JUDLR@! | Engineering

Simplicity

CN2 Pipelines for GitOps Guide

Published
2023-09-29

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

CN_Z2 Pipelines for GitOps Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Install and Manage
CN2 Pipelines | 2

CN2 Pipelines Overview | 2
CN2 Configuration | 2
CN2 and GitOps | 4
Prerequisites | 7

CN2 Pipelines Installation and Setup | 7

w

efore You Install CN2 Pipelines | 9

Install Helm | 9

Verify Kubeconfig | 9

CN2 Cluster Configuration | 10

Create a Personal Access Token for GitLab | 10
Mountpath and Profiles | 11

Create a Sample ConfigMap in Git Server Folder | 11

Update /etc/hosts for an OpenShift Deployment | 12

Install CN2 Pipelines | 12

Download CN2 Pipelines | 12

Install the CN2 Pipelines Helm Chart | 13

Verify the CN2 Pipelines Helm Chart Installation | 14
Argo CD and Helm Configuration | 15

Argo Login | 16

CN2 and Workflows | 17

CN2 Pipelines Service | 18

CN2 Pipelines Configurations | 18
Create Custom Workflows for the CN2 Pipelines | 20
Explanation of values.yaml | 23

Architecture and Design

CN2 Pipelines Solution Test Architecture and Design | 27

Overview | 27

Use Case | 27

Test Workflows | 28

Profiles | 29

Test Environment Configuration | 36
Test Execution with Micro-Profiles | 37

Logging and Reporting | 38

Test Cases

CN2 Pipelines Test Management | 40

Trigger the CN2 Pipelines Test | 40
Support for Queuing Test Execution | 40
Change Commit Threshold Trigger | 41
Change Test Profiles | 41

Identify CN2 Pipelines Test Trigger | 42

Access Test Results | 43

Uninstall the CN2 Pipelines | 43
CN2 Pipelines Test Cases | 44

CN2 Pipelines Test Case Descriptions | 53

Architect Onboard | 54
Architect Execute | 54

Architect Teardown | 55

SRE Onboard | 55
SRE Execute | 56

SRE teardown | 58

About This Guide

This guide provides an understanding of the features and test cases for Juniper Cloud-Native Contrail®
Networking™ (CN2) Pipelines Release 23.3.

CHAPTER

Install and Manage

CN2 Pipelines | 2
Before You Install CN2 Pipelines | 9
Install CN2 Pipelines | 12

Explanation of values.yaml | 23

CN2 Pipelines

SUMMARY IN THIS SECTION

Juniper Cloud-Native Contrail Networking (CN2) CN2 Pipelines Overview | 2
Pipelines is a CI/CD tool to enable GitOps-based CN2 Configuration | 2
workflows to automate CN2 configuration, testing,

and qualification. CN2 Pipelines runs alongside CN2 CN2 and GitOps | 4
clusters starting with CN2 Release 23.1. Prerequisites | 7

CN2 Pipelines Installation and Setup | 7

CN2 Pipelines Overview

GitOps is a deployment methodology centralized around a Git repository, where the GitOps workflow
pushes a configuration through testing, staging, and production. Many customers run a staging
environment or staging cluster. The GitOps process supports automatic configuration to deploy and test
CN2 network configurations using test case YAML files.

After you (the administrator) configure the CN2 Pipelines and GitOps, CN2 Pipelines will:
e Sync with the GitOps repository and auto-provision CN2 configurations to the Kubernetes cluster.

e Provision CN2 configurations with the capability to test and verify the deployed CN2 configurations
in each Kubernetes cluster.

e Provide auto-revision monitoring and updates.

CN2 Configuration

IN THIS SECTION

GitOps | 3

CN2 uses Kubernetes Custom Resource Definitions (CRDs) configurations written in YAML or JSON
format. These CRDs are stored and managed in the Git repository, which makes the Git repository the
source of truth for all of the network configurations.

GitOps

"GitOps is a paradigm or a set of practices that empowers developers to perform tasks which typically
fall under the purview of IT operations. GitOps requires us to describe and observe systems with
declarative specifications that eventually form the basis of continuous everything." Quote is from
CloudBees.

To achieve the GitOps mode of operation, the Argo CD application is used. The CN2 Git repository is
configured to be used as the Argo CD application. Argo CD is a declarative, GitOps continuous delivery
tool for Kubernetes. See Figure 1 on page 3.

The GitOps engine also runs a repository server that caches all of the application files from the Git
repository. These files are verified and monitored for any CN2 configuration changes received to the Git
repository.

Figure 1: Argo CD with Git Repository and Kubernetes

API Server

Apply Resources R

api Apply Resources

Application @9
e i R ArgoCD

1
Watch GitOps

Repositories |
1

Bootstrap

jn-000310

1

1

v .
GitOps
Writes

Public/
On-Premises

M
AutoPilot J\L

| CN2 and GitOps

IN THIS SECTION

® CN2 Pipelines Configuration Flow | 5
® GitOps Server | 5

® Workflow and Tests | 6

The primary benefit of supporting GitOps for CN2 is to achieve automatic configuration deployment
and testing of CN2 network configurations. CN2 configurations are custom resource definitions (CRDs)
which are maintained in a Git repository. These CRDs are applied to the CN2 cluster whenever there is a
change to the CN2 configurations in the Git repository. To test and apply these changes, the GitOps
applications Argo CD and Argo Workflows are utilized.

Figure 2: GitOps Pipelines Workflow

|]
[1 1]
| [T T[]} r ﬁ
S‘t‘agmg —_— Workﬂow Production
Environment Deploy Testing

Deploy

Git
- s
Repository ' configuration
Push

Argo CD
Server

Trigger
Build
A

jn-000311

v
Integration

Raise Merge Request Testing
to Production Branch

Artifacts Load
Report Slack/Teams Testing

A

Outcome
Notifications Miscellaneous
Testing

Success/Failure

Published Success
Reports

CN2 Pipelines Configuration Flow

Your CN2 configurations are maintained in the CN2 Git repository. The CN2 Git repository is configured
to be used as the Argo CD application. The CN2 Pipelines configuration flow is as follows:

1. CN2 configurations are initially pushed to the staging repository by you (the administrator).

2. Any changes to the configurations in the repository triggers a Git synchronization to the GitOps
server.

3. The GitOps server looks for any changes by comparing the current configuration and the new
configuration fetched from the CN2 Git repository.

4. If any new changes are pushed, the GitOps server applies these changes to the CN2 environment.

Figure 3: CN2 Configurations in Customer Git Repository

Git
N —_—
Repository Configuration

Push

Commit

jn-000312

GitOps Server

The GitOps server confirms that the configuration in the CN2 environment is always synchronized with
the Git repository. CN2 Pipelines supports two branches:

e One for the staging environment.
e One for the production environment.

Many customers run a staging environment or staging cluster. The staging branch is where you (the
administrator) push any configurations required to be pushed to the staging CN2 cluster. These
configurations are then tested by the workflow engine before the configurations are merged to the
production branch.

Figure 4: GitOps Server

© O]

& -

Git

Commit Repository Configuration

Push

ArgoCD |
Server

jn-000313

Workflow and Tests

The GitOps server pushes all configuration changes to your CN2 setup as follows:

1. This push triggers the workflow cycle to run test cases. These test cases validate and verify the CN2
setup against the configuration you applied in the staging setup.

2. If the test cases are successful, you are notified about the test completion and a merge request is
presented to the production branch.

3. Next, you need to validate the changes in the merge request and approve the changes to be merged
to the production branch.

4. After the new configurations are merged to the production branch, the GitOps server synchronizes
the configurations and applies the configurations to the CN2 production cluster.
Figure 5: Workflow and Tests

~ 225, \
V» JV»

I
Argo CD Staging N Workflow

Configuration Server Trigger Environment Deploy Testing
Push Build |
Deploy l
3
Integration 3
Testing 8
<

l

Prerequisites

Before you install CN2 Pipelines, verify you have the following:

Management Kubernetes cluster (where you will install CN2 Pipelines)

CN2 Kubernetes cluster

Connectivity from the management Kubernetes cluster to the CN2 cluster
GitLab repository with CN2 configuration folder with sample ConfigMap file
See "Create a Sample ConfigMap in Git Server Folder" on page 11
MountPath folder

Connectivity from the management Kubernetes cluster to outside, needed to access Argo CD, Argo
Workflows, and test results

Notes:

e If you are using Red Hat OpenShift with CN2 Pipelines, install ingress from the files /ingress/
openshift/public on the OpenShift cluster

e CN2 Pipelines needs GitLab or GitLab for Open Source as an event source

e (N2 pipeline requires a separate GitLab project per CN2 cluster. So, each CN2 cluster requires a
separate GitLab project to be created for storing the CN2 configuration (config).

¢ In the case of file deletion, if the commit-processing workflow fails, you are required to do a
dummy commit.

CN2 Pipelines Installation and Setup

IN THIS SECTION

Components | 8
CN2 Components | 8

Kubernetes | 8

Components

CN2 Pipelines installs and configures the following components:
e ArgoCD

o Argo Workflows

e Argo Events

e CN2 Pipelines services

e Configure, upload and trigger CN2 testing workflows

Supports customer container network functions (CNFs)

CN2 Components

All CN2 Pipelines components are installed and configured as part of the CN2 Pipelines Helm chart
installation. Argo CD is one of the components in CN2 Pipelines and it is installed in the management
cluster.

Argo CD is configured with the following details during the initial setup:
e CN2 cluster environment details

e Git repository access details

e CN2 GitOps engine application configuration

See "Install the CN2 Pipelines Helm Chart" on page 13.

Kubernetes

You can use any native Kubernetes or Red Hat OpenShift with CN2 or another Container Network
Interface (CNI) to provision CN2 Pipelines.

Before You Install CN2 Pipelines

SUMMARY IN THIS SECTION

The following procedures will help you obtain some Install Helm | 9

prerequisites and some values used to fill the Verify Kubeconfig | 9

values.yaml file for the CN2 Pipelines Helm chart.
CN2 Cluster Configuration | 10

Create a Personal Access Token for
GitLab | 10

Mountpath and Profiles | 11

Create a Sample ConfigMap in Git Server
Folder | 11

Update /etc/hosts for an OpenShift
Deployment | 12

Install Helm

Before installing the CN2 Pipelines chart, you need to install Helm 3 in the management cluster. Helm
helps you manage Kubernetes applications. Helm charts help you define, install, and upgrade even the
most complex Kubernetes application.

Run the following command to download and install the latest version of Helm 3:

curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
chmod 700 get_helm.sh
./get_helm.sh

Verify Kubeconfig

Before creating the kubeconfig file as baseé4, verify kubeconfig works from the management cluster.

1. Copy the kubeconfig file from CN2 to the management cluster. You can do this with a copy and
paste.

2. Run the following command to view the nodes on the CN2 cluster:

kubectl get nodes --kubeconfig=<kubeconfig_file_of_CN2_cluster>

3. Run the following command to view the all the pods on the CN2 cluster:

kubectl get pods -A --kubeconfig=<kubeconfig file_of_ CN2_cluster>

CN2 Cluster Configuration

CN2 cluster configuration performs the following actions in the CN2 cluster:
e Creates CN2 Pipelines namespace if namespace does not exist already.

e Creates a service account named cn2pipelines.

e Applies the cluster role and role bindings.

Based on the above items, CN2 Pipelines creates a dynamic bearer token to communicate with the CN2
cluster immediately during the provisioning of CN2 Pipelines with Argo CD.

Mountpath for CN2 Cluster Configuration

Place the CN2 cluster configuration with the name config in the mountpath specified in the values.yaml.

For example:

mountpath: /opt/cn2_workflows/config

Create a Personal Access Token for GitLab

To create a personal access token, use the following procedure from GitLab:

1. Select Edit profile.

2. In the left pane, select Access Tokens.

3. Enter a name and (optional) expiration date for the token.
Default expiration is 30 days.

4. Select the desired scopes.
See GitLab Personal Access Token Scopes.

5. Select Create personal access token.

6. Save the personal access token somewhere safe. After you leave the page, you no longer have access
to the token.

For more information, see GitLab Personal Access Token.

Mountpath and Profiles

You need to put the mountpath in a mountpath folder, then create your profiles in the mountpath folder.
For example, if your mountpath is /opt/cn2_workflows as defined in the values.yaml, you will create a folder

named /opt/cn2_workflows.

Create a Sample ConfigMap in Git Server Folder

You need to create a sample ConfigMap before installing the CN2 Pipelines. Create and add the sample
ConfigMap to the CN2 network configuration folder identified in your GitLab server branch. The same
branch and folder also needs to be added in the values.yaml. This ConfigMap gets applied by Argo CD as
part of the CN2 Pipelines installation.

1. Run the following command to create a ConfigMap with the filename cn2configmap:

cat <<'EOF'>> cn2configmap.yaml

Output:

apiVersion: vi
kind: ConfigMap
metadata:
name: pipelines-config
namespace: default
data:
cn2pipeline: "true"

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#personal-access-token-scopes
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#create-a-personal-access-token

2. Commit the ConfigMap file to the CN2 configuration folder identified in your Git server branch.

Update /etc/hosts for an OpenShift Deployment

On the CN2 cluster, check the ingress components.

Verify that /etc/hosts contains entries from the OpenShift cluster. For example:

192.168.19.571 api.ocp-ss-571.net

Install CN2 Pipelines

SUMMARY IN THIS SECTION
This section guides you through installing CN2 Download CN2 Pipelines | 12
Pipelines. Install the CN2 Pipelines Helm Chart | 13

Verify the CN2 Pipelines Helm Chart
Installation | 14

Argo CD and Helm Configuration | 15
Argo Login | 16

CN2 and Workflows | 17

CN2 Pipelines Service | 18

CN2 Pipelines Configurations | 18

Create Custom Workflows for the CN2
Pipelines | 20

Download CN2 Pipelines

Download the CN2 Pipelines files to update the files with the needed tokens prior to installation.

To download the CN2 Pipelines tar file:

1. Download CN2 Pipelines Deployer files from Juniper Networks Downloads.

2. Untar the downloaded files to the management server.

Install the CN2 Pipelines Helm Chart

The CN2 Pipelines Helm chart is used to install and configure the CN2 Pipelines management cluster.
To install the CN2 Pipelines Helm chart on your management cluster:

1. In your downloaded CN2 Pipelines Deployer files, locate the values.yaml in the folder contrail-
pipelines-x.x.x/values.

2. Input the chart values. For parameter descriptions, see "Explanation of values.yaml" on page 23.

Example CN2 Pipelines values.yaml for the management cluster:

FHEHHHHHHHEHHRHE R R

Common Configuration (global vars)
HHHHBHRHHEHEHR AR AR R AR AR R HAH R
global:

docker_image_repo: docker.io # Global docker registry for non Juniper images

registry: enterprise-hub.juniper.net/contrail-container-prod/ # Global image registry to
pull Juniper artifacts

imagePullSecret: <base64 imagePullSecret> # Image pull secret for authenticated registry ##
Keep this commented for nonAuthicated registry

deployment_type: 'k8s' # deployment_type: k8s for CN2 kubernetes cluster (or)
deployment_type: "openshift" for CN2 openshift cluster

managementServer: <managementServer> # CN2 pipeline management server IP

gitServer:
access_token: <access_token> # eg: eTE1YOp1M1o4TGhiWFpfLTFSVEg=
gitlabBaseURL: <gitlabBaseURL> # eg: https://cnf-gitlab.net
project: <project> # eg: devops/cn2/cn2-pipelines
folderName: <folderName> # eg: cn2networkconfig

branch: <branch> # eg: master

cn2ClusterDetails:
name: <cluster name> # CN2 cluster name
server: <kubeAPI IP> # CN2 cluster kubeapi server (should be reachable from management

server)

https://support.juniper.net/support/downloads/?p=contrail-networking

kubeconfig: cn2-cluster-kubeconfig # CN2 kubeconfig name, leave as default
mountpath: /opt/cn2_workflows # CN2 test profile folder location

workflow-objects:
ssl_enabled: True # True if CN2 cluster deployed with SSL enabled else it is False
''' Enable below OCP keys only for deployment_type is openshift '''
#ocp_api_host_ip: <ocp_api_host_ip> # eg: '192.167.19.571'
#ocp_api_host_name: <ocp_api_host_name> # eg: 'api.ocp-ss-571.net'

3. Run the following command to install the CN2 Pipelines Helm chart with the release name cn2-
pipeline:

helm install cn2-pipeline . --timeout=20m

Verify the CN2 Pipelines Helm Chart Installation

To verify the CN2 Pipelines Helm chart Installation, run the following commands:

1. List the Helm release in the current namespace.

helm 1s
Output:
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
cn2-pipeline default 1 2023-16-10 11:44:29.380155158 +0000 UTC

deployed cn2-pipeline-1 23.2.0

2. Display all pods in all namespaces.

kubectl get pods -A

Output:

NAMESPACE NAME READY STATUS
RESTARTS AGE

argo-events controller-manager-844d44-vf6r8 1/1 Running

0 2m23s

argo-events eventbus-default-stan-0 2/2 Running

0 2m18s

argo-events eventbus-default-stan-1 2/2 Running

0 2m6s

argo-events eventbus-default-stan-2 2/2 Running

0 2m4s

argo-events events-webhook-64dc49f456-p6rmw 1/1 Running

0 2m23s

argo-events gitlab-eventsource-ghnz8-74c4c785dc-ggmpr 1/1 Running 2 (118s
ago) 2m17s

argo-events gitlab-sensor-xc5s6-74c65564b8-m5cld 1/1 Running 3 (115s
ago) 2m17s

argo argo-server-65566599f8-tv99s 1/1 Running

0 2m23s

argo workflow-controller-77c44779bf-9b42k 1/1 Running

0 2m23s

argocd argocd-application-controller-0 1/1 Running

0 2m23s

argocd argocd-dex-server-76d5bc7dc6-r5rnw 1/1 Running 1 (2m15s
ago) 2m23s

argocd argocd-notifications-controller-5ff9495c68-8z581 1/1 Running

0 2m23s

argocd argocd-redis-857ddfd67b-21fd2 1/1 Running

0 2m23s

argocd argocd-repo-server-6dcd4856d4-hjv95 1/1 Running

0 2m23s

argocd argocd-server-7cf45b4594-cntd5 1/1 Running

0 2m23s

Argo CD and Helm Configuration

This topic lists the Argo components and configurations that are automated as part of the CN2 Pipelines
Helm chart install.

e Argo CD External Service—Creates a Kubernetes service with service type as NodePort or
LoadBalancer. This creates the Argo CD external service that provides access to the Argo CD API
server and the Argo CD GUI.

o Register Git Repository with CN2 Configurations—Configures repository credentials and connects
your Git repository to Argo CD. Argo CD is configured to your Git repository to watch and pull the
configuration changes from your Git repository. This Git repository should only contain Kubernetes
resources. Argo CD does not understand any other type of YAML or files.

o Register Kubernetes Clusters—Registers a Kubernetes cluster to Argo CD. This process configures
Argo CD to provision the Kubernetes resources in any Kubernetes cluster. Multiple Kubernetes
clusters can be configured in Argo CD.

e Create an Argo CD Application—Creates an application using the Argo CD GUI. Any application
created in Argo CD needs to be associated with a Git repository and one Kubernetes cluster.

Argo Log In

IN THIS SECTION

Access Argo Workflow Ul | 16

Access Argo CD GUI | 17

After installing the CN2 Pipelines Helm chart, you have access to the Argo Workflow GUI and the Argo
CD GUIL.

Access Argo Workflow Ul

To access the Argo CD GUI, you need connectivity from the management cluster to access the GUI
using the NodePort service. The Argo CD GUI is accessed using the management server IP address and
port 30550.

1. Access the Argo CD GUI from your browser.

https://<management-api-ip>:30550

2. On the management node, run the following command to receive the token.

kubectl -n argo exec $(kubectl get pod -n argo -1 'app=argo-server' -o

jsonpath="'{.items[@].metadata.name}') -- argo auth token

Access Argo CD GUI

To access the Argo CD GUI, you need connectivity from the management cluster to access the GUI
using the NodePort service. The Argo CD GUI is accessed using the management server IP address and
port 30551.

1. Access the Argo CD GUI from your browser.

https://<management-api-ip>:30551

2. On the management node, run the following command to receive the token. The username is admin.

kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}" |
base64 -d

CN2 and Workflows

IN THIS SECTION

Why Workflows Are Needed | 18
How Workflows Work and How CN2 Uses Workflows | 18

Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on
Kubernetes. You can define workflows where each step in the workflow is a container. You can also
model multi-step workflows as a sequence of tasks or capture dependencies between tasks using a
directed acyclic graph (DAG).

Why Workflows Are Needed

Workflows are used to invoke and run CN2 test cases after provisioning CN2 resources by using the
GitOps engine. These workflows qualify the CN2 application configurations and generates test results
for the configuration that is being deployed.

How Workflows Work and How CN2 Uses Workflows

Workflows are triggered whenever a CN2 resource is provisioned by the GitOps engine. Each of the
CN2 resources or a group of CN2 resources are mapped to a specific workflow test DAG. After
successful completion of these test suites, the CN2 configurations are qualified to be promoted to
production environments from the Staging or Test environments.

CN2 Pipelines Service

The pipeline service listens for notifications from Argo Events for any changes in Kubernetes resources.
The pipeline service exposes a service which is used by Argo Events to consume and trigger the service
with the data related to the CN2 configuration that you applied. It is the responsibility of the CN2
Pipelines service to identify the test workflow to be triggered for the type of CN2 configuration that you
applied. Workflows change dynamically depending on the objects being notified. The CN2 Pipelines
listener service invokes the respective workflow dependent on the CN2 configuration that gets applied.

CN2 Pipelines Configurations

IN THIS SECTION

Pipeline Configuration | 19
Test Workflow Template Parameter Configuration | 19
Workflow to Kind Map | 19

This topic shows examples for the CN2 Pipelines configurations.

Pipeline Configuration

The pipeline configuration is used by the pipeline engine and includes:
e Pipeline commit threshold

e Config map: cn2pipeline-configs

o Namespace: argo-events

Example CN2 Pipelines configuration:

apiVersion: vi1
data:
testcase_trigger_threshold: "10"
kind: ConfigMap
labels:
app.kubernetes.io/managed-by: Helm
name: cn2pipeline-configs

namespace: argo-events

Test Workflow Template Parameter Configuration

All workflow template inputs are stored as configuration maps. These configuration maps are
dynamically selected during the execution by the pipeline service.

Workflow to Kind Map

This mapping configuration contains the workflow template to CN2 resource kind mapping. Only one
template is selected for execution and the first map that matches has the higher priority. An asterisk (*)
inkind: ['*']indicates that template has higher priority than any other kind matches and overrides every
mapping.

A workflow template for a CN2 resource kind mapping template includes:
e Config map: cn2tmpl-to-kind-map

o Namespace: argo-events

Following is an example configuration for the workflow template to CN2 resource kind mapping. Note
the asterisk (*) in kind: ['*'] kindmap.

kind: ConfigMap
apiVersion: vi1
metadata:
name: cn2tmpl-to-kind-map
namespace: argo-events
data:
kindmap: |
- workflow: it-cloud
kind: ['x']
- workflow: custom-cnf-sample-test
kind: ['namespace']

Create Custom Workflows for the CN2 Pipelines

You can create custom workflows tests to test your container network functions (CNFs).

To create a custom workflow, you can use the example custom test workflow templates provided with
the CN2 Pipelines files. Every workflow has a set of input parameters, volume mounts, container
creation, and so on. To understand the workflow template creation see Argo Workflows.

The following example custom test workflow templates are provided:

e Input parameters to workflow

e Mount volumes

e Create Kubernetes resource using workflow (Template name: create-cnf-tf and create-cnf-service-tf)
¢ Embedded code in workflow (Template name: test-access-tf)

e Pull external code and execute within a container (Template name: test-service-tf)

To automate the inputs to the workflow during the pipeline run, a workflow parameter configuration
map is created which has the inputs for the workflow. The configuration map must have the same name
as the workflow template.

In the following example, the template name is custom-cnf-sample-test. A configuration map is created
automatically with the same name. As a part of the pipeline run, the pipeline service looks for the

https://argoproj.github.io/argo-workflows/workflow-concepts/

configuration map with the template name, gets the inputs, which are then automatically added to the
workflow when the pipeline triggers the workflow.

Another update that happens in the test case which triggers the custom workflow is to change the
configuration map name to <cn2tmpl-to-kind-map>.

- workflow: custom-cnf-sample-test

kind: ['namespace']

The following is an example workflow configuration for the template custom-cnf-sample-test:

apiVersion: argoproj.io/vlalphal

kind: WorkflowTemplate # new type of k8s spec
metadata:
name: custom-cnf-sample-test # name of the workflow spec

namespace: argo-events
spec:
serviceAccountName: operate-workflow-sa
entrypoint: cnf-test-workflow # invoke the workflows template
hostNetwork: true
arguments:
parameters:
- name: image # the path to a test docker image
value: not_provided
- name: kubeconfig_secret # eg: kubeconfig-989348
value: not_provided
- name: report_dir # eg: /root/SolutionReports
value: not_provided
volumes:
- name: kubeconfig
secret:
secretName: "{{ ‘{{workflow.parameters.kubeconfig_secret}}' }}"
- name: reportdir
hostPath:
path: "{{ "{{workflow.parameters.report_dir}}" }}"
templates:
- name: create-cnf-tf
resource:
action: apply
#successCondition: status.succeeded > 0
#failureCondition: status.failed > 3

manifest: |

apiVersion: v1
kind: Pod
metadata:
name: webapp-cnf
namespace: argo-events
labels:
app.kubernetes.io/name: proxy
spec:
containers:
- name: nginx
image: {{ .Values.global.docker_image_repo }}/nginx:stable
ports:
- containerPort: 80
name: http-web-svc
- name: create-cnf-service-tf
resource:
action: apply
#successCondition: status.succeeded > 0
#failureCondition: status.failed > 3
manifest: |
apiVersion: vi1
kind: Service
metadata:
name: webapp-service
namespace: argo-events
spec:
selector:
app.kubernetes.io/name: proxy
ports:
- name: webapp-http
protocol: TCP
port: 80
targetPort: http-web-svc
- name: test-access-tf
script:
image: "{{ ‘{{workflow.parameters.image}}' }}"
command: [python]
source: |
import time
print('--Test access to CNF--')
url = 'webapp-service.argo-events.svc.cluster.local'
3
retry_cnt = 0

retry_max

while retry_cnt < retry_max:
print('Response status code: {}','200')
time.sleep(1)
retry_cnt += 1
print('Monitoring access count: {}',retry_cnt)
print('Completed")
- name: test-service-tf
inputs:
artifacts:
- name: pyrunner
path: /usr/local/src/cn2_py_runner.py
mode: 0755
http:
url: https://raw.githubusercontent.com/roshpr/argotest/main/cn2-experiments/
cn2_py_runner.py
script:
image: "{{ ‘{{workflow.parameters.image}}' }}"
command: [python]
args: ["/usr/local/src/cn2_py_runner.py", "4"]
- name: cnf-test-workflow
dag:
tasks:
- name: create-cnf
template: create-cnf-tf
- name: create-cnf-service
template: create-cnf-service-tf
- name: test-connectivity
template: test-access-tf
dependencies: [create-cnf-service]
- name: test-load
template: test-service-tf

dependencies: [create-cnf-service]

Explanation of values.yaml

The following table describes the configuration parameters listed in the values.yaml file. You will need
the parameter values obtained in "Before You Install CN2 Pipelines" on page 9. See an example
values.yaml file in "Install the CN2 Pipelines Helm Chart" on page 13

Table 1: Parameters for Values.yaml in CN2 Release 23.2

Name

Global Parameters

global.registry

global .docker_image_repo

global.imagePullSecret

global .deployment_type

global.managementServer

Global GitServer Parameters

global.gitServer.access_t
oken

global.gitServer.gitlabBa
seURL

global.gitServer.project

global.gitServer.folderNa
me

Description

Global image registry to
pull Juniper artifacts

Global docker registry for
non-Juniper images

Image pull secret for
authenticated registry in
base64 format.

CN2 cluster installed on
Kubernetes or OpenShift

Management server
KubeAPI IP

GitLab personal access
token

Base server for your
GitLab server

Repository or project
name in GitLab

Folder name where all the
CN2 configurations are
located

Value

Accepted Values

enterprise-
hub. juniper.net/contrail-
container-prod/

docker.io

base64 formatted secret

k8s, openshift

Example: 192.168.1.4

Example:
1di9sd23cpsadadsaaasd

Example: https://cnf-
gitlab.net

Example: devops/cn2config

Example: cn2networkconfig

Table 1: Parameters for Values.yaml in CN2 Release 23.2 (Continued)

Name

global.gitServer.branch

Global cn2ClusterDetails

global.cn2ClusterDetails.

name

global.cn2ClusterDetails.

server

global.cn2ClusterDetails.
kubeconfig

global.cn2ClusterDetails.
mountpath

Description

CN2 config Git branch
name

CN2 cluster name from
kubeconfig file

CN2 cluster kubeapi
server, which is accessible
from the management
server

CN2 kubeconfig name

CN2 test profile folder
location

Workflow Object Parameters

workflow-
objects.ssl_enabled

True if SSL enabled.
Otherwise, False

Value

False

Accepted Values

Example: master

Example: cluster.local

Example: 10.1.2.3

cn2-cluster-kubeconfig

Example: /opt/cn2

False, True

Enable the following OpenShift Container Platform (OCP) when deployment_type is "openshift"

workflow-
objects.ocp_api_host_ip

workflow-

objects.ocp_api_host_name

Only for OpenShift
Container Platform (OCP)
kubeapi IP address

Only for OpenShift
Container Platform (OCP)
kubeapi name

Example: 192.168.19.571

Example: api.ocp-
ss-571.net

CHAPTER

Architecture and Design

CN2 Pipelines Solution Test Architecture and Design | 27

CN2 Pipelines Solution Test Architecture and Design

SUMMARY IN THIS SECTION
Learn about Cloud-Native Contrail® Networking™ Overview | 27
(CN2) Pipelines architecture and design. L Came | 2

Test Workflows | 28

Profiles | 29

Test Environment Configuration | 36
Test Execution with Micro-Profiles | 37

Logging and Reporting | 38

Overview

Solution Test Automation Framework (STAF) is a common platform developed for automating and
maintaining solution use cases mimicking the real-world production scenarios.

e STAF can granularly simulate and control user-personas, actions, timing at scale and thereby
exposing the software to all real-world scenarios with long-running traffic.

e STAF architecture can be extended to allow the customer to plug-in GitOps artifacts and create
custom test workflows.

e STAF is implemented in Python and pytest test frameworks.

Use Case

STAF emulates Day O, Day 1, and Day-to-Day operations in a customer environment. Use case tests are
performed as a set of test workflows by user-persona. Each user-persona has its own operational scope.

e Operator—Performs global operations, such as cluster setup and maintenance, CN2 deployment, and
so on.

¢ Architect—Performs tenant related operations, such as onboarding, teardown, and so on.
e Site Reliability Engineering (SRE)—Performs operations in the scope of a single tenant only.

Currently, STAF supports IT Cloud webservice and telco use cases.

I Test Workflows

Workflows for each tenant are executed sequentially only. Several tenants’ workflows can be executed
in parallel, with the exclusion of Operator tests.

Day 0 operation or CN2 deployment is currently independent from test execution. The rest of the
workflows are executed as Solution Sanity Tests. In pytest, each workflow is represented by a test suite.

Figure 6: Typical Use Case Scenario

Operator CN2 Deployment

=
onboard SRE1 onboard SRE2
SRE1 onboard SRE2 onboard

SREZ2 execute

SRE1 execute

Day-to-Day
Architect Architect
execute SRE1 execute SRE2

Maintenance

Operator execute

SRE1 teardown SRE2 teardown

m -|...........

-
teardown SRE1 teardown SRE2

For test descriptions, see "CN2 Pipelines Test Case Descriptions" on page 53.

28

I Profiles

IN THIS SECTION

® Example Profiles | 30

Profile workflows are executed for a use case instance described in a profile YAML file. The profile
YAML describes the parameters for namespaces, application layers, network policies, service type, and
so on.

Figure 7: Profile Workflow

Architect

onboard SRE2

SRE2 onboard

SREZ2 execute

Architect
execute SRE2

Operator
execute

The profile file is mounted outside of a test container to give you flexibility with choice of scale
parameters. For CN2 Pipelines, you can update the total number of pods only.

29

You can access the complete set of profiles from the downloaded CN2 Pipelines tar file in the folder:
charts/workflow-objects/templates.

Example Profiles

The following sections have example profiles.

Isolated LoadBalancer Profile

The IsolatedLoadBalancerProfile.yml configures a three-tier webservice profile as follows:

e Frontend pods are deployed with a replica count of two (2). These frontend pods are accessed from
outside of the cluster through the LoadBalancer service.

¢ Middleware pods are deployed with a replica count of two (2) and an allowed address pair is
configured on both the pods. These pods are accessible through the ClusterlP service from the
frontend pods.

e Backend pods are deployed with a replica count of two (2). Backend pods are accessible from
middleware pods through the ClusterlP service.

e Policies are created to allow traffic on configured ports on each tier.

IsolatedLoadbalancerProfile.yml

isl-1b-profile:

WebService:
isolated_namespace: True
count: 1
frontend:

external_network: custom

n_pods: 2

services:

- service_type: LoadBalancer
ports:

- service_port: 21
target_port: 21
protocol: TCP

middleware:
n_pods: 2
aap: active-standby
services:

- service_type: ClusterIP

ports:

- service_port: 80
target_port: 80
protocol: TCP

backend:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 3306
target_port: 3306
protocol: UDP

Isolated NodePort Profile

The IsolatedNodePortProfile.yml configures a three-tier webservice profile as follows:

e Frontend pods are deployed with a replica count of two (2). These frontend pods are accessed from
outside of the cluster using haproxy node port ingress service.

¢ Middleware pods are deployed with a replica count of two (2) and an allowed address pair is
configured on both the pods. These pods are accessible through the ClusterlP service from the
frontend pods.

e Backend pods are deployed with a replica count of two (2). Backend pods are accessible from
middleware pods through the ClusterlP service.

e Policies are created to allow traffic on configured ports on each tier. Isolated namespace is enabled in
this profile.

IsolatedNodePortProfile.yml

isl-np-web-profile-w-haproxy-ingress:
WebService:

count: 1

isolated_namespace: True

frontend:
n_pods: 2
anti_affinity: true
liveness_probe: HTTP
ingress: haproxy_nodeport
services:

- service_type: NodePort

ports:

- service_port: 443
target_port: 443
protocol: TCP

- service_port: 80
target_port: 80
protocol: TCP

middleware:
n_pods: 2
liveness_probe: command
services:
- service_type: ClusterIP
ports:

- service_port: 80
target_port: 80
protocol: TCP

backend:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 3306
target_port: 3306
protocol: UDP

Multi-Namespace Contour Ingress LoadBalancer Profile

The MultiNamespaceContourlngressLB.yml configures a three-tier webservice profile as follows:

e Frontend pods are launched using deployment with a replica count of two (2). These frontend pods
are accessed from outside of the cluster using haproxy node port ingress service.

e Middleware pods are launched using deployment with a replica count of two (2) and an allowed
address pair is configured on both the pods. These pods are accessible through the ClusterlP service
from the frontend pods.

e Backend pods are deployed with a replica count of two (2). Backend pods are accessible from
middleware pods through the ClusterlP service.

e Policies are created to allow traffic on configured ports on each tier. Isolated namespace is enabled in
this profile.

MultiNamespaceContourlngressLB.yml

multi-ns-contour-ingress-profile:
WebService:
isolated_namespace: True
multiple_namespace: True
fabric_forwarding: True
count: 1
frontend:
n_pods: 2
ingress: contour_loadbalancer
services:
- service_type: ClusterIP
ports:

- service_port: 6443
target_port: 6443
protocol: TCP

middleware:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 80
target_port: 80
protocol: TCP

backend:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 3306
target_port: 3306
protocol: UDP

Multi-Namespace Isolated LoadBalancer Profile

The MultiNamespacelsolatedLB.yml profile configures a three-tier webservice profile as follows:

e Frontend pods are deployed with a replica count of two (2). These frontend pods are accessed from
outside of the cluster using a LoadBalancer service.

e Middleware pods are deployed with a replica count of two (2) and an allowed address pair is
configured on both the pods. These middleware pods are accessible through the ClusterlP service
from the frontend pods.

e Backend pods are deployed with a replica count of two (2). Backend pods are accessible from
middleware pods through the ClusterlP service.

e Policies are created to allow traffic on configured ports on each tier. Isolated namespace is enabled in
this profile in addition to multiple namespace for frontend, middleware, and backend deployments.

MultiNamespacelsolatedLB.yml

multi-ns-1lb-profile:
WebService:
isolated_namespace: True
multiple_namespace: True
count: 1
frontend:
n_pods: 2
services:
- service_type: LoadBalancer
ports:

- service_port: 443
target_port: 443
protocol: TCP

- service_port: 6443
target_port: 6443
protocol: TCP

middleware:
n_pods: 2
aap: active-standby
services:
- service_type: ClusterIP
ports:

- service_port: 80
target_port: 80
protocol: TCP

backend:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 3306

target_port: 3306
protocol: UDP

Non-Isolated Nginx Ingress LoadBalancer Profile

The NonlsolatedNginxIngressLB.yml profile configures a three-tier webservice profile as follows:

e Frontend pods are deployed with a replica count of two (2). These frontend pods are accessed from
outside of the cluster using a NGINX ingress LoadBalancer service.

e Middleware pods are deployed with a replica count of two (2) and allowed address pair is configured
on both the pods. These middleware pods are accessible through the ClusterIP service from the
frontend pods.

e Backend pods are deployed with a replica count of two (2). Backend pods are accessible from
middleware pods through the ClusterlP service.

e Policies are created to allow traffic on configured ports on each tier.

NonlsolatedNginxIngressLB .yml

non-isl-nginx-ingress-1b-profile:
WebService:
isolated_namespace: False
count: 1
frontend:
ingress: nginx_loadbalancer
n_pods: 2
liveness_probe: HTTP
services:
- service_type: ClusterIP
ports:

- service_port: 80
target_port: 80
protocol: TCP

middleware:
n_pods: 2
services:
- service_type: ClusterIP
ports:

- service_port: 443
target_port: 443
protocol: TCP

backend:
n_pods: 2
is_deployment: False
liveness_probe: command
services:
- service_type: ClusterIP
ports:
- service_port: 3306
target_port: 3306
protocol: UDP

Test Environment Configuration

IN THIS SECTION

Configuration File | 36

Kubeconfig File | 37

Starting in CN2 Release 23.2, the test environment requires that the pods in the Argo cluster have
reachability to the network on which CN2 is deployed.

Configuration File

A test configuration file is a file in YAML format which describes a test execution environment.
Starting with CN2 Release 23.2:

o the test configuration file is provided either as an input parameter for Argo Workflow or read from
the ConfigMap.

e The test environment is automatically configured when the ConfigMap is updated, deploying the test
configuration file which contains parameters describing the test execution environment for
Kubernetes or OpenShift.

o CN2 cluster nodes are discovered automatically during test execution.

Kubeconfig File

The kubeconfig file data is used for authentication. The kubeconfig file is stored as a secret on the Argo
host Kubernetes cluster.

Enter the following data in the kubeconfig file:
e Server: Secret key must point to either the server IP address or host name.

e For Kubernetes setups, point to the master node IP address: server:

https://xx.xx.xx.xx: 6443

e For OpenShift setups, point to the OpenShift Container Platform API server, extension, and
server:

https://api.ocp.xxxx.com:6443

e Client certificate: Kubernetes client certificate.

Test Execution with Micro-Profiles

A micro-profile is a logical subset of tests from a standard workflow profile. Tests are executed using
micro-profile kind markers.

How these markers work:

¢ In pytest, for the SRE execute and Architect execute test suites, each test case has markers to
indicate the applicable profile to use, as well as the Kubernetes and CN2 resource kind mapping.

e The mapping profile kind marker is automatically chosen by the trigger_pytest.py script.

e Only tests that match the marker kind and profile requirements are executed. All applicable profiles
are triggered in parallel by Argo Workflow.

All profiles are triggered from Argo Workflow, then test(s) execution is decided for each of the steps
in the profile.

e [f no tests for a kind marker are found in any profile, then all tests are executed.

Figure 8: Example Pytest Markers with Applicable Profiles

@pytest.mark.globalvrouterconfig

¥ applicable pr

@pytest.mark.isolat

Inodeportprofile
@pytest.mark.isolatedlo

@pytest.mark.nonisolatednginxingresslb

adbalancerprofile

@pytest.mark.multinamespacecontouringresslb
@pytest.mark.multinamespaceisolatedlb
def test_validate_link_local_service(self, record_property, request, set_test_case_tr_properties):

Logging and Reporting

Two types of log files are created during each test run:
e Pytest session log file—One per session
o Test suite log file—One per test suite

Default file size is 50 MB. Log file rotation is supported.

CHAPTER

Test Cases

CN2 Pipelines Test Management | 40
CN2 Pipelines Test Cases | 44

CN2 Pipelines Test Case Descriptions | 53

CN2 Pipelines Test Management

SUMMARY IN THIS SECTION

This section covers the tasks that are specific to Trigger the CN2 Pipelines Test | 40
managing the test cases. Support for Queuing Test Execution | 40
Change Commit Threshold Trigger | 41
Change Test Profiles | 41

Identify CN2 Pipelines Test Trigger | 42
Access Test Results | 43

Uninstall the CN2 Pipelines | 43

Trigger the CN2 Pipelines Test

Any valid commit automatically triggers the CN2 Pipelines test. For the commit to be valid, you need to
do the following:

1. Apply the commit to the correct branch mentioned in the values.yaml.

2. Verify that Argo CD is in sync state. You can verify by logging into the Argo GUI and checking the
application status. See "Argo Log In" on page 16.

3. Verify the commit will cross the threshold trigger.

You can verify the threshold trigger setting in the configuration map named cn2-pipeline-configs.

Support for Queuing Test Execution

CN2 Pipelines creates a test workflow execution queue when a commit threshold is reached, while
previously triggered test workflows are in Running phase. As soon as a workflow is completed, the next
test workflow execution is triggered. CN2 Pipelines has a push mechanism from a test workflow to
detect the test completion.

1. Any successful commit (which gets successfully deployed by ArgoCD) triggers the CN2 test
workflow.

2. The commit should cross the threshold set in the ConfigMap cn2pipeline-configs parameter
testcase_trigger_threshold.

3. If the commit fails to apply configuration using Argo CD, that commitID will not get registered to
ConfigMap.

4. The ConfigMap has data about the commitID with timestamp, test to run based on kind, and status
of the test.

Change Commit Threshold Trigger

Use this procedure to change the commit threshold trigger.

1. To access the ConfigMap named cn2-pipeline-configs, run this command:

kubectl get cm -n argo-events cn2pipeline-configs -o yaml

Output:

apiVersion: v1

data:
argocd_check_retry: "5"
argocd_retry_interval: "120"
testcase_trigger_threshold: "0"

2. Change the testcase_trigger_threshold value for the number of commits you want to ignore. By default,
this is set to 0.

Change Test Profiles

Use this procedure to change test profiles. This mapping configuration contains the workflow template
to CN2 resource kind mapping. Only one template is selected for execution and the first map that
matches has the higher priority. An asterisk (*) in kind: ["*'] has higher priority than any other kind
matches and overrides every mapping.

1. To access the configuration map named cn2tmpl-to-kind-map, run this command:

kubectl get cm -n argo-events cn2tmpl-to-kind-map -o yaml

Output:

kind: ConfigMap
apiVersion: vi
metadata:
name: cn2tmpl-to-kind-map
namespace: argo-events
data:
kindmap: |
- workflow: it-cloud-arch
kind: ['virtualRouter', 'subnet']
- workflow: it-cloud
kind: ['*']
- workflow: it-cloud-arch-sre
kind: ['namespace']
- workflow: custom-cnf-sample-test
kind: ['namespace']

CN2 Pipelines will trigger the test where the kind:['*'] value exists. By default, the profile it-cloud is
triggered.

2. To trigger another profile, change profile kind to kind:['*'].

NOTE: Only one workflow can have an asterisk (*) as the kind: value.

Identify CN2 Pipelines Test Trigger

After installing CN2 Pipelines, every valid commit in a given branch and folder will trigger the CN2 test.
There is a commit processing workflow triggered after every commit that starts from the resource
asterisk (*), for example where the kind:['*'] value exists. This processes the commit and validates the
commit against the threshold value and Argo CD synchronize.

e The commit processing workflow looks like this:

resource-workflow-5547v-3345460271 0/2 Completed 0 11h

e The actual test workflow starts from CN2 and looks like this:

cn2-test-workflow-zfhtf-4049010958 0/2 Completed 0 13h

Access Test Results

You can access the test results in HTML format from the GUI.

o To access test results, enter the following in your browser:

https://<management_api_ip>:30552

Uninstall the CN2 Pipelines

Use this procedure to uninstall and delete the CN2 Pipelines.

e To uninstall CN2 Pipelines, run this command:

helm uninstall cn2-pipeline

Output:

kubectl patch -n argo-events eventsource/gitlab -p '{"metadata":{"finalizers":[]}}' --type=merge
kubectl patch -n argo-events sensor/gitlab -p '{"metadata":{"finalizers":[1}}' --type=merge
kubectl patch -n argo-events eventbus/default -p '{"metadata":{"finalizers":[1}}' --type=merge
kubectl patch -n argocd applications.argoproj.io/cn2networkconfig -p '{"metadata":{"finalizers":

[1}}' --type=merge

CN2 Pipelines Test Cases

The following table lists the test suites in the profiles, the associated test cases, and object markers.

Each test case has markers to indicate which object test is applicable.

Table 2: CN2 Pipelines Tests

Profile

IsolatedNodePortProfile

Test Suite

architect1_onboard_srel

srel_onboard

srel_execute

srel_execute

srel_execute

srel_execute

Test Case Steps

Test Case

create_namespaces

onboard_services

modify_liveness_probe

update_cluster_ip_service

update_nodeport_service

update_ingress_network_policy

Object Markers

pytest.

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.

pytest.

pytest

pytest.
pytest.

mark.

mark.

mark.

mark

mark.

mark.

mark.

mark.
.mark.

mark.

mark

virtualmachineinterfac

pod
deployment

.floatingip

service

floatingip

service

floatingip
applicationpolicyset

service

.networkpolicy

Table 2: CN2 Pipelines Tests (Continued)

Profile

srel_execute

srel_execute

srel_execute

architect1_execute_srel

srel_teardown

architect1_teardown_srel

IsolatedLoadbalancerProfile

Test Suite

architect1_onboard_sre2

sre2_onboard

sre2_execute

Test Case Steps

update_egress_network_policy

update_network_policy_policy_typ
es

update_ingress_service

validate_link_local_service

teardown_services

teardown_namespaces

Test Case

create_namespaces

onboard_services

update_cluster_ip_service

Object Markers

pytest.
pytest.

pytest

pytest.

pytest.
pytest.
pytest.
pytest.

pytest.
pytest.

pytest.

mark.

mark.

.mark.

mark.

mark.
mark.
mark.

mark.

mark.
mark.

mark.

floatingip
applicationpolicyset
service

networkpolicy

floatingip
applicationpolicyset
service

networkpolicy

floatingip

service

globalvrouterconfig

pytest.mark.floatingip

pytest.mark.service

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps Object Markers

sre2_execute update_service_type
pytest.mark.floatingip

pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy

sre2_execute update_ingress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre2_execute update_egress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre2_execute update_network_policy_policy_typ
es pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre2_execute update_loadbalancer_service_gener
al_properties pytest.mark.floatingip
pytest.mark.service
pytest.mark.mx_required
sre2_execute validate_allowed_address_pair_failo
ver pytest.mark.virtualnetwork

pytest.mark.virtualmachineinterfac

pytest.mark.pod
pytest.mark.deployment

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps

sre2_execute validate_allowed_address_pair_upd
ate

sre2_execute update_Ib_service_static_public_vn

sre2_execute update_label_of_public_network

architect1_execute_sre2 validate_link_local_service

sre2_teardown teardown_services

architect1_teardown_sre2 teardown_namespaces

NonlsolatedNginxIngressLB

Object Markers

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.
pytest.
pytest
pytest.

pytest.
pytest.

pytest.
pytest.
pytest.
pytest.
pytest.

pytest.

mark.

mark.

mark.

mark.

mark.
mark.

mark.
mark.
mark

.mark.

mark.

mark.

mark.

mark
mark.
mark.
mark.

mark.

mark.

virtualnetwork

virtualmachineinterfac

pod
deployment

virtualnetwork
virtualmachineinterfac

floatingip
pod

.deployment

service

mx_required

virtualnetwork

virtualmachineinterfac

.floatingip

service
pod
deployment

mx_required

globalvrouterconfig

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps Object Markers
Test Suite Test Case

architect2_onboard_sre3 create_namespaces

sre3_onboard onboard_services

sre3_execute modify_liveness_probe

pytest.mark.virtualmachineinterfac

pytest.mark.pod
pytest.mark.deployment

sre3_execute update_cluster_ip_service
pytest.mark.floatingip
pytest.mark.service
sre3_execute update_ingress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre3_execute update_egress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre3_execute update_network_policy_policy_typ
es pytest.mark.floatingip

pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps Object Markers

sre3_execute update_ingress_service
pytest.mark.floatingip

pytest.mark.service

sre3_execute update_label_of_pods
pytest.mark.applicationpolicyset
pytest.mark.virtualmachineinterfac
e
pytest.mark.pod
pytest.mark.deployment
pytest.mark.networkpolicy
architect2_execute_sre3 validate_link_local_service
pytest.mark.globalvrouterconfig
sre3_teardown teardown_services
architect2_teardown_sre3 teardown_namespaces

MultiNamespaceContourlngressLB

Test Suite Test Case
sre4_onboard onboard_services
sre4_execute update_cluster_ip_service
pytest.mark.floatingip
pytest.mark.service
sre4_execute update_ingress_network_policy

pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy

Table 2: CN2 Pipelines Tests (Continued)

Profile

sre4_execute

sred_execute

architect2_execute_sre4

architect2_execute_sre4

architect2_execute_sre4

architect2_execute_sre4

architect2_execute_sre4

architect2_onboard_sre4

sre4_teardown

architect2_teardown_sre4

Test Case Steps

update_egress_network_policy

update_network_policy_policy_typ
es

validate_link_local_service

update_namespace_label

validate_mesh_virtual_network_rou
ter

validate_hub_spoke_virtual_networ
k_router

update_forwarding_mode_on_name
space

create_namespaces

teardown_services

teardown_namespaces

Object Markers

pytest.
pytest.

pytest

pytest.

pytest.
pytest.
pytest.
pytest.

pytest.

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.

pytest.

mark.

mark

.mark.
mark.

mark.
mark.
mark.

mark.

mark

mark.

mark.

mark.
mark.

mark.

mark.

mark.

floatingip

.applicationpolicyset

service

networkpolicy

floatingip
applicationpolicyset
service

networkpolicy

.globalvrouterconfig

virtualnetworkrouter

namespace

virtualnetworkrouter

mx_required

virtualnetworkrouter

mx_required

virtualnetworkrouter

Table 2: CN2 Pipelines Tests (Continued)

Profile

MultiNamespacelsolatedLB

Test Suite

architect2_onboard_sre5

sre5_onboard

architect2_execute, 1, sre5

architect2_execute_sre5

architect2_execute_sre5

architect2_execute_sre5

architect2_execute_sre5

architect2_execute_sre5

sre5_execute

Test Case Steps

Test Case

create_namespaces

onboard_services

validate_link_local_service

update_namespace_label

validate_mesh_virtual_network_rou
ter

validate_hub_spoke_virtual_networ
k_router

update_forwarding_mode_on_name
space

update_fabric_forwarding_on_exter
nal_vn

update_cluster_ip_service

Object Markers

pytest.

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.

pytest.

pytest.
pytest.

pytest.
pytest.

mark

mark.

mark.

mark.
mark.

mark.

mark.

mark.

mark.
mark.

mark.

mark.

.globalvrouterconfig

virtualnetworkrouter

namespace

virtualnetworkrouter

mx_required

virtualnetworkrouter

mx_required

virtualnetworkrouter

virtualnetwork

mx_required

floatingip

service

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps Object Markers

sre5_execute update_service_type
pytest.mark.floatingip

pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy

sre5_execute update_ingress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre5_execute update_egress_network_policy
pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre5_execute update_network_policy_policy_typ
es pytest.mark.floatingip
pytest.mark.applicationpolicyset
pytest.mark.service
pytest.mark.networkpolicy
sre5_execute update_loadbalancer_service_gener
al_properties pytest.mark.floatingip
pytest.mark.service
pytest.mark.mx_required
sre5_execute validate_allowed_address_pair_failo
ver pytest.mark.virtualnetwork

pytest.mark.virtualmachineinterfac

pytest.mark.pod
pytest.mark.deployment

Table 2: CN2 Pipelines Tests (Continued)

Profile Test Case Steps

sre5_execute validate_allowed_address_pair_upd
ate

architect2_execute_sre5 update_Ib_service_static_public_vn

sre5_teardown teardown_services

architect2_teardown_sre5 teardown_namespaces

Object Markers

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.

pytest.
pytest.
pytest.

pytest

pytest.

CN2 Pipelines Test Case Descriptions

mark.

mark.

mark.

mark.

mark.
mark.

mark.
mark.

mark

.mark.

mark.

virtualnetwork

virtualmachineinterfac

pod
deployment

virtualnetwork
virtualmachineinterfac

floatingip
pod

.deployment

service

mx_required

SUMMARY IN THIS SECTION

This section provides the complete list of solution Architect Onboard | 54
test cases with descriptions of what each test case is Architect Execute | 54
performing.

Architect Teardown | 55

SRE Onboard | 55

SRE Execute | 56
SRE teardown | 58

For more details about the test operations in a customer environment, see "CN2 Pipelines Solution Test
Architecture and Design" on page 27.

Architect Onboard

Architect onboard is a Day 1 operation and includes the following test case.

test_create_namespaces: : all profiles

For each profile, this test creates a webservice instance and all of the required namespaces.

Architect Execute

Architect execute is a Day-to-Day operation and includes the following test cases.

test_validate_link_local_service

This test updates the GlobalVrouterConfig (GVC) with the localhost service, other multiple services, and
one service with multiple fabric IP addresses. This test validates the link local service. When test is
complete, original link local service set is restored.

test_validate_mesh_virtual_network_router

This test removes all imports from all virtual network routers (VNR)s, so that routes are not advertised.
Then all the other VNRs are added to each other's VNRs. This creates a mesh of all three layers—
frontend, middleware, and backend. The test updates the NetworkPolicy, VNR type, and VN label
selector. When test is complete, reset the VNRs as specified by the profile.

test_update_namespace_label

This test updates namespace label from name=ns1 to name=ns2. The corresponding VirtualNetworkRouter
objects and namespaceSelector are updated. When test is complete, original settings are restored.

test_validate_hub_spoke_virtual_network_router
This test converts middleware layer to a hub VNR. Also, converts frontend and backend layers to spoke

VNRs. Next the test validates updates to the hub VNR, backend VNR, meta label, and import
statements. When test is complete, the configurations are reset to the baseline profile defined.

test_update_forwarding_mode_on_namespace

This test validates forwarding mode on namespace by setting forwarding mode to ip-fabric and fabric-
snat. When test is complete, forwarding mode is reset to original mode.

test_update_fabric_forwarding_on_external_vn

This test enables fabric forwarding on the external virtual network (VN). When fabric forwarding is
validated, fabric forwarding is reset on the original external VN.

Architect Teardown

Architect teardown is a maintenance and workload decommissioning operation. Includes the following
test case.

test_teardown_namespaces: all profiles

This test tears down the namespaces for each profile in the use case profiles.

SRE Onboard

Site Reliability Engineering (SRE) onboard is a Day 1 operation and includes the following test case.

test_onboard_services: all profiles

For each profile in the use case profiles, create a number of instances and sets up deployment, services,
and traffic generator for each instance. This test validates onboarding services for all profiles.

SRE Execute

Site Reliability Engineering (SRE) execute is a Day-to-Day operation and includes the following test
cases.

test_modify_liveness_probe

This test validates the HTTP liveness probe failure and Exec liveness probe failure.

test_update_cluster_ip_service

This test creates new middleware pods as a replica of existing ones. The Selector and NetworkPolicy are
updated with additional ports. Target port, service port, and service mappings are updated and tested.
The ClusterlP service is validated for updates. When test is complete, the newly created set of
middleware pods are deleted and the ClusterlP selector is reset.

test_update_nodeport_service

This test creates new frontend pods as a replica of existing ones. The Selector and NetworkPolicy are
updated with additional ports. Target port, service port, and service mappings are updated and tested.
The NodePort service is validated for updates. When test is complete, the newly created set of
middleware pods are deleted and the NodePort selector is reset.

test_update_service_type

Update service type from LoadBalancer to NodePort. This test validates updating the service type. When test
is complete, service type is reset back to LoadBalancer.

test_update_ingress_network_policy

This test changes the NetworkPolicy ingress rules from match on podLabel to match on
namespacelabel. All traffic is denied, then allowed. A new NetworkPolicy is added with an exception
rule, such as exception for specific IP address. Rule includes three filters—namespaceSelector,
podSelector, and AddressBlock. This test validates updating the ingress network policy. When test is
complete, rules are reset to the rules specified by the profile.

test_update_egress_network_policy

This test changes the NetworkPolicy egress rules from match on ip_block to match on namespacelLabel. All
traffic is denied, then allowed. A new NetworkPolicy is added with an exception rule, such as an
exception for a specific IP address. The rule includes three filters—namespaceSelector, podSelector, and

AddressBlock. The test validates updating the egress network policy. When test is complete, rules are
reset to the rules specified by the profile.

test_update_network_policy_policy_types

This test modifies PolicyTypes to deny all incoming, deny all outgoing, then deny both incoming and
outgoing traffic. This test validates updating the network policy PolicyTypes. When test is complete,
rules are reset to the rules specified by the profile.

test_update_loadbalancer_service_general_properties

This test creates new frontend pods as a replica of existing ones. The Selector is updated with new
labels and the NetworkPolicy is updated with additional ports. Target port, service port, session affinity,
external policy, service mappings are updated for testing. When the test of updates to the load balancer
general properties is complete, the newly created set of frontend pods are deleted and Selectors are
reset to previously existing labels as a test case teardown.

test_validate_allowed_address_pair_failover

This test triggers Virtual Router Redundancy Protocol (VRRP) master switchover. The test configures
Allowed Address Pairs (AAP) mode as active-active. This test validates allowed address pair failover.
When complete, AAP and VRRP are reset to original settings.

test_validate_allowed_address_pair_update

This test updates AAP IP from xto yand updates AAP IP to have multiple addresses. This test validates
allowed address pair updates.

test_update_lb_service_static_public_vn

This test creates a VN (new-public-vn) under the service namespace with a custom public RT1 assigned.
Also, configures Juniper Networks® MX Series 5G Universal Routing Platform (MX) with routing
instance and route targets with the same VN properties. A new LoadBalancer service is created and
updated with the ExternallP (both IPv4 and IPvé). This test then validates traffic, validates service, and
validates updating the namespace annotation. When test is complete, the namespace annotations are
reset to the original value. All services created during the test are deleted.

test_update_ingress_service

This test creates an additional service for the frontend pods, then updates the service selector label of
ingress backend from old service to a new service. Multiple service paths are included in the ingress

specification. After the test validates the update to the ingress service, the newly created ingress service
is deleted. The original ingress service is restored.

test_update_label_of_public_network
This test updates the custom public networks label from local==public-test to local==unselect-public-vn.
Existing service should not be affected. Next the test creates a new LoadBalancer service and resets the

label to local==public-test. The new LoadBalancer service gets a public IP address and is accessible from
the Internet endpoint. This tests updating the public networks label and the new service is deleted.

test_update_label_of_pods
This test updates the pod label, corresponding service, and NetworkPolicy selectors. After the test is

complete, the pod label, corresponding service, and NetworkPolicy selectors are reset to original
settings.

SRE teardown

Site Reliability Engineering (SRE) teardown is a maintenance and workload decommissioning operation.
This phase tears down and deletes the SRE objects created during the onboard phase.

test_teardown_services

This test deletes SRE objects created during the SRE onboard phase.

	Table of Contents
	About This Guide
	Install and Manage
	CN2 Pipelines
	CN2 Pipelines Overview
	CN2 Configuration
	CN2 and GitOps
	Prerequisites
	CN2 Pipelines Installation and Setup

	Before You Install CN2 Pipelines
	Install Helm
	Verify Kubeconfig
	CN2 Cluster Configuration
	Create a Personal Access Token for GitLab
	Mountpath and Profiles
	Create a Sample ConfigMap in Git Server Folder
	Update /etc/hosts for an OpenShift Deployment

	Install CN2 Pipelines
	Download CN2 Pipelines
	Install the CN2 Pipelines Helm Chart
	Verify the CN2 Pipelines Helm Chart Installation
	Argo CD and Helm Configuration
	Argo Log In
	CN2 and Workflows
	CN2 Pipelines Service
	CN2 Pipelines Configurations
	Create Custom Workflows for the CN2 Pipelines

	Explanation of values.yaml

	Architecture and Design
	CN2 Pipelines Solution Test Architecture and Design
	Overview
	Use Case
	Test Workflows
	Profiles
	Test Environment Configuration
	Test Execution with Micro-Profiles
	Logging and Reporting

	Test Cases
	CN2 Pipelines Test Management
	Trigger the CN2 Pipelines Test
	Support for Queuing Test Execution
	Change Commit Threshold Trigger
	Change Test Profiles
	Identify CN2 Pipelines Test Trigger
	Access Test Results
	Uninstall the CN2 Pipelines

	CN2 Pipelines Test Cases
	CN2 Pipelines Test Case Descriptions
	Architect Onboard
	Architect Execute
	Architect Teardown
	SRE Onboard
	SRE Execute
	SRE teardown

