in the
CIDR of the Subnet can be allocated for the node. The podCIDR can also reference a wildcard key. In the
example, IP address allocation requests choose from IPs 10.128.0.0 to 10.128.0.255 as long as the
requesting pod is created on the node with the key contrail-k8s-kubemanager-ocp-kparmar-4yu0qk-ocp-
kparmar-4yu0qk-ctrl-1 .

Alternatively, you can define a ranges parameter . The ranges parameter defines a list of IPs available for
allocation. The ranges parameter overrides the CIDR parameter when it is present in a spec. The ranges
parameter does not override the podCIDR parameter.

VirtualNetwork Overview

Cloud-Native Contrail Networking updates the VirtualNetwork resource to be compatible with IPAM
implementation. Consider the following example:

apiVersion: v3
kind: VirtualNetwork
metadata:
 namespace: contrail
 name: virtualnetwork-sample
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: contrail
 name: v4subnet
 v6SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: contrail
 name: v6subnet

Note the separate Subnet references for the IPv4 address family and the IPv6 address family. You cannot
update the Subnet reference of a VirtualNetwork through the entire lifecycle of that VirtualNetwork.

164

BGP as a Service Session IP Addresses Overview

BGP as a Service (BGPaaS) enables the establishment of a BGP session between a control node to a
workload or pod's IP address. You can create a Subnet with the DisableBGPaaSIPAutoAllocation flag set to false
or true. When you set the DisableBGPaaSIPAutoAllocation to false, the following occurs:

• No IP address is allocated for BGPaaSPrimaryIP or BGPaaSSecondaryIP immediately. These IPs are only
allocated (within Subnet CIDR range) when the first BGPAsAService is configured within the network of
this Subnet.

• When you delete all of the BGPAsAService resources associated with a Subnet, the IP addresses assigned
to BGPaaSPrimaryIP and BGPaaSSecondaryIP are released from the pool and set to empty values. These
addresses are re-allocated from the pool when a BGPAsAService is configured again.

When you set the DisableBGPaaSIPAutoAllocation flag to true, the following occurs:

• You are able to use user-defined values for the BGPaaSPrimaryIP and BGPaaSSecondaryIP fields. These IP
fields are mandatory and cannot be left empty. User-defined values for these fields are also reserved
in the Subnet pool.

• The IP addresses used for BGPaaSPrimaryIP and BGPaaSSecondaryIP still remain reserved in the Subnet pool
even if no BGPAsAService is configured or if all BGPAsAService resources are deleted.

When you change the DisableBGPaaSIPAutoAllocation field from false to true, BGPaaSPrimaryIP and
BGPaaSSecondaryIP become mandatory fields. If the IPs were auto allocated before changing this flag from
false to true, then those IPs are released from the pool and new user-provided IPs are reserved in the
pool.

When you change DisableBGPaaSIPAutoAllocation from true to false the following occurs:

• If no BGPAsAService is configured within the Subnet, BGPaaSPrimaryIP and BGPaaSSecondaryIP values are
released from the pool and these fields become empty.

• If at least one BGPAsAService is configured, no change happens to the existing values of BGPaaSPrimaryIP
and BGPaaSSecondaryIP.

For more information about BGP as a Service (BGPaaS), see the "Enable BGP as a Service" on page 96
section.

165

Enable VLAN Subinterface Support on Virtual
Interfaces

SUMMARY

Virtualized Network Function (VNF) and
Containerized Network Function (CNF) workloads
often require multiple virtual network services on a
single interface. Cloud-Native Contrail® Networking™

supports VLAN subinterfaces on virtual interfaces.

IN THIS SECTION

VLAN Subinterface Overview | 166

API Changes | 166

Network Definition Changes | 167

Configuration Use Cases | 168

Valid Configuration 1: One Parent, One
Subinterface: | 169

Valid Configuration 2: One Parent, Multiple
Subinterfaces: | 169

Valid Configuration 3: Multiple Parents,
Multiple Subinterfaces: | 170

Invalid Configuration 1: Multiple Interfaces on
Same Network: | 172

Invalid Configuration 2: Two Interfaces with
Same interfacegroup but no VLAN | 172

VLAN Subinterface Overview

A VLAN subinterface is a logical division of a virtual (or physical) interface at the network level. VLAN
subinterfaces are Layer 3 interfaces that receive and forward 802.1Q VLAN tags. You can assign
multiple VLAN tags to a single virtual interface. When a packet arrives at that interface, the packet's
associated VLAN tags designate which VLAN the packet routes to. You can use VLAN subinterfaces to
route traffic to multiple VLANs for your services.

API Changes

This section provides information about API calls that occur when configuring a VLAN subinterface.

166

https://en.wikipedia.org/wiki/IEEE_802.1Q

When configuring VLAN subinterfaces in Cloud-Native Contrail Networking, Kubernetes updates the
VirtualMachineInterface field with new properties, or VLAN tags. After an update occurs, the
VirtualMachineInterface object references other VirtualMachineInterface objects based on existing VLAN tags.

NOTE: Cloud-Native Contrail Networking defines the properties field from Contrail Classic as
virtualMachineInterfaceProperties.

Network Definition Changes

This section provides information about the network definition enhancements necessary when creating
a subinterface for a virtual interface within a pod.

In kube-manager, the PodController watching for pod events reads the network definition applied to it. Kube-
manager parses each network selection element and creates an associated VMI (virtual machine interface).
Parent VMIs are the network elements with only the net.juniper.contrail.interfacegroup tag attached in the
YAML file. Subinterfaces are the network elements with the net.juniper.contrail.interfacegroup and
net.juniper.contrail.vlan tags attached in the YAML file.

The following two tags enhance the network definition in the cni-args section:

• net.juniper.contrail.interfacegroup

• Interface Group groups two or more interfaces.

• The parent interface is the network selection element associated with only this tag.

• The subinterface is the network selection element associated with this tag and a VLAN tag.

• net.juniper.contrail.vlan

Specifies the VLANID on the subinterface.

.

A VLAN subinterface belongs to its parent interface. Users must specify the namespace to which the
subinterface attaches. Consider the following example:

Example

apiVersion: v1
kind: Pod
metadata:

167

 name: my-pod
 namespace: my-namespace
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "parent-vn",
 "namespace": "vn-ns",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"}
 ...
 },
 {
 "name": "subitf-vn",
 "namespace": "vn-ns",
 "cni-args": {
 "net.juniper.contrail.vlan": 100,
 "net.juniper.contrail.interfacegroup": "eth1"},
 ...
 },
 ...

The preceding example shows specified pod annotations for cni-args. This example configuration creates
the following three VMIs and three interface IPs (IIPs) within the pod:

• VMI, IIP for eth0 on default pod network

• VMI, IIP for eth1 on parent-vn (parent interface)

• VMI, IIP for eth1.100 on subitf-vn (subinterface)

Configuration Use Cases

This section provides examples of different valid and invalid parent and subinterface configurations.

Valid Configurations

• "Valid Configuration 1: One Parent, One Subinterface:" on page 169

• "Valid Configuration 2: One Parent, Multiple Subinterfaces:" on page 169

• "Valid Configuration 3: Multiple Parents, Multiple Subinterfaces:" on page 170

168

Invalid Configurations

• "Invalid Configuration 1: Multiple Interfaces on Same Network:" on page 172

• "Invalid Configuration 2: Two Interfaces with Same interfacegroup but no VLAN" on page 172

Valid Configuration 1: One Parent, One Subinterface:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 ...

Valid Configuration 2: One Parent, Multiple Subinterfaces:

apiVersion: v1
kind: Pod

169

metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 }
]

Valid Configuration 3: Multiple Parents, Multiple Subinterfaces:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:

170

 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vlan-parent-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vlan-subintf-vn4",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "100",
 "net.juniper.contrail.interfacegroup": "eth2"
 }
 },
 {
 "name": "vlan-subintf-vn3",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth2"
 }
 }
]

171

Invalid Configuration 1: Multiple Interfaces on Same Network:

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.vlan": "200",
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
]

Invalid Configuration 2: Two Interfaces with Same interfacegroup but no VLAN

apiVersion: v1
kind: Pod
metadata:
 name: vlan100-0
 namespace: vlan-project
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {

172

 "name": "vn1",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
 {
 "name": "vn2",
 "namespace": "vlan-project",
 "cni-args": {
 "net.juniper.contrail.interfacegroup": "eth1"
 }
 },
]

EVPN Networking Support

SUMMARY

Juniper Cloud-Native Contrail Networking release
R22.4 supports EVPN/VXLAN forwarding using
Type2 prefixes with Virtual Networks utilizing
forwarding mode L2 and L2_L3. With EVPN for
Layer 2 connectivity and VXLAN for data
encapsulation, CN2 enables you to establish
connectivity between a CN2 virtual network and an
EVPN-VXLAN-signalled service.

IN THIS SECTION

EVPN Overview | 173

VXLAN Overview | 174

EVPN-VXLAN Overview | 174

Configuring VXLAN Encapsulation
Priority | 174

Manually Set a VXLAN VNI for Virtual
Networks | 176

EVPN Overview

EVPN is an extension to Border Gateway Protocol (BGP) that allows the network to carry endpoint
reachability information such as Layer 2 MAC addresses and Layer 3 IP addresses. This control plane
technology uses Multiprotocol BP (MP-BGP) for MAC and IP address endpoint distribution, where MAC
addresses are treated as routes.

173

EVPN also provides multipath forwarding and redundancy through an all-active multihoming model. An
endpoint or device connects to two or more upstream devices and forwards traffic using all the links. If a
link or device fails, traffic continues to flow using the remaining active links.

With EVPN, MAC learning is handled in the control plane. This avoids the data plane flooding of
unknown IPs typical with Layer 2 networks. EVPN also supports different data-plane encapsulation
technologies between EVPN-VXLAN-enabled switches. In EVPN-VXLAN architecture, VXLAN provides
the overlay data-plane encapsulation.

VXLAN Overview

VXLAN is an overlay tunneling protocol. The VXLAN tunneling protocol encapsulates MAC frames into
UDP headers at Layer 2. This means that VXLAN encapsulates Ethernet frames into UDP packets with
the physical network headers (IP header, Ethernet header) as outer headers. As a result, VXLAN enables
devices to route UDP packets across networks, independent of the physical underlay.

The entity that performs the encapsulation and de-encapsulation is called a VXLAN tunnel endpoint
(VTEP). After CN2 establishes a VXLAN segment, a VTEP encapsulates VM or pod traffic into a VXLAN
header and sends that traffic to another VTEP. The receiving VTEP removes or strips off the
encapsulation and forwards the data. VMs or pods must belong to the same VXLAN segment to
communicate using VXLAN.

EVPN-VXLAN Overview

In Juniper networks, EVPN performs control plane functionality and VXLAN performs data plane
functionality. EVPN handles MAC address learning in the control plane. VXLAN defines a tunneling
scheme to overlay Layer 2 networks on top of Layer 3 networks. This tunneling scheme allows for
optimal forwarding of Ethernet frames with support for an all-active multipathing of unicast and
multicast traffic with the use of UDP/IP encapsulation for tunneling.

Configuring VXLAN Encapsulation Priority

The default encapsulation protocol for EVPN is MPLS over UDP. In order to enable EVPN-VXLAN for
your cluster, you must change the encapsulation priority order in the GlobalVrouterConfig of your cluster.
Set VXLAN as the top encapsulation priority in the encapsulation section of encapsulationPriorities in the
default-global-vrouter-config object of GlobalVrouterConfig.

174

The following example GlobalVrouterConfig shows VXLAN as the top encapsulation priority.

apiVersion: core.contrail.juniper.net/v1
kind: GlobalVrouterConfig
metadata:
 creationTimestamp: "2022-08-23T10:45:52Z"
 generation: 6
 labels:
 core.juniper.net/parent: 9b83eddfaaa5778ad6b99cb81c803529cf911d492b9e7ec6d63d029d
 name: default-global-vrouter-config
 resourceVersion: "35583"
 uid: b2b57f5c-8dd0-4cd1-848f-0ec23f2819df
spec:
 encapsulationPriorities:
 encapsulation:
 - VXLAN
 - MPLSoGRE
 - MPLSoUDP
 fqName:
 - default-global-system-config
 - default-global-vrouter-config
 linklocalServices:
 linklocalServiceEntry:
 - ipFabricServiceIP:
 - 10.87.76.29
 - 10.87.76.31
 - 10.87.76.32
 ipFabricServicePort: 6443
 linklocalServiceIP: 10.200.0.1
 linklocalServiceName: kubernetes
 linklocalServicePort: 443
 parent:
 apiVersion: core.contrail.juniper.net/v1
 kind: GlobalSystemConfig
 name: default-global-system-config
 uid: 2f9ff5cf-4d40-4e8f-b7d3-2e403624c572
 portTranslationPools:
 pools:
 - portRange:
 endPort: 57023
 startPort: 56000
 protocol: tcp

175

 - portRange:
 endPort: 58047
 startPort: 57024
 protocol: udp
status:
 observation: ""
 state: Success

Manually Set a VXLAN VNI for Virtual Networks

A VXLAN network identifier (VNI) uniquely identifies the VXLAN segment. VNIs enable CN2 to use the
same MAC frames across multiple VXLAN segments without traffic crossover. This means that CN2 can
establish multiple VXLAN segments between the same VMs or pods with traffic isolation. VMs or pods
on the same VNI communicate with each other and VMs or pods on separate VNIs need a router to
communicate. VLAN tunnel endpoints (VTEPs) perform data encapsulation and reference VNI and MAC
address information when looking up the forwarding table of another VM or pod. Once the VTEP
determines a forwarding table, one VTEP endpoint sends a UDP packet to another endpoint over a
network.

CN2 assigns a unique VNI to a virtual network (VN) upon VN creation. In CN2 release 22.4, you can
manually set a VNI for your virtual networks. You can also define a VNI using a Network Attachment
Definition (NAD).

The following YAML example shows a user-defined VNI in a VN.

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: evpnl2test
 name: vn1
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: evpnl2test
 name: sn1
 virtualNetworkProperties:
 forwardingMode: l2
 virtualNetworkNetworkId: 5000

176

The following YAML example shows a user-defined VNI in a NAD.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: evpnl2
 namespace: evpnl2test
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.26.10.0/24",
 "virtualNetworkNetworkID": 5000
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "evpnl2",
 "type": "contrail-k8s-cni"
}'

RELATED DOCUMENTATION

EVPN User Guide

Customize Virtual Networks for Pod Deployments,
Services, and Namespaces

SUMMARY

Starting in release 23.1, Juniper Cloud-Native
Contrail Networking (CN2) supports the ability to
apply a custom default network for namespaces,
Deployments, and Services. This feature also
supports environments with Multus CNI enabled.
With Multus as the CNI of your CN2 environment,

IN THIS SECTION

Custom Namespace Network
Overview | 178

Apply a Custom Namespace Network to a
Namespace | 178

177

https://www.juniper.net/documentation/us/en/software/junos/evpn-vxlan/index.html

you can deploy pods that have multiple interfaces for
different use cases. Apply a Custom Service Network to a

Service | 179

Designate a Virtual Network as a Custom
Default Pod Network | 180

Use a NAD to Create a Custom Default Pod
Network | 180

Deploy a Custom Pod Network per
Pod | 181

Custom Default Namespace Network
Interactions | 183

Multi-NIC Pod | 184

Custom Namespace Network Overview

In traditional Kubernetes, the default pod network is a single CIDR used by all pods in the cluster,
regardless of namespace. This approach doesn't allow for network layer segmentation between pods
because Kubernetes assigns IPs from a shared CIDR. CN2 addresses this drawback with isolated
namespaces. CN2 isolated namespaces enable Kubernetes to create custom default namespace
networks on a per-namespace basis. This means that when you configure a Deployment in a namespace
with a custom namespace network, new pods and services use the custom network within an individual
isolated namespace. Isolated namespaces ensure network isolation between pods and services without
the need for a Kubernetes network policy.

CN2 improves on this feature by enabling Kubernetes to create pods that use custom namespace
networks on a per-pod basis. Custom namespace networks provide their own VirtualNetworks (VNs) and
Subnets. CN2 assigns pod IPs based on the Subnet parameters of a given custom namespace network.
In other words, you can create pods with their own networks in a given namespace. This means that
CN2 supports network isolation at the namespace level and pod level.

Apply a Custom Namespace Network to a Namespace

You can specify a custom default namespace network per namespace. Designate a custom namespace
network on a per-namespace basis and all pods and services created within that namespace use that
network as the pod or service network. The Namespace annotation net.juniper.contrail.podnetwork: network-
namespace/network-name designates the desired network as the custom namespace network.

178

The following YAML shows an example of namespace with a custom namespace network annotation.

apiVersion: v1
kind: Namespace
metadata:
 name: custom-podnet
 annotations:
 net.juniper.contrail.podnetwork: custom-podnet/ns-level-custom-podnets

NOTE: The annotation of a namespace must be present when you create the namespace. You
cannot update the annotation on a namespace to change its network. You must recreate the
namespace to change its network. If kubemanager detects an update to the Custom Namespace
Network annotation within a namespace, kubemanager flags that namespace and any pod created
within that namespace after the update does not start. Reverting the update removes the flag
and the pods launch normally.

Apply a Custom Service Network to a Service

You can specify a custom default network for services in the annotations of a Service object. As a result,
the service can select pods that use the custom service network. Services that select pods with a
custom network are isolated from other networks. The annotation format is: network-namespace/network-
name.

The following is an example of a Service with a custom service network.

apiVersion: v1
kind: Service
metadata:
 name: custom-podnet-svc
 namespace: custom-podnet
 annotations:
 net.juniper.contrail.podnetwork: custom-podnet/pod-level-custom-podnet

179

Designate a Virtual Network as a Custom Default Pod Network

You can designate a VN as a custom default pod network. If you manually create a VirtualNetwork object,
you must set the field "podNetwork: true" on the VirtualNetwork's spec. This field designates the
new VN as the custom default pod network. CN2 assigns IPs to pods from this network.

The following is an example of a VirtualNetwork designated as a custom default pod network.

apiVersion: core.contrail.juniper.net/v2
kind: VirtualNetwork
metadata:
 namespace: custom-podnet
 name: vn-network
spec:
 podNetwork: true
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v2
 kind: Subnet
 namespace: custom-podnet
 name: vn-network-subnet

Use a NAD to Create a Custom Default Pod Network

Install a Network Attachment Definiton (NAD) with podNetwork: true set at the juniper.net/networks
annotation to create a custom default pod network. After you create this NAD, the NAD controller
automatically creates a VN and sets the "podNetwork: true" field during VirtualNetwork creation.

The following is an example of a NAD designated as a custom default pod network.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: nad-network
 namespace: custom-podnet
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "5.5.5.0/24",

180

 "podNetwork": true
 }'

•
NOTE: You don't need to specify a NAD annotation for pods within a namespace if this
namespace uses the same network as the primary interface (eth0). In other words, since the
namespace specifies a network with an annotation, pods within that namespace don't need to
specify that same network.

Deploy a Custom Pod Network per Pod

You can also specify a custom default pod network per pod. In order to designate a custom pod network
on a per-pod basis, you must specify the following key value pair in the annotations of a pod:
"net.juniper.contrail.podnetwork": network-namespace/network-name. This feature provides pod isolation because
pods that use a custom pod network are isolated from other networks.

The following example shows a namespace, VirtualNetwork, and pod with custom default networks
defined.

apiVersion: v1
kind: Namespace
metadata:
 name: cpn-intra-network-test-vn
 annotations:
 net.juniper.contrail.podnetwork: cpn-intra-network-test-vn/vn

apiVersion: core.contrail.juniper.net/v1
kind: Subnet
metadata:
 namespace: cpn-intra-network-test-vn
 name: vn-sn
spec:
 cidr: 15.15.15.0/24

apiVersion: core.contrail.juniper.net/v1
kind: VirtualNetwork
metadata:
 namespace: cpn-intra-network-test-vn
 name: vn

181

spec:
 podNetwork: true
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: cpn-intra-network-test-vn
 name: vn-sn

apiVersion: v1
kind: Pod
metadata:
 name: ns-level-cpn-pod
 namespace: cpn-intra-network-test-vn
spec:
 containers:
 - name: toolbox
 image: <repository>:<tag>
 imagePullPolicy: IfNotPresent
 command: ["bash", "-c", "while true; do sleep 60s; done"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "value"
 effect: "NoSchedule"

apiVersion: v1
kind: Pod
metadata:
 name: pod-level-cpn-pod
 namespace: cpn-intra-network-test-vn
 annotations:
 net.juniper.contrail.podnetwork: cpn-intra-network-test-vn/vn # namespace/name of the network
 net.juniper.contrail.podnetwork.ip: 15.15.15.3 # ip request for the interface
 net.juniper.contrail.podnetwork.cni-args: | # any cni-args needed for this interface
spec:
 containers:
 - name: toolbox
 image: <repository>:<tag>

182

 imagePullPolicy: IfNotPresent
 command: ["bash", "-c", "while true; do sleep 60s; done"]
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 tolerations:
 - key: "key"
 operator: "Equal"
 value: "value"
 effect: "NoSchedule"

Note the following pod annotations:

 annotations:
 net.juniper.contrail.podnetwork: cpn-mc-cc/cpn1 # namespace/name of the network
 net.juniper.contrail.podnetwork.ip: 100.100.100.3 # ip request for the interface
 net.juniper.contrail.podnetwork.cni-args: | # any cni-args needed for this interface
 {
 "net.juniper.contrail.interfacegroup": "eth0"
 }

You define a custom pod network in the annotations of both the pod (pod-level-cpn-pod) and namespace
(cpn-intra-network-test-vn). As part of the 23.1 release, you must configure a pod to use a custom pod
network in the annotations at the pod level. If you specify an annotation at both the pod and namespace
level, the pod-level annotation takes priority.

Custom Default Namespace Network Interactions

See the following sections for information about common custom namespace network interactions.

183

Multi-NIC Pod

A pod with a custom default namespace network may still contain multiple interfaces. The following
YAML is an example of a NetworkSelectionElement of a pod with a custom network and multiple interfaces.

apiVersion: v1
kind: Namespace
metadata:
 name: custom-podnet
 annotations:
 net.juniper.contrail.podnetwork: cpn-intra-network-test/vn

Pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn1",
 "namespace": "vn1-ns",
 },
 {
 "name": "vn2",
 "namespace": "vn2-ns",
 }
]

A pod with the annotations defined above would utilize eth0 from custom-podnet-vn, eth1 from vn1, and
eth2 from vn2. You can also create a namespace with a custom namespace network and multiple
interfaces. The following YAML shows the configuration above, replicated at the namespace level.

apiVersion: v1
kind: Namespace
metadata:
 name: vn0-ns
 annotations:
 net.juniper.contrail.podnetwork: vn0-ns/vn0

Pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [

184

 {
 "name": "vn1",
 "namespace": "vn1-ns",
 },
 {
 "name": "vn2",
 "namespace": "vn2-ns",
 }
]

Deploy Kubevirt DPDK Dataplane Support for VMs

SUMMARY

Cloud-Native Contrail® Networking™ supports the
deployment of the vRouter DPDK dataplane
(Kubevirt) for high-performance VM and container
networking in Kubernetes.

IN THIS SECTION

Kubevirt Overview | 185

Kubevirt DPDK Implementation | 186

Deploy Kubevirt | 186

Prerequisites | 187

Pull Kubevirt Images and Deploy Kubevirt
Using a Local Registry | 187

Launch a VM Alongside a Container | 187

Launch a VM | 187

Create a Virtual Network | 192

Launch a VM | 193

Kubevirt Overview

Kubevirt is an open-source Kubernetes project that enables the management (scheduling) of virtual
machine (VM) workloads alongside container workloads within a Kubernetes cluster. Kubevirt provides a
unified development platform where developers build, modify, and deploy applications residing in both
application containers and VMs within a common, shared environment.

Kubevirt provides the following additional functions to your Kubernetes cluster by adding:

185

• Other types of pods, or Custom Resource Definitions (CRDs), to the Kubernetes API server.

• Controllers for cluster-wide logic to support the new types of pods.

• Daemons for node-specific logic to support the new types of pods.

As a result of this new functionality, Kubevirt creates and manages VirtualMachineInstance (VMI) objects.
VMIs contain a workload controller called a VirtualMachine (VM). The VM maintains the persistent state of
its VMI. This process enables users to terminate and initiate VMs at another time with no change in data
or state. Additionally, you can deploy Kubevirt on top of a Kubernetes cluster, which lets you manage
traditional container workloads along with VMIs managed by Kubevirt. VMs have access to Kubernetes
cluster features with no additional permissions required.

Kubevirt DPDK Implementation

Kubevirt does not typically support user space networking for fast packet processing. In Cloud-Native
Contrail Networking however, enhancements enable Kubevirt to support vhostuser interface types for
VMs. These interfaces perform user space networking with the Data Plane Development Kit (DPDK)
vRouter and give pods access to the increased performance and packet processing the DPDK vRouter
provides.

Following are some of the benefits of the DPDK vRouter application:

• Packet processing occurs in user space and bypasses kernel space. This bypass increases packet-
processing efficiency.

• Kernel interrupts and context switches do not occur because packets bypass kernel space. This
bypass results in less CPU overhead and increased data throughput.

• DPDK enhances the forwarding plane of the vRouter in user space, increasing performance.

• DPDK Lcores run in poll mode. This mode enables the Lcores to receive and process packets
immediately upon receiving them.

Deploy Kubevirt

186

Prerequisites

You must have an active Kubernetes cluster and the ability to use the kubectl client in order to deploy
Kubevirt.

Pull Kubevirt Images and Deploy Kubevirt Using a Local Registry

See the following topic for information about how to deploy Kubevirt: "Pull Kubevirt Images and Deploy
Kubevirt Using a Local Registry" on page 197.

NOTE: These instructions are for the following Kubevirt releases:

• v0.58.0 (current)

• v0.48.0

Launch a VM Alongside a Container

With Kubevirt, launching and managing a VM in Kubernetes is similar to deploying a pod. You can create
a VM object using kubectl. After creating a VM object, that VM is active and running in your cluster.

Use the following high-level steps to launch a VM alongside a container:

1. Create a VirtualNetwork.

2. Launch a VM.

Launch a VM

The following VirtualMachine specs are examples of VirtualMachine instances with a varying number of
interfaces.

• Single vhostuser interface VM:

apiVersion: kubevirt.io/v1
kind: VirtualMachine

187

metadata:
 name: vm-single-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-single-virtio
 app: vm-single-virtio-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default

188

 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Multi vhostuser interface:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-multi-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-multi-virtio
 app: vm-multi-virtio-app
 spec:
 nodeSelector:
 worker: worker
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:

189

 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Bridge/vhostuser interface VM:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-virtio-veth

190

 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-virtio-veth
 app: vm-virtio-veth-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 bridge: {}
 useVirtioTransitional: true
 networks:
 - name: default

191

 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

Create a Virtual Network

The following net-attach-def object is an example of a virtual network:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vn-blue
 namespace: contrail
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "19.1.1.0/24"
 }'
 labels:
 vn: vn-blue-vn-green
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "nad-blue",
 "type": "contrail-k8s-cni"
}'

192

Launch a VM

The following VirtualMachine specs are examples of VirtualMachine instances with a varying number of
interfaces:

• Single vhostuser interface VM:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-single-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-single-virtio
 app: vm-single-virtio-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk

193

 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Multi vhostuser interface:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-multi-virtio
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-multi-virtio
 app: vm-multi-virtio-app
 spec:
 nodeSelector:
 worker: worker
 terminationGracePeriodSeconds: 30

194

 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 vhostuser: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk

195

 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

• Bridge/vhostuser interface VM:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: vm-virtio-veth
 namespace: contrail
spec:
 running: true
 template:
 metadata:
 labels:
 kubevirt.io/size: small
 kubevirt.io/domain: vm-virtio-veth
 app: vm-virtio-veth-app
 spec:
 nodeSelector:
 master: master
 terminationGracePeriodSeconds: 30
 domain:
 cpu:
 sockets: 1
 cores: 8
 threads: 2
 #dedicatedCpuPlacement: true
 memory:
 hugepages:
 pageSize: "2Mi"
 resources:
 requests:
 memory: "512Mi"
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio

196

 interfaces:
 - name: default
 bridge: {}
 - name: vhost-user-vn-blue
 vhostuser: {}
 - name: vhost-user-vn-green
 bridge: {}
 useVirtioTransitional: true
 networks:
 - name: default
 pod: {}
 - name: vhost-user-vn-blue
 multus:
 networkName: vn-blue
 - name: vhost-user-vn-green
 multus:
 networkName: vn-green
 volumes:
 - name: containerdisk
 containerDisk:
 image: svl-artifactory.juniper.net/atom-docker/dpdk-pktgen/vmdisks/dpdk-pktgen-
auto:latest
 - name: cloudinitdisk
 cloudInitNoCloud:
 userDataBase64: SGkuXG4=

Pull Kubevirt Images and Deploy Kubevirt Using a
Local Registry

The current Kubevirt release (v0.58.0) doesn't support imagePullSecret. This field-located in a Kubernetes
configuration file-tells Kubernetes where to pull credentials from in order to pull images from a secure
registry (enterprise-hub.juniper.net/contrail-container-prod/). Juniper Cloud-Native Contrail® Networking™
(CN2) release 22.4 addresses this issue with a workaround for the older Kubevirt release (v048.0) and
current release (v0.58.0).

See the following information about how to perform this workaround to pull images and deploy Kubevirt
using a local registry.

197

1. Install Docker.

sudo curl -fsSL https://get.docker.com -o /tmp/get-docker.sh
sudo sh /tmp/get-docker.sh

2. Create a local registry.

sudo docker run -d -p 5000:5000 --restart=always --name registry registry:2

3. Edit /etc/docker/daemon.json to add your local registry's ip:port.

add the following to /etc/docker/daemon.json
#
#{
"local-registries" : ["your-computer-hostname:5000"]
#}

4. Restart Docker.

sudo service docker restart

5. Download the required containers. These containers are located at Release Userspace CNI - dpdk
vhostuser interface support Juniper/kubevirt. The kubevirt-operator.yaml and kubevirt-cr.yaml are also
located at this repository.

sudo wget -O /tmp/virt-api_v0.58.0-jnpr.tar.gz https://github.com/Juniper/kubevirt/releases/
download/v0.58.0-jnpr/virt-api_v0.58.0-jnpr.tar.gz
sudo wget -O /tmp/virt-controller_v0.58.0-jnpr.tar.gz https://github.com/Juniper/kubevirt/
releases/download/v0.58.0-jnpr/virt-controller_v0.58.0-jnpr.tar.gz
sudo wget -O /tmp/virt-handler_v0.58.0-jnpr.tar.gz https://github.com/Juniper/kubevirt/
releases/download/v0.58.0-jnpr/virt-handler_v0.58.0-jnpr.tar.gz
sudo wget -O /tmp/virt-launcher_v0.58.0-jnpr.tar.gz https://github.com/Juniper/kubevirt/
releases/download/v0.58.0-jnpr/virt-launcher_v0.58.0-jnpr.tar.gz
sudo wget -O /tmp/virt-operator_v0.58.0-jnpr.tar.gz https://github.com/Juniper/kubevirt/
releases/download/v0.58.0-jnpr/virt-operator_v0.58.0-jnpr.tar.gz

198

https://github.com/Juniper/kubevirt/releases/tag/v0.58.0-jnpr
https://github.com/Juniper/kubevirt/releases/tag/v0.58.0-jnpr

6. Load the required containers.

sudo docker load < /tmp/virt-api_v0.58.0-jnpr.tar.gz
sudo docker load < /tmp/virt-controller_v0.58.0-jnpr.tar.gz
sudo docker load < /tmp/virt-handler_v0.58.0-jnpr.tar.gz
sudo docker load < /tmp/virt-launcher_v0.58.0-jnpr.tar.gz
sudo docker load < /tmp/virt-operator_v0.58.0-jnpr.tar.gz

7. Tag and push the containers to your local registry.

Replace <LOCAL_REGISTRY> with your local registry. For example, if the containers are hosted at
10.84.13.52:5000/kubevirt, replace <LOCAL_REGISTRY> with 10.84.13.52:5000/kubevirt.

sudo docker tag svl-artifactory.juniper.net/atom-docker/kubevirt/virt-api:v0.58.0-jnpr
<LOCAL_REGISTRY>/virt-api:v0.58.0-jnpr
sudo docker push <LOCAL_REGISTRY>/virt-api:v0.58.0-jnpr
sudo docker tag svl-artifactory.juniper.net/atom-docker/kubevirt/virt-controller:v0.58.0-
jnpr <LOCAL_REGISTRY>/virt-controller:v0.58.0-jnpr
sudo docker push <LOCAL_REGISTRY>/virt-controller:v0.58.0-jnpr
sudo docker tag svl-artifactory.juniper.net/atom-docker/kubevirt/virt-handler:v0.58.0-jnpr
<LOCAL_REGISTRY>/virt-handler:v0.58.0-jnpr
sudo docker push <LOCAL_REGISTRY>/virt-handler:v0.58.0-jnpr
sudo docker tag svl-artifactory.juniper.net/atom-docker/kubevirt/virt-launcher:v0.58.0-jnpr
<LOCAL_REGISTRY>/virt-launcher:v0.58.0-jnpr
sudo docker push <LOCAL_REGISTRY>/virt-launcher:v0.58.0-jnpr
sudo docker tag svl-artifactory.juniper.net/atom-docker/kubevirt/virt-operator:v0.58.0-jnpr
<LOCAL_REGISTRY>/virt-operator:v0.58.0-jnpr
sudo docker push <LOCAL_REGISTRY>/virt-operator:v0.58.0-jnpr

8. Download the kubevirt-operator.yaml and kubevirt-cr.yaml.

wget https://github.com/Juniper/kubevirt/releases/download/v0.58.0-jnpr/kubevirt-
operator.yaml
wget https://github.com/Juniper/kubevirt/releases/download/v0.58.0-jnpr/kubevirt-cr.yaml

9. Modify the kubevirt-operator.yaml.

Replace <LOCAL_REGISTRY> with your local registry. For example, if the containers are hosted at
10.84.13.52:5000/kubevirt, replace <LOCAL_REGISTRY> with 10.84.13.52:5000/kubevirt.

199

10. Modify /etc/crio/crio.conf in all Kubernetes nodes in the cluster. Add the following to the crio.conf in
all of the Kubernetes nodes in the cluster. These commands allow cri-o (Container Runtime
Interface-Open Container Initiative) to pull images from your local registry.

NOTE: The cri-o service is a version of the Kubernetes container runtime interface (CRI) that
enables the use of Open Container Initiative (OCI) compatible runtimes.

insecure_registries = ["10.92.81.91/22"]
 registries = ["10.92.81.91:5000"]

 Where 10.92.81.91 is the ip of <LOCAL_REGISTRY>

11. After modifying the crio.conf, restart the service.

service crio restart

RELATED DOCUMENTATION

Deploy Kubevirt DPDK Dataplane Support for VMs | 185

Static Routes

SUMMARY

Juniper Cloud-Native Contrail Networking (CN2)
release 23.1 supports static routes for your cluster.
This article provides information about how to
configure static routes for your CN2 cluster.

IN THIS SECTION

Understanding Static Routes | 201

Static Routes in CN2 | 201

Configure Static Routes for a Virtual
Network | 203

Configure Static Routes for a VMI | 203

200

https://cri-o.io/
https://cri-o.io/

Configure Static Routes on Pod
Interfaces | 204

Configure Static Routes for a Virtual Network
with a NAD | 206

Multiple Static Routes on Pod
Interfaces | 206

Troubleshooting RouteTable and
InterfaceRouteTable | 209

Config Plane Verification | 209

Dataplane Verification | 210

Understanding Static Routes

You can use static routes when a network doesn't require the complexity of a dynamic routing protocol.
Routes that are permanent fixtures in routing and forwarding tables are often configured as static
routes. The internal traffic from stub networks benefits from static routes.

The route consists of a destination prefix and a next-hop forwarding address. The static route is
activated in the routing table and inserted into the forwarding table when the next-hop address is
reachable. Traffic that matches the static route is forwarded to the specified next-hop address.

Static Routes in CN2

CN2 implements static routes through the following two custom resources (CRs):

• RouteTable: Contains a user-defined next hop destination (nextHop), along with a destination prefix to
identify next hop traffic. The nextHop IP address must be an IP address of another VMI object. A prefix
defines the destination network which acts as the next hop for matching traffic. A RouteTable lets you
define a static route. You can associate a RouteTable with a virtual network (VN). The following is an
example of a RouteTable CR:

apiVersion: core.contrail.juniper.net/v3
kind: RouteTable
metadata:
 name: static-rt
 namespace: static-route

201

spec:
 routes:
 route:
 - nextHop: 10.20.30.2
 nextHopType: ip-address
 prefix: 10.20.30.0/24
 communityAttributes:
 communityAttribute:
 - accept-own
 - no-advertise

Note that the field nextHopType must have the value ip-address. Any other value results in a user input
error. The communityAttributes field enables you to control route learning via BGP.

• InterfaceRouteTable: The InterfaceRouteTable configures static routing for a virtual machine interface
(VMI). An InterfaceRouteTable contains the destination prefix without the need for a next hop entry. As
with a RouteTable, the prefix defines the destination network, or next hop. Unlike a RouteTable, you do
not need to define a nextHop IP address because when you associate an InterfaceRouteTable with a VMI,
the associated VMI acts as the next hop for this prefix.

The following is an example of an InterfaceRouteTable CR:

apiVersion: core.contrail.juniper.net/v3
kind: InterfaceRouteTable
metadata:
 name: static-rt
 namespace: static-route
spec:
 interfaceRouteTableRoutes:
 route:
 - nextHopType: ip-address
 prefix: 10.20.30.0/24
 communityAttributes:
 communityAttribute:
 - accept-own

Note that the field nextHopType must have the value ip-address. Any other value results in a user input
error.

These CRs are scoped to their respective namespaces and enable you to configure required attributes
for static routes.

202

Configure Static Routes for a Virtual Network

Configure the RouteTable CR to apply static routes to a VN. A VN references a RouteTable in it's spec. As a
result, the RouteTable is associated with that VN and the static route is configured. The following is a VN
object with an associated RouteTable:

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetwork
metadata:
 namespace: static-route
 name: vn-route
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v1
 kind: Subnet
 namespace: static-route
 name: vn-subnet
 routeTableReferences:
 - apiVersion: core.contrail.juniper.net/v3
 kind: RouteTable
 namespace: static-route
 name: static-rt

Configure Static Routes for a VMI

Configure an InterfaceRouteTable to apply static routes to a VMI. A VMI references an InterfaceRouteTable in
it's InterfaceRouteTableReference section. The following is a VMI object with a reference to an
InterfaceRouteTable:

apiVersion: v3
kind: VirtualMachineInterface
metadata:
 name: static-route-pod
 namespace: static-route
 annotations:
 core.juniper.net/interface-route-table: '[{"name": "static-rt", "namespace": "static-
route"}]'

spec:

203

 <VMI_SPEC>

status:
 interfaceRouteTableReferences:
 - apiVersion: core.contrail.juniper.net/v3
 kind: InterfaceRouteTable
 namespace: static-route
 name: static-rt

Configure Static Routes on Pod Interfaces

You can use the annotation section of a pod's manifest to configure static routes for a pod's default or
secondary interface. The pod reconciler processes the annotation section to create a VMI object with an
associated InterfaceRouteTable. The reconciler looks for the string key: "core.juniper.net/interface-route-
table" in the annotation section. The pod's VMI uses that string as a metadata label to associate with an
InterfaceRouteTable.
The following is an example of a pod manifest with an InterfaceRouteTable defined for the default
interface:

apiVersion: v1
kind: Pod
metadata:
 name: static-route-pod
 namespace: static-route
 annotations:
 core.juniper.net/interface-route-table: '[{"name": "vmi-rt", "namespace": "static-route"}]'
spec:
 containers:
 - name: praqma
 image: <image-repository>:<tag>
 imagePullPolicy: Always
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true

204

The following is an example of a pod manifest with an InterfaceRouteTable defined for the secondary
interface:

apiVersion: v1
kind: Pod
metadata:
 name: static-route-pod
 namespace: static-route
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn-route",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "[{\"name\": \"vmi-rt\", \"namespace\":
"static-route\"}]"
 }
 }
]
spec:
 containers:
 - name: praqma
 image: <image-repository>:<tag>
 imagePullPolicy: Always
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true

Note that the name for the primary interface InterfaceRouteTable is vmi-rt and that the name for the secondary
interface is vn-route. Defining two InterfaceRouteTables with different names in the same namespace
automatically creates an InterfaceRouteTable for the primary and secondary interface of that pod.

205

Configure Static Routes for a Virtual Network with a NAD

You can also specify static route properties in a network attachment definition (NAD) object. After the
NAD is reconciled or applied, a RouteTable is created and the resulting VN object references that
RouteTable. The following is an example of a NAD with static route information defined:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vn-route
 namespace: static-route
 labels:
 vn: vn-route
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "108.108.2.0/24"
 "routeTableReferences": '[{"name": "vn-rt", "namespace": "static-route"}]'
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "vn-route",
 "type": "contrail-k8s-cni"
}'

Multiple Static Routes on Pod Interfaces

Using InterfaceRouteTable, you can associate multiple static routes to a single pod interface (VMI). This
means that that VMI object has multiple default next hop destinations, depending on the IP prefix. You
can specify multiple InterfaceRouteTable references using cluster service version (CSV) syntax or JSON
syntax annotations.

NOTE: You must reference an InterfaceRouteTable in a "namespace/name" format. In the following
example, static-route is the namespace and to-right and to-zone-1 are the InterfaceRouteTable
objects, or next hop destination for the left-vn VMI.

206

The following example is a Deployment with multiple InterfaceRouteTable references:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: forwarder
 namespace: static-route
 labels:
 app: forwarder
spec:
 replicas: 3
 selector:
 matchLabels:
 app: forwarder
 template:
 metadata:
 labels:
 app: forwarder
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "left-vn",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "static-route/to-right,static-route/to-
zone-1"
 }
 },
 {
 "name": "right-vn",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "static-route/to-left"
 }
 },
 {
 "name": "zone-1",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "static-route/to-left"
 }

207

 },
 {
 "name": "zone-2",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "static-route/to-left"
 }
 }
]
 spec:
 containers:
 - name: praqma
 image: <repository>:<tag>
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true

The following example is a pod manifest with multiple InterfaceRouteTable references using JSON syntax:

apiVersion: v1
kind: Pod
metadata:
 name: irt-right
 namespace: static-route
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [{
 "name": "right-vn",
 "namespace": "static-route",
 "cni-args": {
 "core.juniper.net/interface-route-table": "[{\"namespace\": \"static-route\",
"\name\": \"to-left\"}, {\"namespace\": \"static-route\", \"name\": \"to-zone-1\"}]"
 }
 }]
spec:
 containers:
 - name: praqma
 image: <image-repository>:<tag>
 securityContext:
 capabilities:

208

 add:
 - NET_ADMIN
 privileged: true

NOTE: You must use backward slashes in JSON syntax. Backward slashes are required to encode
a JSON string inside another JSON string.

Troubleshooting RouteTable and InterfaceRouteTable

The following sections contain useful commands when troubleshooting various RouteTable and
InterfaceRouteTable issues.

Config Plane Verification

• Verify the state of the RouteTable and InterfaceRouteTable objects.

• Check the status of the reconciler for the InterfaceRouteTable object.

kubectl get interfaceroutetable -n

• Check the status of the reconciler for the RouteTable object.

kubectl get routetable -n

• Verify the RouteTable reference in the associated VN. Verify the InterfaceRouteTable reference in the
associated VMI.

209

• Check the status of the reconciler for the VMI. You should see the InterfaceRouteTable in the VMI
with an associated universally unique identifier (UUID) the Contrail FQ (meta info such as
apiversion, kind, namespace, name) name.

kubectl get vmi -n -oyaml | grep -i interfaceRouteTable

kubectl get vn -n -oyaml | grep -i routeTable

Dataplane Verification

• In the introspect, verify that the VRF of the VN shows a row with a matching static route prefix
specified in the RT using the following steps:

• Verify that the VRF is associated with the VN.

https://%3Cvroute_ip%3E:8085/Snh_VrfListReq

• Navigate to the ucindex column in the VRF unicast RouteTable.

• Verify that the table contains a row with the correct static route prefix.

• In the introspect, verify that the next hop properties of the VN are valid. In the introspect, the next
hop column for the prefix should contain the following:

• The next hop interface name must be a valid tap interface.

• The label must be a positive integer.

• The resolved value must be true.

• The route-type: value must be InterfaceStaticRoute.

210

https://%3Cvroute_ip%3E:8085/Snh_VrfListReq

VPC to CN2 Communication in AWS EKS

SUMMARY

Juniper Cloud-Native Contrail Networking (CN2)
release 23.1 supports communication between AWS
virtual private cloud (VPC) networks, external
networks, and CN2 clusters. This feature only applies
to AWS EKS environments using CN2 as the CNI.
This article provides information about how CN2
implements this feature.

IN THIS SECTION

Understanding Kubernetes and VPC
Networks | 211

Prerequisites | 212

Gateway Service Instance Components | 212

Custom Resource Implementation | 216

Custom Controller Implementation | 218

Troubleshooting | 218

Understanding Kubernetes and VPC Networks

Typically, you cannot access a Kubernetes workload in an overlay network running on Amazon Elastic
Kubernetes Service (EKS) from a VPC. In order to achieve AWS VPC to Kubernetes communication, you
must expose the host network of your Kubernetes cluster to the VPC. Although some public cloud
Kubernetes distributions offer solutions that support this feature, these solutions are tailored for
traditional VM workloads instead of Kubernetes workloads. As a result, these solutions have the
following drawbacks:

• You must configure pod IPs as secondary IP addresses on node interfaces. This imposes resource
constraints on the nodes, reducing the number of pods that can be supported.

• Services are exposed through public Load Balancers. Every time a service is created, the Load
Balancer begins an instantiation process which might result in more time until service exposure

CN2 release 23.1 addresses this issue by introducing a Gateway Service Instance (GSI). A GSI is a
collection of Amazon Web Service (AWS) and Kubernetes resources that work together to seamlessly
interconnect CN2 with VPC and external networks. Apply a GSI manifest and CN2 facilitates
communication between pods and services in an Amazon EKS cluster and workloads in the same VPC.

211

Prerequisites

The following are required to enable VPC to CN2 communication:

• A license for cRPD. To purchase a license, visit https://www.juniper.net/us/en/products/routers/
containerized-routing-protocol-daemon-crpd.html

• You must install the license into the EKS cluster as a Secret within the contrail-gsi namespace.

• The secret must contain the base64-encoded version of the license under the crpd-license key
of .Data.

• The following is an example Secret with a reference to a license:

apiVersion: v1
kind: Secret
metadata:
 name: crpd-license
 namespace: contrail-gsi
data:
 crpd-license: ****** # base64 encoded crpd license

• An EKS cluster running CN2 release 23.1 or later

• AWS Identity and Access Management (IAM) role access. See the following link for instructions
about how to configure a service account to assume an IAM role: "Configure a Service Account to
Assume an IAM role" on page 220

• Nodes within the EKS cluster must have the label: core.juniper.net/crpd-node: "".

• The controller will only schedule the cRPD container on nodes with the following key:
core.juniper.net/crpd-node. After this label is added onto a node, none of the CN2 controllers
(including the vRouter) will run on this node. This ensures that the proper amount of nodes are
reserved for cRPD containers.

Gateway Service Instance Components

The following is an example of a gateway service instance (GSI) manifest:

apiVersion: v1
kind: Namespace

212

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html
https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

metadata:
 name: contrail-gsi

apiVersion: v1
kind: ServiceAccount
metadata:
 name: contrail-gsi-serviceaccount
 namespace: contrail-gsi

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: contrail-gsi-role
rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: contrail-gsi-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: contrail-gsi-role
subjects:
- kind: ServiceAccount
 name: contrail-gsi-serviceaccount
 namespace: contrail-gsi

apiVersion: plugins.juniper.net/v1
kind: GSIPlugin
metadata:
 name: contrail-gsi-plugin
 namespace: contrail-gsi
spec:
 awsRegion: "us-east-2"
 iamRoleARN: "arn:aws:iam::********"
 vpcID: "vpc-**********"

213

 common:
 containers:
 - image: <repository>/contrail-gsi-plugin:<tag>
 imagePullPolicy: Always
 name: contrail-gsi-plugin
 initContainers:
 - command:
 - kubectl
 - apply
 - -k
 - /crd
 image: <repository>/contrail-gsi-plugin-crdloader:<tag>
 imagePullPolicy: Always
 name: contrail-gsi-plugin-crdloader
 serviceAccountName: contrail-gsi-serviceaccount

Note that the awsRegion, iamRoleARN, and vpcID fields are user-defined. The iamRoleARN value is the Amazon
Resource Name (ARN) of the IAM Role that you create as part of the prerequisites for this feature.

Applying a GSI manifest creates a custom controller that creates and manages the following:

AWS resources:

• Transit gateway: A transit gateway is a network transit hub that can interconnect VPCs. A transit
gateway can have Attachments which are one or more VPCs.

• Connect attachment: A transit gateway connect attachment establishes a connection between a
transit gateway and third-party virtual appliances (JCNRs) running in a VPC. After you create a
connect attachment, one or more Generic Routing Encapsulation (GRE) tunnels, or Transit Gateway
Connect peers, can be created on the Connect attachment to connect the transit gateway and the
third-party appliance. A Transit Gateway Connect peer is comprised of two BGP peering sessions
over the GRE tunnel which provide routing redundancy. After you install the transit gateway
resource, CN2 performs this process automatically.

• VPC attachment: A VPC Attachment attaches to a transit gateway. When you attach a VPC to a transit
gateway, resource and routing rules apply to that gateway.

Kubernetes resource:

• Connected peers: A transit gateway connect peer is a GRE tunnel that facilitates communication
between a transit gateway and a third-party appliance or JCNR.

CN2 GSI resource:

• Juniper Cloud-Native Router (JCNR): JCNR is an extension of CN2 that acts as a gateway between
EC2 instances and other AWS resources and the EKS cluster running CN2.

214

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-connect.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-vpc-attachments.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-connect.html

JCNRs do the following:

• Connect via Multiprotocol BGP (MP-BGP) to CN2 control nodes and use MPLSoUDP in the data
plane

• Provide active/active L3 and L4 load balancing across the CN2 EKS nodes

You can scale JCNRs and their connected peers to a maximum of four instances. In this case, a transit
gateway provides active/active L3 and L4 load balancing across the JCNRs. As an example of JCNR
functionality, if you add a label onto a VN that you want to expose, the JCNR advertises that VN's
subnet to the transit gateway. A next hop route between the VN's subnet and the transit gateway is
added to the VPC's routing table. As a result, the VN is routed in the VPC's network and accessible via
workloads within the VPC. This functionality is similar to a traditional physical SDN gateway, where the
transit gateway and the JCNR act as a physical gateway between the EKS cluster and the rest of the
AWS environment without the drawbacks of hostNetwork.

The following illustration depicts connectivity in a typical Amazon EKS cluster. Note that CN2
automatically generates the VPC Routing Table.

215

Figure 9: EKS Cluster Traffic Flow

Custom Resource Implementation

CN2 implements this feature through the following custom resources (CRs):

• TransitGateway: Represents the AWS TransitGateway resource.

216

• Route: Represents an entry in a VPC routing table. A Route is an internally-created object that doesn't
require user input.

• ConnectedPeer: Represents an appliance (JCNR in CN2) that establishes BGP sessions with the transit
gateway. A ConnectedPeer is an internally-created object that doesn't require user input.

The following is an example of a TransitGateway manifest.

apiVersion: core.gsi.juniper.net/v1
kind: TransitGateway
metadata:
 name: tgw1
 namespace: contrail-gsi
spec:
 subnetIDs:
 - subnet-*******
 - subnet-*******
 - subnet-*******
 connectedPeerScale: 1
 transitASN: 64513
 peerASN: 64513
 transitCIDR: 192.0.2.0/24
 bgpCidr: 169.254.10.0
 controlNodeASN: 64512
 licenseSecretName: crpd-license
 controllerContainer:
 name: controller
 command: ["/manager", "-mode=client"]
 image: <repository>/contrail-gsi-plugin:<tag>
 imagePullPolicy: Always
 crpdContainer:
 name: crpd
 image: <repository>/crpd:<tag>
 initContainer:
 name: init
 image: <repository>/busybox:<tag>

Use the following command for detailed information about the TransitGateway spec:

kubectl explain transitgateway.spec

217

Custom Controller Implementation

The GSI is implemented through the use of custom Kubernetes controllers with a client/server plugiin.
The server-side custom controllers run on the CN2 control plane nodes. The client runs alongside JCNR.
These controllers are automatically configured when you apply the TransitGateway and GSI objects.

Troubleshooting

This section provides information about troubleshooting various ConnectedPeer connectivity issues,
custom controller issues, and workload reachability issues.

For custom controller issues:

• After you apply the GSI manifest, ensure that all of the custom controller pods associated with the
GSI manifest (Server, Client) are active.

kubectl get pods -n contrail-gsi -l app=contrail-gsi-plugin

The CLI output should show three active controller pods in a regular EKS deployment. If you don't
receive the correct CLI output, use the following command to verify that the GSI plugin is installed.

kubectl get gsiplugins -n contrail-gsi

Check the logs of the contrail-k8s-deployer pod. Filter results for the GSI plugin reconciler and look for
any errors.

• Ensure that the custom controllers can make create, read, update, delete (CRUD) requests to the
required AWS resources.

• Check the logs of the contrail-gsi pods; one of the three pods should be active and will output log
messages.

• Verify that the logs of the active pod don't contain errors about not being able to make API calls
to AWS. If you do see these errors, ensure that the IAM role granted to the contrail-gsi-
serviceaccount is configured properly (refer to the "Prerequistes" on page 212 section of this topic).

For TransitGateway issues:

• After you install the TransitGateways, ensure that their statuses change from "pending" to "available."

218

• Ensure that the ConnectedPeer/cRPD pod is active.

kubectl get pods -n contrail-gsi -l app=connectedpeer

If no pods show up in the output, ensure that a node is available for the ConnectedPeer pod to be
scheduled on. A valid pod contains the following label: core.juniper.net/crpd-node: "".

For ConnectedPeer issues:

• After a ConnectedPeer pod is active, ensure that the cRPD can establish BGP sessions with CN2 control
nodes, and AWS's transit gateway. Run the following command in the CLI of the cRPD:

show bgp summary

This process might fail for the following reasons:

• A valid, active license is not installed in the cluster

• IP connectivity for BGP is not correct

For workoad reachability issues:

• If you cannot access an EKS cluster from an EC2 instance:

• Ensure that the workload's VN is exposed to the TransitGateway.

• Ensure that the route from the exposed VN to the VPC appears in the VPC's routing table.

• Ensure that the EC2 instance has security groups configured to access the CIDR of the VN.

• The custom controllers automatically create one securtity group (gsi-sg) that allows access to
all of the routes exposed to a transit gateway.

219

Configure a Service Account to Assume an IAM role

SUMMARY

This topic provides information about how to
configure a Kubernetes service account to assume an
AWS Identity and Access Management (IAM) role.
This is a prerequisite for configuring VPC to CN2
communication in Juniper Cloud-Native Contrail
release 23.1.

IN THIS SECTION

Configure a Service Account to Assume an
IAM Role | 220

Configure a Service Account to Assume an IAM Role

CN2 release 23.1 supports the ability to access Amazon VPC networks from CN2 or EKS clusters. In
order to enable this feature, you must associate a Kubernetes service account with an AWS IAM role.
Since this feature creates AWS resources, the custom CN2 controllers that reside in the contrail-gsi
namespace need create, read, update, and delete (CRUD) access for these resources.

In order to grant CRUD access to the custom CN2 controllers, you must configure a service account to
assume an IAM role with access to the CRUD operations the controllers must perform. Follow the steps
in the following Amazon Web Services link to complete this process: Configuring a Kubernetes service
account to assume an IAM role.

In step 1a under the "To associate an IAM role with a Kubernetes account" section, you are prompted to
create a file that includes permissions for the AWS services that you want your controller pods to
access. Juniper provides the JSON file below for this purpose.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1674864366447",
 "Action": [
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateRoute",
 "ec2:CreateSecurityGroup",
 "ec2:CreateTags",
 "ec2:CreateTransitGateway",

220

https://kubernetes.io/docs/concepts/security/service-accounts/
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

 "ec2:CreateTransitGatewayConnect",
 "ec2:CreateTransitGatewayConnectPeer",
 "ec2:CreateTransitGatewayVpcAttachment",
 "ec2:DeleteRoute",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteTags",
 "ec2:DeleteTransitGateway",
 "ec2:DeleteTransitGatewayConnect",
 "ec2:DeleteTransitGatewayConnectPeer",
 "ec2:DeleteTransitGatewayVpcAttachment",
 "ec2:DescribeRouteTables",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeTags",
 "ec2:DescribeTransitGatewayConnectPeers",
 "ec2:DescribeTransitGatewayConnects",
 "ec2:DescribeTransitGatewayVpcAttachments",
 "ec2:DescribeTransitGateways",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

In step 2, you are prompted to create a Kubernetes service account. You can use the example service
account YAML provided in the AWS article, but you must use contrail-gsi for the namespace and
contrail-gsi-serviceaccount for the name of the service account.

RELATED DOCUMENTATION

VPC to CN2 Communication in AWS EKS | 211

221

5
CHAPTER

Configure DPDK

Deploy DPDK vRouter | 223

Deploy DPDK vRouter

IN THIS SECTION

DPDK Overview | 223

DPDK vRouter Support for DPDK and Non-DPDK Workloads | 224

Non-DPDK Pod Overview | 224

DPDK Pod Overview | 224

Mix of Non-DPDK and DPDK Pod Overview | 225

DPDK vRouter Architecture | 225

DPDK Interface Support for Containers | 225

DPDK vRouter Host Prerequisites | 226

Deploy a Kubernetes Cluster with DPDK vRouter in Compute Node | 228

DPDK vRouter Custom Resource Settings | 229

DPDK Overview

Cloud-Native Contrail® Networking™ supports the Data Plane Development Kit (DPDK). DPDK is an
open-source set of libraries and drivers for rapid packet processing. Cloud-Native Contrail Networking
accelerates container networking with DPDK vRouter technology. DPDK enables fast packet processing
by allowing network interface cards (NICs) to send direct memory access (DMA) packets directly into an
application’s address space. This method of packet routing lets the application poll for packets, which
prevents the overhead of interrupts from the NIC.

Utilizing DPDK enables the Cloud-Native Contrail vRouter to process more packets per second than it
could when running as a kernel module DPDK interface for container service functions. CN2 utilizes
DPDK vRouter's processing power leverages the processing power for high-demand container service
functions.

When you provision a Contrail compute node with DPDK, the corresponding YAML file specifies the:

• Number of CPU cores to use for forwarding packets.

• Number of huge pages to allocate for DPDK.

• UIO driver to use for DPDK.

223

DPDK vRouter Support for DPDK and Non-DPDK Workloads

When a container or pod needs access to the DPDK vRouter, the following workload types occur:

1. Non-DPDK workload (pod): This workload includes non-DPDK pod applications that are unaware of
the underlying DPDK vRouter. These applications are not designed for DPDK and do not use DPDK
capabilities. In Cloud-Native Contrail Networking, this workload type functions normally in a DPDK
vRouter-enabled cluster.

2. Containerized DPDK workload: These workloads are built on the DPDK platform. DPDK interfaces
are brought up using (Virtual Host) vhost protocol, which acts as a datapath for management and
control functions. The vhost protocol enables virtualized host devices to be mapped to virtual input
& output (virtio) devices. Pods act as the vHost Server, and the underlying DPDK vRouter acts as the
vHost Client.

3. Mix of Non-DPDK and DPDK workloads: The management or control channel on an application in
this pod is a non-DPDK (Veth pair), and the datapath is a DPDK interface. A Veth pair is a pair of
connected virtual Ethernet interfaces.

Non-DPDK Pod Overview

A virtual ethernet (Veth) pair plumbs the networking of a non-DPDK pod. One end of the Veth pair
attaches to the pod's namespace. The other end attaches to the kernel of the host machine. The
Container Networking Interface (CNI) establishes the Veth pair and allocates IP addresses using IP
Address Management (IPAM).

DPDK Pod Overview

A DPDK pod contains a vhost interface and a virtio interface. The pod uses the vhost interface for
management purposes and the virtio interface for high-throughput packet processing applications. A
DPDK application in the pod uses the vhost protocol to establish communication with the DPDK
vRouter in the host. The DPDK application receives an argument to establish a filepath for a UNIX
socket. The vRouter uses this socket to establish the control channel, run negotiations, and create vrings
over huge pages of shared memory for high-speed datapaths.

224

Mix of Non-DPDK and DPDK Pod Overview

This pod might contain non-DPDK and DPDK applications. A non-DPDK application uses a non-DPDK
interface (Veth pair), and the DPDK application uses the DPDK interfaces (vhost, virtio). These two
workloads occur simultaneously.

DPDK vRouter Architecture

The Contrail DPDK vRouter is a container that runs inside the Contrail compute node. The vRouter runs
as either a Linux kernel module or a user space DPDK process. The vRouter is responsible for
transmitting packets between virtual workloads (tenants, guests) on physical devices. The vRouter also
transmits packets between virtual interfaces and physical interfaces.

The CN2 vRouter supports the following encapsulation protocols:

• MPLS over UDP (MPLSoUDP)

• MPLS over GRE (MPLSoGRE)

• Virtual Extensible LAN (VXLAN)

Compared with the traditional Linux kernel deployment, deploying the vRouter as a user space DPDK
process drastically increases the performance and processing speed of the vRouter application. This
increase in performance is the result of the following factors:

• The virtual network functions (VNFs) operating in user space are built for DPDK and designed to
take advantage of DPDK’s packet processing power.

• DPDK's poll mode drivers (PMDs) use the physical interface (NIC) of a VM's host instead of the Linux
kernel's interrupt-based drivers. The NIC’s registers operate in user space, which makes them
accessible by DPDK’s PMDs.

As a result, the Linux OS does not need to manage the NIC's registers. This means that the DPDK
application manages all packet polling, packet processing, and packet forwarding of a NIC. Instead of
waiting for an I/O interrupt to occur, a DPDK application constantly polls for packets and processes
these packets immediately upon receiving them.

DPDK Interface Support for Containers

The benefits and architecture of DPDK usually optimize VM networking. Cloud-Native Contrail
Networking lets your Kubernetes containers take full advantage of these features. In Kubernetes, a

225

containerized DPDK pod typically contains two or more interfaces. The following interfaces form the
backbone of a DPDK pod:

• Vhost user protocol (for management): The vhost user protocol is a backend component that
interfaces with the host. In Cloud-Native Contrail Networking, the vhost interface acts as a datapath
for management and control functions between the pod and vRouter. This protocol comprises the
following two planes:

• The control plane exchanges information (memory mapping for DMA, capability negotiation for
establishing and terminating the data plane) between a pod and vRouter through a Unix socket.

• The data plane is implemented through direct memory access and transmits data packets between
a pod and vRouter.

• Virtio interface (for high-throughput applications): At a high level, virtio is a virtual device that
transmits packets between a pod and vRouter. The virtio interface is a shared memory (shm) solution
that lets pods access DPDK libraries and features.

These interfaces enable the DPDK vRouter to transmit packets between pods. The interfaces give pods
access to advanced networking features provided by the vRouter (huge pages, lockless ring buffers, poll
mode drivers). For more information about these features, visit A journey to the vhost-users realm.

Applications use DPDK to create vhost and virtio interfaces. The application or pod then uses DPDK
libraries directly to establish control channels using Unix domain sockets. The interfaces establish
datapaths between a pod and vRouter using shared memory vrings.

DPDK vRouter Host Prerequisites

In order to deploy a DPDK vRouter, you must configure the following huge pages and NICs on the host
node. Huge pages enable the OS to use memory pages larger than the default 4KB:

• Huge pages configuration: Specify the percentage of host memory to be reserved for the DPDK huge
pages. The following command line shows huge pages set at 2MB:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0 default_hugepagesz=2M hugepagesz=2M
hugepages=8192"

The following example allocates four 1GB huge pages and 1024 2MB huge pages:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=4 hugepagesz=2M hugepages=1024"

226

https://www.redhat.com/en/blog/journey-vhost-users-realm

NOTE: We recommend that you allocate 1GB for the huge pages size.

• Enable (input-output memory management unit (IOMMU): DPDK applications require IOMMU
support. Configure IOMMU settings and enable IOMMU from the BIOS. Apply the following flags as
boot parameters to enable IOMMU:

"intel_iommu=on iommu=pt"

• Ensure that the Kernel driver is loaded onto Port Forward 0 (port 0) of the host's NIC. Ensure that
DPDK PMD drivers are loaded onto Port Forward 1 (port 1) of the host's NIC.

NOTE:
I40E Poll Mode Driver

• PCI driver (vfio-pci, uio_pci_generic): Specify which PCI driver to use based on NIC type.

NOTE: The vfio-pci is built-in.

• uio_pci_generic

• Manually install the uio_pci_generic module if needed:

root@node-dpdk1:~# apt install linux-modules-extra-$(uname -r)

• Verify that the uio_pci_generic module is installed:

root@node-dpdk1:~# ls /lib/modules/5.4.0-59-generic/kernel/drivers/uio/
uio.ko uio_dmem_genirq.ko uio_netx.ko uio_pruss.ko
uio_aec.ko uio_hv_generic.ko 'uio_pci_generic.ko' uio_sercos3.ko
uio_cif.ko uio_mf624.ko uio_pdrv_genirq.ko

227

https://doc.dpdk.org/guides/nics/i40e.html

Deploy a Kubernetes Cluster with DPDK vRouter in Compute Node

Cloud-Native Contrail Networking utilizes a DPDK deployer to launch a Kubernetes cluster with DPDK
compatibility. This deployer performs lifecycle management functions and applies DPDK vRouter
prerequisites. A custom resource (CR) for the DPDK vRouter is a subset of the deployer. The CR
contains the following:

• Controllers for deploying Cloud-Native Contrail Networking resources

• Built-in controller logic for the vRouter

Apply the DPDK deployer YAML file, and deploy the DPDK vRouter CR with agentModeType: dpdk using the
following command:

kubectl apply -f <vrouter_cr.yaml>

After applying the CR YAML file, the deployer creates a daemonset for the vRouter. This deamonset
spins up a pod with a DPDK container.

If you get an error message, ensure that your cluster has the custom resource definition (CRD) for the
vRouter using the following command:

kubectl get crds

The following is an example of the output you receive:

NAME CREATED AT
vrouters.dataplane.juniper.net 2021-06-16T16:06:34Z

If no CRD is present in the cluster, check the deployer using the following command:

kubectl get deployment contrail-k8s-deployer -n contrail-deploy -o yaml

Check the image used by the contrail-k8s-crdloader container. This image should be the latest image the
deployer uses. Update the image and ensure that your new pod uses this image.

After you verify that your new pod is running the latest image, use the following command to verify that
the CRD for the vRouter is present:

kubectl get crds

228

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/?msclkid=f65dc4a3be6d11ecaa50929954d453c9

After you verify that the CRD for the vRouter is present, use the following command to apply the
vRouter CR:

kubectl apply -f <vrouter_cr.yaml>

DPDK vRouter Custom Resource Settings

You can configure the following settings of the vRouter's CR:

• service_core_mask: Specify a service core mask. The service core mask enables you to dynamically
allocate CPU cores for services.

• You can enter the following input formats:

• Hexadecimal (for example, 0xf)

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

NOTE: PMDs require the bulk of your available CPU cores for packet processing. As a result,
we recommend that you reserve a maximum of 1 to 2 CPU cores for service_core_mask and
dpdk_ctrl_thread_mask. These two cores share CPU power.

• cpu_core_mask: Specify a CPU core mask. DPDK's PMDs use these cores for high-throughput packet-
processing applications.

The following are supported input formats:

• Hexadecimal (for example, 0xf)

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

• dpdk_ctrl_thread_mask: Specify a control thread mask. DPDK uses these core threads for internal
processing.

The following are supported input formats:

• Hexadecimal (for example, 0xf)

229

• List of CPUs separated by commas (for example, 1,2,4)

• Range of CPUs separated by a dash (for example, 1-4)

NOTE: PMDs require the bulk of your available CPU cores for packet processing. As a result,
we recommend that you reserve a maximum of 1 to 2 CPU cores for service_core_mask and
dpdk_ctrl_thread_mask. These two cores share CPU power.

• dpdk_command_additional_args: Specify DPDK vRouter settings that are not default settings. Arguments
that you enter here are appended to the DPDK PMD command line.

The following is an example argument:--yield_option 0.

230

6
CHAPTER

Configure Services

Configure ClusterIP Service by Assigning Endpoints | 232

NodePort Service Support in Cloud-Native Contrail Networking | 236

Create a Load Balancer Service | 246

FloatingIP/DNAT for IPv6 Addresses | 258

Configure ClusterIP Service by Assigning Endpoints

IN THIS SECTION

ClusterIP Service without a Selector and Manually Assigned Endpoints | 232

Configure ClusterIP Service | 233

ClusterIP Service without a Selector and Manually Assigned Endpoints

Juniper® Cloud-Native Contrail Networking (CN2) supports the ClusterIP service to work with manually
assigned endpoints without adding a selector in the service. ClusterIP is the default type of service,
which is used to expose a service on an IP address internal to the cluster. Access is only permitted from
within the cluster.

When creating the endpoint for the service, it's important to add the IP address and targetRef in the
endpoint. The targetRef should include the pod details such as kind, name, and namespace. Without
these details, connectivity to the ClusterIP service will not work.

Pod details provided in the targetRef of the endpoint are used to add the virtual machine interface (VMI)
reference of the corresponding pod in the service floating IP (FIP) object.

See the following example of pod details provided in targetRef:

apiVersion: v1
kind: Endpoints
metadata:
 labels:
 app: nginx
 name: nginx
 namespace: clusterip
subsets:
- addresses:
 - ip: 10.128.0.151
 targetRef:
 kind: Pod
 name: nginx-7d79f94b45-9tfjm
 namespace: clusterip

232

 - ip: 10.128.0.175
 targetRef:
 kind: Pod
 name: nginx-7d79f94b45-kcb4s
 namespace: clusterip
 ports:
 - name: http
 port: 8080
 protocol: TCP

Configure ClusterIP Service

Following is an example procedure to configure ClusterIP service by manually assigning endpoints and
without adding a selector.

1. Deploy the application deployment. In this example, the NGINX application is deployed.

apiVersion: v1
kind: Namespace
metadata:
 name: clusterip

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: nginx
 namespace: clusterip
spec:
 strategy:
 type: Recreate
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 1 pods matching the template
 template: # create pods using pod definition in this template
 metadata:
 labels:
 app: nginx
 spec:
 containers:

233

 - name: nginx
 image: svl-artifactory.juniper.net/atom-docker/nginxinc/nginx-unprivileged:1.21
 ports:
 - containerPort: 8080

2. Check the pods.

[core@ocp-avyaw-bc6wig-ctrl-3 ~]$ kubectl get po -n clusterip -o wide
NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
nginx-7d79f94b45-9tfjm 1/1 Running 0 10m 10.128.0.151 ocp-avyaw-bc6wig-
worker-2 <none> <none>
nginx-7d79f94b45-kcb4s 1/1 Running 0 10m 10.128.0.175 ocp-avyaw-bc6wig-
worker-1 <none> <none>

3. Deploy the ClusterIP service without defining a selector in spec. In this example, the ClusterIP service
maps to port 8080 on the application pod.

apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: clusterip
 labels:
 app: nginx
spec:
 ports:
 - name: http
 port: 8080
 protocol: TCP
 targetPort: 8080
 type: ClusterIP

4. Verify the service.

[core@ocp-avyaw-bc6wig-ctrl-3 ~]$ kubectl get svc -n clusterip
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx ClusterIP 172.30.74.100 <none> 8080/TCP 3m

234

5. Create the endpoints for the service. Add the IP address and targetRef with pod details in the
endpoints.

apiVersion: v1
kind: Endpoints
metadata:
 labels:
 app: nginx
 name: nginx
 namespace: clusterip
subsets:
- addresses:
 - ip: 10.128.0.151
 targetRef:
 kind: Pod
 name: nginx-7d79f94b45-9tfjm
 namespace: clusterip
 - ip: 10.128.0.175
 targetRef:
 kind: Pod
 name: nginx-7d79f94b45-kcb4s
 namespace: clusterip
 ports:
 - name: http
 port: 8080
 protocol: TCP

6. Check the connectivity to the ClusterIP service from any test pod.

[core@ocp-avyaw-bc6wig-ctrl-2 ~]$ kubectl exec -it curl-test -n clusterip sh
curl 172.30.74.100:8080
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>

235

<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

NodePort Service Support in Cloud-Native Contrail
Networking

IN THIS SECTION

Contrail Networking Load Balancer Objects | 237

NodePort Service in Contrail Networking | 239

Workflow of Creating NodePort Service | 240

Kubernetes Probes and Kubernetes NodePort Service | 242

NodePort Service Port Mapping | 242

Example: NodePort Service Request Journey | 243

Local Option Limitation in External Traffic Policy | 245

Update or Delete a Service, or Remove a Pod from Service | 245

Juniper® Networks supports Kubernetes NodePort service in environments using Cloud-Native Contrail
Networking (CN2) Release 22.1 or later in a Kubernetes-orchestrated environment.

In Kubernetes, a service is an abstraction that defines a logical set of pods and the policy by which you
(the administrator) can access the pods. Kubernetes selects the set of pods implementing a service

236

based on the LabelSelector object in the service definition. NodePort service exposes a service on each
node’s IP at a static port. It maps the static port on each node with a port of the application on the pod.

In CN2, Kubernetes NodePort service is implemented using the InstanceIP resource and FloatingIP
resource, both of which are similar to the ClusterIP service.

Kubernetes provides a flat networking model in which all pods can talk to each other. Network policy is
added to provide security between the pods. CN2 integrated with Kubernetes adds networking
functionality, including multi-tenancy, network isolation, micro-segmentation with network policies, and
load balancing.

The following table lists the mapping between Kubernetes concepts and CN2 resources.

Table 18: Kubernetes Concepts to CN2 Resource Mapping

Kubernetes Concept CN2 Resource

Namespace Shared or single project

Pod Virtual Machine

Service Equal-cost multipath (ECMP) LoadBalancer

Ingress HAProxy LoadBalancer for URL

Network Policy Contrail Security

Contrail Networking Load Balancer Objects

Figure 10 on page 238 and the following list describe the load balancer objects in CN2.

237

Figure 10: Load Balancer Objects

• Each service in CN2 is represented by a load balancer object.

• For each service port, a listener object is created for the same service load balancer.

238

• For each listener there is a pool object.

• The pool contains members. Depending on the number of backend pods, one pool might have
multiple members.

• Each member object in the pool maps to one of the backend pods.

• The contrail-kube-manager listens to kube-apiserver for the Kubernetes service. When a service is created,
a load balancer object with loadbalancer_provider type native is created.

• The load balancer has a virtual IP address (VIP), which is the same as the service IP address.

• The service IP/VIP address is linked to the interface of each backend pod. This is accomplished with
an ECMP load-balancer driver.

• The linkage from the service IP address to the interfaces of multiple backend pods creates an ECMP
next hop in CN2. Traffic is load balanced from the source pod directly to one of the backend pods.

• The contrail-kube-manager continues to listen to kube-apiserver for any changes. Based on the pod list in
the endpoints, contrail-kube-manager identifies the most current backend pods and updates members in
the pool.

NodePort Service in Contrail Networking

A controller service is implemented in kube-manager. The kube-manager is the interface between Kubernetes
core resources, such as service, and the extended Contrail resources, such as VirtualNetwork and
RoutingInstance. This controller service watches events going through the resource endpoints. An
endpoint receives an event for any change related to its service. The endpoint also receives an event for
pods created and deleted that match the service selector. The controller service handles creating the
Contrail resources needed: See Figure 11 on page 240.

• InstanceIP resource related to the ServiceNetwork

• FloatingIP resource and the associated VirtualMachineInterfaces

When you create a service, an associated endpoint is automatically created by Kubernetes, which allows
the controller service to receive new requests.

239

Figure 11: Controller Service Creates Contrail Resources

Workflow of Creating NodePort Service

Figure 12 on page 241 and the following steps detail the workflow when NodePort service is created.

240

Figure 12: Creating NodePort Service

1. When the NodePort service is created, InstanceIP (IIP) is created. The InstanceIP resource specifies a
fixed IP address and its characteristics that belong to a subnet of a referred virtual network.

2. Once the endpoint is connected to the NodePort service, the FloatingIP is created. The kube-manager
watches for the creation of endpoints connected to a service.

3. After a new endpoint is created, kube-manager creates an InstanceIP in the ServiceVirtualNetwork subnet.
The kube-manager then creates a FloatingIP using the InstanceIP as the parent.

4. The FloatingIP resource specifies a special kind of IP address that does not belong to a specific
VirtualMachineInterface (VMI). The FloatingIP is assigned from a separate VirtualNetwork subnet and can
be associated with multiple VMIs. When associated with multiple VMIs, traffic destined to the
FloatingIP is distributed using ECMP across all VMIs.

Notes about VMIs:

• VMIs are dynamically updated as pods and labels are added and deleted.

• A VMI represents an interface (port) into a virtual network and might or might not have a
corresponding virtual machine.

241

• A VMI has at minimum a MAC address and an IP address.

Notes about VMs:

• A VM resource represents a compute container such as VM, baremetal, pod, or container.

• Each VM can communicate with other VMs on the same tenant network, subject to policy
restrictions.

• As tenant networks are isolated, VMs in one tenant cannot communicate with VMs in another tenant
unless specifically allowed by policy.

Kubernetes Probes and Kubernetes NodePort Service

The kubelet, an agent that runs on each node, needs reachability to pods for liveness and readiness
probes. Contrail network policy is created between the IP fabric network and pod network to provide
reachability between node and pods. Whenever the pod network is created, the network policy is
attached to the pod network to provide reachability between node and pods. As a result, any process in
the node can reach the pods.

The Kubernetes NodePort service is based on node reachability to pods. Since CN2 provides
connectivity between nodes and pods through the Contrail network policy, NodePort is supported.

The NodePort service supports two types of traffic:

• East-West

• Fabric to Pod

NodePort Service Port Mapping

The port mappings for the Kubernetes NodePort service are located in the FloatingIp resource in the
YAML file. In FloatingIp, the ports are added in "floatingIpPortMappings".

If the targetPort is not mentioned in the service, then the port value is specified as the default.

Following is an example spec YAML file for the NodePort service with port details:

 spec:
 clusterIP: 10.100.13.106
 clusterIPs:

242

 - 10.100.13.106
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 run: my-nginx
 sessionAffinity: None

In the preceding example spec YAML file, "floatingIpPortMappings" are created in the FloatingIp resource.

Following is an example "floatingIpPortMappings" YAML file:

"floatingIpPortMappings": {
 "portMappings": [
 {
 "srcPort": 80,
 "dstPort": 80,
 "protocol": "TCP"
 }
]
 }

Example: NodePort Service Request Journey

Let's follow the journey of a NodePort service request from when the request gets to the node port until
the service request reaches the backend pod.

The Nodeport service relies on kubeproxy. The Kubernetes network proxy (kube-proxy) is a daemon running
on each node. The daemon reflects the services defined in the cluster and manages the rules to load
balance requests to a service’s backend pods.

In the following example, the NodePort service apple-service is created and its endpoints are associated
with the service.

user@domain ~ % kubectl describe svc apple-service
Name: apple-service
Namespace: default
Labels: <none>
Annotations: <none>

243

Selector: app=apple
Type: NodePort
IP Families: <none>
IP: 10.105.135.144
IPs: 10.105.135.144
Port: <unset> 5678/TCP
TargetPort: 5678/TCP
NodePort: <unset> 31050/TCP
Endpoints: 10.244.0.4:5678
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

user@domain ~ % kubectl get endpoints apple-service
NAME ENDPOINTS AGE
apple-service 10.244.0.4:5678 2d18h

Each time a service is created or deleted or the endpoints are modified, kube-proxy updates the iptables
rules on each node of the cluster. View the iptables chains to understand and follow the journey of the
request.

First, the KUBE-NODEPORTS chain allows the packets coming on service of type NodePort.

$ sudo iptables -L KUBE-NODEPORTS -t nat
Chain KUBE-NODEPORTS (1 references)
target prot opt source destination
KUBE-MARK-MASQ tcp -- anywhere anywhere /* default/apple-service */
tcp dpt:31050
KUBE-SVC-Y4TE457BRBWMNDKG tcp -- anywhere anywhere /* default/apple-
service */ tcp dpt:31050

Each packet coming into port 31050 is first handled by the KUBE-MARK-MASQ, which tags the packet
with a 0x4000 value.

Next, the packet is handled by the KUBE-SVC-Y4TE457BRBWMNDKG chain (referenced in the KUBE-
NODEPORTS chain above). If we take a closer look at that chain, we can see additional iptables chains:

$ sudo iptables -L KUBE-SVC-Y4TE457BRBWMNDKG -t nat
Chain KUBE-SVC-Y4TE457BRBWMNDKG (2 references)
target prot opt source destination

244

KUBE-SEP-LCGKUEHRD52LOEFX all -- anywhere anywhere /* default/apple-
service */

Inspect the KUBE-SEP-LCGKUEHRD52LOEFX chains to see that they define the routing to one of the
backend pods running the apple-service application.

$ sudo iptables -L KUBE-SEP-LCGKUEHRD52LOEFX -t nat
Chain KUBE-SEP-LCGKUEHRD52LOEFX (1 references)
target prot opt source destination
KUBE-MARK-MASQ all -- 10.244.0.4 anywhere /* default/apple-service */
DNAT tcp -- anywhere anywhere /* default/apple-service */ tcp
to:10.244.0.4:5678

This completes the journey of a NodePort service request from the point at which the request gets to
the node port until the service request reaches the backend pod.

Local Option Limitation in External Traffic Policy

The NodePort service with externalTrafficPolicy set as Local is not supported in CN2 Release 22.1.

The externalTrafficPolicy denotes if this service wants to route external traffic to node-local or cluster-
wide endpoints.

• Local preserves the client source IP address and avoids a second hop for NodePort type services.

• Cluster obscures the client source IP address and might cause a second hop to another node.

Cluster is the default for externalTrafficPolicy.

Update or Delete a Service, or Remove a Pod from Service

• Update service—You can change any modifiable fields, excluding Name and Namespace. For example, you
can change Nodeport service to ClusterIp by changing the Type field in the service YAML definition.

• Delete service—You can delete a service, irrespective of Type, with the command

kubectl delete -n <name_space> <service_name> .

• Remove pod from service—You can remove a pod from service by changing the Labels and Selector on
the service or pod.

245

Create a Load Balancer Service

SUMMARY

This topic describes how to create a Load Balancer
service in Juniper Cloud-Native Contrail®
Networking (CN2). Juniper Networks supports this
feature using Contrail Networking Release 22.1 or
later in a Kubernetes-orchestrated environment.

IN THIS SECTION

Load Balancer Service Overview | 246

Create a Load Balancer Service | 247

Configure Load Balancer Services Without
Selectors | 254

Load Balancer Service Overview

In Kubernetes, a service is an abstract way to expose an application running on a set of pods as a
network service. Kubernetes supports three types of services: ClusterIP, NodePort and LoadBalancer.
This topic describes how to create a load balancer service in CN2.

In CN2, a load balancer service is implemented with the InstanceIP resource and FloatingIP resource as
described below:

• The FloatingIP is used in the service implementation to expose an external IP to the load balancer
service. The FloatingIP resource is also associated with the pod's VirtualMachineInterfaces.

• The InstanceIP resource is related to the VirtualNetwork. Two instanceIPs are created, one for the service
network and one for the external network.

A controller service is implemented in Contrail's kube-manager. Kube-manager is the interface between
Kubernetes core resources and the extended Contrail resources, such as the VirtualNetwork.When you
create a load balancer service, kube-manager listens and allocates the IP from an external virtual
network. This external virtual network exposes the load balancer service on the external IPs. Any
requests received through the provisioned external IP is ECMP load-balanced across the pods associated
with the load balancer.

246

Create a Load Balancer Service

IN THIS SECTION

Dual-Stack Networking Support | 254

The following sections describe how to create a load balancer service in CN2.

Prerequisites

Before you begin, make sure of the following:

• You have set up a working cloud networking environment with Kubernetes.

• CN2 is installed and is operational.

• You have configured kube-manager to define the external networks to be used by the load balancer
service.

Define an External Virtual Network

First, define an external virtual network. You can define the virtual network two ways: by creating a
Network Attachment Definition (NAD) or by creating a virtual network.

NOTE: A Multus deployment requires that you use a NAD to define an external network.

The following example shows how to define an external virtual network using a
NetworkAttachmentDefinition. In this example, the external IP is allocated from the subnet range
192.168.102.0/24. When the NetworkAttachmentDefinition is applied, kube-manager creates a virtual network
with the name ecmp-default in the namespace ecmp-project.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: ecmp-default
 namespace: ecmp-project
 annotations:

247

 juniper.net/networks: '{
 "ipamV4Subnet": "192.168.102.0/24",
 "fabricSNAT": false
 "core.juniper.net/display-name: "External Virtual Network"
 }'
 core.juniper.net/display-name: "External Virtual Network"
labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "ecmp-default",
 "type": "contrail-k8s-cni"
}'

Specify the External Networks

By default, kube-manager allocates the external IP for a load balancer service from the default-external
network. If desired, you can allocate the external IP from a different network by defining custom
selectors, as shown in the following example:

apiVersion: configplane.juniper.net/v1alpha1
kind: Kubemanager
metadata:
 generation: 148
 name: contrail-k8s-kubemanager
 namespace: contrail
spec:
 externalNetworkSelectors:
 default-external:
 networkSelector:
 matchLabels:
 service.contrail.juniper.net/externalNetwork: default-external
 custom-external:
 namespaceSelector:
 matchLabels:
 customNamespaceKey: custom-namespace-value
 networkSelector:
 matchLabels:
 customNetworkKey: custom-network-value
 custom-external-in-service-namespace:

248

 networkSelector:
 matchLabels:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value

The VirtualNetworks in this example match the labels shown in the previous example (in relative order).

apiVersion: core.contrail.juniper.net/v3
kind: Subnet
metadata:
 namespace: contrail
 name: external-subnet
spec:
 cidr: "10.244.0.0/16"
 defaultGateway: 10.244.0.1

apiVersion: core.contrail.juniper.net/v3kind: VirtualNetwork # matches example 1
metadata:
 name: default-external-vn
 namespace: contrail
 labels:
 service.contrail.juniper.net/externalNetworkSelector: default-external
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 kind: Subnet
 namespace: contrail
 name: external-subnet

this is how you define namespace selector
Namespace must have appropriate label if required by namespaceSelector
apiVersion: v1
kind: Namespace
metadata:
 labels:
 customNamespaceKey: custom-namespace-value #user for your external ip
 name: custom-namespace

apiVersion: core.contrail.juniper.net/v3kind: Subnet
metadata:
 namespace: custom-namespace
 name: external-subnet-custom-namespace
spec:

249

 cidr: "10.0.0.0/16"
 defaultGateway: 10.0.0.1

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetwork
metadata:
 name: external-vn-1 # matches example 2 and example 3
 namespace: custom-namespace
 labels:
 customNetworkKey: custom-network-value
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 kind: Subnet
 namespace: custom-namespace
 name: external-subnet-custom-namespace

apiVersion: core.contrail.juniper.net/v3kind: Subnet
metadata:
 namespace: custom-namespace
 name: external-subnet-in-service
spec:
 cidr: "192.168.0.0/16"
 defaultGateway: 192.168.0.1

apiVersion: core.contrail.juniper.net/v3
kind: VirtualNetwork
metadata:
 name: external-vn-2 # matches example 4
 namespace: custom-namespace
 labels:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value
spec:
 v4SubnetReference:
 apiVersion: core.contrail.juniper.net/v3
 kind: Subnet
 namespace: custom-namespace
 name: external-subnet-in-service

Define Service-Level Annotations

Additionally, you can define the following service-level annotations for external network discovery.

250

Annotation: externalNetwork.

In this example, the externalNetwork annotation allocates an external IP from the evn virtual network in the
namespace ns.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetwork: ns/evn
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Annotation: externalNetworkSelector

In this example, the externalNetworkSelector matches the name of the externalNetworkSelector defined in
kube-manager.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetworkSelector: custom-external
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

251

NOTE: You can also define service-level annotations in the namespace of the Kubernetes cluster
or in the namespace of the Contrail cluster. The service-level annotation take precedence.

Examples: External Network Selection

The external virtual network is selected from one of the following in priority order:

NOTE: The virtual networks defined in "Specify the External Networks" on page 248 are linked
to the annotations in the following examples.

Example 1: Default Selector

Kube-manager first searches for the default external network. This example uses the default-external
selector because no annotation is specified.

This example matches the network contrail/default-external-vn.

apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 2: Custom Namespace

This example matches the network custom-namespace/external-vn-1.

apiVersion: v1
kind: Service

252

metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetwork: custom-namespace/external-vn-1
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 3: External Network Matches Preconfigured Selector in a Namespace

This example matches the network custom-namespace/external-vn-1.

apiVersion: v1
kind: Service
metadata:
 name: my-service
 annotation:
 service.contrail.juniper.net/externalNetworkSelector: custom-external
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Example 4: External Network Matches Preconfigured Selector in Service Namespace

This example matches the network custom-namespace/external-vn-2.

apiVersion: v1
kind: Service
metadata:
 name: my-service

253

 namespace: custom-namespace
 annotation:
 customExternalInServiceNetworkKey: custom-external-in-service-network-value
spec:
 type: LoadBalancer
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Dual-Stack Networking Support

IPv4 or IPv6 dual-stack networking enables the allocation of both IPv4 and IPv6 addresses to pods and
services. As an administrator, you might need to select the IP family (IPv4 or IPv6) to use when defining
a service. If you do not define the IP family, the default IPv4 address is used.

apiVersion: v1
kind: Service
metadata:
 name: MyService
specs:
 ipFamilies: ["IPv4", "IPv6"]

For more information, see Overview: IPv4 and IPv6 Dual-Stack Networking.

Configure Load Balancer Services Without Selectors

In Kubernetes, you can expose an application running on a set of pods as a network service. Kubernetes
uses selectors to automatically create a load balancer service, but only uses the default primary interface
for load balancing.

Starting in CN2 Release 22.3, you can load balance a service across multiple secondary interfaces. You
can create secondary interfaces in CN2 without using a selector. Because the load balancer service has
no selector, you must create the endpoint manually.

To configure load balancer services without selectors:

1. Create two virtual networks.

254

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/concept/cn-cloud-native-ipv6-dualstack.html

The following example shows two networks. One network for the pod's secondary interface (pod-
subnet) and another network (lb-subnet) for the load balancer service external IP. These networks are
connected by a common route target that routes traffic between the two networks.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pod-subnet
 namespace: my-lb
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.12.0/24",
 "routeTargetList": ["target:64521:1164"]
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "pod-subnet",
 "type": "contrail-k8s-cni"
}'

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: lb-subnet
 namespace: my-lb
 annotations:
 juniper.net/networks: '{
 "ipamV4Subnet": "172.16.13.0/24",
 "routeTargetList": ["target:64521:1164"]
 }'
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "lb-subnet",
 "type": "contrail-k8s-cni"
}'

2. Create the pods on which you want to load balance the service. You can create multiple pods.

255

In this example, we'll create two pods in the my-lb namespace, each with its own IP address.

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
 namespace: my-lb
 labels:
 run: ecmp
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "pod-subnet",
 "namespace": "my-lb",
 "ips": ["172.16.23.0"]
 }
]'
spec:
 containers:
 - name: front01-multiintf
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/
toolbox
 command:
 ["bash", "-c", "ip route add 172.16.23.0/24 via 172.16.23.1 dev eth1;while true; do
echo front01 | nc -w 1 -l -p 8080; done"]
 securityContext:
 privileged: true

apiVersion: v1
kind: Pod
metadata:
 name: my-pod1
 namespace: my-lb
 labels:
 run: ecmp
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "pod-subnet",
 "namespace": "my-lb",
 "ips": ["172.16.24.0"]
 }

256

]'
spec:
 containers:
 - name: front02-multiintf
 image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/google-containers/
toolbox
 command:
 ["bash", "-c", "ip route add 172.16.24.0/24 via 172.16.23.1 dev eth1; while true; do
echo front02 | nc -w 1 -l -p 8080; done"]
 securityContext:
 privileged: true
; done"]

3. Create a Load Balancer service.

In this example, we'll create a load balancer service (service-lb) in the my-lb namespace without using
a selector.

kind: Service
metadata:
 name: service-lb
 namespace: my-lb
 annotations:
 service.contrail.juniper.net/externalNetwork: my-lb/lb-subnet
spec:
 type: LoadBalancer
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

4. Specify the endpoints (IP addresses) on which you want to load balance the service. Make sure that
the endpoint has the same name as the load balancer service.

In this example, we specified two pod endpoints for the secondary interfaces (ip: 172.16.23.0 and ip:
172.16.24.0).

apiVersion: v1
kind: Endpoints
metadata:
 name: service-lb

257

 namespace: my-lb
subsets:
 - addresses:
 - ip: 172.16.23.0
 - ip: 172.16.24.0
 ports:
 - port: 8080

Success! You can now load balance a service across multiple pods with the secondary interface.

NOTE: In addition to creating a load balancer service on the secondary interface, you can use a
selector to create a load balancer on the default primary interface. The default primary interface
can work in tandem with the secondary interface. You can use either interface to load balance
across your desired service.

SEE ALSO

Kubernetes Services

FloatingIP/DNAT for IPv6 Addresses

SUMMARY

Juniper Cloud-Native Contrail release 23.1 supports
FloatingIP, or Dynamic Network Address Translation
(DNAT), for dual stack-enabled services (ClusterIP).
This article provides information about how this
feature works in CN2.

IN THIS SECTION

Prerequisites | 258

FloatingIP/DNAT Overview | 259

DNAT for IPv6 Overview | 259

Deploy FloatingIP/DNAT | 259

Prerequisites

This feature requires the following:

258

https://kubernetes.io/docs/concepts/services-networking/service/

• An environment running CN2 release 23.1 or later

• A Kubeadm or Kubespray Kubernetes cluster with dual-stack featureGate enabled. For more
information, see "IPv4 and IPv6 Dual-Stack Networking" on page 23.

• Kubernetes nodes configured with dual stack network interfaces

FloatingIP/DNAT Overview

In CN2, a FloatingIP implements ClusterIP functionality. After you create a service, a FloatingIP is
allocated to that service from the service subnet and associated to all the back-end pod VMIs in the
cluster. The vRouter performs DNAT for the back-end pods. This process comprises Equal-Cost Multi-
Path Routing (ECMP) load balancing, where the back-end pod VMIs act as ECMP paths.

DNAT for IPv6 Overview

CN2 release 23.1 supports DNAT (FloatingIP) for IPv4 and IPv6 addresses for the CN2 ClusterIP service.
DNAT for IPv6 functions the same as DNAT for IPv4; create a service (ClusterIP), specify PreferDualStack
for the ipFamilyPolicy, and an IPv6 FloatingIP is allocated to that service. The vRouter performs DNAT
and routes traffic to the next hop, or the translated destination address (back end pod VMI). from
external networks to your back-end pod VMIs.

Deploy FloatingIP/DNAT

Complete the following steps to deploy this feature.

• Configure and install a Deployment. The Deployment object creates the back-end pods for the ClusterIP
service. The following is an example Deployment. This Deployment creates a pod named nginx with a
mounted nginx-xconf config.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 namespace: example-clusterip6
spec:
 selector:
 matchLabels:

259

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

 app: nginx
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 tolerations:
 - key: "node.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 2
 - key: "node.kubernetes.io/not-ready"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 2
 containers:
 - name: nginx
 image: <repository>:<tag>
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: nginx-conf
 mountPath: /etc/nginx/nginx.conf
 subPath: nginx.conf
 readOnly: true
 volumes:
 - name: nginx-conf
 configMap:
 name: nginx-conf
 items:
 - key: nginx.conf
 path: nginx.conf

• Create a ClusterIP service. The following is an example service.

apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: clusterip6
 labels:

260

 app: nginx
spec:
 ports:
 - name: http
 port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 app: nginx
 ipFamilies:
 - "IPv6"

Note the following fields:

• labels: Identifies back-end pods with the app: nginx label.

• selector: Instructs the service to select VMIs belonging to back-end pods the with app: nginx label.

• ipFamilies: Specifies the IP family the ClusterIP service uses. The default is IPv4. To use both IP
families, use the value IpFamilyPolicy: PreferDualStack.

261

7
CHAPTER

Analytics

Contrail Networking Analytics | 263

Contrail Networking Metric List | 269

Kubernetes Metric List | 283

Cluster Node Metric List | 321

Contrail Networking Alert List | 339

vRouter Session Analytics in Contrail Networking | 349

Centralized Logging | 357

Port-Based Mirroring | 360

Configurable Categories of Metrics Collection and Reporting (Tech Preview) | 365

Juniper CN2 Technology Previews (Tech Previews) | 371

Contrail Networking Analytics

IN THIS SECTION

Overview: Analytics | 263

Metrics | 264

Supported Metrics | 264

Alerts | 265

Architecture | 266

Configuration | 267

Grafana | 268

Overview: Analytics

Analytics is an optional feature set in Juniper® Cloud-Native Contrail Networking (CN2) Release 22.1.
The analytics are packaged separately from the CN2 core Container Network Interface (CNI)
components. Analytics also has its own installation procedure. The package consists of a combination of
open-source software and Juniper developed software that integrates with CN2.

The analytics features fit into the following high-level functional areas:

• Metrics—Statistical time series data collected from the Contrail Networking components and the
base Kubernetes system

• Flow and Session Records—Network traffic information collected from the CN2 vRouter

• Sandesh User Visible Entities (UVE)—Records representing the system-wide state of externally visible
objects that are collected from the CN2 vRouter and control node components

• Logs—Log messages collected from Kubernetes pods

• Introspect—A diagnostic utility that provides the ability to browse the internal state of the CN2
components

263

Metrics

Data Model

Metric information is based on a numerical time series data model. Each data point in a series is a
sample of some system state that gets collected at a regular interval. A sampled value is recorded along
with a timestamp at which the collection occurred. A sample record can also contain an optional set of
key-value pairs called labels. Labels provide a dimension capability for metrics where a given
combination of labels for the same metric name identifies a particular dimensional instantiation of that
metric. For example, a metric named api_http_requests_total can utilize labels to provide visibility into the
request counts at a URL and method type level. In the following example, the metric record for a sample
value of 10 includes labels that indicate the type of request.

api_http_requests_total{method="POST", handler="/messages"} 10

Metric Data Types

Although all metric sample values are just numbers, the concept of data type exists within this numerical
data model. A metric can be one of the following types:

• Counter—A cumulative metric that represents a single monotonically increasing counter whose value
can only increase or be reset to zero on restart.

• Gauge—A metric that represents a single numerical value that can arbitrarily go up and down.

• Histogram—A histogram samples observations (such as request durations or response sizes) and
counts them in configurable buckets. The histogram also provides a sum of all observed values.

• Summary—Similar to a histogram, a summary samples observations (such as request durations and
response sizes). While it also provides a total count of observations and a sum of all observed values,
the summary calculates configurable quantiles over a sliding time window.

The metric functionality in CN2 is implemented by Prometheus. For additional details about the metric
data model, see the documentation at Prometheus.

Supported Metrics

The analytics solution supports the following sets of metrics:

• "Contrail Networking Metric List" on page 269—Metrics collected from the vRouter and control node
components.

264

https://prometheus.io/docs/introduction/overview/

• "Kubernetes Metric List" on page 283—Metrics collected from various Kubernetes components, such
as apiserver, etcd, kubelet, and so on.

• "Cluster Node Metrics" on page 321—Host-level metrics collected from the Kubernetes cluster
nodes.

Alerts

Alerts are generated based on an analysis of collected metric data. Every supported alert type is based
on a rule definition that contains the following information:

• Alert Name—A unique string identifier for the alert type

• Condition Expression—A Prometheus query language expression that gets evaluated against
collected metric values to determine if the alert condition exists

• Condition Duration—The amount of time the problematic condition has to exist for the alert to be
generated

• Severity—The alert level (critical, major, warning, info.)

• Summary—A short description of the problematic condition

• Description—A detailed description of the problematic condition

The CN2 analytics solution installs a set of "predefined alert rules" on page 339. You can also define
your own custom alert rules. The creation of PrometheusRule Kubernetes resources in the namespace
where the analytics Helm chart is deployed supports defining custom alerts. Following is an example of a
custom alert rule.

apiVersion: monitoring.coreos.com/v1
 kind: PrometheusRule
 metadata:
 name: acme-corp-rules
 spec:
 groups:
 - name: acme-corp.rules
 rules:
 - alert: HostUnusualNetworkThroughputOut
 expr: "sum by (instance) (rate(node_network_transmit_bytes_total[2m])) / 1024 / 1024 >
100"
 labels:
 severity: warning

265

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api.md#prometheusrule

 annotations:
 summary: "Host unusual network throughput out (instance {{ $labels.instance }})"
 description: "Host network interfaces are sending too much data (> 100 MB/s)\n VALUE
= {{ $value }}"

Prometheus stores generated alerts as records that can be viewed in the Grafana UI. The AlertManager
component supports integration with external systems, such as PagerDuty, OpsGenie, or email for alert
notification.

Architecture

As shown in Figure 13 on page 267, Prometheus is the core component of the metrics architecture.
Prometheus implements the following functionality:

• Collection—A periodic polling mechanism that invokes API calls against other components (exporters)
to pull values for a set of metrics

• Storage—A time series database that provides persistence for the metrics collected from the
exporters

• Query—An API supporting an expression language called PromQL (Prometheus query language) that
allows the historical metric information to be retrieved from the database

• Alerting—A framework providing an ability to define rules that produce alerts when certain
conditions are observed in the collected metric data

266

Figure 13: Metrics Architecture

The other components of the metrics architecture are:

• Grafana—A service that provides a Web UI interface allowing the user to visualize the metric data in
graphs.

• AlertManager—An integration service that notifies external systems of alerts generated by
Prometheus.

Configuration

The metrics functionality does not require any configuration by the end user. The installation of
analytics takes care of configuring Prometheus to collect metrics from the exporters that provide all of
the metrics described in "Supported Metrics" on page 264. A group of default alerting rules is also
automatically set up as part of the installation. You can extend functionality through additional
configuration after the installation. For example, you can define customer-specific alerting rules. You can
also configure the AlertManager to integrate with any of the supported external systems in your
environment.

The configuration of Prometheus and AlertManager involves an additional architectural component
called the Prometheus Operator. As shown in Figure 14 on page 268, configuration is specified as
Kubernetes custom resources. The Prometheus Operator translates the contents of these resources into

267

the native configuration that the Prometheus components recognize. The Operator also updates the
components accordingly and restarts them whenever a configuration change requires a restart.

Figure 14: Prometheus Operator

Documentation for the full set of resources that the Prometheus Operator supports is available at
Prometheus Operator API. Juniper Networks recommends that you limit your configurations to the
subset of resource types related to alert rule definition and external system integration.

Grafana

The main UI for viewing metric data and alerts is Grafana. The analytics installation sets up the Grafana
service and configures it with Prometheus as a data source. A set of default dashboards are also created.

Access the Grafana Web UI at https://<k8sClusterIP>/grafana/login. The default login credentials are user
admin and password prom-operator.

RELATED DOCUMENTATION

vRouter Session Analytics in Contrail Networking | 349

268

https://github.com/prometheus-operator/prometheus-operator/blob/main/Documentation/api.md

Centralized Logging | 357

Contrail Networking Metric List

Table 19: Cloud-Native Contrail Networking (CN2) Metric List

Metric Name Type Description

controller_state gauge Controller state (0=Functional, 1=Non-
Functional).

controller_connection_status gauge Connection status (0=Up, 1=Down,
2=Initializing).

controller_bgp_router_output_queue_
depth

gauge BGP router output queue depth.

controller_bgp_router_num_bgp_peers gauge Number of BGP peers.

controller_bgp_router_num_up_bgp_pe
ers

gauge Number of up BGP peers.

controller_bgp_router_num_deleting_
bgp_peers

gauge Number of deleting BGP peers.

controller_bgp_router_num_bgpaas_pe
ers

gauge Number of BGPaas peers.

controller_bgp_router_num_up_bgpaas
_peers

gauge Number of up BGPaas peers.

controller_bgp_router_num_deleting_
bgpaas_peers

gauge Number of deleting BGPaas peers.

controller_bgp_router_num_xmpp_peer
s

gauge Number of XMPP peers.

269

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_bgp_router_num_up_xmpp_p
eers

gauge Number of up XMPP peers.

controller_bgp_router_num_deleting_
xmpp_peers

gauge Number of deleting XMPP peers.

controller_bgp_router_num_routing_i
nstances

gauge BGP router number of routing instances.

controller_bgp_router_num_deleting_
routing_instances

gauge BGP router number of deleting routing
instances.

controller_bgp_router_num_service_c
hains

gauge Number of service chains.

controller_bgp_router_num_down_serv
ice_chains

gauge Number of down service chains.

controller_bgp_router_num_static_ro
utes

gauge Number of static routes.

controller_bgp_router_num_down_stat
ic_routes

gauge Number of down static routes.

controller_bgp_router_ifmap_num_pee
r_clients

gauge Number of IF-MAP peer clients.

controller_bgp_router_config_db_con
n_status

gauge Status of config database connection
(0=Down, 1=Up).

controller_bgp_peer_state gauge BGP peer state (0=Idle, 1=Active,
2=Connect, 3=OpenSent, 4=OpenConfirm,
5=Established).

controller_bgp_peer_flaps_total counter BGP peer total flaps.

270

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_received_messag
es_total

counter Total BGP peer messages received.

controller_bgp_peer_received_open_m
essages_total

counter Total BGP peer open messages received.

controller_bgp_peer_received_keepal
ive_messages_total

counter Total BGP peer keepalive messages
received.

controller_bgp_peer_received_notifi
cation_messages_total

counter Total BGP peer notification messages
received.

controller_bgp_peer_received_update
_messages_total

counter Total BGP peer update messages received.

controller_bgp_peer_received_close_
messages_total

counter Total BGP peer close messages received.

controller_bgp_peer_sent_messages_t
otal

counter Total BGP peer messages sent.

controller_bgp_peer_sent_open_messa
ges_total

counter Total BGP peer open messages sent.

controller_bgp_peer_sent_keepalive_
messages_total

counter Total BGP peer keepalive messages sent.

controller_bgp_peer_sent_notificati
on_messages_total

counter Total BGP peer notification messages sent.

controller_bgp_peer_sent_update_mes
sages_total

counter Total BGP peer update messages sent.

controller_bgp_peer_sent_close_mess
ages_total

counter Total BGP peer close messages sent.

271

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_received_reacha
ble_routes_total

counter Total BGP peer reachable routes received.

controller_bgp_peer_received_unreac
hable_routes_total

counter Total BGP peer unreachable routes
received.

controller_bgp_peer_received_end_of
_rib_total

counter Total BGP peer end-of-RIB markers
received.

controller_bgp_peer_sent_reachable_
routes_total

counter Total BGP peer reachable routes sent.

controller_bgp_peer_sent_unreachabl
e_routes_total

counter Total BGP peer unreachable routes sent.

controller_bgp_peer_sent_end_of_rib
_total

counter Total BGP peer end-of-RIB markers sent.

controller_bgp_peer_received_bytes_
total

counter Total BGP peer bytes received.

controller_bgp_peer_receive_socket_
calls_total

counter Total BGP peer receive socket calls.

controller_bgp_peer_blocked_receive
_socket_calls_microsecond_duration_
total

counter BGP peer total microseconds blocked on
socket receive calls.

controller_bgp_peer_blocked_receive
_socket_calls_total

counter Total BGP peer receive socket calls
blocked.

controller_bgp_peer_sent_bytes_tota
l

counter Total BGP peer bytes sent.

controller_bgp_peer_send_socket_cal
ls_total

counter Total BGP peer send socket calls.

272

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_bgp_peer_blocked_send_so
cket_calls_microsecond_duration_tot
al

counter BGP peer total microseconds blocked on
socket send calls.

controller_bgp_peer_blocked_send_so
cket_calls_total

counter Total BGP peer send socket calls blocked.

controller_bgp_peer_route_update_er
ror_bad_inet6_xml_token_total

counter BGP peer total route update errors (bad
inet6 XML token).

controller_bgp_peer_route_update_er
ror_bad_inet6_prefix_total

counter BGP peer total route update errors (bad
inet6 prefix).

controller_bgp_peer_route_update_er
ror_bad_inet6_nexthop_total

counter BGP peer total route update errors (bad
inet6 next hop).

controller_bgp_peer_route_update_er
ror_bad_inet6_afi_safi_total

counter BGP peer total route update errors (bad
inet6 AFI/SAFI).

controller_bgp_peer_received_route_
paths_total

counter Total BGP peer route paths received.

controller_bgp_peer_received_route_
primary_paths_total

counter Total BGP peer route primary paths
received.

controller_xmpp_peer_state counter XMPP peer state (0=Idle, 1=Active,
2=Connect, 3=OpenSent, 4=OpenConfirm,
5=Established).

controller_xmpp_peer_received_messa
ges_total

counter Total messages received from XMPP peer.

controller_xmpp_peer_received_open_
messages_total

counter Total open messages received from XMPP
peer.

controller_xmpp_peer_received_keepa
live_messages_total

counter Total keepalive messages received from
XMPP peer.

273

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_xmpp_peer_received_notif
ication_messages_total

counter Total notification messages received from
XMPP peer.

controller_xmpp_peer_received_updat
e_messages_total

counter Total update messages received from
XMPP peer.

controller_xmpp_peer_received_close
_messages_total

counter Total close messages received from XMPP
peer.

controller_xmpp_peer_sent_messages_
total

counter Total messages sent to XMPP peer.

controller_xmpp_peer_sent_open_mess
ages_total

counter Total open messages sent to XMPP peer.

controller_xmpp_peer_sent_keepalive
_messages_total

counter Total keepalive messages sent to XMPP
peer.

controller_xmpp_peer_sent_notificat
ion_messages_total

counter Total notification messages sent to XMPP
peer.

controller_xmpp_peer_sent_update_me
ssages_total

counter Total update messages sent to XMPP peer.

controller_xmpp_peer_sent_close_mes
sages_total

counter Total close messages sent to XMPP peer.

controller_xmpp_peer_received_reach
able_routes_total

counter Total reachable routes received from
XMPP peer.

controller_xmpp_peer_received_unrea
chable_routes_total

counter Total unreachable routes received from
XMPP peer.

controller_xmpp_peer_received_end_o
f_rib_total

counter Total end-of-RIB markers received from
XMPP peer.

274

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_xmpp_peer_sent_reachable
_routes_total

counter Total reachable routes sent to XMPP peer.

controller_xmpp_peer_sent_unreachab
le_routes_total

counter Total unreachable routes sent to XMPP
peer.

controller_xmpp_peer_sent_end_of_ri
b_total

counter Total end-of-RIB markers sent to XMPP
peer.

controller_xmpp_peer_route_update_e
rror_bad_inet6_xml_token_total

counter XMPP peer total route update errors (bad
inet6 XML token).

controller_xmpp_peer_route_update_e
rror_bad_inet6_prefix_total

counter XMPP peer total route update errors (bad
inet6 prefix).

controller_xmpp_peer_route_update_e
rror_bad_inet6_nexthop_total

counter XMPP peer total route update errors (bad
inet6 next hop).

controller_xmpp_peer_route_update_e
rror_bad_inet6_afi_safi_total

counter XMPP peer total route update errors (bad
inet6 AFI/SAFI).

controller_xmpp_peer_received_route
_paths_total

counter Total XMPP peer route paths received.

controller_xmpp_peer_received_route
_primary_paths_total

counter Total XMPP peer route primary paths
received.

controller_peer_received_reachable_
routes_total

counter Total reachable routes received from peer.

controller_peer_received_unreachabl
e_routes_total

counter Total unreachable routes received from
peer.

controller_peer_received_end_of_rib
_total

counter Total end-of-RIB markers received from
peer.

275

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_peer_sent_reachable_rout
es_total

counter Total reachable routes sent to peer.

controller_peer_sent_unreachable_ro
utes_total

counter Total unreachable routes sent to peer.

controller_peer_sent_end_of_rib_tot
al

counter Total end-of-RIB markers sent to peer.

controller_virtual_network_routing_
instance_ipv4_table_prefixes

gauge Virtual network IPv4 routing table prefixes.

controller_virtual_network_routing_
instance_ipv4_table_primary_paths

gauge Virtual network IPv4 routing table primary
paths.

controller_virtual_network_routing_
instance_ipv4_table_secondary_paths

gauge Virtual network IPv4 routing table
secondary paths.

controller_virtual_network_routing_
instance_ipv4_table_infeasible_path
s

gauge Virtual network IPv4 routing table
infeasible paths.

controller_virtual_network_routing_
instance_ipv4_table_total_paths

gauge Virtual network IPv4 routing table total
paths.

controller_virtual_network_routing_
instance_ipv6_table_prefixes

gauge Virtual network IPv6 routing table prefixes.

controller_virtual_network_routing_
instance_ipv6_table_primary_paths

gauge Virtual network IPv6 routing table primary
paths.

controller_virtual_network_routing_
instance_ipv6_table_secondary_paths

gauge Virtual network IPv6 routing table
secondary paths.

controller_virtual_network_routing_
instance_ipv6_table_infeasible_path
s

gauge Virtual network IPv6 routing table
infeasible paths.

276

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_virtual_network_routing_
instance_ipv6_table_total_paths

gauge Virtual network IPv6 routing table total
paths.

controller_virtual_network_routing_
instance_evpn_table_prefixes

gauge Virtual network EVPN routing table
prefixes.

controller_virtual_network_routing_
instance_evpn_table_primary_paths

gauge Virtual network EVPN routing table
primary paths.

controller_virtual_network_routing_
instance_evpn_table_secondary_paths

gauge Virtual network EVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_evpn_table_infeasible_path
s

gauge Virtual network EVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_evpn_table_total_paths

gauge Virtual network EVPN routing table total
paths.

controller_virtual_network_routing_
instance_ermvpn_table_prefixes

gauge Virtual network ERMVPN routing table
prefixes.

controller_virtual_network_routing_
instance_ermvpn_table_primary_paths

gauge Virtual network ERMVPN routing table
primary paths.

controller_virtual_network_routing_
instance_ermvpn_table_secondary_pat
hs

gauge Virtual network ERMVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_ermvpn_table_infeasible_pa
ths

gauge Virtual network ERMVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_ermvpn_table_total_paths

gauge Virtual network ERMVPN routing table
total paths.

277

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

controller_virtual_network_routing_
instance_mvpn_table_prefixes

gauge Virtual network MVPN routing table
prefixes.

controller_virtual_network_routing_
instance_mvpn_table_primary_paths

gauge Virtual network MVPN routing table
primary paths.

controller_virtual_network_routing_
instance_mvpn_table_secondary_paths

gauge Virtual network MVPN routing table
secondary paths.

controller_virtual_network_routing_
instance_mvpn_table_infeasible_path
s

gauge Virtual network MVPN routing table
infeasible paths.

controller_virtual_network_routing_
instance_mvpn_table_total_paths

gauge Virtual network MVPN routing table total
paths.

virtual_router_cpu_1min_load_avg gauge Virtual router CPU 1 minute load average.

virtual_router_cpu_5min_load_avg gauge Virtual router CPU 5 minute load average.

virtual_router_cpu_15min_load_avg gauge Virtual router CPU 15 minute load average.

virtual_router_system_memory_bytes gauge Virtual router total system memory.

virtual_router_system_memory_free_b
ytes

gauge Virtual router system memory free.

virtual_router_system_memory_used_b
ytes

gauge Virtual router system memory used.

virtual_router_system_memory_cached
_bytes

gauge Virtual router system memory cached.

virtual_router_system_memory_buffer
s

gauge Virtual router system memory buffers.

278

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_memory_kilob
ytes

gauge Virtual router virtual memory.

virtual_router_resident_memory_kilo
bytes

gauge Virtual router resident memory.

virtual_router_peak_virtual_memory_
bytes

gauge Virtual router peak virtual memory.

virtual_router_phys_if_input_packet
s_total

counter Total packets received by physical
interface.

virtual_router_phys_if_output_packe
ts_total

counter Total packets sent by physical interface.

virtual_router_phys_if_input_bytes_
total

counter Total bytes received by physical interface.

virtual_router_phys_if_output_bytes
_total

counter Total bytes sent by physical interface.

virtual_router_input_packets_total counter Total packets received by virtual router.

virtual_router_output_packets_total counter Total packets sent by virtual router.

virtual_router_input_bytes_total counter Total bytes received by virtual router.

virtual_router_output_bytes_total counter Total bytes sent by virtual router.

virtual_router_flows_total counter Total virtual router flows.

virtual_router_aged_flows_total counter Total virtual router aged flows.

virtual_router_active_flows gauge Current virtual router active flows.

virtual_router_hold_flows gauge Current virtual router hold flows.

279

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

virtual_router_added_flows_diff_tot
al

gauge Virtual router added flows since last
sample.

virtual_router_exception_packets_to
tal

counter Total virtual router exception packets.

virtual_router_exception_packets_al
lowed_total

counter Total virtual router exception packets
allowed.

virtual_router_exception_packets_dr
opped_total

counter Total virtual router exception packets
dropped.

virtual_router_dropped_packets_tota
l

counter Total packets dropped.

virtual_router_vhost_dropped_packet
s_total

counter Total virtual host packets dropped.

virtual_router_input_bandwidth_util
ization

gauge Ingress bandwidth of physical interface
where the value is obtained by dividing the
bandwidth computed in bits per second
(bps) by speed of the physical interface.

virtual_router_output_bandwidth_uti
lization

gauge Egress bandwidth of physical interface
where the value is obtained by dividing the
bandwidth computed in bps by speed of
the physical interface.

virtual_router_vhost_interface_inpu
t_bytes_total

counter Total bytes received by virtual host
interface.

virtual_router_vhost_interface_outp
ut_bytes_total

counter Total bytes sent by virtual host interface.

virtual_router_vhost_interface_inpu
t_packets_total

counter Total packets received by virtual host
interface.

280

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

virtual_router_vhost_interface_outp
ut_packets_total

counter Total packets sent by virtual host interface.

virtual_router_virtual_networks gauge Current number of virtual networks.

virtual_router_virtual_machines gauge Current number of virtual machines.

virtual_router_virtual_machine_inte
rfaces

gauge Current number of virtual machine
interfaces.

virtual_router_interfaces_down gauge Current number of down interfaces.

virtual_router_agent_state gauge Virtual router agent state (0=Functional,
1=Non-Functional).

virtual_router_connection_status gauge Connection status (0=Up, 1=Down,
2=Initializing).

virtual_router_virtual_network_inpu
t_packets_total

counter Total input packets received.

virtual_router_virtual_network_outp
ut_packets_total

counter Total output packets sent.

virtual_router_virtual_network_inpu
t_bytes_total

counter Total input bytes received.

virtual_router_virtual_network_outp
ut_bytes_total

counter Total output bytes sent.

virtual_router_virtual_network_flow
s

gauge Current number of flows.

virtual_router_virtual_network_ingr
ess_flows

gauge Current number of ingress flows.

281

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_network_egre
ss_flows

gauge Current number of egress flows.

virtual_router_virtual_network_floa
ting_ips

gauge Current number of floating IP addresses.

virtual_router_virtual_network_flow
_policy_rule_hits_total

counter Total number of flow policy rule hits.

virtual_router_virtual_network_vrf_
bridge_route_table_entries

gauge Virtual routing and forwarding bridge route
table current entries.

virtual_router_virtual_network_vrf_
evpn_route_table_entries

gauge Virtual routing and forwarding EVPN route
table current entries.

virtual_router_virtual_network_vrf_
inet4_unicast_route_table_entries

gauge Virtual routing and forwarding inet4
unicast table current entries.

virtual_router_virtual_network_vrf_
inet4_multicast_route_table_entries

gauge Virtual routing and forwarding inet4
multicast table current entries.

virtual_router_virtual_network_vrf_
inet6_unicast_route_table_entries

gauge Virtual routing and forwarding inet6
unicast table current entries.

virtual_router_virtual_machine_inte
rface_input_bytes_total

counter Total input bytes received by virtual
machine interface.

virtual_router_virtual_machine_inte
rface_output_bytes_total

counter Total output bytes sent by virtual machine
interface.

virtual_router_virtual_machine_inte
rface_input_packets_total

counter Total input packets received by virtual
machine interface.

virtual_router_virtual_machine_inte
rface_output_packets_total

counter Total output packets sent by virtual
machine interface.

282

Table 19: Cloud-Native Contrail Networking (CN2) Metric List (Continued)

Metric Name Type Description

virtual_router_virtual_machine_inte
rface_active_flows

gauge Current virtual machine interface active
flows.

virtual_router_virtual_machine_inte
rface_hold_flows

gauge Current virtual machine interface hold
flows.

virtual_router_virtual_machine_inte
rface_added_flows_diff_total

gauge Virtual machine interface added flows
since last sample.

virtual_router_virtual_machine_inte
rface_dropped_packets_total

counter Virtual machine interface total dropped
packets.

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

Kubernetes Metric List | 283

Cluster Node Metric List | 321

Contrail Networking Alert List | 339

Kubernetes Metric List

Table 20: Kubernetes Metric List

Metric Name Type Description

apiextensions_openapi_v2_regenerati
on_count

counter [ALPHA] Counter of OpenAPI v2
spec regeneration count broken
down by causing CRD name and
reason.

283

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_admission_controller_admi
ssion_duration_seconds

histogram [ALPHA] Admission controller
latency histogram in seconds,
identified by name and broken out
for each operation and API
resource and type (validate or
admit).

apiserver_admission_step_admission_
duration_seconds_summary

summary [ALPHA] Admission sub-step
latency summary in seconds,
broken out for each operation and
API resource and step type
(validate or admit).

apiserver_admission_webhook_admissi
on_duration_seconds

histogram [ALPHA] Admission webhook
latency histogram in seconds,
identified by name and broken out
for each operation and API
resource and type (validate or
admit).

apiserver_admission_webhook_rejecti
on_count

counter [ALPHA] Admission webhook
rejection count, identified by name
and broken out for each admission
type (validating or admit) and
operation. Additional labels specify
an error type
(calling_webhook_error or
apiserver_internal_error if an error
occurred; no_error otherwise) and
optionally a non-zero rejection
code if the webhook rejects the
request with an HTTP status code
(honored by the apiserver when the
code is greater than or equal to
400). Codes greater than 600 are
truncated to 600, to keep the
metrics bounded by cardinality.

apiserver_audit_event_total counter [ALPHA] Counter of audit events
generated and sent to the audit
backend.

284

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_audit_requests_rejected_t
otal

counter [ALPHA] Counter of apiserver
requests rejected due to an error in
the audit logging backend.

apiserver_client_certificate_expira
tion_seconds

histogram [ALPHA] Distribution of the
remaining lifetime on the certificate
used to authenticate a request.

apiserver_current_inflight_requests gauge [ALPHA] Maximal number of
currently used inflight requests
limit of this apiserver per request
kind in the last second.

apiserver_current_inqueue_requests gauge [ALPHA] Maximal number of
queued requests in this apiserver
per request kind in the last second.

apiserver_envelope_encryption_dek_c
ache_fill_percent

gauge [ALPHA] Percent of the cache slots
currently occupied by cached data
encryption keys (DEK)s.

apiserver_flowcontrol_current_execu
ting_requests

gauge [ALPHA] Number of requests
currently executing in the API
Priority and Fairness system.

apiserver_flowcontrol_current_inque
ue_requests

gauge [ALPHA] Number of requests
currently pending in queues of the
API Priority and Fairness system.

apiserver_flowcontrol_dispatched_re
quests_total

counter [ALPHA] Number of requests
released by the API Priority and
Fairness system for service.

apiserver_flowcontrol_priority_leve
l_request_count_samples

histogram [ALPHA] Periodic observations of
the number of requests.

apiserver_flowcontrol_priority_leve
l_request_count_watermarks

histogram [ALPHA] Watermarks of the
number of requests.

285

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_flowcontrol_read_vs_write
_request_count_samples

histogram [ALPHA] Periodic observations of
the number of requests.

apiserver_flowcontrol_read_vs_write
_request_count_watermarks

histogram [ALPHA] Watermarks of the
number of requests.

apiserver_flowcontrol_request_concu
rrency_limit

gauge [ALPHA] Shared concurrency limit
in the API Priority and Fairness
system.

apiserver_flowcontrol_request_execu
tion_seconds

histogram [ALPHA] Duration of request
execution in the API Priority and
Fairness system.

apiserver_flowcontrol_request_queue
_length_after_enqueue

histogram [ALPHA] Length of queue in the
API Priority and Fairness system, as
seen by each request after it is
enqueued.

apiserver_flowcontrol_request_wait_
duration_seconds

histogram [ALPHA] Length of time a request
spent waiting in its queue.

apiserver_init_events_total counter [ALPHA] Counter of init events
processed in watchcache broken by
resource type.

apiserver_longrunning_gauge gauge [ALPHA] Gauge of all active long-
running apiserver requests broken
out by verb, group, version,
resource, scope and component.
Not all requests are tracked this
way.

apiserver_registered_watchers gauge [ALPHA] Number of currently
registered watchers for a given
resources.

286

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_request_duration_seconds histogram [ALPHA] Response latency
distribution in seconds for each
verb, dry run value, group, version,
resource, subresource, scope, and
component.

apiserver_request_filter_duration_s
econds

histogram [ALPHA] Request filter latency
distribution in seconds, for each
filter type.

apiserver_request_total counter [ALPHA] Counter of apiserver
requests broken out for each verb,
dry run value, group, version,
resource, scope, component, and
HTTP response contentType and
code.

apiserver_requested_deprecated_apis gauge [ALPHA] Gauge of deprecated APIs
that have been requested, broken
out by API group, version, resource,
subresource, and removed_release.

apiserver_response_sizes histogram [ALPHA] Response size distribution
in bytes for each group, version,
verb, resource, subresource, scope,
and component.

apiserver_selfrequest_total counter [ALPHA] Counter of apiserver self-
requests broken out for each verb,
API resource, and subresource.

apiserver_storage_data_key_generati
on_duration_seconds

histogram [ALPHA] Latencies in seconds of
DEK generation operations.

apiserver_storage_data_key_generati
on_failures_total

counter [ALPHA] Total number of failed
DEK generation operations.

287

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

apiserver_storage_envelope_transfor
mation_cache_misses_total

counter [ALPHA] Total number of cache
misses while accessing key
decryption key (KDK).

apiserver_tls_handshake_errors_tota
l

counter [ALPHA] Number of requests
dropped with 'TLS handshake error
from' error.

apiserver_watch_events_sizes histogram [ALPHA] Watch event size
distribution in bytes.

apiserver_watch_events_total counter [ALPHA] Number of events sent in
watch clients.

authenticated_user_requests counter [ALPHA] Counter of authenticated
requests broken out by username.

authentication_attempts counter [ALPHA] Counter of authenticated
attempts.

authentication_duration_seconds histogram [ALPHA] Authentication duration in
seconds broken out by result.

authentication_token_cache_active_f
etch_count

gauge [ALPHA]

authentication_token_cache_fetch_to
tal

counter [ALPHA]

authentication_token_cache_request_
duration_seconds

histogram [ALPHA]

authentication_token_cache_request_
total

counter [ALPHA]

288

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

cadvisor_version_info gauge A metric with a constant '1' value
labeled by kernel version, OS
version, docker version, cadvisor
version, and cadvisor revision.

container_cpu_cfs_periods_total counter Number of elapsed enforcement
period intervals.

container_cpu_cfs_throttled_periods
_total

counter Number of throttled period
intervals.

container_cpu_cfs_throttled_seconds
_total

counter Total time duration the container
has been throttled.

container_cpu_load_average_10s gauge Value of container CPU load
average over the last 10 seconds.

container_cpu_system_seconds_total counter Cumulative system CPU time
consumed in seconds.

container_cpu_usage_seconds_total counter Cumulative CPU time consumed in
seconds.

container_cpu_user_seconds_total counter Cumulative user CPU time
consumed in seconds.

container_file_descriptors gauge Number of open file descriptors for
the container.

container_fs_inodes_free gauge Number of available Inodes.

container_fs_inodes_total gauge Number of Inodes.

container_fs_io_current gauge Number of I/Os currently in
progress.

container_fs_io_time_seconds_total counter Cumulative count of seconds spent
doing I/Os.

289

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

container_fs_io_time_weighted_secon
ds_total

counter Cumulative weighted I/O time in
seconds.

container_fs_limit_bytes gauge Number of bytes that the container
on this filesystem can consume.

container_fs_read_seconds_total counter Cumulative count of seconds spent
reading.

container_fs_reads_bytes_total counter Cumulative count of bytes read.

container_fs_reads_merged_total counter Cumulative count of reads merged.

container_fs_reads_total counter Cumulative count of reads
completed.

container_fs_sector_reads_total counter Cumulative count of sector reads
completed.

container_fs_sector_writes_total counter Cumulative count of sector writes
completed.

container_fs_usage_bytes gauge Number of bytes that the container
on this filesystem can consume.

container_fs_write_seconds_total counter Cumulative count of seconds spent
writing.

container_fs_writes_bytes_total counter Cumulative count of bytes written.

container_fs_writes_merged_total counter Cumulative count of writes merged.

container_fs_writes_total counter Cumulative count of writes
completed.

container_last_seen gauge Last time the exporter recognized a
container.

290

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

container_memory_cache gauge Number of bytes of page cache
memory.

container_memory_failcnt counter Number of memory usage hit limits.

container_memory_failures_total counter Cumulative count of memory
allocation failures.

container_memory_mapped_file gauge Size of memory mapped files in
bytes.

container_memory_max_usage_bytes gauge Maximum memory usage recorded
in bytes.

container_memory_rss gauge Size of RSS in bytes.

container_memory_swap gauge Container swap usage in bytes.

container_memory_usage_bytes gauge Current memory usage in bytes,
including all memory regardless of
when it was accessed.

container_memory_working_set_bytes gauge Current working set in bytes.

container_network_receive_bytes_tot
al

counter Cumulative count of bytes
received.

container_network_receive_errors_to
tal

counter Cumulative count of errors
encountered while receiving.

container_network_receive_packets_d
ropped_total

counter Cumulative count of packets
dropped while receiving.

container_network_receive_packets_t
otal

counter Cumulative count of packets
received.

291

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

container_network_transmit_bytes_to
tal

counter Cumulative count of bytes
transmitted.

container_network_transmit_errors_t
otal

counter Cumulative count of errors
encountered while transmitting.

container_network_transmit_packets_
dropped_total

counter Cumulative count of packets
dropped while transmitting.

container_network_transmit_packets_
total

counter Cumulative count of packets
transmitted.

container_processes gauge Number of processes running
inside the container.

container_scrape_error gauge 1 if there was an error while getting
container metrics, 0 otherwise.

container_sockets gauge Number of open sockets for the
container.

container_spec_cpu_period gauge CPU period of the container.

container_spec_cpu_quota gauge CPU quota of the container.

container_spec_cpu_shares gauge CPU share of the container.

container_spec_memory_limit_bytes gauge Memory limit for the container.

container_spec_memory_reservation_l
imit_bytes

gauge Memory reservation limit for the
container.

container_spec_memory_swap_limit_by
tes

gauge Memory swap limit for the
container.

container_start_time_seconds gauge Start time of the container since
Unix epoch in seconds.

292

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

container_tasks_state gauge Number of tasks in a given state.

container_threads gauge Number of threads running inside
the container.

container_threads_max gauge Maximum number of threads
allowed inside the container;
infinity if value is zero.

container_ulimits_soft gauge Soft ulimit values for the container
root process. Unlimited if -1, except
priority and nice.

coredns_build_info gauge A metric with a constant '1' value
labeled by version, revision, and
goversion from which CoreDNS
was built.

coredns_cache_entries gauge The number of elements in the
cache.

coredns_cache_hits_total counter The count of cache hits.

coredns_cache_misses_total counter The count of cache misses.

coredns_dns_request_duration_second
s

histogram Histogram of the time (in seconds)
each request took.

coredns_dns_request_size_bytes histogram Size of the EDNS0 UDP buffer in
bytes (64K for TCP).

coredns_dns_requests_total counter Counter of DNS requests made per
zone, protocol, and family.

coredns_dns_response_size_bytes histogram Size of the returned response in
bytes.

coredns_dns_responses_total counter Counter of response status codes.

293

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

coredns_forward_healthcheck_failure
s_total

counter Counter of the number of failed
healthchecks.

coredns_forward_max_concurrent_reje
cts_total

counter Counter of the number of queries
rejected because the concurrent
queries were at maximum.

coredns_forward_request_duration_se
conds

histogram Histogram of the time each request
took.

coredns_forward_requests_total counter Counter of requests made per
upstream.

coredns_forward_responses_total counter Counter of requests made per
upstream.

coredns_health_request_duration_sec
onds

histogram Histogram of the time (in seconds)
each request took.

coredns_panics_total counter A metric that counts the number of
panics.

coredns_plugin_enabled gauge A metric that indicates whether a
plugin is enabled on a per-server
and zone basis.

etcd_db_total_size_in_bytes gauge [ALPHA] Total size of the etcd
database file physically allocated in
bytes.

etcd_object_counts gauge [ALPHA] Number of stored objects
at the time of last check, split by
kind.

etcd_request_duration_seconds histogram [ALPHA] Etcd request latency in
seconds for each operation and
object type.

294

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_certificatesigningrequest_anno
tations

gauge Kubernetes annotations converted
to Prometheus labels.

kube_certificatesigningrequest_cert
_length

gauge Length of the issued certificate.

kube_certificatesigningrequest_cond
ition

gauge The number of each
certificatesigningrequest condition.

kube_certificatesigningrequest_crea
ted

gauge Unix creation timestamp.

kube_certificatesigningrequest_labe
ls

gauge Kubernetes labels converted to
Prometheus labels.

kube_configmap_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_configmap_created gauge Unix creation timestamp.

kube_configmap_info gauge Information about configmap.

kube_configmap_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_configmap_metadata_resource_ve
rsion

gauge Resource version representing a
specific version of the configmap.

kube_cronjob_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_cronjob_created gauge Unix creation timestamp.

kube_cronjob_info gauge Info about cronjob.

kube_cronjob_labels gauge Kubernetes labels converted to
Prometheus labels.

295

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_cronjob_metadata_resource_vers
ion

gauge Resource version representing a
specific version of the cronjob.

kube_cronjob_next_schedule_time gauge Next time the cronjob should be
scheduled. The time after
lastScheduleTime, or after the cron
job's creation time if it has never
been scheduled. Use this to
determine if the job is delayed.

kube_cronjob_spec_failed_job_histor
y_limit

gauge Failed job history limit tells the
controller how many failed jobs
should be preserved.

kube_cronjob_spec_starting_deadline
_seconds

gauge Deadline in seconds for starting the
job if it misses scheduled time for
any reason.

kube_cronjob_spec_successful_job_hi
story_limit

gauge Successful job history limit tells the
controller how many completed
jobs should be preserved.

kube_cronjob_spec_suspend gauge Suspend flag tells the controller to
suspend subsequent executions.

kube_cronjob_status_active gauge Active holds pointers to currently
running jobs.

kube_cronjob_status_last_schedule_t
ime

gauge LastScheduleTime keeps
information about the last time the
job was successfully scheduled.

kube_daemonset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_daemonset_created gauge Unix creation timestamp.

kube_daemonset_labels gauge Kubernetes labels converted to
Prometheus labels.

296

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_daemonset_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_daemonset_status_current_numbe
r_scheduled

gauge The number of nodes running at
least one daemon pod.

kube_daemonset_status_desired_numbe
r_scheduled

gauge The number of nodes that should
be running the daemon pod.

kube_daemonset_status_number_availa
ble

gauge The number of nodes that should
be running the daemon pod and
have one or more of the daemon
pods running and available.

kube_daemonset_status_number_missch
eduled

gauge The number of nodes running a
daemon pod that should not be
running a daemon pod.

kube_daemonset_status_number_ready gauge The number of nodes that should
be running the daemon pod and
have one or more of the daemon
pods running and ready.

kube_daemonset_status_number_unavai
lable

gauge The number of nodes that should
be running the daemon pod but
have none of the daemon pods
running and available.

kube_daemonset_status_observed_gene
ration

gauge The most recent generation
observed by the daemon set
controller.

kube_daemonset_status_updated_numbe
r_scheduled

gauge The total number of nodes that are
running an updated daemon pod.

kube_deployment_annotations gauge Kubernetes annotations converted
to Prometheus labels.

297

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_deployment_created gauge Unix creation timestamp.

kube_deployment_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_deployment_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_deployment_spec_paused gauge Whether the deployment is paused
and will not be processed by the
deployment controller.

kube_deployment_spec_replicas gauge Number of desired pods for a
deployment.

kube_deployment_spec_strategy_rolli
ngupdate_max_surge

gauge Maximum number of replicas that
can be scheduled above the desired
number of replicas during a rolling
update of a deployment.

kube_deployment_spec_strategy_rolli
ngupdate_max_unavailable

gauge Maximum number of unavailable
replicas during a rolling update of a
deployment.

kube_deployment_status_condition gauge The current status conditions of a
deployment.

kube_deployment_status_observed_gen
eration

gauge The generation observed by the
deployment controller.

kube_deployment_status_replicas gauge The number of replicas per
deployment.

kube_deployment_status_replicas_ava
ilable

gauge The number of available replicas
per deployment.

298

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_deployment_status_replicas_rea
dy

gauge The number of ready replicas per
deployment.

kube_deployment_status_replicas_una
vailable

gauge The number of unavailable replicas
per deployment.

kube_deployment_status_replicas_upd
ated

gauge The number of updated replicas per
deployment.

kube_endpoint_address_available gauge Number of addresses available in
the endpoint.

kube_endpoint_address_not_ready gauge Number of addresses not ready in
the endpoint.

kube_endpoint_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_endpoint_created gauge Unix creation timestamp.

kube_endpoint_info gauge Information about the endpoint.

kube_endpoint_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_endpoint_ports gauge Information about the endpoint
ports.

kube_horizontalpodautoscaler_annota
tions

gauge Kubernetes annotations converted
to Prometheus labels.

kube_horizontalpodautoscaler_info gauge Information about this autoscaler.

kube_horizontalpodautoscaler_labels gauge Kubernetes labels converted to
Prometheus labels.

299

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_horizontalpodautoscaler_metada
ta_generation

gauge The generation observed by the
HorizontalPodAutoscaler controller.

kube_horizontalpodautoscaler_spec_m
ax_replicas

gauge Upper limit for the number of pods
that is set by the autoscaler; cannot
be smaller number than
MinReplicas.

kube_horizontalpodautoscaler_spec_m
in_replicas

gauge Lower limit for the number of pods
that is set by the autoscaler, default
1.

kube_horizontalpodautoscaler_spec_t
arget_metric

gauge The metric specifications used by
this autoscaler when calculating the
desired replica count.

kube_horizontalpodautoscaler_status
_condition

gauge The condition of this autoscaler.

kube_horizontalpodautoscaler_status
_current_replicas

gauge Current number of replicas of pods
managed by this autoscaler.

kube_horizontalpodautoscaler_status
_desired_replicas

gauge Desired number of replicas of pods
managed by this autoscaler.

kube_ingress_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_ingress_created gauge Unix creation timestamp.

kube_ingress_info gauge Information about ingress.

kube_ingress_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_ingress_metadata_resource_vers
ion

gauge Resource version representing a
specific version of ingress.

300

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_ingress_path gauge Ingress host, paths, and backend
service information.

kube_ingress_tls gauge Ingress TLS host and secret
information.

kube_job_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_job_complete gauge The job has completed its
execution.

kube_job_created gauge Unix creation timestamp.

kube_job_failed gauge The job has failed its execution.

kube_job_info gauge Information about the job.

kube_job_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_job_owner gauge Information about the job's owner.

kube_job_spec_active_deadline_secon
ds

gauge How long (in seconds) the job can
be active after the startTime before
the system tries to terminate it.

kube_job_spec_completions gauge The desired number of successfully
finished pods the job should be run
with.

kube_job_spec_parallelism gauge The maximum desired number of
pods the job should run at any
given time.

kube_job_status_active gauge The number of actively running
pods.

301

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_job_status_completion_time gauge The completionTime represents
time when the job was completed.

kube_job_status_failed gauge The number of pods that reached
Phase Failed, and the reason for
failure.

kube_job_status_start_time gauge The startTime represents thetime
when the job was acknowledged by
the Job Manager.

kube_job_status_succeeded gauge The number of pods that reached
Phase Succeeded.

kube_limitrange gauge Information about limit range.

kube_limitrange_created gauge Unix creation timestamp.

kube_mutatingwebhookconfiguration_c
reated

gauge Unix creation timestamp.

kube_mutatingwebhookconfiguration_i
nfo

gauge Information about the
MutatingWebhookConfiguration.

kube_mutatingwebhookconfiguration_m
etadata_resource_version

gauge Resource version representing a
specific version of the
MutatingWebhookConfiguration.

kube_namespace_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_namespace_created gauge Unix creation timestamp.

kube_namespace_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_namespace_status_condition gauge The condition of a namespace.

302

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_namespace_status_phase gauge Kubernetes namespace status
phase.

kube_networkpolicy_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_networkpolicy_created gauge Unix creation timestamp of a
network policy.

kube_networkpolicy_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_networkpolicy_spec_egress_rule
s

gauge Number of egress rules on the
networkpolicy.

kube_networkpolicy_spec_ingress_rul
es

gauge Number of ingress rules on the
networkpolicy.

kube_node_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_node_created gauge Unix creation timestamp.

kube_node_info gauge Information about a cluster node.

kube_node_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_node_role gauge The role of a cluster node.

kube_node_spec_taint gauge The taint of a cluster node.

kube_node_spec_unschedulable gauge Whether a node can schedule new
pods.

kube_node_status_allocatable gauge The allocatable for different
resources of a node that are
available for scheduling.

303

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_node_status_capacity gauge The capacity for different resources
of a node.

kube_node_status_condition gauge The condition of a cluster node.

kube_persistentvolume_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_persistentvolume_capacity_byte
s

gauge Persistentvolume capacity in bytes.

kube_persistentvolume_claim_ref gauge Information about the Persistent
Volume Claim Reference.

kube_persistentvolume_info gauge Information about
persistentvolume.

kube_persistentvolume_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_persistentvolume_status_phase gauge The phase indicates if a volume is
available, bound to a claim, or
released by a claim.

kube_persistentvolumeclaim_access_m
ode

gauge The access mode(s) specified by the
persistent volume claim.

kube_persistentvolumeclaim_annotati
ons

gauge Kubernetes annotations converted
to Prometheus labels.

kube_persistentvolumeclaim_info gauge Information about persistent
volume claim.

kube_persistentvolumeclaim_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_persistentvolumeclaim_resource
_requests_storage_bytes

gauge The capacity of storage requested
by the persistent volume claim.

304

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_persistentvolumeclaim_status_c
ondition

gauge Information about status of
different conditions of persistent
volume claim.

kube_persistentvolumeclaim_status_p
hase

gauge The phase the persistent volume
claim is currently in.

kube_pod_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_pod_completion_time gauge Completion time in Unix timestamp
for a pod.

kube_pod_container_info gauge Information about a container in a
pod.

kube_pod_container_resource_limits gauge The number of resource limits
requested by a container.

kube_pod_container_resource_request
s

gauge The number of resources requested
by a container.

kube_pod_container_state_started gauge Start time in Unix timestamp for a
pod container.

kube_pod_container_status_last_term
inated_reason

gauge Describes the last reason the
container was in a terminated state.

kube_pod_container_status_ready gauge Describes whether the container's
readiness check succeeded.

kube_pod_container_status_restarts_
total

counter The number of restarts per
container.

kube_pod_container_status_running gauge Describes whether the container is
currently in running state.

305

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_container_status_terminate
d

gauge Describes whether the container is
currently in a terminated state.

kube_pod_container_status_terminate
d_reason

gauge Describes the reason the container
is currently in a terminated state.

kube_pod_container_status_waiting gauge Describes whether the container is
currently in a waiting state.

kube_pod_container_status_waiting_r
eason

gauge Describes the reason the container
is currently in a waiting state.

kube_pod_created gauge Unix creation timestamp.

kube_pod_deletion_timestamp gauge Unix deletion timestamp.

kube_pod_info gauge Information about the pod.

kube_pod_init_container_info gauge Information about an init container
in a pod.

kube_pod_init_container_resource_li
mits

gauge The number of requested resource
limits by an init container.

kube_pod_init_container_resource_re
quests

gauge The number of resource requests
by an init container.

kube_pod_init_container_status_last
_terminated_reason

gauge Describes the last reason the init
container was in a terminated state.

kube_pod_init_container_status_read
y

gauge Describes whether the init
container's readiness check
succeeded.

kube_pod_init_container_status_rest
arts_total

counter The number of restarts for the init
container.

306

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_init_container_status_runn
ing

gauge Describes whether the init
container is currently in a running
state.

kube_pod_init_container_status_term
inated

gauge Describes whether the init
container is currently in a
terminated state.

kube_pod_init_container_status_term
inated_reason

gauge Describes the last reason the init
container was in a terminated state.

kube_pod_init_container_status_read
y

gauge Describes whether the init
container's readiness check
succeeded.

kube_pod_init_container_status_rest
arts_total

counter The number of restarts for the init
container.

kube_pod_init_container_status_runn
ing

gauge Describes whether the init
container is currently in a running
state.

kube_pod_init_container_status_term
inated

gauge Describes whether the init
container is currently in a
terminated state.

kube_pod_init_container_status_term
inated_reason

gauge Describes the reason the init
container is currently in a
terminated state.

kube_pod_init_container_status_wait
ing

gauge Describes whether the init
container is currently in a waiting
state.

kube_pod_init_container_status_wait
ing_reason

gauge Describes the reason the init
container is currently in a waiting
state.

307

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_pod_overhead_cpu_cores gauge The pod overhead in regard to CPU
cores associated with running a
pod.

kube_pod_overhead_memory_bytes gauge The pod overhead in regard to
memory associated with running a
pod.

kube_pod_owner gauge Information about the pod's owner.

kube_pod_restart_policy gauge Describes the restart policy in use
by this pod.

kube_pod_runtimeclass_name_info gauge The runtimeclass associated with
the pod.

kube_pod_spec_volumes_persistentvol
umeclaims_info

gauge Information about
persistentvolumeclaim volumes in a
pod.

kube_pod_spec_volumes_persistentvol
umeclaims_readonly

gauge Describes whether a
persistentvolumeclaim is mounted
as read only.

kube_pod_start_time gauge Start time in the Unix timestamp
for a pod.

kube_pod_status_phase gauge The pod's current phase.

kube_pod_status_ready gauge Describes whether the pod is ready
to serve requests.

kube_pod_status_reason gauge The pod status reasons.

308

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_pod_status_scheduled gauge Describes the status of the
scheduling process for the pod.

kube_pod_status_scheduled_time gauge Unix timestamp when a pod moved
into scheduled status.

kube_pod_status_unschedulable gauge Describes the unschedulable status
for the pod.

kube_poddisruptionbudget_annotation
s

gauge Kubernetes annotations converted
to Prometheus labels.

kube_poddisruptionbudget_created gauge Unix creation timestamp.

kube_poddisruptionbudget_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_poddisruptionbudget_status_cur
rent_healthy

gauge Current number of healthy pods.

kube_poddisruptionbudget_status_des
ired_healthy

gauge Minimum desired number of
healthy pods.

kube_poddisruptionbudget_status_exp
ected_pods

gauge Total number of pods counted by
this disruption budget.

kube_poddisruptionbudget_status_obs
erved_generation

gauge Most recent generation observed
when updating this disruption
budget status.

kube_poddisruptionbudget_status_pod
_disruptions_allowed

gauge Number of pod disruptions that are
currently allowed.

kube_replicaset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_replicaset_created gauge Unix creation timestamp.

309

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_replicaset_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_replicaset_metadata_generation gauge Sequence number representing a
specific generation of the desired
state.

kube_replicaset_owner gauge Information about the ReplicaSet's
owner.

kube_replicaset_spec_replicas gauge Number of desired pods for a
ReplicaSet.

kube_replicaset_status_fully_labele
d_replicas

gauge The number of fully labeled replicas
per ReplicaSet.

kube_replicaset_status_observed_gen
eration

gauge The generation observed by the
ReplicaSet controller.

kube_replicaset_status_ready_replic
as

gauge The number of ready replicas per
ReplicaSet.

kube_replicaset_status_replicas gauge The number of replicas per
ReplicaSet.

kube_replicationcontroller_created gauge Unix creation timestamp.

kube_replicationcontroller_metadata
_generation

gauge Sequence number representing a
specific generation of the desired
state.

kube_replicationcontroller_owner gauge Information about the
ReplicationController's owner.

kube_replicationcontroller_spec_rep
licas

gauge Number of desired pods for a
ReplicationController.

310

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_replicationcontroller_status_a
vailable_replicas

gauge The number of available replicas
per ReplicationController.

kube_replicationcontroller_status_f
ully_labeled_replicas

gauge The number of fully labeled replicas
per ReplicationController.

kube_replicationcontroller_status_o
bserved_generation

gauge The generation observed by the
ReplicationController controller.

kube_replicationcontroller_status_r
eady_replicas

gauge The number of ready replicas per
ReplicationController.

kube_replicationcontroller_status_r
eplicas

gauge The number of replicas per
ReplicationController.

kube_resourcequota gauge Information about resource quota.

kube_resourcequota_created gauge Unix creation timestamp.

kube_secret_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_secret_created gauge Unix creation timestamp.

kube_secret_info gauge Information about secret.

kube_secret_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_secret_metadata_resource_versi
on

gauge Resource version representing a
specific version of secret.

kube_secret_type gauge Type about secret.

kube_service_annotations gauge Kubernetes annotations converted
to Prometheus labels.

311

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_service_created gauge Unix creation timestamp.

kube_service_info gauge Information about service.

kube_service_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_service_spec_external_ip gauge One series for each service external
IP.

kube_service_spec_type gauge Specifies the service type.

kube_service_status_load_balancer_i
ngress

gauge Service load balancer ingress
status.

kube_statefulset_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_statefulset_created gauge Unix creation timestamp.

kube_statefulset_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_statefulset_metadata_generatio
n

gauge Sequence number representing a
specific generation of the desired
state for the StatefulSet.

kube_statefulset_replicas gauge Number of desired pods for a
StatefulSet.

kube_statefulset_status_current_rev
ision

gauge Indicates the version of the
StatefulSet used to generate pods
in the sequence (0,currentReplicas).

kube_statefulset_status_observed_ge
neration

gauge The generation observed by the
StatefulSet controller.

312

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_statefulset_status_replicas gauge The number of replicas per
StatefulSet.

kube_statefulset_status_replicas_av
ailable

gauge The number of available replicas
per StatefulSet.

kube_statefulset_status_replicas_cu
rrent

gauge The number of current replicas per
StatefulSet.

kube_statefulset_status_replicas_re
ady

gauge The number of ready replicas per
StatefulSet.

kube_statefulset_status_replicas_up
dated

gauge The number of updated replicas per
StatefulSet.

kube_statefulset_status_update_revi
sion

gauge Indicates the version of the
StatefulSet used to generate pods
in the sequence (replicas-
updatedReplicas,replicas).

kube_storageclass_annotations gauge Kubernetes annotations converted
to Prometheus labels.

kube_storageclass_created gauge Unix creation timestamp.

kube_storageclass_info gauge Information about storageclass.

kube_storageclass_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_validatingwebhookconfiguration
_created

gauge Unix creation timestamp.

kube_validatingwebhookconfiguration
_info

gauge Information about the
ValidatingWebhookConfiguration.

313

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kube_validatingwebhookconfiguration
_metadata_resource_version

gauge Resource version representing a
specific version of the
ValidatingWebhookConfiguration.

kube_volumeattachment_created gauge Unix creation timestamp.

kube_volumeattachment_info gauge Information about
volumeattachment.

kube_volumeattachment_labels gauge Kubernetes labels converted to
Prometheus labels.

kube_volumeattachment_spec_source_p
ersistentvolume

gauge PersistentVolume source reference.

kube_volumeattachment_status_attach
ed

gauge Information about
volumeattachment.

kube_volumeattachment_status_attach
ment_metadata

gauge The volumeattachment metadata.

kubelet_certificate_manager_client_
expiration_renew_errors

counter [ALPHA] Counter of certificate
renewal errors.

kubelet_certificate_manager_client_
ttl_seconds

gauge [ALPHA] Gauge of the time-to-live
(TTL) of the Kubelet's client
certificate. The value is in seconds
until certificate expiry (negative if
already expired). If the client
certificate is invalid or unused, the
value will be +INF.

kubelet_cgroup_manager_duration_sec
onds

histogram [ALPHA] Duration in seconds for
cgroup manager operations. Broken
down by method.

kubelet_container_log_filesystem_us
ed_bytes

gauge [ALPHA] Bytes used by the
container's logs on the filesystem.

314

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_containers_per_pod_count histogram [ALPHA] The number of containers
per pod.

kubelet_docker_operations_duration_
seconds

histogram [ALPHA] Latency in seconds of
Docker operations. Broken down
by operation type.

kubelet_docker_operations_errors_to
tal

counter [ALPHA] Cumulative number of
Docker operation errors by
operation type.

kubelet_docker_operations_total counter [ALPHA] Cumulative number of
Docker operations by operation
type.

kubelet_http_inflight_requests gauge [ALPHA] Number of the inflight
http requests.

kubelet_http_requests_duration_seco
nds

histogram [ALPHA] Duration in seconds to
serve http requests.

kubelet_http_requests_total counter [ALPHA] Number of the http
requests received since the server
started.

kubelet_network_plugin_operations_d
uration_seconds

histogram [ALPHA] Latency in seconds of
network plugin operations, broken
down by operation type.

kubelet_network_plugin_operations_t
otal

counter [ALPHA] Cumulative number of
network plugin operations by
operation type.

kubelet_node_config_error gauge [ALPHA] This metric is true (1) if
the node is experiencing a
configuration-related error, false (0)
otherwise.

315

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_node_name gauge [ALPHA] The node's name. The
count is always 1.

kubelet_pleg_discard_events counter [ALPHA] The number of discard
events in PLEG.

kubelet_pleg_last_seen_seconds gauge [ALPHA] Timestamp in seconds
when PLEG was last seen active.

kubelet_pleg_relist_duration_second
s

histogram [ALPHA] Duration in seconds for
relisting pods in PLEG.

kubelet_pleg_relist_interval_second
s

histogram [ALPHA] Interval in seconds
between relisting in PLEG.

kubelet_pod_start_duration_seconds histogram [ALPHA] Duration in seconds for a
single pod to go from pending to
running.

kubelet_pod_worker_duration_seconds histogram [ALPHA] Duration in seconds to
sync a single pod. Broken down by
operation type: create, update, or
sync.

kubelet_pod_worker_start_duration_s
econds

histogram [ALPHA] Duration in seconds from
seeing a pod to starting a worker.

kubelet_run_podsandbox_duration_sec
onds

histogram [ALPHA] Duration in seconds of the
run_podsandbox operations.
Broken down by
RuntimeClass.Handler.

kubelet_running_containers gauge [ALPHA] Number of containers
currently running.

kubelet_running_pods gauge [ALPHA] Number of pods currently
running.

316

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kubelet_runtime_operations_duration
_seconds

histogram [ALPHA] Duration in seconds of
runtime operations. Broken down
by operation type.

kubelet_runtime_operations_errors_t
otal

counter [ALPHA] Cumulative number of
runtime operation errors by
operation type.

kubelet_runtime_operations_total counter [ALPHA] Cumulative number of
runtime operations by operation
type.

kubelet_volume_stats_available_byte
s

gauge [ALPHA] Number of available bytes
in the volume.

kubelet_volume_stats_capacity_bytes gauge [ALPHA] Capacity in bytes of the
volume.

kubelet_volume_stats_inodes gauge [ALPHA] Maximum number of
inodes in the volume.

kubelet_volume_stats_inodes_free gauge [ALPHA] Number of free inodes in
the volume.

kubelet_volume_stats_inodes_used gauge [ALPHA] Number of used inodes in
the volume.

kubelet_volume_stats_used_bytes gauge [ALPHA] Number of used bytes in
the volume.

kubeproxy_network_programming_durat
ion_seconds

histogram [ALPHA] In Cluster Network
Programming Latency in seconds.

kubeproxy_sync_proxy_rules_duration
_seconds

histogram [ALPHA] SyncProxyRules latency in
seconds.

kubeproxy_sync_proxy_rules_endpoint
_changes_pending

gauge [ALPHA] Pending proxy rules
Endpoint changes.

317

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

kubeproxy_sync_proxy_rules_endpoint
_changes_total

counter [ALPHA] Cumulative proxy rules
Endpoint changes.

kubeproxy_sync_proxy_rules_iptables
_restore_failures_total

counter [ALPHA] Cumulative proxy iptables
restore failures.

kubeproxy_sync_proxy_rules_last_que
ued_timestamp_seconds

gauge [ALPHA] The last time a sync of
proxy rules was queued.

kubeproxy_sync_proxy_rules_last_tim
estamp_seconds

gauge [ALPHA] The last time proxy rules
were successfully synced.

kubeproxy_sync_proxy_rules_service_
changes_pending

gauge [ALPHA] Pending proxy rules
Service changes.

kubeproxy_sync_proxy_rules_service_
changes_total

counter [ALPHA] Cumulative proxy rules
Service changes.

kubernetes_build_info gauge [ALPHA] A metric with a constant
'1' value labeled by major, minor, git
version, git commit, git tree state,
build date, Go version, and
compiler from which Kubernetes
was built, and platform on which it
is running.

prober_probe_total counter [ALPHA] Cumulative number of a
liveness, readiness, or startup probe
for a container by result.

process_cpu_seconds_total counter Total user and system CPU time
spent in seconds.

process_max_fds gauge Maximum number of open file
descriptors.

process_open_fds gauge Number of open file descriptors.

318

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

process_resident_memory_bytes gauge Resident memory size in bytes.

process_start_time_seconds gauge Start time of the process since Unix
epoch in seconds.

process_virtual_memory_bytes gauge Virtual memory size in bytes.

process_virtual_memory_max_bytes gauge Maximum amount of virtual
memory available in bytes.

rest_client_exec_plugin_certificate
_rotation_age

histogram [ALPHA] Histogram of the number
of seconds the last auth exec plugin
client certificate lived before being
rotated. If auth exec plugin client
certificates are unused, histogram
will contain no data.

rest_client_exec_plugin_ttl_seconds gauge [ALPHA] Gauge of the shortest TTL
of the client certificate or
certificates managed by the auth
exec plugin. The value is in seconds
until certificate expiry (negative if
already expired). If auth exec
plugins are unused or manage no
TLS certificates, the value will be
+INF.

rest_client_request_duration_second
s

histogram [ALPHA] Request latency in
seconds. Broken down by verb and
URL.

rest_client_requests_total counter [ALPHA] Number of HTTP
requests, partitioned by status
code, method, and host.

serviceaccount_legacy_tokens_total counter [ALPHA] Cumulative legacy service
account tokens used.

319

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

serviceaccount_stale_tokens_total counter [ALPHA] Cumulative stale
projected service account tokens
used.

serviceaccount_valid_tokens_total counter [ALPHA] Cumulative valid
projected service account tokens
used.

ssh_tunnel_open_count counter [ALPHA] Counter of ssh tunnel
total open attempts.

ssh_tunnel_open_fail_count counter [ALPHA] Counter of ssh tunnel
failed open attempts.

storage_operation_duration_seconds histogram [ALPHA] Storage operation
duration.

storage_operation_errors_total counter [ALPHA] Storage operation errors.

storage_operation_status_count counter [ALPHA] Storage operation return
statuses count.

volume_manager_total_volumes gauge [ALPHA] Number of volumes in
Volume Manager.

workqueue_adds_total counter [ALPHA] Total number of adds
handled by workqueue.

workqueue_depth gauge [ALPHA] Current depth of
workqueue.

workqueue_longest_running_processor
_seconds

gauge [ALPHA] Number of seconds the
longest-running processor for the
workqueue has been running.

workqueue_queue_duration_seconds histogram [ALPHA] How long in seconds an
item stays in the workqueue before
being requested.

320

Table 20: Kubernetes Metric List (Continued)

Metric Name Type Description

workqueue_retries_total counter [ALPHA] Total number of retries
handled by the workqueue.

workqueue_unfinished_work_seconds gauge [ALPHA] Number of seconds of
work that have been done but
haven't been observed by
work_duration. Large values
indicate stuck threads. You can
deduce the number of stuck
threads by observing the rate at
which this value increases.

workqueue_work_duration_seconds histogram [ALPHA] How long in seconds it
takes to process an item from the
workqueue.

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

Contrail Networking Metric List | 269

Cluster Node Metric List | 321

Contrail Networking Alert List | 339

Cluster Node Metric List

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List

Metric Name Type Description

node_arp_entries gauge ARP entries by device.

321

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_authorizer_graph_actions_durat
ion_seconds

histogram [ALPHA] Histogram of duration of
graph actions in node authorizer.

node_boot_time_seconds gauge Node boot time, in Unix time.

node_context_switches_total counter Total number of context switches.

node_cooling_device_cur_state gauge Current throttle state of the cooling
device.

node_cooling_device_max_state gauge Maximum throttle state of the
cooling device.

node_cpu_guest_seconds_total counter Seconds the CPUs spent in guests
(VMs) for each mode.

node_cpu_seconds_total counter Seconds the CPUs spent in each
mode.

node_disk_info gauge info of /sys/block/<block_device>.

node_disk_io_now gauge The number of I/Os currently in
progress.

node_disk_io_time_seconds_total counter Total seconds spent doing I/Os.

node_disk_io_time_weighted_seconds_
total

counter The weighted number of seconds
spent doing I/Os.

node_disk_read_bytes_total counter The total number of bytes read
successfully.

node_disk_read_time_seconds_total counter The total number of seconds spent
by all reads.

node_disk_reads_completed_total counter The total number of reads
completed successfully.

322

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_disk_reads_merged_total counter The total number of reads merged.

node_disk_write_time_seconds_total counter The total number of seconds spent
by all writes.

node_disk_writes_completed_total counter The total number of writes
completed successfully.

node_disk_writes_merged_total counter The number of writes merged.

node_disk_written_bytes_total counter The total number of bytes written
successfully.

node_dmi_info gauge A metric with a constant '1' value
labeled by bios_date, bios_release,
bios_vendor, bios_version,
board_asset_tag, board_name,
board_serial, board_vendor,
board_version, chassis_asset_tag,
chassis_serial, chassis_vendor,
chassis_version, product_family,
product_name, product_serial,
product_sku, product_uuid,
product_version, and system_vendor if
provided by DMI.

node_entropy_available_bits gauge Bits of available entropy.

node_entropy_pool_size_bits gauge Bits of entropy pool.

node_exporter_build_info gauge A metric with a constant '1' value
labeled by version, revision, branch,
and goversion from which
node_exporter was built.

node_filefd_allocated gauge File descriptor statistics: allocated.

node_filefd_maximum gauge File descriptor statistics: maximum.

323

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_filesystem_avail_bytes gauge Filesystem space available to non-
root users in bytes.

node_filesystem_device_error gauge Whether an error occurred while
getting statistics for the given
device.

node_filesystem_files gauge Filesystem total file nodes.

node_filesystem_files_free gauge Filesystem total free file nodes.

node_filesystem_free_bytes gauge Filesystem free space in bytes.

node_filesystem_readonly gauge Filesystem read-only status.

node_filesystem_size_bytes gauge Filesystem size in bytes.

node_forks_total counter Total number of forks.

node_intr_total counter Total number of interrupts serviced.

node_ipvs_connections_total counter The total number of connections
made.

node_ipvs_incoming_bytes_total counter The total amount of incoming data.

node_ipvs_incoming_packets_total counter The total number of incoming
packets.

node_ipvs_outgoing_bytes_total counter The total amount of outgoing data.

node_ipvs_outgoing_packets_total counter The total number of outgoing
packets.

node_load1 gauge 1m load average.

node_load15 gauge 15m load average.

324

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_load5 gauge 5m load average.

node_memory_Active_anon_bytes gauge Memory information field
Active_anon_bytes.

node_memory_Active_bytes gauge Memory information field
Active_bytes.

node_memory_Active_file_bytes gauge Memory information field
Active_file_bytes.

node_memory_AnonHugePages_bytes gauge Memory information field
AnonHugePages_bytes.

node_memory_AnonPages_bytes gauge Memory information field
AnonPages_bytes.

node_memory_Bounce_bytes gauge Memory information field
Bounce_bytes.

node_memory_Buffers_bytes gauge Memory information field
Buffers_bytes.

node_memory_Cached_bytes gauge Memory information field
Cached_bytes.

node_memory_CmaFree_bytes gauge Memory information field
CmaFree_bytes.

node_memory_CmaTotal_bytes gauge Memory information field
CmaTotal_bytes.

node_memory_CommitLimit_bytes gauge Memory information field
CommitLimit_bytes.

node_memory_Committed_AS_bytes gauge Memory information field
Committed_AS_bytes.

325

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_DirectMap2M_bytes gauge Memory information field
DirectMap2M_bytes.

node_memory_DirectMap4k_bytes gauge Memory information field
DirectMap4k_bytes.

node_memory_Dirty_bytes gauge Memory information field
Dirty_bytes.

node_memory_HardwareCorrupted_bytes gauge Memory information field
HardwareCorrupted_bytes.

node_memory_HugePages_Free gauge Memory information field
HugePages_Free.

node_memory_HugePages_Rsvd gauge Memory information field
HugePages_Rsvd.

node_memory_HugePages_Surp gauge Memory information field
HugePages_Surp.

node_memory_HugePages_Total gauge Memory information field
HugePages_Total.

node_memory_Hugepagesize_bytes gauge Memory information field
Hugepagesize_bytes.

node_memory_Inactive_anon_bytes gauge Memory information field
Inactive_anon_bytes.

node_memory_Inactive_bytes gauge Memory information field
Inactive_bytes.

node_memory_Inactive_file_bytes gauge Memory information field
Inactive_file_bytes.

node_memory_KernelStack_bytes gauge Memory information field
KernelStack_bytes.

326

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_Mapped_bytes gauge Memory information field
Mapped_bytes.

node_memory_MemAvailable_bytes gauge Memory information field
MemAvailable_bytes.

node_memory_MemFree_bytes gauge Memory information field
MemFree_bytes.

node_memory_MemTotal_bytes gauge Memory information field
MemTotal_bytes.

node_memory_Mlocked_bytes gauge Memory information field
Mlocked_bytes.

node_memory_NFS_Unstable_bytes gauge Memory information field
NFS_Unstable_bytes.

node_memory_PageTables_bytes gauge Memory information field
PageTables_bytes.

node_memory_SReclaimable_bytes gauge Memory information field
SReclaimable_bytes.

node_memory_SUnreclaim_bytes gauge Memory information field
SUnreclaim_bytes.

node_memory_ShmemHugePages_bytes gauge Memory information field
ShmemHugePages_bytes.

node_memory_ShmemPmdMapped_bytes gauge Memory information field
ShmemPmdMapped_bytes.

node_memory_Shmem_bytes gauge Memory information field
Shmem_bytes.

node_memory_Slab_bytes gauge Memory information field
Slab_bytes.

327

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_memory_SwapCached_bytes gauge Memory information field
SwapCached_bytes.

node_memory_SwapFree_bytes gauge Memory information field
SwapFree_bytes.

node_memory_SwapTotal_bytes gauge Memory information field
SwapTotal_bytes.

node_memory_Unevictable_bytes gauge Memory information field
Unevictable_bytes.

node_memory_VmallocChunk_bytes gauge Memory information field
VmallocChunk_bytes.

node_memory_VmallocTotal_bytes gauge Memory information field
VmallocTotal_bytes.

node_memory_VmallocUsed_bytes gauge Memory information field
VmallocUsed_bytes.

node_memory_WritebackTmp_bytes gauge Memory information field
WritebackTmp_bytes.

node_memory_Writeback_bytes gauge Memory information field
Writeback_bytes.

node_netstat_Icmp6_InErrors counter Statistic Icmp6InErrors.

node_netstat_Icmp6_InMsgs counter Statistic Icmp6InMsgs.

node_netstat_Icmp6_OutMsgs counter Statistic Icmp6OutMsgs.

node_netstat_Icmp_InErrors counter Statistic IcmpInErrors.

node_netstat_Icmp_InMsgs counter Statistic IcmpInMsgs.

328

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_netstat_Icmp_OutMsgs counter Statistic IcmpOutMsgs.

node_netstat_Ip6_InOctets counter Statistic Ip6InOctets.

node_netstat_Ip6_OutOctets counter Statistic Ip6OutOctets.

node_netstat_IpExt_InOctets counter Statistic IpExtInOctets.

node_netstat_IpExt_OutOctets counter Statistic IpExtOutOctets.

node_netstat_Ip_Forwarding counter Statistic IpForwarding.

node_netstat_TcpExt_ListenDrops counter Statistic TcpExtListenDrops.

node_netstat_TcpExt_ListenOverflows counter Statistic TcpExtListenOverflows.

node_netstat_TcpExt_SyncookiesFaile
d

counter Statistic TcpExtSyncookiesFailed.

node_netstat_TcpExt_SyncookiesRecv counter Statistic TcpExtSyncookiesRecv.

node_netstat_TcpExt_SyncookiesSent counter Statistic TcpExtSyncookiesSent.

node_netstat_TcpExt_TCPSynRetrans counter Statistic TcpExtTCPSynRetrans.

node_netstat_TcpExt_TCPTimeouts counter Statistic TcpExtTCPTimeouts.

node_netstat_Tcp_ActiveOpens counter Statistic TcpActiveOpens.

node_netstat_Tcp_CurrEstab counter Statistic TcpCurrEstab.

node_netstat_Tcp_InErrs counter Statistic TcpInErrs.

node_netstat_Tcp_InSegs counter Statistic TcpInSegs.

node_netstat_Tcp_OutRsts counter Statistic TcpOutRsts.

329

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_netstat_Tcp_OutSegs counter Statistic TcpOutSegs.

node_netstat_Tcp_PassiveOpens counter Statistic TcpPassiveOpens.

node_netstat_Tcp_RetransSegs counter Statistic TcpRetransSegs.

node_netstat_Udp6_InDatagrams counter Statistic Udp6InDatagrams.

node_netstat_Udp6_InErrors counter Statistic Udp6InErrors.

node_netstat_Udp6_NoPorts counter Statistic Udp6NoPorts.

node_netstat_Udp6_OutDatagrams counter Statistic Udp6OutDatagrams.

node_netstat_Udp6_RcvbufErrors counter Statistic Udp6RcvbufErrors.

node_netstat_Udp6_SndbufErrors counter Statistic Udp6SndbufErrors.

node_netstat_UdpLite6_InErrors counter Statistic UdpLite6InErrors.

node_netstat_UdpLite_InErrors counter Statistic UdpLiteInErrors.

node_netstat_Udp_InDatagrams counter Statistic UdpInDatagrams.

node_netstat_Udp_InErrors counter Statistic UdpInErrors.

node_netstat_Udp_NoPorts counter Statistic UdpNoPorts.

node_netstat_Udp_OutDatagrams counter Statistic UdpOutDatagrams.

node_netstat_Udp_RcvbufErrors counter Statistic UdpRcvbufErrors.

node_netstat_Udp_SndbufErrors counter Statistic UdpSndbufErrors.

node_network_address_assign_type gauge address_assign_type value of /sys/
class/net/.

330

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_network_carrier gauge carrier value of /sys/class/net/.

node_network_carrier_changes_total counter carrier_changes_total value of /sys/
class/net/.

node_network_carrier_down_changes_t
otal

counter carrier_down_changes_total value
of /sys/class/net/.

node_network_carrier_up_changes_tot
al

counter carrier_up_changes_total value
of /sys/class/net/.

node_network_device_id gauge device_id value of /sys/class/net/.

node_network_dormant gauge dormant value of /sys/class/net/.

node_network_flags gauge flags value of /sys/class/net/.

node_network_iface_id gauge iface_id value of /sys/class/net/.

node_network_iface_link gauge iface_link value of /sys/class/net/.

node_network_iface_link_mode gauge iface_link_mode value of /sys/class/
net/.

node_network_info gauge Non-numeric data from /sys/class/
net/, value is always 1.

node_network_mtu_bytes gauge mtu_bytes value of /sys/class/net/.

node_network_name_assign_type gauge name_assign_type value of /sys/
class/net/.

node_network_net_dev_group gauge net_dev_group value of /sys/class/
net/.

node_network_protocol_type gauge protocol_type value of /sys/class/
net/.

331

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_network_receive_bytes_total counter Network device statistic
receive_bytes.

node_network_receive_compressed_tot
al

counter Network device statistic
receive_compressed.

node_network_receive_drop_total counter Network device statistic
receive_drop.

node_network_receive_errs_total counter Network device statistic
receive_errs.

node_network_receive_fifo_total counter Network device statistic
receive_fifo.

node_network_receive_frame_total counter Network device statistic
receive_frame.

node_network_receive_multicast_tota
l

counter Network device statistic
receive_multicast.

node_network_receive_packets_total counter Network device statistic
receive_packets.

node_network_speed_bytes gauge speed_bytes value of /sys/class/
net/.

node_network_transmit_bytes_total counter Network device statistic
transmit_bytes.

node_network_transmit_carrier_total counter Network device statistic
transmit_carrier.

node_network_transmit_colls_total counter Network device statistic
transmit_colls.

332

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_network_transmit_compressed_to
tal

counter Network device statistic
transmit_compressed.

node_network_transmit_drop_total counter Network device statistic
transmit_drop.

node_network_transmit_errs_total counter Network device statistic
transmit_errs.

node_network_transmit_fifo_total counter Network device statistic
transmit_fifo.

node_network_transmit_packets_total counter Network device statistic
transmit_packets.

node_network_transmit_queue_length gauge transmit_queue_length value of /sys/
class/net/.

node_network_up gauge Value is 1 if operstate is 'up', 0
otherwise.

node_nf_conntrack_entries gauge Number of currently allocated flow
entries for connection tracking.

node_nf_conntrack_entries_limit gauge Maximum size of connection
tracking table.

node_os_info gauge A metric with a constant '1' value
labeled by build_id, id, id_like,
image_id, image_version, name,
pretty_name, variant, variant_id,
version, version_codename,
version_id.

node_os_version gauge Metric containing the major.minor
part of the OS version.

333

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_power_supply_info gauge info of /sys/class/power_supply/
<power_supply>.

node_power_supply_online gauge online value of /sys/class/
power_supply/<power_supply>.

node_procs_blocked gauge Number of processes blocked
waiting for I/O to be completed.

node_procs_running gauge Number of processes in runnable
state.

node_schedstat_running_seconds_tota
l

counter Number of seconds CPU spent
running a process.

node_schedstat_timeslices_total counter Number of timeslices executed by
CPU.

node_schedstat_waiting_seconds_tota
l

counter Number of seconds spent by
processing waiting for this CPU.

node_scrape_collector_duration_seco
nds

gauge node_exporter: Duration of a
collector scrape.

node_scrape_collector_success gauge node_exporter: Whether a collector
succeeded.

node_sockstat_FRAG6_inuse gauge Number of FRAG6 sockets in state
inuse.

node_sockstat_FRAG6_memory gauge Number of FRAG6 sockets in state
memory.

node_sockstat_FRAG_inuse gauge Number of FRAG sockets in state
inuse.

334

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_sockstat_FRAG_memory gauge Number of FRAG sockets in state
memory.

node_sockstat_RAW6_inuse gauge Number of RAW6 sockets in state
inuse.

node_sockstat_RAW_inuse gauge Number of RAW sockets in state
inuse.

node_sockstat_TCP6_inuse gauge Number of TCP6 sockets in state
inuse.

node_sockstat_TCP_alloc gauge Number of TCP sockets in state
alloc.

node_sockstat_TCP_inuse gauge Number of TCP sockets in state
inuse.

node_sockstat_TCP_mem gauge Number of TCP sockets in state mem.

node_sockstat_TCP_mem_bytes gauge Number of TCP sockets in state
mem_bytes.

node_sockstat_TCP_orphan gauge Number of TCP sockets in state
orphan.

node_sockstat_TCP_tw gauge Number of TCP sockets in state tw.

node_sockstat_UDP6_inuse gauge Number of UDP6 sockets in state
inuse.

node_sockstat_UDPLITE6_inuse gauge Number of UDPLITE6 sockets in state
inuse.

node_sockstat_UDPLITE_inuse gauge Number of UDPLITE sockets in state
inuse.

335

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_sockstat_UDP_inuse gauge Number of UDP sockets in state
inuse.

node_sockstat_UDP_mem gauge Number of UDP sockets in state mem.

node_sockstat_UDP_mem_bytes gauge Number of UDP sockets in state
mem_bytes.

node_sockstat_sockets_used gauge Number of IPv4 sockets in use.

node_softnet_dropped_total counter Number of dropped packets.

node_softnet_processed_total counter Number of processed packets

node_softnet_times_squeezed_total counter Number of times processing
packets ran out of quota.

node_textfile_scrape_error gauge 1 if there was an error opening or
reading a file, otherwise, 0.

node_time_clocksource_available_inf
o

gauge Available clocksources read
from /sys/devices/system/
clocksource.

node_time_clocksource_current_info gauge Current clocksource read from /sys/
devices/system/clocksource.

node_time_seconds gauge System time in seconds since epoch
(1970).

node_time_zone_offset_seconds gauge System time zone offset in seconds.

node_timex_estimated_error_seconds gauge Estimated error in seconds.

node_timex_frequency_adjustment_rat
io

gauge Local clock frequency adjustment.

336

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_timex_loop_time_constant gauge Phase-locked loop time constant.

node_timex_maxerror_seconds gauge Maximum error in seconds.

node_timex_offset_seconds gauge Time offset in between local
system and reference clock.

node_timex_pps_calibration_total counter Pulse-per-second count of
calibration intervals.

node_timex_pps_error_total counter Pulse-per-second of calibration
errors.

node_timex_pps_frequency_hertz gauge Pulse-per-second frequency.

node_timex_pps_jitter_seconds gauge Pulse-per-second jitter.

node_timex_pps_jitter_total counter Pulse-per-second count of jitter-
limit-exceeded events.

node_timex_pps_shift_seconds gauge Pulse-per-second interval duration.

node_timex_pps_stability_exceeded_t
otal

counter Pulse-per-second count of stability
limit exceeded events.

node_timex_pps_stability_hertz gauge Pulse-per-second stability, average
of recent frequency changes.

node_timex_status gauge Value of the status array bits.

node_timex_sync_status gauge Is clock synchronized to a reliable
server (1 = yes, 0 = no)

node_timex_tai_offset_seconds gauge International Atomic Time (TAI)
offset.

node_timex_tick_seconds gauge Seconds between clock ticks.

337

Table 21: Cloud-Native Contrail Networking (CN2) Cluster Node Metric List (Continued)

Metric Name Type Description

node_udp_queues gauge Number of allocated memory in the
kernel for UDP datagrams in bytes.

node_uname_info gauge Labeled system information as
provided by the uname system call.

node_vmstat_oom_kill counter /proc/vmstat information field
oom_kill.

node_vmstat_pgfault counter /proc/vmstat information field
pgfault.

node_vmstat_pgmajfault counter /proc/vmstat information field
pgmajfault.

node_vmstat_pgpgin counter /proc/vmstat information field
pgpgin.

node_vmstat_pgpgout counter /proc/vmstat information field
pgpgout.

node_vmstat_pswpin counter /proc/vmstat information field
pswpin.

node_vmstat_pswpout counter /proc/vmstat information field
pswpout.

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

Contrail Networking Metric List | 269

Kubernetes Metric List | 283

Contrail Networking Alert List | 339

338

Contrail Networking Alert List

Table 22: Cloud-Native Contrail Networking (CN2) Alert List

Alert Name Severity Description

VRouterConnectionDown major VRouter <name> <connection_type>
connection to <connection_id> is
down.

VRouterNonFunctional major VRouter <name> is non-functional.

ControllerNonFunctional major Controller <name> is non-functional.

ControllerConnectionDown major Controller <name> <connection_type>
connection to <connection_id> is
down.

ControllerDBConnectionDown major Controller <name> connection to
database is down.

AlertmanagerFailedReload critical Reloading an Alertmanager
configuration has failed.

AlertmanagerMembersInconsistent critical A member of an Alertmanager
cluster has not found all other
cluster members.

AlertmanagerFailedToSendAlerts warning An Alertmanager instance failed to
send notifications.

AlertmanagerClusterFailedToSendAler
ts

critical All Alertmanager instances in a
cluster failed to send notifications
to a critical integration.

AlertmanagerClusterFailedToSendAler
ts

warning All Alertmanager instances in a
cluster failed to send notifications
to a non-critical integration.

339

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

AlertmanagerConfigInconsistent critical Alertmanager instances within the
same cluster have different
configurations.

AlertmanagerClusterDown critical Half or more of the Alertmanager
instances within the same cluster
are down.

AlertmanagerClusterCrashlooping critical Half or more of the Alertmanager
instances within the same cluster
are crashlooping.

ConfigReloaderSidecarErrors warning config-reloader sidecar has not had
a successful reload for 10m.

etcdInsufficientMembers critical etcd cluster "<name>": insufficient
members (<value>).

etcdNoLeader critical etcd cluster "<name>": member
<instance> has no leader.

etcdHighNumberOfLeaderChanges warning etcd cluster "<name>": instance
<instance> has seen <value> leader
changes within the last hour.

etcdHighNumberOfFailedGRPCRequests warning etcd cluster "<name>": <value>% of
requests for <grpc_method> failed on
etcd instance <instance>.

etcdHighNumberOfFailedGRPCRequests critical etcd cluster "<name>": <value>% of
requests for <grpc_method> failed on
etcd instance <instance>.

etcdGRPCRequestsSlow critical etcd cluster "<name>": gRPC requests
to <grpc_method> are taking <value>s
on etcd instance <instance>.

340

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

etcdMemberCommunicationSlow warning etcd cluster "<name>": member
communication with <name> is
taking <value>s on etcd instance
<instance>.

etcdHighNumberOfFailedProposals warning etcd cluster "<name>": <value>
proposal failures within the last
hour on etcd instance <instance>.

etcdHighFsyncDurations warning etcd cluster "<name>": 99th
percentile fsync durations are
<value>s on etcd instance
<instance>.

etcdHighCommitDurations warning etcd cluster "<name>": 99th
percentile commit durations
<value>s on etcd instance
<instance>.

etcdHighNumberOfFailedHTTPRequests warning <value>% of requests for <method>
failed on etcd instance <instance>.

etcdHighNumberOfFailedHTTPRequests critical <value>% of requests for <method>
failed on etcd instance <instance>.

etcdHTTPRequestsSlow warning etcd instance <instance> HTTP
requests to <method> are slow.

TargetDown warning One or more targets are
unreachable.

KubeAPIErrorBudgetBurn critical The API server is burning too much
error budget.

KubeAPIErrorBudgetBurn warning The API server is burning too much
error budget.

341

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

KubeStateMetricsListErrors critical kube-state-metrics is experiencing
errors in list operations.

KubeStateMetricsWatchErrors critical kube-state-metrics is experiencing
errors in watch operations.

KubeStateMetricsShardingMismatch critical kube-state-metrics sharding is
misconfigured.

KubeStateMetricsShardsMissing critical kube-state-metrics shards are
missing.

KubePodCrashLooping warning Pod is crash looping.

KubePodNotReady warning Pod has been in a non-ready state
for more than 15 minutes.

KubeDeploymentGenerationMismatch warning Deployment generation mismatch
due to possible roll-back.

KubeDeploymentReplicasMismatch warning Deployment has not matched the
expected number of replicas.

KubeStatefulSetReplicasMismatch warning Deployment has not matched the
expected number of replicas.

KubeStatefulSetGenerationMismatch warning StatefulSet generation mismatch
due to possible roll-back.

KubeStatefulSetUpdateNotRolledOut warning StatefulSet update has not been
rolled out.

KubeDaemonSetRolloutStuck warning DaemonSet rollout is stuck.

KubeContainerWaiting warning Pod container waiting longer than 1
hour.

KubeDaemonSetNotScheduled warning DaemonSet pods are not scheduled.

342

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

KubeDaemonSetMisScheduled warning DaemonSet pods are misscheduled.

KubeJobCompletion warning Job was not complete in time.

KubeJobFailed warning Job failed (was not completed).

KubeHpaReplicasMismatch warning HPA has not matched desired
number of replicas.

KubeHpaMaxedOut warning HPA is running at max replicas.

KubeCPUOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeMemoryOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeCPUQuotaOvercommit warning Cluster has overcommitted CPU
resource requests.

KubeMemoryQuotaOvercommit warning Cluster has overcommitted memory
resource requests.

KubeQuotaAlmostFull info Namespace quota is going to be
full.

KubeQuotaFullyUsed info Namespace quota is fully used.

KubeQuotaExceeded warning Namespace quota has exceeded
the limits.

CPUThrottlingHigh info Processes experience elevated CPU
throttling.

KubePersistentVolumeFillingUp critical PersistentVolume is filling up.

KubePersistentVolumeFillingUp warning PersistentVolume is filling up.

343

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

KubePersistentVolumeErrors critical PersistentVolume is having issues
with provisioning.

KubeVersionMismatch warning Different semantic versions of
Kubernetes components are
running.

KubeClientErrors warning Kubernetes API server client is
experiencing errors.

KubeClientCertificateExpiration warning Client certificate is about to expire.

KubeClientCertificateExpiration critical Client certificate is about to expire.

KubeAggregatedAPIErrors warning Kubernetes aggregated API has
reported errors.

KubeAggregatedAPIDown warning Kubernetes aggregated API is
down.

KubeAPIDown critical Target disappeared from
Prometheus target discovery.

KubeAPITerminatedRequests warning The Kubernetes apiserver has
terminated <value> of its incoming
requests.

KubeControllerManagerDown critical Target disappeared from
Prometheus target discovery.

KubeProxyDown critical Target disappeared from
Prometheus target discovery.

KubeNodeNotReady warning Node is not ready.

KubeNodeUnreachable warning Node is unreachable.

KubeletTooManyPods info Kubelet is running at capacity.

344

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

KubeNodeReadinessFlapping warning Node readiness status is flapping.

KubeletPlegDurationHigh warning Kubelet Pod Lifecycle Event
Generator is taking too long to
relist.

KubeletPodStartUpLatencyHigh warning Kubelet Pod startup latency is too
high.

KubeletClientCertificateExpiration warning Kubelet client certificate is about to
expire.

KubeletClientCertificateExpiration critical Kubelet client certificate is about to
expire.

KubeletServerCertificateExpiration warning Kubelet server certificate is about
to expire.

KubeletServerCertificateExpiration critical Kubelet server certificate is about
to expire.

KubeletClientCertificateRenewalErro
rs

warning Kubelet has failed to renew its
client certificate.

KubeletServerCertificateRenewalErro
rs

warning Kubelet has failed to renew its
server certificate.

KubeletDown critical Target disappeared from
Prometheus target discovery.

KubeSchedulerDown critical Target disappeared from
Prometheus target discovery.

NodeFilesystemSpaceFillingUp warning Filesystem is predicted to run out
of space within the next 24 hours.

NodeFilesystemSpaceFillingUp critical Filesystem is predicted to run out
of space within the next 4 hours.

345

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

NodeFilesystemAlmostOutOfSpace warning Filesystem has less than 5% space
left.

NodeFilesystemAlmostOutOfSpace critical Filesystem has less than 3% space
left.

NodeFilesystemFilesFillingUp warning Filesystem is predicted to run out
of inodes within the next 24 hours.

NodeFilesystemFilesFillingUp critical Filesystem is predicted to run out
of inodes within the next 4 hours.

NodeFilesystemAlmostOutOfFiles warning Filesystem has less than 5% inodes
left.

NodeFilesystemAlmostOutOfFiles critical Filesystem has less than 3% inodes
left.

NodeNetworkReceiveErrs warning Network interface is reporting
many receive errors.

NodeNetworkTransmitErrs warning Network interface is reporting
many transmit errors.

NodeHighNumberConntrackEntriesUsed warning Number of conntrack are getting
close to the limit.

NodeTextFileCollectorScrapeError warning Node Exporter text file collector
failed to scrape.

NodeClockSkewDetected warning Clock skew detected.

NodeClockNotSynchronising warning Clock not synchronizing.

NodeRAIDDegraded critical RAID array is degraded.

NodeRAIDDiskFailure warning Failed device in RAID array.

346

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

NodeFileDescriptorLimit warning Kernel is predicted to exhaust file
descriptors limit soon.

NodeFileDescriptorLimit critical Kernel is predicted to exhaust file
descriptors limit soon.

NodeNetworkInterfaceFlapping warning Network interface is often changing
its status.

PrometheusBadConfig critical Failed Prometheus configuration
reload.

PrometheusNotificationQueueRunningF
ull

warning Prometheus alert notification
queue predicted to run full in less
than 30m.

PrometheusErrorSendingAlertsToSomeA
lertmanagers

warning Prometheus has encountered more
than 1% errors sending alerts to a
specific Alertmanager.

PrometheusNotConnectedToAlertmanage
rs

warning Prometheus is not connected to
any Alertmanagers.

PrometheusTSDBReloadsFailing warning Prometheus has issues reloading
blocks from disk.

PrometheusTSDBCompactionsFailing warning Prometheus has issues compacting
blocks.

PrometheusNotIngestingSamples warning Prometheus is not ingesting
samples.

PrometheusDuplicateTimestamps warning Prometheus is dropping samples
with duplicate timestamps.

PrometheusOutOfOrderTimestamps warning Prometheus drops samples with
out-of-order timestamps.

347

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

PrometheusRemoteStorageFailures critical Prometheus fails to send samples
to remote storage.

PrometheusRemoteWriteBehind critical Prometheus remote write is behind.

PrometheusRemoteWriteDesiredShards warning Prometheus remote write desired
shards calculation wants to run
more than configured max shards.

PrometheusRuleFailures critical Prometheus is failing rule
evaluations.

PrometheusMissingRuleEvaluations warning Prometheus is missing rule
evaluations due to slow rule group
evaluation.

PrometheusTargetLimitHit warning Prometheus has dropped targets
because some scrape configs have
exceeded the target limit.

PrometheusLabelLimitHit warning Prometheus has dropped targets
because some scrape configs have
exceeded the label limit.

PrometheusTargetSyncFailure critical Prometheus has failed to sync
targets.

PrometheusErrorSendingAlertsToAnyAl
ertmanager

critical Prometheus encounters more than
3% errors sending alerts to any
Alertmanager.

PrometheusOperatorListErrors warning Errors while performing list
operations in controller.

PrometheusOperatorWatchErrors warning Errors while performing list
operations in controller.

PrometheusOperatorSyncFailed warning Last controller reconciliation failed.

348

Table 22: Cloud-Native Contrail Networking (CN2) Alert List (Continued)

Alert Name Severity Description

PrometheusOperatorReconcileErrors warning Errors while reconciling controller.

PrometheusOperatorNodeLookupErrors warning Errors while reconciling
Prometheus.

PrometheusOperatorNotReady warning Prometheus operator not ready.

PrometheusOperatorRejectedResources warning Resources rejected by Prometheus
operator.

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

Contrail Networking Metric List | 269

Kubernetes Metric List | 283

Cluster Node Metric List | 321

vRouter Session Analytics in Contrail Networking

IN THIS SECTION

Collector Module | 350

Collector Deployment | 350

Data Collection | 350

Configure Data Collection | 353

Collector Query | 353

Run a Query | 353

349

Juniper® Networks supports the collection, storage, and query for vRouter traffic in environments using
Cloud-Native Contrail Networking (CN2) Release 22.1 or later in a Kubernetes-orchestrated
environment.

Collector Module

CN2 collects user visible entities (UVEs) and traffic information (session) for traffic analysis and
troubleshooting. The collector module stores these objects and provides APIs to access the collected
information.

The CN2 vRouter agent exports data records to the collector when events are created or deleted.

Collector Deployment

The following components are installed in the Contrail cluster in the contrail namespace (NS):

• Collector Microservice—Collects incoming events.

• InfluxDB—A time series database built specifically for storing time series data. Works with Grafana as
a visualization tool for time series data.

• Fluentd—Logging agent that performs log collection, parsing, and distribution to other services such
asOpenSearch.

• OpenSearch—OpenSearch is the search and analytics engine in the AWS OpenSearch Stack,
providing real-time search and analytics for all types of data.

• OpenSearch Dashboards—User interface that lets you visualize your OpenSearch data and navigate
the OpenSearch Stack.

Data Collection

Figure 15 on page 351 shows the data collection.

350

Figure 15: Cloud-Native Contrail Collector: Event and Log Ingestion

UVEs

UVEs are stored in OpenSearch in an index named by the name of the UVE.

Session

Session records are stored in InfluxDB. These records are pushed as events from all agents. This data is
downsampled for longer duration. Retention periods of live, downsampled table, and downsampling
windows are configurable using the configuration.

Table 23: Session Records Information

Column Filterable Detail

vn Yes Client Virtual Network

vmi Yes Interface

remote_vn Yes Server Virtual Network

vrouter_ip Yes Agent IP

local_ip Yes Client IP

351

Table 23: Session Records Information (Continued)

Column Filterable Detail

client_port Yes Client Port

remote_ip Yes Server IP

server_port Yes Server Port

protocol Yes Protocol

label.local.<label-name> Yes Client Pod Labels (for example,
client pod with label site maps to
label.local.site tag in database).

label.remote.<label-name> Yes Server Pod Labels

forward_sampled_bytes No Bytes Sent

forward_sampled_pkts No Packets Sent

reverse_sampled_bytes No Bytes Received

reverse_sampled_pkts No Packets Received

total_bytes No Total Bytes Exchanged

352

Configure Data Collection

To configure vRouter agents to send SessionEndpoint messages to the fluentd service, run the following
three commands. Replace <cluster-ip> with the cluster IP address of the fluentd service in the contrail-
analytics namespace.

kubectl -n contrail patch vrouter contrail-vrouter-masters --type=merge -p '{"spec":{"agent":
{"default":{"collectors":["<cluster-ip>:24224"]}}}}'

kubectl -n contrail patch vrouter contrail-vrouter-nodes --type=merge -p '{"spec":{"agent":
{"default":{"collectors":["<cluster-ip>:24224"]}}}}'

kubectl -n contrail patch gvc default-global-vrouter-config --type=merge -p '{"spec":
{"flowExportRate": 10000}}'

After running the three configuration commands, restart vRouter for the configuration to take effect. To
restart vRouter, run the following command:

kubectl -n contrail delete $(kubectl get pods -l 'app in (contrail-vrouter-masters, contrail-
vrouter-nodes)' -n contrail -o name)

Collector Query

The collector modules provide a query interface for access.

Run a Query

Example Query

353

The following query gets total bytes exchanged between unique source-destination pairs (by labels) in
the contrail-analytics namespace:

{
 "granularity": 3600,
 "column": [
 {
 "name": "total_bytes",
 "aggregation": "sum"
 },
 {
 "name": "/^label.*/",
 "regex": true
 }
],
 "skip_columns": [
 "label.remote.pod-template-hash",
 "label.local.pod-template-hash"
],
 "range":{
 "start_time": -3600
 },
 "filter": [
 {
 "field": "label.local.namespace",
 "operator": "==",
 "value": "contrail-analytics"
 },
 {
 "field": "label.remote.namespace",
 "operator": "==",
 "value": "contrail-analytics"
 }
]
}

Example Query Response

{
 "status": "success",
 "total": 5,

354

 "data": {
 "resultType": "matrix",
 "result": [
 {
 "metric": {
 "label.local.namespace": "contrail-analytics",
 "label.remote.app": "collector",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 31012095
]
]
 },
 {
 "metric": {
 "label.local.namespace": "contrail-analytics",
 "label.remote.app": "opensearch",
 "label.remote.chart": "opensearch",
 "label.remote.controller-revision-hash": "opensearch-7fcc8df678",
 "label.remote.namespace": "contrail-analytics",
 "label.remote.release": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 221493
]
]
 },
 {
 "metric": {
 "label.local.controller-revision-hash": "5599999fc7",

355

 "label.local.namespace": "contrail-analytics",
 "label.local.pod-template-generation": "1",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 23349247
]
]
 },
 {
 "metric": {
 "label.local.app": "collector",
 "label.local.namespace": "contrail-analytics",
 "label.remote.controller-revision-hash": "influxdb-7bdd86f8c",
 "label.remote.namespace": "contrail-analytics"
 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 10412552
]
]
 },
 {
 "metric": {
 "label.local.app": "opensearch-dashboards",
 "label.local.namespace": "contrail-analytics",
 "label.local.release": "contrail-analytics",
 "label.remote.app": "opensearch",
 "label.remote.chart": "opensearch",
 "label.remote.controller-revision-hash": "opensearch-7fcc8df678",
 "label.remote.namespace": "contrail-analytics",
 "label.remote.release": "contrail-analytics"

356

 },
 "fields": [
 "_time",
 "total_bytes"
],
 "values": [
 [
 1645768800,
 25152
]
]
 }
]
 }
}

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

Centralized Logging | 357

Centralized Logging

IN THIS SECTION

Benefits of Centralized Logging | 358

Overview: Centralized Logging | 358

Logs, Events, and Flows with Fluentd | 359

Juniper® Networks supports centralized logging using Cloud-Native Contrail Networking™ (CN2)
Release 22.1 or later in a Kubernetes-orchestrated environment.

357

Benefits of Centralized Logging

• The centralization of all platform logs eases troubleshooting. Centralization allows you (the
administrator) to take a holistic view of events or outages extending across the many components
within the deployment.

• You have one portal, allowing you to monitor, view, filter, and search for events across all platform
components from a single view.

Overview: Centralized Logging

Instead of browsing through individual log files, collected logs from all components of CN2 are available
to you in a centralized location. The centralized location enables you to correlate the log files from
multiple software components. For security, strict logging exists for all create, read, update, and delete
(CRUD) actions. You perform these actions with individual access credentials so that you can identify
individuals.

AWS OpenSearch Stack, an open source log collector and analyzer framework, provides out-of-box log
collection and analysis functionality. The OpenSearch stack allows a single portal for analyzing logs from
CN2. OpenSearch stack also analyzes logs from other software components and platforms deployed in
the cluster. Examples include Linux OS logs, Kubernetes logs, and software components such as
virtualized network functions (VNFs) and container network functions (CNFs).

OpenSearch Stack includes:

• OpenSearch—Real-time and scalable search engine that allows for full-text and structured search as
well as analytics. This search engine indexes and searches through large volumes of log data.

• OpenSearch Dashboard—Allows you to explore your OpenSearch log data through a web interface
and enables you to build dashboards and queries.

• Fluentd—Logging agent that performs log collection, parsing, and distribution to other services such
as OpenSearch.

• Fluent Bit—Log processor and forwarder that collects data, such as metrics and logs, from different
sources. High throughput with low CPU and memory usage. Fluent Bit is installed in every workload
cluster.

The logging components are included and deployed in the optional telemetry node deployment.
Installation commands are integrated in the telemetry installation.

358

Logs, Events, and Flows with Fluentd

Fluentd collects logs, events, and flows running on each CN2 node. Fluentd is the logging agent that
performs log collection, parsing, and distribution to other services such as OpenSearch.

Figure 16: Logs, Events, and Flows with Fluentd

Logs

Logs are collected from log files or stdout/stderr data streams and directed to the OpenSearch library
stack with cluster quorum. Each CN2 node (configuration, control, compute, Web UI, and telemetry
node) runs Fluent Bit or Fluentd to collect logs. The logs are sent to multiple configured sinks, such as
OpenSearch. Fluentd supports multiple output options to send collected logs.

• Control and compute nodes generate unstructured and structured logs through the Sandesh library.
The Contrail Networking Sandesh library generates structured JSON files.

• Configuration, Web UI, and telemetry node components produce standard logs to files or to stdout/
stderr, which are then sent to Fluentd or Fluent Bit.

Multiple Kubernetes clusters in any CN2 cluster or in multiple CN2 clusters can connect with a Fluentd/
OpenSearch monitoring component.

Events

The vRouter agent and control node produce events through Sandesh. The Sandesh library produces
JSON structured data and sends those files to the configured options. Configured options are stdout, file,
or TCP port (Fluentd). Fluentd is configured with multiple output options to send data either to
OpenSearch or to the telemetry node’s gRPC server. The telemetry node keeps cache for the latest
status events.

359

Flows

The vRouter agent produces flow data at regular configured intervals. Configuration options for flow
data generation supported by the vRouter agent are syslogs, JSON structure, and the default Sandesh.

RELATED DOCUMENTATION

Contrail Networking Analytics | 263

vRouter Session Analytics in Contrail Networking | 349

Port-Based Mirroring

SUMMARY

This section describes port-based mirroring in
Juniper® Cloud-Native Contrail Networking (CN2)
Release 22.2 and later in a Kubernetes-orchestrated
environment.

IN THIS SECTION

Overview: Port-Based Mirroring | 360

Example: Configure Port-Based
Mirroring | 361

Summary | 364

Overview: Port-Based Mirroring

Figure 17: CN2 Port-Based Mirror Topology

360

Port mirroring sends network traffic from defined ports to a network analyzer where you can monitor
and analyze the data. In CN2, the following is supported:

• Mirroring configuration is primarily driven from the pod configuration for both the receiver and
interface being mirrored. You don't need to configure the virtual machine interface (VMI) directly.

• Mirroring configuration involves creating a MirrorDestination resource and associating the
MirrorDestination resource to the pod interface to be mirrored.

• MirrorDestination identifies the mirrored traffic receiver pod and interface. When juniperHeader is
enabled, the receiver pod IP address and port are used. When juniperHeader is disabled, the receiver
pod MAC address routingInstance is used to forward mirrored traffic.

• A MirrorDestination can be associated with multiple VMIs to be mirrored.

• A MirrorDestination resource defines the mirrored traffic receiver such as IP address, port used for
receiving mirrored traffic, Juniper header configuration, dynamic or static next-hop, and so on.

• A pod interface to be mirrored can be configured when creating the pod or by editing the pod.

Example: Configure Port-Based Mirroring

The following procedure is an example configuration that creates a MirrorDestination resource and
specifies the MirrorDestination resource name, such as mirrordestinationprofile1, on the interface to be
mirrored.

1. Use the MirrorDestination YAML file to create a MirrorDestination resource by adding multiple
destination pods with the label core.juniper.net/analyzer-pod-selector: analyzerpod.

The MirrorDestination resource uses the label core.juniper.net/analyzer-pod-selector: analyzerpod to
calculate and determine the mirrored traffic pod receiver.

Example MirrorDestination YAML file:

apiVersion: core.contrail.juniper.net/v1alpha1
kind: MirrorDestination
metadata:
 name: mirrordestinationprofile1
 labels:
 core.juniper.net/analyzer-pod-selector: analyzerpod
spec:
 trafficDirection: <ingress|egress|both>
 juniperHeader: <boolean>

361

 udpPort: <integer>
 staticNhHeader: <null for dynamic nh|vtep tunnel destip, mac, vxlanid for static nh>
 nextHopMode: <static|dynamic>
 nicAssistedMirroring: <boolean>
 nicAssistedVlanID:
 staticNextHopHeader:
 vTEPDestinationIP:
 vTEPDestinationMac:
 vxlanID:

When you deploy the YAML file, multiple pods could match the label analyzerpod. The first matching
pod is selected as the mirrored traffic receiver. The selected pod remains sticky until the pod or
interface is no longer available.

Following is the analyzer pod YAML file with label analyzerpod, indicating that MirrorDestination can use
this pod.

• Note the label value for core.juniper.net/analyzer-podanalyzerpod is the same as specified in the
MirrorDestination YAML file.

• The MirrorDestination controller uses this label to calculate the analyzer_ip, macaddress, and
routinginstance.

• The pod interface to be used is specified in the annotation below:

core.juniper.net/analyzer-interface: true

You can specify the default pod interface directly under annotations. For a custom VN interface,
you specify it in the cni-args of the network. The example Pod/analyzerpod YAML file shows both
examples.

• core.juniper.net/analyzer-interface: true indicates that the vn-1 pod interface will receive mirrored
traffic.

Example Pod/analyzerpod YAML file:

apiVersion: v1
kind: Pod
metadata:
 name: analyzerpod
 namespace: mirror-ns
 labels:
 core.juniper.net/analyzer-pod: analyzerpod
 annotations:
 core.juniper.net/analyzer-interface: "true"

362

 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn-1",
 "namespace": "mirror-ns",
 "cni-args": {
 "core.juniper.net/analyzer-interface": "true"
 }
 }
]

2. Add the pod annotations and specify the mirroringDestination resource name on the interface to be
mirrored.

In the following example YAML file, we enable mirroring on the pod vn-1 interface. We specify the
MirrorDestination resource name mirrordestinationprofile1 on the interface to be mirrored.

Example Pod/mirrored-pod YAML file:

apiVersion: v1
kind: Pod
metadata:
 name: mirrored-pod
 namespace: mirror-ns
 annotations:
 core.juniper.net/mirror-destination: "mirrordestinationprofile1"
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vn-1",
 "namespace": "mirror-ns",
 "cni-args": {
 "core.juniper.net/mirror-destination": "mirrordestinationprofile1"
 }
 }
]

363

Summary

SUMMARY

This section describes configuration changes for
port-based mirroring in CN2 Release 22.2.

IN THIS SECTION

From the analyzer pod annotations and labels, the VM and VMI are associated with the pod to be used
in the MirrorDestination controller.

Analyzer VM Labels:

The VirtualMachine resource corresponding to the pod will have the label core.juniper.net/analyzer-pod label.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachine
metadata:
 annotations:
 kube-manager.juniper.net/pod-cluster-name: contrail-k8s-kubemanager-ocp-kparmar-6mpccd
 kube-manager.juniper.net/pod-name: analyzerpod
 kube-manager.juniper.net/pod-namespace: multinode-ns
 labels:
 core.juniper.net/analyzer-pod: analyzerpod

Analyzer VMI Labels:

The VirtualMachineInterface resource for the analyzer pod will have the label core.juniper.net/analyzer-
interface.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachineInterface
metadata:
 annotations:
 index: 0/1
 interface: eth0
 kube-manager.juniper.net/pod-cluster-name: contrail-k8s-kubemanager-ocp-kparmar-6mpccd
 kube-manager.juniper.net/pod-name: analyzerpod
 kube-manager.juniper.net/pod-namespace: multinode-ns
 labels:
 core.juniper.net/analyzer-interface: ""

364

Source VMI Label indicating MirrorDestination:

Source VirtualMachineInterface corresponding to the pod interface being mirrored will have the label
core.juniper.net/mirror-destination. The annotations will have the mirror configuration.

apiVersion: core.contrail.juniper.net/v1alpha1
kind: VirtualMachineInterface
metadata:
 annotations:
 core.juniper.net/mirroring-configuration:
'{"analyzer_name":"mirrordestinationprofile1","analyzer_ip_address":"10.128.0.200","analyzer_maca
ddress":"02:76:6c:25:f2:8c","ri":"default-
 domain:contrail-k8s-kubemanager-ocp-kparmar-6mpccd-contrail:default-podnetwork:default-
podnetwork"}'
 labels:
 core.juniper.net/mirror-destination: mirrordestinationprofile1

Configurable Categories of Metrics Collection and
Reporting (Tech Preview)

SUMMARY

In Juniper® Cloud-Native Contrail Networking (CN2)
Release 22.2, you can enable and disable selected
metrics for exporting.

IN THIS SECTION

Overview: Configurable Categories of Metrics
Collection and Reporting | 366

Install and Upgrade | 367

Manage MetricGroup with Kubectl
Commands | 368

Manage Metric Groups with UI | 369

365

Overview: Configurable Categories of Metrics Collection and Reporting

To provide more flexibility in the telemetry export component, CN2 Release 22.2 introduces a new
Kubernetes custom resource: MetricGroup. MetricGroup allows you to enable or disable selected metrics for
exporting.

• MetricGroup contains and manages a set of metrics for exporting.

• Metrics are grouped by their category. You can choose to enable or disable the metric export
function at the group level.

• MetricGroup is implemented through a Kubernetes custom resource.

MetricGroup provides fine-grained control on which metrics the system collects and reports. You can turn
on and off a subset of metrics reporting. At times, you may want to collect only a subset of metrics for
efficiency and the lightest weight deployment possible.

NOTE: This feature is classified as a Juniper CN2 Technology Preview feature. These features are
"as is" and are for voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support
cases. However, Juniper may not provide comprehensive support services to Tech Preview
features.

For additional information, see "Juniper CN2 Technology Previews (Tech Previews)" on page 371
or contact Juniper Support.

Figure 18: Metrics Collection and Reporting Architecture

Telemetry Operator, see Figure 18 on page 366, monitors any change of metric groups. Based on the
enabled metric groups, a list of enabled metrics is created and sent in the form of ConfigMap to metric
export agents. Metric export agents collect and export these enabled metrics, instead of all metrics on
the system.

366

https://support.juniper.net/support/

• The MetricGroup reconciler builds a ConfigMap for each type of metric (vrouter or controller) from the
enabled MetricGroup(s) and applies the ConfigMap to all clusters.

• The kube-manager reconciler does the same for a new cluster.

Telemetry Exporter combines metric specifications with this ConfigMap to create enabled metric
specifications. The metric export function only exports metrics from the enabled metric specifications,
instead of all metrics.

The following items list the YAML values for ConfigMap and MetricGroup.

ConfigMap: vrouter-export-enabled-metrics

• Revision number

• Array of enabled metric names

Custom Resource: MetricGroup

• Type: vrouter or controller

• Name: String

• Export: Boolean

• Metrics: Array of strings (metric name)

Install and Upgrade

MetricGroup is included in the analytics component in CN2 Release 22.2. The predefined metric groups are
automatically installed during the CN2 analytics deployment. See Install Contrail Analytics for Upstream
Kubernetes or Install Contrail Analytics for OpenShift Container Platform.Install Contrail Analytics for
Amazon EKS.

Example: Predefined Metric Group

Bgpaas
Controller-bgp
Controller-info
Controller-peer
Controller-xmpp
Ermvpn
Evpn
Ipv4

367

https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-k8s-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-ocp-install-and-lcm/index.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-eks-install-and-lcm/topics/topic-map/cn-cloud-native-eks-install-contrail-analytics.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22.4/cn-cloud-native-eks-install-and-lcm/topics/topic-map/cn-cloud-native-eks-install-contrail-analytics.html

Ipv6
Mvpn
Vrouter-cpu
Vrouter-info
Vrotuer-inv6
Vrouter-mem
Vrouter-traffic
Vrouter vmi

Example predefined MetricGroup: vrouter-cpu YAML file:

apiVersion: telemetry.juniper.net/v1alpha1
kind: MetricGroup
metadata:
 name: vrouter-cpu
 namespace: contrail-analytics
spec:
 export: true
 metricType: VROUTER
 metrics:
 - virtual_router_cpu_1min_load_avg
 - virtual_router_cpu_5min_load_avg
 - virtual_router_cpu_15min_load_avg

Manage MetricGroup with Kubectl Commands

You (the administrator) can manage MetricGroup with kubectl commands. Examples follow.

To delete MetricGroup:

kubectl delete metricgroup ipv6 –n contrail-analytics

To apply MetricGroup:

kubectl apply –f <yaml file with metric group definition>

368

To view MetricGroup resource:

kubectl get metricgroup ipv4 –n contrail-analytics –oyaml

To verify the existence of ConfigMap(s) run the following command.

kubectl get cm –n contrail

Names of ConfigMap
 controller-export-enabled-metrics
 vrouter-export-enabled-metrics

Each cluster has its own copy of the two ConfigMap(s); controller-export-enabled-metrics and vrouter-export-
enabled-metrics.

Manage Metric Groups with UI

With this Tech Preview, you can manage MetricGroups using the CN2 Manager UI.
To manage Metric Groups in the UI:

1. Access the CN2 Manager UI from your browser:

https://<cluster-ip-address>/

2. Log in to CN2 Manager by either method:

• Browse and select a kubeconfig file to upload.

• Log in using a token.

3. From the left-navigation menu, select Configure > Metric Groups.
The Metric Groups window appears.

4. To add a Metric Group, click the "+" icon in the upper right.

Add the Name, select Type, and select the metrics to apply. Click Save.

369

Figure 19: Add a Metric Group

5. Click the detail icon to display the Metric Group you added.

Figure 20: Display Metric Group Detail

370

Juniper CN2 Technology Previews (Tech Previews)

Tech Previews give you the ability to test functionality and provide feedback during the development
process of innovations that are not final production features. The goal of a Tech Preview is for the
feature to gain wider exposure and potential full support in a future release. We encourage you to
provide feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and are for voluntary use. Juniper Support will attempt to resolve any issues
that you experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services for Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases
and are not subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

371

https://support.juniper.net/support/

	Table of Contents
	About This Guide
	Configure Kubernetes and Contrail
	Enable IP Fabric Forwarding and Fabric Source NAT
	Enable Pods with Multiple Network Interfaces
	Display Microservice Status
	Lens Install with CN2 Extension
	Benefits
	Download and Install Lens
	Download and Install the CN2 Extension for Lens
	Connect Your CN2 Cluster to Lens
	Uninstall the CN2 Extension

	IPv4 and IPv6 Dual-Stack Networking
	Pod Scheduling

	CN2 Apstra Integration
	Extend Virtual Networks to Apstra
	Overview
	Example: CN2 Kubernetes Deployment with SR-IOV Pods
	Prerequisites
	Considerations

	Installation Workflow
	Install and Configure the CN2 Apstra Plug-In
	Install the CN2 IPAM Plug-In
	Intra-VN and Inter-VN Approaches
	Introduction to Configuring Intra-VN Communication
	Configure Intra-VN Communication
	Before You Begin
	Configure Intra-VN Communication Between SR-IOV Pods
	Configure Intra-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods
	Configure Intra-VN Communication Between SR-IOV Pods, Non-SR-IOV Pods, and BMS

	Introduction to Configuring Inter-VN Communication
	Configure Inter-VN Communication
	Before You Begin

	Configure Inter-VN Communication Between SR-IOV Pods
	Configure Inter-VN Communication Between SR-IOV Pods and Non-SR-IOV Pods
	Configure Inter-VN Communication Between SR-IOV Pods, Non-SRIOV Pods and BMS

	CN2 Security
	Kubernetes Network Policies
	Security Policies
	Namespace Security Policies

	Encrypt Secret Data at Rest
	Configure Management and Control Plane Authentication with TLS Encryption
	Overview
	Configure TLS Encryption for Contrail Control Plane and vRouter

	Advanced Virtual Networking
	Enable BGP as a Service
	Create an Isolated Namespace
	Namespace Overview
	Example: Isolated Namespace Configuration
	Isolated Namespace Objects
	Create an Isolated Namespace
	Optional Configuration: IP Fabric Forwarding and Fabric Source NAT
	Enable IP Fabric Forwarding
	Enable Fabric Source NAT

	Configure Allowed Address Pairs
	Enable Packet-Based Forwarding on Virtual Interfaces
	Configure Reverse Path Forwarding on Virtual Interfaces
	vRouter Interface Health Check
	vRouter Interface Health Check Overview
	Create a Health-Check Object
	Health-Check Process

	Kubernetes Ingress Support
	Deploy VirtualNetworkRouter in Cloud-Native Contrail Networking
	Configure Inter-Virtual Network Routing Through Route Targets
	Configure IPAM for Pod Networking
	Enable VLAN Subinterface Support on Virtual Interfaces
	EVPN Networking Support
	Customize Virtual Networks for Pod Deployments, Services, and Namespaces
	Deploy Kubevirt DPDK Dataplane Support for VMs
	Pull Kubevirt Images and Deploy Kubevirt Using a Local Registry
	Static Routes
	VPC to CN2 Communication in AWS EKS
	Configure a Service Account to Assume an IAM role

	Configure DPDK
	Deploy DPDK vRouter

	Configure Services
	Configure ClusterIP Service by Assigning Endpoints
	ClusterIP Service without a Selector and Manually Assigned Endpoints
	Configure ClusterIP Service

	NodePort Service Support in Cloud-Native Contrail Networking
	Create a Load Balancer Service
	Load Balancer Service Overview
	Create a Load Balancer Service
	Dual-Stack Networking Support

	Configure Load Balancer Services Without Selectors

	FloatingIP/DNAT for IPv6 Addresses

	Analytics
	Contrail Networking Analytics
	Contrail Networking Metric List
	Kubernetes Metric List
	Cluster Node Metric List
	Contrail Networking Alert List
	vRouter Session Analytics in Contrail Networking
	Centralized Logging
	Port-Based Mirroring
	Overview: Port-Based Mirroring
	Example: Configure Port-Based Mirroring
	Summary

	Configurable Categories of Metrics Collection and Reporting (Tech Preview)
	Overview: Configurable Categories of Metrics Collection and Reporting
	Install and Upgrade
	Manage MetricGroup with Kubectl Commands
	Manage Metric Groups with UI

	Juniper CN2 Technology Previews (Tech Previews)

