
Contrail® Networking

Contrail Networking Installation and
Upgrade Guide

Published

2023-09-26

RELEASE

1912

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail® Networking Contrail Networking Installation and Upgrade Guide
1912
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | ix

1 Installing and Upgrading Contrail

Understanding Contrail | 2

Understanding Contrail Networking | 2

Understanding Contrail Networking Components | 4

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding contrail-ansible-deployer used in Contrail Command | 7

Supported Platforms and Server Requirements | 16

Server Requirements and Supported Platforms | 16

Contrail Command | 18

Installing Contrail Command | 18

Requirements | 19

Overview | 20

Installation | 20

Sample command_servers.yml Files | 23

Installing a Contrail Cluster Using Contrail Command | 29

Requirements | 29

Overview | 30

Configuration | 31

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Importing Contrail Cluster Data using Contrail Command | 47

Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command | 53

Installing Contrail | 58

Installing Contrail with OpenStack and Kolla Ansible | 58

Adding a New Compute Node to Existing Contrail Cluster | 71

iii

Using Contrail with AppFormix | 76

Contrail and AppFormix Deployment Requirements | 76

Installing AppFormix and AppFormix Flows using Contrail Command | 77

Using Contrail with Kubernetes | 85

Installing and Managing Contrail Microservices Architecture Using Helm Charts | 85

Provisioning of Kubernetes Clusters | 89

Provisioning of a Standalone Kubernetes Cluster | 89

Provisioning of Nested Contrail Kubernetes Clusters | 90

Configure network connectivity to Contrail configuration and data plane functions. | 91

Generate a single yaml file to create a Contrail-k8s cluster | 93

Instantiate the Contrail-k8s cluster | 94

Provisioning of Non-Nested Contrail Kubernetes Clusters | 94

Installing Standalone Kubernetes Contrail Cluster using the Contrail Command UI | 96

Requirements | 96

Overview | 97

Configuration | 97

Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability | 103

Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata | 114

Accessing a Contrail OpenStack Helm Cluster | 118

Frequently Asked Questions About Contrail and Helm Charts | 121

Installing Contrail Networking for Kubernetes using Helm | 126

Verifying Configuration for CNI for Kubernetes | 132

View Pod Name and IP Address | 132

Verify Reachability of Pods | 132

Verify If Isolated Namespace-Pods Are Not Reachable | 133

Verify If Non-Isolated Namespace-Pods Are Reachable | 133

Verify If a Namespace is Isolated | 134

Using Contrail with Mesos | 136

Understanding Contrail with Mesos Architecture | 136

Installing Contrail with Mesos | 141

iv

Using VMware vCenter with Containerized Contrail | 144

Integrating vCenter for Contrail | 144

Prerequisites | 144

ESX Agent Manager | 145

Set Up vCenter Server | 145

Configure Contrail Parameters | 150

Install Contrail | 150

Monitor and Manage ContrailVM from ESX Agent Manager | 150

Configuring Underlay Network for ContrailVM | 152

Standard Switch Setup | 153

Distributed Switch Setup | 154

PCI Pass-Through Setup | 156

SR-IOV Setup | 159

Installing and Provisioning Contrail VMware vRealize Orchestrator Plugin | 163

Accessing vRO Control Center | 164

Installing vRO Plugin | 167

Accessing vRO Desktop Client | 169

Connecting to vRO using the Desktop Client | 169

Connecting to Contrail Controller | 170

Deploying Contrail vRO Plugin | 173

Using Contrail with Red Hat OpenStack | 174

Understanding Red Hat OpenStack Platform Director | 174

Red Hat OpenStack Platform Director | 174

Contrail Roles | 175

Undercloud Requirements | 176

Overcloud Requirements | 176

Networking Requirements | 177

Compatibility Matrix | 178

Installation Summary | 179

Setting Up the Infrastructure | 179

Target Configuration (Example) | 179

Configure the External Physical Switch | 181

Configure KVM Hosts | 182

v

Create the Overcloud VM Definitions on the Overcloud KVM Hosts | 184

Create the Undercloud VM Definition on the Undercloud KVM Host | 186

Setting Up the Undercloud | 188

Install the Undercloud | 188

Perform Post-Install Configuration | 190

Setting Up the Overcloud | 191

Configuring the Overcloud | 191

Customizing the Contrail Service with Templates (contrail-services.yaml) | 198

Customizing the Contrail Network with Templates | 199

Overview | 199

Roles Configuration (roles_data_contrail_aio.yaml) | 200

Network Parameter Configuration (contrail-net.yaml) | 203

Network Interface Configuration (*-NIC-*.yaml) | 204

Advanced vRouter Kernel Mode Configuration | 215

Advanced vRouter DPDK Mode Configuration | 217

Advanced vRouter SRIOV + Kernel Mode Configuration | 220

Advanced vRouter SRIOV + DPDK Mode Configuration | 223

Advanced Scenarios | 226

Installing Overcloud | 235

Using Netronome SmartNIC vRouter with Contrail Networking | 236

Using Contrail with Red Hat OpenShift | 240

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer | 240

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer | 251

Using Contrail with Juju Charms | 266

Installing Contrail with OpenStack by Using Juju Charms | 266

Preparing to Deploy Contrail by Using Juju Charms | 267

Deploying Contrail Charms | 269

Deploying Contrail Charms in a Bundle | 269

Deploying Juju Charms with OpenStack Manually | 276

Options for Juju Charms | 281

Installing Contrail with Kubernetes by Using Juju Charms | 288

vi

Understanding Juju Charms with Kubernetes | 288

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms | 289

Deploying Contrail Charms with Kubernetes | 291

Deploying Contrail Charms in a Bundle | 291

Deploying Juju Charms with Kubernetes Manually | 297

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms | 301

Using Contrail and AppFormix with Kolla/Ocata OpenStack | 306

Contrail, AppFormix, and OpenStack Kolla/Ocata Deployment Requirements | 306

Preparing for the Installation | 307

Run the Playbooks | 311

Accessing Contrail in AppFormix Management Infrastructure in UI | 312

Notes and Caveats | 312

Example Instances.yml for Contrail and AppFormix OpenStack Deployment | 313

Installing AppFormix for OpenStack | 317

Install AppFormix for OpenStack in HA | 322

Upgrading Contrail Software | 327

Upgrading Contrail Command using Backup Restore Procedure | 327

Upgrading Contrail Networking using Contrail Command UI | 328

Upgrading Contrail Networking using contrail-ansible Deployer | 331

Upgrading Contrail Networking using In-Place Upgrade Procedure | 332

Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red
Hat Openstack | 334

Prerequisites | 334

Before You Begin | 334

Updating Contrail Networking in an Environment using Red Hat Openstack | 335

Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU | 341

When to Use This Procedure | 342

Before you begin | 342

Procedure | 343

vii

Troubleshoot | 352

Failed upgrade run command for OpenStack controller | 352

Failed upgrade run command for any overcloud node | 353

How to Upgrade From Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking
Release 1912.L1 or 1912.L2 with RHOSP13 | 355

When to Use This Procedure | 356

Before You Begin | 356

Upgrading Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking Release
1912.L1 or 1912.L2 with RHOSP13 | 357

How to Upgrade From Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail
Networking Release 1907 with RHOSP13 | 365

When to Use This Procedure | 366

Before You Begin | 366

Upgrading Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking
Release 1907 with RHOSP13 | 367

Upgrading Contrail Networking using the Ansible Deployer In-Service Software Upgrade Procedure
in OpenStack Environments | 374

Backup and Restore Contrail Software | 386

How to Backup and Restore Contrail Databases in JSON Format | 386

Post Installation Tasks | 409

Configuring Role and Resource-Based Access Control | 409

Configuring Role-Based Access Control for Analytics | 418

Configuring the Control Node with BGP | 419

Configuring the Control Node from Contrail Web UI | 420

Configuring the Control Node with BGP from Contrail Command | 425

Configuring MD5 Authentication for BGP Sessions | 429

Configuring Transport Layer Security-Based XMPP in Contrail | 431

Configuring Graceful Restart and Long-lived Graceful Restart | 434

viii

About This Guide

Use this guide to install and upgrade Contrail Networking solution. This guide covers various installation
scenarios including:

• Contrail Command.

• Contrail with AppFormix.

• Contrail with Kubernetes.

• Contrail with Mesos.

• Contrail with VMware vCenter.

• Contrail with Red Hat.

• Contrail and AppFormix with Kolla/Ocata OpenStack.

• Contrail with Juju Charms.

Contrail Networking product documentation is organized into multiple guides as shown in Table 1 on
page ix, according to the task you want to perform or the deployment scenario.

Table 1: Contrail Networking Guides

Guide Name Description

Contrail Networking Installation
and Upgrade Guide

Provides step-by-step instructions to install and bring up Contrail and its
various components.

Contrail Networking
Deployment Guide

Provides information about the next steps to be taken after a successful
installation of Contrail.

Contrail Networking Fabric
Lifecycle Management Guide

Provides information about Contrail underlay management and data center
automation.

Contrail Networking and
Security User Guide

Provides information about creating and orchestrating highly secure virtual
networks.

ix

https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-install-and-upgrade-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-install-and-upgrade-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-deployment-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-deployment-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-networking-security-user-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-networking-security-user-guide.html

Table 1: Contrail Networking Guides (Continued)

Guide Name Description

Contrail Networking Service
Provider Focused Features
Guide

Provides information about the features that are used by service providers.

Contrail Networking Analytics
and Troubleshooting Guide

Provides information about AppFormix and Contrail analytics.

RELATED DOCUMENTATION

README Access to Contrail Networking Registry 19XX

Contrail Networking Release Notes 1912

Contrail Networking Configuration API Reference, Release 1912

Tungsten Fabric Architecture Guide

Juniper Networks TechWiki: Contrail Networking

x

https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/index.html
https://www.juniper.net/documentation/en_US/contrail19/information-products/pathway-pages/api-guide-1912/index.html
https://tungstenfabric.github.io/website/Tungsten-Fabric-Architecture.html
https://forums.juniper.net/t5/Contrail/tkb-p/Contrail

1
PART

Installing and Upgrading Contrail

Understanding Contrail | 2

Supported Platforms and Server Requirements | 16

Contrail Command | 18

Installing Contrail | 58

Using Contrail with AppFormix | 76

Using Contrail with Kubernetes | 85

Using Contrail with Mesos | 136

Using VMware vCenter with Containerized Contrail | 144

Using Contrail with Red Hat OpenStack | 174

Using Contrail with Red Hat OpenShift | 240

Using Contrail with Juju Charms | 266

Using Contrail and AppFormix with Kolla/Ocata OpenStack | 306

Upgrading Contrail Software | 327

Backup and Restore Contrail Software | 386

Post Installation Tasks | 409

CHAPTER 1

Understanding Contrail

IN THIS CHAPTER

Understanding Contrail Networking | 2

Understanding Contrail Networking Components | 4

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding contrail-ansible-deployer used in Contrail Command | 7

Understanding Contrail Networking

Contrail Networking provides dynamic end-to-end networking policy and control for any cloud, any
workload, and any deployment, from a single user interface. It translates abstract workflows into specific
policies, simplifying the orchestration of virtual overlay connectivity across all environments.

It unifies policy for network automation with seamless integrations for systems such as: Kubernetes,
OpenShift, Mesos, OpenStack, VMware, a variety of popular DevOps tools like Ansible, and a variety of
Linux operating systems with or without virtualization like KVM and Docker containers.

Contrail Networking is a fundamental building block of Contrail Enterprise Multicloud for enterprises. It
manages your data center networking devices, such as QFX Series Switches, Data Center Interconnect
(DCI) infrastructures, as well as public cloud gateways, extending the continuous connectivity from your
on-premises to private and public clouds.

Contrail Networking reduces the friction of migrating to cloud by providing a virtual networking overlay
layer that delivers virtual routing, bridging, and networking services (IPAM, NAT, security, load balancing,
VPNs, etc.) over any existing physical or cloud IP network. It also provides multitenant structure and API
compatibility with multitenant public clouds like Amazon Web Services (AWS) virtual private clouds
(VPCs) for truly unifying policy semantics for hybrid cloud environments.

For service providers, Contrail Networking automates network resource provisioning and orchestration
to dynamically create highly scalable virtual networks and to chain a rich set of Juniper Networks or
third-party virtualized network functions (VNFs) and physical network functions (PNFs) to form
differentiated service chains on demand.

2

Contrail Networking is also integrated with Contrail Cloud for service providers. It enables you to run
high-performance Network Functions Virtualization (NFV) with always-on reliability so that you can
deliver innovative services with greater agility.

Contrail Networking is equipped with always-on advanced analytics capabilities to provide deep insights
into application and infrastructure performance for better visualization, easier diagnostics, rich
reporting, custom application development, and machine automation. It also supports integration with
other analytics platforms like Juniper Networks AppFormix and streaming analytics through
technologies like Apache Kafka and its API.

Contrail Networking also provides a Graphical User Interface (GUI).This GUI is built entirely using the
REST APIs.

Figure 1: Contrail Networking Architecture

3

RELATED DOCUMENTATION

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding Contrail Networking Components

Contrail Networking is comprised of the following key components:

• Contrail Networking management Web GUI and plug-ins integrate with orchestration platforms such
as Kubernetes, OpenShift, Mesos, OpenStack, VMware vSphere, and with service provider
operations support systems/business support systems (OSS/BSS). Many of these integrations are
built, certified, and tested with technology alliances like Red Hat, Mirantis, Canonical, NEC, and more.
Contrail Networking sits under such orchestration systems and integrates northbound via published
REST APIs. It can be automatically driven through the APIs and integrations, or managed directly
using the Web GUI, called Contrail Command GUI.

• Contrail Networking control and management systems, commonly called the controller, have several
functions. Few of the major functions are:

• Configuration Nodes—This function accepts requests from the API to provision workflows like
adding new virtual networks, new endpoints, and much more. It converts these abstract high-level
requests, with optional detail, into low-level directions that map to the internal data model.

• Control Nodes—This function maintains a scalable, highly available network model and state by
federating with other peer instances of itself. It directs network provisioning for the Contrail
Networking vRouters using Extensible Messaging and Presence Protocol (XMPP). It can also
exchange network connectivity and state with peer physical routers using open industry-standard
MP-BGP which is useful for routing the overlay networks and north-south traffic through a high-
performance cloud gateway router.

• Analytics Nodes—This function collects, stores, correlates, and analyzes data across network
elements. This information, which includes statistics, logs, events, and errors, can be consumed by
end-user or network applications through the northbound REST API or Apache Kafka. Through
the Web GUI, the data can be analyzed with SQL style queries.

• Contrail Networking vRouter runs on the compute nodes of the cloud or NFV infrastructure. It gets
network tenancy, VPN, and reachability information from the control function nodes and ensures
native Layer 3 services for the Linux host on which it runs or for the containers or virtual machines of
that host. Each vRouter is connected to at least two control nodes to optimize system resiliency. The
vRouters run in one of two high performance implementations: as a Linux kernel module or as an
Intel Data Plane Development Kit (DPDK)-based process.

4

Figure 2: Contrail Networking Overview

RELATED DOCUMENTATION

Understanding Contrail Networking | 2

Understanding Contrail Containers

IN THIS SECTION

Contrail Containers | 6

Some subsystems of Contrail Networking solution are delivered as Docker containers.

5

Contrail Containers

The following are key features of the new architecture of Contrail containers:

• All of the Contrail containers are multiprocess Docker containers.

• Each container has an INI-based configuration file that has the configurations for all of the
applications running in that container.

• Each container is self-contained, with minimal external orchestration needs.

• A single tool, Ansible, is used for all levels of building, deploying, and provisioning the containers. The
Ansible code for the Contrail system is named contrail-ansible and kept in a separate repository. The
Contrail Ansible code is responsible for all aspects of Contrail container build, deployment, and basic
container orchestration.

Understanding Contrail Microservices Architecture

IN THIS SECTION

What is Contrail Microservices Architecture? | 6

Installing Contrail with Microservices Architecture | 7

What is Contrail Microservices Architecture?

Employing microservices provides a number of benefits which includes:

• Deploying patches without updating the entire Contrail deployment.

• Better ways to manage the lifecycles of containers.

• Improved user experiences with Contrail provisioning and upgrading.

• Provisioning with minimum information provided.

• Configuring every feature.

• Simplify application complexity by implementing small, independent processes.

6

The containers and their processes are grouped as services and microservices, and are similar to pods in
the Kubernetes open-source software used to manage containers on a server cluster.

Figure 3 on page 7 shows how the Contrail containers and microservices are grouped into a pod
structure upon installation.

Figure 3: Contrail Containers, Pods, and Microservices

Installing Contrail with Microservices Architecture

These procedures help you to install and manage Contrail with microservices architecture. Refer to the
following topics for installation for the operating system appropriate for your system:

• "Understanding contrail-ansible-deployer used in Contrail Command" on page 7

• "Installing and Managing Contrail Microservices Architecture Using Helm Charts" on page 85

Understanding contrail-ansible-deployer used in Contrail Command

IN THIS SECTION

What is the contrail-ansible-deployer? | 8

Preparing to Install with Contrail Command | 9

Supported Providers | 9

7

Configure a Yaml File for Your Environment | 9

Installing a Contrail System | 15

This topic provides an overview of contrail-ansible-deployer used by Contrail Command tool. It is used for
installing Contrail Networking with microservices architecture.

To understand Contrail microservices, refer to "Understanding Contrail Microservices Architecture" on
page 6. For step by step procedure on how to install Contrail using Contrail Command deployer, refer to
"Installing Contrail Cluster using Contrail Command and instances.yml" on page 42.

What is the contrail-ansible-deployer?

The contrail-ansible-deployer is a set of Ansible playbooks designed to deploy Contrail Networking with
microservices architecture.

The contrail-ansible-deployer contains three plays:

playbooks/provision_instances.yml

This play provisions the operating system instances for hosting the containers. It supports the following
infrastructure providers:

• kvm.

• gce.

• aws.

playbooks/configure_instances.yml

This play configures the provisioned instances. The playbook installs software and configures the
operating system to meet the required prerequisite standards. This is applicable to all providers.

playbooks/install_contrail.yml

This play pulls, configures, and starts the Contrail containers.

8

Preparing to Install with Contrail Command

This section helps you prepare your system before installing Contrail Networking using contrail-command-
deployer.

Prerequisites

Make sure your system meets the following requirements before running contrail-command-deployer.

• CentOS 7.6—Linux Kernel Version 3.10.0-957.12.1

• Ansible 2.4.2.0.

• Name resolution is operational for long and short host names of the cluster nodes, through either
DNS or the host file.

• Docker engine (tested version is 18.06.0-ce).

• The docker-compose installed (tested version is 1.17.0).

• The docker-compose Python library (tested version is 1.9.0).

• If using Kubernetes (k8s), the tested version is 1.12

• For high availability (HA), the time must be in sync between the cluster nodes.

• The time must be synchronized between the cluster nodes using Network Time Protocol (ntp).

Supported Providers

The playbooks support installing Contrail Networking on the following providers:

• bms—bare metal server.

• kvm—kernel-based virtual machine (KVM)-hosted virtual machines.

• gce—Google compute engine (GCE)-hosted virtual machines.

• aws—Amazon Web Services (AWS)-hosted virtual machines.

Configure a Yaml File for Your Environment

The configuration for all three plays is contained in a single file, config/instances.yaml.

The configuration has multiple main sections, including:

9

The main sections of the config/instances.yaml file are described in this section. Using the sections that are
appropriate for your system, configure each with parameters specific to your environment.

Provider Configuration

The section provider_config configures provider-specific settings.

KVM Provider Example

Use this example if you are in a kernel-based virtual machine (kvm) hosted environment.

NOTE: Passwords are provided in this output for illustrative purposes only. We suggest using
unique passwords in accordance with your organization’s security guidelines in your
environment.

provider_config: # the provider section contains all provider
relevant configuration
 kvm: # Mandatory.
 image: CentOS-7-x86_64-GenericCloud-1710.qcow2.xz # Mandatory for provision play. Image
to be deployed.
 image_url: https://cloud.centos.org/centos/7/images/ # Mandatory for provision play. Path/
url to image.
 ssh_pwd: contrail123 # Mandatory for provision/
configuration/install play. Ssh password set/used.
 ssh_user: centos # Mandatory for provision/
configuration/install play. Ssh user set/used.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional for provision/configuration/
install play.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional for provision/configuration/
install play.
 vcpu: 12 # Mandatory for provision play.
 vram: 64000 # Mandatory for provision play.
 vdisk: 100G # Mandatory for provision play.
 subnet_prefix: ip-address # Mandatory for provision play.
 subnet_netmask: subnet-mask # Mandatory for provision play.
 gateway: gateway-ip-address # Mandatory for provision play.
 nameserver: dns-ip-address # Mandatory for provision play.
 ntpserver: ntp-server-ip-address # Mandatory for provision/

10

configuration play.
 domainsuffix: local # Mandatory for provision play.

BMS Provider Example

Use this example if you are in a bare metal server (bms) environment.

NOTE: Passwords are provided in this output for illustrative purposes only. We suggest using
unique passwords in accordance with your organization’s security guidelines in your
environment.

provider_config:
 bms: # Mandatory.
 ssh_pwd: contrail123 # Optional. Not needed if ssh keys are used.
 ssh_user: centos # Mandatory.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional. Not needed if ssh password is used.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional. Not needed if ssh password is used.
 ntpserver: ntp-server-ip-address # Optional. Needed if ntp server
should be configured.
 domainsuffix: local # Optional. Needed if configuration play
should configure /etc/hosts

CAUTION: SSH Host Identity Keys must be accepted or installed on the Deployer node
before proceeding with Contrail installation.

To do so:

• Make SSH connection to each target machine from the Deployer VM using Deployer
user credentials and click Yes to accept the SSH Host Key.

or

• Set the environmental variable ANSIBLE_HOST_KEY_CHECKING value to False.

ANSIBLE_HOST_KEY_CHECKING=false

or

11

• Set [defaults] host_key_checking value to False in ansible.cfg file.

[defaults] host_key_checking=false

AWS Provider Example

Use this example if you are in an Amazon Web Services (AWS) environment.

provider_config:
 aws: # Mandatory.
 ec2_access_key: THIS_IS_YOUR_ACCESS_KEY # Mandatory.
 ec2_secret_key: THIS_IS_YOUR_SECRET_KEY # Mandatory.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional.
 ssh_user: centos # Mandatory.
 instance_type: t2.xlarge # Mandatory.
 image: ami-337be65c # Mandatory.
 region: eu-central-1 # Mandatory.
 security_group: SECURITY_GROUP_ID # Mandatory.
 vpc_subnet_id: VPC_SUBNET_ID # Mandatory.
 assign_public_ip: yes # Mandatory.
 volume_size: 50 # Mandatory.
 key_pair: KEYPAIR_NAME # Mandatory.

GCE Provider Example

Use this example if you are in a Google Cloud environment.

provider_config:
 gce: # Mandatory.
 service_account_email: # Mandatory. GCE service account email address.
 credentials_file: # Mandatory. Path to GCE account json file.
 project_id: # Mandatory. GCE project name.
 ssh_user: # Mandatory. Ssh user for GCE instances.
 ssh_pwd: # Optional. Ssh password used by ssh user, not needed when
public is used
 ssh_private_key: # Optional. Path to private SSH key, used by by ssh user, not
needed when ssh-agent loaded private key

12

 machine_type: n1-standard-4 # Mandatory. Default is too small
 image: centos-7 # Mandatory. For provisioning and configuration only centos-7
is currently supported.
 network: microservice-vn # Optional. Defaults to default
 subnetwork: microservice-sn # Optional. Defaults to default
 zone: us-west1-aA # Optional. Defaults to ?
 disk_size: 50 # Mandatory. Default is too small

Global Services Configuration

This section sets global service parameters. All parameters are optional.

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 REGISTRY_PRIVATE_INSECURE: True
 CONTAINER_REGISTRY_USERNAME: YourRegistryUser
 CONTAINER_REGISTRY_PASSWORD: YourRegistryPassword

Contrail Services Configuration

This section sets global Contrail service parameters. All parameters are optional.

contrail_configuration: # Contrail service configuration section
 CONTRAIL_VERSION: latest
 UPGRADE_KERNEL: true

For a complete list of parameters available for contrail_configuration.md, see Contrail Configuration
Parameters for Ansible Deployer.

Kolla Services Configuration

If OpenStack Kolla is deployed, this section defines the parameters for Kolla.

kolla_config:

13

https://github.com/Juniper/contrail-ansible-deployer/blob/master/contrail_configuration.md
https://github.com/Juniper/contrail-ansible-deployer/blob/master/contrail_configuration.md

Instances Configuration

Instances are the operating systems on which the containers will be launched. The instance
configuration has a few provider-specific knobs. The instance configuration specifies which roles are
installed on which instance. Additionally, instance-wide and role-specific Contrail and Kolla
configurations can be specified, overwriting the parameters from the global Contrail and Kolla
configuration settings.

KVM Contrail Plane Instance

The following example is a KVM-based instance only, installing Contrail control plane containers.

instances:
 kvm1:
 provider: kvm
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 kubemanager:
 k8s_master:

GCE Default All-in-One Instance

The following example is a very simple all-in-one GCE instance. It will install all Contrail roles and the
Kubernetes master and node, using the default configuration.

instances:
 gce1: # Mandatory. Instance name
 provider: gce # Mandatory. Instance runs on GCE

14

AWS Default Three Node HA Instance

The following example uses three AWS EC2 instances to deploy a three node high availability setup with
all roles and default parameters.

instances:
 aws1:
 provider: aws
 aws2:
 provider: aws
 aws3:
 provider: aws

More Examples

Refer to the following for more configuration examples for instances.

• GCE Kubernetes (k8s) HA with separate control and data plane instances

• AWS Kolla HA with separate control and data plane instances

Installing a Contrail System

To perform a full installation of a Contrail system, refer to the installation instructions in: "Installing
Contrail Cluster using Contrail Command and instances.yml" on page 42.

RELATED DOCUMENTATION

Installing Contrail Cluster using Contrail Command and instances.yml | 42

15

https://github.com/Juniper/contrail-ansible-deployer/blob/master/examples/gce1.md
https://github.com/Juniper/contrail-ansible-deployer/blob/master/examples/aws1.md

CHAPTER 2

Supported Platforms and Server Requirements

IN THIS CHAPTER

Server Requirements and Supported Platforms | 16

Server Requirements and Supported Platforms

The minimum requirement is three servers, either physical or virtual machines. All non-compute roles
can be configured in each controller node. For scalability and availability reasons, it is highly
recommended to use physical servers.

Each server must have a minimum of:

• 64 GB memory.

• 300 GB hard drive.

• 4 CPU cores.

• At least one Ethernet port.

All installation images are available at Contrail Downloads page.

The Contrail image includes the following software:

• All dependent software packages needed to support installation and operation of OpenStack and
Contrail.

• Contrail Controller software – all components.

• OpenStack release currently in use for Contrail.

All components required for installing the Contrail Controller are available for each Contrail release, for
the supported Linux operating systems and versions, and for the supported versions of OpenStack.

For a list of supported platforms for all Contrail Networking releases, see Contrail Networking Supported
Platforms List.

16

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

Access Container Tags are located at README Access to Contrail Registry 19XX.

If you need access to Contrail docker private secure registry, e-mail contrail-registry@juniper.net for
Contrail container registry credentials.

17

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

CHAPTER 3

Contrail Command

IN THIS CHAPTER

Installing Contrail Command | 18

Installing a Contrail Cluster Using Contrail Command | 29

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Importing Contrail Cluster Data using Contrail Command | 47

Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command | 53

Installing Contrail Command

IN THIS SECTION

Requirements | 19

Overview | 20

Installation | 20

Sample command_servers.yml Files | 23

Use this example to install the Contrail Command Docker container images.

Contrail Command is the GUI for Contrail Cloud and Contrail Enterprise Multicloud solutions. It
represents the single management touchpoint for the fabric underlay, the overlay networks and virtual
endpoints, and the AppFormix performance and resource monitoring application for cloud services.

Contrail Command also simplifies the configuration of OpenStack clusters and the integration of Contrail
within those clusters. By providing a workflow to facilitate integration with orchestrators, initially
providing support for OpenStack Kolla, Contrail Command makes integration a straightforward task.

18

After you integrate Contrail Command with your orchestrator, you can use Contrail Command to
perform typical tasks such as creating overlay networks, creating flavors, spinning up workloads,
attaching workloads to overlay networks, and setting up firewall permissions to control communication
paths. For these typical tasks, it is not necessary for you to use the orchestrator’s UI (e.g. OpenStack
dashboard).

In general, you can use Contrail Command to perform automated workflows such as the following:

• deploy Contrail and Kolla-based OpenStack clusters.

• monitor and manage underlay and physical devices, overlays and virtual endpoints, end to end policy
and control.

• orchestrate workloads running on bare metal servers, virtual machines, and containers.

• discover and manage the data center IP fabric.

Most workflows are intent-based, meaning that you configure the workflows using templates and
wizards where applicable.

Requirements

The system requirements for the Contrail Command server are:

• A VM or physical x86 server with:

• 4 vCPUs

• 32 GB RAM

• 100 GB disk with all user storage in the “/” partition (that is, remove the “/home” partition if it
exists, and increase the “/” partition by the amount of freed storage)

• Internet access to and from the VM or physical server, hereafter referred to as the Contrail Command
server

• Runs a version of CentOS that supports your version of Contrail Networking.

We perform regular testing of Contrail Command on CentOS 7 but Contrail Command should work
on other common versions of Linux. For a list of CentOS versions that are supported with Contrail
Networking and orchestration platform combinations, see Contrail Networking Supported Platforms
List.

You can install CentOS with updated packages using the yum update command.

• An IP interface attached to the management network. Contrail Command manages Contrail and
OpenStack clusters over this interface.

• SSH access

19

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

• Access to the hub.juniper.net registry. See README Access to Contrail Registry 19XX for more
information.

• <container_tag> See README Access to Contrail Registry 19XX for more information..

Overview

Installation

IN THIS SECTION

Procedure | 20

Contrail Command deploys as a pair of Docker containers. You install Contrail Command by
downloading and running the contrail-command-deployer image, which runs in its own container and exits
when the Contrail Command installation is complete.

Before you begin, set up a CentOS 7 server that meets the specified requirements.
For a list of supported platforms, see https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf.

Additionally, remove any installed Python Docker (docker and docker-py) libraries from the server. The
contrail-command-deployer automatically installs all necessary libraries. If you are using a freshly installed
minimal CentOS 7 server, then these Python Docker libraries do not yet exist on the server and you do
not have to take any action.

pip uninstall docker docker-py

There is no harm if you issue the above command when no Python Docker libraries are installed.

Procedure

Step-by-Step Procedure

Perform the following steps on a CentOS 7 server to configure and install Contrail Command.

20

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

1. Install and start the Docker Engine. The following set of commands adds the Docker repository and
installs and starts Docker Community Edition version 18.06 as an example.

yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce-18.06.0.ce
systemctl start docker

2. Pull the contrail-command-deployer Docker image from hub.juniper.net.

See README Access to Contrail Registry 19XX for information on how to get credentials to access
the secure hub.juniper.net registry and for the name of the container tag to use.

a. Log in to the hub.juniper.net registry.

docker login hub.juniper.net \
 --username <container_registry_username> \
 --password <container_registry_password>

b. Retrieve the contrail-command-deployer Docker image.

docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

where <container_tag> is the container tag for the Contrail Command (UI) container deployment
for the release that you want to install. See README Access to Contrail Registry 19XX to obtain
the <container_tag> for any Contrail Networking Release 19 software.

3. Create the command_servers.yml configuration file.

The command_servers.yml file contains information of the server where you plan to install Contrail
Command as well as information of the container registry and other configuration parameters.
Contrail Command runs on a single server, typically the same server where you run the contrail-
command-deployer (that is, the server used in this procedure).

When you run the contrail-command-deployer, it reads and processes the command_servers.yml file.
Examples of this file are shown in "No Link Title" on page 23 and "No Link Title" on page 24.

NOTE: If you want to deploy AppFormix, add the following two lines to the command_servers.yml
file. They must be placed outside of the “command_servers” hierarchy, either immediately after

21

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

the "---" at the very top of the file or as the last two lines at the very bottom of the file. The
following shows an example where the two lines are added at the top of the file:

user_command_volumes:
- /opt/software/appformix:/opt/software/appformix
command_servers:
 server1:
 ip:

4. Run the contrail-command-deployer container to deploy Contrail Command.

To perform a fresh installation:

docker run -td --net host -v \
 <ABSOLUTE_PATH_TO_command_servers.yml_FILE>:/command_servers.yml \
 --privileged \
 --name contrail_command_deployer \
 hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

where <ABSOLUTE_PATH_TO_command_servers.yml_FILE> is the absolute path to the
command_servers.yml file that you created in step "3" on page 21, and <container_tag> is the
container tag for the Contrail Command (UI) container deployment for the release that you want to
install.

5. (Optional) Track the progress of step "4" on page 22.

docker logs -f contrail_command_deployer

6. After the installation is complete, verify that the Contrail Command containers are running.

[root@centos254 ~]# docker ps -a
CONTAINER ID IMAGE <trimmed> STATUS <trimmed> NAMES
2e62e778aa91 hub.juniper.net/... Up <trimmed> contrail_command
c8442860e462 circleci/postgre... Up <trimmed> contrail_psql
57a666e93d1a hub.juniper.net/... Exited <trimmed> contrail_command_deployer

The contrail_command container is the GUI and the contrail_psql container is the database. Both
containers should have a STATUS of Up.

22

The contrail-command-deployer container should have a STATUS of Exited because it exits when the
installation is complete.

7. Log in to Contrail Command using https://<Contrail-Command-Server-IP-Address>:9091. Use the
username and password that you specified in the command_servers.yml file in step "3" on page 21. If
you use the sample command_servers.yml files in "Sample command_servers.yml Files" on page 23,
the username is admin and the password is contrail123.

Sample command_servers.yml Files

Minimal command_servers.yml file

The following sample file has the minimum configuration that you need when you install Contrail
Command.

Note: Passwords are provided in this output for illustrative purposes only. We suggest using unique
passwords in accordance with your organization’s security guidelines in your environment.

command_servers:
 server1:
 ip: <IP Address> # IP address of server where you want to install Contrail Command
 connection: ssh
 ssh_user: root
 ssh_pass: <contrail command server password>
 sudo_pass: <contrail command server root password>
 ntpserver: <NTP Server address>

 registry_insecure: false
 container_registry: hub.juniper.net/contrail
 container_tag: <container_tag>
 container_registry_username: <registry username>
 container_registry_password: <registry password>
 config_dir: /etc/contrail

 contrail_config:
 database:
 type: postgres
 dialect: postgres
 password: contrail123
 keystone:
 assignment:
 data:
 users:

23

 admin:
 password: contrail123
 insecure: true
 client:
 password: contrail123

Complete command_servers.yml File

The following sample file has an exhaustive list of configurations and supporting parameters that you
can use when you install Contrail Command.

Note: Passwords are provided in this output for illustrative purposes only. We suggest using unique
passwords in accordance with your organization’s security guidelines in your environment.

User defined volumes
#user_command_volumes:
- /var/tmp/contrail:/var/tmp/contrail

command_servers:
 server1:
 ip: <IP Address>
 connection: ssh
 ssh_user: root
 ssh_pass: <contrail command server password>
 sudo_pass: <contrail command server root password>
 ntpserver: <NTP Server address>

 # Specify either container_path
 #container_path: /root/contrail-command-051618.tar
 # or registry details and container_name
 registry_insecure: false
 container_registry: hub.juniper.net/contrail
 container_name: contrail-command
 container_tag: <container_tag>
 container_registry_username: <registry username>
 container_registry_password: <registry password>
 config_dir: /etc/contrail

 # contrail command container configurations given here go to /etc/contrail/contrail.yml
 contrail_config:
 # Database configuration. PostgreSQL supported
 database:

24

 type: postgres
 dialect: postgres
 host: localhost
 user: root
 password: contrail123
 name: contrail_test
 # Max Open Connections for DB Server
 max_open_conn: 100
 connection_retries: 10
 retry_period: 3s

 # Log Level
 log_level: debug

 # Cache configuration
 cache:
 enabled: true
 timeout: 10s
 max_history: 100000
 rdbms:
 enabled: true

 # Server configuration
 server:
 enabled: true
 read_timeout: 10
 write_timeout: 5
 log_api: true
 address: ":9091"

 # TLS Configuration
 tls:
 enabled: true
 key_file: /usr/share/contrail/ssl/cs-key.pem
 cert_file: /usr/share/contrail/ssl/cs-cert.pem

 # Enable GRPC or not
 enable_grpc: false

 # Static file config
 # key: URL path
 # value: file path. (absolute path recommended in production)
 static_files:

25

 /: /usr/share/contrail/public

 # API Proxy configuration
 # key: URL path
 # value: String list of backend host
 #proxy:
 # /contrail:
 # - http://localhost:8082

 notify_etcd: false

 # VNC Replication
 enable_vnc_replication: true

 # Keystone configuration
 keystone:
 local: true
 assignment:
 type: static
 data:
 domains:
 default: &default
 id: default
 name: default
 projects:
 admin: &admin
 id: admin
 name: admin
 domain: *default
 demo: &demo
 id: demo
 name: demo
 domain: *default
 users:
 admin:
 id: admin
 name: Admin
 domain: *default
 password: contrail123
 email: admin@juniper.nets
 roles:
 - id: admin
 name: admin

26

 project: *admin
 bob:
 id: bob
 name: Bob
 domain: *default
 password: bob_password
 email: bob@juniper.net
 roles:
 - id: Member
 name: Member
 project: *demo
 store:
 type: memory
 expire: 36000
 insecure: true
 authurl: https://localhost:9091/keystone/v3

 # disable authentication with no_auth true and comment out keystone configuraion.
 #no_auth: true
 insecure: true

 etcd:
 endpoints:
 - localhost:2379
 username: ""
 password: ""
 path: contrail

 watcher:
 enabled: false
 storage: json

 client:
 id: admin
 password: contrail123
 project_name: admin
 domain_id: default
 schema_root: /
 endpoint: https://localhost:9091

 compilation:
 enabled: false
 # Global configuration

27

 plugin_directory: 'etc/plugins/'
 number_of_workers: 4
 max_job_queue_len: 5
 msg_queue_lock_time: 30
 msg_index_string: 'MsgIndex'
 read_lock_string: "MsgReadLock"
 master_election: true

 # Plugin configuration
 plugin:
 handlers:
 create_handler: 'HandleCreate'
 update_handler: 'HandleUpdate'
 delete_handler: 'HandleDelete'

 agent:
 enabled: true
 backend: file
 watcher: polling
 log_level: debug

 # The following are optional parameters used to patch/cherrypick
 # revisions into the contrail-ansible-deployer sandbox. These configs
 # go into the /etc/contrail/contrail-deploy-config.tmpl file
cluster_config:
ansible_fetch_url: "https://review.opencontrail.org/Juniper/contrail-ansible-
deployer refs/changes/80/40780/20"
ansible_cherry_pick_revision: FETCH_HEAD
ansible_revision: GIT_COMMIT_HASH

RELATED DOCUMENTATION

Installing a Contrail Cluster Using Contrail Command | 29

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Importing Contrail Cluster Data using Contrail Command | 47

Installing AppFormix and AppFormix Flows using Contrail Command | 77

Upgrading Contrail Command using Backup Restore Procedure | 327

28

Installing a Contrail Cluster Using Contrail Command

IN THIS SECTION

Requirements | 29

Overview | 30

Configuration | 31

Use this example procedure to create a Contrail and OpenStack Kolla cluster using Contrail Command.
The resulting cluster consists of Contrail containers deployed alongside OpenStack Kolla containers to
provide an OpenStack installation that uses Contrail as the SDN.

Requirements

• VMs or physical x86 servers as follows:

• Contrail Controller — 8 vCPU, 64 GB memory, 300 GB storage

• OpenStack Controller — 4 vCPU , 32 GB memory, 100 GB storage

• Contrail Service Node (CSN) — 4 vCPU, 16 GB memory, 100 GB storage

• Compute nodes — Dependent on the workloads

For a list of supported platforms including software requirements, see https://www.juniper.net/
documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-
platforms.pdf.

• User storage for all servers resides in the “/” partition (that is, remove the “/home” partition if it
exists, and increase the “/” partition by the amount of freed storage).

• An IP interface on each server attached to the management network. Each server is managed by
Contrail Command over this interface. Ensure the name for this management interface is the same on
all servers.

• An IP interface on each server attached to the user data network. This is the interface that the
overlay network will be set up on. Ensure the name for this user data interface is the same on all
servers.

• SSH access

29

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

Overview

IN THIS SECTION

Topology | 30

A Contrail cluster consists of hosts that run the Contrail controller, the orchestrator (OpenStack,
VMware or Kubernetes), and the compute nodes.

Before you begin, set up servers and/or VMs that meet the specified requirements. Also ensure that the
Contrail Command server and all the hosts in the Contrail cluster have /etc/hosts entries for each other
over the management network.

Topology

Consider a sample cluster topology, with a non-HA environment of one Contrail Controller and one
OpenStack Controller, one compute node and one Contrail Service Node (CSN), as displayed in Figure 4
on page 30.

Figure 4: Sample Contrail Cluster Topology

30

Configuration

IN THIS SECTION

Procedure | 31

Procedure

Step-by-Step Procedure

The general workflow is for you to first add the servers and VMs that you want to make available for the
cluster you’re creating, and then add the cluster.

1. Log in to Contrail Command at https://<Contrail-Command-Server-IP-Address>:9091.

If you used the sample command_servers.yml files when you installed Contrail Command, then the
username is admin and the password is contrail123.

NOTE: Username and password combinations are provided in this document for illustrative
purposes only. We suggest using unique passwords in accordance with your organization’s
security guidelines in your environment.

NOTE: If no cluster exists, you are automatically placed into a wizard that guides you to set
up a cluster. The left-nav bar shows your progress. If a cluster already exists, you will need
to explicitly add a cluster. Regardless of whether you are using the wizard or not, the steps
to set up a cluster are very similar. Differences are noted in the steps below.

2. Add the login credentials of the servers and VMs that you’re making available. In this step, you are
adding the credentials to a floating list. You will explicitly associate each set of credentials to the
proper server or VM at a later step. Contrail Command uses these credentials to log in to the
servers and VMs when creating the cluster.

Step-by-Step Procedure

31

a. To see the list of credentials, navigate to Servers > Credentials. The set of credentials you
specified during Contrail Command installation (in the server1 section of the
command_servers.yml file) is automatically listed.

b. Click Create to add a new set of credentials.

Enter Name, SSH User, and SSH Password.

3. Add the servers or VMs, either one at a time or using the bulk import capability.

Navigate to Servers > Create.

• To add servers one at a time, select Express or Detailed. In this example, we select Detailed.

Enter the following information:

• Workload type - Select Physical/Virtual Node if you want the workload to run as a VM on
the server or Baremetal if you want the workload to run directly on the server.

• Hostname - Enter the hostname part of the FQDN.

• Management IP - Enter the IP address for the management interface.

• Management Interface - Enter the interface name for the management interface.

32

• Credentials - Use the drop-down list to select the correct login credentials for this server.
This is the set of credentials you added in step "2" on page 31. Contrail Command uses the
credentials you select to log in to the server.

• MAC Address (optional) - Specify the MAC address for the management interface.

• Disk Partition(s) (optional) - Specify the disk partitions you want to use.

• Network Interfaces - Click Add to add the interfaces on the server. As a minimum, add the
management and the user data interface.

NOTE: If you select the Express option, then you will need to edit the server afterwards
to add in any missing information.

• To add servers in bulk, select Bulk Import (csv).

Step-by-Step Procedure

a. Click Download to download the csv template to use. The downloaded file is a template with
sample values.

Here is a sample csv file:

Workload Type,HostName,Management IP,Disk Partition,Network Interface,MAC
address,IPMI Driver,IPMI Address,IPMI UserName,IPMI Password,Memory mb,CPU's,CPU
Arch,Local gb,Capabilities,Number of Network Interfaces,Interface Name,Interface MAC
Address,Interface IP,Enable PXE,Interface Name,Interface MAC Address,Interface
IP,Enable PXE

physical,5c10s9,10.87.74.69,,enp4s0f0,,,,,,,,,,,2,enp4s0f0,,10.87.74.69,,ens2f0,,10.1.
0.2,

physical,5c10s7-
node1,10.87.74.65,,eno1,,,,,,,,,,,2,eno1,,10.87.74.65,,ens2f1,,10.1.0.3,

physical,5c10s7-
node3,10.87.74.67,,eno1,,,,,,,,,,,2,eno1,,10.87.74.67,,ens2f1,,10.1.0.67,

physical,5c10s12,10.87.74.71,,eno1,,,,,,,,,,,2,eno1,,10.87.74.71,,ens1f0,,10.1.0.66,

33

NOTE: The demo topology above has only one compute node. If you are deploying
additional compute nodes, you must include them in the CSV file.

b. Fill in the values for your servers, and save and upload the file by clicking Upload.

The added servers are now shown in the list of available servers.

4. You can now create the cluster. If you are in the wizard, click Next. Otherwise, select Clusters > Add
Cluster.

5. Set the general parameters for the cluster.

Step-by-Step Procedure

a. Select Contrail Enterprise Multicloud as the Provisioning Manager.

b. Enter the required information.

• Cluster Name - the name that you want to call the cluster

• Container Registry, Container Registry Username, Container Registry Password, Contrail
Version

See README Access to Contrail Registry 19XX for the correct values for these fields. The
Contrail Version corresponds to the Contrail-Command (UI) container deployment value
specified in that document.

• Provisioner Type - Ansible

• Domain Suffix - the domain name for the cluster

• NTP Server - the FQDN or IP address of the NTP server you want to use

• Default Vrouter Gateway - the default gateway for the compute nodes

The default that you specify here is made available in the Default Gateway fields in later
steps. If a particular node has a different default gateway, you can always override the
default at that later step.

• Encapsulation Priority

Select VXLAN, MPLSoUDP, MPLSoGRE.

c. Ensure Insecure is not selected.

d. Click Enable ZTP.

34

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

NOTE: From Contrail Networking Release 1911 and later, Enable ZTP option is replaced
by Fabric Management.

e. Click the drop-down arrow for Contrail Configuration.

f. Click Add and enter the following Key/Value pairs.

Key Value

CONTROL_NODES List of comma-separated user data interface IP addresses for the
controller(s)

PHYSICAL_INTERFACE The user data interface name

TSN_NODES List of comma-separated user data interface IP addresses for the
Contrail Service Node(s)

CONTRAIL_CONTAINER_TAG The container tag for the desired Contrail and OpenStack release
combination as specified in README Access to Contrail Registry 19XX

g. Click Next.

6. Assign the control nodes for the cluster.

35

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

Figure 5: Select Control Nodes

Select High availability mode if you have HA setup for the controller node. Select all the control
nodes from Available servers list.

7. Select the orchestrator and assign the orchestrator nodes.

Step-by-Step Procedure

a. Select Openstack from the Orchestrator type drop-down list.

b. Use the arrows to move one or more servers from the Available servers list to the Assigned
Openstack nodes list.

c. Check the Show Advanced option to customize your deployment.

d. Set up the virtual IP addresses if you are deploying an HA cluster.

• Control & Data Network Virtual IP address - this is an internal VIP (e.g. 10.87.74.100)

• Management Network Virtual IP address - this is an external VIP (e.g. 10.1.0.100)

• keepalived_virtual_router_id - (optional) it can be set to any value between 0-255. The
default value is 51.

36

e. Add the following parameters under Customize configuration for a VM-based setup:

nova.conf: |
 [libvirt]
 virt_type=qemu
 cpu_mode=none

NOTE: Minimum 8 indent spaces are required for lines following the nova.conf.

f. Click Add under Kolla Globals and enter the following Key/Value pairs. These are the standard
OpenStack Kolla globals.

Key Value Notes

enable_haproxy no

enable_ironic no Set to no if you are not using Life Cycle Management in
Contrail Command or PXE boot on Bare Metal Servers
(BMS).

enable_swift yes Set to yes if you are using object store. This parameter is
disabled by default.

openstack_release queens (for
example)

This must be one of the supported OpenStack releases.

swift_disk_partition_size 20GB The default value is 5 GB. If you have two or more
images, you must have at least 20 GB allocated for hitless
image upload procedure.

g. Click Add under Kolla Passwords to explicitly add Kolla passwords if desired.

These passwords are placed into the etc/kolla/passwords.yml file. By default, all kolla passwords
are set to contrail123.

37

NOTE: We suggest changing the default password to a unique password in accordance
with your organization’s security guidelines.

h. Click Next.

8. Assign the compute nodes.

Step-by-Step Procedure

a. Use the arrows to move one or more servers from the Available servers list to the Assigned
Compute nodes list.

b. Enter the Default Vrouter Gateway for each node.

c. Select Kernel in the Type drop-down list. This is the only type supported in the current release.

Figure 6: Select Compute Nodes

d. Click Next.

9. Assign the Contrail Service nodes.

38

Step-by-Step Procedure

a. Use the arrows to move one or more servers from the Available servers list to the Assigned
Service nodes list.

b. Enter the Default Vrouter Gateway for each node.

Figure 7: Select Contrail Service Nodes

c. Click Next.

10. (Optional) Assign the AppFormix nodes.

For details, refer to "Installing AppFormix and AppFormix Flows using Contrail Command" on page
77.

39

Click Next.

11. Verify your cluster configuration in the Cluster overview panel and your nodes configuration in the
Nodes overview panel.

40

Figure 8: Verify Summary

If the configuration is correct, click Provision. If not, click Previous to go back to fix any
misconfigurations.

12. You can monitor the progress by running the following commands from Contrail Command server.

docker logs -f contrail_command
or

41

docker exec contrail_command tail -f /var/log/contrail/deploy.log

NOTE: The Reprovision button does not support editing Kolla or Contrail configuration
parameters. After each failed attempt to provision a fabric, you must destroy and rebuild all the
VMs and repeat the process.

RELATED DOCUMENTATION

Installing Contrail Command | 18

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Importing Contrail Cluster Data using Contrail Command | 47

Installing Contrail Cluster using Contrail Command and instances.yml

Contrail Networking supports deploying Contrail cluster using Contrail Command and the instances.yml
file.

A YAML file provides a concise format for specifying the instance settings.

NOTE: We strongly recommend installing Contrail Command and deploying your Contrail cluster
from Contrail Command in most Contrail Networking deployments. You should only use the
procedure in this document if you have a strong reason to not use the recommended procedure.

See "Installing Contrail Command" on page 18 and "Installing a Contrail Cluster Using Contrail
Command" on page 29.

System Requirements

42

• A VM or physical server with:

• 4 vCPUs

• 32 GB RAM

• 100 GB disk

• Internet access to and from the physical server, hereafter referred to as the Contrail Command server

• (Recommended) x86 server with CentOS 7.6 as the base OS to install Contrail Command

For a list of supported platforms, see https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf.

NOTE: Contrail Release 5.1 does not support AppFormix deployment from command line with
Contrail Cluster instances.yml file.

Before you begin

docker-py Python module is superseded by docker Python module. You must remove docker-py and docker
Python packages from all the nodes where you want to install the Contrail Command UI.

pip uninstall docker-py docker

Configuration

Perform the following steps to deploy a Contrail Cluster using Contrail Command and the instances.yml
file.

1. Install Docker to pull contrail-command-deployer container. This package is necessary to automate
the deployment of Contrail Command software.

yum install -y yum-utils device-mapper-persistent-data lvm2

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install -y docker-ce-18.03.1.ce

systemctl start docker

2. Download the contrail-command-deployer Docker container image from hub.juniper.net. To
download these containers and for access to hub.juniper.net, refer to the Access to Contrail Registry
topic on the Contrail software download page. Allow Docker to connect to the private secure
registry.

docker login hub.juniper.net --username <container_registry_username> --password <container_registry_password>

43

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/support/downloads/?p=contrail

Pull contrail-command-deployer container from the private secure registry.

docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

Example, for container_tag: 5.1.0-0.38, use the following command:

docker pull hub.juniper.net/contrail/contrail-command-deployer:5.1.0-0.38

3. Edit the input configuration instances.yml file. See "No Link Title" on page 45 for a sample
instances.yml file.

4. Start the contrail_command_deployer container to deploy the Contrail Command (UI) server and
provision Contrail Cluster using the instances.yml file provided.

docker run -td --net host -e action=provision_cluster -v <ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/
command_servers.yml -v < ABSOLUTE_PATH_TO_INSTANCES_FILE>:/instances.yml --privileged --name
contrail_command_deployer hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

The contrail_command and contrail_psql Contrail Command containers will be deployed. Contrail Cluster
is also provisioned using the given instances.yml file.

5. (Optional) Track the progress of 4.

docker logs -f contrail_command_deployer

6. Once the playbook execution completes, log in to Contrail Command using https://Contrail-
Command-Server-IP-Address:9091. Use the same user name and password that was entered in 3.
The default username is admin and password is contrail123.

NOTE: We strongly recommend creating a unique username and password for Contrail
Command. See "Installing Contrail Command" on page 18 for additional information on
creating username and password combinations.

NOTE: Enable subscription on all the RedHat nodes.

sudo subscription-manager register --username <USERNAME> –-password <PASSWORD>
sudo subscription-manager attach --pool pool_id

sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-rh-common-
rpms --enable=rhel-ha-for-rhel-7-server-rpms --enable=rhel-7-server-extras-rpms

44

https://Contrail-Command-Server-IP-Address:9091
https://Contrail-Command-Server-IP-Address:9091

Sample instances.yml File

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:
 ssh_pwd: <Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <BMS IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 vrouter:
 openstack:
 openstack_compute:
 bms2:
 provider: bms
 ip: <BMS2 IP>
 roles:
 openstack:
 bms3:
 provider: bms
 ip: <BMS3 IP>
 roles:
 openstack:
 bms4:
 provider: bms
 ip: <BMS4 IP>
 roles:
 config_database:
 config:

45

 control:
 analytics_database:
 analytics:
 webui:
 bms5:
 provider: bms
 ip: <BMS5 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms6:
 provider: bms
 ip: <BMS6 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms7:
 provider: bms
 ip: <BMS7 IP>
 roles:
 vrouter:
 PHYSICAL_INTERFACE: <Interface name>
 VROUTER_GATEWAY: <Gateway IP>
 openstack_compute:
 bms8:
 provider: bms
 ip: <BMS8 IP>
 roles:
 vrouter:
 # Add following line for TSN Compute Node
 TSN_EVPN_MODE: True
 openstack_compute:
contrail_configuration:
 CLOUD_ORCHESTRATOR: openstack
 CONTRAIL_VERSION: latest or <contrail_container_tag>

46

 CONTRAIL_CONTAINER_TAG: <contrail_container_tag>-queens
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: <Gateway IP>
 ENCAP_PRIORITY: VXLAN,MPLSoUDP,MPLSoGRE
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <Internal VIP>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONTROLLER_NODES: < list of mgmt. ip of control nodes >
 CONTROL_NODES: <list of control-data ip of control nodes>
 OPENSTACK_VERSION: queens
kolla_config:
 kolla_globals:
 openstack_release: queens
 kolla_internal_vip_address: <Internal VIP>
 kolla_external_vip_address: <External VIP>
 openstack_release: queens
 enable_haproxy: "no" ("no" by default, set "yes" to enable)
 enable_ironic: "no" ("no" by default, set "yes" to enable)
 enable_swift: "no" ("no" by default, set "yes" to enable)
 swift_disk_partition_size = 10GB
 keepalived_virtual_router_id: <Value between 0-255>
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

RELATED DOCUMENTATION

Installing Contrail Command | 18

Installing a Contrail Cluster Using Contrail Command | 29

Importing Contrail Cluster Data using Contrail Command | 47

Importing Contrail Cluster Data using Contrail Command

Contrail Networking supports importing of Contrail Cluster data to Contrail Command provisioned using
one of the following applications - OpenStack, Kubernetes, VMware vCenter, and TripleO.

Before you begin

47

docker-py Python module is superseded by docker Python module. You must remove docker-py and docker
Python packages from all the nodes where you want to install the Contrail Command UI.

pip uninstall docker-py docker

System Requirements

• A VM or physical server with:

• 4 vCPUs

• 32 GB RAM

• 100 GB storage

• Internet access to and from the physical server, which is the Contrail Command server.

• (Recommended) x86 server with CentOS 7.6 as the base OS to install Contrail Command.

For a list of supported platforms, see https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf.

Configuration

Perform the following steps to import Contrail Cluster data.

1. Install Docker to pull contrail-command-deployer container. This package is necessary to automate
the deployment of Contrail Command software.

yum install -y yum-utils device-mapper-persistent-data lvm2

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install -y docker-ce-18.03.1.ce

systemctl start docker

2. Download the contrail-command-deployer Docker container image to deploy contrail-command
(contrail_command, contrail_psql containers) from hub.juniper.net. Allow Docker to connect to the
private secure registry.

docker login hub.juniper.net --username <container_registry_username> --password <container_registry_password>

Pull contrail-command-deployer container from the private secure registry.

docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

Example, for container_tag:1911.31, use the following command:

docker pull hub.juniper.net/contrail/contrail-command-deployer:1911.31

48

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

3. Get the command_servers.yml file that was used to bring the Contrail Command server up and the
configuration file that was used to provision the Contrail Cluster.

NOTE: "For OpenShift orchestrator use the ose-install file instead of instances.yml file.

4. Start the contrail-command-deployer container to deploy the Contrail Command (UI) server and import
Contrail Cluster data to Contrail Command (UI) server using the Cluster configuration file provided.

• Import Contrail‑Cluster provisioned using a supported orchestrator (OpenStack/Kubernetes/
OpenShift/vCenter/Mesos).

docker run -td --net host -e orchestrator=<YOUR_ORCHESTRATOR> -e action=import_cluster -v <
ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/command_servers.yml -v < ABSOLUTE_PATH_TO_CLUSTER_CONFIG_FILE>:/
instances.yml --privileged --name contrail_command_deployer hub.juniper.net/contrail/contrail-command-
deployer:<container_tag>

To use the following supported orchestrators, replace <YOUR_ORCHESTRATOR> in the command with the
options given below.

• For OpenStack, use openstack.

• For Kubernetes, use kubernetes.

• For Red Hat OpenShift, use openshift.

NOTE: You must use ose-install file instead of instances.yml file.

• For VMware vCenter, use vcenter.

• For Mesos, use mesos.

• Import Contrail‑Cluster provisioned using OSPDirector/TripleO Life Cycle Manager for RedHat
OpenStack Orchestration.

Prerequisites:

• IP_ADDRESS_OF_UNDERCLOUD_NODE is an Undercloud node IP that must be reachable
from the contrail-command-deployer node. You must be able to SSH to Undercloud node from
the contrail-command-deployer node.

• External VIP is an Overcloud VIP where OpenStack and Contrail public endpoints are available.
External VIP must be reachable from Contrail Command node.

• DNS host name for Overcloud external VIP must be resolvable on Contrail Command node.
Add the entry in the /etc/hosts file.

49

docker run -td --net host -e orchestrator=tripleo -e action=import_cluster -e
undercloud=<IP_ADDRESS_OF_UNDERCLOUD_NODE> -e
undercloud_password=<STACK_USER_PASSWORD_FOR_SSH_TO_UNDERCLOUD> -v <
ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/command_servers.yml --privileged --name contrail_command_deployer
hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

• Contrail command server must have access to External VIP network to communicate with the
configured endpoints.

Run the following commands:

ovs-vsctl add-port br0 vlan<externalNetworkVlanID> tag=<externalNetworkVlanID> -- set
interface vlan<externalNetworkVlanID> type=internal
ip link set dev vlan<externalNetworkVlanID> up
ip addr add <externalNetworkGatewayIP>/<subnetMask> dev vlan<externalNetworkVlanID>

• If you have used domain name for the external VIP, add the entry in the /etc/hosts file.

Run the following commands:

docker exec -it contrail_command bash
vi /etc/hosts
<externalVIP> <externalVIP’sDomainName>

Sample instances.yml file

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:
 ssh_pwd: <Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <BMS1 IP>
 roles:

50

 openstack:
 bms2:
 provider: bms
 ip: <BMS2 IP>
 roles:
 openstack:
 bms3:
 provider: bms
 ip: <BMS3 IP>
 roles:
 openstack:
 bms4:
 provider: bms
 ip: <BMS4 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms5:
 provider: bms
 ip: <BMS5 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms6:
 provider: bms
 ip: <BMS6 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms7:
 provider: bms

51

 ip: <BMS7 IP>
 roles:
 vrouter:
 PHYSICAL_INTERFACE: <Interface name>
 VROUTER_GATEWAY: <Gateway IP>
 openstack_compute:
 bms8:
 provider: bms
 ip: <BMS8 IP>
 roles:
 vrouter:
 # Add following line for TSN Compute Node
 TSN_EVPN_MODE: True
 openstack_compute:
contrail_configuration:
 CLOUD_ORCHESTRATOR: openstack
 CONTRAIL_VERSION: latest or <contrail_container_tag>
 CONTRAIL_CONTAINER_TAG: <contrail_container_tag>-queens
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: <Gateway IP>
 ENCAP_PRIORITY: VXLAN,MPLSoUDP,MPLSoGRE
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <Internal VIP>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONTROLLER_NODES: < list of mgmt. ip of control nodes >
 CONTROL_NODES: <list of control-data ip of control nodes>
 OPENSTACK_VERSION: queens
kolla_config:
 kolla_globals:
 openstack_release: queens
 kolla_internal_vip_address: <Internal VIP>
 kolla_external_vip_address: <External VIP>
 openstack_release: queens
 enable_haproxy: "no" ("no" by default, set "yes" to enable)
 enable_ironic: "no" ("no" by default, set "yes" to enable)
 enable_swift: "no" ("no" by default, set "yes" to enable)
 keepalived_virtual_router_id: <Value between 0-255>
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

52

RELATED DOCUMENTATION

Installing Contrail Command | 18

Installing a Contrail Cluster Using Contrail Command | 29

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Adding a New Compute Node to Existing Contrail Cluster Using Contrail
Command

You can add or remove a new node from an existing containerized Contrail cluster.

To add a new compute node to an existing Contrail OpenStack cluster:

1. Login to Contrail Command.

The default credentials for Contrail Command are admin for username and contrail123 for password.
We strongly recommend creating a unique username and password combination. See "Installing
Contrail Command" on page 18.

2. Click Servers.

a. Click Create.

b. Enter the required details.

53

c. Click Create.

3. Click Cluster.

a. Click Add under Compute Nodes.

b. Select the required server from Available Servers list.

54

c. Click Assign Nodes.

55

Perform the following steps to remove a compute node from an existing Contrail OpenStack cluster.

NOTE: Workloads on the deleted computes must be removed before removing the compute
node from the cluster.

1. Login to Contrail Command.

The default credentials for Contrail Command are admin for username and contrail123 for password.
We strongly recommend creating a unique username and password combination. See "Installing
Contrail Command" on page 18.

2. Click Cluster.

3. Click Compute Nodes.

4. Remove the required compute node.

56

You can also add a compute node to existing Contrail cluster using instances.yaml file. For details, refer
to "Adding a New Compute Node to Existing Contrail Cluster" on page 71.

57

CHAPTER 4

Installing Contrail

IN THIS CHAPTER

Installing Contrail with OpenStack and Kolla Ansible | 58

Adding a New Compute Node to Existing Contrail Cluster | 71

Installing Contrail with OpenStack and Kolla Ansible

IN THIS SECTION

Set Up the Base Host | 59

Multiple Interface Configuration Sample for Multinode OpenStack HA and Contrail | 62

Single Interface Configuration Sample for Multinode OpenStack HA and Contrail | 65

Frequently Asked Questions | 67

NOTE: We recommend using Contrail Command to add compute nodes to existing Contrail
clusters in most Contrail Networking deployments. See "Adding a New Compute Node to
Existing Contrail Cluster Using Contrail Command" on page 53.

The procedure in this document should only be performed by network administrators with
significant YAML file expertise in environments not using the Contrail Command GUI.

The goal of this topic is to install Contrail Networking with OpenStack, using Kolla Ansible playbook
contrail-kolla-ansible.

Kolla is an OpenStack project which provides tools to build container images for OpenStack services.
Kolla Ansible provides Ansible playbooks to deploy the Kolla images.

58

The contrail-kolla-ansible playbook works in conjunction with contrail-ansible-deployer to install
OpenStack and Contrail Networking containers.

Refer to "Installing Contrail Cluster using Contrail Command and instances.yml" on page 42 to deploy a
Contrail cluster using Contrail Command.

Follow the procedure to deploy Kolla containers using contrail-kolla-ansible and Contrail Networking
containers using contrail-ansible-deployer:

Set Up the Base Host

Update CentOS and kernel version. For a list of supported platforms, see https://www.juniper.net/
documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf.

The vRouter has a dependency with the host kernel.

To set up the base host:

1. Download Ansible Deployer installer package from the Contrail Downloads page.

2. Install Ansible.

yum -y install epel-release

yum -y install git ansible-2.7.10

3. Install python-pip.

yum install -y python-pip

4. Run the following commands.

yum -y remove PyYAML python-requests

pip install PyYAML requests

5. Untar the tgz file.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

The instances.yaml is located at thecontrail-ansible-deployer/config/

6. Configure Contrail and Kolla parameters in the file instances.yaml, using the following guidelines:

• The provider configuration (provider_config) section refers to the cloud provider where the Contrail
cluster will be hosted, and contains all parameters relevant to the provider. For bare metal servers,
the provider is bms.

59

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://github.com/Juniper/contrail-ansible-deployer/wiki/Provisioning-F.A.Q#5-vrouter-module-is-not-getting-installed-on-the-computes-vrouter-container-in-error-state-and-docker-logs-show-the-error-like-this
https://support.juniper.net/support/downloads/?p=contrail#sw

• The kolla_globals section refers to OpenStack services. For more information about all possible
kolla_globals, see https://github.com/Juniper/contrail-kolla-ansible/.../globals.yml.

• Additional Kolla configurations (contrail-kolla-ansible) are possible as contrail_additions. For more
information about all possible contrail_additions to Kolla, see https://github.com/Juniper/contrail-
kolla-ansible/.../all.yml.

• The contrail_configuration section contains parameters for Contrail services.

• CONTAINER_REGISTRY specifies the registry from which to pull Contrail containers. It can be set to
your local Docker registry if you are building your own containers. If a registry is not specified,
it will try to pull the containers from the Docker hub.

If a custom registry is specified, also specify the same registry under kolla_globals as
contrail_docker_registry.

• CONTRAIL_VERSION, if not specified, will default to the "latest" tag.

• For more information about all possible parameters for contrail_configuration, see https://
github.com/tungstenfabric/tf-container-builder/blob/master/containers/base/common.sh.

• You must specify the roles in the instances.yaml file. Otherwise, the installation procedure will
fail.

• If there are host-specific values per host, for example, if the names of the interfaces used for
"network_interface" are different on the servers in your cluster, use the example configuration
at Configuration Sample for Multi Node OpenStack HA and Contrail (multi interface).

• Many of the parameters are automatically derived to sane defaults (how the first configuration
works). You can explicitly specify variables to override the derived values if required. Review
the code to see the derivation logic.

Example: instances.yaml

This example is a bare minimum configuration for a single node, single interface, all-in-one cluster.

provider_config:
 bms:
 ssh_pwd: <password>
 ssh_user: root
 ntpserver: <IP NTP server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <IP BMS>

60

https://github.com/Juniper/contrail-kolla-ansible/blob/contrail/ocata/etc/kolla/globals.yml
https://github.com/Juniper/contrail-kolla-ansible/blob/contrail/ocata/ansible/group_vars/all.yml
https://github.com/Juniper/contrail-kolla-ansible/blob/contrail/ocata/ansible/group_vars/all.yml
https://github.com/tungstenfabric/tf-container-builder/blob/master/containers/base/common.sh
https://github.com/tungstenfabric/tf-container-builder/blob/master/containers/base/common.sh
https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(multi-interface)

roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 vrouter:
 openstack:
 openstack_compute:
contrail_configuration:
 RABBITMQ_NODE_PORT: 5673
 AUTH_MODE: keystone
 KEYSTONE_AUTH_URL_VERSION: /v3
kolla_config:
 kolla_globals:
 enable_haproxy: no
 kolla_passwords:
 keystone_admin_password: <Keystone admin password>

Example: instances.yaml

This example is a more elaborate configuration for a single node, single interface, all-in-one cluster.

provider_config:
 bms:
 ssh_pwd: <password>
 ssh_user: root
 ntpserver: <IP NTP server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <IP BMS>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:

61

 analytics_alarm:
 analytics_snmp:
 webui:
 vrouter:
 openstack:
 openstack_compute:
global_configuration:
 CONTAINER_REGISTRY: <Registry FQDN/IP>:<Registry Port>
 REGISTRY_PRIVATE_INSECURE: True
contrail_configuration:
 CONTRAIL_VERSION: latest
 CLOUD_ORCHESTRATOR: openstack
 VROUTER_GATEWAY: <IP gateway>
 RABBITMQ_NODE_PORT: 5673
 PHYSICAL_INTERFACE: <interface name>
 AUTH_MODE: keystone
 KEYSTONE_AUTH_URL_VERSION: /v3
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: <Internal VIP>
 contrail_api_interface_address: <Contrail API Addr>
 enable_haproxy: no
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

7. Run the following commands from the contrail-ansible-deployer folder:

• ansible-playbook -e orchestrator=openstack -i inventory/ playbooks/configure_instances.yml

• ansible-playbook -i inventory/ playbooks/install_openstack.yml

• ansible-playbook -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

8. Open web browser and type https://contrail-server-ip:8143 to access Contrail Web UI.

The default login user name is admin. Use the same password which was entered in step "6" on page
59

Multiple Interface Configuration Sample for Multinode OpenStack HA and Contrail

This is a configuration sample for a multiple interface, multiple node deployment of high availability
OpenStack and Contrail Networking. Use this sample to configure parameters specific to your system.

62

For more information or for recent updates, refer to the github topic Configuration Sample for Multi
Node OpenStack HA and Contrail (multi interface).

Configuration Sample—Multiple Interface

provider_config:
 bms:
 ssh_pwd: <Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <BMS1 IP>
 roles:
 openstack:
 bms2:
 provider: bms
 ip: <BMS2 IP>
 roles:
 openstack:
 bms3:
 provider: bms
 ip: <BMS3 IP>
 roles:
 openstack:
 bms4:
 provider: bms
 ip: <BMS4 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 bms5:
 provider: bms
 ip: <BMS5 IP>

63

https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(multi-interface)
https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(multi-interface)

 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 bms6:
 provider: bms
 ip: <BMS6 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 bms7:
 provider: bms
 ip: <BMS7 IP>
 roles:
 vrouter:
 PHYSICAL_INTERFACE: <Interface name>
 VROUTER_GATEWAY: <Gateway IP>
 openstack_compute:
 bms8:
 provider: bms
 ip: <BMS8 IP>
 roles:
 vrouter:
 # Add following line for TSN Compute Node
 TSN_EVPN_MODE: True
 openstack_compute:
contrail_configuration:
 CLOUD_ORCHESTRATOR: openstack
 KEYSTONE_AUTH_URL_VERSION: /v3
 IPFABRIC_SERVICE_HOST: <Service Host IP>
 # Add following line for TSN Compute Node
 TSN_NODES: <TSN NODE IP List>

64

 # For EVPN VXLAN TSN
 ENCAP_PRIORITY: "VXLAN,MPLSoUDP,MPLSoGRE"
 PHYSICAL_INTERFACE: <Interface name>
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: <Internal VIP>
 kolla_external_vip_address: <External VIP>
 contrail_api_interface_address: <Contrail API IP>
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

Single Interface Configuration Sample for Multinode OpenStack HA and Contrail

This is a configuration sample for a multiple node, single interface deployment of high availability
OpenStack and Contrail Networking. Use this sample to configure parameters specific to your system.

For more information or for recent updates, refer to the github topic Configuration Sample for Multi
Node OpenStack HA and Contrail (single interface).

Configuration Sample—Single Interface

provider_config:
 bms:
 ssh_pwd: <password>
 ssh_user: root
 ntpserver: xx.xx.x.xx
 domainsuffix: local
instances:
 centos1:
 provider: bms
 ip: ip-address
 roles:
 openstack:
 centos2:
 provider: bms
 ip: ip-address
 roles:
 openstack:
 centos3:
 provider: bms
 ip: ip-address

65

https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(single-interface)
https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(single-interface)

 roles:
 openstack:
 centos4:
 provider: bms
 ip: ip-address
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 centos5:
 provider: bms
 ip: ip-address
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
webui:
 centos6:
 provider: bms
 ip: ip-address
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 analytics_alarm:
 analytics_snmp:
 webui:
 centos7:
 provider: bms
 ip: ip-address
 roles:
 vrouter:

66

 openstack_compute:
 centos8:
 provider: bms
 ip: ip-address
 roles:
 vrouter:
 openstack_compute:
contrail_configuration:
 CONTRAIL_VERSION: <contrail_version>
 CONTROLLER_NODES: ip-addresses separated by comma
 CLOUD_ORCHESTRATOR: openstack
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: gateway-ip-address
 PHYSICAL_INTERFACE: eth1
 IPFABRIC_SERVICE_IP: ip-address
 KEYSTONE_AUTH_HOST: ip-address
 KEYSTONE_AUTH_URL_VERSION: /v3
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: ip-address
 contrail_api_interface_address: ip-address
 network_interface: "eth1"
 enable_haproxy: "yes"
 kolla_passwords:
 keystone_admin_password: <password>

NOTE: Replace <contrail_version> with the correct contrail_container_tag value for your Contrail
release. The respective contrail_container_tag values are listed in README Access to Contrail
Registry 19XX.

Frequently Asked Questions

This section presents some common error situations and gives guidance on how to resolve the error
condition.

Using Host-Specific Parameters

You might have a situation where you need to specify host-specific parameters, for example, the
interface names are different for the different servers in the cluster. In this case, you could specify the
individual names under each role, and the more specific setting takes precedence.

67

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

For example, if there is no "network_interface" setting under the role "openstack" for example “bms1”,
then it will take its setting from the global variable.

An extended example is available at: Configuration Sample for Multi Node OpenStack HA and Contrail.

Containers from Private Registry Not Accessible

1. You might have a situation in which containers that are pulled from a private registry named
CONTAINER_REGISTRY are not accessible.

2. To resolve, check to ensure that REGISTRY_PRIVATE_INSECURE is set to True.

Error: Failed to insert vrouter kernel module

1. You might have a situation in which the vrouter module is not getting installed on the compute
nodes, with the vrouter container in an error state and errors are shown in the Docker logs.

 [srvr5] ~ # docker logs vrouter_vrouter-kernel-init_1
 /bin/cp: cannot create regular file '/host/bin/vif': No such file or directory
 INFO: Load kernel module for kver=3.10.0
 INFO: Modprobing vrouter /opt/contrail/vrouter-kernel-modules/3.10.0-957.11.6.el7.x86_64/
vrouter.ko
 total used free shared buff/cache available
 Mem: 62G 999M 55G 9.1M 5.9G 60G
 Swap: 0B 0B 0B
 total used free shared buff/cache available
 Mem: 62G 741M 61G 9.1M 923M 61G
 Swap: 0B 0B 0B
 insmod: ERROR: could not insert module /opt/contrail/vrouter-kernel-modules/
3.10.0-957.11.6.el7.x86_64/vrouter.ko: Unknown symbol in module
 ERROR: Failed to insert vrouter kernel module

2. In this release, the vrouter module requires the host kernel version to be 3.10.0-957.11.6.el7.x86_64.
To get this kernel version, before running provision, install the kernel version on the target nodes.

yum -y install
kernel-3.10.0-957.11.6.el7.x86_64

 yum update
 reboot

68

https://github.com/Juniper/contrail-ansible-deployer/wiki/Configuration-Sample-for-Multi-Node-Openstack-HA-and-Contrail-(multi-interface)

Fatal Error When Vrouter Doesn’t Specify OpenStack

1. You might encounter a fatal error when vrouter needs to be provisioned without nova-compute.

2018-03-21 00:47:16,884 p=16999 u=root | TASK [iscsi : Ensuring config directories exist]

 2018-03-21 00:47:16,959 p=16999 u=root | fatal: [ip-address]: FAILED! => {"msg": "The
conditional check
 'inventory_hostname in groups['compute'] or inventory_hostname in groups['storage']'
failed. The error was:
 error while evaluating conditional (inventory_hostname in groups['compute'] or
inventory_hostname in
 groups['storage']): Unable to look up a name or access an attribute in template string ({%
if
 inventory_hostname in groups['compute'] or inventory_hostname in groups['storage'] %} True
{% else %} False
 {% endif %}).\nMake sure your variable name does not contain invalid characters like '-':
argument of type
 'StrictUndefined' is not iterable\n\nThe error appears to have been in '/root/contrail-
kolla-
 ansible/ansible/roles/iscsi/tasks/config.yml': line 2, column 3, but may\nbe elsewhere in
the file depending
 on the exact syntax problem.\n\nThe offending line appears to be:\n\n---\n- name: Ensuring
config
 directories exist\n ^ here\n"}

 2018-03-21 00:47:16,961 p=16999 u=root | to retry, use: --limit @/root/contrail-
ansible-
 deployer/playbooks/install_contrail.retry

2. There is a use case in which vrouter needs to be provisioned without being accompanied by nova-
compute. Consequently, the "openstack_compute" is not automatically inferred when "vrouter" role
is specified. To resolve this issue, the "openstack_compute" role needs to be explicitly stated along
with "vrouter".

For more information about this use case, refer to the bug #1756133.

Need for HAProxy and Virtual IP on a Single OpenStack Cluster

By default, all OpenStack services listen on the IP interface provided by the kolla_internal_vip_address/
network_interface variables under the kolla_globals section in config/instances.yaml. In most cases this

69

https://review.opencontrail.org/#/c/40680/

corresponds to the ctrl-data network, which means that even Horizon will now run only on the ctrl-data
network. The only way Kolla provides access to Horizon on the management network is by using
HAProxy and keepalived. Enabling keepalived requires a virtual IP for VRRP, and it cannot be the
interface IP. There is no way to enable HAProxy without enabling keepalived when using Kolla
configuration parameters. For this reason,you need to provide two virtual IP addresses: one on
management (kolla_external_vip_address) and one on ctrl-data-network (kolla_internal_vip_address). With
this configuration, Horizon will be accessible on the management network by means of the
kolla_external_vip_address.

Using the kolla_toolbox Container to Run OpenStack Commands

The directory /etc/kolla/kolla-toolbox on the base host on which OpenStack containers are running is
mounted and accessible as /var/lib/kolla/config_files from inside the kolla_toolbox container. If you need
other files when executing OpenStack commands, for example the command openstack image create needs
an image file, you can copy the relevant files into the /etc/kolla/kolla-toolbox directory of the base host
and use them inside the container.

The following example shows how to run OpenStack commands in this way:

ON BASE HOST OF OPENSTACK CONTROL NODE
 cd /etc/kolla/kolla-toolbox
 wget http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

 docker exec -it kolla_toolbox bash
 # NOW YOU ARE INSIDE THE KOLLA_TOOLBOX CONTAINER
 (kolla-toolbox)[ansible@server1 /]$ source /var/lib/kolla/config_files/admin-openrc.sh
 (kolla-toolbox)[ansible@server1 /]$ cd /var/lib/kolla/config_files
 (kolla-toolbox)[ansible@server1 /var/lib/kolla/config_files]$ openstack image create cirros2
--disk-format qcow2 --public --container-format bare --file cirros-0.4.0-x86_64-disk.img
 +------------------+--+
 | Field | Value |
 +------------------+--+
 | checksum | 443b7623e27ecf03dc9e01ee93f67afe |
 | container_format | bare |
 | created_at | 2018-03-29T21:37:48Z |
 | disk_format | qcow2 |
 | file | /v2/images/e672b536-0796-47b3-83a6-df48a5d074be/file |
 | id | e672b536-0796-47b3-83a6-df48a5d074be |
 | min_disk | 0 |
 | min_ram | 0 |
 | name | cirros2 |
 | owner | 371bdb766278484bbabf868cf7325d4c |

70

 | protected | False |
 | schema | /v2/schemas/image |
 | size | 12716032 |
 | status | active |
 | tags | |
 | updated_at | 2018-03-29T21:37:50Z |
 | virtual_size | None |
 | visibility | public |
 +------------------+--+
 (kolla-toolbox)[ansible@server1 /var/lib/kolla/config_files]$ openstack image list
 +--------------------------------------+---------+--------+
 | ID | Name | Status |
 +--------------------------------------+---------+--------+
 | e672b536-0796-47b3-83a6-df48a5d074be | cirros2 | active |
 | 57e6620e-796a-40ee-ae6e-ea1daa253b6c | cirros2 | active |
 +--------------------------------------+---------+--------+

RELATED DOCUMENTATION

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Adding a New Compute Node to Existing Contrail Cluster

NOTE: We recommend using Contrail Command to add compute nodes to existing Contrail
clusters in most Contrail Networking deployments. See "Adding a New Compute Node to
Existing Contrail Cluster Using Contrail Command" on page 53.

The procedure in this document should only be performed by network administrators with
significant YAML file expertise in environments not using the Contrail Command GUI.

This is initial process for adding a new compute node to existing Contrail OpenStack cluster.

Assume Contrail cluster is successfully provisioned by the following instances.yaml file.

71

NOTE: The password values in this output are included for illustrative purposes only. We
strongly recommend creating a unique username and password combination whenever possible.

provider_config:
 bms:
 ssh_pwd: c0ntrail123
 ssh_user: root
 ntpserver: x.x.x.x
 domainsuffix: local
instances:
 srvr1:
 provider: bms
 ip: 192.168.1.51
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 openstack:
 srvr2:
 provider: bms
 ip: 192.168.1.52
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 openstack:
 srvr3:
 provider: bms
 ip: 192.168.1.53
 roles:
 config_database:
 config:
 control:

72

 analytics_database:
 analytics:
 webui:
 openstack:
 srvr4:
 provider: bms
 ip: 192.168.1.54
 roles:
 vrouter:
 openstack_compute:
contrail_configuration:
 CONTRAIL_VERSION: 5.1.0-0.40-ocata
 CONTROL_DATA_NET_LIST: 192.168.10.0/24
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: 192.168.10.1
 IPFABRIC_SERVICE_HOST: 192.168.10.150
 KEYSTONE_AUTH_URL_VERSION: /v3
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: 192.168.10.150
 kolla_external_vip_address: 192.168.1.150

Run the following commands to add a new compute node to an existing Contrail OpenStack cluster.

1. Edit the instances.yaml file to add a compute node, srvr5.

NOTE: The password values in this output are included for illustrative purposes only. We
strongly recommend creating a unique username and password combination whenever
possible.

provider_config:

 bms:
 ssh_pwd: c0ntrail123
 ssh_user: root
 ntpserver: x.x.x.x
 domainsuffix: local
instances:
 srvr1:
 provider: bms
 ip: 192.168.1.51

73

 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 openstack:
 srvr2:
 provider: bms
 ip: 192.168.1.52
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 openstack:
 srvr3:
 provider: bms
 ip: 192.168.1.53
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 openstack:
 srvr4:
 provider: bms
 ip: 192.168.1.54
 roles:
 vrouter:
 openstack_compute:
 srvr5:
 provider: bms
 ip: 192.168.1.55
 roles:
 vrouter:
 openstack_compute:

74

contrail_configuration:
 CONTRAIL_VERSION: 5.1.0-0.38-ocata
 CONTROL_DATA_NET_LIST: 192.168.10.0/24
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: 192.168.10.1
 IPFABRIC_SERVICE_HOST: 192.168.10.150
 KEYSTONE_AUTH_URL_VERSION: /v3
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: 192.168.10.150
 kolla_external_vip_address: 192.168.1.150

2. Run the configure_instances.yml playbook with the new instances.yaml file.

ansible-playbook -i inventory/ -e orchestrator=openstack playbooks/configure_instances.yml

It will install the required software and also, prepare the new node for running the relevant
containers.

3. Run playbooks.

ansible-playbook -i inventory/ -e orchestrator=openstack --tags nova playbooks/
install_openstack.yml
ansible-playbook -i inventory/ -e orchestrator=openstack playbooks/install_contrail.yml

NOTE: The --tags nova option runs only the nova role so that the other containers are not
affected.

It is not recommended to omit the above option. If the option is omitted, especially when
multiple OpenStack nodes are running with HA, the MariaDB Galera cluster will go out of
sync and will not converge. In such situation, the only solution is to re-provision the entire
OpenStack cluster.

You can also add or remove a compute node to existing Contrail cluster using Contrail Command UI. For
details, refer to "Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command" on
page 53.

75

CHAPTER 5

Using Contrail with AppFormix

IN THIS CHAPTER

Contrail and AppFormix Deployment Requirements | 76

Installing AppFormix and AppFormix Flows using Contrail Command | 77

Contrail and AppFormix Deployment Requirements

IN THIS SECTION

Software Requirements | 76

Starting with Contrail Release 5.1, the combined installation of Contrail and AppFormix using the
Contrail Command UI is supported. For information about server requirements, supported platforms,
and installation see:

• "Server Requirements and Supported Platforms" on page 16.

• "Installing AppFormix and AppFormix Flows using Contrail Command" on page 77.

Software Requirements

Table 2 on page 76 specifies which AppFormix release to use with each applicable Contrail release.

Table 2: AppFormix Releases > Contrail Releases

Contrail Release AppFormix Release

1912 3.1.11

76

Table 2: AppFormix Releases > Contrail Releases (Continued)

Contrail Release AppFormix Release

1911 3.1.9

1910 3.1.6

1909 3.1.2

1908 3.0.1

1907 2.19.11

5.1 2.19.10

Installing AppFormix and AppFormix Flows using Contrail Command

IN THIS SECTION

AppFormix Release to Use with Contrail Release | 77

4-Node Setup | 78

Hardware Requirements | 78

Requirements | 79

Download and Install AppFormix and AppFormix Flows on the Contrail-Command Node | 79

Enable LLDP and Analytics To Collect | 82

AppFormix Release to Use with Contrail Release

Table 3 on page 78 specifies which AppFormix release to use with the Contrail release. For previous
releases, check the Supported Platforms in the Contrail Release Notes for the applicable Contrail release.

77

Table 3: AppFormix Release

Contrail Networking Release AppFormix Release Operating System

Contrail Networking Release
1912.L1

3.1.11 - AppFormix

1.0.6 - AppFormix Flows

CentOS 7.7

Contrail Networking Release
1912

3.1.11 - AppFormix

1.0.6 - AppFormix Flows

CentOS 7.7

NOTE: Install AppFormix and AppFormix Flows during the initial installation along with the
Contrail and OpenStack installation. AppFormix and AppFormix Flows cannot be installed after
the Contrail and OpenStack cluster is already deployed and imported into Contrail Command.

4-Node Setup

4-Node setup includes:

Node 1 Contrail Command

Node 2 OpenStack and Contrail

Node 3 AppFormix

Node 4 AppFormix Flows

Hardware Requirements

The Contrail Command server, on which AppFormix Platform is installed has the following minimum
requirements.

• CPU: 16 cores (virtual or physical)

• Memory: 64 GB

• Storage: 2 TB (recommended)

78

Requirements

• Install Centos 7.7 on all nodes.

• Have your AppFormix license from Juniper available. This will need to be added on the Contrail
Command server in the same folder together with Appformix.

Server requirements and supported platforms are listed in the installation guide and release notes.

Download and Install AppFormix and AppFormix Flows on the Contrail-Command
Node

To install AppFormix using Contrail Command:

1. Download AppFormix from

https://support.juniper.net/support/downloads/.

NOTE: See Table 3 on page 78 for Contrail, AppFormix, and AppFormix Flows version
mapping.

appformix-<version>.tar.gz
appformix-platform-images-<version>.tar.gz
appformix-dependencies-images-<version>.tar.gz
appformix-network_device-images-<version>.tar.gz
appformix-openstack-images-<version>.tar.gz
appformix-flows-<version>.tar.gz
appformix-flows-ansible-<version>.tar.gz

Download the AppFormix Flows images by selecting 1.0 from the drop-down list:

79

https://www.juniper.net/documentation/en_US/contrail19/topics/task/installation/hardware-reqs-vnc.html
https://support.juniper.net/support/downloads/

Figure 9: Download AppFormix Flows Images

• Copy the AppFormix tar.gz files to the /opt/software/appformix/ directory on the Contrail
Command server.

• Copy your AppFormix license to the /opt/software/appformix/ directory.

• Copy the two appformix-flows files to the /opt/software/xflow directory.

2. Verify the command_servers.yml file was added before installing Contrail Command as specified in
"Installing Contrail Command" on page 18. This makes /opt/software/appformix available in contrail-
command Docker.

Add the following statements to the command_servers.yml file. They must be placed after the "---" at the
very top of the file or as the last two lines at the very bottom of the file.

user_command_volumes:
- /opt/software/appformix:/opt/software/appformix
- /opt/software/xflow:/opt/software/xflow
command_servers:
 server1:
 ip: 192.168.100.129

3. From Setup, select AppFormix Nodes.

80

Figure 10: AppFormix Nodes Setup

4. From AppFormix Nodes, the appformix_platform role is selected by default.

Optionally, select appformix_bare_host and appformix_network_agents roles as needed.

5. Starting with Contrail networking release 1910, AppFormix Flows is integrated in the Contrail
Command UI. For the AppFormix node, keep the appformix_platform role default.

Figure 11: Installing AppFormix Flows

81

Enter the following values:

Out-of-Band Provisioning:

• Virtual IP Address—This is the IP address of the load balancer node for AppFormix Flow collectors.

• Available Servers—Select the server on which AppFormix Flows node is to be installed.

In-Band Provisioning:

• CIDR—Enter the underlay telemetry infrastructure subnet. In-band interface on the AppFormix
Flows node is assigned an IP address from this subnet.

• VLAN-ID—Enter the VLAN ID used for the telemetry infrastructure network.

• Management Virtual IP Address—Enter an unused IP address which will be used as the
management IP Address. Contrail Command uses this IP address to connect to the AppFormix
Flows node.

• Virtual IP Address—The IP address is populated by default and is usually the third IP Address from
the CIDR range (telemetry subnet). However, you can change the IP address if needed. This IP
address is used as the collector destination IP address for the sFlow target on TOR switches.

• (Optional) Retention Period—Time duration in seconds that you want to keep the collected data.
Default is 7200 s.

• (Optional) Max Retention Bytes—Maximum size of the data to be collected. Default is 0 which
indicates unlimited size.

6. Click Next to continue to Summary.

7. Verify the summary of your configuration and click Provision.

8. Use the following commands to check and track deployment progress:

vim /var/tmp/contrail_cluster/<cluster-id>/instances.yml
tail -f /var/log/contrail/deploy.log

NOTE: After the AppFormix installation, you can view monitoring by selecting Monitoring >
External Apps > AppFormix.

Enable LLDP and Analytics To Collect

In the AppFormix software, enable LLDP for each device and any analytics that you want to collect.

82

1. In the AppFormix Dashboard, select the menu in the upper-right corner, then select Settings.

2. Select Network Devices > Add Device.

3. In the LLDP field, complete the following:

• Select Contrail in Device Info for LLDP. The default is Contrail.

• Add the Management IP address, then click Next.

• Select SNMP > + in Device Sources to input the SNMP community string. The default community
string for each Junos device provisioned is public.

Figure 12: Enable LLDP and Add Management IP for Network Device

4. In the Resource field, select the Resource from the list, then click Add.

83

Figure 13: Add Selected Resource for Network Device MIB Configurations

5. Click Submit to complete.

Release History Table

Release Description

1910 Starting with Contrail networking release 1910, AppFormix Flows is integrated in the Contrail Command
UI.

RELATED DOCUMENTATION

Contrail Insights Flows in Contrail Command

Configuring Instances in Contrail Insights

Configuring Contrail Insights Alarms using Contrail Command

Viewing Cluster Node Details and Metric Values

Metrics Collected by Contrail Insights

84

https://www.juniper.net/documentation/en_US/contrail/topics/concept/metrics-afx.html

CHAPTER 6

Using Contrail with Kubernetes

IN THIS CHAPTER

Installing and Managing Contrail Microservices Architecture Using Helm Charts | 85

Provisioning of Kubernetes Clusters | 89

Installing Standalone Kubernetes Contrail Cluster using the Contrail Command UI | 96

Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability | 103

Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata | 114

Accessing a Contrail OpenStack Helm Cluster | 118

Frequently Asked Questions About Contrail and Helm Charts | 121

Installing Contrail Networking for Kubernetes using Helm | 126

Verifying Configuration for CNI for Kubernetes | 132

Installing and Managing Contrail Microservices Architecture Using Helm
Charts

IN THIS SECTION

Understanding Helm Charts | 86

Contrail Helm Deployer Charts | 86

Contrail Kubernetes Resource implementation | 87

Example: Contrail Pods Deployment Options | 88

Installing Contrail Using Helm Charts | 89

85

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

This section provides an overview of using Helm charts when installing Contrail with a microservices
architecture. Contrail Helm charts work together with OpenStack Helm for an OpenStack Contrail
deployment. For an introduction to Contrail microservices, refer to "Understanding Contrail
Microservices Architecture" on page 6.

Understanding Helm Charts

Helm is the package manager for Kubernetes, an open source software for managing containerized
systems. The packaging format used by Helm is a chart, a collection of files that describe a related set of
Kubernetes resources. Helm charts enable you to define, install, and configure your Kubernetes
application. A chart can be used to deploy something simple, like a memcached pod, or something
complex, like a full web application stack complete with HTTP servers, databases, and the like.

Contrail Helm charts give you complete life cycle management of installation, update, and delete of
Contrail Docker-based containers in a microservices architecture.

The Contrail Helm deployer supports deploying Contrail for OpenStack.

Contrail Helm Deployer Charts

The Contrail Helm deployer uses the following charts.

• helm-toolkit chart

Contains common templates and functions that are used by every other Contrail Helm chart.

• contrail-thirdparty chart

Defines and deploys third party containers as Kubernetes resources for Contrail, including:

• RabbitMQ

• ZooKeeper

• Cassandra

• Kafka

• Redis

86

• contrail-controller chart

Deploys and manages Contrail components as Kubernetes resources, including:

• control

• config

• webui

• contrail-analytics chart

Deploys and manages Contrail analytics components as Kubernetes resources.

• contrail-vrouter chart

Deploys and manages Contrail vrouter components as Kubernetes resources.

• contrail-superset chart

A superset of all other Contrail Helm charts, can be used to install all Kubernetes resources defined in
other Contrail charts.

Contrail Kubernetes Resource implementation

All Contrail Helm charts follow a similar approach to implementing Kubernetes resources. For each of
the Contrail Release 5.0 containers, configuration input is given as an environment variable in the file
values.yaml. Use the variable .Values.contrail_env to define environment variables for the containers.

contrail_env:
 CONTROLLER_NODES: <Controller-Nodes-IP-Address>
 LOG_LEVEL: SYS_NOTICE
 CLOUD_ORCHESTRATOR: openstack
 AAA_MODE: cloud-admin

All of the environment variables are stored in Kubernetes resources called configmaps. The configmaps
are loaded into specific containers as environment variables.

Because Contrail is an infrastructure-level application, every pod of Contrail is hosted on the host
network namespace. Consequently, the daemonset controller is used to define all Contrail pods, so that
each of the Contrail pods are brought up on different nodes to avoid port conflicts.

87

Example: Contrail Pods Deployment Options

NOTE: By default, the contrail-thirdparty Helm chart creates a separate pod for each of the third
party services.

pods:
 - contrail-control
 containers:
 - contrail-control
 - contrail-dns
 - contrail-named
 - control-nodemgr
 - contrail-config
 containers:
 - config-api
 - schema-transformer
 - svc-monitor
 - device-manager
 - config-nodemgr
 - contrail-webui
 containers:
 - contrail-webui
 - contrail-middleware
 - contrail-analytics
 containers:
 - analytics-api
 - analytics-colletor
 - snmp-collector
 - query-engine
 - alarm-gen
 - contrail-topology
 - contrail-vrouter
 containers:
 - vrouter-kernel/vrouter-dpdk/vrouter-sriov
 - vrouter-agent
 - vrouter-nodemgr

88

Installing Contrail Using Helm Charts

Use one of the following procedures to install Contrail with OpenStack Ocata using Helm charts:

• "Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability " on
page 103

• "Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata " on page 114

RELATED DOCUMENTATION

Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability | 103

Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata | 114

Accessing a Contrail OpenStack Helm Cluster | 118

Frequently Asked Questions About Contrail and Helm Charts | 121

Provisioning of Kubernetes Clusters

IN THIS SECTION

Provisioning of a Standalone Kubernetes Cluster | 89

Provisioning of Nested Contrail Kubernetes Clusters | 90

Provisioning of Non-Nested Contrail Kubernetes Clusters | 94

Contrail Networking supports the following ways of provisioning Kubernetes clusters:

Provisioning of a Standalone Kubernetes Cluster

You can provision a standalone Kubernetes cluster using contrail-ansible-deployer.

Perform the following steps to install one Kubernetes cluster and one Contrail cluster and integrate
them together.

1. See Supported Platforms Contrail Release for a list of supported platforms.

2. Install the necessary tools.

yum -y install epel-release git ansible net-tools

89

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/topic-143725.html#jd0e140

3. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Contrail Downloads page and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

4. Navigate to the contrail-ansible-deployer directory.

cd contrail-ansible-deployer

5. Edit the config/instances.yaml and enter the necessary values. See "Understanding contrail-ansible-
deployer used in Contrail Command" on page 7 for a sample config/instances.yaml file.

6. Turn off the swap functionality on all nodes.

swapoff -a

7. Configure the nodes.

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/configure_instances.yml

8. Install Kubernetes and Contrail.

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_k8s.yml

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_contrail.yml

9. Turn on the swap functionality on all nodes.

swapon -a

Provisioning of Nested Contrail Kubernetes Clusters

IN THIS SECTION

Configure network connectivity to Contrail configuration and data plane functions. | 91

Generate a single yaml file to create a Contrail-k8s cluster | 93

Instantiate the Contrail-k8s cluster | 94

When Contrail provides networking for a Kubernetes cluster that is provisioned on the workloads of a
Contrail-OpenStack cluster, it is called a nested Kubernetes cluster. Contrail components are shared
between the two clusters.

Prerequisites

Ensure that the following prerequisites are met before provisioning a nested Kubernetes cluster:

1. Ensure that you have an operational Contrail-OpenStack cluster based on Contrail Networking
Release 19<xx>..

2. Ensure that you have an operational Kubernetes v1.12.9 cluster on virtual machines created on an
Contrail-OpenStack cluster.

90

https://www.juniper.net/support/downloads/?p=contrail#sw

3. Update the /etc/hosts file on the Kubernetes master node with entries for each node of the cluster.

For example, if the Kubernetes cluster is made up of three nodes such as master1 (IP: x.x.x.x),
minion1 (IP: y.y.y.y), and minion2 (IP: z.z.z.z). The /etc/hosts on the Kubernetes master node must
have the following entries:

x.x.x.x master1
y.y.y.y minion1
z.z.z.z minion2

4. If Contrail container images are stored in a secure docker registry, a Kubernetes secret must be
created and referenced during "Generate a single yaml file to create a Contrail-k8s cluster" on page
93, with credentials of the private docker registry.

kubectl create secret docker-registry name --docker-server=registry --docker-
username=username --docker-password=password --docker-email=email -n namespace

Command options:

• name—Name of the secret.

• registry—Name of the registry. Example: hub.juniper.net/contrail.

• username—Username to log in to the registry.

• password—Password to log in to the registry.

• email—Registered email of the registry account.

• namespace—Kubernetes namespace where the secret must be created. This should be the
namespace where you intend to create the Contrail pods.

The following steps describe how to provision a nested Contrail Kubernetes cluster.

Configure network connectivity to Contrail configuration and data plane functions.

A nested Kubernetes cluster is managed by the same Contrail control processes that manage the
underlying OpenStack cluster.

The kube-manager is essentially a part of the Contrail Config function. In a nested deployment, one
kube-manager instance will is provisioned in each overlay cluster. This necessitates the need The kube-
manager running in the overlay must have network reachability to Contrail config functions of the
underlay OpenStack cluster.

Network connectivity for the following Contrail config functions are required:

91

• Contrail Config

• Contrail Analytics

• Contrail Msg Queue

• Contrail VNC DB

• Keystone

In addition to config connectivity, the CNI for the Kubernetes cluster needs network reachability to the
vRouter on its Compute node. Network connectivity for the vRouter data plane function is also required.

You can use the link local service feature or a combination of link local service with fabric Source
Network Address Translation (SNAT) feature of Contrail to provide IP reachability to and from the
overlay Kubernetes cluster config and data components to corresponding config and data compoenents
of the underlay OpenStack cluster.

To provide IP reachability to and from the Kubernetes cluster using the fabric SNAT with link local
service, perform the following steps.

1. Enable fabric SNAT on the virtual network of the VMs.

The fabric SNAT feature must be enabled on the virtual network of the virtual machines on which
the Kubernetes master and minions are running.

2. Create a link local service for the Container Network Interface (CNI) to communicate with its vRouter
Agent. This link local service should be configured using the Contrail GUI, in the following example:

Contrail Process Service IP Service Port Fabric IP Fabric Port

vRouter Service-IP for the active node 9091 127.0.0.1 9091

NOTE: Fabric IP address is 127.0.0.1 since you must make the CNI communicate with the
vRouter on its underlay node.

For example, the following link local services must be created:

Link Local Service Name Service IP Service Port Fabric IP Fabric Port

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

92

NOTE: Here 10.10.10.5 is the Service IP address that you chose. This can be any unused IP in
the cluster. This IP address is primarily used to identify link local traffic and has no other
significance.

Generate a single yaml file to create a Contrail-k8s cluster

Contrail components are installed on the Kubernetes cluster as pods. The configuration to create these
pods in Kubernetes is encoded in a yaml file.

This file can be generated as follows:

1. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Juniper Networks and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

2. Navigate to the contrail-container-builder directory.

cd contrail-container-builder

3. Populate the common.env file located in the top directory of the cloned contrail-container-builder
repo with information corresponding to your cluster and environment.

For you reference, see a sample common.env file with required bare minimum configurations here
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/
common.env.sample.nested_mode.

NOTE: If Contrail container images are stored in a secure docker registry, a Kubernetes secret
must be created and referenced as documented in "4" on page 91 of Prerequisites. Populate
the variable KUBERNETES_SECRET_CONTRAIL_REPO=<secret-name> with the name of the
generated Kubernetes secret, in the common.env file.

4. Generate the yaml file as following in your shell:

cd contrail-container-build-repo/kubernetes/manifests

./resolve-manifest.sh contrail-kubernetes-nested.yaml > nested-contrail.yml

5. Copy the output (or file) generated from 4 to the master node in your Kubernetes cluster.

93

https://www.juniper.net/support/downloads/?p=contrail#sw
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.nested_mode
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.nested_mode

Instantiate the Contrail-k8s cluster

Create contrail components as pods on the Kubernetes cluster.

root@k8s:~# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
contrail-kube-manager-lcjbc 1/1 Running 0 3d
contrail-kubernetes-cni-agent-w8shc 1/1 Running 0 3d

You will see the following pods running in the kube-system namespace:

contrail-kube-manager-xxxxxx—This is the manager that acts as conduit between Kubernetes and
OpenStack clusters

contrail-kubernetes-cni-agent-xxxxx—This installs and configures Contrail CNI on Kubernetes nodes

Provisioning of Non-Nested Contrail Kubernetes Clusters

Prerequisites

Ensure that the following prerequisites are met before provisioning a non-nested Kubernetes cluster:

1. You must have an installed and operational Contrail OpenStack cluster based on the Contrail
Networking Release 19xx release.

2. You must have an installed and operational Kubernetes cluster on the server where you want to
install the non-nested Contrail Kubernetes cluster.

3. Label the Kubernetes master node with the Contrail controller label:

kubectl label node node node-role.opencontrail.org/config=true

4. Ensure that the Kubelet running on the Kubernetes master node is not run with network plugin
options. If kubelet is running with network plugin option, then disable or comment out the
KUBELET_NETWORK_ARGS option in the /etc/systemd/system/kubelet.service.d/10-
kubeadm.conf configuration file.

NOTE: It is recommended that the Kubernetes master should not be configured with a
network plugin, so as to not install vRouter kernel module on the control node. However, this
is optional.

94

5. Restart the kubelet service:

systemctl daemon-reload;
systemctl restart kubelet.service

In non-nested mode, a Kubernetes cluster is provisioned side by side with an OpenStack cluster with
networking provided by the same Contrail components of the OpenStack cluster.

Provisioning a Contrail Kubernetes Cluster

Follow these steps to provision Contrail Kubernetes cluster.

1. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Juniper Networks and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

2. Navigate to the contrail-container-builder directory.

cd contrail-container-builder

3. Populate the common.env file located in the top directory of the cloned contrail-container-builder
repo with information corresponding to your cluster and environment.

For a sample common.env file with required bare minimum configurations see https://github.com/
Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/
common.env.sample.non_nested_mode.

NOTE: If Config API is not secured by keystone, ensure that AUTH_MODE and KEYSTONE_*
variables are not configured or present while populating the common.env file.

4. Generate the yaml file as shown below:

cd contrail-container-build-repo/kubernetes/manifests

./resolve-manifest.sh contrail-kubernetes-nested.yaml > non-nested-contrail.yml

5. Copy the file generated from 4 to the master node in your Kubernetes cluster.

6. Create contrail components as pods on the Kubernetes cluster as follows:

kubectl apply -f non-nested-contrail.yml

95

https://www.juniper.net/support/downloads/?p=contrail#sw
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.non_nested_mode
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.non_nested_mode
https://github.com/Juniper/contrail-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.non_nested_mode

7. Create the following Contrail pods on the Kubernetes cluster. Ensure that contrail-agent pod is
created only on the worker node.

[root@b4s403 manifests]# kubectl get pods --all-namespaces -o wide
 NAMESPACE NAME READY STATUS RESTARTS
AGE IP NODE
 kube-system contrail-agent-mxkcq 2/2 Running 0
1m <x.x.x.x> b4s402
 kube-system contrail-kube-manager-glw5m 1/1 Running 0
1m <x.x.x.x> b4s403

RELATED DOCUMENTATION

Contrail Integration with Kubernetes

Installing Standalone Kubernetes Contrail Cluster using the Contrail
Command UI

IN THIS SECTION

Requirements | 96

Overview | 97

Configuration | 97

Starting with Contrail Release 5.1, you can use Contrail Command to initiate Kubernetes Contrail cluster
deployment. This example topic describes how to use the Contrail Command User interface (UI) to
deploy a standalone Kubernetes Contrail cluster.

Requirements

• Contrail Controller — 8 vCPU, 64G memory, 300G storage.

• Contrail Server Node (CSN) — 4 vCPU, 16G memory, 100G storage.

• Compute nodes— Dependent on the workloads.

96

Overview

You can use Contrail Command to initiate a standalone Kubernetes Contrail cluster deployment. You
must install the controller and compute nodes first. When the host nodes are operational, Contrail
Command uses the underlying Ansible deployer to install a standalone Kubernetes Contrail cluster.
Contrail Command supports the management and provisioning of Contrail components. To provision
Kubernetes resources, such as pods, services, and so on, use the Kubernetes API server or the kubectl
CLI on the Kubernetes master node.

Configuration

IN THIS SECTION

Deploying a Kubernetes Contrail Cluster | 97

Sample command_servers.yml File | 103

Deploying a Kubernetes Contrail Cluster

Step-by-Step Procedure

To deploy a Kubernetes Contrail cluster using Contrail Command, perform the following steps.

1. Click the Create button on the Setup > Servers tab to add physical servers. The Create Server page is
displayed. You can add a server in the following ways:

• Express

• Detailed

• Bulk Import (csv)

NOTE: Create server login credentials before adding the servers.

97

Figure 14: Create Server

Click Create to create the server. The list of servers is displayed in the Inventory page. Click Next to
continue creating a cluster. The Contrail Cluster page appears.

2. Create a Contrail cluster.

If Container registry = hub.juniper.net/contrail . This registry is secure. Unselect the Insecure box.
Also, Contrail version = contrail_container_tag for your release of Contrail as listed in README
Access to Contrail Registry 19XX.

Default vRouter Gateway = Default gateway for the compute nodes. If any one of the compute
nodes has a different default gateway than the one provided here, enter that gateway in "5" on page
100 and "6" on page 101 for service nodes.

Set the order of Encapsulation Priority for the EVPN supported methods - MPLS over UDP, MPLS
over GRE And VxLAN.

VXLAN, MPLSoUDP, MPLSoGRE

98

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

Figure 15: Contrail Cluster

Click Next. The Control Nodes page appears.

3. Select the Contrail control nodes.

Figure 16: Control Nodes

Click Next. The Orchestrator Nodes page appears.

4. Select the Kubernetes orchestration type.

Select the Kubernetes nodes from the list of available servers.

99

Select the Kubernetes nodes from the list of available servers and assign corresponding roles to the
servers. By default , the Kubernetes nodes are assigned the kubernetes_master_node,
kubernetes_kubemanager_node, and kubernetes_node roles.

Figure 17: Orchestrator Nodes

Click Next. The Compute Nodes page appears.

5. Select the compute node associated with the kunernetes_node role from the list of available
servers, .

100

Figure 18: Compute Nodes

Click Next. The Contrail Service Nodes page appears.

6. (Optional) Select the Contrail service nodes from the list of available servers.

Figure 19: Contrail Service Nodes

Click Next. The Appformix Nodes page appears.

7. (Optional) Select the AppFormix nodes from the list of available nodes.

101

Figure 20: Appformix Nodes

Click Next. The Summary page appears.

8. The summary page displays the cluster details as well as the node details. Verify the summary of your
cluster configuration and click Provision.

Figure 21: Summary - Cluster Overview

102

Figure 22: Summary - Nodes Overview

Sample command_servers.yml File

RELATED DOCUMENTATION

Installing Contrail Command | 18

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Importing Contrail Cluster Data using Contrail Command | 47

Using Helm Charts to Provision Multinode Contrail OpenStack Ocata
with High Availability

IN THIS SECTION

System Specifications | 104

Preparing to Install | 104

Installation of OpenStack Helm Charts | 108

Installation of Contrail Helm Charts | 109

103

Basic Testing OpenStack Helm Contrail Cluster | 113

Accessing the Contrail OpenStack Helm Cluster | 114

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

This is the installation procedure for using Helm charts to provision a multinode Contrail system with
OpenStack Ocata and high availability.

NOTE: Contrail Command is not supported for Helm deployed Contrail clusters.

System Specifications

This procedure uses Juniper OpenStack Helm infrastructure and the OpenStack Helm repository to
provision an OpenStack Ocata Contrail multinode deployment.

This procedure is tested with:

• Operating system: Ubuntu 17.03.2 LTS

• Kernel: 4.4.0-112-generic

• Docker: 1.13.1-cs9

• Helm: v2.7.2

• Kubernetes: v1.9.3

• OpenStack: Ocata

For a list of supported platforms, see https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf.

Preparing to Install

This section is the prerequisites needed to prepare your system before provisioning multinode Contrail
with OpenStack Ocata and high availability.

104

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

1. Generate SSH key on master node and copy to all nodes, in below example three nodes with IP
addresses 10.13.82.43, 10.13.82.44, and 10.13.82.45 are used.

(k8s-master)> ssh-keygen

(k8s-master)> ssh-copy-id -i ~/.ssh/id_rsa.pub 10.13.82.43
(k8s-master)> ssh-copy-id -i ~/.ssh/id_rsa.pub 10.13.82.44
(k8s-master)> ssh-copy-id -i ~/.ssh/id_rsa.pub 10.13.82.45

2. Make sure NTP is configured in all nodes and each node is synched to the time-server in your
environment. In below example the NTP server IP is "10.84.5.100".

(k8s-all-nodes)> ntpq -p
 remote refid st t when poll reach delay offset jitter
==
*10.84.5.100 66.129.255.62 2 u 15 64 377 72.421 -22.686 2.628

3. Get the contrail-helm-deployer.

From Juniper Networks, download contrail-helm-deployer-5.1.0-0.38.tgz onto your provisioning host.

• scp contrail-helm-deployer-5.1.0-0.38.tgz to all nodes on your cluster.

• Untar contrail-helm-deployer-5.1.0-0.38.tgz on all nodes.

tar -zxf contrail-helm-deployer-5.1.0-0.38.tgz -C /opt/

4. Export required variables.

(k8s-master)> cd /opt
(k8s-master)> export BASE_DIR=$(pwd)
(k8s-master)> export OSH_PATH=${BASE_DIR}/openstack-helm
(k8s-master)> export OSH_INFRA_PATH=${BASE_DIR}/openstack-helm-infra
(k8s-master)> export CHD_PATH=${BASE_DIR}/contrail-helm-deployer

5. Install necessary packages and deploy Kubernetes.

105

https://www.juniper.net/support/downloads/?p=contrail#sw

NOTE: If you want to install a different version of Kubernetes, CNI, or Calico, edit $
{OSH_INFRA_PATH}/tools/gate/devel/local-vars.yaml to override the default values in $
{OSH_INFRA_PATH}/tools/gate/playbooks/vars.yaml.

(k8s-master)> cd ${OSH_PATH}
(k8s-master)> ./tools/deployment/developer/common/001-install-packages-opencontrail.sh

6. Create an inventory file on the master node for Ansible base provisioning. In the following output,
10.13.82.43/.44/.45 are the IP addresses of the nodes, and will use the SSK-key generated in step
"1" on page 105.

#!/bin/bash
(k8s-master)> set -xe
(k8s-master)> cat > /opt/openstack-helm-infra/tools/gate/devel/multinode-inventory.yaml <<EOF
all:
 children:
 primary:
 hosts:
 node_one:
 ansible_port: 22
 ansible_host: 10.13.82.43
 ansible_user: root
 ansible_ssh_private_key_file: /root/.ssh/id_rsa
 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 nodes:
 hosts:
 node_two:
 ansible_port: 22
 ansible_host: 10.13.82.44
 ansible_user: root
 ansible_ssh_private_key_file: /root/.ssh/id_rsa
 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 node_three:
 ansible_port: 22
 ansible_host: 10.13.82.45
 ansible_user: root
 ansible_ssh_private_key_file: /root/.ssh/id_rsa

106

 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
EOF

7. Create an environment file on the master node for the cluster.

NOTE: By default. Kubernetes v1.9.3, Helm v2.7.2, and CNI v0.6.0 are installed. If you want
to install a different version, edit the ${OSH_INFRA_PATH}/tools/gate/devel/multinode-vars.yaml file to
override the values given in ${OSH_INFRA_PATH}/playbooks/vars.yaml.

Sample multinode-vars.yaml :

(k8s-master)> cat > /opt/openstack-helm-infra/tools/gate/devel/multinode-vars.yaml <<EOF
version fields
version:
 kubernetes: v1.9.3
 helm: v2.7.2
 cni: v0.6.0

kubernetes:
 network:
 # enp0s8 is your control/data interface, to which kubernetes will bind to
 default_device: enp0s8
 cluster:
 cni: calico
 pod_subnet: 192.168.0.0/16
 domain: cluster.local
docker:
 # list of insecure_registries, from where you will be pulling container images
 insecure_registries:
 - "10.87.65.243:5000"
 # list of private secure docker registry auth info, from where you will be pulling container
images
 #private_registries:
 # - name: <docker-registry-name>
 # username: username@abc.xyz
 # email: username@abc.xyz
 # password: password
 # secret_name: contrail-image-secret
 # namespace: openstack
EOF

107

8. Run playbooks on the master node.

(k8s-master)> set -xe
(k8s-master)> cd ${OSH_INFRA_PATH}
(k8s-master)> make dev-deploy setup-host multinode
(k8s-master)> make dev-deploy k8s multinode

9. Verify the kube-dns connection from all nodes. Use nslookup to verify that you are able to resolve
Kubernetes cluster-specific names.

 (k8s-all-nodes)> nslookup
 > kubernetes.default.svc.cluster.local
 Server: 10.96.0.10
 Address: 10.96.0.10#53

 Non-authoritative answer:
 Name: kubernetes.default.svc.cluster.local
 Address: 10.96.0.1

Installation of OpenStack Helm Charts

Use this procedure to install the OpenStack Helm charts.

1. Before installing the OpenStack Helm charts, review the default labels for the nodes.

The default nodes have the labels openstack-control-plane and openstack-compute-node.The default
configuration creates OpenStack Helm (OSH) pods on all the nodes. Use the following commands to
check the default OpenStack labels.

(k8s-master)> kubectl get nodes -o wide -l openstack-control-plane=enabled
(k8s-master)> kubectl get nodes -o wide -l openstack-compute-node=enabled

If you need to restrict the creation of OSH pods on specific nodes, disable the OpenStack labels. The
following example shows how to disable the openstack-compute-node label on the ubuntu-contrail-9 node.

(k8s-master)> kubectl label node ubuntu-contrail-9 --overwrite openstack-compute-node=disabled

108

2. Deploy OpenStack Helm charts.

(k8s-master)> set -xe
 (k8s-master)> cd ${OSH_PATH}

 (k8s-master)> ./tools/deployment/multinode/010-setup-client.sh
 (k8s-master)> ./tools/deployment/multinode/021-ingress-opencontrail.sh
 (k8s-master)> ./tools/deployment/multinode/030-ceph.sh
 (k8s-master)> ./tools/deployment/multinode/040-ceph-ns-activate.sh
 (k8s-master)> ./tools/deployment/multinode/050-mariadb.sh
 (k8s-master)> ./tools/deployment/multinode/060-rabbitmq.sh
 (k8s-master)> ./tools/deployment/multinode/070-memcached.sh
 (k8s-master)> ./tools/deployment/multinode/080-keystone.sh
 (k8s-master)> ./tools/deployment/multinode/090-ceph-radosgateway.sh
 (k8s-master)> ./tools/deployment/multinode/100-glance.sh
 (k8s-master)> ./tools/deployment/multinode/110-cinder.sh
 (k8s-master)> ./tools/deployment/multinode/131-libvirt-opencontrail.sh
 # Edit ${OSH_PATH}/tools/overrides/backends/opencontrail/nova.yaml and
 # ${OSH_PATH}/tools/overrides/backends/opencontrail/neutron.yaml
 # to make sure that you are pulling init container image from correct registry and tag
 (k8s-master)> ./tools/deployment/multinode/141-compute-kit-opencontrail.sh
 (k8s-master)> ./tools/deployment/developer/ceph/100-horizon.sh

Installation of Contrail Helm Charts

Use this procedure to install the Contrail Helm charts.

1. Label the Contrail pods. All Contrail pods are to be deployed in the namespace contrail, using the
following labels:

• Controller components—config, control, analytics

• vRouter kernel—opencontrail.org/vrouter-kernel

• vRouter DPDK—opencontrail.org/vrouter-dpdk

The following example shows how to label ubuntu-contrail-11 as DPDK and label ubuntu-contrail-10as
kernel vrouter.

(k8s-master)> kubectl label node ubuntu-contrail-11 opencontrail.org/vrouter-dpdk=enabled
(k8s-master)> kubectl label node ubuntu-contrail-10 opencontrail.org/vrouter-kernel=enabled

109

(k8s-master)> kubectl label nodes ubuntu-contrail-9 ubuntu-contrail-10 ubuntu-contrail-11
opencontrail.org/controller=enabled

2. Create Kubernetes ClusterRoleBinding for Contrail.

(k8s-master)> cd $CHD_PATH
(k8s-master)> kubectl replace -f ${CHD_PATH}/rbac/cluster-admin.yaml

3. Set up the Contrail Helm charts and set the configuration settings specific to your system in the
values.yaml file for each of the charts.

 (k8s-master)> cd $CHD_PATH
 (k8s-master)> make

 # Please note in below example, 192.168.1.0/24 is "Control/Data" network
 # Export variables
 (k8s-master)> export CONTROLLER_NODES="192.168.1.43,192.168.1.44,192.168.1.45"
 (k8s-master)> export VROUTER_GATEWAY="192.168.1.1"
 (k8s-master)> export CONTROL_DATA_NET_LIST="192.168.1.0/24"
 (k8s-master)> export BGP_PORT="1179"

 # [Optional] By default, it will pull latest image from opencontrailnightly

 (k8s-master)> export CONTRAIL_REGISTRY="opencontrailnightly"
 (k8s-master)> export CONTRAIL_TAG="latest"

 # [Optional] only if you are pulling images from a private docker registry
 export CONTRAIL_REG_USERNAME="abc@abc.com"
 export CONTRAIL_REG_PASSWORD="password"

 tee /tmp/contrail-env-images.yaml << EOF
 global:
 contrail_env:
 CONTROLLER_NODES: ${CONTROLLER_NODES}
 CONTROL_NODES: ${CONTROL_NODES:-CONTROLLER_NODES}
 LOG_LEVEL: SYS_NOTICE
 CLOUD_ORCHESTRATOR: openstack
 AAA_MODE: cloud-admin
 VROUTER_GATEWAY: ${VROUTER_GATEWAY}
 BGP_PORT: ${BGP_PORT}
 contrail_env_vrouter_kernel:

110

 CONTROL_DATA_NET_LIST: ${CONTROL_DATA_NET_LIST}
 AGENT_MODE: nic
 contrail_env_vrouter_dpdk:
 AGENT_MODE: dpdk
 images:
 tags:
 kafka: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-kafka:$
{CONTRAIL_TAG:-latest}"
 cassandra: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-cassandra:$
{CONTRAIL_TAG:-latest}"
 redis: "redis:4.0.2"
 zookeeper: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-zookeeper:$
{CONTRAIL_TAG:-latest}"
 contrail_control: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
control-control:${CONTRAIL_TAG:-latest}"
 control_dns: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-control-
dns:${CONTRAIL_TAG:-latest}"
 control_named: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-control-
named:${CONTRAIL_TAG:-latest}"
 config_api: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-config-api:$
{CONTRAIL_TAG:-latest}"
 config_devicemgr: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
config-devicemgr:${CONTRAIL_TAG:-latest}"
 config_schema_transformer: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-
controller-config-schema:${CONTRAIL_TAG:-latest}"
 config_svcmonitor: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
config-svcmonitor:${CONTRAIL_TAG:-latest}"
 webui_middleware: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-webui-
job:${CONTRAIL_TAG:-latest}"
 webui: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-webui-web:$
{CONTRAIL_TAG:-latest}"
 analytics_api: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-api:$
{CONTRAIL_TAG:-latest}"
 contrail_collector: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
collector:${CONTRAIL_TAG:-latest}"
 analytics_alarm_gen: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
alarm-gen:${CONTRAIL_TAG:-latest}"
 analytics_query_engine: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
query-engine:${CONTRAIL_TAG:-latest}"
 analytics_snmp_collector: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-
analytics-snmp-collector:${CONTRAIL_TAG:-latest}"
 contrail_topology: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-snmp-
topology:${CONTRAIL_TAG:-latest}"

111

 build_driver_init: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-kernel-
build-init:${CONTRAIL_TAG:-latest}"
 vrouter_agent: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-agent:$
{CONTRAIL_TAG:-latest}"
 vrouter_init_kernel: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-
kernel-init:${CONTRAIL_TAG:-latest}"
 vrouter_dpdk: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-agent-dpdk:$
{CONTRAIL_TAG:-latest}"
 vrouter_init_dpdk: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-kernel-
init-dpdk:${CONTRAIL_TAG:-latest}"
 nodemgr: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-nodemgr:${CONTRAIL_TAG:-
latest}"
 contrail_status: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-status:$
{CONTRAIL_TAG:-latest}"
 node_init: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-node-init:$
{CONTRAIL_TAG:-latest}"
 dep_check: quay.io/stackanetes/kubernetes-entrypoint:v0.2.1
EOF

NOTE: If any other environment variables need to be added, add them in the values.yaml file
of the respective charts.

[Optional] only if you are pulling contrail images from a private registry
tee /tmp/contrail-registry-auth.yaml << EOF
global:
 images:
 imageCredentials:
 registry: ${CONTRAIL_REGISTRY:-opencontrailnightly}
 username: ${CONTRAIL_REG_USERNAME}
 password: ${CONTRAIL_REG_PASSWORD}
EOF

[Optional] only if you are pulling images from a private registry
export CONTRAIL_REGISTRY_ARG="--values=/tmp/contrail-registry-auth.yaml "

4. Use Helm install commands to deploy each of the Contrail Helm charts.

 (k8s-master)> helm install --name contrail-thirdparty ${CHD_PATH}/contrail-thirdparty \
 --namespace=contrail \

112

 --values=/tmp/contrail-env-images.yaml \
 ${CONTRAIL_REGISTRY_ARG}

 (k8s-master)> helm install --name contrail-controller ${CHD_PATH}/contrail-controller \
 --namespace=contrail \
 --values=/tmp/contrail-env-images.yaml \
 ${CONTRAIL_REGISTRY_ARG}

 (k8s-master)> helm install --name contrail-analytics ${CHD_PATH}/contrail-analytics \
 --namespace=contrail \
 --values=/tmp/contrail-env-images.yaml \
 ${CONTRAIL_REGISTRY_ARG}

 # Edit contrail-vrouter/values.yaml and make sure that
global.images.tags.vrouter_init_kernel is right. Image tag name will be different depending
upon your linux. Also set the global.node.host_os to ubuntu or centos depending on your system

 (k8s-master)> helm install --name contrail-vrouter ${CHD_PATH}/contrail-vrouter \
 --namespace=contrail \
 --values=/tmp/contrail-env-images.yaml \
 ${CONTRAIL_REGISTRY_ARG}

5. When the Contrail pods are up and running, deploy the OpenStack Heat chart.

Edit ${OSH_PATH}/tools/overrides/backends/opencontrail/nova.yaml and
${OSH_PATH}/tools/overrides/backends/opencontrail/heat.yaml
to make sure that you are pulling the right opencontrail init container image
(k8s-master)> ./tools/deployment/multinode/151-heat-opencontrail.sh

6. When finished, run the compute kit test.

(k8s-master)> ./tools/deployment/multinode/143-compute-kit-opencontrail-test.sh

Basic Testing OpenStack Helm Contrail Cluster

Use the following commands to perform basic testing on the virtual network and the virtual machines in
your OpenStack Helm Contrail cluster.

(k8s-master)> export OS_CLOUD=openstack_helm

(k8s-master)> openstack network create MGMT-VN

113

(k8s-master)> openstack subnet create --subnet-range 172.16.1.0/24 --network MGMT-VN MGMT-VN-
subnet

(k8s-master)> openstack server create --flavor m1.tiny --image 'Cirros 0.3.5 64-bit' \
--nic net-id=MGMT-VN \
Test-01

(k8s-master)> openstack server create --flavor m1.tiny --image 'Cirros 0.3.5 64-bit' \
--nic net-id=MGMT-VN \
Test-02

Accessing the Contrail OpenStack Helm Cluster

Use the following topic to access the OpenStack and Contrail Web UI and prepare the OpenStack client
for command-line interface (CLI):

"Accessing a Contrail OpenStack Helm Cluster" on page 118

RELATED DOCUMENTATION

Installing and Managing Contrail Microservices Architecture Using Helm Charts | 85

Frequently Asked Questions About Contrail and Helm Charts | 121

Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata | 114

Accessing a Contrail OpenStack Helm Cluster | 118

Using Helm Charts to Provision All-in-One Contrail with OpenStack
Ocata

IN THIS SECTION

System Specifications | 115

Installation Steps | 115

Accessing the Contrail OpenStack Helm Cluster | 118

114

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

This is the installation procedure for using Helm charts to provision an all-in-one Contrail system with
OpenStack Ocata. This is not a high availability configuration.

NOTE: All-in-one systems are only used for testing or for demonstration purposes.

System Specifications

This procedure uses Helm to provision an OpenStack Ocata Contrail all-in-one cluster without high
availability.

This procedure is tested with:

• Operating system: Ubuntu 16.04.3 LTS

• Kernel: 4.4.0-87-generic

• Docker: 1.13.1-cs9

• Helm: v2.7.2

• Kubernetes: v1.8.3

• OpenStack: Ocata

This setup was tested on a system with the following specifications:

• CPU: 8

• RAM: 32 GB

• HDD: 120 GB

Installation Steps

1. Get the contrail-helm-deployer.

From Juniper Networks, download contrail-helm-deployer-5.1.0-0.38.tgz onto your provisioning host.

115

https://www.juniper.net/support/downloads/?p=contrail#sw

• Untar contrail-helm-deployer-5.1.0-0.38.tgz.

tar -zxf contrail-helm-deployer-5.1.0-0.38.tgz -C /opt/

2. Export required variables.

export BASE_DIR=$(pwd)
export OSH_PATH=${BASE_DIR}/openstack-helm
export OSH_INFRA_PATH=${BASE_DIR}/openstack-helm-infra
export CHD_PATH=${BASE_DIR}/contrail-helm-deployerExport variables

3. Install necessary packages and deploy Kubernetes.

NOTE: If you want to install a different version of Kubernetes, CNI, or Calico, edit $
{OSH_INFRA_PATH}/tools/gate/devel/local-vars.yaml to override the default values in $
{OSH_INFRA_PATH}/tools/gate/playbooks/vars.yaml.

cd ${OSH_PATH}
./tools/deployment/developer/common/001-install-packages-opencontrail.sh
./tools/deployment/developer/common/010-deploy-k8s.sh

4. Install OpenStack and the Heat client.

./tools/deployment/developer/common/020-setup-client.sh

5. Deploy OpenStack Helm-related charts.

./tools/deployment/developer/nfs/031-ingress-opencontrail.sh

./tools/deployment/developer/nfs/040-nfs-provisioner.sh

./tools/deployment/developer/nfs/050-mariadb.sh

./tools/deployment/developer/nfs/060-rabbitmq.sh

./tools/deployment/developer/nfs/070-memcached.sh

./tools/deployment/developer/nfs/080-keystone.sh

./tools/deployment/developer/nfs/100-horizon.sh

./tools/deployment/developer/nfs/120-glance.sh

./tools/deployment/developer/nfs/151-libvirt-opencontrail.sh

./tools/deployment/developer/nfs/161-compute-kit-opencontrail.sh

116

6. Deploy Contrail Helm charts.

cd $CHD_PATH

make

Set the IP of your CONTROL_NODES (specify your control data ip, if you have one)
export CONTROL_NODES=10.87.65.245
set the control data network cidr list separated by comma and set the respective gateway
export CONTROL_DATA_NET_LIST=10.87.65.128/25
export VROUTER_GATEWAY=10.87.65.129

kubectl label node opencontrail.org/controller=enabled --all
kubectl label node opencontrail.org/vrouter-kernel=enabled --all

kubectl replace -f ${CHD_PATH}/rbac/cluster-admin.yaml

tee /tmp/contrail.yaml << EOF
global:
 contrail_env:
 CONTROLLER_NODES: 172.17.0.1
 CONTROL_NODES: ${CONTROL_NODES}
 LOG_LEVEL: SYS_NOTICE
 CLOUD_ORCHESTRATOR: openstack
 AAA_MODE: cloud-admin
 CONTROL_DATA_NET_LIST: ${CONTROL_DATA_NET_LIST}
 VROUTER_GATEWAY: ${VROUTER_GATEWAY}
EOF

helm install --name contrail ${CHD_PATH}/contrail \
--namespace=contrail --values=/tmp/contrail.yaml

7. Deploy Heat charts.

cd ${OSH_PATH}
./tools/deployment/developer/nfs/091-heat-opencontrail.sh

117

Accessing the Contrail OpenStack Helm Cluster

Use the following topic to access the OpenStack and Contrail Web UI and prepare the OpenStack client
for command-line interface (CLI):

"Accessing a Contrail OpenStack Helm Cluster" on page 118

RELATED DOCUMENTATION

Installing and Managing Contrail Microservices Architecture Using Helm Charts | 85

Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability | 103

Accessing a Contrail OpenStack Helm Cluster | 118

Frequently Asked Questions About Contrail and Helm Charts | 121

Accessing a Contrail OpenStack Helm Cluster

IN THIS SECTION

Overview | 119

Installing the OpenStack Client | 119

Create openstackrc File and Test OpenStack Client | 119

Accessing the Contrail Web UI | 120

Accessing OpenStack Horizon | 120

Accessing the Virtual Machine Console from Horizon | 121

OpenStack References | 121

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

When the provisioning of Contrail with Helm charts is completed, use this topic to access the OpenStack
and Contrail Web UI and prepare the OpenStack client for command-line interface (CLI).

118

Overview

This topic assumes you have already installed Contrail and OpenStack using Helm charts, typically by
using these procedures:

• "Installing and Managing Contrail Microservices Architecture Using Helm Charts" on page 85

• "Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability " on
page 103

• "Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata " on page 114

• "Frequently Asked Questions About Contrail and Helm Charts" on page 121

Installing the OpenStack Client

Use this procedure to install the OpenStack CLI tool.

1. Install the OpenStack client CLI tool on the primary Ubuntu host.

apt install python-dev python-pip -y
pip install --upgrade pip
pip install python-openstackclient OR
apt-get install python-openstackclient

2. If you have problems installing the python-dev package, add another repository.

Add following repo to source "/etc/apt/sources.list"
deb http://archive.ubuntu.com/ubuntu/ xenial-updates main universe multiverse
apt-get update
apt-get install python-dev

Create openstackrc File and Test OpenStack Client

1. Create an openstackrc file.

cat > /root/openstackrc << EOF
export OS_USERNAME=admin
export OS_PASSWORD=password
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://keystone-api.openstack:35357/v3

119

The following lines can be omitted
#export OS_TENANT_ID=tenantIDString
#export OS_REGION_NAME=regionName
export OS_IDENTITY_API_VERSION=3
export OS_USER_DOMAIN_NAME=${OS_USER_DOMAIN_NAME:-"Default"}
export OS_PROJECT_DOMAIN_NAME=${OS_PROJECT_DOMAIN_NAME:-"Default"}
EOF

2. Test the OpenStack client.

source openstackrc
openstack server list
openstack stack list
openstack --help

Accessing the Contrail Web UI

1. Access the Contrail Web UI using port 8143. Use the IP address of the host where the contrail-webui
pod is running, with the port 8143.

https://<IP address host with contrail-webui>:8143

2. At the Contrail login screen, enter the default username and password: admin, password.

Accessing OpenStack Horizon

The OpenStack Web UI (GUI) service is exposed by the Kubernetes service, using the IP address of the
node port and the default port 31000.

1. Check the NodePort used for the OpenStack Web UI pod.

kubectl get svc -n openstack | grep horizon-int
horizon-int NodePort 10.99.150.28 <none> 80:31000/TCP 4d

2. Access the OpenStack Web UI and log in with the default username and password: admin, password.

http://<IP address NodePort>:31000/auth/login/?next=/

120

Accessing the Virtual Machine Console from Horizon

To access the virtual machine (VM) console, add the nova novncproxy fully-qualified domain name
(FQDN) in the /etc/hosts file, using the host-ip where the osh-ingress pod is running.

The following example for MAC-OS shows the ingress pod running on the host with IP address
10.13.82.233.

/private/etc/
hosts

127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
10.13.82.233 nova-novncproxy.openstack.svc.cluster.local

NOTE: If you don't want to make changes in /etc/hosts, you can replace the nova-
novncproxy.openstack.svc.cluster.local portion in the URL with the IP address where the OSH
ingress pod is running.

OpenStack References

For more information about accessing and using OpenStack, see the following OpenStack resources:

• Create OpenStack client environment scripts

• Install the OpenStack command-line clients

• External DNS to FQDN/Ingress

Frequently Asked Questions About Contrail and Helm Charts

IN THIS SECTION

How do I set up the vhost0 interface for the vrouter on the non-management interface of the compute
node? | 122

121

https://docs.openstack.org/newton/install-guide-ubuntu/keystone-openrc.html
https://docs.openstack.org/newton/user-guide/common/cli-install-openstack-command-line-clients.html
https://docs.openstack.org/openstack-helm/latest/install/ext-dns-fqdn.html

How do I configure the Contrail control BGP server to listen on a different port? | 123

How can I pass additional parameters to services in Contrail by using the configuration file in INI format?
 | 123

How do I configure services for the vrouter agent? | 123

What are the Contrail services that can be configured? | 124

How can I pass additional parameters to the Contrail Web UI services a with configuration file in JS
format? | 125

How can I verify all pods of Contrail are up and running? | 125

How can I see the logs of each of the containers? | 125

How can I enter into a pod? | 125

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

This topic presents frequently asked questions and answers about Contrail and Helm Charts.

How do I set up the vhost0 interface for the vrouter on the non-management
interface of the compute node?

NOTE: Some Contrail versions assume a single name for all of the non-management interfaces in
your cluster.

If your non-management interface is eth1, in the contrail-vrouter/values.yaml set the
contrail_env.PHYSICAL_INTERFACE to eth1 and set the contrail_env.VROUTER_GATEWAY to the IP address of the non-
management gateway.

Sample config
contrail_env:
 CONTROLLER_NODES: 1.1.1.10
 LOG_LEVEL: SYS_NOTICE
 CLOUD_ORCHESTRATOR: openstack
 AAA_MODE: cloud-admin

122

 PHYSICAL_INTERFACE: eth1
 VROUTER_GATEWAY: 1.1.1.1

How do I configure the Contrail control BGP server to listen on a different port?

To configure a non-default BGP port, in the contrail-controller/values.yaml set the contrail_env.BGP to the
desired port.

Sample config
contrail_env:
 CONTROLLER_NODES: 1.1.1.10
 LOG_LEVEL: SYS_NOTICE
 CLOUD_ORCHESTRATOR: openstack
 AAA_MODE: cloud-admin
 BGP_PORT: 1179

How can I pass additional parameters to services in Contrail by using the
configuration file in INI format?

The following example configures the minimum_diskGB parameter for the node manager of the analytics
database.

Sample config
contrail_env:
 DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: "2"

How do I configure services for the vrouter agent?

The following is an example configuration for the vrouter agent.

Sample config
contrail_env:
 VROUTER_AGENT__FLOWS__thread_count: "2"
 VROUTER_AGENT__METADATA__metadata_use_ssl = True
 VROUTER_AGENT__METADATA__metadata_client_cert = /usr/share/ca-certificates/contrail/
client_cert.pem
 VROUTER_AGENT__METADATA__metadata_client_key = /usr/share/ca-certificates/contrail/

123

client_key.pem
 VROUTER_AGENT__METADATA__metadata_ca_cert = /usr/share/ca-certificates/contrail/cacert.pem

What are the Contrail services that can be configured?

Configurable services at this time include the following:

• Configurable services for config node:

• SVC_MONITOR

• API

• DEVICE_MANAGER

• SCHEMA

• CONFIG_NODEMGR

• Configurable services for control:

• CONTROL

• DNS

• CONTROL_NODEMGR

• Configurable services for analytics:

• ALARM_GEN

• TOPOLOGY

• ANALYTICS_API

• COLLECTOR

• SNMP_COLLECTOR

• QUERY_ENGINE

• ANALYTICS_NODEMGR

• Configurable services for database:

• DATABASE_NODEMGR

• Configurable services for vrouter:

• VROUTER_AGENT

124

• VROUTER_AGENT_NODEMGR

How can I pass additional parameters to the Contrail Web UI services a with
configuration file in JS format?

Define the exact variable in the environment. Available configuration settings can be found in the source
code, see https://github.com/Juniper/contrail-container-builder/blob/master/containers/controller/
webui/base/entrypoint.sh#L31-L199 .

Sample config
contrail_env:
 WEBUI_SSL_CIPHERS: "ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384"

How can I verify all pods of Contrail are up and running?

Use the following command to list all pods of Contrail.

kubectl get pods -n openstack -o wide | grep contrail-

How can I see the logs of each of the containers?

Contrail logs are stored under /var/log/contrail/ on each node. To check for the standard output (stdout)
log for each container:

kubectl logs -f <contrail-pod-name> -n openstack

How can I enter into a pod?

Use the kubectl command.

kubectl exec -it <contrail-pod> -n openstack -- bash

125

https://github.com/Juniper/contrail-container-builder/blob/master/containers/controller/webui/base/entrypoint.sh#L31-L199
https://github.com/Juniper/contrail-container-builder/blob/master/containers/controller/webui/base/entrypoint.sh#L31-L199

Installing Contrail Networking for Kubernetes using Helm

NOTE: Starting in Contrail Release 1912.L1, Helm support is unavailable in Contrail Networking.
The Helm support content in this document supports Contrail Networking Releases 1907
through 1912.

This procedure describes how to deploy Contrail with Helm charts, but without OpenStack.

NOTE: Nodes should be configured so the master can ssh into Minion. If ssh keys are needed,
these should be specified in the inventory file.

Follow these steps to deploy Contrail with Helm:

1. Download the file contrail-helm-deployer-release-tag.tgz onto your provisioning host. It contains
the required two required Helm repositories: /opt/openstack-helm-infra (which contains code to
deploy k8s) and /opt/contrail-helm-deployer.

2. Run the command scp contrail-helm-deployer-release-tag.tgz for all nodes in the cluster.

3. Untar contrail-helm-deployer-release-tag.tgz on all nodes:

tar -zxf contrail-helm-deployer-release-tag.tgz -C /opt/

4. Using any node in the cluster, export the following variables:

export BASE_DIR=/opt
export OSH_INFRA_PATH=${BASE_DIR}/openstack-helm-infra
export CHD_PATH=${BASE_DIR}/contrail-helm-deployer

5. In this step, all the required packages are installed and Kubernetes is deployed. If you want to install
a different version of Kubernetes or CNI, edit the file ${OSH_INFRA_PATH}/tools/gate/devel/
multinode-vars.yaml. Doing this overrides the default values in ${OSH_INFRA_PATH}/playbooks/
vars.yaml. Following is an example multinode-vars.yaml file, with sample values indicated for the
private_registries section:

version:
 kubernetes: v1.9.3

126

 helm: v2.7.2
 cni: v0.6.0
docker:
 # list of insecure_registries, from where you will be pulling container images
 insecure_registries:
 - "10.87.65.243:5000"
 # list of private secure docker registry auth info, from where you will be pulling
container images
 #private_registries:
 # - name: docker-registry-name
 # username: username@abc.xyz
 # email: username@abc.xyz
 # password: password
 # secret_name: contrail-image-secret
 # namespace: openstack
kubernetes:
 network:
 default_device: ens3
 cluster:
 cni: calico
 pod_subnet: 192.168.0.0/16
 domain: cluster.local

6. Install the dependent packages using sudo apt-get.

sudo apt-get update
sudo apt-get install --no-install-recommends -y ca-certificates make jq nmap curl uuid-
runtime ipcalc linux-headers-$(uname -r)

7. Prepare the nodes definition in $OSH_INFRA_PATH/tools/gate/devel/multinode-inventory.yaml,
similar to this example:

all:
 children:
 primary:
 hosts:
 controller1:
 ansible_port: 22
 ansible_host: 10.10.0.1
 ansible_user: root

127

 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 ansible_ssh_private_key_file: /path/to/ssh/key/file
 nodes:
 hosts:
 controller2:
 ansible_port: 22
 ansible_host: 10.10.0.2
 ansible_user: root
 ansible_ssh_extra_args: -o StrictHostKeyChecking=no
 ansible_ssh_private_key_file: /path/to/ssh/key/file

8. Deploy k8s to the nodes and use the kubectl get nodes command to verify the deployment is
successful.

cd ${OSH_INFRA_PATH}
make dev-deploy setup-host multinode
make dev-deploy k8s multinode

nslookup kubernetes.default.svc.cluster.local || /bin/true
kubectl get nodes -o wide

9. Set the correct labels for the nodes.

kubectl label node controller1.localdomain --overwrite openstack-compute-node=disable
kubectl label node controller1.localdomain opencontrail.org/controller=enabled
kubectl label node controller2.localdomain --overwrite openstack-compute-node=disable
kubectl label node controller2.localdomain opencontrail.org/controller=enabled

10. Deploy the OpenContrail charts.

cd $CHD_PATH
 make
Change k8s rbac settings
 kubectl replace -f ${CHD_PATH}/rbac/cluster-admin.yaml

11. Prepare the values for Contrail in /tmp/contrail.yml, similar to the following example.

128

NOTE: This example uses bash variables you should replace with exact values using any
preferred means (sed, eval, cat, and so on). Similarly, replace the other variables with actual
values where indicated, including IPDATA_SERVICE_HOST, METADATA_PROXY_SECRET, and keystone
IP/VIP details.

global:
 images:
 tags:
 kafka: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-kafka:$
{CONTRAIL_TAG:-latest}"
 cassandra: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-cassandra:$
{CONTRAIL_TAG:-latest}"
 redis: "redis:4.0.2"
 zookeeper: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-external-zookeeper:$
{CONTRAIL_TAG:-latest}"
 contrail_control: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
control-control:${CONTRAIL_TAG:-latest}"
 control_dns: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-control-
dns:${CONTRAIL_TAG:-latest}"
 control_named: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-control-
named:${CONTRAIL_TAG:-latest}"
 config_api: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-config-
api:${CONTRAIL_TAG:-latest}"
 config_devicemgr: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
config-devicemgr:${CONTRAIL_TAG:-latest}"
 config_schema_transformer: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-
controller-config-schema:${CONTRAIL_TAG:-latest}"
 config_svcmonitor: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
config-svcmonitor:${CONTRAIL_TAG:-latest}"
 webui_middleware: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-
webui-job:${CONTRAIL_TAG:-latest}"
 webui: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-controller-webui-web:$
{CONTRAIL_TAG:-latest}"
 analytics_api: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-api:$
{CONTRAIL_TAG:-latest}"
 contrail_collector: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
collector:${CONTRAIL_TAG:-latest}"
 analytics_alarm_gen: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
alarm-gen:${CONTRAIL_TAG:-latest}"
 analytics_query_engine: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-

129

query-engine:${CONTRAIL_TAG:-latest}"
 analytics_snmp_collector: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-
analytics-snmp-collector:${CONTRAIL_TAG:-latest}"
 contrail_topology: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-analytics-
topology:${CONTRAIL_TAG:-latest}"
 build_driver_init: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-kernel-
build-init:${CONTRAIL_TAG:-latest}"
 vrouter_agent: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-agent:$
{CONTRAIL_TAG:-latest}"
 vrouter_init_kernel: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-
kernel-init:${CONTRAIL_TAG:-latest}"
 vrouter_dpdk: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-agent-dpdk:$
{CONTRAIL_TAG:-latest}"
 vrouter_init_dpdk: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-vrouter-kernel-
init-dpdk:${CONTRAIL_TAG:-latest}"
 nodemgr: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-nodemgr:${CONTRAIL_TAG:-
latest}"
 contrail_status: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-status:$
{CONTRAIL_TAG:-latest}"
 node_init: "${CONTRAIL_REGISTRY:-opencontrailnightly}/contrail-node-init:$
{CONTRAIL_TAG:-latest}"
 dep_check: quay.io/stackanetes/kubernetes-entrypoint:v0.2.1

 contrail_env:
 CONTROLLER_NODES: 10.10.0.1,10.10.0.2
 LOG_LEVEL: SYS_DEBUG
 CLOUD_ORCHESTRATOR: openstack
 JVM_EXTRA_OPTS: "-Xms1g -Xmx2g"
 BGP_PORT: "1179"
 CONFIG_DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: "2"
 DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: "2"
 IPFABRIC_SERVICE_HOST: metadata IP of old OpenStack setup
 METADATA_PROXY_SECRET: metadata proxy secret of old OpenStack setup
endpoints:
 keystone:
 auth:
 username: admin
 password: password
 project_name: admin
 user_domain_name: admin_domain
 project_domain_name: admin_domain
 region_name: RegionOne
 hosts:

130

 default: keystone IP/VIP
 path:
 default: /v3
 port:
 admin:
 default: 35357
 api:
 default: 5000
 scheme:
 default: http
 host_fqdn_override:
 default: keystone IP/VIP
 namespace: null

12. If you are using a private registry, add the username and password under the imageCredentials section
as follows:

global:
 images:
 imageCredentials:
 registry: ${CONTRAIL_REGISTRY:-opencontrailnightly}
 username: ${CONTRAIL_REG_USERNAME}
 password: ${CONTRAIL_REG_PASSWORD}

13. Finally, deploy the Contrail charts:

helm install --name contrail-thirdparty ${CHD_PATH}/contrail-thirdparty --
namespace=contrail --values=/tmp/contrail.yaml
helm install --name contrail-analytics ${CHD_PATH}/contrail-analytics --namespace=contrail
--values=/tmp/contrail.yaml
helm install --name contrail-controller ${CHD_PATH}/contrail-controller --
namespace=contrail --values=/tmp/contrail.yaml

After all containers are deployed, you can check cluster status using the contrail-status command. You
can also use the Contrail web browser interface to view and verify the cluster status.

131

Verifying Configuration for CNI for Kubernetes

IN THIS SECTION

View Pod Name and IP Address | 132

Verify Reachability of Pods | 132

Verify If Isolated Namespace-Pods Are Not Reachable | 133

Verify If Non-Isolated Namespace-Pods Are Reachable | 133

Verify If a Namespace is Isolated | 134

Use the verification steps in this topic to view and verify your configuration of Contrail Container
Network Interface (CNI) for Kubernetes.

View Pod Name and IP Address

Use the following command to view the IP address allocated to a pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide
NAMESPACE NAME READY STATUS RESTARTS AGE
IP NODE
default client-1 1/1 Running 0
19d 10.47.25.247 k8s-minion-1-3
default client-2 1/1 Running 0
19d 10.47.25.246 k8s-minion-1-1
default client-x 1/1 Running 0
19d 10.84.21.272 k8s-minion-1-1

Verify Reachability of Pods

Perform the following steps to verify if the pods are reachable to each other.

1. Determine the IP address and name of the pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide
NAME READY STATUS RESTARTS AGE IP NODE

132

example1-36xpr 1/1 Running 0 43s 10.47.25.251 b3s37
example2-pldp1 1/1 Running 0 39s 10.47.25.250 b3s37

2. Ping the destination pod from the source pod to verify if the pod is reachable.

root@device ~]# kubectl exec -it example1-36xpr ping 10.47.25.250
PING 10.47.25.250 (10.47.25.250): 56 data bytes
64 bytes from 10.47.25.250: icmp_seq=0 ttl=63 time=1.510 ms
64 bytes from 10.47.25.250: icmp_seq=1 ttl=63 time=0.094 ms

Verify If Isolated Namespace-Pods Are Not Reachable

Perform the following steps to verify if pods in isolated namespaces cannot be reached by pods in non-
isolated namespaces.

1. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example3-bvqx5 1/1 Running 0 1h 10.47.25.249 b3s37

2. Determine the IP address of a pod in a non-solated namespace.

[root@device ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
example1-36xpr 1/1 Running 0 15h
example2-pldp1 1/1 Running 0 15h

3. Ping the IP address of the pod in the isolated namespace from the pod in the non-isolated
namespace.

[root@device ~]# kubectl exec -it example1-36xpr ping 10.47.25.249
 --- 10.47.255.249 ping statistics ---
 2 packets transmitted, 0 packets received, 100% packet loss

Verify If Non-Isolated Namespace-Pods Are Reachable

Perform the following steps to verify if pods in non-isolated namespaces can be reached by pods in
isolated namespaces.

133

1. Determine the IP address of a pod in a non-isolated namespace.

[root@device ~]# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example1-36xpr 1/1 Running 0 15h 10.47.25.251 b3s37
example2-pldp1 1/1 Running 0 15h 10.47.25.250 b3s37

2. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example3-bvqx5 1/1 Running 0 1h 10.47.25.249 b3s37

3. Ping the IP address of the pod in the non-isolated namespace from a pod in the isolated namespace.

[root@device ~]# kubectl exec -it example3-bvqx5 -n test-isolated-ns ping 10.47.25.251
PING 10.47.25.251 (10.47.25.251): 56 data bytes
64 bytes from 10.47.25.251: icmp_seq=0 ttl=63 time=1.467 ms
64 bytes from 10.47.25.251: icmp_seq=1 ttl=63 time=0.137 ms
^C--- 10.47.25.251 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.137/0.802/1.467/0.665 ms

Verify If a Namespace is Isolated

Namespace annotations are used to turn on isolation in a Kubernetes namespace. In isolated Kubernetes
namespaces, the namespace metadata is annotated with the opencontrail.org/isolation : true annotation.

Use the following command to view annotations on a namespace.

[root@a7s16 ~]#
kubectl describe namespace test-isolated-ns
Name: test-isolated-ns
Labels: <none>
Annotations: opencontrail.org/isolation : true Namespace is isolated
Status: Active

134

RELATED DOCUMENTATION

Contrail Integration with Kubernetes

135

CHAPTER 7

Using Contrail with Mesos

IN THIS CHAPTER

Understanding Contrail with Mesos Architecture | 136

Installing Contrail with Mesos | 141

Understanding Contrail with Mesos Architecture

IN THIS SECTION

Contrail with Mesos Architecture Diagram | 137

Setup information | 137

Components | 138

From Contrail Release 5.1.x, Contrail overlay and non-overlay network virtualization features are also
available in Apache Mesos environment. The features are available in the commercial version of
Mesosphere DC/OS.

136

Contrail with Mesos Architecture Diagram

Setup information

Setup is performed in two parts:

• DC/OS installation.

For DC/OS setup, refer to https://dcos.io/install.

• Contrail installation.

For Contrail installation, refer to https://github.com/Juniper/contrail-ansible-deployer.

NOTE: You must update the inventory file and set the orchestrator as mesos.

Master nodes consists of:

137

https://dcos.io/install
https://github.com/Juniper/contrail-ansible-deployer

• DC/OS master components.

For details, refer to https://docs.mesosphere.com/1.11/overview/architecture/components/.

• Contrail master components including Contrail Controller, Analytics, Config, and UI.

Slave/Agent nodes consists of:

• Contrail Agent.

• Contrail vRouter kernel module.

• Contrail CNI.

• Contrail Mesos Manager.

• DC/OS slave components.

For details, refer to https://docs.mesosphere.com/1.11/overview/architecture/components/.

Components

The following components are a part of the architecture:

Contrail Controller

Contrail controller performs all the decision making. It includes config management, analytics, UI and
control plane components for network virtualization. For further details, refer to https://github.com/
Juniper/contrail-controller.

Contrail controller exposes APIs for creating configuration and updating virtual network components. In
Mesos, mesos manager updates the task (universal docker) information to the Contrail controller via API
server. All Contrail controller components are microservice docker containers.

Mesos Manager

Mesos manager consists of two sub modules:

• VNC server.

• Interaction with CNI and mesos agent.

138

https://docs.mesosphere.com/1.11/overview/architecture/components/
https://docs.mesosphere.com/1.11/overview/architecture/components/
https://github.com/Juniper/contrail-controller
https://github.com/Juniper/contrail-controller

Mesos manager application runs inside a docker on every slave node.

Mesos manager creates two networking by default: mesos-default-pod-task network and ip-fabric
network.

All the pods and tasks are created in the mesos-default-pod-task network.

ip-fabric network is created in the respective domains of mesos-default and project-default.

CNI receives the task information and posts it to the Mesos manager. On receiving the task information,
the Mesos manager creates the contrail-vnc objects.

Configuration information for the Mesos manager is present in contrail-mesos.conf file. The file is
located at /etc/contrail/contrail-mesos.conf in the mesos manager docker.

Sample of contrail-mesos.conf file:

[MESOS]
listen_ip_addr=127.0.0.1
listen_port=6991
pod_task_subnets=10.x.x.0/12
ip_fabric_subnets=10.x.x.0/12

[VNC]
vnc_endpoint_ip=127.0.0.1
vnc_endpoint_port=8082
admin_user=admin
admin_password=admin
admin_tenant=admin
rabbit_server=127.0.0.1
rabbit_port=5673
cassandra_server_list=127.0.0.1:9161

139

[DEFAULTS]
disc_server_ip=127.0.0.1
disc_server_port=5998
log_local=1
log_level=SYS_NOTICE
log_file=/var/log/contrail/contrail-mesos-manager.log

[SANDESH]
#sandesh_ssl_enable=False
#introspect_ssl_enable=False
#sandesh_keyfile=/etc/contrail/ssl/private/server-privkey.pem
#sandesh_certfile=/etc/contrail/ssl/certs/server.pem
#sandesh_ca_cert=/etc/contrail/ssl/certs/ca-cert.pem

You can add the network to pod or task through annotation. You can set the network using labels.

Sample task/pod input json file:

networks": [
 {
 "name": "contrail-cni-plugin",
 "mode": "container",
 "labels": {
 "networks": "default-domain:default:blue-network",
 "pod-subnets": "default-domain:default:blue-network"
 }
 }

Introspect for mesos-manager objects on the port 8109.

Contrail Container Network Interface (CNI)

The Container Network Interface (CNI) is located at /opt/mesosphere/active/cni/contrail-cni-plugin. It
is a run to completion executable file.

The config file is located at /opt/mesosphere/etc/dcos/network/cni/contrail-cni-plugin.conf.

Sample contrail-cni-plugin.conf file:

{
 "cniVersion": "0.2.0",

140

 "contrail" : {
 "vrouter-ip" : "slave-ip",
 "vrouter-port" : 9091,
 "cluster-name" : "slave-hostname",
 "config-dir" : "/var/lib/contrail/ports/vm",
 "poll-timeout" : 15,
 "poll-retries" : 5,
 "log-file" : "/var/log/contrail/cni/opencontrail.log",
 "log-level" : "debug",
 "mesos-ip" : "localhost",
 "mesos-port" : "6991",
 "mode" : "mesos"
 },

 "name": "contrail-cni-plugin",
 "type": "contrail-cni-plugin"
}

Mesos agent invokes Contrail CNI when custom/host network provider is mentioned as contrail-cni-
plugin in the task description.

Installing Contrail with Mesos

The setup process is a 2-step process including DC/OS setup and Contrail setup.

Refer to Mesosphere DC/OS website to set up DC/OS.

Contrail Networking supports DC/OS version—1.11.0.

Contrail Setup

contrail-container-builder is added with two new containers: Mesos manager and mesos-node-init

• mesos-node-init installs Mesos CNI.

• mesos manager and mesos-node-init runs on the worker node.

NOTE: Orchestration is set to Mesos but no Mesos components will be installed through
contrail-ansible-deployer.

Run the following commands to set up Contrail.

141

1. Install ansible and clone ansible deployer.

yum install -y ansible-2.4.2.0 git vim
git clone http://github.com/Juniper/contrail-ansible-deployer
cd contrail-ansible-deployer
ssh-copy-id <all-nodes>

For more details, refer to contrail-ansible-deployer GitHub repository.

2. Verify configure_instances.yml file.

Sample configure_instances.yml file

provider_config:
 bms:
 ssh_pwd: <password>
 ssh_user: root
 ntpserver: <ntp_server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <ip-address-master>
 roles:
 config_database:
 config:
 webui:
 control:
 analytics_database:
 analytics:
 bms2:
 provider: bms
 ip: <ip-address-agent>
 roles:
 mesos_master:
 bms3:
 provider: bms
 ip: <ip-address>
 roles:
 vrouter:
 mesosmanager:
 mesos_agent_private:
 bms4:

142

https://github.com/Juniper/contrail-ansible-deployer

 provider: bms
 ip: <ip-address>
 roles:
 vrouter:
 mesosmanager:
 mesos_agent_public:
global_configuration:
 CONTAINER_REGISTRY: <contrail-registry>
 REGISTRY_PRIVATE_INSECURE: true
contrail_configuration:
 CLOUD_ORCHESTRATOR: mesos
 CONTRAIL_VERSION: queens-master-latest
 RABBITMQ_NODE_PORT: 5673

For more details, refer to Contrail deployment on Mesosphere DC/OS orchestrator.

3. Run Contrail Ansible playbooks.

NOTE: You can specify orchestrator as Mesos in instance.yaml or run in ansible-playbook as -
e orchestrator=mesos.

ansible-playbook -i inventory/ playbooks/configure_instances.yml
ansible-playbook -i inventory/ playbooks/install_contrail.yml

You can also import Mesos cluster in Contrail command. For details, refer to "Importing Contrail Cluster
Data using Contrail Command" on page 47.

RELATED DOCUMENTATION

Understanding Contrail with Mesos Architecture | 136

Importing Contrail Cluster Data using Contrail Command | 47

143

https://github.com/Juniper/contrail-ansible-deployer/blob/master/examples/mesos_bms.md

CHAPTER 8

Using VMware vCenter with Containerized Contrail

IN THIS CHAPTER

Integrating vCenter for Contrail | 144

Configuring Underlay Network for ContrailVM | 152

Installing and Provisioning Contrail VMware vRealize Orchestrator Plugin | 163

Integrating vCenter for Contrail

IN THIS SECTION

Prerequisites | 144

ESX Agent Manager | 145

Set Up vCenter Server | 145

Configure Contrail Parameters | 150

Install Contrail | 150

Monitor and Manage ContrailVM from ESX Agent Manager | 150

These topics provide instructions for integrating Contrail Release 5.1.x and microservices with VMware
vCenter.

Prerequisites

Before you start the integration, ensure that the contrail controller meets the prerequisites given in
"Server Requirements and Supported Platforms" on page 16.

144

Follow these steps to prepare Contrail controller(s):

yum update -y

yum install -y yum-plugin-priorities https://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm

yum install -y python-pip git gcc python-devel sshpass

yum install -y git

pip install “ansible==2.5.0” pyvmomi

ESX Agent Manager

VMware provides a standard vCenter solution called vSphere ESX Agent Manager (EAM), that allows
you to deploy, monitor, and manage ContrailVMs on ESXi hosts.

The ContrailVM is deployed as an Agent VM that is monitored by EAM. With this integration,
ContrailVMs are marked as more critical and privileged than other tenant VMs on the host.

The following are the benefits of running ContrailVM as an AgentVM from EAM:

• Auto-deploy ContrailVMs on ESXi hosts in scope (clusters).

• Manage and Monitor ContrailVMs through EAM in the vSphere web client.

• Integrate with other vCenter features like AddHos, Maintenance Mode, vSphere DRS, vSphere DPM,
and VMWare HA.

These topics provide instructions for integrating Contrail Release 5.1.x and microservices with VMware
vCenter.

Set Up vCenter Server

Follow these steps to set up the vCenter server.

1. Download the Contrail Ansible Deployer (contrail-ansible-deployer-< >.tgz) onto your provisioning
host. You can download the deployer from https://www.juniper.net/support/downloads/?
p=contrail#sw.

2. Untar the tgz.

- tar xvf contrail-ansible-deployer-< >.tgz

145

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw

3. Prepare a vcenter_vars.yml file populated with vCenter server and ESXI hosts parameters. You can
download the CentOS 7.5 and ESXi VM Host from https://www.juniper.net/support/downloads/?
p=contrail#sw.

NOTE: You can see a sample of the vcenter_vars.yml file in the contrail-ansible-deployer/
playbooks /roles/vcenter/vars/vcenter_vars.yml after you extract the image files.

NOTE: The ContrailVM’s Open Virtualization Format (OVF) image must be hosted on an http
or https server which runs on and is reachable from the vCenter server. The location of the
OVF is provided as a URL path for vmdk: as shown in the example given below.

Example: Enabling HA and DRS in the cluster

vcenter_servers:
 - SRV1:
 hostname:
 username:
 password:
 # Optional: defaults to False
 #validate_certs: False
 datacentername:
 clusternames:
 #path to the ovf, is needed for ESX Agent Manager to deploy ContrailVMs
 vmdk: http://<ip-address>/centos-7.5/LATEST/ContrailVM.ovf
 # Optional: If not specified HA and DRS are turned off on the clusters.
 enable_ha: yes
 enable_drs: yes

For definition examples, refer contrail-ansible-deployer/playbooks/roles/vcenter/vars/
vcenter_vars.yml.sample.

To enable HA and DRS in the cluster, set enable_ha and enable_drs to yes in the vcenter_vars.yml
file. If these flags are not enabled, HA and DRS is turned off by default for newly created and
existing clusters.

Example instances.yaml File

146

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw

Username and password combinations are provided in this output for illustrative purposes only. We
suggest using unique username and password combinations in accordance with your organization’s
security guidelines in your environment.

provider_config:
 bms:
 ssh_pwd: password
 ssh_user: root
 ntpserver: 8.8.8.8
 domainsuffix: blah.net

instances:
 bms1:
 provider: bms
 ip: <ip-address>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 vcenter_plugin:
 bms2:
 provider: bms
 esxi_host: <ip-address>
 ip: <ip-address>
 roles:
 vrouter:
 vcenter_manager:
 ESXI_USERNAME: root
 ESXI_PASSWORD: password
 bms3:
 provider: bms
 esxi_host: <ip-address>
 ip: <ip-address>
 roles:
 vrouter:
 vcenter_manager:
 ESXI_USERNAME: root
 ESXI_PASSWORD: password
 bms4:

147

 provider: bms
 esxi_host: <ip-address>
 ip: <ip-address>
 roles:
 vrouter:
 vcenter_manager:
 ESXI_USERNAME: root
 ESXI_PASSWORD: password

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net
 CONTAINER_REGISTRY_USERNAME: username
 CONTAINER_REGISTRY_PASSWORD: password
 REGISTRY_PRIVATE_INSECURE: False

contrail_configuration:
 CLOUD_ORCHESTRATOR: vcenter
 CONTROLLER_NODES: <ip-address>
 CONTRAIL_VERSION: 5.1.0-0.360
 RABBITMQ_NODE_PORT: 5673
 VCENTER_SERVER: <ip-address>
 VCENTER_USERNAME: administrator@vsphere.net
 VCENTER_PASSWORD: password
 VCENTER_DATACENTER: <DC name here>
 VCENTER_DVSWITCH: overlay
 VCENTER_WSDL_PATH: /usr/src/contrail/contrail-web-core/webroot/js/vim.wsdl
 VCENTER_AUTH_PROTOCOL: https

NOTE: The default login credentials for Contrail OVF:

• Username: root

• Password: c0ntrail123

We suggest using unique usernames and passwords in accordance with your organization’s
security guidelines.

148

Example vcenter_vars.yml File

vcenter_servers:
 - SRV1:
 hostname: <host-ip-address>
 username: administrator@vsphere.net
 password: password
 # Optional: defaults to False
 #validate_certs: False
 datacentername: "<your DC name here>"
 clusternames:
 - "<your cluster name here>"
 vmdk: http://<ip-address>/contrail/images/ContrailVM.ovf
 dv_switch:
 dv_switch_name: overlay
 dv_port_group:
 dv_portgroup_name: VM_pg
 number_of_ports: 1800

esxihosts:
 - name: <ip-address>
 username: root
 password: password
 datastore: <your local datastore here>
 datacenter: "<your DC name here>"
 cluster: "<your cluster name here>"
 contrail_vm:
 networks:
 - mac: 00:77:56:aa:bb:01
 vcenter_server: SRV1 #leave this
 - name: <ip-address>
 username: root
 password: password
 datastore: <your local datastore here>
 datacenter: "<your DC name here>"
 cluster: "<your cluster name here>"
 contrail_vm:
 networks:
 - mac: 00:77:56:aa:bb:02
 vcenter_server: SRV1 #leave this
 - name: <ip-address>

149

 username: root
 password: password
 datastore: <your local datastore here>
 datacenter: "<your DC name here>"
 cluster: "<your cluster name here>"
 contrail_vm:
 networks:
 - mac: 00:77:56:aa:bb:77
 vcenter_server: SRV1 #leave this

4. Run the Contrail vCenter playbook.

ansible-playbook playbooks/vcenter.yml

NOTE: Verify that the hostnames for the contrail controller(s) and the ContrailVMs (vRouters)
are unique in /etc/hostname file.

You can verify hostname from either the DHCP options (if the management network uses
DHCP) or manually (if the management network uses static IP allocation).

Configure Contrail Parameters

Populate the file config/instances.yaml with Contrail roles.

For an example file, see contrail-ansible-deployer/confing/instances.yaml.vcenter_example.

Install Contrail

Install Contrail by running the following Contrail playbooks:

ansible-playbook -i inventory/ -e orchestrator=vcenter playbooks/configure_instances.yml
ansible-playbook -i inventory/ -e orchestrator=vcenter playbooks/install_contrail.yml

Monitor and Manage ContrailVM from ESX Agent Manager

ContrailVMs can be monitored from EAM by using ContrailVM-Agency.

Follow these steps to monitor and manage Contrail VM from EAM:

1. Resolve issues from the ContrailVM-Agency.

The ContrailVM-Agency is in an alert state when the ContrailVM in any host is powered off or is
deleted.

150

Click Resolve All Issues from the ContrailVM-Agency to correct the issue. The ContrailVM-Agency
will attempt to correct the issue by bringing the ContrailVM back online or by spawning a ContrailVM
from the OVF on the ESXi host.

Figure 23: vCenter Server Extensions

Figure 24: ESX Agencies

2. Add host.

a. Add ESXi host to the cluster.

b. Configure Agent VM Settings for the ESXI host.

151

Figure 25: Configure Agent VM Settings

For more information on configuring Agent VM, network, and datastore settings, see Configure
Agent VM Settings.

EAM deploys a ContrailVM (from the base OVF) on the ESXi host.

c. Add ESXi host details to vcenter_vars.yml and repeat step 4 to add appropriate interfaces to the
ContrailVM and to configure necessary settings in the vCenter server.

d. Add ContrailVM details to instances.yaml and provision Contrail on the newly added ContrailVm
(router). For more information on provisioning Contrail, see "Install Contrail" on page 150.

3. Clean up the ContrailVM-Agency.

Delete ContrailVM-Agency from the EAM user interface to delete ContrailVM and the agency.

RELATED DOCUMENTATION

Configuring Underlay Network for ContrailVM | 152

Managing Networks From Contrail Command and VMware vCenter User Interfaces

Configuring Underlay Network for ContrailVM

IN THIS SECTION

Standard Switch Setup | 153

Distributed Switch Setup | 154

152

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.vcenterhost.doc/GUID-6BEC5198-5273-4592-ABD2-2E6E85873C16.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.vcenterhost.doc/GUID-6BEC5198-5273-4592-ABD2-2E6E85873C16.html
https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/vcenter-interfaces-configuration-cc.html

PCI Pass-Through Setup | 156

SR-IOV Setup | 159

The ContrailVM can be configured in several different ways for the underlay (ip-fabric) connectivity:

Standard Switch Setup

In the standard switch setup, the ContrailVM is provided an interface through the standard switch port
group that is used for management and control data, see Figure 26 on page 153.

Figure 26: Standard Switch Setup

To set up the ContrailVM in this mode, the standard switch and port group must be configured in
vcenter_vars.yml.

If switch name is not configured, the default values of vSwitch0 are used for the standard switch.

153

The ContrailVM supports multiple NICs for management and control_data interfaces. The management
interface must have the DHCP flag as true and the control_data interface can have DHCP set as false.
When DHCP is set to false, the IP address of the control_data interface must be configured by the user
and ensure connectivity. Additional configuration such as static routes and bond interface must be
configured by the user.

The following is an example of configuration with standard switch.

- name: <esxi_host>
 username: <username>
 password: <password>
 datastore: <datastore>
 vcenter_server: <server>
 datacenter: <datacenter>
 cluster: <cluster>
 std_switch_list:
 - pg_name: mgmt-pg
 switch_name: vSwitch0
 contrail_vm:
 networks:
 - mac: 00:77:56:aa:bb:03
 sw_type: standard
 switch_name: vSwitch0
 pg: mgmt-pg

Distributed Switch Setup

A distributed switch functions as a single virtual switch across associated hosts.

In the distributed switch setup, the ContrailVM is provided an interface through the distributed switch
port group that is used for management and control data, see Figure 27 on page 155.

The ContrailVM can be configured to use the management and control_data NICs from DVS. When the
DVS configuration is specified, the standard switch configuration is ignored.

154

Figure 27: Distributed Switch Setup

To set up the ContrailVM in this mode, configure the distributed switch, port group, number of ports in
the port group, and the uplink in the vcenter_servers section in vcenter_servers.yml.

NOTE: The uplink can be a link aggregation group (LAG). If you use LAG, then DVS and LAG
should be preconfigured.

The following is an example distributed switch configuration in vcenter_vars.yml.

 vcenter_servers:
 - SRV1:
 hostname: <server>
 username: <username>
 password: <password>
 datacentername: <datacenter>
 clusternames:
 - <cluster>

155

 dv_switch:
 dv_switch_name: <dvs_name>
 dv_port_group:
 dv_portgroup_name: <pg_name>
 number_of_ports: <num_of_ports>
 dv_switch_control_data:
 dv_switch_name: <ctrl_dvs_name>
 dv_port_group_control_data:
 dv_portgroup_name: <ctrl_pg_name>
 number_of_ports: <num_of_ports>
 uplink:
 - 'vmnic3'

PCI Pass-Through Setup

PCI pass-through is a virtualization technique in which a physical Peripheral Component Interconnect
(PCI) device is directly connected to a virtual machine, bypassing the hypervisor. Drivers in the VM can
directly access the PCI device, resulting in a high rate of data transfer.

In the pass-through setup, the ContrailVM is provided management and control data interfaces. Pass-
through interfaces are used for control data. Figure 28 on page 157 shows a PCI pass-through setup
with a single control_data interface.

156

Figure 28: PCI Pass-Through with Single Control Data Interface

When setting up the ContrailVM with pass-through interfaces, upon provisioning ESXi hosts in the
installation process, the PCI pass-through interfaces are exposed as Ethernet interfaces in the
ContrailVM, and are identified in the control_data device field.

The following is an example PCI pass-through configuration with a single control_data interface:

esxihosts:
 - name: <esxi_host>
 username: <username>
 password: <password>
 datastore: <datastore>
 vcenter_server: <server>
 datacenter: <datacenter>
 cluster: <cluster>
 contrail_vm:
 networks:
 - mac: <mac_addr>

157

 pci_devices:
 - '0000:04:00.0'

Figure 29 on page 158 shows a PCI pass-through setup with a bond_control data interface, which has
multiple pass-through NICs.

Figure 29: PCI Pass-Through Setup with Bond Control Interface

Update the ContrailVM section in vcenter_vars.yml with pci_devices as shown in the following example:

esxihosts:
 - name: <esxi_host>
 username: <username>
 password: <password>
 datastore: <datastore>
 vcenter_server: <server>
 datacenter: <datacenter>
 cluster: <cluster>
 contrail_vm:

158

 networks:
 - mac: <mac_addr>
 pci_devices:
 - '0000:04:00.0'
 - '0000:04:00.1'

SR-IOV Setup

A single root I/O virtualization (SR-IOV) interface allows a network adapter device to separate access to
its resources among various hardware functions.

In the SR-IOV setup, the ContrailVM is provided management and control data interfaces. SR-IOV
interfaces are used for control data. See Figure 30 on page 159.

Figure 30: SR-IOV Setup

In VMware, the port-group is mandatory for SR-IOV interfaces because the ability to configure the
networks is based on the active policies for the port holding the virtual machines.

159

To set up the ContrailVM with SR-IOV interfaces, all configurations used for the standard switch setup
are also used for the pass-through setup, providing management connectivity to the ContrailVM.

To provide the control_data interfaces, configure the SR-IOV-enabled physical interfaces in the contrail_vm
section, and configure the control_data in the global section of vcenter_vars.yml.

Upon provisioning ESXi hosts in the installation process, the SR-IOV interfaces are exposed as Ethernet
interfaces in the ContrailVM.

Figure 31 on page 160 shows a SR-IOV setup with a single control_data interface.

Figure 31: SR-IOV With Single Control Data Interface

The following is an example SR-IOV configuration for the cluster and server configuration.

The cluster configuration:

vcenter_servers:
 - SRV1:
 hostname: <server>

160

 username: <username>
 password: <password>
 datacentername: <datacenter>
 clusternames:
 - <cluster>

 dv_switch:
 dv_switch_name: <dvs_name>
 dv_port_group:
 dv_portgroup_name: <pg_name>
 number_of_ports: <num_of_ports>
 dv_switch_sr_iov:
 dv_switch_name: <sriov_dvs_name>
 dv_port_group_sriov:
 dv_portgroup_name: <sriov_pg_name>
 number_of_ports:

The server configuration:

esxihosts:
 - name: <esxi_host>
 username: <username>
 password: <password>
 datastore: <datastore>
 vcenter_server: <server>
 datacenter: <datacenter>
 cluster: <cluster>
 contrail_vm:

 networks:
 - mac: <mac_addr>
 sr_iov_nics:
 - 'vmnic0'

Figure 32 on page 162 shows an SR-IOV configuration with a bond control_data interface, which has
multiple SR-IOV NICs.

161

Figure 32: SR-IOV With Bond Control Data Interface

For Bond interface-configuration specify multiple NICs in sr_iov_nics, and add required configuration for
multi-interface and bond configuration in vcenter_vars.yml.

The cluster configuration:

vcenter_servers:
 - SRV1:
 hostname: <server>
 username: <username>
 password: <password>
 datacentername: <datacenter>
 clusternames:
 - <cluster>

 dv_switch:
 dv_switch_name: <dvs_name>
 dv_port_group:

162

 dv_portgroup_name: <pg_name>
 number_of_ports: <num_of_ports>
 dv_switch_sr_iov:
 dv_switch_name: <sriov_dvs_name>
 dv_port_group_sriov:
 dv_portgroup_name: <sriov_pg_name>
 number_of_ports:

The server configuration:

esxihosts:
 - name: <esxi_host>
 username: <username>
 password: <password>
 datastore: <datastore>
 vcenter_server: <server>
 datacenter: <datacenter>
 cluster: <cluster>
 contrail_vm:

 networks:
 - mac: <mac_addr>
 sr_iov_nics:
 - 'vmnic0'
 - 'vmnic1'

RELATED DOCUMENTATION

Managing Networks From Contrail Command and VMware vCenter User Interfaces

Installing and Provisioning Contrail VMware vRealize Orchestrator Plugin

IN THIS SECTION

Accessing vRO Control Center | 164

Installing vRO Plugin | 167

163

https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/vcenter-interfaces-configuration-cc.html

Accessing vRO Desktop Client | 169

Connecting to vRO using the Desktop Client | 169

Connecting to Contrail Controller | 170

Deploying Contrail vRO Plugin | 173

A dedicated Contrail plugin is used to connect to VMware vRealize Orchestrator (vRO). Contrail Release
5.0 supported a Beta version of the plugin. Starting with Contrail Release 5.1, a fully supported version
of the plugin is available.

You must install the Contrail VMware vRealize Orchestrator (vRO) plugin to connect to the vRO server.

Before you begin installation, ensure the following:

• You have administrator-level access to the Control Center of a deployed vRO appliance.

• You know the host name ({vRO}) of the deployed vRO Appliance.

• You have the login credentials of the vCenter SSO service.

• You have downloaded the vRO plugin package file to your local system.

You can download the plugin from https://www.juniper.net/support/downloads/?p=contrail.

You can deploy the Contrail plugin in any Java Virtual Machine (JVM) compatible environment and load
it on an active vRO instance.

The following topics describe how to install and provision the Contrail vRO plugin.

Accessing vRO Control Center

Follow the steps given below to access and log in to vRO Control Center:

1. To access vRO Control Center through a Web browser, navigate to the https://{vRO}:8283/vco-
controlcenter URL.

NOTE: Replace {vRO} given in the URL with the host name of the deployed vRO Appliance.

The host name is the IP address or the FQDN of the vRO node.

The vCenter SSO service page is displayed.

164

https://www.juniper.net/support/downloads/?p=contrail

Figure 33: vCenter SSO service page

2. On the vCenter SSO service page, enter the User name and Password in the respective fields and
click Login. See Figure 33 on page 165.

The Orchestrator Control Center home page is displayed.

165

Figure 34: Orchestrator Control Center

166

Installing vRO Plugin

Perform the following steps to install the vRO plugin:

1. Upload vRO plugin package.

To upload vRO plugin package:

• From the Orchestrator Control Center home page, click Manage Plug-Ins under the Plug-Ins
section.

The Manage Plug-Ins page is displayed.

Figure 35: Manage Plug-Ins page

NOTE: You can install a new plugin or manage an already installed plugin from the Manage
Plug-Ins page.

NOTE: *.vmoapp or *.dar file format can be used. Also, the version in this example may be
different from the version you have downloaded.

• Click Browse in the Install plug-in pane and select the downloaded vRO plugin package file on
your local system.

• After you select vRO plugin package file, click Install to upload the vRO plugin package to the vRO
server.

The EULA page is displayed.

167

Figure 36: EULA page

2. Install vRO plugin.

After you upload the vRO plugin package, select Accept EULA on the EULA page and then click
Install.

NOTE: If you use *.vmoapp file format, you are directed to the Accept EULA page before you
proceed with the installation.

If you use *.dar file format, you can directly proceed with installation.

The vRO plugin is installed.

168

Accessing vRO Desktop Client

After you install the VMware vRealize Orchestrator (vRO) plugin, download vRealize Orchestrator Client
version 7.3.0 to access the vRO server.

To download and install the vRO desktop client application, click https://{vRO}:8281/vco/.

NOTE: Replace {vRO} given in the URL with the host name of the deployed vRO Appliance.

Figure 37: Getting Started with vRealize Orchestrator

You can download vRO desktop client applications for Windows, Mac OS X, and Linux operating
systems.

Connecting to vRO using the Desktop Client

You connect to the vRO server by using the vRO desktop client.

1. Start the vRO desktop client.

The VMware vRealize Orchestrator Login page is displayed.

169

Figure 38: VMware vRealize Orchestrator Login page

2. In the VMware vRealize Orchestrator Login page, enter Host name, User name, and Password.

NOTE: The Host name also includes the port number and must be in the {vRO}:8281 format.

3. Click Login to connect to the vRO server. See Figure 38 on page 170.

Connecting to Contrail Controller

To connect Contrail vRO to the Contrail Controller:

1. Navigate to the Contrail > Configuration folder in the workflow library. See Figure 39 on page 171.

2. Select Create Contrail controller connection.

170

Figure 39: Workflow Library

3. Click the Controller tab and enter the following information:

• Connection name—a unique name to identify the connection

• Controller host—host name of the Contrail Connector

• Controller port—port used to access the Contrail Controller

171

Figure 40: Controller Tab

4. Click the Credentials tab and enter the following credentials to manage the Contrail Controller:

• User name—user name to access the Contrail Controller

• User password—password to access the Contrail Controller

• Authentication server—URL of the authentication server

Figure 41: Credentials Tab

5. Click the Tenant tab to define tenant information.

In the Tenant field, enter the name of the Contrail tenant.

172

Figure 42: Tenant Tab

6. Click Submit to establish connection.

Once you connect Contrail vRO to the Contrail Controller, you use Contrail workflows to make
configuration changes to Contrail.

Deploying Contrail vRO Plugin

You can deploy the Contrail plugin in any Java Virtual Machine (JVM) compatible environment and load
it on an active vRO instance.

RELATED DOCUMENTATION

Integrating Contrail Release 5.0.X with VMware vRealize Orchestrator

173

https://www.juniper.net/documentation/en_US/contrail/topics/concept/integrating-contrail501-with-vRO.html

CHAPTER 9

Using Contrail with Red Hat OpenStack

IN THIS CHAPTER

Understanding Red Hat OpenStack Platform Director | 174

Setting Up the Infrastructure | 179

Setting Up the Undercloud | 188

Setting Up the Overcloud | 191

Using Netronome SmartNIC vRouter with Contrail Networking | 236

Understanding Red Hat OpenStack Platform Director

IN THIS SECTION

Red Hat OpenStack Platform Director | 174

Contrail Roles | 175

Undercloud Requirements | 176

Overcloud Requirements | 176

Networking Requirements | 177

Compatibility Matrix | 178

Installation Summary | 179

Red Hat OpenStack Platform Director

This chapter explains how to integrate a Contrail 5.1.x installation (or higher) with Red Hat OpenStack
Platform Director 13.

Red Hat OpenStack Platform provides an installer called the Red Hat OpenStack Platform director
(RHOSPd or OSPd), which is a toolset based on the OpenStack project TripleO (OOO, OpenStack on

174

OpenStack). TripleO is an open source project that uses features of OpenStack to deploy a fully
functional, tenant-facing OpenStack environment.

TripleO can be used to deploy an RDO-based OpenStack environment integrated with Tungsten Fabric.
Red Hat OpenStack Platform director can be used to deploy an RHOSP-based OpenStack environment
integrated with Contrail.

OSPd uses the concepts of undercloud and overcloud. OSPd sets up an undercloud, a single server
running an operator-facing deployment that contains the OpenStack components needed to deploy and
manage an overcloud, a tenant-facing deployment that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

OSPd leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Ceilometer collects metrics about the overcloud.

For more information about OSPd architecture, see OSPd documentation.

Contrail Roles

OSPd supports composable roles, which are groups of services that you define through Heat templates.
Composable roles allow you to integrate Contrail into the overcloud environment.

The following are the Contrail roles used for integrating into the overcloud:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

Figure 43 on page 176 shows the relationship and components of an undercloud and overcloud
architecture for Contrail.

175

https://docs.openstack.org/developer/tripleo-docs/introduction/architecture.html

Figure 43: Undercloud and Overcloud with Roles

Undercloud Requirements

The undercloud is a single server or VM that hosts the OpenStack Platform director, which is an
OpenStack installation used to provision OpenStack on the overcloud.

See Undercloud Requirements for the compute requirements of the undercloud.

Overcloud Requirements

The overcloud roles can be deployed to bare metal servers or to virtual machines (VMs), but the
compute nodes must be deployed to bare metal systems. Every overcloud node must support IPMI for
booting up from the undercloud using PXE.

Ensure the following requirements are met for the Contrail nodes per role.

• Non-high availability: A minimum of 4 overcloud nodes are needed for control plane roles for a non-
high availability deployment:

• 1x contrail-config (includes Contrail control)

• 1x contrail-analytics

• 1x contrail-analytics-database

176

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/chap-requirements#sect-Undercloud_Requirements

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

If the control plane roles are deployed to VMs, use 3 separate physical servers and deploy one role of
each kind to each physical server.

See Overcloud Requirements for the compute requirements of the overcloud.

Networking Requirements

As a minimum, the installation requires two networks:

• provisioning network - This is the private network that the undercloud uses to provision the
overcloud.

• external network - This is the externally-routable network you use to access the undercloud and
overcloud nodes.

Ensure the following requirements are met for the provisioning network:

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the
second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs will be referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vSwitch bridge will be
created for Neutron, and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

177

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/chap-requirements#sect-Overcloud_Requirements

• All of the networks must be available to all of the Contrail roles and computes.

While the provisioning and external networks are sufficient for basic applications, you should create
additional networks in most overcloud environments to provide isolation for the different traffic types
by assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network. If only
some isolated networks are configured, traffic belonging to a network not configured runs on the
provisioning network.

The following networks are typically deployed when using network isolation topology:

• Provisioning - used by the undercloud to provision the overcloud

• Internal API - used by OpenStack services to communicate with each other

• Tenant - used for tenant overlay data plane traffic (one network per tenant)

• Storage - used for storage data traffic

• Storage Management - used for storage control and management traffic

• External - provides external access to the undercloud and overcloud, including external access to the
web UIs and public APIs

• Floating IP - provides floating IP access to the tenant network (can either be merged with external or
can be a separate network)

• Management - provides access for system administration

For more information on the different network types, see Planning Networks.

For more information on networking requirements, see Networking Requirements.

Compatibility Matrix

The following combinations of Operating System/OpenStack/Deployer/Contrail are supported:

Table 4: Compatibility Matrix

Operating System OpenStack Deployer Contrail

RHEL 7.5 OSP13 OSPd13 Contrail 5.1.x or higher

CentOS 7.5 RDO queens/stable tripleo queens/stable Tungsten Fabric (latest)

178

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#sect-Planning_Networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#sect-Networking_Requirements

Installation Summary

The general installation procedure is as follows:

• Set up the infrastructure, which is the set of servers or VMs that host the undercloud and overcloud,
including the provisioning network that connects them together.

• Set up the undercloud, which is the OSPd application.

• Set up the overcloud, which is the set of services in the tenant-facing network. Contrail is part of the
overcloud.

For more information on installing and using the RHOSPd, see Red Hat documentation.

Setting Up the Infrastructure

IN THIS SECTION

Target Configuration (Example) | 179

Configure the External Physical Switch | 181

Configure KVM Hosts | 182

Create the Overcloud VM Definitions on the Overcloud KVM Hosts | 184

Create the Undercloud VM Definition on the Undercloud KVM Host | 186

Target Configuration (Example)

Undercloud and overcloud KVM hosts require virtual switches and virtual machine definitions to be
configured. You can deploy any KVM host operating system version that supports KVM and OVS. The
following example shows a RHEL/CentOS based system. If you are using RHEL, you must subscribe the
system.

The following example illustrates all control plane functions as Virtual Machines hosted on KVM hosts.

There are different ways to create the infrastructure providing the control plane elements. To illustrate
the installation procedure, we will use four host machines for the infrastructure, each running KVM.
KVM1 contains a VM running the undercloud while KVM2 through KVM4 each contains a VM running
an OpenStack controller and a Contrail controller (Table 5 on page 180).

179

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/

Table 5: Control Plane Infrastructure

KVM Host Virtual Machines

KVM1 undercloud

KVM2 OpenStack Controller 1, Contrail Contoller 1

KVM3 OpenStack Controller 2, Contrail Contoller 2

KVM4 OpenStack Controller 3, Contrail Contoller 3

Figure 44 on page 180 shows the physical connectivity where each KVM host and each compute node
has two interfaces that connect to an external switch. These interfaces attach to separate virtual bridges
within the VM, allowing for two physically separate networks (external and provisioning networks).

Figure 44: Physical View

Figure 45 on page 181 shows the logical view of the connectivity where VLANs are used to provide
further network separation for the different OpenStack network types.

180

Figure 45: Logical View

The following sections describe how to configure the infrastructure, the undercloud, and finally the
overcloud.

Configure the External Physical Switch

Configure the ports and VLANs on the external physical switch according to the following table:

Table 6: External Physical Switch Port and VLAN Configuration

Port Trunked VLAN Native VLAN

ge0 - -

181

Table 6: External Physical Switch Port and VLAN Configuration (Continued)

Port Trunked VLAN Native VLAN

ge1 700, 720 -

ge2 700, 710, 720, 730, 740, 750 -

ge3 - -

ge4 710, 730 700

ge5 - -

Configure KVM Hosts

Use this example procedure to install the required packages and start KVM and Open vSwitch on each
undercloud and overcloud KVM host.

1. Log in to a KVM host.

2. Install the required packages.

yum install -y libguestfs \
 libguestfs-tools \
 openvswitch \
 virt-install \
 kvm libvirt \
 libvirt-python \
 python-virtualbmc \
 python-virtinst

3. Start KVM and Open vSwitch.

systemctl start libvirtd
systemctl start openvswitch

4. Additionally, on the overcloud nodes only, create and start the virtual switches br0 and br1.

182

Table 7: vSwitch Configuration

Bridge Trunked VLAN Native VLAN

br0 710, 720, 730 740, 750 700

br1 - -

Create the virtual switches and bind them to the respective interfaces.
ovs-vsctl add-br br0
ovs-vsctl add-br br1
ovs-vsctl add-port br0 NIC1
ovs-vsctl add-port br1 NIC2

Create the configuration file for br0.
cat << EOF > br0.xml
<network>
 <name>br0</name>
 <forward mode='bridge'/>
 <bridge name='br0'/>
 <virtualport type='openvswitch'/>
 <portgroup name='overcloud'/>
 <vlan trunk='yes'>
 <tag id='700' nativeMode='untagged'/>
 <tag id='710'/>
 <tag id='720'/>
 <tag id='730'/>
 <tag id='740'/>
 <tag id='750'/>
 </vlan>
 </portgroup>
</network>
EOF

Create the configuration file for br1.
cat << EOF > br1.xml
<network>
 <name>br1</name>

183

 <forward mode=’bridge’/>
 <bridge name='br1'/>
 <virtualport type='openvswitch'/>
</network>
EOF

Create the br0 network based on the configuration file.
virsh net-define br0.xml
virsh net-start br0
virsh net-autostart br0

Create the br1 network based on the configuration file.
virsh net-define br1.xml
virsh net-start br1
virsh net-autostart br1

5. Repeat step 1 through step 4 for each KVM host.

Create the Overcloud VM Definitions on the Overcloud KVM Hosts

Use this example procedure on each overcloud KVM host (KVM2 to KVM4) to do the following:

• create the VM definitions for that overcloud KVM host

• create and start a virtual baseboard management controller for that overcloud KVM host so that the
VM can be managed using IPMI

• create an ironic_list file to be used by the undercloud

This example procedure creates a VM definition consisting of 2 compute nodes, 1 Contrail controller
node, and 1 OpenStack controller node on each overcloud KVM host.

1. Log in to an overcloud KVM host.

2. Specify the roles you want to create.

ROLES=compute:2,contrail-controller:1,control:1

3. Create the VM definitions.

Initialize and specify the IPMI user and password you want to use.
num=0
ipmi_user=<user>

184

ipmi_password=<password>
libvirt_path=/var/lib/libvirt/images
port_group=overcloud
prov_switch=br0
/bin/rm ironic_list

For each role and instance specified in the ROLES variable:
- create the VM definition
- create and start a virtual baseboard management controller (vbmc)
- store the VM information into an ironic_list file (for later use in the undercloud)
IFS=',' read -ra role_list <<< "${ROLES}"
for role in ${role_list[@]}; do
 role_name=`echo $role|cut -d ":" -f 1`
 role_count=`echo $role|cut -d ":" -f 2`
 for count in `seq 1 ${role_count}`; do
 echo $role_name $count
 qemu-img create -f qcow2 ${libvirt_path}/${role_name}_${count}.qcow2 99G
 virsh define /dev/stdin <<EOF
 $(virt-install --name ${role_name}_${count} \
 --disk ${libvirt_path}/${role_name}_${count}.qcow2 \
 --vcpus=4 \
 --ram=16348 \
 --network network=br0,model=virtio,portgroup=${port_group} \
 --network network=br1,model=virtio \
 --virt-type kvm \
 --cpu host \
 --import \
 --os-variant rhel7 \
 --serial pty \
 --console pty,target_type=virtio \
 --graphics vnc \
 --print-xml)
EOF
 vbmc add ${role_name}_${count} --port 1623${num} --username ${ipmi_user} --password $
{ipmi_password}
 vbmc start ${role_name}_${count}
 prov_mac=`virsh domiflist ${role_name}_${count}|grep ${prov_switch}|awk '{print $5}'`
 vm_name=${role_name}-${count}-`hostname -s`
 kvm_ip=`ip route get 1 |grep src |awk '{print $7}'`
 echo ${prov_mac} ${vm_name} ${kvm_ip} ${role_name} 1623${num}>> ironic_list
 num=$(expr $num + 1)

185

 done
done

4. Repeat step 1 through step 3 on each overcloud KVM host.

CAUTION: This procedure creates one ironic_list file per overcloud KVM host. Combine
the contents of each file into a single ironic_list file on the undercloud.

The following shows the resulting ironic_list file after you combine the contents from
each separate file:

52:54:00:e7:ca:9a compute-1-5b3s31 10.87.64.32 compute 16230 52:54:00:30:6c:3f compute-2-5b3s31
10.87.64.32 compute 16231 52:54:00:9a:0c:d5 contrail-controller-1-5b3s31 10.87.64.32 contrail-
controller 16232 52:54:00:cc:93:d4 control-1-5b3s31 10.87.64.32 control 16233 52:54:00:28:10:d4
compute-1-5b3s30 10.87.64.31 compute 16230 52:54:00:7f:36:e7 compute-2-5b3s30 10.87.64.31
compute 16231 52:54:00:32:e5:3e contrail-controller-1-5b3s30 10.87.64.31 contrail-controller
16232 52:54:00:d4:31:aa control-1-5b3s30 10.87.64.31 control 16233 52:54:00:d1:d2:ab
compute-1-5b3s32 10.87.64.33 compute 16230 52:54:00:ad:a7:cc compute-2-5b3s32 10.87.64.33
compute 16231 52:54:00:55:56:50 contrail-controller-1-5b3s32 10.87.64.33 contrail-controller
16232 52:54:00:91:51:35 control-1-5b3s32 10.87.64.33 control 16233

Create the Undercloud VM Definition on the Undercloud KVM Host

Use this example procedure on the undercloud KVM host (KVM1) to create the undercloud VM
definition and to start the undercloud VM.

1. Create the images directory.

mkdir ~/images
cd images

2. Retrieve the image.

• CentOS

curl https://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1802.qcow2.xz -
o CentOS-7-x86_64-GenericCloud-1802.qcow2.xz
unxz -d images/CentOS-7-x86_64-GenericCloud-1802.qcow2.xz
cloud_image=~/images/CentOS-7-x86_64-GenericCloud-1802.qcow2

186

• RHEL

Download rhel-server-7.5-update-1-x86_64-kvm.qcow2 from the Red Hat portal to ~/images.
cloud_image=~/images/rhel-server-7.5-update-1-x86_64-kvm.qcow2

3. Customize the undercloud image.

undercloud_name=queensa
undercloud_suffix=local
root_password=<password>
stack_password=<password>
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 /var/lib/libvirt/images/${undercloud_name}.qcow2 100G
virt-resize --expand /dev/sda1 ${cloud_image} /var/lib/libvirt/images/$
{undercloud_name}.qcow2
virt-customize -a /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--run-command 'xfs_growfs /' \
--root-password password:${root_password} \
--hostname ${undercloud_name}.${undercloud_suffix} \
--run-command 'useradd stack' \
--password stack:password:${stack_password} \
--run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
--chmod 0440:/etc/sudoers.d/stack \
--run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
--run-command 'systemctl enable sshd' \
--run-command 'yum remove -y cloud-init' \
--selinux-relabel

NOTE: As part of the undercloud definition, a user called stack is created. This user will be
used later to install the undercloud.

4. Define the undercloud virsh template.

vcpus=8
vram=32000
virt-install --name ${undercloud_name} \
--disk /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--vcpus=${vcpus} \

187

--ram=${vram} \
--network network=default,model=virtio \
--network network=br0,model=virtio,portgroup=overcloud \
--virt-type kvm \
--import \
--os-variant rhel7 \
--graphics vnc \
--serial pty \
--noautoconsole \
--console pty,target_type=virtio

5. Start the undercloud VM.

virsh start ${undercloud_name}

6. Retrieve the undercloud IP address. It might take several seconds before the IP address is available.

undercloud_ip=`virsh domifaddr ${undercloud_name} |grep ipv4 |awk '{print $4}' |awk -F"/"
'{print $1}'` ssh-copy-id ${undercloud_ip}

Setting Up the Undercloud

IN THIS SECTION

Install the Undercloud | 188

Perform Post-Install Configuration | 190

Install the Undercloud

Use this example procedure to install the undercloud.

1. Log in to the undercloud VM from the undercloud KVM host.

ssh ${undercloud_ip}

188

2. Configure the hostname.

undercloud_name=`hostname -s`
undercloud_suffix=`hostname -d`
hostnamectl set-hostname ${undercloud_name}.${undercloud_suffix}
hostnamectl set-hostname --transient ${undercloud_name}.${undercloud_suffix}

3. Add the hostname to the /etc/hosts file. The following example assumes the management interface
is eth0.

undercloud_ip=`ip addr sh dev eth0 | grep "inet " | awk '{print $2}' | awk -F"/" '{print $1}'`
echo ${undercloud_ip} ${undercloud_name}.${undercloud_suffix} ${undercloud_name} >> /etc/hosts

4. Set up the repositories.

• CentOS

tripleo_repos=`python -c 'import requests;r = requests.get("https://trunk.rdoproject.org/
centos7-queens/current"); print r.text ' | grep python2-tripleo-repos|awk -F"href=\""
'{print $2}' | awk -F"\"" '{print $1}'`
yum install -y https://trunk.rdoproject.org/centos7-queens/current/${tripleo_repos}
tripleo-repos -b queens current

• RHEL

#Register with Satellite (can be done with CDN as well)
satellite_fqdn=device.example.net
act_key=xxx
org=example
yum localinstall -y http://${satellite_fqdn}/pub/katello-ca-consumer-latest.noarch.rpm
subscription-manager register --activationkey=${act_key} --org=${org}

5. Install the Tripleo client.

yum install -y python-tripleoclient tmux

189

6. Copy the undercloud configuration file sample and modify the configuration as required. See Red Hat
documentation for information on how to modify that file.

su - stack
cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf
vi ~/undercloud.conf

7. Install the undercloud.

openstack undercloud install
source stackrc

Perform Post-Install Configuration

1. Configure a forwarding path between the provisioning network and the external network:

sudo iptables -A FORWARD -i br-ctlplane -o eth0 -j ACCEPT
sudo iptables -A FORWARD -i eth0 -o br-ctlplane -m state --state RELATED,ESTABLISHED -j
ACCEPT
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

2. Add the external API interface:

sudo ip link add name vlan720 link br-ctlplane type vlan id 720
sudo ip addr add 10.2.0.254/24 dev vlan720
sudo ip link set dev vlan720 up

3. Add the stack user to the docker group:

newgrp docker
exit
su - stack
source stackrc

4. Change admin password for overcloud.

(undercloud) [stack@queensa contrail]$ pwd
/home/stack/tripleo-heat-templates/environments/contrail

190

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/

(undercloud) [stack@queensa contrail]$ vi contrail-services.yaml
parameter_defaults:
 AdminPassword: <password>

5. Add contrail-subcluster.yaml, contrail-ips-from-pool-all.yaml and contrail-scheduler-hints.yaml to the
OpenStack deploy command:

openstack overcloud deploy --templates ~/tripleo-heat-templates \
 -e ~/overcloud_images.yaml \
 -e ~/tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-ips-from-pool-all.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-scheduler-hints.yaml \
 --roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

Setting Up the Overcloud

IN THIS SECTION

Configuring the Overcloud | 191

Customizing the Contrail Service with Templates (contrail-services.yaml) | 198

Customizing the Contrail Network with Templates | 199

Installing Overcloud | 235

Configuring the Overcloud

Use this example procedure on the undercloud to set up the configuration for the overcloud.

191

1. Specify the name server to be used:

undercloud_nameserver=8.8.8.8
openstack subnet set `openstack subnet show ctlplane-subnet -c id -f value` --dns-nameserver $
{undercloud_nameserver}

2. Retrieve and upload the overcloud images.

a. Create the image directory:

mkdir images
cd images

b. Retrieve the overcloud images from either the RDO project or from Red Hat.

• TripleO

curl -O https://images.rdoproject.org/queens/rdo_trunk/current-tripleo-rdo/ironic-
python-agent.tar
curl -O https://images.rdoproject.org/queens/rdo_trunk/current-tripleo-rdo/overcloud-
full.tar
tar xvf ironic-python-agent.tar
tar xvf overcloud-full.tar

• OSP13

sudo yum install -y rhosp-director-images rhosp-director-images-ipa
for i in /usr/share/rhosp-director-images/overcloud-full-latest-13.0.tar /usr/share/
rhosp-director-images/ironic-python-agent-latest-13.0.tar ; do tar -xvf $i; done

c. Upload the overcloud images:

cd
openstack overcloud image upload --image-path /home/stack/images/

3. Prepare OpenStack’s bare metal provisioning (Ironic).

Ironic is an integrated OpenStack program that provisions bare metal machines instead of virtual
machines. It is best thought of as a bare metal hypervisor API and a set of plugins that interact with
the bare metal hypervisors.

192

NOTE: Make sure to combine the ironic_list files from the three overcloud KVM hosts.

a. Add the overcloud VMs to Ironic:

ipmi_password=<password>
ipmi_user=<user>
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=profile:$
{profile},boot_option:local \
 -c uuid -f value`
 openstack baremetal port create --node ${uuid} ${mac}
done < <(cat ironic_list)

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node set $i --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
done

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node show $i -c properties -f value
done

193

b. Introspect the overcloud node:

for node in $(openstack baremetal node list -c UUID -f value) ; do
 openstack baremetal node manage $node
done
openstack overcloud node introspect --all-manageable --provide

c. Add Baremetal Server (BMS) to Ironic.

• Create rules for automated profiling.

Evaluate the attributes of the physical server. The server will automatically be profiled based
on the rules.

The following example shows how to create a rule for system manufacturer as “Supermicro”
and memory greater or equal to 128 GB.

cat << EOF > ~/rule_compute.json
[
 {
 "description": "set physical compute",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Supermicro"},
 {"op": "ge", "field": "memory_mb", "value": 128000}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "<user>"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "<password>"},
 {"action": "set-capability", "name": "profile", "value": "compute"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address","value":
"{data[inventory][bmc_address]}"}
]
 }
]
EOF

194

You can import the rule by:

openstack baremetal introspection rule import ~/rule_compute.json

• Scan the BMC IP range and automatically add new servers matching the above rule by:

ipmi_range=10.87.122.25/32
ipmi_password=<password>
ipmi_user=<user>
openstack overcloud node discover --range ${ipmi_range} \
 --credentials ${ipmi_user}:${ipmi_password} \
 --introspect --provide

4. Create Flavor:

for i in compute-dpdk \
compute-sriov \
contrail-controller \
contrail-analytics \
contrail-database \
contrail-analytics-database; do
 openstack flavor create $i --ram 4096 --vcpus 1 --disk 40
 openstack flavor set --property "capabilities:boot_option"="local" \
 --property "capabilities:profile"="${i}" ${i}
done

5. Copy the TripleO heat templates.

cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates

6. Download and copy the Contrail heat templates from https://support.juniper.net/support/downloads.

tar -xzvf contrail-tripleo-heat-templates-<version>.tgz
cp -r contrail-tripleo-heat-templates/* tripleo-heat-templates/

7. Create and upload the OpenStack containers.

a. Create the OpenStack container file.

195

https://support.juniper.net/support/downloads

NOTE: The container must be created based on the OpenStack program.

• TripleO

openstack overcloud container image prepare \
 --namespace docker.io/tripleoqueens \
 --tag current-tripleo \
 --tag-from-label rdo_version \
 --output-env-file=~/overcloud_images.yaml

tag=`grep "docker.io/tripleoqueens" docker_registry.yaml |tail -1 |awk -F":" '{print
$3}'`

openstack overcloud container image prepare \
 --namespace docker.io/tripleoqueens \
 --tag ${tag} \
 --push-destination 192.168.24.1:8787 \
 --output-env-file=~/overcloud_images.yaml \
 --output-images-file=~/local_registry_images.yaml

• OSP13

openstack overcloud container image prepare \
 --push-destination=192.168.24.1:8787 \
 --tag-from-label {version}-{release} \
 --output-images-file ~/local_registry_images.yaml \
 --namespace=registry.access.Red Hat.com/rhosp13 \
 --prefix=openstack- \
 --tag-from-label {version}-{release} \
 --output-env-file ~/overcloud_images.yaml

b. Upload the OpenStack containers:

openstack overcloud container image upload --config-file ~/local_registry_images.yaml

8. Create and upload the Contrail containers.

a. Create the Contrail container file.

196

NOTE: This step is optional. The Contrail containers can be downloaded from external
registries later.

cd ~/tripleo-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-
u username] [-p password] [-c certificate pat

Here are few examples of importing Contrail containers from different sources:

• Import from password protected public registry:

./import_contrail_container.sh -f /tmp/contrail_container -r hub.juniper.net/contrail -
u USERNAME -p PASSWORD -t 1234

• Import from Dockerhub:

./import_contrail_container.sh -f /tmp/contrail_container -r docker.io/
opencontrailnightly -t 1234

• Import from private secure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -
c http://device.example.net/pub/device.example.net.crt -t 1234

• Import from private insecure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

b. Upload Contrail containers to the undercloud registry:

openstack overcloud container image upload --config-file /tmp/contrail_container

197

Customizing the Contrail Service with Templates (contrail-services.yaml)

This section contains information to customize Contrail services for your network by modifying the
contrail-services.yaml file.

• Contrail Services customization

vi ~/tripleo-heat-templates/environments/contrail-services.yaml
parameter_defaults:
 ContrailSettings:
 VROUTER_GATEWAY: 10.0.0.1
 # KEY1: value1
 # KEY2: value2

• Contrail registry settings

vi ~/tripleo-heat-templates/environments/contrail-services.yaml

Here are few examples of default values for various registries:

• Public Juniper registry

parameter_defaults:
 ContrailRegistry: hub.juniper.net/contrail
 ContrailRegistryUser: <USER>
 ContrailRegistryPassword: <PASSWORD>

• Insecure registry

parameter_defaults:
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 10.87.64.32:5000,192.168.24.1:8787
 ContrailRegistry: 10.87.64.32:5000

• Private secure registry

parameter_defaults:
 ContrailRegistryCertUrl: http://device.example.net/pub/device.example.net.crt
 ContrailRegistry: device.example.net:5443

198

• Contrail Container image settings

parameter_defaults:
 ContrailImageTag: queens-5.0-104-rhel-queens

Customizing the Contrail Network with Templates

IN THIS SECTION

Overview | 199

Roles Configuration (roles_data_contrail_aio.yaml) | 200

Network Parameter Configuration (contrail-net.yaml) | 203

Network Interface Configuration (*-NIC-*.yaml) | 204

Advanced vRouter Kernel Mode Configuration | 215

Advanced vRouter DPDK Mode Configuration | 217

Advanced vRouter SRIOV + Kernel Mode Configuration | 220

Advanced vRouter SRIOV + DPDK Mode Configuration | 223

Advanced Scenarios | 226

Overview

In order to customize the network, define different networks and configure the overcloud nodes NIC
layout. TripleO supports a flexible way of customizing the network.

The following networking customization example uses network as:

Table 8: Network Customization

Network VLAN overcloud Nodes

provisioning - All

internal_api 710 All

199

Table 8: Network Customization (Continued)

Network VLAN overcloud Nodes

external_api 720 OpenStack CTRL

storage 740 OpenStack CTRL, Computes

storage_mgmt 750 OpenStack CTRL

tenant - Contrail CTRL, Computes

Roles Configuration (roles_data_contrail_aio.yaml)

IN THIS SECTION

OpenStack Controller | 200

Compute Node | 201

Contrail Controller | 201

Compute DPDK | 202

Compute SRIOV | 202

Compute CSN | 203

The networks must be activated per role in the roles_data file:

vi ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

OpenStack Controller

###
Role: Controller
###
- name: Controller

200

 description: |
 Controller role that has all the controler services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt

Compute Node

###
Role: Compute
###
- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 networks:
 - InternalApi
 - Tenant
 - Storage

Contrail Controller

###
Role: ContrailController
###
- name: ContrailController
 description: |
 ContrailController role that has all the Contrail controler services loaded
 and handles config, control and webui functions
 CountDefault: 1
 tags:
 - primary
 - contrailcontroller

201

 networks:
 - InternalApi
 - Tenant

Compute DPDK

###
Role: ContrailDpdk
###
- name: ContrailDpdk
 description: |
 Contrail Dpdk Node role
 CountDefault: 0
 tags:
 - contraildpdk
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute SRIOV

###
Role: ContrailSriov
###
- name: ContrailSriov
 description: |
 Contrail Sriov Node role
 CountDefault: 0
 tags:
 - contrailsriov
 networks:
 - InternalApi
 - Tenant
 - Storage

202

Compute CSN

###
Role: ContrailTsn
###
- name: ContrailTsn
 description: |
 Contrail Tsn Node role
 CountDefault: 0
 tags:
 - contrailtsn
 networks:
 - InternalApi
 - Tenant
 - Storage

Network Parameter Configuration (contrail-net.yaml)

cat ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml
resource_registry:
 OS::TripleO::Controller::Net::SoftwareConfig: ../../network/config/contrail/controller-nic-
config.yaml
 OS::TripleO::ContrailController::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::ContrailControlOnly::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: ../../network/config/contrail/compute-nic-
config.yaml
 OS::TripleO::ContrailDpdk::Net::SoftwareConfig: ../../network/config/contrail/contrail-dpdk-
nic-config.yaml
 OS::TripleO::ContrailSriov::Net::SoftwareConfig: ../../network/config/contrail/contrail-sriov-
nic-config.yaml
 OS::TripleO::ContrailTsn::Net::SoftwareConfig: ../../network/config/contrail/contrail-tsn-nic-
config.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 TenantNetCidr: 10.0.0.0/24
 InternalApiNetCidr: 10.1.0.0/24
 ExternalNetCidr: 10.2.0.0/24
 StorageNetCidr: 10.3.0.0/24

203

 StorageMgmtNetCidr: 10.4.0.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 # Allocation pools
 TenantAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 StorageAllocationPools: [{'start': '10.3.0.10', 'end': '10.3.0.200'}]
 StorageMgmtAllocationPools: [{'start': '10.4.0.10', 'end': '10.4.0.200'}]
 # Routes
 ControlPlaneDefaultRoute: 192.168.24.1
 InternalApiDefaultRoute: 10.1.0.1
 ExternalInterfaceDefaultRoute: 10.2.0.1
 # Vlans
 InternalApiNetworkVlanID: 710
 ExternalNetworkVlanID: 720
 StorageNetworkVlanID: 730
 StorageMgmtNetworkVlanID: 740
 TenantNetworkVlanID: 3211
 # Services
 EC2MetadataIp: 192.168.24.1 # Generally the IP of the undercloud
 DnsServers: ["172.x.x.x"]
 NtpServer: 10.0.0.1

Network Interface Configuration (*-NIC-*.yaml)

IN THIS SECTION

OpenStack Controller | 205

Contrail Controller | 208

Compute Node | 211

NIC configuration files exist per role in the following directory:

cd ~/tripleo-heat-templates/network/config/contrail

204

OpenStack Controller

heat_template_version: queens

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:

205

 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list

206

 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:

207

 get_param: ExternalNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Contrail Controller

heat_template_version: queens
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network

208

 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50

209

 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1

210

 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Compute Node

heat_template_version: queens
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using

211

 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:

212

 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script

213

 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:

214

 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Advanced vRouter Kernel Mode Configuration

IN THIS SECTION

VLAN | 215

Bond | 216

Bond + VLAN | 216

In addition to the standard NIC configuration, the vRouter kernel mode supports VLAN, Bond, and Bond
+ VLAN modes. The configuration snippets below only show the relevant section of the NIC template
configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -

215

 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0

216

 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter DPDK Mode Configuration

IN THIS SECTION

Standard | 218

VLAN | 218

Bond | 219

Bond + VLAN | 219

217

In addition to the standard NIC configuration, the vRouter DPDK mode supports Standard, VLAN, Bond,
and Bond + VLAN modes.

Network Environment Configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

parameter_defaults:
 ContrailDpdkHugepages1GB: 10

See the following NIC template configurations for vRouter DPDK mode. The configuration snippets
below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:

218

 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:

219

 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + Kernel Mode Configuration

IN THIS SECTION

VLAN | 221

Bond | 222

Bond + VLAN | 222

vRouter SRIOV + Kernel mode can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

220

Enable the number of hugepages:

parameter_defaults:
 ContrailSriovHugepages1GB: 10

SRIOV PF/VF settings:

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter kernel mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

221

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID

222

 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + DPDK Mode Configuration

IN THIS SECTION

Standard | 224

VLAN | 225

Bond | 225

Bond + VLAN | 226

vRouter SRIOV + DPDK can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

223

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages

parameter_defaults:
 ContrailSriovMode: dpdk
 ContrailDpdkHugepages1GB: 10
 ContrailSriovHugepages1GB: 10

SRIOV PF/VF settings

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter DPDK mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

224

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

225

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced Scenarios

Remote Compute

Remote Compute extends the data plane to remote locations (POP) whilest keeping the control plane
central. Each POP will have its own set of Contrail control services, which are running in the central
location. The difficulty is to ensure that the compute nodes of a given POP connect to the Control nodes
assigned to that POC. The Control nodes must have predictable IP addresses and the compute nodes
have to know these IP addresses. In order to achieve that the following methods are used:

• Custom Roles

• Static IP assignment

• Precise Node placement

• Per Node hieradata

226

Each overcloud node has a unique DMI UUID. This UUID is known on the undercloud node as well as on
the overcloud node. Hence, this UUID can be used for mapping node specific information. For each POP,
a Control role and a Compute role has to be created.

Overview

Mapping Table

227

Table 9: Mapping Table

Nova Name Ironic Name UUID KVM IP
Address

POP

overcloud
-contrailcontrolonly
-0

control-only-1-
5b3s30

Ironic UUID:
7d758dce-2784-
45fd-be09-5a41eb53e764

DMI UUID: 73F8D030-
E896-
4A95-A9F5-E1A4FEBE322D

5b3s30 10.0.0.11 POP1

overcloud
-contrailcontrolonly
-1

control-only-2-
5b3s30

Ironic UUID: d26abdeb-
d514-
4a37-a7fb-2cd2511c351f

DMI UUID: 14639A66-
D62C-
4408-82EE-FDDC4E509687

5b3s30 10.0.0.14 POP2

overcloud
-contrailcontrolonly
-2

control-only-1-
5b3s31

Ironic UUID: 91dd9fa9-e8eb-
4b51-8b5e-bbaffb6640e4

DMI UUID: 28AB0B57-
D612-
431E-B177-1C578AE0FEA4

5b3s31 10.0.0.12 POP1

overcloud
-contrailcontrolonly
-3

control-only-2-
5b3s31

Ironic UUID: 09fa57b8-580f-
42ec-bf10-a19573521ed4

DMI UUID:
09BEC8CB-77E9-
42A6-
AFF4-6D4880FD87D0

5b3s31 10.0.0.15 POP2

overcloud
-contrailcontrolonly
-4

control-only-1-
5b3s32

Ironic UUID: 4766799-24c8-
4e3b-af54-353f2b796ca4

DMI UUID: 3993957A-
ECBF-
4520-9F49-0AF6EE1667A7

5b3s32 10.0.0.13 POP1

228

Table 9: Mapping Table (Continued)

Nova Name Ironic Name UUID KVM IP
Address

POP

overcloud
-contrailcontrolonly
-5

control-only-2-
5b3s32

Ironic UUID: 58a803ae-
a785-
470e-9789-139abbfa74fb

DMI UUID: AF92F485-
C30C-
4D0A-BDC4-
C6AE97D06A66

5b3s32 10.0.0.16 POP2

ControlOnly preparation

Add ControlOnly overcloud VMs to overcloud KVM host

NOTE: This has to be done on the overcloud KVM hosts

Two ControlOnly overcloud VM definitions will be created on each of the overcloud KVM hosts.

ROLES=control-only:2
num=4
ipmi_user=<user>
ipmi_password=<password>
libvirt_path=/var/lib/libvirt/images
port_group=overcloud
prov_switch=br0

/bin/rm ironic_list
IFS=',' read -ra role_list <<< "${ROLES}"
for role in ${role_list[@]}; do
 role_name=`echo $role|cut -d ":" -f 1`
 role_count=`echo $role|cut -d ":" -f 2`
 for count in `seq 1 ${role_count}`; do
 echo $role_name $count
 qemu-img create -f qcow2 ${libvirt_path}/${role_name}_${count}.qcow2 99G
 virsh define /dev/stdin <<EOF
 $(virt-install --name ${role_name}_${count} \
--disk ${libvirt_path}/${role_name}_${count}.qcow2 \

229

--vcpus=4 \
--ram=16348 \
--network network=br0,model=virtio,portgroup=${port_group} \
--network network=br1,model=virtio \
--virt-type kvm \
--cpu host \
--import \
--os-variant rhel7 \
--serial pty \
--console pty,target_type=virtio \
--graphics vnc \
--print-xml)
EOF
 vbmc add ${role_name}_${count} --port 1623${num} --username ${ipmi_user} --password $
{ipmi_password}
 vbmc start ${role_name}_${count}
 prov_mac=`virsh domiflist ${role_name}_${count}|grep ${prov_switch}|awk '{print $5}'`
 vm_name=${role_name}-${count}-`hostname -s`
 kvm_ip=`ip route get 1 |grep src |awk '{print $7}'`
 echo ${prov_mac} ${vm_name} ${kvm_ip} ${role_name} 1623${num}>> ironic_list
 num=$(expr $num + 1)
 done
done

NOTE: The generated ironic_list will be needed on the undercloud to import the nodes to Ironic.

Get the ironic_lists from the overcloud KVM hosts and combine them.

cat ironic_list_control_only
52:54:00:3a:2f:ca control-only-1-5b3s30 10.87.64.31 control-only 16234
52:54:00:31:4f:63 control-only-2-5b3s30 10.87.64.31 control-only 16235
52:54:00:0c:11:74 control-only-1-5b3s31 10.87.64.32 control-only 16234
52:54:00:56:ab:55 control-only-2-5b3s31 10.87.64.32 control-only 16235
52:54:00:c1:f0:9a control-only-1-5b3s32 10.87.64.33 control-only 16234
52:54:00:f3:ce:13 control-only-2-5b3s32 10.87.64.33 control-only 16235

230

Import:

ipmi_password=<password>
ipmi_user=<user>

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

num=0
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=boot_option:local \
 -c uuid -f value`
 openstack baremetal node set ${uuid} --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
 openstack baremetal port create --node ${uuid} ${mac}
 openstack baremetal node manage ${uuid}
 num=$(expr $num + 1)
done < <(cat ironic_list_control_only)

ControlOnly node introspection

openstack overcloud node introspect --all-manageable --provide

231

Get the ironic UUID of the ControlOnly nodes

openstack baremetal node list |grep control-only
| 7d758dce-2784-45fd-be09-5a41eb53e764 | control-only-1-5b3s30 | None | power off | available |
False |
| d26abdeb-d514-4a37-a7fb-2cd2511c351f | control-only-2-5b3s30 | None | power off | available |
False |
| 91dd9fa9-e8eb-4b51-8b5e-bbaffb6640e4 | control-only-1-5b3s31 | None | power off | available |
False |
| 09fa57b8-580f-42ec-bf10-a19573521ed4 | control-only-2-5b3s31 | None | power off | available |
False |
| f4766799-24c8-4e3b-af54-353f2b796ca4 | control-only-1-5b3s32 | None | power off | available |
False |
| 58a803ae-a785-470e-9789-139abbfa74fb | control-only-2-5b3s32 | None | power off | available |
False |

The first ControlOnly node on each of the overcloud KVM hosts will be used for POP1, the second for
POP2, and so and so forth.

Get the ironic UUID of the POP compute nodes:

openstack baremetal node list |grep compute
| 91d6026c-b9db-49cb-a685-99a63da5d81e | compute-3-5b3s30 | None | power off | available | False
|
| 8028eb8c-e1e6-4357-8fcf-0796778bd2f7 | compute-4-5b3s30 | None | power off | available | False
|
| b795b3b9-c4e3-4a76-90af-258d9336d9fb | compute-3-5b3s31 | None | power off | available | False
|
| 2d4be83e-6fcc-4761-86f2-c2615dd15074 | compute-4-5b3s31 | None | power off | available | False
|

The first two compute nodes belong to POP1 the second two compute nodes belong to POP2.

Create an input YAML using the ironic UUIDs:

 ~/subcluster_input.yaml

- subcluster: subcluster1
 asn: "65413"
 control_nodes:
 - uuid: 7d758dce-2784-45fd-be09-5a41eb53e764

232

 ipaddress: 10.0.0.11
 - uuid: 91dd9fa9-e8eb-4b51-8b5e-bbaffb6640e4
 ipaddress: 10.0.0.12
 - uuid: f4766799-24c8-4e3b-af54-353f2b796ca4
 ipaddress: 10.0.0.13
 compute_nodes:
 - uuid: 91d6026c-b9db-49cb-a685-99a63da5d81e
 vrouter_gateway: 10.0.0.1
 - uuid: 8028eb8c-e1e6-4357-8fcf-0796778bd2f7
 vrouter_gateway: 10.0.0.1
- subcluster: subcluster2
 asn: "65414"
 control_nodes:
 - uuid: d26abdeb-d514-4a37-a7fb-2cd2511c351f
 ipaddress: 10.0.0.14
 - uuid: 09fa57b8-580f-42ec-bf10-a19573521ed4
 ipaddress: 10.0.0.15
 - uuid: 58a803ae-a785-470e-9789-139abbfa74fb
 ipaddress: 10.0.0.16
 compute_nodes:
 - uuid: b795b3b9-c4e3-4a76-90af-258d9336d9fb
 vrouter_gateway: 10.0.0.1
 - uuid: 2d4be83e-6fcc-4761-86f2-c2615dd15074
 vrouter_gateway: 10.0.0.1

NOTE: Only control_nodes, compute_nodes, dpdk_nodes and sriov_nodes are supported.

Generate subcluster environment:

~/tripleo-heat-templates/tools/contrail/create_subcluster_environment.py -i ~/
subcluster_input.yaml \
 -o ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml

Check subcluster environment file:

cat ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml
parameter_defaults:
 NodeDataLookup:
 041D7B75-6581-41B3-886E-C06847B9C87E:

233

 contrail_settings:
 CONTROL_NODES: 10.0.0.14,10.0.0.15,10.0.0.16
 SUBCLUSTER: subcluster2
 VROUTER_GATEWAY: 10.0.0.1
 09BEC8CB-77E9-42A6-AFF4-6D4880FD87D0:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2
 14639A66-D62C-4408-82EE-FDDC4E509687:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2
 28AB0B57-D612-431E-B177-1C578AE0FEA4:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 3993957A-ECBF-4520-9F49-0AF6EE1667A7:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 73F8D030-E896-4A95-A9F5-E1A4FEBE322D:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 7933C2D8-E61E-4752-854E-B7B18A424971:
 contrail_settings:
 CONTROL_NODES: 10.0.0.14,10.0.0.15,10.0.0.16
 SUBCLUSTER: subcluster2
 VROUTER_GATEWAY: 10.0.0.1
 AF92F485-C30C-4D0A-BDC4-C6AE97D06A66:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2
 BB9E9D00-57D1-410B-8B19-17A0DA581044:
 contrail_settings:
 CONTROL_NODES: 10.0.0.11,10.0.0.12,10.0.0.13
 SUBCLUSTER: subcluster1
 VROUTER_GATEWAY: 10.0.0.1
 E1A809DE-FDB2-4EB2-A91F-1B3F75B99510:
 contrail_settings:
 CONTROL_NODES: 10.0.0.11,10.0.0.12,10.0.0.13

234

 SUBCLUSTER: subcluster1
 VROUTER_GATEWAY: 10.0.0.1

Deployment

Add contrail-subcluster.yaml, contrail-ips-from-pool-all.yaml and contrail-scheduler-hints.yaml to the
OpenStack deploy command:

openstack overcloud deploy --templates ~/tripleo-heat-templates \
 -e ~/overcloud_images.yaml \
 -e ~/tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-ips-from-pool-all.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-scheduler-hints.yaml \
 --roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

Installing Overcloud

1. Deployment:

openstack overcloud deploy --templates ~/tripleo-heat-templates \
-e ~/overcloud_images.yaml \
-e ~/tripleo-heat-templates/environments/network-isolation.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
--roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

2. Validation Test:

source overcloudrc
curl -O http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
openstack image create --container-format bare --disk-format qcow2 --file cirros-0.3.5-x86_64-
disk.img cirros
openstack flavor create --public cirros --id auto --ram 64 --disk 0 --vcpus 1
openstack network create net1
openstack subnet create --subnet-range 1.0.0.0/24 --network net1 sn1

235

nova boot --image cirros --flavor cirros --nic net-id=`openstack network show net1 -c id -f
value` --availability-zone nova:overcloud-novacompute-0.localdomain c1
nova list

RELATED DOCUMENTATION

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer

Using Netronome SmartNIC vRouter with Contrail Networking

Contrail supports Netronome Agilio CX SmartNICs for Contrail Networking deployment with Red Hat
OpenStack Platform Director (RHOSPd) 13 environment.

This feature will enable service providers to improve the forwarding performance which includes packets
per second (PPS) of vRouter. This will optimize server CPU usage and you can deploy more Virtual
network functions (VNFs) per server.

Benefits:

• Increased PPS capacity of Contrail vRouter datapath allowing applications to reach their full
processing capacity.

• Reclaimed CPU cores from Contrail vRouter off-loading allowing more VMs and VNFs to be deployed
per server.

The goal of this topic is to provide a procedure for deploying accelerated vRouter compute nodes.

Before you begin:

• Equip compute nodes with Netronome Agilio CX SmartNIC.

For details, refer to Agilio CX SmartNICs.

• Retrieve Agilio heat-template plugin.

Register on Netronome support site at https://help.netronome.com and provide Docker Hub
credentials.

Netronome will provide the TripleO templates for SmartNIC vRouter deployment on compute nodes.
Also, Netronome will authorize Docker Hub registry access.

For details, refer to Netronome Agilio vRouter 19xx deployment guide.

236

https://www.netronome.com/products/agilio-cx/
https://help.netronome.com
https://github.com/netronome-support/Agilio-vRouter-19xx/wiki/Agilio-vRouter-19xx-deployment-guide-%5BRHEL-7.6%5D%5BRHOSP-13%5D

• Note the following version tags:

AGILIO_TAG="2.38-rhel-queens FORWARDER_TAG="2.38-rhel-queens

Procedure:

NOTE: If you have multiple undercloud nodes deployed, you must perform the following
procedure on the same node.

1. Configure Agilio plugin.

For details, refer to Netronome agilio-ovs-openstack-plugin GitHub Repository.

a. Extract the Agilio plugin archive and copy the agilio-plugin folder into the tripleo-heat-templates
directory.

[stack@queensa ~]$ tar -xzvf rhosp-contrail-agilio-heat-plugin-5-34.tgz agilio-plugin/ agilio-plugin/
agilio-vrouter.yaml agilio-plugin/agilio_upgrade.sh agilio-plugin/deploy_rhosp.sh agilio-plugin/nfp_udev.sh
agilio-plugin/agilio-env.yaml agilio-plugin/version agilio-plugin/README.md [stack@queensa ~]$ cp -r
agilio-plugin/ tripleo-heat-templates/

b. Navigate to the agilio-plugin directory on the undercloud node.

[tripleo-heat-templates]$ cd agilio-plugin/

c. Modify agilio-env.yaml file as per your environment.

NOTE: Reserve at least 1375*2 MB hugepages for virtio-forwarder.

Sample agilio-env.yaml file:

resource_registry:
 OS::TripleO::NodeExtraConfigPost: agilio-vrouter.yaml

parameter_defaults:
 # Hugepages
 ContrailVrouterHugepages2MB: "8192"
 # IOMMU
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt isolcpus=1,2 "

 ComputeCount: 3

237

https://github.com/Netronome/agilio-ovs-openstack-plugin

 # Aditional config
 ControlPlaneDefaultRoute: 10.0.x.1
 EC2MetadataIp: 10.0.x.1 # Generally the IP of the Undercloud
 DnsServers: ["8.8.8.8","192.168.3.3"]
 NtpServer: ntp.is.co.za
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 172.x.x.150:6666,10.0.x.1:8787
 ContrailRegistry: 172.x.x.150:6666
 ContrailImageTag: <container_tag>-rhel-queens

Fix DB Diskspace too low issue
 ContrailAnalyticsDBMinDiskGB: 40

d. Add Docker Hub credentials to tripleo-heat-templates/agilio-plugin/agililo_upgrade.sh file to
retrieve containers from AGILIO_REPO="docker.io/netronomesystems/" repository.

#GENERAL DOCKER CONFIG DOCKER_USR=****** #ENTER_DOCKER_USERNAME_HERE DOCKER_PASS=******
#ENTER_DOCKER_PASSWORD_HERE

[root@overcloud-novacompute-2 heat-admin]# docker ps -a | grep virtio_for 7d5af8a2591d docker.io/
netronomesystems/virtio-forwarder:2.38-rhel-queens "./entrypoint.sh" 30 seconds ago Up 15 seconds
virtio_forwarder

[root@overcloud-novacompute-2 heat-admin]# docker ps -a | grep agilio c7c611b5168b docker.io/
netronomesystems/agilio-vrouter:2.38-rhel-queens "./entrypoint.sh" 46 seconds ago Up 38 seconds
agilio_vrouter

2. Prepare the Contrail Networking cluster for deployment.

Refer to the following topics for deployment:

• "Understanding Red Hat OpenStack Platform Director" on page 174

• "Setting Up the Infrastructure" on page 179

• "Setting Up the Undercloud" on page 188

• "Setting Up the Overcloud" on page 191

NOTE: Do not perform steps for "Installing Overcloud" on page 235.

3. Deploy the cluster by one of the following ways:

• Add agilio-env.yaml to installing overcloud step as mentioned in "Installing Overcloud" on page 235
topic.

238

openstack overcloud deploy --templates ~/tripleo-heat-templates -e ~/overcloud_images.yaml -e ~/tripleo-
heat-templates/environments/network-isolation.yaml -e ~/tripleo-heat-templates/environments/contrail/
contrail-plugins.yaml -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml -e ~/
tripleo-heat-templates/environments/contrail/contrail-net.yaml -e ~/tripleo-heat-templates/agilio-plugin/
agilio-env.yaml --roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

Or

• Run the following command:

deploy_rhosp.sh

-e ~/tripleo-heat-templates/agilio-plugin/agilio-env.yaml

On completing above steps successfully, refer to Netronome agilio-ovs-openstack-plugin GitHub
Repository on how to spin up the accelerated VMs.

RELATED DOCUMENTATION

Understanding Red Hat OpenStack Platform Director | 174

Setting Up the Infrastructure | 179

Setting Up the Undercloud | 188

Setting Up the Overcloud | 191

239

https://github.com/Netronome/agilio-ovs-openstack-plugin
https://github.com/Netronome/agilio-ovs-openstack-plugin

CHAPTER 10

Using Contrail with Red Hat OpenShift

IN THIS CHAPTER

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using Contrail
OpenShift Deployer | 240

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer | 251

Installing a Standalone Red Hat OpenShift Container Platform 3.11
Cluster with Contrail Using Contrail OpenShift Deployer

You can install Contrail Networking together with a standalone Red Hat OpenShift Container Platform
3.11 cluster using Contrail OpenShift deployer. Consider the topology illustrated here.

Prerequisites

The recommended system requirements are:

System
Requirements

Master Node Infrastructure Node Compute Node

CPU/RAM 8 vCPU, 16 GB RAM 16 vCPU, 64 GB RAM As per OpenShift
recommendations.

Disk 100 GB 250 GB

NOTE: If you use NFS mount volumes, check disk capacity and mounts. Also, openshift-logging
with NFS is not recommended.

240

https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

Figure 46: Sample installation topology

Perform the following steps to install a standalone OpenShift 3.11 cluster along with Contrail
Networking using contrail-openshift-deployer.

1. Set up environment nodes for RHEL OpenShift enterprise installations:

a. Subscribe to RHEL.

(all-nodes)# subscription-manager register --username <> --password <> --force

b. From the list of available subscriptions, find and attach the pool ID for the OpenShift Container
Platform subscription.

(all-nodes)# subscription-manager attach --pool=pool-ID

c. Disable all yum repositories.

(all-nodes)# subscription-manager repos --disable="*"

241

d. Enable only the required repositories.

 (all-nodes)# subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.11-rpms" \
 --enable=rhel-7-fast-datapath-rpms \
 --enable="rhel-7-server-ansible-2.6-rpms"

e. Install required packages, such as python-netaddr, iptables-services, and so on.

(all-nodes)# yum install -y tcpdump wget git net-tools bind-utils yum-utils iptables-services bridge-utils
bash-completion kexec-tools sos psacct python-netaddr openshift-ansible

NOTE: CentOS OpenShift Origin installations are not supported.

2. Get the files from the latest tar ball. Download the OpenShift Container Platform install package
from Juniper software download site and modify the contents of the openshift-ansible inventory file.

a. Download the Openshift Deployer (contrail-openshift-deployer-release-tag.tgz) installer from the
Juniper software download site, https://www.juniper.net/support/downloads/?p=contrail#sw. See
README Access for Contrail Networking Registry 19xx for appropriate release tags.

b. Copy the install package to the node from where Ansible is deployed. Ensure that the node has
password-free access to the OpenShift master and slave nodes.

scp contrail-openshift-deployer-release-tag.tgz openshift-ansible-node:/root/

c. Log in to the Ansible node and untar the contrail-openshift-deployer-release-tag.tgz package.

tar -xzvf contrail-openshift-deployer-release-tag.tgz -C /root/

d. Verify the contents of the openshift-ansible directory.

cd /root/openshift-ansible/

e. Modify the inventory/ose-install file to match your OpenShift environment.

Populate the inventory/ose-install file with Contrail configuration parameters specific to your
system. The following mandatory parameters must be set. For example:

contrail_version=5.1
contrail_container_tag=<>
contrail_registry="hub.juniper.net/contrail-nightly"
contrail_registry_username=<>
contrail_registry_password=<>

242

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

NOTE: The contrail_container_tag value for this release can be found in the README Access
to Contrail Registry 19XX file.

Juniper Networks recommends that you obtain the Ansible source files from the latest
release.

This procedure assumes that there is one master node, one infrastructure node, and one compute
node.

master : server1 (1x.xx.xx.11)
infrastructure : server2 (1x.xx.xx.22)
compute : server3 (1x.xx.xx.33)

3. Edit /etc/hosts to include all the nodes information.

[root@server1]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
1x.xx.xx.100 puppet
1x.xx.xx.11 server1.contrail.juniper.net server1
1x.xx.xx.22 server2.contrail.juniper.net server2
1x.xx.xx.33 server3.contrail.juniper.net server3

4. Set up password-free SSH access to the Ansible node and all the nodes.

ssh-keygen -t rsa
ssh-copy-id root@1x.xx.xx.11
ssh-copy-id root@1x.xx.xx.22
ssh-copy-id root@1x.xx.xx.33

243

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

5. Run Ansible playbook to install OpenShift Container Platform with Contrail. Before you run Ansible
playbook, ensure that you have edited inventory/ose-install file.

(ansible-node)# cd /root/openshift-ansible
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/prerequisites.yml
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/deploy_cluster.yml

For a sample inventory/ose-install file, see "No Link Title" on page 244.

6. Create a password for the admin user to log in to the UI from the master node.

(master-node)# htpasswd /etc/origin/master/htpasswd admin

NOTE: If you are using a load balancer, you must manually copy the htpasswd file into all your
master nodes.

7. Assign cluster-admin role to admin user.

(master-node)# oc adm policy add-cluster-role-to-user cluster-admin admin
(master-node)# oc login -u admin

8. Open a Web browser and type the entire fqdn name of your master node or load balancer node,
followed by :8443/console.

https://<your host name from your ose-install inventory>:8443/console

Use the user name and password created in step 6 to log in to the Web console.

Your DNS should resolve the host name for access. If the host name is not resolved, modify the /etc/
hosts file to route to the above host.

NOTE: OpenShift 3.11 cluster upgrades are not supported.

Sample inventory/ose-install File

[OSEv3:vars]

###

244

OpenShift Basic Vars
###
openshift_deployment_type=openshift-enterprise
deployment_type=openshift-enterprise
containerized=false
openshift_disable_check=docker_image_availability,memory_availability,package_availability,disk_a
vailability,package_version,docker_storage

Default node selectors
openshift_hosted_infra_selector="node-role.kubernetes.io/infra=true"

oreg_auth_user=<>
oreg_auth_password=<>

###
OpenShift Master Vars
###

openshift_master_api_port=8443
openshift_master_console_port=8443
openshift_master_cluster_method=native

Set this line to enable NFS
openshift_enable_unsupported_configurations=True

###
OpenShift Network Vars
###

openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

###
OpenShift Authentication Vars
###

htpasswd Authentication
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge':
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

###

245

OpenShift Router and Registry Vars
###

openshift_hosted_router_replicas=1
openshift_hosted_registry_replicas=1

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/export
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true
openshift_hosted_router_selector="node-role.kubernetes.io/infra=true"
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###
OpenShift Service Catalog Vars
###

openshift_enable_service_catalog=True

template_service_broker_install=True
openshift_template_service_broker_namespaces=['openshift']

ansible_service_broker_install=True

openshift_hosted_etcd_storage_kind=nfs
openshift_hosted_etcd_storage_nfs_options="*(rw,root_squash,sync,no_wdelay)"
openshift_hosted_etcd_storage_nfs_directory=/export
openshift_hosted_etcd_storage_labels={'storage': 'etcd-asb'}
openshift_hosted_etcd_storage_volume_name=etcd-asb
openshift_hosted_etcd_storage_access_modes=['ReadWriteOnce']
openshift_hosted_etcd_storage_volume_size=2G

###
OpenShift Metrics and Logging Vars

246

###
Enable cluster metrics
openshift_metrics_install_metrics=True

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/export
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=2Gi
openshift_metrics_storage_labels={'storage': 'metrics'}

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":"true"}

Enable cluster logging. ((
####openshift_logging_install_logging=True
openshift_logging_install_logging=False
#openshift_logging_storage_kind=nfs
#openshift_logging_storage_access_modes=['ReadWriteOnce']
#openshift_logging_storage_nfs_directory=/export
#openshift_logging_storage_nfs_options='*(rw,root_squash)'
#openshift_logging_storage_volume_name=logging
#openshift_logging_storage_volume_size=5Gi
#openshift_logging_storage_labels={'storage': 'logging'}
#openshift_logging_es_cluster_size=1
#openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":"true"}

###
OpenShift Prometheus Vars
###

Add Prometheus Metrics:
openshift_hosted_prometheus_deploy=True
openshift_prometheus_node_selector={"node-role.kubernetes.io/infra":"true"}
openshift_prometheus_namespace=openshift-metrics

Prometheus
openshift_prometheus_storage_kind=nfs
openshift_prometheus_storage_access_modes=['ReadWriteOnce']

247

openshift_prometheus_storage_nfs_directory=/export
openshift_prometheus_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_storage_volume_name=prometheus
openshift_prometheus_storage_volume_size=1Gi
openshift_prometheus_storage_labels={'storage': 'prometheus'}
openshift_prometheus_storage_type='pvc'

For prometheus-alertmanager
openshift_prometheus_alertmanager_storage_kind=nfs
openshift_prometheus_alertmanager_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertmanager_storage_nfs_directory=/export
openshift_prometheus_alertmanager_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertmanager_storage_volume_name=prometheus-alertmanager
openshift_prometheus_alertmanager_storage_volume_size=1Gi
openshift_prometheus_alertmanager_storage_labels={'storage': 'prometheus-alertmanager'}
openshift_prometheus_alertmanager_storage_type='pvc'

For prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_kind=nfs
openshift_prometheus_alertbuffer_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertbuffer_storage_nfs_directory=/export
openshift_prometheus_alertbuffer_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertbuffer_storage_volume_name=prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_volume_size=1Gi
openshift_prometheus_alertbuffer_storage_labels={'storage': 'prometheus-alertbuffer'}
openshift_prometheus_alertbuffer_storage_type='pvc'

###
Openshift HA
###

Openshift HA
openshift_master_cluster_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89
openshift_master_cluster_public_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

###
Contrail Variables
##

service_subnets="172.30.0.0/16"
pod_subnets="10.128.0.0/14"

248

Below are Contrail variables. Comment them out if you don't want to install Contrail through
ansible-playbook
contrail_version=5.1
contrail_container_tag=<>
contrail_registry=hub.juniper.net/contrail
contrail_registry_username=<>
contrail_registry_password=<>
openshift_docker_insecure_registries=hub.juniper.net/contrail
contrail_nodes=[10.0.0.5,10.0.0.3,10.0.0.4]
vrouter_physical_interface=eth0

###
OpenShift Hosts
###
[OSEv3:children]
masters
etcd
nodes
lb
nfs
openshift_ca

[masters]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[etcd]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[lb]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[nodes]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
controller-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
compute-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'

249

kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
compute-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'

[nfs]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[openshift_ca]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

NOTE: The /etc/resolv.conf must have write permissions.

Caveats and Troubleshooting Instructions

• If a Java error occurs, install the yum install java-1.8.0-openjdk-devel.x86_64 package and rerun
deploy_cluster.

• If the service_catalog parameter does not pass but the cluster is operational, check whether the /etc/
resolv.conf has cluster.local in its search line, and the nameserver as host IP address.

• NTP is installed by OpenShift and must be synchronized by the user. This does not affect any
Contrail functionality but is displayed in the contrail-status output.

• If the ansible_service_broker component of OpenShift is not up and its ansible_service_broker_deploy
displays an error, it means that the ansible_service_broker pod did not come up properly. The most
likely reason is that the ansible_service_broker pod failed its liveliness and readiness checks. Modify the
liveliness and readiness checks of this pod when it’s brought online to make it operational. Also,
verify that the ansible_service_broker pod uses the correct URL from Red Hat.

RELATED DOCUMENTATION

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer

250

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster
Using Contrail Ansible Deployer

You can install a nested Red Hat OpenShift Container Platform 3.11 cluster along with Contrail
Networking using Contrail Ansible deployer.

Prerequisites

Ensure that the following prerequisites are met for a successful provisioning of a nested Contrail-
OpenShift cluster.

• The recommended system requirements are:

System
Requirements

Master Node Infrastructure Node Compute Node

CPU/RAM 8 vCPU, 16 GB RAM 16 vCPU, 64 GB RAM As per OpenShift
recommendations.

Disk 100 GB 250 GB

• A running Red Hat OpenStack Platform Director (RHOSPD) 13 cluster with Contrail. OpenShift
Contrail release must be same as RHOSPD 13 Contrail release.

• RHOSPD environments require that the Contrail vrouter, Contrail config and OpenStack keystone are
in “internal-api” network. Modify the ServiceNetMap parameters in the contrail-services.yaml file to
configure in “internal-api” network.

parameter_defaults:
 ServiceNetMap:
 ContrailDatabaseNetwork: internal_api
 ContrailAnalyticsNetwork: internal_api
 ContrailAnalyticsAlarmNetwork: internal_api
 ContrailAnalyticsDatabaseNetwork: internal_api
 ContrailAnalyticsSnmpNetwork: internal_api
 ContrailConfigNetwork: internal_api
 ContrailControlNetwork: internal_api
 ContrailWebuiNetwork: internal_api
 ContrailVrouterNetwork: internal_api
 ContrailCertmongerUserNetwork: internal_api
 KeystoneAdminApiNetwork: internal_api

251

https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

• Ensure that the vRouter gateway in the contrail-services.yaml file is part of “internal-api” network.

Custom Contrail container configuration settings
 ContrailSettings:
 VROUTER_GATEWAY: 10.1.0.254

• OpenShift nodes (VMs) must have Internet connectivity.

• Default security group of the virtual-network where OpenShift nodes are launched must be modified
to allow all ingress traffic to communicate with OpenShift networks provided in the OpenShift
inventory file.

Provisioning Nested OpenShift Cluster

Provisioning a nested OpenShift cluster is a two-step process.

1. Create link-local services in the Contrail-OpenStack cluster.

A nested OpenShift cluster is managed by the same Contrail controller that manages the underlying
OpenStack cluster. Hence, the nested Openshift cluster needs IP reachability to the Contrail
controller and OpenStack keystone service. Since the OpenShift cluster is actually an overlay on the
OpenStack cluster, we use the Link Local Service feature of Contrail to provide IP reachability to and
from the overlay OpenShift cluster and OpenStack cluster.

To configure a Link Local Service, we need a Fabric IP and Service IP. Fabric IP is the node IP on which
the Contrail Controller and OpenStack services are running. Service IP is a unique and unused IP in

252

the entire OpenStack cluster and is shared with the OpenShift cluster to reach Contrail Controller
and OpenStack services. Service IP (along with port number) is used by the data plane to identify the
fabric IP. For each node of the OpenStack cluster, one service IP must be identified.

You must configure the following Link Local Services in Contrail.

Contrail Controller
and OpenStack
Process

Service IP Service Port Fabric IP Fabric Port

Contrail Config <Service IP for the running
node>

8082 <Node IP of running
node>

8082

Contrail Analytics <Service IP for the running
node>

8086 <Node IP of running
node>

8086

Contrail Msg Queue <Service IP for the running
node>

5673 <Node IP of running
node>

5673

Contrail VNC DB <Service IP for the running
node>

9161 <Node IP of running
node>

9161

Keystone <Service IP for the running
node>

35357 <Node IP of running
node>

35357

K8s-cni-to-agent <Service IP for the running
node>

9091 <Node IP of running
node>

9091

For example, consider a sample cluster of seven nodes.

Contrail Config : 192.168.1.100
Contrail Analytics : 192.168.1.100, 192.168.1.101
Contrail Msg Queue : 192.168.1.100
Contrail VNC DB : 192.168.1.100, 192.168.1.101, 192.168.1.102
Keystone: 192.168.1.200
Vrouter: 192.168.1.201, 192.168.1.202, 192.168.1.203

253

Allocate seven unused IP addresses for the seven nodes.

192.168.1.100 --> 10.10.10.1
192.168.1.101 --> 10.10.10.2
192.168.1.102 --> 10.10.10.3
192.168.1.200 --> 10.10.10.4
192.168.1.201/192.168.1.202/192.168.1.203 --> 10.10.10.5

NOTE: One Service IP address can represent all vRouter nodes.

The following link-local services must be created:

Contrail controller and OpenStack process Service IP Service Port Fabric IP Fabric Port

Contrail Config 10.10.10.1 8082 192.168.1.100 8082

Contrail Analytics 1 10.10.10.1 8086 192.168.1.100 8086

Contrail Analytics 2 10.10.10.1 8086 192.168.1.101 8086

Contrail Msg Queue 10.10.10.2 5673 192.168.1.100 5673

Contrail VNC DB 1 10.10.10.1 9161 192.168.1.100 9161

Contrail VNC DB 2 10.10.10.2 9161 192.168.1.101 9161

Contrail VNC DB 3 10.10.10.2 9161 192.168.1.102 9161

Keystone 10.10.10.4 35357 192.168.1.200 35357

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

2. Install OpenShift using OpenShift Ansible deployer.

254

Perform the following steps to install the nested OpenShift 3.11 cluster along with Contrail
Networking using OpenShift Ansible deployer.

a. Set up environment nodes for RHEL OpenShift enterprise installations:

i. Subscribe to RHEL.

(all-nodes)# subscription-manager register --username <> --password <> --force

ii. From the list of available subscriptions, find and attach the pool
ID for the OpenShift Container Platform subscription.

(all-nodes)# subscription-manager attach --pool=pool-ID

iii. Disable all yum repositories.

(all-nodes)# subscription-manager repos --disable="*"

iv. Enable only the required repositories.

 (all-nodes)# subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.11-rpms" \
 --enable=rhel-7-fast-datapath-rpms \
 --enable="rhel-7-server-ansible-2.6-rpms"

v. Install required packages, such as python-netaddr, iptables-
services, and so on.

(all-nodes)# yum install -y tcpdump wget git net-tools bind-utils yum-utils iptables-services
bridge-utils bash-completion kexec-tools sos psacct python-netaddr openshift-ansible

NOTE: CentOS OpenShift Origin installations are not supported.

b. Get the files from the latest tar ball. Download the OpenShift Container Platform install package
from Juniper software download site and modify the contents of the openshift-ansible inventory
file.

i. Download Openshift Ansible (contrail-ansible-deployer-release-tag.tgz) installer from the
Juniper software download site, https://www.juniper.net/support/downloads/?
p=contrail#sw. See README Access for Contrail Networking Registry 19xx for appropriate
release tags.

255

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

ii. Copy the install package to the node from where Ansible is deployed. Ensure that the node
has password-free access to the OpenShift master and slave nodes.

scp contrail-ansible-deployer-release-tag.tgz openshift-ansible-node:/root/

iii. Log in to the Ansible node and untar the contrail-ansible-deployer-release-tag.tgz package.

tar -xzvf contrail-ansible-deployer-release-tag.tgz -C /root/

iv. Verify the contents of the openshift-ansible directory.

cd /root/openshift-ansible/

v. Modify the inventory/ose-install file to match your OpenShift environment.

Populate the inventory/ose-install file with Contrail configuration parameters specific to
your system. The following mandatory parameters must be set.

contrail_version=1907
 contrail_container_tag=<>
 contrail_registry="hub.juniper.net/contrail"
 contrail_registry_username=<>
 contrail_registry_password=<>
 openshift_use_openshift_sdn=false
 os_sdn_network_plugin_name='cni'
 openshift_use_contrail=true

NOTE: The contrail_container_tag value for this release can be found in the README
Access to Contrail Registry 19XX file.

i. Download Openshift Ansible (contrail-ansible-deployer-release-tag.tgz) installer from the
Juniper software download site, https://www.juniper.net/support/downloads/?
p=contrail#sw. See README Access for Contrail Networking Registry 19xx for appropriate
release tags.

ii. Copy the install package to the node from where Ansible is deployed. Ensure that the node
has password-free access to the OpenShift master and slave nodes.

scp contrail-ansible-deployer-release-tag.tgz openshift-ansible-node:/root/

iii. Log in to the Ansible node and untar the contrail-ansible-deployer-release-tag.tgz package.

tar -xzvf contrail-ansible-deployer-release-tag.tgz -C /root/

256

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

iv. Verify the contents of the openshift-ansible directory.

cd /root/openshift-ansible/

v. Modify the inventory/ose-install file to match your OpenShift environment.

Populate the inventory/ose-install file with Contrail configuration parameters specific to
your system. The following mandatory parameters must be set.

contrail_version=1907
 contrail_container_tag=<>
 contrail_registry="hub.juniper.net/contrail"
 contrail_registry_username=<>
 contrail_registry_password=<>
 openshift_use_openshift_sdn=false
 os_sdn_network_plugin_name='cni'
 openshift_use_contrail=true

NOTE: The contrail_container_tag value for this release can be found in the README
Access to Contrail Registry 19XX file.

NOTE: Juniper Networks recommends that you obtain the Ansible source files from the
latest release.

This procedure assumes that there is one master node, one infrastructure node, and one compute
node.

master : server1 (1x.xx.xx.11)
infrastructure : server2 (1x.xx.xx.22)
compute : server3 (1x.xx.xx.33)

c. Edit /etc/hosts to include all the nodes information.

[root@server1]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
1x.xx.xx.100 puppet

257

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

1x.xx.xx.11 server1.contrail.juniper.net server1
1x.xx.xx.22 server2.contrail.juniper.net server2
1x.xx.xx.33 server3.contrail.juniper.net server3

d. Set up password-free SSH access to the Ansible node and all the nodes.

ssh-keygen -t rsa
ssh-copy-id root@1x.xx.xx.11
ssh-copy-id root@1x.xx.xx.22
ssh-copy-id root@1x.xx.xx.33

e. Run Ansible playbook to install OpenShift Container Platform with Contrail. Before you run
Ansible playbook, ensure that you have edited inventory/ose-install file.

(ansible-node)# cd /root/openshift-ansible
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/prerequisites.yml
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/deploy_cluster.yml

For a sample inventory/ose-install file, see "No Link Title" on page 259.

f. Create a password for the admin user to log in to the UI from the master node.

(master-node)# htpasswd /etc/origin/master/htpasswd admin

NOTE: If you are using a load balancer, you must manually copy the htpasswd file into all
your master nodes.

g. Assign cluster-admin role to admin user.

(master-node)# oc adm policy add-cluster-role-to-user cluster-admin admin
(master-node)# oc login -u admin

h. Open a Web browser and type the entire fqdn name of your master node or load balancer node,
followed by :8443/console.

https://<your host name from your ose-install inventory>:8443/console

258

Use the user name and password created in step "2.f" on page 258 to log in to the Web console.

Your DNS should resolve the host name for access. If the host name is not resolved, modify
the /etc/hosts file to route to the above host.

NOTE: OpenShift 3.11 cluster upgrades are not supported.

Sample inventory/ose-install File

[OSEv3:vars]

###
OpenShift Nested mode vars
###
nested_mode_contrail=true
rabbitmq_node_port=5673
contrail_nested_masters_ip="1.1.1.1 2.2.2.2 3.3.3.3" <--- ips of contrail controllers
auth_mode=keystone
keystone_auth_host=<w.x.y.z> <--- This should be the IP where Keystone service is running.
keystone_auth_admin_tenant=admin
keystone_auth_admin_user=admin
keystone_auth_admin_password=MAYffWrX7ZpPrV2AMAa9zAUvG <-- Keystone admin password.
keystone_auth_admin_port=35357
keystone_auth_url_version=/v3
#k8s_nested_vrouter_vip is a service IP for the running node which we configured above
k8s_nested_vrouter_vip=10.10.10.5 <-- Service IP configured for CNI to Agent communication.
(K8s-cni-to-agent in above examples)
#k8s_vip is kubernetes api server ip
k8s_vip=<W.X.Y.Z> <-- IP of the Openshift Master Node.
#cluster_network is the one which vm network belongs to
cluster_network="{'domain': 'default-domain', 'project': 'admin', 'name': 'net1'}" <-- FQName of
the Virtual Network where Virtual Machines are running. The VMs in which Openshift cluster is
being installed in nested mode.
#config_nodes="x.x.x.x,y.y.y.y.y"
#analytics_nodes="x.x.x.x,y.y.y.y.y"
#config_api_vip=x.x.x.x
#analytics_api_vip=x.x.x.x

###

259

OpenShift Basic Vars
###
openshift_deployment_type=openshift-enterprise
deployment_type=openshift-enterprise
containerized=false
openshift_disable_check=docker_image_availability,memory_availability,package_availability,disk_a
vailability,package_version,docker_storage

Default node selectors
openshift_hosted_infra_selector="node-role.kubernetes.io/infra=true"

oreg_auth_user=<>
oreg_auth_password=<>

###
OpenShift Master Vars
###

openshift_master_api_port=8443
openshift_master_console_port=8443
openshift_master_cluster_method=native

Set this line to enable NFS
openshift_enable_unsupported_configurations=True

###
OpenShift Network Vars
###

openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

###
OpenShift Authentication Vars
###

htpasswd Authentication
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge':
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

###

260

OpenShift Router and Registry Vars
###

openshift_hosted_router_replicas=1
openshift_hosted_registry_replicas=1

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/export
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true
openshift_hosted_router_selector="node-role.kubernetes.io/infra=true"
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###
OpenShift Service Catalog Vars
###

openshift_enable_service_catalog=True

template_service_broker_install=True
openshift_template_service_broker_namespaces=['openshift']

ansible_service_broker_install=True

openshift_hosted_etcd_storage_kind=nfs
openshift_hosted_etcd_storage_nfs_options="*(rw,root_squash,sync,no_wdelay)"
openshift_hosted_etcd_storage_nfs_directory=/export
openshift_hosted_etcd_storage_labels={'storage': 'etcd-asb'}
openshift_hosted_etcd_storage_volume_name=etcd-asb
openshift_hosted_etcd_storage_access_modes=['ReadWriteOnce']
openshift_hosted_etcd_storage_volume_size=2G

###
OpenShift Metrics and Logging Vars

261

###
Enable cluster metrics
openshift_metrics_install_metrics=True

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/export
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=2Gi
openshift_metrics_storage_labels={'storage': 'metrics'}

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":"true"}

Enable cluster logging. ((
####openshift_logging_install_logging=True
openshift_logging_install_logging=False
#openshift_logging_storage_kind=nfs
#openshift_logging_storage_access_modes=['ReadWriteOnce']
#openshift_logging_storage_nfs_directory=/export
#openshift_logging_storage_nfs_options='*(rw,root_squash)'
#openshift_logging_storage_volume_name=logging
#openshift_logging_storage_volume_size=5Gi
#openshift_logging_storage_labels={'storage': 'logging'}
#openshift_logging_es_cluster_size=1
#openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":"true"}

###
OpenShift Prometheus Vars
###

Add Prometheus Metrics:
openshift_hosted_prometheus_deploy=True
openshift_prometheus_node_selector={"node-role.kubernetes.io/infra":"true"}
openshift_prometheus_namespace=openshift-metrics

Prometheus
openshift_prometheus_storage_kind=nfs
openshift_prometheus_storage_access_modes=['ReadWriteOnce']

262

openshift_prometheus_storage_nfs_directory=/export
openshift_prometheus_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_storage_volume_name=prometheus
openshift_prometheus_storage_volume_size=1Gi
openshift_prometheus_storage_labels={'storage': 'prometheus'}
openshift_prometheus_storage_type='pvc'

For prometheus-alertmanager
openshift_prometheus_alertmanager_storage_kind=nfs
openshift_prometheus_alertmanager_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertmanager_storage_nfs_directory=/export
openshift_prometheus_alertmanager_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertmanager_storage_volume_name=prometheus-alertmanager
openshift_prometheus_alertmanager_storage_volume_size=1Gi
openshift_prometheus_alertmanager_storage_labels={'storage': 'prometheus-alertmanager'}
openshift_prometheus_alertmanager_storage_type='pvc'

For prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_kind=nfs
openshift_prometheus_alertbuffer_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertbuffer_storage_nfs_directory=/export
openshift_prometheus_alertbuffer_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertbuffer_storage_volume_name=prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_volume_size=1Gi
openshift_prometheus_alertbuffer_storage_labels={'storage': 'prometheus-alertbuffer'}
openshift_prometheus_alertbuffer_storage_type='pvc'

###
Openshift HA
###

Openshift HA
openshift_master_cluster_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89
openshift_master_cluster_public_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

###
Contrail Variables
##

service_subnets="172.30.0.0/16"
pod_subnets="10.128.0.0/14"

263

Below are Contrail variables. Comment them out if you don't want to install Contrail through
ansible-playbook
contrail_version=1907
contrail_container_tag=<>
contrail_registry=hub.juniper.net/contrail
contrail_registry_username=<>
contrail_registry_password=<>
openshift_docker_insecure_registries=hub.juniper.net/contrail
contrail_nodes=[10.0.0.5,10.0.0.3,10.0.0.4]
vrouter_physical_interface=eth0

###
OpenShift Hosts
###
[OSEv3:children]
masters
etcd
nodes
lb
nfs
openshift_ca

[masters]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[etcd]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[lb]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[nodes]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
controller-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
compute-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'

264

kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
compute-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'

[nfs]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[openshift_ca]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

NOTE: The /etc/resolv.conf must have write permissions.

Release History Table

Release Description

1907 You can install a nested Red Hat OpenShift Container Platform 3.11 cluster along with Contrail
Networking using Contrail Ansible deployer.

RELATED DOCUMENTATION

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer

265

CHAPTER 11

Using Contrail with Juju Charms

IN THIS CHAPTER

Installing Contrail with OpenStack by Using Juju Charms | 266

Installing Contrail with Kubernetes by Using Juju Charms | 288

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms | 301

Installing Contrail with OpenStack by Using Juju Charms

IN THIS SECTION

Preparing to Deploy Contrail by Using Juju Charms | 267

Deploying Contrail Charms | 269

Options for Juju Charms | 281

You can deploy Contrail by using Juju Charms. Juju helps you deploy, configure, and efficiently manage
applications on private clouds and public clouds. Juju accesses the cloud with the help of a Juju
controller. A Charm is a module containing a collection of scripts and metadata and is used with Juju to
deploy Contrail.

Contrail supports the following charms:

• contrail-agent

• contrail-analytics

• contrail-analyticsdb

• contrail-controller

• contrail-keystone-auth

266

• contrail-openstack

These topics describe how to deploy Contrail by using Juju Charms.

Preparing to Deploy Contrail by Using Juju Charms

Follow these steps to prepare for deployment:

1. Install Juju.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install juju

2. Configure Juju.

You can add a cloud to Juju, identify clouds supported by Juju, and also manage clouds already added
to Juju.

• Adding a cloud—Juju recognizes a wide range of cloud types. You can use any one of the following
methods to add a cloud to Juju:

• Adding a Cloud by Using Interactive Command

Example: Adding an MAAS cloud to Juju

juju add-cloud
Cloud Types
 maas
 manual
 openstack
 oracle
 vsphere

Select cloud type: maas

Enter a name for your maas cloud: maas-cloud

Enter the API endpoint url: http://<ip-address>:<node>/MAAS

Cloud "maas-cloud" successfully added
You may bootstrap with 'juju bootstrap maas-cloud'

267

NOTE: Juju 2.x is compatible with MAAS series 1.x and 2.x.

• Adding a Cloud Manually

You use a YAML configuration file to add a cloud manually. Enter the following command:

juju add-cloud <cloud-name>
juju add-credential <cloud name>

For an example, to add the cloud junmaas, assuming that the name of the configuration file in
the directory is maas-clouds.yaml, you run the following command:

juju add-cloud junmaas maas-clouds.yaml

The following is the format of the YAML configuration file:

clouds:
 <cloud_name>:
 type: <type_of_cloud>
 auth-types: [<authenticaton_types>]
 regions:
 <region-name>:
 endpoint: <http://<ip-address>:<node>/MAAS>

NOTE: The auth-types for a MAAS cloud type is oauth1.

• Identifying a supported cloud

Juju recognizes the cloud types given below. You use the juju clouds command to list cloud types
that are supported by Juju.

$ juju clouds
Cloud Regions Default Type Description
aws 15 us-east-1 ec2 Amazon Web Services
aws-china 1 cn-north-1 ec2 Amazon China
aws-gov 1 us-gov-west-1 ec2 Amazon (USA Government)
azure 26 centralus azure Microsoft Azure

268

azure-china 2 chinaeast azure Microsoft Azure China
cloudsigma 5 hnl cloudsigma CloudSigma Cloud
google 13 us-east1 gce Google Cloud Platform
joyent 6 eu-ams-1 joyent Joyent Cloud
oracle 5 uscom-central-1 oracle Oracle Cloud
rackspace 6 dfw rackspace Rackspace Cloud
localhost 1 localhost lxd LXD Container Hypervisor

3. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

NOTE: A Juju controller manages and keeps track of applications in the Juju cloud
environment.

Deploying Contrail Charms

IN THIS SECTION

Deploying Contrail Charms in a Bundle | 269

Deploying Juju Charms with OpenStack Manually | 276

You can deploy Contrail Charms in a bundle or manually.

Deploying Contrail Charms in a Bundle

Follow these steps to deploy Contrail Charms in a bundle.

1. Deploy Contrail Charms.

To deploy Contrail Charms in a bundle, use the juju deploy <bundle_yaml_file> command.

The following example shows you how to use bundle_yaml_file to deploy Contrail on Amazon Web
Services (AWS) Cloud.

series: xenial
services:

269

 ubuntu:
 charm: cs:xenial/ubuntu
 num_units: 3
 to: ["1", "2", "3"]
 ntp:
 charm: cs:xenial/ntp
 num_units: 0
 options:
 source: ntp.juniper.net
 mysql:
 charm: cs:xenial/percona-cluster
 options:
 dataset-size: 15%
 max-connections: 10000
 root-password: password
 sst-password: password
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 rabbitmq-server:
 charm: cs:xenial/rabbitmq-server
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 heat:
 charm: cs:xenial/heat
 num_units: 3
 options:
 vip: ip-address
 vip_cidr: 24
 to: ["lxd:1", "lxd:2", "lxd:3"]
 keystone:
 charm: cs:xenial/keystone
 options:
 admin-password: password
 admin-role: admin
 openstack-origin: cloud:xenial-newton
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 nova-cloud-controller:
 charm: cs:xenial/nova-cloud-controller

270

 options:
 network-manager: Neutron
 openstack-origin: cloud:xenial-newton
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 neutron-api:
 charm: cs:xenial/neutron-api
 series: xenial
 options:
 manage-neutron-plugin-legacy-mode: false
 openstack-origin: cloud:xenial-newton
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 glance:
 charm: cs:xenial/glance
 options:
 openstack-origin: cloud:xenial-newton
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 openstack-dashboard:
 charm: cs:xenial/openstack-dashboard
 options:
 openstack-origin: cloud:xenial-newton
 vip: ip-address
 vip_cidr: 24
 num_units: 3
 to: ["lxd:1", "lxd:2", "lxd:3"]
 nova-compute:
 charm: cs:xenial/nova-compute
 options:
 openstack-origin: cloud:xenial-newton
 num_units: 3
 to: ["4", "5", "6"]
 mysql-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3

271

 num_units: 0
 keystone-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 ncc-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 neutron-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 glance-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 dashboard-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 heat-hacluster:
 charm: cs:xenial/hacluster
 options:
 cluster_count: 3
 num_units: 0
 contrail-openstack:
 charm: cs:~juniper-os-software/contrail-openstack
 series: xenial
 num_units: 0
 contrail-agent:
 charm: cs:~juniper-os-software/contrail-agent
 num_units: 0
 series: xenial
 options:
 log-level: "SYS_DEBUG"
 contrail-analytics:
 charm: cs:~juniper-os-software/contrail-analytics

272

 num_units: 3
 series: xenial
 to: ["1", "2", "3"]
 contrail-analyticsdb:
 charm: cs:~juniper-os-software/contrail-analyticsdb
 num_units: 3
 series: xenial
 options:
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: 4
 cassandra-jvm-extra-opts: "-Xms1g -Xmx2g"
 to: ["1", "2", "3"]
 contrail-controller:
 charm: cs:~juniper-os-software/contrail-controller
 series: xenial
 options:
 vip: ip-address
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: 4
 cassandra-jvm-extra-opts: "-Xms1g -Xmx2g"
 to: ["1", "2", "3"]
 contrail-keystone-auth:
 charm: cs:~juniper-os-software/contrail-keystone-auth
 series: xenial
 num_units: 1
 to: ["lxd:1"]

 contrail-keepalived:
 charm: cs:~boucherv29/keepalived-19
 series: xenial
 options:
 virtual_ip: ip-address
 contrail-haproxy:
 charm: haproxy
 series: xenial
 expose: true
 options:
 peering_mode: "active-active"
 to: ["1", "2", "3"]

relations:
 # openstack
 - ["ubuntu", "ntp"]

273

 - [mysql, mysql-hacluster]
 - ["keystone", "mysql"]
 - [keystone, keystone-hacluster]
 - ["glance", "mysql"]
 - ["glance", "keystone"]
 - [glance, glance-hacluster]
 - ["nova-cloud-controller", "mysql"]
 - ["nova-cloud-controller", "rabbitmq-server"]
 - ["nova-cloud-controller", "keystone"]
 - ["nova-cloud-controller", "glance"]
 - [nova-cloud-controller, ncc-hacluster]
 - ["neutron-api", "mysql"]
 - ["neutron-api", "rabbitmq-server"]
 - ["neutron-api", "nova-cloud-controller"]
 - ["neutron-api", "keystone"]
 - [neutron-api, neutron-hacluster]
 - ["nova-compute:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute", "glance"]
 - ["nova-compute", "nova-cloud-controller"]
 - ["nova-compute", "ntp"]
 - ["openstack-dashboard:identity-service", "keystone"]
 - [openstack-dashboard, dashboard-hacluster]
 - ["heat", "mysql"]
 - ["heat", "rabbitmq-server"]
 - ["heat", "keystone"]
 - ["heat", "heat-hacluster"]

 #contrail
 - ["contrail-keystone-auth", "keystone"]
 - ["contrail-controller", "contrail-keystone-auth"]
 - ["contrail-analytics", "contrail-analyticsdb"]
 - ["contrail-controller", "contrail-analytics"]
 - ["contrail-controller", "contrail-analyticsdb"]
 - ["contrail-openstack", "nova-compute"]
 - ["contrail-openstack", "neutron-api"]
 - ["contrail-openstack", "heat"]
 - ["contrail-openstack", "contrail-controller"]
 - ["contrail-agent:juju-info", "nova-compute:juju-info"]
 - ["contrail-agent", "contrail-controller"]

 #haproxy
 - ["haproxy:juju-info", "keepalived:juju-info"]
 - ["contrail-analytics", "haproxy"]

274

 - ["contrail-controller:http-services", "haproxy"]
 - ["contrail-controller:https-services", "haproxy"]

machines:
 "1":
 series: xenial
 #constraints: mem=15G root-disk=40G
 constraints: tags=contrail-controller-vm-1
 "2":
 series: xenial
 #constraints: mem=15G root-disk=40G
 constraints: tags=contrail-controller-vm-2
 "3":
 series: xenial
 #constraints: mem=15G root-disk=40G
 constraints: tags=contrail-controller-vm-3
 "4":
 series: xenial
 #constraints: mem=4G root-disk=20G
 constraints: tags=compute-storage-1
 "5":
 series: xenial
 #constraints: mem=4G root-disk=20G
 constraints: tags=compute-storage-2
 "6":
 series: xenial
 #constraints: mem=4G root-disk=20G
 constraints: tags=compute-storage-3

You can create or modify the Contrail Charm deployment bundle YAML file to:

• Point to machines or instances where the Contrail Charms must be deployed.

• Include the options you need.

Each Contrail Charm has a specific set of options. The options you choose depend on the charms
you select. For more information on the options that are available, see "Options for Juju Charms"
on page 281.

2. (Optional) Check the status of deployment.

You can check the status of the deployment by using the juju status command.

3. Enable configuration statements.

Based on your deployment requirements, you can enable the following configuration statements:

275

• contrail-agent

For more information, see https://jaas.ai/u/juniper-os-software/contrail-agent/.

• contrail-analytics

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analytics.

• contrail-analyticsdb

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analyticsdb.

• contrail-controller

For more information, see https://jaas.ai/u/juniper-os-software/contrail-controller.

• contrail-keystone-auth

For more information, see https://jaas.ai/u/juniper-os-software/contrail-keystone-auth.

• contrail-openstack

For more information see, https://jaas.ai/u/juniper-os-software/contrail-openstack.

Deploying Juju Charms with OpenStack Manually

Before you begin deployment, ensure that you have:

• Installed and configured Juju

• Created a Juju controller

• Ubuntu 16.04 or Ubuntu 18.04 installed

Follow these steps to deploy Juju Charms manually:

1. Create machine instances for OpenStack, compute, and Contrail.

juju add-machine --constraints mem=8G cores=2 root-disk=40G --series=xenial #for openstack
machine(s) 0
juju add-machine --constraints mem=7G cores=4 root-disk=40G --series=xenial #for compute
machine(s) 1,(3)
juju add-machine --constraints mem=15G cores=2 root-disk=300G --series=xenial #for contrail
machine 2

2. Deploy OpenStack services.

You can deploy OpenStack services by using any one of the following methods:

276

https://jaas.ai/u/juniper-os-software/contrail-agent/
https://jaas.ai/u/juniper-os-software/contrail-analytics
https://jaas.ai/u/juniper-os-software/contrail-analyticsdb
https://jaas.ai/u/juniper-os-software/contrail-controller
https://jaas.ai/u/juniper-os-software/contrail-keystone-auth
https://jaas.ai/u/juniper-os-software/contrail-openstack

• By specifying the OpenStack parameters in a YAML file

The following is an example of a YAML-formatted (nova-compute-config.yaml) file.

nova-compute:
 openstack-origin: cloud:xenial-ocata
 virt-type: qemu
 enable-resize: True
 enable-live-migration: True
 migration-auth-type: ssh

Use this command to deploy OpenStack services by using a YAML-formatted file:

juju deploy cs:xenial/nova-compute --config ./nova-compute-config.yaml

• By using CLI

To deploy OpenStack services through the CLI:

juju deploy cs:xenial/nova-cloud-controller --config console-access-protocol=novnc --
config openstack-origin=cloud:xenial-ocata

• By using a combination of YAML-formatted file and CLI

To deploy OpenStack services by using a combination of YAML-formatted file and CLI:

NOTE: Use the --to <machine number> command to point to a machine or container where
you want the application to be deployed.

juju deploy cs:xenial/ntp
juju deploy cs:xenial/rabbitmq-server --to lxd:0
juju deploy cs:xenial/percona-cluster mysql --config root-password=<root-password> --
config max-connections=1500 --to lxd:0
juju deploy cs:xenial/openstack-dashboard --config openstack-origin=cloud:xenial-ocata --
to lxd:0
juju deploy cs:xenial/nova-cloud-controller --config console-access-protocol=novnc --
config openstack-origin=cloud:xenial-ocata --config network-manager=Neutron --to lxd:0
juju deploy cs:xenial/neutron-api --config manage-neutron-plugin-legacy-mode=false --
config openstack-origin=cloud:xenial-ocata --config neutron-security-groups=true --to lxd:0

277

juju deploy cs:xenial/glance --config openstack-origin=cloud:xenial-ocata --to lxd:0
juju deploy cs:xenial/keystone --config admin-password=<admin-password> --config admin-
role=admin --config openstack-origin=cloud:xenial-ocata --to lxd:0

NOTE: You set OpenStack services on different machines or on different containers to
prevent HAProxy conflicts from applications.

3. Deploy and configure nova-compute.

juju deploy cs:xenial/nova-compute --config ./nova-compute-config.yaml --to 1

NOTE: You can deploy nova-compute to more than one compute machine.

(Optional) To add additional computes:

juju add-unit nova-compute --to 3 # Add one more unit

4. Deploy and configure Contrail services.

juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-keystone-auth --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-controller --config
auth-mode=rbac --config cassandra-minimum-diskgb=4 --config cassandra-jvm-extra-opts="-Xms1g -
Xmx2g" --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-analyticsdb cassandra-
minimum-diskgb=4 --config cassandra-jvm-extra-opts="-Xms1g -Xmx2g" --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-analytics --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-openstack
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-agent

5. Enable applications to be available to external traffic:

juju expose openstack-dashboard
juju expose nova-cloud-controller
juju expose neutron-api
juju expose glance
juju expose keystone

278

6. Enable contrail-controller and contrail-analytics services to be available to external traffic if you do
not use HAProxy.

juju expose contrail-controller
juju expose contrail-analytics

7. Apply SSL.

You can apply SSL if needed. To use SSL with Contrail services, deploy easy-rsa service and add-
relation command to create relations to contrail-controller service and contrail-agent services.

juju deploy cs:~containers/xenial/easyrsa --to 0
juju add-relation easyrsa contrail-controller
juju add-relation easyrsa contrail-agent

8. (Optional) HA configuration.

If you use more than one controller, follow the HA solution given below:

a. Deploy HAProxy and Keepalived services.

HAProxy charm is deployed on machines with Contrail controllers. HAProxy charm must have
peering_mode set to active-active. If peering_mode is set to active-passive, HAProxy creates additional
listeners on the same ports as other Contrail services. This leads to port conflicts.

Keepalived charm does not require to option.

juju deploy cs:xenial/haproxy --to <first contrail-controller machine> --config
peering_mode=active-active
juju add-unit haproxy --to <another contrail-controller machine>
juju deploy cs:~boucherv29/keepalived-19 --config virtual_ip=<vip>

b. Enable HAProxy to be available to external traffic.

juju expose haproxy

NOTE: If you enable HAProxy to be available to external traffic, do not follow step 6.

279

c. Add HAProxy and Keepalived relations.

juju add-relation haproxy:juju-info keepalived:juju-info
juju add-relation contrail-analytics:http-services haproxy
juju add-relation contrail-controller:http-services haproxy
juju add-relation contrail-controller:https-services haproxy

d. Configure contrail-controller service with VIP.

juju set contrail-controller vip=<vip>

9. Add other necessary relations.

juju add-relation keystone:shared-db mysql:shared-db
juju add-relation glance:shared-db mysql:shared-db
juju add-relation keystone:identity-service glance:identity-service
juju add-relation nova-cloud-controller:image-service glance:image-service
juju add-relation nova-cloud-controller:identity-service keystone:identity-service
juju add-relation nova-cloud-controller:cloud-compute nova-compute:cloud-compute
juju add-relation nova-compute:image-service glance:image-service
juju add-relation nova-compute:amqp rabbitmq-server:amqp
juju add-relation nova-cloud-controller:shared-db mysql:shared-db
juju add-relation nova-cloud-controller:amqp rabbitmq-server:amqp
juju add-relation openstack-dashboard:identity-service keystone

juju add-relation neutron-api:shared-db mysql:shared-db
juju add-relation neutron-api:neutron-api nova-cloud-controller:neutron-api
juju add-relation neutron-api:identity-service keystone:identity-service
juju add-relation neutron-api:amqp rabbitmq-server:amqp

juju add-relation contrail-controller ntp
juju add-relation nova-compute:juju info ntp:juju info

juju add-relation contrail-controller contrail-keystone-auth
juju add-relation contrail-keystone-auth keystone
juju add-relation contrail-controller contrail-analytics
juju add-relation contrail-controller contrail-analyticsdb
juju add-relation contrail-analytics contrail-analyticsdb

juju add-relation contrail-openstack neutron-api
juju add-relation contrail-openstack nova-compute

280

juju add-relation contrail-openstack contrail-controller

juju add-relation contrail-agent:juju info nova-compute:juju info
juju add-relation contrail-agent contrail-controller

Options for Juju Charms

Each Contrail Charm has a specific set of options. The options you choose depend on the charms you
select. The following tables list the various options you can choose:

• Options for contrail-agent Charms.

Table 10: Options for contrail-agent

Option Default option Description

physical-interface Specify the interface where you want to install
vhost0 on. If you do not specify an interface, vhost0
is installed on the default gateway interface.

vhost-gateway auto Specify the gateway for vhost0. You can enter either
an IP address or the keyword (auto) to automatically
set a gateway based on the existing vhost routes.

remove-juju-bridge true To install vhost0 directly on the interface, enable
this option to remove any bridge created to deploy
LXD/LXC and KVM workloads.

dpdk false Specify DPDK vRouter.

dpdk-driver uio_pci_generic Specify DPDK driver for the physical interface.

dpdk-hugepages 70% Specify the percentage of huge pages reserved for
DPDK vRouter and OpenStack instances.

dpdk-coremask 1 Specify the vRouter CPU affinity mask to determine
on which CPU the DPDK vRouter will run.

281

Table 10: Options for contrail-agent (Continued)

Option Default option Description

dpdk-main-mempool-size Specify the main packet pool size.

dpdk-pmd-txd-size Specify the DPDK PMD Tx Descriptor size.

dpdk-pmd-rxd-size Specify the DPDK PMD Rx Descriptor size.

docker-registry opencontrailnightly Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag latest Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-analytics Charms.

282

Table 11: Options for contrail-analytics

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-analyticsdb Charms.

283

Table 12: Options for contrail-analyticsdb

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

cassandra-minimum-diskgb 256 Specify the minimum disk requirement.

cassandra-jvm-extra-opts Specify the memory limit.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-controller Charms.

284

Table 13: Options for contrail-controller

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

auth-mode rbac Specify the authentication mode.

Options: rbsc, cloud-admin, no-auth.

For more information, see https://github.com/
Juniper/contrail-controller/wiki/RBAC.

cassandra-minimum-diskgb 20 Specify the minimum disk requirement.

cassandra-jvm-extra-opts Specify the memory limit.

cloud-admin-role admin Specify the role name in keystone for users who
have admin-level access.

global-read-only-role Specify the role name in keystone for users who
have read-only access.

vip Specify if the Contrail API VIP is used for configuring
client-side software. If not specified, private IP of
the first Contrail API VIP unit will be used.

use-external-rabbitmq false To enable the Charm to use the internal RabbitMQ
server, set use-external-rabbitmq to false.

To use an external AMQP server, setuse-external-
rabbitmq to true.

NOTE: Do not change the flag after deployment.

flow-export-rate 0 Specify how many flow records are exported by
vRouter agent to the Contrail Collector when a flow
is created or deleted.

285

https://github.com/Juniper/contrail-controller/wiki/RBAC
https://github.com/Juniper/contrail-controller/wiki/RBAC

Table 13: Options for contrail-controller (Continued)

Option Default option Description

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-keystone-auth Charms.

Table 14: Options for contrail-keystone-auth

Option Default option Description

ssl_ca Specify if the base64-encoded SSL CA certificate is
provided to Contrail keystone clients.

NOTE: This certificate is required if you use a
privately signed ssl_cert and ssl_key.

286

• Options for contrail-openstack Charms.

Table 15: Options for contrail-controller

Option Default option Description

enable-metadata-server true Set enable-metadata-server to true to configure
metadata and enable nova to run a local instance of
nova-api-metadata for virtual machines

use-internal-endpoints false Set use-internal-endpoints to true for OpenStack to
configure services to use internal endpoints.

heat-plugin-dirs /usr/lib64/heat,/usr /lib/
heat/usr/lib/ python2.7/
dist-packages/
vnc_api/gen/heat/
resources

Specify the heat plugin directories.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

287

Table 15: Options for contrail-controller (Continued)

Option Default option Description

no_proxy Specify the list of destinations that must be directly
accessed.

Installing Contrail with Kubernetes by Using Juju Charms

IN THIS SECTION

Understanding Juju Charms with Kubernetes | 288

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms | 289

Deploying Contrail Charms with Kubernetes | 291

You can deploy Contrail Networking using Juju Charms. Juju helps you deploy, configure, and efficiently
manage applications on private clouds and public clouds. Juju accesses the cloud with the help of a Juju
controller. A Charm is a module containing a collection of scripts and metadata and is used with Juju to
deploy Contrail.

A Juju Charm helps you deploy Docker containers to the cloud. For more information on containerized
Contrail, see "Understanding Contrail Containers" on page 5. Juju Charms simplifies Contrail deployment
by providing a simple way to deploy, configure, scale, and manage Contrail operations.

Understanding Juju Charms with Kubernetes

Contrail supports the following charms:

• contrail-agent

• contrail-analytics

• contrail-analyticsdb

• contrail-controller

• contrail-kubernetes-master

288

• contrail-kubernetes-node

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms

You can deploy Contrail Networking by using Juju bundle.

Follow these steps to prepare for deployment:

1. Install Juju.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install juju

2. Configure Juju.

You can add a cloud to Juju, identify clouds supported by Juju, and manage clouds already added to
Juju.

Adding a cloud

Juju already has knowledge of the AWS cloud, which means adding your AWS account to Juju is
quick and easy.

juju show-cloud --local aws

NOTE: In versions prior to Juju v.2.6.0 the show-cloud command only operates locally. There is
no --local option.

You must ensure that Juju’s information is up to date (e.g. new region support). Run the following
command to update Juju’s public cloud data:

juju update-public-clouds

Juju recognizes a wide range of cloud types. You can use any one of the following methods to add a
cloud credentials to Juju:

• Adding a Cloud Credentials by Using Interactive Command

289

Example: Adding AWS cloud credentials to Juju

juju add-credential aws

Enter credential name: jlaurin

Using auth-type "access-key".

Enter access-key: AKIAIFII5EH5FOCYZJMA

Enter secret-key: ******************************

Credential "jlaurin" added locally for cloud "aws".

• Adding a Cloud Credentials Manually

You can use a YAML configuration file to add AWS cloud credentials. Run the following command:

juju add-credential aws -f <mycreds.yaml>

For details, refer to Juju Adding Credentials from a File.

Identifying a supported cloud

Use the juju clouds command to list cloud types that are supported by Juju.

$ juju clouds
Cloud Regions Default Type Description
aws 15 us-east-1 ec2 Amazon Web Services
aws-china 1 cn-north-1 ec2 Amazon China
aws-gov 1 us-gov-west-1 ec2 Amazon (USA Government)
azure 26 centralus azure Microsoft Azure
azure-china 2 chinaeast azure Microsoft Azure China
cloudsigma 5 hnl cloudsigma CloudSigma Cloud
google 13 us-east1 gce Google Cloud Platform
joyent 6 eu-ams-1 joyent Joyent Cloud
oracle 5 uscom-central-1 oracle Oracle Cloud
rackspace 6 dfw rackspace Rackspace Cloud
localhost 1 localhost lxd LXD Container Hypervisor

290

https://discourse.jujucharms.com/t/credentials/1112#heading--adding-credentials-from-a-file

3. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

A Juju controller manages and keeps track of applications in the Juju cloud environment.

4. Download the Contrail bundle from JAAS - Contrail Kubernetes.

Deploying Contrail Charms with Kubernetes

IN THIS SECTION

Deploying Contrail Charms in a Bundle | 291

Deploying Juju Charms with Kubernetes Manually | 297

Juju Charms simplifies Contrail deployment by providing a simple way to deploy, configure, scale, and
manage Contrail operations. For more information, see Understanding Juju Charms.

You can deploy Contrail Charms in a bundle or manually.

Deploying Contrail Charms in a Bundle

Follow these steps to deploy Contrail Charms in a bundle.

1. Deploy Contrail Charms.

To deploy Contrail Charms in a bundle, use the juju deploy <bundle_yaml_file> command.

The following example shows you how to use a bundle YAML file to deploy Contrail on Amazon Web
Services (AWS) Cloud.

series: "bionic"

machines:

 # kubernetes pods
 0:
 series: "bionic"
 constraints: mem=8G cores=2 root-disk=60G

291

https://jaas.ai/u/juniper-os-software/contrail-k8s
https://www.juniper.net/documentation/en_US/contrail/topics/concept/understanding-juju-charms-502.html

 # kubernetes master
 2:
 series: "bionic"
 constraints: mem=8G cores=2 root-disk=60G

 # contrail components
 5:
 series: "bionic"
 constraints: mem=16G cores=4 root-disk=60G

services:

 # kubernetes

 easyrsa:
 series: "bionic"
 charm: cs:~containers/easyrsa
 num_units: 1
 annotations:
 gui-x: '1168.1039428710938'
 gui-y: '-59.11077045466004'
 to:
 - lxd:2

 etcd:
 series: "bionic"
 charm: cs:~containers/etcd
 annotations:
 gui-x: '1157.2041015625'
 gui-y: '719.1614406201691'
 num_units: 1
 options:
 channel: 3.2/stable
 to: [2]

 kubernetes-master:
 series: "bionic"
 charm: cs:~containers/kubernetes-master-696
 annotations:
 gui-x: '877.1133422851562'
 gui-y: '325.6035540382413'
 expose: true
 num_units: 1

292

 options:
 channel: '1.14/stable'
 service-cidr: '10.96.0.0/12'
 docker_runtime: 'custom'
 docker_runtime_repo: 'deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable'
 docker_runtime_key_url: 'https://download.docker.com/linux/ubuntu/gpg'
 docker_runtime_package: 'docker-ce'
 to: [2]

 kubernetes-worker:
 series: "bionic"
 charm: cs:~containers/kubernetes-worker-550
 annotations:
 gui-x: '745.8510131835938'
 gui-y: '-57.369691124215706'
 num_units: 1
 options:
 channel: '1.14/stable'
 docker_runtime: 'custom'
 docker_runtime_repo: 'deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable'
 docker_runtime_key_url: 'https://download.docker.com/linux/ubuntu/gpg'
 docker_runtime_package: 'docker-ce'
 to: [0]

 # contrail-kubernetes

 contrail-kubernetes-master:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-kubernetes-master
 annotations:
 gui-x: '586.8027801513672'
 gui-y: '753.914497641757'
 options:
 log-level: 'SYS_DEBUG'
 service_subnets: '10.96.0.0/12'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

 contrail-kubernetes-node:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-kubernetes-node

293

 annotations:
 gui-x: '429.1971130371094'
 gui-y: '216.05209087397168'
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

 # contrail

 contrail-agent:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-agent
 annotations:
 gui-x: '307.5467224121094'
 gui-y: '-24.150856522753656'
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

 contrail-analytics:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-analytics
 annotations:
 gui-x: '15.948270797729492'
 gui-y: '705.2326686475128'
 expose: true
 num_units: 1
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 contrail-analyticsdb:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-analyticsdb
 annotations:
 gui-x: '24.427139282226562'
 gui-y: '283.9550754931123'
 num_units: 1
 options:

294

 cassandra-minimum-diskgb: '4'
 cassandra-jvm-extra-opts: '-Xms1g -Xmx2g'
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 contrail-controller:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-controller
 annotations:
 gui-x: '212.01282501220703'
 gui-y: '480.69961284662793'
 expose: true
 num_units: 1
 options:
 auth-mode: 'no-auth'
 cassandra-minimum-diskgb: '4'
 cassandra-jvm-extra-opts: '-Xms1g -Xmx2g'
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 # misc

 ntp:
 charm: "cs:bionic/ntp"
 annotations:
 gui-x: '678.6017761230469'
 gui-y: '415.27124759750086'

relations:

- [kubernetes-master:kube-api-endpoint, kubernetes-worker:kube-api-endpoint]
- [kubernetes-master:kube-control, kubernetes-worker:kube-control]
- [kubernetes-master:certificates, easyrsa:client]
- [kubernetes-master:etcd, etcd:db]
- [kubernetes-worker:certificates, easyrsa:client]
- [etcd:certificates, easyrsa:client]

contrail

295

- [kubernetes-master, ntp]
- [kubernetes-worker, ntp]
- [contrail-controller, ntp]

- [contrail-controller, contrail-analytics]
- [contrail-controller, contrail-analyticsdb]
- [contrail-analytics, contrail-analyticsdb]
- [contrail-agent, contrail-controller]

contrail-kubernetes
- [contrail-kubernetes-node:cni, kubernetes-master:cni]
- [contrail-kubernetes-node:cni, kubernetes-worker:cni]
- [contrail-kubernetes-master:contrail-controller, contrail-controller:contrail-controller]
- [contrail-kubernetes-master:kube-api-endpoint, kubernetes-master:kube-api-endpoint]
- [contrail-agent:juju-info, kubernetes-worker:juju-info]
- [contrail-agent:juju-info, kubernetes-master:juju-info]
- [contrail-kubernetes-master:contrail-kubernetes-config, contrail-kubernetes-node:contrail-
kubernetes-config]

You can create or modify the Contrail Charm deployment bundle YAML file to:

• Point to machines or instances where the Contrail Charms must be deployed.

• Include the options you need.

Each Contrail Charm has a specific set of options. The options you choose depend on the charms
you select. For more information on the options that are available, see config.yaml file for each
charm located at Contrail Charms..

2. (Optional) Check the status of deployment.

You can check the status of the deployment by using the juju status command.

3. Enable configuration statements.

Based on your deployment requirements, you can enable the following configuration statements:

• contrail-agent

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-agent/
README.md.

• contrail-analytics

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-analytics/
README.md.

• contrail-analyticsdb

296

https://github.com/Juniper/contrail-charms/tree/R5
https://github.com/Juniper/contrail-charms/blob/R5/contrail-agent/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-agent/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-analytics/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-analytics/README.md

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-
analyticsdb/README.md.

• contrail-controller

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-
controller/README.md.

• contrail-kubernetes-master

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-
kubernetes-master/README.md.

• contrail-kubernetes-node

For more information, see https://github.com/Juniper/contrail-charms/blob/R5/contrail-
kubernetes-node/README.md.

Deploying Juju Charms with Kubernetes Manually

Before you begin deployment, ensure that you have:

• Installed and configured Juju

• Created a Juju controller

• Installed Ubuntu 16.04 or Ubuntu 18.04\

Follow these steps to deploy Juju Charms with Kubernetes manually:

1. Create machine instances for Kubernetes master, Kubernetes workers, and Contrail.

juju add-machine --constraints mem=8G cores=2 root-disk=32G --series=xenial #for Kubernetes
worker machine
juju add-machine --constraints mem=18G cores=2 root-disk=32G --series=xenial #for Kubernetes
master machine
juju add-machine --constraints mem=16G cores=4 root-disk=32G --series=xenial #for Contrail
machine

2. Deploy the Kubernetes services.

Some of the applications may need an additional configuration.

You can deploy Kubernetes services using any one of the following methods:

• By specifying the Kubernetes parameters in a YAML file

• By using CLI

297

https://github.com/Juniper/contrail-charms/blob/R5/contrail-analyticsdb/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-analyticsdb/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-controller/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-controller/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-kubernetes-master/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-kubernetes-master/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-kubernetes-node/README.md
https://github.com/Juniper/contrail-charms/blob/R5/contrail-kubernetes-node/README.md

• By using a combination of YAML-formatted file and CLI

NOTE: You must use the same docker version for Contrail and Kubernetes.

For more details, refer to Juju Application Configuration.

3. Deploy and configure ntp, easyrsa, etcd, kubernetes-master, kubernetes-worker.

juju deploy cs:xenial/ntp ntp

juju deploy cs:~containers/easyrsa easyrsa --to lxd:0

juju deploy cs:~containers/etcd etcd \
 --resource etcd=3 \
 --resource snapshot=0
juju set etcd channel="3.2/stable"

juju deploy cs:~containers/kubernetes-master kubernetes-master \
 --resource cdk-addons=0 \
 --resource kube-apiserver=0 \
 --resource kube-controller-manager=0 \
 --resource kube-proxy=0 \
 --resource kube-scheduler=0 \
 --resource kubectl=0
juju set kubernetes-master channel="1.14/stable" \
 enable-dashboard-addons="false" \
 enable-metrics="false" \
 dns-provider="none" \
 docker_runtime="custom" \
 docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable" \
 docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 docker_runtime_package="docker-ce"

juju deploy cs:~containers/kubernetes-worker kubernetes-worker \
 --resource kube-proxy="0" \
 --resource kubectl="0" \
 --resource kubelet="0"
juju set kubernetes-worker channel="1.14/stable" \
 ingress="false" \
 docker_runtime="custom" \

298

https://old-docs.jujucharms.com/2.4/en/charms-config

 docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable" \
 docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 docker_runtime_package="docker-ce"

4. Deploy and configure Contrail services.

Deploy contrail-analyticsdb, contrail-analytics, contrail-controller, contrail-kubernetes-master, contrail-
kubernetes-node, contrail-agent from the directory where you have downloaded the charms.

NOTE: You must set the auth-mode parameter of the contrail-controller charm to no-auth if
Contrail is deployed without a keystone.

juju deploy contrail-analytics contrail-analytics

juju deploy contrail-analyticsdb contrail-analyticsdb
juju set contrail-analyticsdb cassandra-minimum-diskgb="4" cassandra-jvm-extra-opts="-Xms1g -
Xmx2g"

juju deploy contrail-controller contrail-controller
juju set contrail-controller cassandra-minimum-diskgb="4" cassandra-jvm-extra-opts="-Xms1g -
Xmx2g" auth-mode="no-auth"

juju deploy contrail-kubernetes-master contrail-kubernetes-master

juju deploy contrail-kubernetes-node contrail-kubernetes-node

juju deploy contrail-agent contrail-agent

5. Enable applications to be available to external traffic:

juju expose kubernetes-master
juju expose kubernetes-worker

6. Enable contrail-controller and contrail-analytics services to be available to external traffic if you do
not use HAProxy.

juju expose contrail-controller
juju expose contrail-analytics

299

7. Apply SSL.

You can apply SSL if needed. To use SSL with Contrail services, deploy easy-rsa service and add-
relation command to create relations to contrail-controller service and contrail-agent services.

juju add-relation easyrsa contrail-controller
juju add-relation easyrsa contrail-analytics
juju add-relation easyrsa contrail-analyticsdb
juju add-relation easyrsa contrail-kubernetes-master
juju add-relation easyrsa contrail-agent

8. Add other necessary relations.

juju add-relation "contrail-controller" "contrail-analytics"
juju add-relation "contrail-controller" "contrail-analyticsdb"
juju add-relation "contrail-analytics" "contrail-analyticsdb"
juju add-relation "contrail-agent" "contrail-controller"
juju add-relation "contrail-controller" "ntp"
juju add-relation “kubernetes-worker”, “ntp”
juju add-relation “kubernetes-master”, “ntp”

juju add-relation "kubernetes-master:kube-api-endpoint" "kubernetes-worker:kube-api-endpoint"
juju add-relation "kubernetes-master:kube-control" "kubernetes-worker:kube-control"
juju add-relation "kubernetes-master:certificates" "easyrsa:client"
juju add-relation "kubernetes-master:etcd" "etcd:db"
juju add-relation "kubernetes-worker:certificates" "easyrsa:client"
juju add-relation "etcd:certificates" "easyrsa:client"

juju add-relation contrail-agent:juju-info, kubernetes-master:juju-info

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-master:cni"
juju add-relation "contrail-kubernetes-node:cni" "kubernetes-worker:cni"
juju add-relation "contrail-kubernetes-master:contrail-controller" "contrail-
controller:contrail-controller"
juju add-relation "contrail-kubernetes-master:kube-api-endpoint" "kubernetes-master:kube-api-
endpoint"
juju add-relation "contrail-agent:juju-info" "kubernetes-worker:juju-info"
juju add-relation "contrail-agent:juju-info" "kubernetes-master:juju-info"
juju add-relation "contrail-kubernetes-master:contrail-kubernetes-config" "contrail-
kubernetes-node:contrail-kubernetes-config"

300

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms

Contrail Networking Release 1909 and later support provisioning of a Kubernetes cluster inside an
OpenStack cluster. Contrail Networking offers a nested control and data plane where a single Contrail
control plane and a single network stack can manage and service both the OpenStack and Kubernetes
clusters.

In nested mode, a Kubernetes cluster is provisioned in virtual machines of an OpenStack cluster. The
CNI plugin and the Contrail-Kubernetes manager of the Kubernetes cluster interface directly with
Contrail components that manage the OpenStack cluster.

All Kubernetes features, functions and specifications are supported when used in nested mode.

NOTE: Nested mode deployment is only supported for Contrail with OpenStack cluster.

Before you begin:

• Deploy Contrail with OpenStack either on bare metal server or virtual machines.

BEST PRACTICE: Public cloud deployment is not recommended because of slow nested
virtualization.

• The VMs must have internet connectivity.

• Contrail in underlay network must be configured to support nested mode.

You must select an unused IP in the cluster to configure link-local.

For example:

10.10.10.5 is the selected service IP.

LL Service Name Service IP Service Port Fabric IP Fabric Port

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

Follow these steps to deploy Juju Charms with Kubernetes in nested mode using bundle deployment:

Use this method if you want to use the existing machines.

1. Create a Juju controller.

301

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

You can use OpenStack Cloud provider or manually spun-up VMs. For details, refer to Preparing to
Deploy Contrail with Kubernetes by Using Juju Charms.

2. Deploy bundle.

juju deploy --series xenial cs:~containers/kubernetes-worker-550 --to:0 \ --config channel="1.14/stable" \ --
config docker_runtime="custom" \

If the machines for the setup are already provisioned, run the following command to deploy bundle:

juju deploy --map-machines=existing,0=0,5=1 ./bundle.yaml
where bundle-id=existing-id

For details, refer to https://jaas.ai/u/juniper-os-software/contrail-k8s-nested/bundle.

or

Follow these steps to deploy Juju Charms with Kubernetes in nested mode manually:

1. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

You can use OpenStack Cloud provider or manually spun-up VMs. For details, refer to Preparing to
Deploy Contrail with Kubernetes by Using Juju Charms.

2. Create machine instances for Contrail components, Kubernetes master and Kubernetes workers.

Sample constraints for minimal deployment:

All-In-One deployment:

juju add-machine --constraints mem=32G cores=8 root-disk=150G --series=xenial # for all-in-one machine

or

Multinode deployment:

juju add-machine --constraints mem=8G cores=2 root-disk=50G --series=xenial # kubernetes workers juju add-
machine --constraints mem=8G cores=2 root-disk=50G --series=xenial # kubernetes masters juju add-machine --
constraints mem=4G cores=4 root-disk=50G --series=xenial # contrail components

You can use any series—xenial or bionic.

3. Add machines to the cloud.

For details, refer to Using Constraints-Juju.

4. Deploy the Kubernetes services.

302

https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://jaas.ai/u/juniper-os-software/contrail-k8s-nested/bundle
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://jaas.ai/docs/constraints

Some of the applications may need additional configuration.

You can deploy Kubernetes services using any one of the following methods:

• By specifying the Kubernetes parameters in a YAML file.

• By passing options/values directly on the command line.

NOTE: You must use the same docker version for Contrail and Kubernetes.

For more details, refer to Juju Application Configuration.

5. Deploy and configure ntp, easyrsa, etcd, kubernetes-master, kubernetes-worker.

juju deploy --series xenial cs:ntp ntp

juju deploy --series xenial cs:~containers/easyrsa --to lxd:0

juju deploy --series xenial cs:~containers/etcd --to:0 --config channel="3.2/stable"

juju deploy --series xenial cs:~containers/kubernetes-master-696 --to:0 \
 --config channel="1.14/stable" \
 --config docker_runtime="custom" \
 --config docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu
{CODE} stable" \
 --config docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 --config docker_runtime_package="docker-ce"

juju deploy --series xenial cs:~containers/kubernetes-worker-550 --to:0 \
 --config channel="1.14/stable" \
 --config ingress="false" \
 --config docker_runtime="custom" \
 --config docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu
{CODE} stable" \
 --config docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 --config docker_runtime_package="docker-ce"

6. Deploy and configure Contrail services.

303

https://old-docs.jujucharms.com/2.4/en/charms-config

Deploy contrail-kubernetes-master, contrail-kubernetes-node, contrail-agent from the directory where you
have downloaded the charms.

contrail-kubernetes-master:
 nested_mode: true
 cluster_project: "{'domain':'default-domain','project':'admin'}"
 cluster_network: "{'domain':'default-domain','project':'admin','name':'juju-net'}"
 service_subnets: '10.96.0.0/12'
 nested_mode_config: |
 {
 "CONTROLLER_NODES": "10.0.12.20",
 "AUTH_MODE": "keystone",
 "KEYSTONE_AUTH_ADMIN_TENANT": "admin",
 "KEYSTONE_AUTH_ADMIN_USER": "admin",
 "KEYSTONE_AUTH_ADMIN_PASSWORD": "password",
 "KEYSTONE_AUTH_URL_VERSION": "/v2.0",
 "KEYSTONE_AUTH_HOST": "10.0.12.122",
 "KEYSTONE_AUTH_PROTO": "http",
 "KEYSTONE_AUTH_PUBLIC_PORT":"5000",
 "KEYSTONE_AUTH_REGION_NAME": "RegionOne",
 "KEYSTONE_AUTH_INSECURE": "True",
 "KUBERNESTES_NESTED_VROUTER_VIP": "10.10.10.5"
 }
juju deploy --series xenial cs:~juniper-os-software/contrail-kubernetes-master \
 --config ./path-to-config.yaml

juju deploy --series xenial cs:~juniper-os-software/contrail-kubernetes-node

7. Add the necessary relations.

juju add-relation "kubernetes-master:juju-info" "ntp:juju-info"
juju add-relation "kubernetes-worker:juju-info" "ntp:juju-info"

juju add-relation "kubernetes-master:kube-api-endpoint" "kubernetes-worker:kube-api-endpoint"
juju add-relation "kubernetes-master:kube-control" "kubernetes-worker:kube-control"
juju add-relation "kubernetes-master:certificates" "easyrsa:client"
juju add-relation "kubernetes-master:etcd" "etcd:db"
juju add-relation "kubernetes-worker:certificates" "easyrsa:client"
juju add-relation "etcd:certificates" "easyrsa:client"

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-master:cni"

304

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-worker:cni"
juju add-relation "contrail-kubernetes-master:kube-api-endpoint" "kubernetes-master:kube-api-
endpoint"
juju add-relation "contrail-kubernetes-master:contrail-kubernetes-config" "contrail-
kubernetes-node:contrail-kubernetes-config"

8. Apply SSL, if needed.

You must provide the same certificates to the contrail-kubernetes-master node if Contrail in underlay
cluster has SSL enabled.

Release History Table

Release Description

1909 Contrail Networking Release 1909 and later support provisioning of a Kubernetes cluster inside an
OpenStack cluster. Contrail Networking offers a nested control and data plane where a single Contrail
control plane and a single network stack can manage and service both the OpenStack and Kubernetes
clusters.

RELATED DOCUMENTATION

Installing Contrail with Kubernetes by Using Juju Charms | 288

Installing Contrail with OpenStack by Using Juju Charms | 266

305

CHAPTER 12

Using Contrail and AppFormix with Kolla/Ocata
OpenStack

IN THIS CHAPTER

Contrail, AppFormix, and OpenStack Kolla/Ocata Deployment Requirements | 306

Preparing for the Installation | 307

Run the Playbooks | 311

Accessing Contrail in AppFormix Management Infrastructure in UI | 312

Notes and Caveats | 312

Example Instances.yml for Contrail and AppFormix OpenStack Deployment | 313

Installing AppFormix for OpenStack | 317

Install AppFormix for OpenStack in HA | 322

Contrail, AppFormix, and OpenStack Kolla/Ocata Deployment
Requirements

IN THIS SECTION

Software Requirements | 307

Hardware Requirements | 307

Starting with Contrail Release 5.0.1, the combined installation of Contrail and AppFormix allows Contrail
monitoring by AppFormix. The following topics are referenced for the deployment.

• "Installing Contrail with OpenStack and Kolla Ansible " on page 58

• ."Installing AppFormix for OpenStack" on page 317

306

• "Install AppFormix for OpenStack in HA" on page 322

The following software and hardware requirements apply to the combined Contrail, AppFormix, and
Kolla/Ocata deployment.

Software Requirements

• Contrail Release 5.0.x Targets: Centos 7.5 with kernel 3.10.0-862.3.2.el7.x86_64.

• AppFormix Targets: Refer to “Software Requirements” in Contrail Insights General Requirements.

• Targets running both Contrail and AppFormix: CentOS 7.5 Ansible 2.4.2 for the installer.

• AppFormix 2.18.x and later.

Hardware Requirements

• It is strongly recommended that the AppFormix Controller and Contrail services be installed on
separate targets.

• See "Installing Contrail Cluster using Contrail Command and instances.yml" on page 42 and "Installing
AppFormix for OpenStack" on page 317 for specifics about requirements for installation.

Preparing for the Installation

IN THIS SECTION

Preparing the Targets | 308

Preparing the Base Host using Ansible Installer | 308

TCP/IP Port Conflicts Between Contrail and AppFormix | 308

Plugins to Enable for Contrail and AppFormix Deployment | 309

Configuring Contrail Monitoring in AppFormix | 309

Compute Monitoring: Listing IP Addresses to Monitor | 310

Configuring Openstack_Controller Hosts for AppFormix | 310

Other AppFormix group_vars That Must be Enabled in instances.yaml | 310

AppFormix License | 310

307

In Contrail Release 5.1, nodes on which Contrail, AppFormix, or both are installed are referred to as
targets. The host from which Ansible is run is referred to as the base host. A base host can also be a
target, meaning you can install either Contrail, AppFormix, or both on a base host.

Preparing the Targets

Workflow for preparing the targets consists of the following steps:

1. Image all the Contrail targets with CentOS 7.5 kernel 3.10.0-862.3.2.el7.x86_64.

2. Install the necessary platform software on the targets on which AppFormix Controller or AppFormix
Agent is going to be installed. See the instructions in "Installing AppFormix for OpenStack" on page
317.

Preparing the Base Host using Ansible Installer

Workflow for preparing the base host consists of the following steps:

1. Install Ansible 2.4.2 on the base host. See “Set Up the Bare Host” in "Installing Contrail with
OpenStack and Kolla Ansible " on page 58.

2. Set-up the base host. See “Set Up the Base Host” in "Installing Contrail with OpenStack and Kolla
Ansible " on page 58. This section includes information about creating the Ansible instances.yaml file.

3. On the base host, create a single Ansible instances.yaml file that lists inventory for both Contrail and
AppFormix deployments. An example of the single instances.yaml file is provided later in this section.

• The Contrail inventory section of the instances.yaml file is configured according to guidelines in the
section “Set Up the Base Host” in "Installing Contrail with OpenStack and Kolla Ansible " on page
58.

• The AppFormix inventory section of the instances.yaml file is configured according to guidelines in
"Installing AppFormix for OpenStack" on page 317.

TCP/IP Port Conflicts Between Contrail and AppFormix

It is strongly recommended that AppFormix Controller and Contrail services be installed on separate
target nodes. However, if AppFormix Controller and Contrail services are installed on the same target,
the following configuration is required to resolve port conflicts.

The following AppFormix ports must be reconfigured in the AppFormix group-vars section of the
instances.yaml file.

• appformix_datamanager_port_http

308

• appformix_datamanager_port_https

• appformix_haproxy_datamanager_port_http

• appformix_haproxy_datamanager_port_https

• appformix_datamanager_port_http:8200

Plugins to Enable for Contrail and AppFormix Deployment

Enable the following plugins by including them in the AppFormix group-vars section of the instances.yaml
file.

appformix_plugins: '{{ appformix_contrail_factory_plugins }}'
appformix_openstack_log_plugins: '{{ appformix_openstack_log_factory_plugins }}'

Configuring Contrail Monitoring in AppFormix

Connections to Contrail are configured by providing complete URLs by which to access the analytics and
configuration API services.

• contrail_cluster_name: Contrail_Clusterxxx

A name by which the Contrail instance will be displayed in the Dashboard. If not specified, this
variable has a default value of default_contrail_cluster.

• contrail_analytics_url: http://analytics-api-node-ip-address:8081

URL for the Contrail analytics API. The URL should only specify the protocol, address, and optionally
port.

• contrail_config_url: http://contrail-config-api-server-api-address:8082

URL for the Contrail configuration API. The URL should only specify the protocol, address, and
optionally port.

NOTE: The IP address specified for contrail monitoring corresponds to one of the IPs listed in the
Contrail roles for config and analytics. Typically, the first active IP address is selected.

309

Compute Monitoring: Listing IP Addresses to Monitor

The IP addresses to monitor can be added in the compute section of AppFormix in the instances.yaml file. A
list of IP addresses with a vrouter role in the instances.yaml file.

Configuring Openstack_Controller Hosts for AppFormix

The Openstack_controller hosts section must be configured with at least one host. An example section
is shown.

openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <root user>
 ansible_sudo_pass: <contrail password>

Other AppFormix group_vars That Must be Enabled in instances.yaml

The following group_vars must be enabled in instances.yaml:

• openstack_platform_enabled: true

• appformix_remote_host_monitoring_enabled: true

AppFormix License

You must have an appropriate license that supports the combined deployment of Contrail with
AppFormix for OpenStack. To obtain a license, send an email to “AppFormix-Key-Request@juniper.net.
Also, the following group_vars in the instances.yaml file must point to this license.

• appformix_license: /path/appformix-contrail-license-file.sig

This is the path where the license is placed on the bare host so that the license can be deployed on
the target.

RELATED DOCUMENTATION

Installing Contrail with OpenStack and Kolla Ansible | 58

Installing Contrail Cluster using Contrail Command and instances.yml | 42

310

Installing AppFormix for OpenStack | 317

Example Instances.yml for Contrail and AppFormix OpenStack Deployment | 313

Run the Playbooks

Refer to section “Install Contrail and Kolla requirements” and section “Deploying contrail and Kolla
containers” in "Installing Contrail with OpenStack and Kolla Ansible " on page 58 and execute the
ansible-playbook.

Following are examples listing the Contrail play-book invocation from the contrail-ansible-deployer
directory:

• Configure Contrail OpenStack instances:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml -e
 orchestrator=openstack playbooks/configure_instances.yml (-vvv for debug)

• Install OpenStack:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml
 playbooks/install_openstack.yml

• Install Contrail:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml -e
 orchestrator=openstack playbooks/install_contrail.yml

Source the /etc/kolla/kolla-toolbox/admin-openrc.sh file from the OpenStack controller node (/etc/kolla/
kolla-toolbox/ admin-openrc.sh) to the AppFormix-Controller to authenticate the OpenStack adapter to
access admin privileges over controller services. If the OpenStack control node is different from the base
host, either Secure Copy Protocol (SCP) the file over and source it (for example, execute source /path/admin-
openrc.sh) or manually export the environment enumerated in /etc/kolla/kolla-toolbox/ admin-openrc.sh by
invoking export OS_USERNAME=admin etc. and the remainder as listed in admin-openrc.sh

Also at this point, obtain a list of IP addresses to include in the compute section of AppFormix in the
instances.yaml file. Refer to Compute monitoring: Listing IP addresses to monitor in the computesection of
AppFormix in the instances.yaml file.

311

Refer to "Installing AppFormix for OpenStack" on page 317 and validate target configuration
requirements and inventory parameters for AppFormix Controller and Agent. In place of -i inventory/use
-i /absolute-file-path/instances.yaml.

Following is an example listing the AppFormix playbook invocation from the AppFormix-2.18.x directory
where appformix_openstack.yml is located:

• Install AppFormix:

ansible-playbook -i /path/instances.yaml appformix_openstack.yml (-vvv for debug)

RELATED DOCUMENTATION

Installing Contrail with OpenStack and Kolla Ansible | 58

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Installing AppFormix for OpenStack | 317

Accessing Contrail in AppFormix Management Infrastructure in UI

AppFormix service monitoring Dashboard for a Contrail cluster displays the overall state of the cluster
and its components. For more information, see “Dashboard” in “Contrail Monitoring” in the AppFormix
User Guide.

Open the Dashboard in a Web browser and log in.

http://<controller-IP-address>:9000

RELATED DOCUMENTATION

AppFormix User Guide

Notes and Caveats

• Versions of AppFormix-2.17 and earlier are not supported with Ansible-2.4.2. The combined Contrail
and AppFormix installation is not validated on these earlier releases.

312

https://www.juniper.net/documentation/en_US/appformix/topics/topic-map/appformix-service-monitoring.html#id-contrail-monitoring
https://www.juniper.net/documentation/en_US/appformix/topics/topic-map/appformix-service-monitoring.html#id-contrail-monitoring
https://www.juniper.net/documentation/en_US/appformix/information-products/pathway-pages/pwp-appformix-reference-guide.html

• The installation was validated with AppFormix-2.18 Agent.

• To view and monitor Contrail in the AppFormix Management Infrastructure dashboard, the license
used in the deployment must include support for Contrail.

• Verify the datamanager port (re)definitions in the inventory file.

• For AppFormix OpenStack HA installation steps, see "Install AppFormix for OpenStack in HA" on
page 322.

RELATED DOCUMENTATION

Install AppFormix for OpenStack in HA | 322

Example Instances.yml for Contrail and AppFormix OpenStack
Deployment

See "Installing Contrail with OpenStack and Kolla Ansible " on page 58 and "Installing AppFormix for
OpenStack" on page 317 for specific inventory file details:

The following items are part of the all section in the instances.yaml file for AppFormix:

all:
 children:
 openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>

The following items are part of the vars section in the instances.yaml file for AppFormix:

openstack_platform_enabled: true
##License must support Contrail and Openstack
appformix_license: /path/license-file.sig
contrail_cluster_name: 'Contrail_Cluster'
contrail_analytics_url: 'http://<contrail-analytics-api-server-ip-address>:8081'
contrail_config_url: 'http://<contrail-config-api-server-ip-address>:8082'

313

Defaults from roles/appformix_defaults/defaults/main.yml are overwritten below
appformix_datamanager_port_http: "{{ (appformix_scale_setup_flag|bool) | ternary(28200, 8200) }}"
appformix_datamanager_port_https: "{{ (appformix_scale_setup_flag|bool) | ternary(28201,
8201) }}"
appformix_haproxy_datamanager_port_http: 8200
appformix_haproxy_datamanager_port_https: 8201
appformix_plugins: '{{ appformix_contrail_factory_plugins }} +
{{ appformix_network_device_factory_plugins }}’

Following is an example listing of the instances.yaml:

There is one instances.yaml file for the Contrail and AppFormix combined installation.

#Contrail inventory section
provider_config:
 bms:
 ssh_pwd: <ssh-password>
 ssh_user: <ssh-user>
 ntpserver: <ntp-server-ip-address>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <ip-address>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 vrouter:
 openstack:
 openstack_compute:
global_configuration:
 CONTAINER_REGISTRY: <ci-repository-URL>:5000
 REGISTRY_PRIVATE_INSECURE: True
contrail_configuration:
 #UPGRADE_KERNEL: true
 CONTRAIL_VERSION: <contrail-version>
 #CONTRAIL_VERSION: latest
 CLOUD_ORCHESTRATOR: openstack

314

 VROUTER_GATEWAY: <gateway-ip-address>
 RABBITMQ_NODE_PORT: 5673
 PHYSICAL_INTERFACE: <interface-name>
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <keystone-ip-address>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONFIG_NODEMGR__DEFAULTS__minimum_diskGB: 2
 DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: 2
kolla_config:
 kolla_globals:
 network_interface: <interface-name>
 kolla_internal_vip_address: <ip-address>
 contrail_api_interface_address: <ip-address>
 enable_haproxy: no
 enable_swift: no
 kolla_passwords:
 keystone_admin_password: <password>

Appformix inventory section
all:
 children:
 appformix_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 compute:
 hosts:
 #List IP addresses of Contrail roles to be monitored here
 <<IP-addresses>>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 bare_host:
 hosts:
 <ip-address>:

315

 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 #If host is local
 <ip-address>:
 ansible_connection: local
 vars:
 appformix_docker_images:
 - /opt/software/appformix/appformix-platform-images-<version>.tar.gz
 - /opt/software/appformix/appformix-dependencies-images-<version>.tar.gz
 - /opt/software/appformix/appformix-network_device-images-<version>.tar.gz
 - /opt/software/appformix/appformix-openstack-images-<version>.tar.gz
 openstack_platform_enabled: true
 # appformix_license: /opt/software/openstack_appformix/<appformix-contrail-license-file>.sig
 appformix_license: /opt/software/configs/contrail.sig
 appformix_docker_registry: registry.appformix.com/
 appformix_version: <version> #Must be 2.18.x or above
 appformix_plugins: '{{ appformix_contrail_factory_plugins }} +
{{ appformix_network_device_factory_plugins }} + {{ appformix_openstack_factory_plugins }}'
 appformix_kvm_instance_discovery: true
 # For enabling pre-requisites for package installation
 appformix_network_device_monitoring_enabled: true
 # For running the appformix-network-device-adapter
 network_device_discovery_enabled: true
 appformix_remote_host_monitoring_enabled: true
 appformix_jti_network_device_monitoring_enabled: true
 contrail_cluster_name: 'Contrail_Cluster'
 contrail_analytics_url: 'http://<contrail-analytics-api-server-IP-address>:8081'
 contrail_config_url: 'http://<contrail-config-api-server-IP-address>:8082'
 # Defaults overwritten below were defined in roles/appformix_defaults/defaults/main.yml
 appformix_datamanager_port_http: "{{ (appformix_scale_setup_flag|bool) | ternary(28200,
8200) }}"
 appformix_datamanager_port_https: "{{ (appformix_scale_setup_flag|bool) | ternary(28201,
8201) }}"
 appformix_haproxy_datamanager_port_http: 8200
 appformix_haproxy_datamanager_port_https: 8201

NOTE: Replace <contrail_version> with the correct contrail_container_tag value for your Contrail
release. The respective contrail_container_tag values are listed in README Access to Contrail
Registry 19XX.

316

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

RELATED DOCUMENTATION

Installing Contrail with OpenStack and Kolla Ansible | 58

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Installing AppFormix for OpenStack | 317

Installing AppFormix for OpenStack

IN THIS SECTION

Architecture | 317

Installing AppFormix | 318

Removing a Node from AppFormix | 321

AppFormix provides resource control and visibility for hosts and virtual machines in an OpenStack
environment. This topic explains how to install AppFormix for OpenStack. See the Contrail Insights
General Requirements before reading this section.

Architecture

AppFormix provides resource control and visibility for hosts, containers, and virtual machines in your
cloud infrastructure. Figure 47 on page 318 shows the AppFormix architecture with OpenStack.

317

Figure 47: AppFormix Architecture with OpenStack

• Agent monitors resource usage on the compute nodes.

• Controller offers REST APIs to configure the system.

• DataManager stores data from multiple Agents.

• Dashboard provides a Web-based user interface.

• An adapter discovers platform-specific resources and configures the AppFormix Controller.

• Adapters exist for OpenStack, Kubernetes, and Amazon EC2.

Installing AppFormix

To install AppFormix:

1. Install Ansible on the AppFormix Controller node. Ansible will install docker and docker-py on the
controller.

apt-get install python-pip python-dev #Installs Pip

pip install ansible==2.3 #Installs Ansible 2.3

318

sudo apt-get install build-essential libssl-dev libffi-dev #Dependencies

pip install markupsafe httplib2 #Dependencies

2. On the vRouter compute nodes where AppFormix Agent runs verify that python virtualenv is
installed.

 apt-get install -y python-pip

 pip install virtualenv

3. Enable passwordless login to facilitate AppFormix Controller node with Ansible to install agents on
the nodes. Run the same command on the AppFormix Controller node also.

 ssh-keygen -t rsa #Creates Keys

 ssh-copy-id -i ~/.ssh/id_rsa.pub <target_host> #Copies key from the node to other hosts

4. Use the Sample_Inventory file as a template to create a host file.

Example naming schemes are as below:
 # hostname ansible_ssh_user='username' ansible_sudo_pass='password'

 # List all Compute Nodes
 [compute]
203.0.113.5
 203.0.113.17

 # AppFormix controller host
 #
 # Host variables can be defined to control AppFormix configuration parameters
 # for particular host. For example, to specify the directory in which MongoDB
 # data is stored on hostname1 (the default is /opt/appformix/mongo/data):
 #
 # hostname1 appformix_mongo_data_dir=/var/lib/appformix/mongo
 #
 # For variables with same value for all AppFormix controller hosts, set group
 # variables below.
 #

319

 [appformix_controller]
 203.0.113.119

5. Verify that all the hosts listed in the inventory file are reachable from the AppFormix Controller.

 export ANSIBLE_HOST_KEY_CHECKING=False # Eliminates interactive experience prompting for
Known_Hosts

 ansible -i inventory -m ping all # Pings all the hosts in the inventory file

6. At the top-level of the distribution, create a directory named group_vars.

mkdir group_vars

7. Every installation requires an authorized license file and Docker images. In group_vars directory, create
a file named all. Add the following:

openstack_platform_enabled: true

appformix_version: <version>
appformix_manager_version: <version>
appformix_license: path/to/appformix-license-file.sig # Location of License Provided

appformix_docker_images:
 - /path/to/appformix-platform-images-<version>.tar.gz
 - /path/to/appformix-dependencies-images-<version>.tar.gz
 - /path/to/appformix-openstack-images-<version>.tar.gz

8. Source the openrc file from the OpenStack controller node (/etc/contrail/openstackrc) to the AppFormix
Controller to authenticate the adapter to access admin privileges over the controller services.

export OS_USERNAME=<admin user>
export OS_PASSWORD=<password>
export OS_AUTH_URL=http://<openstack-auth-URL>/v2.0/
export OS_NO_CACHE=1
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin

320

export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

9. Run Ansible with the created inventory file.

 ansible-playbook -i inventory appformix_openstack.yml

Removing a Node from AppFormix

To remove a node from AppFormix:

1. Edit the inventory file and add appformix_state=absent to each node that you want to remove from
AppFormix.

 # Example naming schemes are as below:
 # hostname ansible_ssh_user='username' ansible_sudo_pass='password'

 # List all Compute Nodes
 [compute]
 203.0.113.5 appformix_state=absent
203.0.113.17

2. Run Ansible with the edited inventory file. This will remove the node and all its resources from
AppFormix.

ansible-playbook -i inventory appformix_openstack.yml

RELATED DOCUMENTATION

Contrail Insights General Requirements

AppFormix Installation for OpenStack Cluster

Install AppFormix for OpenStack in HA | 322

Contrail Insights Agent Requirements

Platform Dependencies

321

https://www.juniper.net/documentation/en_US/contrail-insights/topics/topic-map/appformix-openstack.html

Install AppFormix for OpenStack in HA

IN THIS SECTION

HA Design Overview | 322

Requirements | 322

Install AppFormix for High Availability | 323

HA Design Overview

AppFormix Platform can be deployed to multiple hosts for high availability (HA). Platform services
continue to communicate using an API proxy that listens on a virtual IP address. Only one host will have
the virtual IP at a time, and so only one API proxy will be the “active” API proxy at a time.

The API proxy is implemented by HAProxy. HAProxy is configured to use services in active-standby or
load-balanced active-active mode, depending on the service.

At most, one host will be assigned the virtual IP at any given time. This host is considered the “active”
HAproxy. The virtual IP address is assigned to a host by keepalived, which uses VRRP protocol for
election.

Services are replicated in different modes of operation. In the “active-passive” mode, HAProxy sends all
requests to a single “active” instance of a service. If the service fails, then HAProxy will select a new
“active” from the other hosts, and begin to send requests to the new “active” service.In the “active-
active” mode, HAProxy load balances requests across hosts on which a service is operational.

AppFormix Platform can be deployed in a 3-node, 5-node, or 7-node configuration for high availability.

Requirements

• For each host, on which AppFormix Platform is installed, see Contrail Insights General Requirements
for hardware and software requirements. For a list of AppFormix Agent supported platforms, see
Contrail Insights Agent Requirements.

322

• You need an AppFormix license prior to installation. You can obtain a license key from
mailto:APPFORMIX-KEY-REQUEST@juniper.net. Provide the following information in your request:

Group name:
Target customers or use:
Cluster type: Kubernetes
Number of hosts:
Number of instances:

Connectivity

• One virtual IP address to be shared among all the Platform Hosts. This IP address should not be used
by any host before installation. It should have reachability from all the Platform Hosts after
installation.

• Dashboard client (in browser) must have IP connectivity to the virtual IP.

• IP addresses for each Platform Host for installation and for services running on these hosts to
communicate.

• keepalived_vrrp_interface for each Platform Host which would be used for assigning virtual IP
address. Details on how to configure this interface is described in the sample_inventory section.

Install AppFormix for High Availability

To install AppFormix to multiple hosts for high availability:

1. Download the AppFormix installation packages from software downloads to the AppFormix
Platform node. Get the following files:

appformix-<version>.tar.gz
appformix-dependencies-images-<version>.tar.gz
appformix-openstack-images-<version>.tar.gz
appformix-platform-images-<version>.tar.gz
appformix-network_device-images-<version>.tar.gz

323

mailto:APPFORMIX-KEY-REQUEST@juniper.net
https://support.juniper.net/support/downloads/

2. Install Ansible on the installer node. Ansible will install docker and docker-py on the
appformix_controller.

sudo apt-get install python-pip python-dev build-essential libssl-dev libffi-dev
sudo pip install ansible==2.7.6 markupsafe httplib2

For Ansible 2.3:

sudo pip install ansible==2.3 markupsafe httplib2 cryptography==1.5

3. Install python and python-pip on all the Platform Hosts so that Ansible can run between the
installer node and the appformix_controller node.

sudo apt-get install -y python python-pip

4. Install python pip package on the hosts where AppFormix Agents run.

apt-get install -y python-pip

5. To enable passwordless login to all Platform Hosts by Ansible, create an SSH public key on the node
where Ansible playbooks are run and then copy the key to all the Platform Hosts.

ssh-keygen -t rsa #Creates Keys
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_1>.........#Copies key from the node to
all platform hosts
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_2>.........#Copies key from the node to
all platform hosts
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_3>.........#Copies key from the node to
all platform hosts

6. Use the sample_inventory file as a template to create a host file. Add all the Platform Hosts and
compute hosts details.

List all compute hosts which needs to be monitored by AppFormix
[compute]
203.0.113.5
203.0.113.17

324

AppFormix controller hosts
[appformix_controller]
203.0.113.119 keepalived_vrrp_interface=eth0
203.0.113.120 keepalived_vrrp_interface=eth0
203.0.113.121 keepalived_vrrp_interface=eth0

NOTE: Note: In the case of 5-node or 7-node deployment, list all the nodes under
appformix_controller.

7. At top-level of the distribution, create a directory named group_vars and then create a file named all
inside this directory.

mkdir group_vars
touch group_vars/all

Add the following entries to the newly created all file:

appformix_vip: <ip-address>
appformix_docker_images:
- /path/to/appformix-platform-images-<version>.tar.gz
- /path/to/appformix-dependencies-images-<version>.tar.gz
- /path/to/appformix-openstack-images-<version>.tar.gz

NOTE: In AppFormix version 3.2.0, support for monitoring Openstack Octavia LoadBalancer
services has been added. To enable this service monitoring, provide Octavia service's
endpoint as variable appformix_octavia_endpoint_url in the group_vars/all file. For example:

appformix_octavia_endpoint_url: http://10.1.1.1:9876

8. Copy and source the openrc file from the OpenStack controller node (/etc/contrail/openrc) to the
AppFormix Controller to authenticate the adapter to access admin privileges over the controller
services.

root@installer_node:~# cat /etc/contrail/openrc
export OS_USERNAME=<admin user>
export OS_PASSWORD=<password>

325

export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://<openstack-auth-URL>/v2.0/
export OS_NO_CACHE=1
root@installer_node:~# source /etc/contrail/openrc

9. Run Ansible with the created inventory file.

ansible-playbook -i inventory appformix_openstack_ha.yml

10. If running the playbooks as root user then this step can be skipped. As a non-root user (for
example. “ubuntu”), the user “ubuntu” needs access to the docker user group. The following
command adds the user to the docker group.

sudo usermod -aG docker ubuntu

NOTE: If step 8. is being done with offline installation and failed due to step 8. not being done,
then the appformix *.tar.gz need to be removed from the /tmp/ folder on the appformix_controller
node. This is the workaround required as of version 2.11.1.

RELATED DOCUMENTATION

Contrail Insights General Requirements

AppFormix Installation for OpenStack Cluster

Contrail Insights Agent Requirements

Platform Dependencies

326

https://www.juniper.net/documentation/en_US/contrail-insights/topics/topic-map/appformix-openstack.html

CHAPTER 13

Upgrading Contrail Software

IN THIS CHAPTER

Upgrading Contrail Command using Backup Restore Procedure | 327

Upgrading Contrail Networking using Contrail Command UI | 328

Upgrading Contrail Networking using contrail-ansible Deployer | 331

Upgrading Contrail Networking using In-Place Upgrade Procedure | 332

Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack | 334

Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU | 341

How to Upgrade From Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking Release
1912.L1 or 1912.L2 with RHOSP13 | 355

How to Upgrade From Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking Release
1907 with RHOSP13 | 365

Upgrading Contrail Networking using the Ansible Deployer In-Service Software Upgrade Procedure in
OpenStack Environments | 374

Upgrading Contrail Command using Backup Restore Procedure

You cannot use the SQL data with the new version of Contrail Command container if the database
schema changes while upgrading Contrail Command container.

You can resolve the issue by:

1. Back up SQL database in yaml format db dump.

Run the following command on the Contrail Command node to backup the DB.

docker exec contrail_command contrailutil convert --intype rdbms --outtype yaml --out /etc/
contrail/db.yml -c /etc/contrail/contrail.yml; mkdir ~/backups; mv /etc/contrail/db.yml ~/
backups/

2. Upgrade the Contrail Command container.

327

Specify the desired version of Contrail Command container (container_tag) in the deployer input file
(command_servers.yml) and deploy playbook.

You must use PostgreSQL in the command_servers.yml file.

docker run -td --net host -v <ABSOLUTE_PATH_OF_COMMAND_SERVERS_FILE>:/
command_servers.yml --privileged --name
contrail_command_deployer_<BUILD_NO> hub.juniper.net/contrail/contrail-
command-deployer:<BUILD_NO>

3. Modify the yaml formatted db dump by adding or removing the fields as per the new database
schema.

4. Restore the modified yaml formatted db dump to the SQL database.

docker exec contrail_command mkdir /root/backups
docker cp /root/backups/db.yml contrail_command:/root/backups/
docker exec contrail_command contrailutil convert --intype yaml --in ~/backups/db.yml --
outtype rdbms -c /etc/contrail/contrail.yml

NOTE: If the restore procedure fails because of schema mismatch, repeat Step 3 and Step 4 with
incremental db dump changes.

Upgrading Contrail Networking using Contrail Command UI

Take snapshots of your current configurations before you proceed with the upgrade process.

Use the following procedure to upgrade Contrail Networking using Contrail Command UI.

The procedure supports incremental model and you can use it to upgrade from Contrail Networking
Release N-1 to N.

You must upgrade Contrail Command before you proceed with the following procedure. For details, refer
to "Upgrading Contrail Command using Backup Restore Procedure" on page 327.

NOTE: This procedure is not applicable for upgrading Contrail Networking from Release 1909 to
Release 1910.

Refer to "Upgrading Contrail Networking using contrail-ansible Deployer" on page 331 to
upgrade Contrail Networking from Release 1909 to Release 1910.

328

1. Log in to Contrail Command UI by navigating to https://Contrail-Command-Server-IP-Address:9091.
The default username is admin and the default password is contrail123.

NOTE: We strongly recommend creating a unique username and password combination. For
information on setting username and password credentials, see "Installing Contrail Command"
on page 18.

Enter the credentials and click Log in

NOTE: You must not Select Cluster.

2. Click on Clusters.

You will see the list of all the available clusters with the status.

3. Select the cluster you want to upgrade.

Hover your mouse over ellipsis next to the cluster and click on Upgrade.

329

https://Contrail-Command-Server-IP-Address:9091

4. Enter Contrail Version, Container Registry, Container Registry Username, Container Registry
Password.

Contrail Version depicts the current installed Contrail version. You must update the value to the
desired version number.

The values for Container Registry, Container Registry Username, and Container Registry Password
are pre-populated based on the values used during initial Contrail deployment.

Click on Contrail Configuration.

Add CONTRAIL_CONTAINER_TAG.

Access CONTRAIL_CONTAINER_TAG located at README Access to Contrail Registry 19XX.

5. If you have Appformix and Appformix Flows installed in the cluster, you must provide appropriate
versions of Appformix and Appformix Flows packages in /opt/software/appformix and /opt/
software/xflow directories on the Contrail Command server. For more details, refer to "Contrail and
AppFormix Deployment Requirements" on page 76 and "Installing AppFormix and AppFormix Flows
using Contrail Command" on page 77.

6. Click on Upgrade.

330

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

RELATED DOCUMENTATION

Installing Contrail Command | 18

Upgrading Contrail Networking using contrail-ansible Deployer

Take snapshots of your current configurations before you proceed with the upgrade process. For details,
refer to "How to Backup and Restore Contrail Databases in JSON Format" on page 386.

Use the following procedure to upgrade Contrail Networking using contrail-ansible deployer.

The procedure supports incremental model and you can use it to upgrade from Contrail Networking
Release N-1 to N.

1. Navigate to the directory where the contrail-ansible-deployer-19<xx>.<NN>.tgz was untarred.

See "Sample instances.yml File" on page 45.

331

cd contrail-ansible-deployer-19<xx>.<NN>/contrail-ansible-deployer/config/

vi contrail-ansible-deployer-19<xx>.<NN>/contrail-ansible-deployer/config/instances.yaml

Sample instances.yaml files for various other deployments are available at the same directory.

2. Update CONTRAIL_VERSION and CONTRAIL_CONTAINER_TAG to the desired version tag in this
instances.yml file.

Access CONTRAIL_CONTAINER_TAG located at README Access to Contrail Registry 19XX.

For example:

CONTRAIL_VERSION = 1907.55
CONTRAIL_CONTAINER_TAG = 1907.55-queens

3. Run the following commands from contrail-ansible-deployer directory.

• For Contrail with OpenStack deployment:

cd contrail-ansible-deployer
ansible-playbook -e orchestrator=openstack -i inventory/ playbooks/install_openstack.yml -v
ansible-playbook -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml -v

• For Contrail with Kubernetes deployment:

cd contrail-ansible-deployer
ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_k8s.yml -v
ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_contrail.yml -v

The ansible playbook logs are available on the terminal during execution. You can also access it
at /var/log/ansible.log.

RELATED DOCUMENTATION

Installing Contrail Cluster using Contrail Command and instances.yml | 42

Upgrading Contrail Networking using Contrail Command UI | 328

Upgrading Contrail Networking using In-Place Upgrade Procedure

This document provides steps to upgrade Contrail Networking using in-place upgrade procedure.

The procedure supports incremental model and you can use it to upgrade from Contrail Networking
Release N-1 to N.

332

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

BEST PRACTICE: You must take snapshots of your current system before proceeding with
the upgrade process.

For a list of supported platforms, see https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf.

1. Update kernel version on all the compute nodes.

yum -y update kernel*

NOTE: You must not update kernel version if you are upgrading from Contrail Networking
Release 1910 to Release 1911.

2. Update CONTRAIL_VERSION and CONTRAIL_CONTAINER_TAG to the desired version tag in this
instances.yml file.

Access CONTRAIL_CONTAINER_TAG located at README Access to Contrail Registry 19XX.

3. Run the following commands from contrail-ansible-deployer directory.

For Contrail with OpenStack deployment:

cd contrail-ansible-deployer
ansible-playbook -i inventory/ -e orchestrator=openstack playbooks/configure_instances.yml
ansible-playbook -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

4. Reboot the compute node.

5. Check the status of Contrail service on the compute node.

All services must be active .

sudo contrail-status

The ansible playbook logs are available on the terminal during execution. You can also access it
at /var/log/ansible.log.

RELATED DOCUMENTATION

Upgrading Contrail Networking using Contrail Command UI | 328

Upgrading Contrail Networking using contrail-ansible Deployer | 331

Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU | 341

333

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

Updating Contrail Networking using the Zero Impact Upgrade Process in
an Environment using Red Hat Openstack

IN THIS SECTION

Prerequisites | 334

Before You Begin | 334

Updating Contrail Networking in an Environment using Red Hat Openstack | 335

This document provides the steps needed to update a Contrail Networking deployment that is using Red
Hat Openstack as it’s orchestration platform. The procedure provides a zero impact upgrade (ZIU) with
minimal disruption to network operations.

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Red Hat Openstack version 13 (RHOSP13) as the
orchestration platform is already operational.

• The overcloud nodes in the RHOSP13 environment have an enabled Red Hat Enterprise Linux (RHEL)
subscription.

• Your environment is running Contrail Release 1912 and upgrading to Contrail Release 1912.L1 or to
Contrail Release 2003 or later.

• If you are updating Red Hat Openstack simultaneously with Contrail Networking, we assume that the
undercloud node is updated to the latest minor version and that new overcloud images are prepared
for an upgrade if needed for the upgrade. See the Upgrading the Undercloud section of the Keeping
Red Hat OpenStack Platform Updated guide from Red Hat.

If the undercloud has been updated and a copy of the heat templates are used for the deployment,
update the copy of the heat template from the Red Hat’s core heat template collection at /usr/share/
openstack-tripleo-heat-templates. See the Understanding Heat Templates document from Red Hat for
information on this process.

Before You Begin

We recommend performing these procedures before starting the update:

334

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-understanding_heat_templates

• Backup your Contrail configuration database before starting this procedure. See "How to Backup and
Restore Contrail Databases in JSON Format" on page 386.

• Each compute node agent will go down during this procedure, causing some compute node
downtime. The estimated downtime for a compute node varies by environment, but typically took
between 12 and 15 minutes in our testing environments.

If you have compute nodes with workloads that cannot tolerate this downtime, consider migrating
workloads or taking other steps to accommodate this downtime in your environment.

• If you are updating Red Hat Openstack simultaneously with Contrail Networking, update Red Hat
Openstack to the latest minor release version and ensure that the new overcloud images are
prepared for the upgrade. See the Upgrading the Undercloud section of the Keeping Red Hat
OpenStack Platform Updated guide from Red Hat for additional information.

If the undercloud has been updated and a copy of the heat templates are used for the deployment,
update the Heat templates from Red Hat’s core Heat template collection at /usr/share/openstack-
tripleo-heat-templates. See the Understanding Heat Templates document from Red Hat for additional
information.

Updating Contrail Networking in an Environment using Red Hat Openstack

To update Contrail Networking in an environment that is using Red Hat Openstack as the orchestration
platform:

1. Prepare your docker registry. The registry is often included in the undercloud, but it can also be a
separate node.

Docker registry setup is environment independent. See Docker Registry from Docker for additional
information on Docker registry setup.

2. Backup the Contrail TripleO Heat Templates. See Using the Contrail Heat Template.

3. Get the Contrail TripleO Heat Templates (Stable/Queens branch) from https://github.com/Juniper/
contrail-tripleo-heat-templates.

4. (Optional) Update the Contrail TripleO Puppet module to the latest version and prepare Swift
Artifacts, as applicable.

Below are sample commands entered in the undercloud:

[stack@queensa ~]$ mkdir -p ~/usr/share/openstack-puppet/modules/tripleo
[stack@queensa ~]$ git clone -b stable/queens https://github.com/Juniper/contrail-tripleo-
puppet usr/share/openstack-puppet/modules/tripleo
[stack@queensa ~]$ tar czvf puppet-modules.tgz usr/
[stack@queensa ~]$ upload-swift-artifacts -c contrail-artifacts -f puppet-modules.tgz

5. Update the parameter ContrailImageTag to the new version.

335

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-understanding_heat_templates
https://docs.docker.com/registry/
https://www.juniper.net/documentation/en_US/contrail20/topics/task/configuration/heat-template-vnc.html
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates

The location of the ContrailImageTag variable varies by environment. In the most commonly-used
environments, this variable is set in the contrail-services.yaml file.

You can obtain the ContrailImageTag parameter from the README Access to Contrail Registry
20XX.

6. Update the overcloud by entering the openstack overcloud update prepare command and include the
files that were updated during the previous steps with the overcloud update.

Example:

openstack overcloud update prepare
--templates tripleo-heat-templates/
--roles-file tripleo-heat-templates/roles_data_contrail_aio.yaml -e
environment-rhel-registration.yaml -e
tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-registrationresource-
registry.yaml -e
tripleo-heat-templates/environments/contrail/contrail-services.yaml -e
tripleo-heat-templates/environments/contrail/contrail-net-single.yaml -e
tripleo-heat-templates/environments/contrail/contrail-plugins.yaml -e
misc_opts.yaml -e
contrail-parameters.yaml -e
docker_registry.yaml

7. Prepare the overcloud nodes that include Contrail containers for the update.

• Pull the images in the repository onto the overcloud nodes.

There are multiple methods for performing this step. Commonly used methods for performing
this operation include using the docker pull command for Docker containers and the openstack
overcloud container image upload command for Openstack containers, or running the contrail-
tripleo-heat-templates/upload.containers.sh and tools/contrail/update_contrail_preparation.sh scripts.

• (Not required in all setups) Provide export variables for the script if the predefined values aren’t
appropriate for your environment. The script location:

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

The following variables within the script are particularly significant for this upgrade:

• CONTRAIL_NEW_IMAGE_TAG—The image tag of the target upgrade version of Contrail. The default
value is latest.

If needed, you can obtain the ContrailImageTag parameter for a specific image from the
README Access to Contrail Registry 20XX.

336

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf

• SSH_USER—The SSH username for logging into overcloud nodes. The default value is heat-admin.

• SSH_OPTIONS—Custom SSH option values.

The default SSH options for your environment are typically pre-defined. You are typically
only changing this value if you want to customize your update.

• STOP_CONTAINERS—The list of containers that must be stopped before the upgrade can proceed.
The default value is contrail_config_api contrail_analytics_api.

• Run the script:

CAUTION: Contrail services stop working when the script starts running.

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

8. Update the Contrail Controller nodes:

• Run the openstack overcloud update run command on the first Contrail controller and, if needed, on
a Contrail Analytics node. The purpose of this step is to update one Contrail Controller and one
Contrail Analytics node to support the environment so the other Contrail Controllers and
analytics nodes can be updated without incurring additional downtime.

Example:

openstack overcloud update run --nodes overcloud-contrailcontroller-0

Ensure that the contrail status is ok on overcloud-contrailcontroller-0 before proceeding.

If the analytics and the analyticsdb nodes are on separate nodes, you may have to update the
nodes individually:

openstack overcloud update run --nodes overcloud-contrailcontroller-0
openstack overcloud update run --roles ContrailAnalytics,ContrailAnalyticsDatabase

• After the upgrade, check the docker container status and versions for the Contrail Controllers
and the Contrail Analytics and AnalyticsDB nodes.

docker ps -a

337

• Update the remaining Contrail Controller nodes:

Example:

openstack overcloud update run --nodes overcloud-contrailcontroller-1
openstack overcloud update run --nodes overcloud-contrailcontroller-2
openstack overcloud update run --nodes overcloud-contrailcontroller-3
...

9. Update the Openstack Controllers using the openstack overcloud update run commands:

Example:

openstack overcloud update run --nodes overcloud-controller-0
openstack overcloud update run --nodes overcloud-controller-1
openstack overcloud update run --nodes overcloud-controller-2
...

10. Individually update the compute nodes.

NOTE: The compute node agent will be down during this step. The estimated downtime
varies by environment, but is typically between 1 and 5 minutes.

Consider migrating workloads that can’t tolerate this downtime before performing this step

openstack overcloud update run --nodes overcloud-novacompute-1
openstack overcloud update run --nodes overcloud-novacompute-2
openstack overcloud update run --nodes overcloud-novacompute-3
...

Reboot your compute node to complete the update.

NOTE: A reboot is required to complete this procedure only if a kernel update is also
needed. If you would like to avoid rebooting your compute node, check the log files in
the /var/log/yum.log file to see if kernel packages were updated during the compute node

338

update. A reboot is required only if kernel updates occurred as part of the compute node
update procedure.

sudo reboot

Use the contrail-status command to monitor upgrade status. Ensure all pods reach the running state
and all services reach the active state.

This contrail-status command provides output after a successful upgrade:

NOTE: Some output fields and data have been removed from this contrail-status command
sample for readability.

Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
analytics-alarm nodemgr contrail-nodemgr running
analytics-alarm provisioner contrail-provisioner running
analytics-alarm zookeeper contrail-external-zookeeper running
analytics-snmp nodemgr contrail-nodemgr running
analytics-snmp provisioner contrail-provisioner running
analytics-snmp snmp-collector contrail-analytics-snmp-collector running
analytics-snmp topology contrail-analytics-snmp-topology running
config api contrail-controller-config-api running
<trimmed>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==

339

nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

11. Enter the openstack overcloud update converge command to finalize the update.

340

NOTE: The options used in the openstack overcloud update converge in this step will match the
options used with the openstack overcloud update prepare command entered in 6.

openstack overcloud update converge
--templates tripleo-heat-templates/
--roles-file tripleo-heat-templates/roles_data_contrail_aio.yaml -e
environment-rhel-registration.yaml -e
tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-registrationresource-
registry.yaml -e
tripleo-heat-templates/environments/contrail/contrail-services.yaml -e
tripleo-heat-templates/environments/contrail/contrail-net-single.yaml -e
tripleo-heat-templates/environments/contrail/contrail-plugins.yaml -e
misc_opts.yaml -e
contrail-parameters.yaml -e
docker_registry.yaml

Monitor screen messages indicating SUCCESS to confirm that the updates made in this step are
successful.

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 266

Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU

IN THIS SECTION

When to Use This Procedure | 342

Before you begin | 342

Procedure | 343

Troubleshoot | 352

341

This document provides steps to upgrade Contrail Networking with an in-service software upgrade
(ISSU) in an environment using Red Hat Openstack Platform 13 (RHOSP13).

When to Use This Procedure

Use this procedure to upgrade Contrail Networking when it is running in environments using RHOSP13.

This procedure has been validated for the following Contrail Networking upgrades:

Table 16: Contrail Networking with RHOSP13 Validated Upgrade Scenarios

Starting Contrail Networking Release Target Contrail Networking Upgrade Release

5.0 or 5.1 1907

1907 1908

1908 1909

1909 1910

1910 1911

1911 1912

Starting in Contrail Networking Releases 1912.L0 and 2003, use the Zero Impact Upgrade (ZIU)
procedure to upgrade Contrail Networking in environments using Red Hat Openstack orchestration. See
"Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack" on page 334.

If you want to use this procedure to upgrade your Contrail Networking release to other releases, you
must engage Juniper Networks professional services. Contact your Juniper representative for
information on working with professional services.

Before you begin

• Obtain the ContrailImageTag value for your Contrail Networking release. You can obtain this value
from the readme files at the following locations:

• Contrail Networking Release 20: README Access to Contrail Networking Registry 20xx

• Contrail Networking Release 19: README Access to Contrail Registry 19XX

342

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

• Enable RHEL subscription for the overcloud nodes.

• Enable SSH migration for the Compute nodes if you do not have CEPH or alike storage.

Upgrading the compute nodes requires workload migrations and CEPH or alike storage allows VM
migration.

• Modify MigrationSshKey value at ~/tripleo-heat-templates/environments/contrail/contrail-
services.yaml file.

The MigrationSshKey parameter with SSH keys for migration is typically provided during the
overcloud deployment. The parameter is used to pass SSH keys between computes nodes to
allow a VM to migrate from one compute node to another. The MigrationSshKey parameter is an
optional parameter that can be added to the contrail-services.yaml file. The parameter is not
included in the contrail-services.yaml file by default.

Run the following commands to find out the SSH keys:

(undercloud) [stack@queensa ~]$ cat .ssh/id_rsa

(undercloud) [stack@queensa ~]$ cat .ssh/id_rsa.pub

• Backup the Contrail configuration database.

See "How to Backup and Restore Contrail Databases in JSON Format" on page 386.

Procedure

1. Get Contrail TripleO Heat Templates (Stable/Queens branch) from https://github.com/Juniper/
contrail-tripleo-heat-templates.

Take a back up of the existing directory if you are copying the latest directory, contrail-tripleo-heat-
templates. You need to restore the configuration in contrail-net.yaml, contrail-services.yaml,
compute-nic-config.yaml (for compute node running kernel mode), and contrail-dpdk-nic-
config.yaml (for compute node running dpdk mode) files.

2. Update Contrail TripleO Puppet module to the latest version and prepare Swift Artifacts, as
applicable.

(undercloud) [stack@queensa ~]$ mkdir -p ~/usr/share/openstack-puppet/modules/tripleo
(undercloud) [stack@queensa ~]$ git clone -b stable/queens https://github.com/Juniper/
contrail-tripleo-puppet usr/share/openstack-puppet/modules/tripleo
(undercloud) [stack@queensa ~]$ tar czvf puppet-modules.tgz usr/
(undercloud) [stack@queensa ~]$ upload-swift-artifacts -c contrail-artifacts -f puppet-
modules.tgz

3. Prepare docker registry with Contrail Networking images. It can be undercloud or a separate node.

343

https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates

4. Update the version of Red Hat running in the undercloud.

NOTE: This procedure updates the version of Red Hat running in the undercloud before
deploying the Contrail Controller In-Service Software Upgrade (ISSU) node in 5.

You can deploy the Contrail Controller In-Service Software Upgrade (ISSU) node before
performing this step if there is a reason to change the sequence in your environment.

Before you begin the upgrade process:

• Identify the Red Hat software to run with your version of Contrail Networking. See Contrail
Networking Supported Platforms.

• If you have updated the undercloud using a copy of the heat templates, copy the heat templates
from /usr/share/openstack-tripleo-heat-templates to /home/stack/tripleo-heat-templates.

• Add the new server nodes as bare metal nodes, and run introspection on the nodes to make
them ready for deployment. These steps are summarized in "Setting Up the Overcloud" on page
191.

For details about performing this upgrade process, refer to RedHat Chapter 3. Upgrading the
undercloud.

If you come across an issue during the update, see "Failed upgrade run command for any overcloud
node" on page 353.

5. Deploy the Contrail Controller In-Service Software Upgrade (ISSU) node.

a. Prepare new server node and create flavor contrail-controller-issu for the ISSU node.The
hardware requirements for ISSU node is the same as for the Contrail Controller Node.

b. Prepare the parameters in the yaml file, ~/tripleo-heat-templates/environments/contrail/
contrail-issu.yaml:

• ContrailIssuSshKey—Generate and set the ssh keys. You require SSH access between ISSU
and Contrail Controller nodes.

ContrailIssuSshKey is same as MigrationSshKey .

• ContrailIssuImageTag—Set the new docker images tag for the upgrade procedure.

• ContrailControllerIssuCount—Set the required number of ISSU nodes. The value can be 1 or
3 and is dependent on various cluster requirements including cluster size, expected upgrade
duration, etc.

c. Update ServiceNetMap parameter in the ~/tripleo-heat-templates/environments/contrail/
contrail-services.yaml file.

344

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud

ContrailIssuControlNetwork—Set the same value as ContrailControlNetwork. The default value
is tenant.

d. Run deploy command with all the parameters used for deployment and the new environment file.

openstack overcloud deploy ...\
-e ~/tripleo-heat-templates/environments/contrail/contrail-issu.yaml

e. Check the status of Contrail service on the ISSU node.

All services must be active .

sudo contrail-status

6. Prepare for the upgrade procedure.

a. Update the parameter ContrailImageTag to the new version.

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

b. Download the new OpenStack container and use the new overcloud_images.yaml environment
file which has the new containers.

openstack overcloud container image prepare \
--push-destination=192.x.x.1:8787 \
--tag-from-label {version}-{release} \
--output-images-file ~/local_registry_images.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--prefix=openstack- \
--tag-from-label {version}-{release} \
--output-env-file ~/overcloud_images.yaml

Upload the OpenStack containers.

openstack overcloud container image upload --config-file ~/local_registry_images.yaml

c. Run the openstack overcloud upgrade prepare --stack overcloud --templates ~/tripleo-heat-templates
command with all the options from deploy and the ISSU node to update the heat templates.

345

The files that are updated in this step vary by deployment. In the following example, the
overcloud_images.yaml, network-isolation.yaml, contrail-plugins.yaml, contrail-services.yaml,
contrail-net.yaml, contrail-issu.yaml, and roles_data.yam are prepared for the overcloud update.

openstack overcloud upgrade prepare --stack overcloud --templates ~/tripleo-heat-
templates \
 -e ~/overcloud_images.yaml \
 -e ~/tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-issu.yaml \
 --roles-file ~/tripleo-heat-templates/roles_data.yaml

7. Run In-Service Software Upgrade (ISSU) sync.

a. Make SSH connection to the ISSU node.

NOTE: If you have 3 ISSU nodes deployed, you must perform SSH operations and run
scripts on the same node for the entire procedure.

b. Locate ISSU directory.

cd /etc/contrail/issu

c. Pair ISSU node with the old cluster.

./issu_node_pair.sh

d. Check the status of Contrail service on the ISSU node.

sudo contrail-status

The config_devicemgr, config_schema, and config_svcmonitor containers should all be in the
inactive state. All other containers should be in the active state.

e. Run the ISSU sync container.

./issu_node_sync.sh

f. Check ISSU container logs.

sudo docker logs issu-run-sync
Config Sync initiated...

346

Config Sync done...
Started runtime sync...
Start Compute upgrade…

sudo docker exec issu-run-sync cat /var/log/contrail/issu_contrail_run_sync.log
…
2019-02-21 17:03:56,769 SYS_DEBUG Control on node 192.168.206.115 has CID 427885c366a5
2019-02-21 17:03:56,875 SYS_INFO Signal sent to process. exit_code = 0, stdout =
"[u'427885c366a5\n']", stderr="[]"
2019-02-21 17:03:56,878 SYS_INFO Start Compute upgrade...

g. Restart contrail_control_control container on all the ISSU nodes.

openstack server list --name issu -c Networks -f value | cut -d'=' -f2 | xargs -i ssh
heat-admin@{} sudo docker restart contrail_control_control

NOTE: The issu_node_sync script is run in step 7.e.

ISSU nodes are not rebooted during this upgrade procedure when these instructions can
be precisely followed. ISSU node reboots, however, are sometimes required in specialized
circumstances.

If an ISSU node is rebooted after step 7.e, rerun the issu_node_sync script:

./issu_node_sync

This script starts the issu_node_sync container and stops the config_devicemgr,
config_schema, and config_svcmonitor containers.

After running the issu_node_sync script, you can verify that the issu-run-sync container
is active and running:

docker ps -a | grep issu-run-sync

You must also restart the contrail_control_control container on all the ISSU nodes after
the issu_node_sync script is run:

openstack server list --name issu -c Networks -f value | cut -d'=' -f2 | xargs -i ssh
heat-admin@{} sudo docker restart contrail_control_control

347

8. Upgrade the Compute nodes.

Perform these steps on all the Compute Nodes.

a. Select the Compute node for upgrade and migrate workload from it.

openstack server migrate --wait instance_<name>
openstack server resize --confirm instance_<name>

b. Verify the migrated instance has active state.

openstack server show instance_<name>

c. Upgrade the selected Compute Nodes.

You can use comma-separated list for the various Compute nodes.

Run the following commands on the undercloud node:

nodes=overcloud-novacompute-0;openstack overcloud upgrade run --nodes $nodes --playbook
upgrade_steps_playbook.yaml

Run the following commands on the undercloud node:

openstack overcloud upgrade run --nodes $nodes --playbook deploy_steps_playbook.yaml

d. If the compute nodes use a new kernel or new system-level components after step 8.c, perform
the following steps:

i. Reboot the selected nodes.

ii. For kernel-mode compute nodes:

Make SSH connection to the upgrades nodes.

sudo docker stop contrail_vrouter_agent
sudo ifdown vhost0
sudo docker start contrail-vrouter-kernel-init
sudo ifup vhost0
sudo docker start contrail_vrouter_agent

348

e. If reboot is not required after step 8.c, re-initialize vhost0 interfaces on all the DPDK mode
compute nodes.

Make SSH connection to the upgraded Compute nodes and run the following commands:

ifdown vhost0
ifup vhost0

f. Check the status of Contrail service on the upgraded Compute nodes.

sudo contrail-status

The status must be active.

9. Upgrade Contrail Plugins including Neutron, Heat, etc. on OpenStack controllers and connect them
to the ISSU node.

Example for environment with a single OpenStack controller:

nodes=overcloud-controller-0
openstack overcloud upgrade run --nodes $nodes --playbook upgrade_steps_playbook.yaml
openstack overcloud upgrade run --nodes $nodes --playbook deploy_steps_playbook.yaml

Example for environment with multiple Openstack controllers (3 controllers shown):

nodes=overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
openstack overcloud upgrade run --nodes $nodes --playbook upgrade_steps_playbook.yaml
openstack overcloud upgrade run --nodes $nodes --playbook deploy_steps_playbook.yaml

10. Disconnect the ISSU node from the Contrail control plane.

a. Make SSH connection to ISSU node.

b. Run the following commands:

cd /etc/contrail/issu/
./issu_node_sync_post.sh
./issu_node_pair.sh del

c. Check the status of Contrail service on the ISSU node.

sudo contrail-status

The status must be active or backup.

11. Upgrade the Contrail control plane node.

349

a. Run the following commands:

nodes=overcloud-contrailcontroller-0,overcloud-contrailcontroller-1,overcloud-
contrailcontroller-2 openstack overcloud upgrade run --nodes $nodes --playbook
upgrade_steps_playbook.yaml
openstack overcloud upgrade run --nodes $nodes --playbook deploy_steps_playbook.yaml
openstack overcloud upgrade run --nodes $nodes --playbook
post_upgrade_steps_playbook.yaml

b. Check the status of Contrail service on the Contrail control plane node.

sudo contrail-status

The status must be active or backup.

12. Upgrade Contrail Analytics and Contrail AnalyticsDB nodes:

Example for an environment with three Contrail Analytics and three Contrail AnalyticsDB nodes:

nodes=contrailanalytics-0,contrailanalytics-1,contrailanalytics-2,contrailanalyticsdatabase-
0,contrailanalyticsdatabase-1,contrailanalyticsdatabase-2
openstack overcloud upgrade run --nodes $nodes --playbook upgrade_steps_playbook.yaml
openstack overcloud upgrade run --nodes $nodes --playbook deploy_steps_playbook.yaml

13. Connect the ISSU node to the upgraded Contrail control plane node.

a. Make SSH connection to the ISSU node.

b. Pair the ISSU node with upgraded Contrail control plane.

cd /etc/contrail/issu ./issu_node_pair.sh add pair_with_new

c. Sync data with new Contrail control plane.

issu_config=issu_revert.conf ./issu_node_sync.sh

d. Restart control container on the upgraded nodes.

Run the following command from the Director.

openstack server list --name "overcloud-contrailcontroller-" -c Networks -f value | cut -d'=' -f2 | xargs
-i ssh heat-admin@{} sudo docker restart contrail_control_control

14. Run the post upgrade task on the compute nodes and the Openstack controllers.

nodes=overcloud-novacompute-0,overcloud-novacompute-1 openstack overcloud upgrade run --
nodes $nodes --playbook post_upgrade_steps_playbook.yaml

350

nodes=overcloud-controller-0 openstack overcloud upgrade run --nodes $nodes --playbook
post_upgrade_steps_playbook.yaml

15. Disconnect ISSU and upgraded Contrail control plane.

a. Make SSH connection to ISSU node.

b. Un-pair ISSU node with the old Contrail cluster.

cd /etc/contrail/issu/
issu_config=issu_revert.conf ./issu_node_sync_post.sh
./issu_node_pair.sh del pair_with_new

16. Reconnect the OpenStack nodes and Compute nodes to the upgraded control plane.

Run the command with all the parameters from deploy.

openstack overcloud upgrade converge \
--stack overcloud \
...
-e ~/tripleo-heat-templates/environments/contrail/contrail-issu.yaml

17. If the nodes use new kernel or new system level components, reboot the OpenStack controller and
Contrail controller nodes.

• Reboot OpenStack controllers as mentioned in section 5.1 of RedHat Rebooting the Overcloud
chapter.

• Reboot Contrail controllers one by one.

Make SSH connection to each controller and perform sudo reboot.
You must wait till the node is rebooted and Contrail services are up.

sudo contrail-status

18. Check the status of Contrail service on all the upgrades nodes.

sudo contrail-status

The status must be active.

19. Remove the ISSU node from the cluster.

set ContrailControllerIssuCount: 0

Run stack deploy command with all the parameters.

openstack overcloud deploy \ … -e ~/tripleo-heat-templates/environments/contrail/contrail-issu.yaml

351

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/rebooting-the-overcloud

Troubleshoot

IN THIS SECTION

Failed upgrade run command for OpenStack controller | 352

Failed upgrade run command for any overcloud node | 353

Following are the known issues:

Failed upgrade run command for OpenStack controller

IN THIS SECTION

Problem | 352

Solution | 353

Problem

Description

You see the following error:

nodes=overcloud-controller-0
openstack overcloud upgrade run --nodes $nodes --playbook upgrade_steps_playbook.yaml
...
TASK [Enable the cinder_volume cluster resource] *******************************
Thursday 25 July 2019 11:38:57 -0400 (0:00:00.887) 0:03:16.905 *********
FAILED - RETRYING: Enable the cinder_volume cluster resource (5 retries left).
FAILED - RETRYING: Enable the cinder_volume cluster resource (4 retries left).
FAILED - RETRYING: Enable the cinder_volume cluster resource (3 retries left).
FAILED - RETRYING: Enable the cinder_volume cluster resource (2 retries left).
FAILED - RETRYING: Enable the cinder_volume cluster resource (1 retries left).

fatal: [overcloud-controller-0]: FAILED! => {"attempts": 5, "changed": false, "error": "Error:
resource 'openstack-cinder-volume' is not running on any node\n", "msg": "Failed, to set the

352

resource openstack-cinder-volume to the state enable", "output": "", "rc": 1}

PLAY RECAP ***
overcloud-controller-0 : ok=149 changed=68 unreachable=0 failed=1

Thursday 25 July 2019 11:39:31 -0400 (0:00:34.195) 0:03:51.101 *********

For details, refer to https://access.redhat.com/solutions/4122571.

Solution

• Make SSH connection to the OpenStack controller node.

• Run the following command:
sudo docker rm cinder_volume_init_bundle

• Check if the cinder volume is in failed resources list.

sudo pcs status

• Check if the cinder volume is not in failed resource list.

sudo pcs resource cleanup

• Re-run the upgrade run command.

Failed upgrade run command for any overcloud node

IN THIS SECTION

Problem | 354

Solution | 354

353

https://access.redhat.com/solutions/4122571

Problem

Description

You see the following error:

**
TASK [include_tasks] ***
Wednesday 02 October 2019 09:21:02 -0400 (0:00:00.448) 0:00:29.101 *****
fatal: [overcloud-novacompute-1]: FAILED! => {"msg": "No variable found with this name:
Compute_pre_deployments"}NO MORE HOSTS LEFT

Solution

This is a broken default behavior if a variable is missing.

Edit the tripleo-heat-templates/common/deploy-steps.j2 to apply the following change:

content_copyzoom_out_map
(undercloud) [stack@queensa common]$ diff -U 3 deploy-steps.j2.org deploy-steps.j2
--- deploy-steps.j2.org 2019-10-04 09:09:57.414000000 -0400
+++ deploy-steps.j2 2019-10-04 09:13:51.120000000 -0400
@@ -433,7 +433,7 @@
 - include_tasks: deployments.yaml
 vars:
 force: false
- with_items: "{{ '{{' }} lookup('vars', tripleo_role_name +
'_pre_deployments')|default([]) {{ '}}' }}"
+ with_items: "{{ '{{' }} hostvars[inventory_hostname][tripleo_role_name ~
'_pre_deployments']|default([]) {{ '}}' }}"
 tags:
 - overcloud
 - pre_deploy_steps
@@ -521,7 +521,7 @@
 - include_tasks: deployments.yaml
 vars:
 force: false
- with_items: "{{ '{{' }} lookup('vars', tripleo_role_name +
'_post_deployments')|default([]) {{ '}}' }}"
+ with_items: "{{ '{{' }} hostvars[inventory_hostname][tripleo_role_name ~

354

'_post_deployments']|default([]) {{ '}}' }}"
 tags:
 - overcloud
 - post_deploy_steps

After editing the deploy-steps.j2, run the prepare command as given in step 5.6.c.
Once it is completed, continue the upgrade procedure where you left off.

RELATED DOCUMENTATION

Upgrading Contrail Networking Release 5.x or Release 190x with RHOSP13 to Contrail Networking
Release till 1909 with RHOSP13

Understanding Red Hat OpenStack Platform Director | 174

How to Upgrade From Contrail Networking Release 4.1.4 with RHOSP10
to Contrail Networking Release 1912.L1 or 1912.L2 with RHOSP13

IN THIS SECTION

When to Use This Procedure | 356

Before You Begin | 356

Upgrading Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking Release 1912.L1 or
1912.L2 with RHOSP13 | 357

The goal of this topic is to provide a combined procedure to upgrade Red Hat OpenStack Platform
(RHOSP) from RHOSP 10 to RHOSP 13 by leveraging Red Hat Fast Forward Upgrade (FFU) procedure
while simultaneously upgrading Contrail Networking from Release 4.1.4 to Release 1912.L1 or 1912.L2.
The procedure leverages the In Service Software Upgrade (ISSU) procedure from Contrail to minimize
the downtime.

The downtime will be reduced by not requiring extra server reboots in addition to the ones that the
RHOSP FFU procedure already requires for Kernel/RHEL upgrades.

Refer to Red Hat OpenStack Platform 13 Fast Forward Upgrades for details on RHOSP 10 to RHOSP 13
FFU procedure of OpenStack Platform environment from one long life version to the next long life
version.

355

https://www.juniper.net/documentation/en_US/contrail19/topics/task/configuration/issu-contrail.html
https://www.juniper.net/documentation/en_US/contrail19/topics/task/configuration/issu-contrail.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

When to Use This Procedure

We recommend engaging Juniper Networking professional services for assistance with performing this
procedure.

This procedure is used when you are running Contrail Networking Release 4.1.4 in an environment using
Red Hat Openstack Platform 10 (RHOSP 10) for orchestration and want to upgrade your environment to
a Contrail Networking 19 release using RHOSP13. The procedure leverages the Red Hat Fast Forward
Upgrade (FFU) process for the RHOSP upgrade and the In Service Software Upgrade (ISSU) procedure
for the Contrail Networking upgrade.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 17: Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

4.1.4 1912.L1

4.1.4 1912.L2

If you want to use this procedure to upgrade your Contrail Networking release to other releases, you
must engage Juniper Networks professional services. Contact your Juniper representative for additional
information.

If you want to upgrade from an environment using Contrail Networking Release 3 and RHOSP10 to an
environment running Contrail Networking Release 19 and RHOSP13, see "How to Upgrade From
Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking Release 1907 with
RHOSP13" on page 365. You can also use this procedure to upgrade from a Contrail Networking Release
4 environment to Contrail Networking Release 1907.

If you are using RHOSP13 for orchestration and would like to upgrade to a Contrail Networking Release
20 environment without upgrading RHOSP, see "Updating Contrail Networking using the Zero Impact
Upgrade Process in an Environment using Red Hat Openstack" on page 334

If you are using RHOSP13 for orchestration and would like to upgrade to a Contrail Networking Release
19 environment without upgrading RHOSP, see "Upgrading Contrail Networking with Red Hat
Openstack 13 using ISSU" on page 341.

Before You Begin

Before you begin:

• Obtain the ContrailImageTag from the README Access to Contrail Registry 19XX.

356

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

• Enable FFU RedHat subscription for overcloud nodes as the upgrade involves a yum update which
needs RPM repositories enabled. The subscription must include access to both OSP10 and OSP13
repositories (rhel-7-server-openstack-13-rpms). Additionally, the subscription must have access to
the repo rhel-server-rhscl-7-rpms repository. ISSU node uses python27-python-pip from this
repository.

• Ensure ISSU nodes have internet access during the installation to install docker-compose via pip.

If the ISSU nodes do not have internet access, you must download required packages manually using
a node with internet access after the ISSU node installation. You must then transfer packages from
this node to the ISSU nodes and install them.

• Per Red Hat Openstack support guidelines, do not change IP addresses during this upgrade.

Upgrading Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking
Release 1912.L1 or 1912.L2 with RHOSP13

To perform the upgrade:

1. Follow chapter 2 from step 2.1 through step 2.8 of Red Hat OpenStack Platform 13 Fast Forward
Upgrades to prepare for an Openstack Platform Upgrade.

NOTE: Do not reboot the compute nodes as mentioned in step 2.9.

2. Prepare to deploy Contrail In-Service Software Upgrade (ISSU) node.

a. Update Contrail TripleO Heat Templates (Stable/Newton branch) from https://github.com/
Juniper/contrail-tripleo-heat-templates.

b. Update Contrail TripleO Puppet module to the latest version and prepare Swift Artifacts.

mkdir -p ~/usr/share/openstack-puppet/modules/tripleo
git clone -b stable/newton https://github.com/Juniper/contrail-tripleo-puppet
usr/share/openstack-puppet/modules/tripleo
tar czvf puppet-modules.tgz usr/
upload-swift-artifacts -c contrail-artifacts -f puppet-modules.tgz

c. Prepare docker registry with Contrail Networking Release 1912.L1 or 1912.L2 images. It can be
undercloud or a separate node.

In addition to Contrail Networking images, the required ansible deployer image is contrail-kolla-
ansible-deployer which is available at https://hub.docker.com/r/opencontrailnightly/contrail-
kolla-ansible-deployer/tags.

You must use the same tag as of other Contrail Networking containers.

357

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates
https://hub.docker.com/r/opencontrailnightly/contrail-kolla-ansible-deployer/tags
https://hub.docker.com/r/opencontrailnightly/contrail-kolla-ansible-deployer/tags

To prepare images:

contrail-tripleo-heat-templates/tools/contrail/import_contrail_container_docker.sh

For details on building container, refer to https://github.com/Juniper/contrail-deployers-
containers.

3. Deploy Contrail In-Service Software Upgrade (ISSU) node.

a. Prepare new bare-metal server node and create flavor contrail-controller-issu for ISSU node.
The hardware requirements for ISSU node is the same as for the Contrail Controller Node.

b. Prepare parameters in the yaml file.

tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yaml:
ContrailIssuSshKey - generate and put ssh keys (for ISSU there is SSH access required
between ISSU and Contrail Controller nodes)
Provide docker registry info: ContrailRegistryCertUrl, ContrailRegistry,
ContrailRegistryInsecure, ContrailImageTag

c. Run deploy command with all parameters used for deployment and new environment file.

'-e tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yam

d. If you do not have internet access, after ISSU node installation, you must download required
packages manually an a node with internet access, transfer packages on all the ISSU nodes and
install them.

To do so:

i. Prepare required modules for docker-compose.

Run the following commands on the a RHEL7 node which has internet access:

yum install -y --enablerepo=rhel-server-rhscl-7-rpms python27-python-pip
source scl_source enable python27
mkdir pip-pkg docker-compose-pkg
pip download pip -d ./pip-pkg
pip download pip -d ./docker-compose-pkg
tar cvfz docker-compose.tar.gz docker-compose-pkg pip-pkg

ii. Upload the archive to all the ISSU nodes.

358

https://github.com/Juniper/contrail-deployers-containers
https://github.com/Juniper/contrail-deployers-containers

iii. Install packages on all the ISSU nodes.

source scl_source enable python27
tar xvfz docker-compose.tar.gz
pushd pip-pkg
pip install * -f ./ --no-index
popd
pushd docker-compose-pkg
pip install * -f ./ --no-index
popd

4. Run In-Service Software Upgrade (ISSU).

a. Make SSH connection to ISSU node.

NOTE: If you have 3 ISSU nodes deployed, you must perform SSH operations and run
scripts on the same node for the entire procedure.

b. Deploy ISSU node.

cd /etc/contrail/issu ./issu_node_deploy.sh

c. Check status of Contrail Networking service.

sudo contrail-status

The status must be active.

d. Pair ISSU node with the old cluster.

./issu_node_pair.sh

e. Check status of Contrail service on ISSU node.

sudo contrail-status

NOTE: All services must be active except config_devicemgr, config_schema and
config_svcmonitor.

f. Run ISSU sync container.

./issu_node_sync.sh

359

g. Check ISSU container logs.

sudo docker logs issu-run-sync
Config Sync initiated...
Config Sync done...
Started runtime sync...
Start Compute upgrade…

sudo docker exec issu-run-sync cat /var/log/contrail/issu_contrail_run_sync.log
2019-02-21 17:03:56,769 SYS_DEBUG Control on node 192.168.206.115 has CID 427885c366a5
2019-02-21 17:03:56,875 SYS_INFO Signal sent to process. exit_code = 0, stdout =
"[u'427885c366a5\n']", stderr="[]"
2019-02-21 17:03:56,878 SYS_INFO Start Compute upgrade..

h. Restart the contrail_control_control container on all ISSU nodes:

sudo docker restart contrail_control_control

5. Upgrade vRouter on Compute nodes.

Perform these steps on all the Compute Nodes.

a. Select the Compute node for upgrade and migrate workload from it.

b. Make SSH connection to Compute node.

c. Deploy new vRouter

cd /etc/contrail/issu/ ./issu_compute_deploy.sh

d. Verify the network-functions-vrouter-ffu-env-pre file.

cat /etc/sysconfig/network-scripts/network-functions-vrouter-ffu-env-pre
TYPE=kernel
BIND_INT=ens3
CONTRAIL_VROUTER_AGENT_CONTAINER_NAME=contrail_vrouter_agent

You required this file because os-net-config is outdated in Newton and doesn’t provide the
required variables for Contrail Networking Release 19 software.

360

For kernel mode and DPDK, the file is created automatically by the script mentioned in the step
5.d . Verify the file is created as per your deployment.

DRIVER=uio_pci_generic
CPU_LIST=0x1f
BOND_MODE=4
BOND_POLICY=layer2+3
VLAN_ID=101

e. Reboot the node.

sudo reboot

f. After node has rebooted, make SSH connection to the compute node and verify node status.

modinfo vrouter (for kernel mode) sudo contrail-status

g. Repeat this step to upgrade the vRouter on each compute node.

6. Upgrade undercloud to OpenStack Plaform (OSP) 13.

Follow chapter 3 till chapter 5 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to
configure a container image source and prepare for the overcloud upgrade.

7. Copy the TripleO (OOO, OpenStack on OpenStack) Heat Templates and prepare united Contrail
parameters for OSP 10 with new parameters for OSP 13.

a. Backup old TripleO Heat Templates.

mv tripleo-heat-templates tripleo-heat-templates-osp10
cp -r /usr/share/openstack-tripleo-heat-templates/ ~/tripleo-heat-templates
git clone -b stable/queens https://github.com/Juniper/contrail-tripleo-heat-templates
cp -r ~/contrail-tripleo-heat-templates/* ~/tripleo-heat-templates

b. Set united for OSP 10 and OSP 13 parameters.

tripleo-heat-templates/environments/contrail/contrail-services.yaml
tripleo-heat-templates/environments/contrail/contrail-net.yaml

c. Define NIC templates.

tripleo-heat-templates/network/config/contrail/compute-nic-config.yaml
tripleo-heat-templates/network/config/contrail/contrail-controller-nic-config.yaml
tripleo-heat-templates/network/config/contrail/controller-nic-config.yaml

361

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

d. Define role parameters for Computer Node, DPDK, TSN, etc.

ComputeParameters:
 ContrailSettings:
 VROUTER_GATEWAY: 192.168.206.2
 MAINTANENCE_MODE: true
 BGP_ASN: 64512
 BGP_AUTO_MESH: true

e. Remove contrail-artifacts, if any to avoid rewriting contrail Puppets.

swift delete contrail-artifacts
rm -f .tripleo/environments/deployment-artifacts.yaml

f. Make SSH connection to ISSU node.

g. Stop the ISSU service and un-pair ISSU node with the old Contrail Control plane.

cd /etc/contrail/issu/ ./issu_node_sync_post.sh ./issu_node_pair.sh del

8. Upgrade overcloud to OpenStack Platform (OSP) 13.

NOTE: Ensure the contrail-services.yaml file has an empty string for the
ContrailVrouterHugepages1GB: parameter before the compute nodes are updated in this
step.

parameter_defaults:
 …
 ContrailVrouterHugepages1GB: ””

The compute node updates occur in Step 6.2 of the Red Hat OpenStack Platform 13 Fast
Forward Upgrades procedure.

Follow chapter 6 of Red Hat OpenStack Platform 13 Fast Forward Upgrades.

a. You can use this role file—tripleo-heat-templates/roles_data_contrail_ffu.yaml or update the
role file with ISSU role and ISSU services.

b. Add the following command environment files:

• tripleo-heat-templates/environments/contrail/contrail-plugins.yaml

• tripleo-heat-templates/environments/contrail/contrail-services.yaml

362

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

For example:

openstack overcloud ffwd-upgrade prepare \
 --templates tripleo-heat-templates/ \
 --roles-file tripleo-heat-templates/roles_data_contrail_ffu.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yaml

c. Perform the following steps after upgrading all the controller nodes as stated in step 6.2 of Red
Hat OpenStack Platform 13 Fast Forward Upgrades:

NOTE: If the contrail api and nodemgr statuses are Inactive with a failed to connect to
keystone error after upgrading the controller nodes, perform the following steps:

docker cp config_api_1:/entrypoint.sh ./
vi entrypoint.sh
#!/bin/bash
export KEYSTONE_AUTH_URL_VERSION=/v3
docker cp entrypoint.sh config_api_1:/entrypoint.sh
docker restart config_api_1

You may have to repeat these exact steps on the config node manager.

i. Upgrade Contrail control plane nodes.

openstack overcloud upgrade run --nodes
ContrailController,ContrailAnalytics,ContrailAnalyticsDatabase --skip-tags validation

ii. Check status of Contrail Networking service.

sudo contrail-status

The status must be active.

iii. Make SSH connection to ISSU node.

iv. Pair ISSU node with upgraded Contrail control plane.

cd /etc/contrail/issu ./issu_node_pair.sh add pair_with_new

v. Check status of Contrail Networking service.

sudo contrail-status

363

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

On ISSU node, the status for all the services must be active.

On Contrail control nodes, the status for all the services except config_device_manager,
config_schema and config_svc_monitor must be active. The status for
config_device_manager, config_schema and config_svc_monitor must be inactive.

vi. Sync data with new Contrail control plane.

issu_config=issu_revert.conf ./issu_node_sync.sh

vii. Check ISSU Logs.

sudo docker logs issu-run-sync sudo docker exec issu-run-sync cat /var/log/contrail/
issu_contrail_run_sync.log

d. Follow Step 6.3 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to upgrade compute
nodes.

e. Perform the following steps after upgrading all the compute nodes as stated in step 6.4 of Red
Hat OpenStack Platform 13 Fast Forward Upgrades:

i. Check status of Contrail Networking service on compute nodes.

sudo contrail-status

The status must be active.

ii. Make SSH connection to ISSU node.

iii. Un-pair ISSU node with the old Contrail cluster.

issu_config=issu_revert.conf ./issu_node_sync_post.sh ./issu_node_pair.sh del pair_with_new

iv. Check status of Contrail Networking service on control nodes.

sudo contrail-status

All services must be active.

9. Follow steps 6.5 till 6.10 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to upgrade
CEPH storage node, converged nodes, etc.

10. Finalize ISSU upgrade.

Remove ISSU node from the cluster.

set ContrailControllerIssuCount: 0

Run stack deploy command.

11. Follow chapter 7 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to execute post
upgrade steps.

364

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

SEE ALSO

Setting Up the Infrastructure | 179

RELATED DOCUMENTATION

Understanding Contrail Networking Components | 4

How to Upgrade From Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking
Release 1907 with RHOSP13 | 365

Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red
Hat Openstack | 334

Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU | 341

How to Upgrade From Contrail Networking Release 3.x or 4.x with
RHOSP10 to Contrail Networking Release 1907 with RHOSP13

IN THIS SECTION

When to Use This Procedure | 366

Before You Begin | 366

Upgrading Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking Release 1907 with
RHOSP13 | 367

The goal of this topic is to provide a combined procedure to upgrade Red Hat OpenStack Platform
(RHOSP) from RHOSP 10 to RHOSP 13 by leveraging Red Hat Fast Forward Upgrade (FFU) procedure
while simultaneously upgrading Contrail Networking from Release 4.1.x to Release 1907. The procedure
leverages the In Service Software Upgrade (ISSU) procedure from Contrail to minimize the downtime.

The downtime will be reduced by not requiring extra server reboots in addition to the ones that the
RHOSP FFU procedure already requires for Kernel/RHEL upgrades.

Refer to Red Hat OpenStack Platform 13 Fast Forward Upgrades for details on RHOSP 10 to RHOSP 13
Fast Forward Upgrade (FFU) procedure of OpenStack Platform environment from one long life version to
the next long life version.

365

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

NOTE: This procedure is also applicable for upgrading Contrail Networking Release 3.x or 4.x
with RHOSP10 to Contrail Networking Release 5.1.x with RHOSP13.

When to Use This Procedure

We recommend engaging Juniper Networking professional services for assistance with performing this
procedure.

This procedure is used when you are running Contrail Networking Release 3 or Contrail Networking
Release 4 in an environment using Red Hat Openstack Platform 10 (RHOSP 10) for orchestration and
want to upgrade your environment to a Contrail Networking 19 release using RHOSP13. The procedure
leverages the Red Hat Fast Forward Upgrade (FFU) procedure for the RHOSP upgrade and the In Service
Software Upgrade (ISSU) procedure for the Contrail Networking upgrade.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 18: Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

X X

X X

X X

If you want to use this procedure to upgrade your Contrail Networking release to other releases, you
must engage Juniper Networks professional services. Contact your Juniper representative for additional
information.

Before You Begin

Access ContrailImageTag located at README Access to Contrail Registry 19XX.

NOTE: You must enable FFU RedHat subscription for overcloud nodes as the upgrade involves
yum update which needs RPM repositories enabled. The subscription must include access to
both OSP10 and OSP13 repositories (rhel-7-server-openstack-13-rpms). Additionally, the

366

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

subscription must have access to the repo rhel-server-rhscl-7-rpms repository. ISSU node uses
python27-python-pip from this repository.

ISSU nodes must have internet access during installation to install docker-compose via pip.

If you do not have internet access, after ISSU node installation, you must download required packages
manually an a node with internet access, transfer packages on all the ISSU nodes and install them.

Upgrading Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail
Networking Release 1907 with RHOSP13

1. Follow chapter 2 from step 2.1 through step 2.8 of Red Hat OpenStack Platform 13 Fast Forward
Upgrades to prepare for an Openstack Platform Upgrade.

NOTE: Do not reboot the compute nodes as mentioned in step 2.9.

2. Prepare to deploy Contrail In-Service Software Upgrade (ISSU) node.

a. Update Contrail TripleO Heat Templates (Stable/Newton branch) from https://github.com/
Juniper/contrail-tripleo-heat-templates.

b. Update Contrail TripleO Puppet module to the latest version and prepare Swift Artifacts.

mkdir -p ~/usr/share/openstack-puppet/modules/tripleo
git clone -b stable/newton https://github.com/Juniper/contrail-tripleo-puppet
usr/share/openstack-puppet/modules/tripleo
tar czvf puppet-modules.tgz usr/
upload-swift-artifacts -c contrail-artifacts -f puppet-modules.tgz

c. Prepare docker registry with Contrail Networking R1907 images. It can be undercloud or a
separate node.

In addition to Contrail Networking images, the required ansible deployer image is contrail-kolla-
ansible-deployer which is available at https://hub.docker.com/r/opencontrailnightly/contrail-
kolla-ansible-deployer/tags.

You must use the same tag as of other Contrail Networking containers.

To prepare images:

contrail-tripleo-heat-templates/tools/contrail/import_contrail_container_docker.sh

367

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates
https://hub.docker.com/r/opencontrailnightly/contrail-kolla-ansible-deployer/tags
https://hub.docker.com/r/opencontrailnightly/contrail-kolla-ansible-deployer/tags

For details on building container, refer to https://github.com/Juniper/contrail-deployers-
containers.

3. Deploy Contrail In-Service Software Upgrade (ISSU) node.

a. Prepare new bare-metal server node and create flavor contrail-controller-issu for ISSU node.The
hardware requirements for ISSU node is the same as for the Contrail Controller Node.

b. Prepare parameters in the yaml file.

tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yaml:
ContrailIssuSshKey - generate and put ssh keys (for ISSU there is SSH access required
between ISSU and Contrail Controller nodes)
Provide docker registry info: ContrailRegistryCertUrl, ContrailRegistry,
ContrailRegistryInsecure, ContrailImageTag

c. Run deploy command with all parameters used for deployment and new environment file.

'-e tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yam

d. If you do not have internet access, after ISSU node installation, you must download required
packages manually an a node with internet access, transfer packages on all the ISSU nodes and
install them.

To do so:

i. Prepare required modules for docker-compose.

Run the following commands on the a RHEL7 node which has internet access:

yum install -y --enablerepo=rhel-server-rhscl-7-rpms python27-python-pip
source scl_source enable python27
mkdir pip-pkg docker-compose-pkg
pip download pip -d ./pip-pkg
pip download pip -d ./docker-compose-pkg
tar cvfz docker-compose.tar.gz docker-compose-pkg pip-pkg

ii. Upload the archive to all the ISSU nodes.

iii. Install packages on all the ISSU nodes.

source scl_source enable python27
tar xvfz docker-compose.tar.gz

368

https://github.com/Juniper/contrail-deployers-containers
https://github.com/Juniper/contrail-deployers-containers

pushd pip-pkg
pip install * -f ./ --no-index
popd
pushd docker-compose-pkg
pip install * -f ./ --no-index
popd

4. Run In-Service Software Upgrade (ISSU).

a. Make SSH connection to ISSU node.

NOTE: If you have 3 ISSU nodes deployed, you must perform SSH operations and run
scripts on the same node for the entire procedure.

b. Deploy ISSU node.

cd /etc/contrail/issu ./issu_node_deploy.sh

c. Check status of Contrail Networking service.

sudo contrail-status

The status must be active.

d. Pair ISSU node with the old cluster.

./issu_node_pair.sh

e. Check status of Contrail service on ISSU node.

sudo contrail-status

NOTE: All services must be active except config_devicemgr, config_schema and
config_svcmonitor.

f. Run ISSU sync container.

./issu_node_sync.sh

g. Check ISSU container logs.

sudo docker logs issu-run-sync
Config Sync initiated...
Config Sync done...

369

Started runtime sync...
Start Compute upgrade…

sudo docker exec issu-run-sync cat /var/log/contrail/issu_contrail_run_sync.log
2019-02-21 17:03:56,769 SYS_DEBUG Control on node 192.168.206.115 has CID 427885c366a5
2019-02-21 17:03:56,875 SYS_INFO Signal sent to process. exit_code = 0, stdout =
"[u'427885c366a5\n']", stderr="[]"
2019-02-21 17:03:56,878 SYS_INFO Start Compute upgrade..

5. Upgrade vRouter on Compute nodes.

Perform these steps on all the Compute Nodes.

a. Select the Compute node for upgrade and migrate workload from it.

b. Make SSH connection to Compute node.

c. Deploy new vRouter

cd /etc/contrail/issu/ ./issu_compute_deploy.sh

d. Verify the network-functions-vrouter-ffu-env-pre file.

cat /etc/sysconfig/network-scripts/network-functions-vrouter-ffu-env-pre
TYPE=kernel
BIND_INT=ens3
CONTRAIL_VROUTER_AGENT_CONTAINER_NAME=contrail_vrouter_agent

You required this file because os-net-config is outdated in Newton and doesn’t provide the
required variables for Contrail Networking Release 5.x or Release 1907 and later.

For kernel mode and DPDK, the file is created automatically by the script mentioned in the step
5.d . Verify the file is created as per your deployment.

DRIVER=uio_pci_generic
CPU_LIST=0x1f
BOND_MODE=4
BOND_POLICY=layer2+3
VLAN_ID=101

e. Reboot the node.

sudo reboot

370

f. Make SSH connection to the compute node and verify node status.

modinfo vrouter (for kernel mode) sudo contrail-status

6. Upgrade undercloud to OpenStack Plaform (OSP) 13.

Follow chapter 3 till chapter 5 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to
configure a container image source and prepare for the overcloud upgrade.

7. Copy the TripleO (OOO, OpenStack on OpenStack) Heat Templates and prepare united Contrail
parameters for OSP 10 with new parameters for OSP 13.

a. Backup old TripleO Heat Templates.

mv tripleo-heat-templates tripleo-heat-templates-osp10
cp -r /usr/share/openstack-tripleo-heat-templates/ ~/tripleo-heat-templates
git clone -b stable/queens https://github.com/Juniper/contrail-tripleo-heat-templates
cp -r ~/contrail-tripleo-heat-templates/* ~/tripleo-heat-templates

b. Set united for OSP 10 and OSP 13 parameters.

tripleo-heat-templates/environments/contrail/contrail-services.yaml
tripleo-heat-templates/environments/contrail/contrail-net.yaml

c. Define NIC templates.

tripleo-heat-templates/network/config/contrail/compute-nic-config.yaml
tripleo-heat-templates/network/config/contrail/contrail-controller-nic-config.yaml
tripleo-heat-templates/network/config/contrail/controller-nic-config.yaml

d. Define role parameters for Computer Node, DPDK, TSN, etc.

ComputeParameters:
 ContrailSettings:
 VROUTER_GATEWAY: 192.168.206.2
 MAINTANENCE_MODE: true
 BGP_ASN: 64512
 BGP_AUTO_MESH: true

371

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

e. Remove contrail-artifacts, if any to avoid rewriting contrail Puppets.

swift delete contrail-artifacts
rm -f .tripleo/environments/deployment-artifacts.yaml

f. Make SSH connection to ISSU node.

g. Stop the ISSU service and un-pair ISSU node with the old Contrail Control plane.

cd /etc/contrail/issu/ sudo docker rm --force issu-run-sync ./issu_node_pair.sh del

8. Upgrade overcloud to OpenStack Plaform (OSP) 13.

Follow chapter 6 of Red Hat OpenStack Platform 13 Fast Forward Upgrades.

a. You can use this role file—tripleo-heat-templates/roles_data_contrail_ffu.yaml or update the
role file with ISSU role and ISSU services.

b. Add the following command environment files:

• tripleo-heat-templates/environments/contrail/contrail-plugins.yaml

• tripleo-heat-templates/environments/contrail/contrail-services.yaml

For example:

openstack overcloud ffwd-upgrade prepare \
 --templates tripleo-heat-templates/ \
 --roles-file tripleo-heat-templates/roles_data_contrail_ffu.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-issu-ffu.yaml

c. Perform the following steps after upgrading all the controller nodes as stated in step 6.2 of Red
Hat OpenStack Platform 13 Fast Forward Upgrades:

i. Upgrade Contrail control plane nodes.

openstack overcloud upgrade run --nodes
ContrailController,ContrailAnalytics,ContrailAnalyticsDatabase,ContrailControllerIssu --skip-tags
validation

ii. Check status of Contrail Networking service.

sudo contrail-status

The status must be active.

372

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

iii. Make SSH connection to ISSU node.

iv. Pair ISSU node with upgraded Contrail control plane.

cd /etc/contrail/issu ./issu_node_pair.sh add pair_with_new

v. Check status of Contrail Networking service.

sudo contrail-status

On ISSU node, the status for all the services must be active.

On Contrail control nodes, the status for all the services except config_device_manager,
config_schema and config_svc_monitor must be active. The status for
config_device_manager, config_schema and config_svc_monitor must be inactive.

vi. Sync data with new Contrail control plane.

issu_config=issu_revert.conf ./issu_node_sync.sh

vii. Check ISSU Logs.

sudo docker logs issu-run-sync sudo docker exec issu-run-sync cat /var/log/contrail/
issu_contrail_run_sync.log

d. Follow Step 6.3 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to upgrade compute
nodes.

e. Perform the following steps after upgrading all the compute nodes as stated in step 6.4 of Red
Hat OpenStack Platform 13 Fast Forward Upgrades:

i. Check status of Contrail Networking service on compute nodes.

sudo contrail-status

The status must be active.

ii. Make SSH connection to ISSU node.

iii. Disable ISSU node.

sudo docker rm --force issu-run-sync

iv. Un-pair ISSU node with the old Contrail cluster.

./issu_node_pair.sh del pair_with_new

v. Check status of Contrail Networking service on control nodes.

sudo contrail-status

The status must be active.

373

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf

9. Follow steps 6.5 till 6.10 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to upgrade
CEPH storage node, converged nodes, etc.

10. Finalize ISSU upgrade.

Remove ISSU node from the cluster.

set ContrailControllerIssuCount: 0

Run stack deploy command.

11. Follow chapter 7 of Red Hat OpenStack Platform 13 Fast Forward Upgrades to execute post
upgrade steps.

SEE ALSO

Setting Up the Infrastructure | 179

Upgrading Contrail Networking using the Ansible Deployer In-Service
Software Upgrade Procedure in OpenStack Environments

IN THIS SECTION

When to Use This Procedure? | 374

Contrail In-Service Software Upgrade (ISSU) Overview | 375

Prerequisites | 376

Preparing the Contrail System for the Ansible Deployer ISSU Procedure | 376

Provisioning Control Nodes and Performing Synchronization Steps | 378

Transferring the Compute Nodes into the New Cluster | 381

Finalizing the Contrail Ansible Deployer ISSU Process | 384

When to Use This Procedure?

We recommend using the Zero Impact Upgrade (ZIU) procedures to upgrade Contrail Networking with
minimal network disruption in most environments using Openstack orchestration.

To perform a ZIU upgrade, follow the instructions in How to Perform a Zero Impact Contrail Networking
Upgrade using the Ansible Deployer. If you are running Red Hat Openstack 13 or 16.1, see Updating

374

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/pdf/fast_forward_upgrades/Red_Hat_OpenStack_Platform-13-Fast_Forward_Upgrades-en-US.pdf
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html

Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack 13 or Updating Contrail Networking using the Zero Impact Upgrade Process in an
Environment using Red Hat Openstack 16.1.

The procedure in this document also provides a method of upgrading Contrail Networking with minimal
network disruption using the Ansible deployer in environments using Openstack orchestration.

The procedure in this document has been validated to upgrade Contrail Networking from Release 3.2 or
later to Release 5.0 or later. The starting Contrail release for this upgrade can be any Contrail
Networking Release after Release 3.2, including all Contrail Networking 4, 5, 19, 20, and 21 releases.
The target release for this upgrade can be any Contrail Networking Release after Release 5.0, including
all Contrail Networking 5, 19, 20, and 21 releases.

Table 19: Contrail Networking Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

Release 3.2 or Later

Any Release 4

Any Release 5

Any Release 19

Any Release 20

Any Release 21

Any Release 5

Any Release 19

Any Release 20

Any Release 21

Contrail In-Service Software Upgrade (ISSU) Overview

If your installed version is Contrail Release 3.2 or higher, you can perform an in-service software upgrade
(ISSU) to perform this upgrade using the Ansible deployer. In performing the ISSU, the Contrail controller
cluster is upgraded side-by-side with a parallel setup, and the compute nodes are upgraded in place.

NOTE: We recommend that you take snapshots of your current system before you proceed with
the upgrade process.

The procedure for performing the ISSU using the Contrail Ansible deployer is similar to previous ISSU
upgrade procedures.

375

https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html

NOTE: This Contrail ansible deployer ISSU procedure does not include steps for upgrading
OpenStack. If an OpenStack version upgrade is required, it should be performed using applicable
OpenStack procedures.

In summary, the ISSU process consists of the following parts, in sequence:

1. Deploy the new cluster.

2. Synchronize the new and old clusters.

3. Upgrade the compute nodes.

4. Finalize the synchronization and complete the upgrades.

Prerequisites

The following prerequisites are required to use the Contrail ansible deployer ISSU procedure:

• A previous version of Contrail installed, no earlier than Release 3.2.

• There are OpenStack controller and compute nodes, and Contrail nodes.

• OpenStack needs to have been installed from packages.

• Contrail and OpenStack should be installed on different nodes.

NOTE: Upgrade for compute nodes with Ubuntu 14.04 is not supported. Compute nodes need
to be upgraded to Ubuntu 16.04 first.

Preparing the Contrail System for the Ansible Deployer ISSU Procedure

In summary, these are the general steps for the system preparation phase of the Contrail ansible
deployer ISSU procedure:

1. Deploy the new version of Contrail using the Contrail ansible deployer, but make sure to include only
the following Contrail controller services:

• Config

• Control

• Analytics

376

• Databases

• Any additional support services like rmq, kafka, and zookeeper. (The vrouter service will be
deployed later on the old compute nodes.)

NOTE: You must provide keystone authorization information for setup.

2. After deployment is finished, you can log into the Contrail web interface to verify that it works.

The detailed steps for deploying the new controller using the ansible deployer are as follows:

1. To deploy the new controller, download contrail-ansible-deployer-release-tag.tgz onto your
provisioning host from Juniper Networks.

2. The new controller file config/instances.yaml appears as follows, with actual values in place of the
variables as shown in the example:

provider_config:
 bms:
 domainsuffix: local
 ssh_user: user
 ssh_pwd: password
instances:
 server1:
 ip: controller 1 ip
 provider: bms
 roles:
 analytics: null
 analytics_database: null
 config: null
 config_database: null
 control: null
 webui: null
contrail_configuration:
 CONTROLLER_NODES: controller ip-s from api/mgmt network
 CONTROL_NODES: controller ip-s from ctrl/data network
 AUTH_MODE: keystone
 KEYSTONE_AUTH_ADMIN_TENANT: old controller's admin's tenant
 KEYSTONE_AUTH_ADMIN_USER: old controller's admin's user name
 KEYSTONE_AUTH_ADMIN_PASSWORD: password for admin user
 KEYSTONE_AUTH_HOST: keystone host/ip of old controller

377

 KEYSTONE_AUTH_URL_VERSION: "/v3"
 KEYSTONE_AUTH_USER_DOMAIN_NAME: user's domain in case of keystone v3
 KEYSTONE_AUTH_PROJECT_DOMAIN_NAME: project's domain in case of keystone v3
 RABBITMQ_NODE_PORT: 5673
 IPFABRIC_SERVICE_HOST: metadata service host/ip of old controller
 AAA_MODE: cloud-admin
 METADATA_PROXY_SECRET: secret phrase that is used in old controller
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: keystone host/ip of old controller
 kolla_external_vip_address: keystone host/ip of old controller

3. Finally, run the ansible playbooks to deploy the new controller.

ansible-playbook -v -e orchestrator=none -i inventory/ playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

After successful completion of these commands, the new controller should be up and alive.

Provisioning Control Nodes and Performing Synchronization Steps

In summary, these are the general steps for the node provisioning and synchronization phase of the
Contrail ansible deployer ISSU procedure:

1. Provision new control nodes in the old cluster and old control nodes in the new cluster.

2. Stop the following containers in the new cluster on all nodes:

• contrail-device-manager

• contrail-schema-transformer

• contrail-svcmonitor

3. Switch the new controller into maintenance mode to prevent provisioning computes in the new
cluster.

4. Prepare the config file for the ISSU.

5. Run the pre-sync script from the ISSU package.

6. Run the run-sync script from the ISSU package in background mode.

The detailed steps to provision the control nodes and perform the synchronization are as follows:

378

1. Pair the old control nodes in the new cluster. It is recommended to run it from any config-api
container.

config_api_image=`docker ps | awk '/config-api/{print $1}' | head`

2. Run the following command for each old control node, substituting actual values where indicated:

docker exec -it $config_api-image /bin/bash -c "LOG_LEVEL=SYS_NOTICE source /common.sh ;
python /opt/contrail/utils/provision_control.py --host_name hostname of old control node
--host_ip IP of old control node --api_server_ip $(hostname -i)
 --api_server_port 8082 --oper add --router_asn 64512 --ibgp_auto_mesh \$AUTH_PARAMS"

3. Pair the new control nodes in the old cluster with similar commands (the specific syntax depends on
the deployment method of the old cluster), again substituting actual values where indicated.

python /opt/contrail/utils/provision_control.py --host_name new controller hostname
 --host_ip new controller IP --api_server_ip old api-server IP/VIP
 --api_server_port 8082 --oper add --admin_user admin --admin_password password
 --admin_tenant_name admin --router_asn 64512 --ibgp_auto_mesh

4. Stop all the containers for contrail-device-manager, contrail-schema-transformer, and contrail-
svcmonitor in the new cluster on all controller nodes.

docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_svcmonitor_1

These next steps should be performed from any new controller. Then the configuration prepared for
ISSU runs. (For now, only manual preparation is available.)

NOTE: In various deployments, old cassandra may use port 9160 or 9161. You can learn the
configuration details for the old services on any old controller node, in the file /etc/contrail-
contrail-api.conf.

379

The configuration appears as follows and can be stored locally:

[DEFAULTS]
details about oldrabbit
old_rabbit_user = contrail
old_rabbit_password = ab86245f4f3640a29b700def9e194f72
old_rabbit_q_name = vnc-config.issu-queue
old_rabbit_vhost = contrail
old_rabbit_port = 5672
old_rabbit_address_list = ip-addresses
details about new rabbit
new_rabbit_user = rabbitmq
new_rabbit_password = password
new_rabbit_ha_mode =
new_rabbit_q_name = vnc-config.issu-queue
new_rabbit_vhost = /
new_rabbit_port = 5673
new_rabbit_address_list = ip-addresses
details about other old/new services
old_cassandra_user = controller
old_cassandra_password = 04dc0540b796492fad6f7cbdcfb18762
old_cassandra_address_list = ip-address:9161
old_zookeeper_address_list = ip-address:2181
new_cassandra_address_list = ip-address:9161 ip-address:9161 ip-address:9161
new_zookeeper_address_list = ip-address:2181
details about new controller nodes
new_api_info = {"ip-address": [("root"), ("password")], "ip-address": [("root"), ("password")],
"ip-address": [("root"), ("password")]}

1. Detect the config-api image ID.

image_id=`docker images | awk '/config-api/{print $3}' | head -1`

2. Run the pre-synchronization.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh $image_id -c "/usr/bin/contrail-issu-pre-
sync -c /etc/contrail/contrail-issu.conf"

380

3. Run the run-synchronization.

docker run --rm --detach -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/
contrail-issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id
 -c "/usr/bin/contrail-issu-run-sync -c /etc/contrail/contrail-issu.conf"

4. Check the logs of the run-sync process. To do this, open the run-sync container.

docker exec -it issu-run-sync /bin/bash
cat /var/log/contrail/issu_contrail_run_sync.log

5. Stop and remove the run-sync process after all compute nodes are upgraded.

docker rm -f issu-run-sync

Transferring the Compute Nodes into the New Cluster

In summary, these are the general steps for the node transfer phase of the Contrail ansible deployer
ISSU procedure:

1. Select the compute node(s) for transferring into the new cluster.

2. Move all workloads from the node(s) to other compute nodes. You also have the option to terminate
workloads as appropriate.

3. For Contrail Release 3.x, remove Contrail from the node(s) as follows:

• Stop the vrouter-agent service.

• Remove the vhost0 interface.

• Switch the physical interface down, then up.

• Remove the vrouter.ko module from the kernel.

4. For Contrail Release 4.x and later, remove Contrail from the node(s) as follows:

• Stop the agent container.

• Restore the physical interface.

5. Add the required node(s) to instances.yml with the roles vrouter and openstack_legacy_compute.

381

6. Run the Contrail ansible deployer to deploy the new vrouter and to configure the old compute
service.

7. All new compute nodes will have:

• The collector setting pointed to the new Contrail cluster

• The Control/DNS nodes pointed to the new Contrail cluster

• The config-api setting in vnc_api_lib.ini pointed to the new Contrail cluster

8. (Optional) Run a test workload on transferred nodes to ensure the new vrouter-agent works
correctly.

Follow these steps to rollback a compute node, if needed:

1. Move the workload from the compute node.

2. Stop the new Contrail containers.

3. Ensure the network configuration has been successfully reverted.

4. Deploy the previous version of Contrail using the deployment method for that version.

The detailed steps for transferring compute nodes into the new cluster are as follows:

NOTE: After moving workload from the chosen compute nodes, you should remove the previous
version of contrail-agent. For example, for Ubuntu 16.04 and vrouter-agent installed directly on
the host, these would be the steps to remove the previous contrail-agent:

stop services
systemctl stop contrail-vrouter-nodemgr
systemctl stop contrail-vrouter-agent
remove packages
apt-get purge -y contrail*
restore original interfaces definition
cd /etc/network/interfaces.d/
cp 50-cloud-init.cfg.save 50-cloud-init.cfg
rm vrouter.cfg
restart networking
systemctl restart networking.service
remove old kernel module
rmmod vrouter

382

maybe you need to restore default route
ip route add 0.0.0.0/0 via 10.0.10.1 dev ens3

1. The new instance should be added to instances.yaml with two roles: vrouter and
openstack_compute_legacy. To avoid reprovisioning the compute node, set the maintenance mode to
TRUE. For example:

instances:
 server10:
 ip: compute 10 ip
 provider: bms
 roles:
 vrouter:
 MAINTENANCE_MODE: TRUE
 VROUTER_ENCRYPTION: FALSE
 openstack_compute_legacy: null

2. Run the ansible playbooks.

ansible-playbook -v -e orchestrator=none -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/install_contrail.yml

3. The contrail-status for the compute node appears as follows:

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (No Configuration for self)

4. Restart contrail-control on all new controller nodes after the upgrade is complete:

docker restart control_control_1

383

5. Check status of new compute nodes by running contrail-status on them. All components should be
active now. You can also check the status of the new instance by creating AZ/aggregates with the
new compute nodes and run some test workloads to ensure it operates correctly.

Finalizing the Contrail Ansible Deployer ISSU Process

Finalize the Contrail ansible deployer ISSU as follows:

1. Stop the issu-run-sync container.

docker rm -f issu-run-sync

2. Run the post synchronization commands.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-post-sync -c /etc/contrail/contrail-issu.conf"
docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-zk-sync -c /etc/contrail/contrail-issu.conf"

3. Run the following commands on all the new controller nodes.

docker-compose -f /etc/contrail/config/docker-compose.yaml restart api
docker-compose -f /etc/contrail/config/docker-compose.yaml up -d

4. Restart the container.

docker-compose -f /etc/contrail/config/docker-compose.yaml restart API
docker-compose -f /etc/contrail/config/docker-compose.yaml up -d

5. Disengage maintenance mode and start all previously stopped containers. To do this, set the entry
MAINTENANCE_MODE in instances.yaml to FALSE, then run the following command from the deployment
node:

ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

384

6. Clean up and remove the old Contrail controllers. Use the provision-issu.py script called from the
config-api container with the config issu.conf. Replace the credential variables and API server IP
with appropriate values as indicated.

[DEFAULTS]
db_host_info={"ip-address": "node-ip-address", "ip-address": "node-ip-address", "ip-
address": "node-ip-address"}
config_host_info={"ip-address": "node-ip-address", "ip-address": "node-ip-address", "ip-
address": "node-ip-address"}
analytics_host_info={"ip-address": "node-ip-address", "ip-address": "node-ip-address", "ip-
address": "node-ip-address"}
control_host_info={"ip-address": "node-ip-address", "ip-address": "node-ip-address", "ip-
address": "node-ip-address"}
admin_password = <admin password>
admin_tenant_name = <admin tenant>
admin_user = <admin username>
api_server_ip= <any IP of new config-api controller>
api_server_port=8082

7. Run the following commands from any controller node.

NOTE: All *host_info parameters should contain the list of new hosts.

docker cp issu.conf config_api_1:issu.conf
docker exec -it config_api_1 python /opt/contrail/utils/provision_issu.py -c issu.conf

8. Servers can be cleaned up if there are no other services present.

9. All configurations for the neutron-api must be edited to have the parameter api_server_ip point to
the list of new config-api IP addresses. Locate ContrailPlugin.ini (or other file that contains this
parameter) and change the IP addresses to the list of new config-api IP addresses.

10. The heat configuration needs the same changes. Locate the parameter [clients_contrail]/api_server
and change it to point to the list of the new config-api IP addresses.

385

CHAPTER 14

Backup and Restore Contrail Software

IN THIS CHAPTER

How to Backup and Restore Contrail Databases in JSON Format | 386

How to Backup and Restore Contrail Databases in JSON Format

IN THIS SECTION

Before You Begin | 386

Simple Database Backup in JSON Format | 387

Examples: Simple Database Backups in JSON Format | 391

Restore Database from the Backup in JSON Format | 394

Example: How to Restore a Database Using the JSON Backup (Ansible Deployer Environment) | 400

Example: How to Restore a Database Using the JSON Backup (Red Hat Openstack Deployer
Environment) | 404

This document shows how to backup and restore the Contrail databases—Cassandra and Zookeeper—in
JSON format.

Before You Begin

The backup and restore procedure must be completed for nodes running the same Contrail Networking
release. The procedure is used to backup the Contrail Networking databases only; it does not include
instructions for backing up orchestration system databases.

386

CAUTION: Database backups must be consistent across all systems because the state
of the Contrail database is associated with other system databases, such as OpenStack
databases. Database changes associated with northbound APIs must be stopped on all
the systems before performing any backup operation. For example, you might block the
external VIP for northbound APIs at the load balancer level, such as HAproxy.

Simple Database Backup in JSON Format

This procedure provides a simple database backup in JSON format. This procedure is performed using
the db_json_exim.py script located in the /usr/lib/python2.7/site-packages/cfgm_common on the controller node.

To perform this database backup:

1. Log into one of the config nodes. Create the /tmp/db-dump directory on any of the config node
hosts.

mkdir /tmp/db-dump

2. On the same config node, copy the contrail-api.conf file from the container to the host.

Ansible Deployer:

docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Red Hat Openstack Deployer:

docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/

The Cassandra database instance on any configuration node includes the complete Cassandra
database for all configuration nodes in the cluster. Steps 1 and 2, therefore, only need to be
performed on one configuration node.

3. Stop the following docker configuration services on all of the Contrail configuration nodes.

Ansible Deployer:

docker stop config_svcmonitor_1
docker stop config_devicemgr_1

387

docker stop config_schema_1
docker stop config_api_1

Red Hat Openstack Deployer:

docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

This step must be performed on each individual config node in the cluster.

4. Return to the config node where you performed steps 1 and 2.

List the docker image to find the name or ID of the config api image..

docker image ls | grep config-api

Example:

docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4
months ago 583MB

5. From the same config node, start the config api container pointing the entrypoint.sh script to /bin/
bash and mapping /tmp/db-dump from the host to the /tmp directory inside the container. You
perform this step to ensure that the API services are not started on the config node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL
directory. This mounting ensures that the backup procedure succeeds in environments with
endpoints that require TLS authentication.

The registry_name and container_tag variables must match step "4" on page 388.

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash <registry_name>/contrail-controller-
config_api:<container_tag>

388

Example:

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

NOTE: In case of RHOSP deployment with RedHat IDM (IPA) (only if CA certificate is
different), mount the following file too:

-v /etc/ipa/ca.crt:/etc/ipa/ca.crt

6. From the docker container created on the config node in Step "5" on page 388, use the
db_json_exim.py script to backup data in JSON format.. The db dump file will be saved in
the /tmp/db-dump/ on this config node.

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

The Cassandra database instance on any configuration node includes the complete Cassandra
database for all configuration nodes in the cluster. You, therefore, only need to perform step 4
through 6 from one of the configuration nodes.

7. (Optional. Recommended) From the same config node, enter the cat db-dump.json | python -m json.tool
| less command to view a more readable version of the file transfer.

cat db-dump.json | python -m json.tool | less

8. From the same config node, exit out of the config api container. This will stop the container.

exit

9. Start the following configuration services on all of the Contrail configuration nodes.

Ansible Deployer:

docker start config_api_1
docker start config_schema_1

389

docker start config_svcmonitor_1
docker start config_devicemgr_1

Red Hat Openstack Deployer:

docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager

This step must be performed on each individual config node.

10. On each config node, enter the contrail-status command to confirm that services are in the active or
running states.

NOTE: Some command output and output fields are removed for readability. Output shown
is from a node hosting config and analytics services.

contrail-status
Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
<some output removed for readability>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

390

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Examples: Simple Database Backups in JSON Format

These examples illustrate the process for creating a simple database backup in JSON format in both an
Ansible deployer environment and a Red Hat Openstack deployer environment.

In each example, a cluster with three config nodes—control_config1, control_config2, and
control_config3—is backed up. All tasks that need to be performed on a single config nodes are
performed on control-config1. The tasks must be performed in the shown order.

391

Ansible Deployer Environment:

control_config1
mkdir /tmp/db-dump
docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/
docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

control_config2
docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

control_config3
docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

control_config1
docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --network
host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-api:1909.30-ocata
cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf
cat db-dump.json | python -m json.tool | less
exit
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

control_config2
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

392

control_config3
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

Red Hat Openstack Deployer Environment:

control_config1
mkdir /tmp/db-dump
docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/
docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config2
docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config3
docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config1
docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --network
host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-api:1909.30-ocata
cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf
cat db-dump.json | python -m json.tool | less
exit
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

393

control_config2
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

control_config3
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

Restore Database from the Backup in JSON Format

This procedure provides the steps to restore a system using the simple database backup JSON file that
was created in "Simple Database Backup in JSON Format" on page 387.

To restore a system from a backup JSON file:

1. Copy the contrail-api.conf file from the container to the host on any one of the config nodes.

Ansible Deployer:

docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Red Hat Openstack Deployer:

docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/

2. Stop the configuration services on all of the controllers.

Ansible Deployer:

docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1
docker stop config_nodemgr_1
docker stop config_database_nodemgr_1

394

docker stop analytics_snmp_snmp-collector_1
docker stop analytics_snmp_topology_1
docker stop analytics_alarm_alarm-gen_1
docker stop analytics_api_1
docker stop analytics_collector_1
docker stop analytics_alarm_kafka_1

Red Hat Openstack Deployer—Node hosting Contrail Config containers:

docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api
docker stop contrail_config_nodemgr
docker stop contrail_config_database_nodemgr

Red Hat Openstack Deployer—Node hosting Contrail Analytics containers:

docker stop contrail_analytics_snmp_collector
docker stop contrail_analytics_topology
docker stop contrail_analytics_alarmgen
docker stop contrail_analytics_api
docker stop contrail_analytics_collector
docker stop contrail_analytics_kafka

3. Stop the Cassandra service on all the config-db controllers.

Ansible Deployer:

docker stop config_database_cassandra_1

Red Hat Openstack Deployer:

docker stop contrail_config_database

4. Stop the Zookeeper service on all controllers.

395

Ansible Deployer:

docker stop config_database_zookeeper_1

Red Hat Openstack Deployer:

docker stop contrail_config_zookeeper

5. Backup the Zookeeper data directory on all the controllers.

Ansible Deployer:

cd /var/lib/docker/volumes/config_database_config_zookeeper/
cp -R _data/version-2/ version-2-save

Red Hat Openstack Deployer:

cd /var/lib/docker/volumes/config_zookeeper/
cp -R _data/version-2/ version-2-save

6. Delete the Zookeeper data directory contents on all the controllers.

rm -rf _data/version-2/*

7. Backup the Cassandra data directory on all the controllers.

Ansible Deployer:

cd /var/lib/docker/volumes/config_database_config_cassandra/
cp -R _data/ Cassandra_data-save

Red Hat Openstack Deployer:

cd /var/lib/docker/volumes/config_cassandra/
cp -R _data/ Cassandra_data-save

396

8. Delete the Cassandra data directory contents on all controllers.

rm -rf _data/*

9. Start the Zookeeper service on all the controllers.

Ansible Deployer:

docker start config_database_zookeeper_1

Red Hat Openstack Deployer:

docker start contrail_config_zookeeper

10. Start the Cassandra service on all the controllers.

Ansible Deployer:

docker start config_database_cassandra_1

Red Hat Openstack Deployer:

docker start contrail_config_database

11. List docker image to find the name or ID of the config-api image on the config node.

docker image ls | grep config-api

Example:

docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4
months ago 583MB

12. Run a new docker container using the name or ID of the config_api image on the same config node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL

397

directory. This mounting ensures that this backup procedure succeeds in environments with
endpoints that require TLS authentication.

Use the registry_name and container_tag from the output of the step "11" on page 397.

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash <registry_name>/contrail-controller-
config_api:<container tag>

Example

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

13. Restore the data in new running docker on the same config node.

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

14. Exit out of the config api container. This will stop the container.

exit

15. Start config services on all the controllers.

Ansible Deployer:

docker start config_svcmonitor_1
docker start config_devicemgr_1
docker start config_schema_1
docker start config_api_1
docker start config_nodemgr_1
docker start config_database_nodemgr_1
docker start analytics_snmp_snmp-collector_1
docker start analytics_snmp_topology_1
docker start analytics_alarm_alarm-gen_1
docker start analytics_api_1

398

docker start analytics_collector_1
docker start analytics_alarm_kafka_1

Red Hat Openstack Deployer—Node hosting Contrail Config containers:

docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
docker start contrail_config_schema
docker start contrail_config_api
docker start contrail_config_nodemgr
docker start contrail_config_database_nodemgr

Red Hat Openstack Deployer—Node hosting Contrail Analytics containers:

docker start contrail_analytics_snmp_collector
docker start contrail_analytics_topology
docker start contrail_analytics_alarmgen
docker start contrail_analytics_api
docker start contrail_analytics_collector
docker start contrail_analytics_kafka

16. Enter the contrail-status command on each configuration node and, when applicable, on each
analytics node to confirm that services are in the active or running states.

NOTE: Output shown for a config node. Some command output and output fields are
removed for readability.

contrail-status
Pod Service Original Name State
config api contrail-controller-config-api running
config device-manager contrail-controller-config-devicemgr running
config dnsmasq contrail-controller-config-dnsmasq running
config nodemgr contrail-nodemgr running
config provisioner contrail-provisioner running
config schema contrail-controller-config-schema running
config stats contrail-controller-config-stats running
<some output removed for readability>

399

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Example: How to Restore a Database Using the JSON Backup (Ansible Deployer
Environment)

This example shows how to restore the databases for three controllers connected to the Contrail
Configuration database (config-db). This example assumes a JSON backup file of the databases was
previously created using the instructions provided in "Simple Database Backup in JSON Format" on page
387.The network was deployed using Ansible and the three controllers—nodec53, nodec54, and
nodec55—have separate IP addresses.

Make db-dump directory. Copy contrail-api.conf to db-dump directory.
root@nodec54 ~]# mkdir /tmp/db-dump
root@nodec54 ~]# docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

400

Stop Configuration Services on All Controllers
[root@nodec53 ~]# docker stop config_schema_1
[root@nodec53 ~]# docker stop config_svcmonitor_1
[root@nodec53 ~]# docker stop config_devicemgr_1
[root@nodec53 ~]# docker stop config_nodemgr_1
[root@nodec53 ~]# docker stop config_database_nodemgr_1
[root@nodec53 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec53 ~]# docker stop analytics_snmp_topology_1
[root@nodec53 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec53 ~]# docker stop analytics_api_1
[root@nodec53 ~]# docker stop analytics_collector_1
[root@nodec53 ~]# docker stop analytics_alarm_kafka_1

[root@nodec54 ~]# # docker stop config_schema_1
[root@nodec54 ~]# docker stop config_svcmonitor_1
[root@nodec54 ~]# docker stop config_devicemgr_1
[root@nodec54 ~]# docker stop config_nodemgr_1
[root@nodec54 ~]# docker stop config_database_nodemgr_1
[root@nodec54 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec54 ~]# docker stop analytics_snmp_topology_1
[root@nodec54 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec54 ~]# docker stop analytics_api_1
[root@nodec54 ~]# docker stop analytics_collector_1
[root@nodec54 ~]# docker stop analytics_alarm_kafka_1

[root@nodec55 ~]# docker stop config_schema_1
[root@nodec55 ~]# docker stop config_svcmonitor_1
[root@nodec55 ~]# docker stop config_devicemgr_1
[root@nodec55 ~]# docker stop config_nodemgr_1
[root@nodec55 ~]# docker stop config_database_nodemgr_1
[root@nodec55 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec55 ~]# docker stop analytics_snmp_topology_1
[root@nodec55 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec55 ~]# docker stop analytics_api_1
[root@nodec55 ~]# docker stop analytics_collector_1
[root@nodec55 ~]# docker stop analytics_alarm_kafka_1

Stop Cassandra
[root@nodec53 ~]# docker stop config_database_cassandra_1
[root@nodec54 ~]# docker stop config_database_cassandra_1
[root@nodec55 ~]# docker stop config_database_cassandra_1

401

Stop Zookeeper
[root@nodec53 ~]# docker stop config_database_zookeeper_1
[root@nodec54 ~]# docker stop config_database_zookeeper_1
[root@nodec55 ~]# docker stop config_database_zookeeper_1

Backup Zookeeper Directories Before Deleting Zookeeper Data Directory Contents
[root@nodec53 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/
[root@nodec53 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec53 config_database_config_zookeeper]# rm -rf _data/version-2/*

[root@nodec54 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/
[root@nodec54 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec54 config_database_config_zookeeper]# rm -rf _data/version-2/*

[root@nodec55 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/
[root@nodec55 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec55 config_database_config_zookeeper]# rm -rf _data/version-2/*

Backup Cassandra Directory Before Deleting Cassandra Data Directory Contents
[root@nodec53 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec53 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec53 config_database_config_cassandra]# rm -rf _data/*

[root@nodec54 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec54 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec54 config_database_config_cassandra]# rm -rf _data/*

[root@nodec55 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec55 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec55 config_database_config_cassandra]# rm -rf _data/*

Start Zookeeper
[root@nodec53 ~]# docker start config_database_zookeeper_1
[root@nodec54 ~]# docker start config_database_zookeeper_1
[root@nodec55 ~]# docker start config_database_zookeeper_1

Start Cassandra
[root@nodec53 ~]# docker start config_database_cassandra_1
[root@nodec54 ~]# docker start config_database_cassandra_1
[root@nodec55 ~]# docker start config_database_cassandra_1

Run Docker Image & Mount Contrail TSL Certificates to Contrail SSL Directory
[root@nodec54 ~]# docker image ls | grep config-api

402

hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4 months
ago 583MB
[root@nodec54 ~]# docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/
ssl:ro --network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

Restore Data in New Docker Containers
(config_api_1)[root@nodec54 /root]$ cd /usr/lib/python2.7/site-packages/cfgm_common/
(config_api_1)[root@nodec54 /usr/lib/python2.7/site-packages/cfgm_common]$ python
db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

Start Configuration Services
[root@nodec53 ~]# docker start config_schema_1
[root@nodec53 ~]# docker start config_svcmonitor_1
[root@nodec53 ~]# docker start config_devicemgr_1
[root@nodec53 ~]# docker start config_nodemgr_1
[root@nodec53 ~]# docker start config_database_nodemgr_1
[root@nodec53 ~]# docker start contrail_config_api_1
[root@nodec53 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec53 ~]# docker start analytics_snmp_topology_1
[root@nodec53 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec53 ~]# docker start analytics_api_1
[root@nodec53 ~]# docker start analytics_collector_1
[root@nodec53 ~]# docker start analytics_alarm_kafka_1

[root@nodec54 ~]# docker start config_schema_1
[root@nodec54 ~]# docker start config_svcmonitor_1
[root@nodec54 ~]# docker start config_devicemgr_1
[root@nodec54 ~]# docker start config_nodemgr_1
[root@nodec54 ~]# docker start config_database_nodemgr_1
[root@nodec54 ~]# docker start contrail_config_api_1
[root@nodec54 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec54 ~]# docker start analytics_snmp_topology_1
[root@nodec54 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec54 ~]# docker start analytics_api_1
[root@nodec54 ~]# docker start analytics_collector_1
[root@nodec54 ~]# docker start analytics_alarm_kafka_1

[root@nodec55 ~]# docker start config_schema_1
[root@nodec55 ~]# docker start config_svcmonitor_1
[root@nodec55 ~]# docker start config_devicemgr_1
[root@nodec55 ~]# docker start config_nodemgr_1
[root@nodec55 ~]# docker start config_database_nodemgr_1

403

[root@nodec55 ~]# docker start contrail_config_api_1
[root@nodec55 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec55 ~]# docker start analytics_snmp_topology_1
[root@nodec55 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec55 ~]# docker start analytics_api_1
[root@nodec55 ~]# docker start analytics_collector_1
[root@nodec55 ~]# docker start analytics_alarm_kafka_1

Confirm Services are Active
[root@nodec53 ~]# contrail-status
[root@nodec54 ~]# contrail-status
[root@nodec55 ~]# contrail-status

Example: How to Restore a Database Using the JSON Backup (Red Hat Openstack
Deployer Environment)

This example shows how to restore the databases from an environment that was deployed using Red
Hat Openstack and includes three config nodes—config1, config2, and config3—connected to the
Contrail Configuration database (config-db). All steps that need to be done from a single config node are
performed from config1.

The environment also contains three analytics nodes—analytics1, analytics2, and analytics3—to provide
analytics services.

This example assumes a JSON backup file of the databases was previously created using the instructions
provided in "Simple Database Backup in JSON Format" on page 387.

Make db-dump directory. Copy contrail-api.conf to db-dump directory.
[root@config1 ~]# mkdir /tmp/db-dump
[root@config1 ~]# docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Stop Configuration Services on All Config Nodes
[root@config1 ~]# docker stop contrail_config_svc_monitor
[root@config1 ~]# docker stop contrail_config_device_manager
[root@config1 ~]# docker stop contrail_config_schema
[root@config1 ~]# docker stop contrail_config_api
[root@config1 ~]# docker stop contrail_config_nodemgr
[root@config1 ~]# docker stop contrail_config_database_nodemgr

[root@config2 ~]# docker stop contrail_config_svc_monitor
[root@config2 ~]# docker stop contrail_config_device_manager
[root@config2 ~]# docker stop contrail_config_schema

404

[root@config2 ~]# docker stop contrail_config_api
[root@config2 ~]# docker stop contrail_config_nodemgr
[root@config2 ~]# docker stop contrail_config_database_nodemgr

[root@config3 ~]# docker stop contrail_config_svc_monitor
[root@config3 ~]# docker stop contrail_config_device_manager
[root@config3 ~]# docker stop contrail_config_schema
[root@config3 ~]# docker stop contrail_config_api
[root@config3 ~]# docker stop contrail_config_nodemgr
[root@config3 ~]# docker stop contrail_config_database_nodemgr

Stop Analytics Services on All Analytics Nodes
[root@analytics1 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics1 ~]# docker stop contrail_analytics_topology
[root@analytics1 ~]# docker stop contrail_analytics_alarmgen
[root@analytics1 ~]# docker stop contrail_analytics_api
[root@analytics1 ~]# docker stop contrail_analytics_collector
[root@analytics1 ~]# docker stop contrail_analytics_kafka

[root@analytics2 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics2 ~]# docker stop contrail_analytics_topology
[root@analytics2 ~]# docker stop contrail_analytics_alarmgen
[root@analytics2 ~]# docker stop contrail_analytics_api
[root@analytics2 ~]# docker stop contrail_analytics_collector
[root@analytics2 ~]# docker stop contrail_analytics_kafka

[root@analytics3 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics3 ~]# docker stop contrail_analytics_topology
[root@analytics3 ~]# docker stop contrail_analytics_alarmgen
[root@analytics3 ~]# docker stop contrail_analytics_api
[root@analytics3 ~]# docker stop contrail_analytics_collector
[root@analytics3 ~]# docker stop contrail_analytics_kafka

Stop Cassandra
[root@config1 ~]# docker stop contrail_config_database
[root@config2 ~]# docker stop contrail_config_database
[root@config3 ~]# docker stop contrail_config_database

Stop Zookeeper
[root@config1 ~]# docker stop contrail_config_zookeeper
[root@config2 ~]# docker stop contrail_config_zookeeper
[root@config3 ~]# docker stop contrail_config_zookeeper

405

Backup Zookeeper Directories Before Deleting Zookeeper Data Directory Contents
[root@config1 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config1 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config1 config_zookeeper]# rm -rf _data/version-2/*
[root@config2 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config2 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config2 config_zookeeper]# rm -rf _data/version-2/*
[root@config3 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config3 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config3 config_zookeeper]# rm -rf _data/version-2/*

Backup Cassandra Directory Before Deleting Cassandra Data Directory Contents
[root@config1 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config1 config_cassandra]# cp -R _data/ Cassandra_data-save
[root@config1 config_cassandra]# rm -rf _data/*

[root@config2 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config2 config_cassandra]# cp -R _data/ Cassandra_data-save
[root@config2 config_cassandra]# rm -rf _data/*

[root@config3 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config3 config_cassandra]# cp -R _data/ Cassandra_data-save
[root@config3 config_cassandra]# rm -rf _data/*

Start Zookeeper
[root@config1 ~]# docker start contrail_config_zookeeper
[root@config2 ~]# docker start contrail_config_zookeeper
[root@config3 ~]# docker start contrail_config_zookeeper

Start Cassandra
[root@config1 ~]# docker start contrail_config_database
[root@config2 ~]# docker start contrail_config_database
[root@config3 ~]# docker start contrail_config_database

Run Docker Image & Mount Contrail TSL Certificates to Contrail SSL Directory
[root@config1 ~]# docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4 months
ago 583MB
[root@config1 ~]# docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/
ssl:ro --network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

Restore Data in New Docker Containers

406

(config_api_1)[root@config1 /root]$ cd /usr/lib/python2.7/site-packages/cfgm_common/
(config_api_1)[root@config1 /usr/lib/python2.7/site-packages/cfgm_common]$ python
db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

Start Configuration Services on All Config Nodes
[root@config1 ~]# docker start contrail_config_svc_monitor
[root@config1 ~]# docker start contrail_config_device_manager
[root@config1 ~]# docker start contrail_config_schema
[root@config1 ~]# docker start contrail_config_api
[root@config1 ~]# docker start contrail_config_nodemgr
[root@config1 ~]# docker start contrail_config_database_nodemgr

[root@config2 ~]# docker start contrail_config_svc_monitor
[root@config2 ~]# docker start contrail_config_device_manager
[root@config2 ~]# docker start contrail_config_schema
[root@config2 ~]# docker start contrail_config_api
[root@config2 ~]# docker start contrail_config_nodemgr
[root@config2 ~]# docker start contrail_config_database_nodemgr

[root@config3 ~]# docker start contrail_config_svc_monitor
[root@config3 ~]# docker start contrail_config_device_manager
[root@config3 ~]# docker start contrail_config_schema
[root@config3 ~]# docker start contrail_config_api
[root@config3 ~]# docker start contrail_config_nodemgr
[root@config3 ~]# docker start contrail_config_database_nodemgr

Start Configuration Services on All Analytics Nodes
[root@analytics1 ~]# docker start contrail_analytics_snmp_collector
[root@analytics1 ~]# docker start contrail_analytics_topology
[root@analytics1 ~]# docker start contrail_analytics_alarmgen
[root@analytics1 ~]# docker start contrail_analytics_api
[root@analytics1 ~]# docker start contrail_analytics_collector
[root@analytics1 ~]# docker start contrail_analytics_kafka

[root@analytics2 ~]# docker start contrail_analytics_snmp_collector
[root@analytics2 ~]# docker start contrail_analytics_topology
[root@analytics2 ~]# docker start contrail_analytics_alarmgen
[root@analytics2 ~]# docker start contrail_analytics_api
[root@analytics2 ~]# docker start contrail_analytics_collector
[root@analytics2 ~]# docker start contrail_analytics_kafka

[root@analytics3 ~]# docker start contrail_analytics_snmp_collector
[root@analytics3 ~]# docker start contrail_analytics_topology

407

[root@analytics3 ~]# docker start contrail_analytics_alarmgen
[root@analytics3 ~]# docker start contrail_analytics_api
[root@analytics3 ~]# docker start contrail_analytics_collector
[root@analytics3 ~]# docker start contrail_analytics_kafka

Confirm Services are Active
[root@config1 ~]# contrail-status
[root@config2 ~]# contrail-status
[root@config3 ~]# contrail-status

[root@analytics1 ~]# contrail-status
[root@analytics2 ~]# contrail-status
[root@analytics3 ~]# contrail-status

408

CHAPTER 15

Post Installation Tasks

IN THIS CHAPTER

Configuring Role and Resource-Based Access Control | 409

Configuring Role-Based Access Control for Analytics | 418

Configuring the Control Node with BGP | 419

Configuring MD5 Authentication for BGP Sessions | 429

Configuring Transport Layer Security-Based XMPP in Contrail | 431

Configuring Graceful Restart and Long-lived Graceful Restart | 434

Configuring Role and Resource-Based Access Control

IN THIS SECTION

Contrail Role and Resource-Based Access (RBAC) Overview | 409

API-Level Access Control | 410

Object Level Access Control | 411

Configuration | 412

Upgrading from Previous Releases | 414

Configuring RBAC Using the Contrail User Interface | 414

RBAC Resources | 418

Contrail Role and Resource-Based Access (RBAC) Overview

Contrail Networking supports role and resource-based access control (RBAC) with API operation-level
access control.

409

The RBAC implementation relies on user credentials obtained from Keystone from a token present in an
API request. Credentials include user, role, tenant, and domain information.

API-level access is controlled by a list of rules. The attachment points for the rules include global-system-
config, domain, and project. Resource-level access is controlled by permissions embedded in the object.

API-Level Access Control

If the RBAC feature is enabled, the API server requires a valid token to be present in the X-Auth-Token of
any incoming request. The API server trades the token for user credentials (role, domain, project, and so
on) from Keystone.

If a token is missing or is invalid, an HTTP error 401 is returned.

The api-access-list object holds access rules of the following form:

<object, field> => list of <role:CRUD>

Where:

object An API resource such as network or subnet.

field Any property or reference within the resource. The field option can be multilevel, for example,
network.ipam.host-routes can be used to identify multiple levels. The field is optional, so in its
absence, the create, read, update, and delete (CRUD) operation refers to the entire resource.

role The Keystone role name.

Each rule also specifies the list of roles and their corresponding permissions as a subset of the CRUD
operations.

Example: ACL RBAC Object

The following is an example access control list (ACL) object for a project in which the admin and any
users with the Development role can perform CRUD operations on the network in a project. However, only
the admin role can perform CRUD operations for policy and IP address management (IPAM) inside a
network.

<virtual-network, network-policy> => admin:CRUD

 <virtual-network, network-ipam> => admin:CRUD

 <virtual-network, *> => admin:CRUD, Development:CRUD

410

Rule Sets and ACL Objects

The following are the features of rule sets for access control objects in Contrail.

• The rule set for validation is the union of rules from the ACL attached to:

• User project

• User domain

• Default domain

It is possible for the project or domain access object to be empty.

• Access is only granted if a rule in the combined rule set allows access.

• There is no explicit deny rule.

• An ACL object can be shared within a domain. Therefore, multiple projects can point to the same
ACL object. You can make an ACL object the default.

Object Level Access Control

The perms2 permission property of an object allows fine-grained access control per resource.

The perms2 property has the following fields:

owner This field is populated at the time of creation with the tenant UUID value extracted from the
token.

share list The share list gets built when the object is selected for sharing with other users. It is a list of
tuples with which the object is shared.

The permission field has the following options:

• R—Read object

• W—Create or update object

• X—Link (refer to) object

Access is allowed as follows:

• If the user is the owner and permissions allow (rwx)

• Or if the user tenant is in a shared list and permissions allow

• Or if world access is allowed

411

Configuration

This section describes the parameters used in Contrail RBAC.

Parameter: aaa-mode

RBAC is controlled by a parameter named aaa-mode. This parameter is used in place of the multi-tenancy
parameter of previous releases.

The aaa-mode can be set to the following values:

• no-auth—No authentication is performed and full access is granted to all.

• cloud-admin—Authentication is performed and only the admin role has access.

• rbac—Authentication is performed and access is granted based on role.

If you are using Contrail Ansible Deployer to provision Contrail Networking, set the value for AAA_MODE
to rbac to enable RBAC by default.

contrail_configuration:
 .
 .
 .
 AAA_MODE: rbac

If you are installing Contrail Networking from Contrail Command, specify the key and value as
AAA_MODE and rbac, respectively, under the section Contrail Configuration on the Step 2 Provisioning
Options page.

After enabling RBAC, you must restart the neutron server by running the service neutron-server restart
command for the changes to take effect.

NOTE: The multi_tenancy parameter is deprecated, starting with Contrail 3.0. The parameter
should be removed from the configuration. Instead, use the aaa_mode parameter for RBAC to take
effect.

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

Parameter: cloud_admin_role

A user who is assigned the cloud_admin_role has full access to everything.

412

This role name is configured with the cloud_admin_role parameter in the API server. The default setting for
the parameter is admin. This role must be configured in Keystone to change the default value.

If a user has the cloud_admin_role in one tenant, and the user has a role in other tenants, then the
cloud_admin_role role must be included in the other tenants. A user with the cloud_admin_role doesn't need
to have a role in all tenants, however, if that user has any role in another tenant, that tenant must
include the cloud_admin_role.

Configuration Files with Cloud Admin Credentials

The following configuration files contain cloud_admin_role credentials:

• /etc/contrail/contrail-keystone-auth.conf

• /etc/neutron/plugins/opencontrail/ContrailPlugin.ini

• /etc/contrail/contrail-webui-userauth.js

Changing Cloud Admin Configuration Files

Modify the cloud admin credential files if the cloud_admin_role role is changed.

1. Change the configuration files with the new information.

2. Restart the following:

• API server

service supervisor-config restart

• Neutron server

service neutron-server restart

• WebUI

service supervisor-webui restart

Global Read-Only Role

You can configure a global read-only role (global_read_only_role).

A global_read_only_role allows read-only access to all Contrail resources. The global_read_only_role must be
configured in Keystone. The default global_read_only_role is not set to any value.

A global_read_only_role user can use the Contrail Web Ui to view the global configuration of Contrail
default settings.

413

Setting the Global Read-Only Role

To set the global read-only role:

1. The cloud_admin user sets the global_read_only_role in the Contrail API:

/etc/contrail/contrail-api.conf

global_read_only_role = <new-admin-read-role>

2. Restart the contrail-api service:

service contrail-api restart

Parameter Changes in /etc/neutron/api-paste.ini

Contrail RBAC operation is based upon a user token received in the X-Auth-Token header in API requests.
The following change must be made in /etc/neutron/api-paste.ini to force Neutron to pass the user
token in requests to the Contrail API server:

keystone = user_token request_id catch_errors
...
...
[filter:user_token]
paste.filter_factory =
neutron_plugin_contrail.plugins.opencontrail.neutron_middleware:token_factory

Upgrading from Previous Releases

The multi_tenancy parameter is deprecated.. The parameter should be removed from the configuration.
Instead, use the aaa_mode parameter for RBAC to take effect.

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

Configuring RBAC Using the Contrail User Interface

To use the Contrail UI with RBAC:

1. Set the aaa_mode to no_auth.

/etc/contrail/contrail-analytics-api.conf

aaa_mode = no-auth

414

2. Restart the analytics-api service.

service contrail-analytics-api restart

3. Restart services by restarting the container.

You can use the Contrail UI to configure RBAC at both the API level and the object level. API level
access control can be configured at the global, domain, and project levels. Object level access is available
from most of the create or edit screens in the Contrail UI.

Configuring RBAC at the Global Level

To configure RBAC at the global level, navigate to Configure > Infrastructure > Global Config > RBAC,
see Figure 48 on page 415.

Figure 48: RBAC Global Level

Configuring RBAC at the Domain Level

To configure RBAC at the domain level, navigate to Configure > RBAC > Domain, see Figure 49 on page
416.

415

Figure 49: RBAC Domain Level

Configuring RBAC at the Project Level

To configure RBAC at the project level, navigate to Configure > RBAC > Project, see Figure 50 on page
416.

Figure 50: RBAC Project Level

Configuring RBAC Details

Configuring RBAC is similar at all of the levels. To add or edit an API access list, navigate to the global,
domain, or project page, then click the plus (+) icon to add a list, or click the gear icon to select from Edit,
Insert After, or Delete, see Figure 51 on page 417.

416

Figure 51: RBAC Details API Access

Creating or Editing API Level Access

Clicking create, edit, or insert after activates the Edit API Access popup window, where you enter the
details for the API Access Rules. Enter the user type in the Role field, and use the + icon in the Access
filed to enter the types of access allowed for the role, including, Create, Read, Update, Delete, and so on,
see Figure 52 on page 417.

Figure 52: Edit API Access

Creating or Editing Object Level Access

You can configure fine-grained access control by resource. A Permissions tab is available on all create or
edit popups for resources. Use the Permissions popup to configure owner permissions and global share
permissions. You can also share the resource to other tenants by configuring it in the Share List, see
Figure 53 on page 418.

417

Figure 53: Edit Object Level Access

RBAC Resources

Refer to the OpenStack Administrator Guide for additional information about RBAC:

• Identity API protection with role-based access control (RBAC)

Configuring Role-Based Access Control for Analytics

The analytics API uses role-based access control (RBAC) to provide the ability to access UVE and query
information based on the permissions of the user for the UVE or queried object.

Contrail Networking extends authenticated access so that tenants can view network monitoring
information about the networks for which they have read permissions.

The analytics API can map query and UVE objects to configuration objects on which RBAC rules are
applied, so that read permissions can be verified using the VNC API.

RBAC is applied to analytics in the following ways:

• For statistics queries, annotations are added to the Sandesh file so that indices and tags on statistics
queries can be associated with objects and UVEs. These are used by the contrail-analytics-api to
determine the object level read permissions.

• For flow and log queries, the object read permissions are evaluated for each AND term in the where
query.

418

http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-protection-with-role-based-access-control.html

• For UVEs list queries (e.g. analytics/uve/virtual-networks/), the contrail-analytics-api gets a list of
UVEs that have read permissions for a given token. For a UVE query for a specific resource (e.g.
analytics/uves/virtual-network/vn1), contrail-analytics-api checks the object level read permissions
using VNC API.

Tenants cannot view system logs and flow logs, those logs are displayed for cloud-admin roles only.

A non-admin user can see only non-global UVEs, including:

• virtual_network

• virtual_machine

• virtual_machine_interface

• service_instance

• service_chain

• tag

• firewall_policy

• firewall_rule

• address_group

• service_group

• aaplication_policy_set

In /etc/contrail/contrail-analytics-api.conf, in the section DEFAULTS, the parameter aaa_mode now supports rbac
as one of the values.

Configuring the Control Node with BGP

IN THIS SECTION

Configuring the Control Node from Contrail Web UI | 420

Configuring the Control Node with BGP from Contrail Command | 425

419

An important task after a successful installation is to configure the control node with BGP. This
procedure shows how to configure basic BGP peering between one or more virtual network controller
control nodes and any external BGP speakers. External BGP speakers, such as Juniper Networks MX80
routers, are needed for connectivity to instances on the virtual network from an external infrastructure
or a public network.

Before you begin, ensure that the following tasks are completed:

• The Contrail Controller base system image has been installed on all servers.

• The role-based services have been assigned and provisioned.

• IP connectivity has been verified between all nodes of the Contrail Controller.

• You have access to Contrail Web User Interface (UI) or Contrail Command User Interface (UI). You
can access the user interface at http://nn.nn.nn.nn:8143, where nn.nn.nn.nn is the IP address of the
configuration node server that is running the contrail service.

These topics provide instructions to configure the Control Node with BGP.

Configuring the Control Node from Contrail Web UI

To configure BGP peering in the control node:

1. From the Contrail Controller module control node (http://nn.nn.nn.nn:8143), select Configure >
Infrastructure > BGP Routers; see Figure 54 on page 421.

420

Figure 54: Configure> Infrastructure > BGP Routers

A summary screen of the control nodes and BGP routers is displayed; see Figure 55 on page 421.

Figure 55: BGP Routers Summary

421

2. (Optional) The global AS number is 64512 by default. To change the AS number, on the BGP Router
summary screen click the gear wheel and select Edit. In the Edit BGP Router window enter the new
number.

3. To create control nodes and BGP routers, on the BGP Routers summary screen, click the

icon. The Create BGP Router window is displayed; see Figure 56 on page 422.

Figure 56: Create BGP Router

4. In the Create BGP Router window, click BGP Router to add a new BGP router or click Control Node
to add control nodes.

For each node you want to add, populate the fields with values for your system. See Table 20 on
page 423.

422

Table 20: Create BGP Router Fields

Field Description

Hostname Enter a name for the node being added.

Vendor ID Required for external peers. Populate with a text identifier, for
example, “MX-0”. (BGP peer only)

IP Address The IP address of the node.

Router ID Enter the router ID.

Autonomous System Enter the AS number in the range 1-65535 for the node. (BGP peer
only)

Address Families Enter the address family, for example, inet-vpn

Hold Time BGP session hold time. The default is 90 seconds; change if needed.

BGP Port The default is 179; change if needed.

Authentication Mode Enable MD5 authentication if desired.

Authentication key Enter the Authentication Key value.

Physical Router The type of the physical router.

Available Peers Displays peers currently available.

Configured Peers Displays peers currently configured.

5. Click Save to add each node that you create.

6. To configure an existing node as a peer, select it from the list in the Available Peers box, then click >>
to move it into the Configured Peers box.

Click << to remove a node from the Configured Peers box.

423

7. You can check for peers by selecting Monitor > Infrastructure > Control Nodes; see Figure 57 on
page 424.

Figure 57: Control Nodes

In the Control Nodes window, click any hostname in the memory map to view its details; see Figure
58 on page 424.

Figure 58: Control Node Details

424

8. Click the Peers tab to view the peers of a control node; see Figure 59 on page 425.

Figure 59: Control Node Peers Tab

Configuring the Control Node with BGP from Contrail Command

To configure BGP peering in the control node:

1. From Contrail Command UI select Infrastructure > Cluster > Advanced page.

Click the BGP Routers tab. A list of control nodes and BGP routers is displayed. See Figure 60 on
page 426.

425

Figure 60: Infrastructure > Cluster > Advanced > BGP Routers

2. (Optional) The global AS number is 64512 by default. You can change the AS number according to
your requirement on the BGP Router tab, by clicking the Edit icon. In the Edit BGP Router tab enter
AS number in the range of 1-65,535. You can also enter the AS number in the range of
1-4,294,967,295, when 4 Byte ASN is enabled in Global Config.

3. Click the Create button on the BGP Routers tab. The Create BGP Router window is displayed. See
Figure 61 on page 427.

426

Figure 61: Create BGP Router

4. In the Create BGP Router page, populate the fields with values to create your system. See Table 21
on page 427.

Table 21: Create BGP Router

Fields Description

Router Type Select the type of router you want create

Hostname Enter a name for the node being added.

Vendor ID Required for external peers. Populate with a text identifier,
for example, “MX-0”. (BGP peer only)

IP Address The IP address of the node.

Router ID Enter the router ID.

427

Table 21: Create BGP Router (Continued)

Fields Description

Autonomous System (AS) Enter autonomous system (AS) number in the range of
1-65,535.

If you enable 4 Byte ASN in Global Config, you can enter 4-
byte AS number in the range of 1-4,294,967,295.

BGP Router ASN Enter the Local-AS number, specific to the associated
peers.

Address Families Select the Internet Address Family from the list, for
example, inet-vpn, inet6-vpn, and so on.

Cluster ID Enter the cluster ID, for example, 0.0.0.100.

Associate Peers

Peer Select the configured peers from the list.

Hold Time Enter the maximum time a BGP session remains active if no
Keepalives are received.

Loop Count Enter the number of times the same ASN can be seen in a
route-update. The route is discarded when the loop count
is exceeded.

MD5 Auth Key Enter the MD5 authentication key value.

State Select the state box when you are associating BGP peers.

Passive Select the passive box to disable the BGP router from
advertising any routes. The BGP router can only receive
updates from other peers in this state.

Advanced Options

428

Table 21: Create BGP Router (Continued)

Fields Description

BGP Port Enter BGP Port number. The default is 179; change if
needed.

Source Port Enter source port number for client side connection.

Hold Time (seconds) BGP session hold time. The default is 90 seconds; change if
needed.

Admin State Select the Admin state box to enable the state as UP and
deselect the box to disable the state to DOWN.

Authentication Mode Select MD5 from list if required.

Authentication key Enter the Authentication Key value.

Control Node Zone Select the required control node zone from the list.

Physical Router Select the the physical router from the list.

5. Click Create to complete add each node.

6. You can check for peers and details about the control nodes by selecting Infrastructure > Cluster >
Control Nodes. Click the desired node to check the details on Summary and Detailed Stats page.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail

Configuring MD5 Authentication for BGP Sessions

Contrail supports MD5 authentication for BGP peering based on RFC 2385.

429

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/creating-virtual-network-vnc.html

This option allows BGP to protect itself against the introduction of spoofed TCP segments into the
connection stream. Both of the BGP peers must be configured with the same MD5 key. Once
configured, each BGP peer adds a 16-byte MD5 digest to the TCP header of every segment that it
sends. This digest is produced by applying the MD5 algorithm on various parts of the TCP segment.
Upon receiving a signed segment, the receiver validates it by calculating its own digest from the same
data (using its own key) and compares the two digests. For valid segments, the comparison is successful
since both sides know the key.

The following are ways to enable BGP MD5 authentication and set the keys on the Contrail node.

1. If the md5 key is not included in the provisioning, and the node is already provisioned, you can run the
following script with an argument for md5:

contrail-controller/src/config/utils/provision_control.py

host@<your_node>:/opt/contrail/utils# python provision_control.py --host_name <host_name> --
host_ip <host_ip> --router_asn <asn> --api_server_ip <api_ip> --api_server_port <api_port> --
oper add --md5 “juniper” --admin_user admin --admin_password <password> --admin_tenant_name
admin

2. You can also use the web user interface to configure MD5.

• Connect to the node’s IP address at port 8080 (<node_ip>:8080) and select Configure-
>Infrastructure->BGP Routers. As shown in Figure 62 on page 430, a list of BGP peers is
displayed.

Figure 62: Edit BGP Router Window

430

• For a BGP peer, click on the gear icon on the right hand side of the peer entry. Then click Edit.
This displays the Edit BGP Router dialog box.

• Scroll down the window and select Advanced Options.

• Configure the MD5 authentication by selecting Authentication Mode>MD5 and entering the
Authentication Key value.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail

Configuring Transport Layer Security-Based XMPP in Contrail

IN THIS SECTION

Overview: TLS-Based XMPP | 431

Configuring XMPP Client and Server in Contrail | 432

Overview: TLS-Based XMPP

Transport Layer Security (TLS)-based XMPP can be used to secure all Extensible Messaging and
Presence Protocol (XMPP)-based communication that occurs in the Contrail environment.

Secure XMPP is based on RFC 6120, Extensible Messaging and Presence Protocol (XMPP): Core.

TLS XMPP in Contrail

In the Contrail environment, the Transport Layer Security (TLS) protocol is used for certificate exchange,
mutual authentication, and negotiating ciphers to secure the stream from potential tampering and
eavesdropping.

The RFC 6120 highlights a basic stream message exchange format for TLS negotiation between an
XMPP server and an XMPP client.

431

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/creating-virtual-network-vnc.html

NOTE: Simple Authentication and Security Layer (SASL) authentication is not supported in the
Contrail environment.

Configuring XMPP Client and Server in Contrail

In the Contrail environment, XMPP based communications are used in client and server exchanges,
between the compute node (as the XMPP client), and:

• the control node (as the XMPP server)

• the DNS server (as the XMPP server)

Configuring Control Node for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP server.

On the control node, enable the parameters in the configuration file:
/etc/contrail/contrail-control.conf.

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's or node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case sensitive.

Configuring DNS Server for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP DNS server.

On the DNS server control node, enable the parameters in the configuration file:

432

/etc/contrail/contrail-control.conf

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/certs/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_dns_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case
sensitive.

Configuring Control Node for XMPP Client

To enable secure XMPP, the following parameters are configured at the XMPP client.

On the compute node, enable the parameters in the configuration file:
/etc/contrail/contrail-vrouter-agent.conf

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_auth_enable=true
xmpp_dns_auth_enable=tru
e

Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case sensitive.

433

Configuring Graceful Restart and Long-lived Graceful Restart

IN THIS SECTION

Application of Graceful Restart and Long-lived Graceful Restart | 434

BGP Graceful Restart Helper Mode | 435

Feature Highlights | 435

XMPP Helper Mode | 436

Configuration Parameters | 436

Cautions for Graceful Restart | 438

Configuring Graceful Restart with the Contrail User Interface | 438

Graceful restart and long-lived graceful restart BGP helper modes are supported for the Contrail control
node and XMPP helper mode.

Application of Graceful Restart and Long-lived Graceful Restart

Whenever a BGP peer session is detected as down, all routes learned from the peer are deleted and
immediately withdrawn from advertised peers. This causes instantaneous disruption to traffic flowing
end-to-end, even when routes kept in the vrouter kernel in the data plane remain intact.

Graceful restart and long-lived graceful restart features can be used to alleviate traffic disruption caused
by downs.

When configured, graceful restart features enable existing network traffic to be unaffected if Contrail
controller processes go down. The Contrail implementation ensures that if a Contrail control module
restarts, it can use graceful restart functionality provided by its BGP peers. Or when the BGP peers
restart, Contrail provides a graceful restart helper mode to minimize the impact to the network. The
graceful restart features can be used to ensure that traffic is not affected by temporary outage of
processes.

Graceful restart is not enabled by default.

With graceful restart features enabled, learned routes are not deleted when sessions go down, and the
routes are not withdrawn from the advertised peers. Instead, the routes are kept and marked as 'stale'.
Consequently, if sessions come back up and routes are relearned, the overall impact to the network is
minimized.

434

After a certain duration, if a downed session does not come back up, all remaining stale routes are
deleted and withdrawn from advertised peers.

The graceful restart and long-lived graceful restart features can be enabled only for BGP peers in
Contrail 3.2.

BGP Graceful Restart Helper Mode

The BGP helper mode can be used to minimize routing churn whenever a BGP session flaps. This is
especially helpful if the SDN gateway router goes down gracefully, as in an rpd crash or restart on an
MX Series Junos device. In that case, the contrail-control can act as a graceful restart helper to the
gateway, by retaining the routes learned from the gateway and advertising them to the rest of the
network as applicable. In order for this to work, the restarting router (the SDN gateway in this case)
must support and be configured with graceful restart for all of the address families used.

The graceful restart helper mode is also supported for BGP-as-a-Service (BGPaaS) clients. When
configured, contrail-control can provide a graceful restart or long-lived graceful restart helper mode to a
restarting BGPaaS client.

Feature Highlights

The following are highlights of the graceful restart and long-lived graceful restart features.

• Configuring a non-zero restart time enables the ability to advertise graceful restart and long-lived
graceful restart capabilities in BGP.

• Configuring helper mode enables the ability for graceful restart and long-lived graceful restart helper
modes to retain routes even after sessions go down.

• With graceful restart configured, whenever a session down event is detected and a closing process is
triggered, all routes, across all address families, are marked stale. The stale routes are eligible for
best-path election for the configured graceful restart time duration.

• When long-lived graceful restart is in effect, stale routes can be retained for a much longer time than
that allowed by graceful restart alone. With long-lived graceful restart, route preference is retained
and best paths are recomputed. The community marked LLGR_STALE is tagged for stale paths and
re-advertised. However, if no long-lived graceful restart community is associated with any received
stale route, those routes are not kept, instead, they are deleted.

• After a certain time, if a session comes back up, any remaining stale routes are deleted. If the session
does not come back up, all retained stale routes are permanently deleted and withdrawn from the
advertised peer.

435

XMPP Helper Mode

Contrail supports for long-lived graceful restart (LLGR) with XMPP helper mode. Graceful restart and
long lived graceful restart can be enabled using the Contrail web UI or by using the provision_control
script.

The helper modes can also be enabled via schema, and can be disabled selectively in a contrail-control
node for BGP or XMPP sessions by configuring gr_helper_disable in the /etc/contrail/contrail-control.conf
configuration file.

Configuration Parameters

Graceful restart parameters are configured in the global-system-config of the schema. They can be
configured by means of a provisioning script or by using the Contrail Web UI.

Configure a non-zero restart time to advertise for graceful restart and long-lived graceful restart
capabilities from peers.

Configure helper mode for graceful restart and long-lived graceful restart to retain routes even after
sessions go down.

Configuration parameters include:

• enable or disable for all graceful restart parameters:

• restart-time

• long-lived-restart-time

• end-of-rib-timeout

• bgp-helper-enable to enable graceful restart helper mode for BGP peers in contrail-control

• xmpp-helper-enable to enable graceful restart helper mode for XMPP peers (agents) in contrail-control

The following shows configuration by a provision script.

/opt/contrail/utils/provision_control.py
 --api_server_ip 10.xx.xx.20
 --api_server_port 8082
 --router_asn 64512
 --admin_user admin
 --admin_password <password>
 --admin_tenant_name admin
 --set_graceful_restart_parameters
 --graceful_restart_time 60

436

 --long_lived_graceful_restart_time 300
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

The following are sample parameters:

-set_graceful_restart_parameters
 --graceful_restart_time 300
 --long_lived_graceful_restart_time 60000
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

When BGP peering with Juniper Networks devices, Junos must also be explicitly configured for graceful
restart/long-lived graceful restart, as shown in the following example:

set routing-options graceful-restart
set protocols bgp group <a1234> type internal
set protocols bgp group <a1234> local-address 10.xx.xxx.181
set protocols bgp group <a1234> keep all
set protocols bgp group <a1234> family inet-vpn unicast graceful-restart long-lived restarter
stale-time 20
set protocols bgp group <a1234> family route-target graceful-restart long-lived restarter stale-
time 20
set protocols bgp group <a1234> graceful-restart restart-time 600
set protocols bgp group <a1234> neighbor 10.xx.xx.20 peer-as 64512

The graceful restart helper modes can be enabled in the schema. The helper modes can be disabled
selectively in the contrail-control.conf for BGP sessions by configuring gr_helper_disable in the /etc/
contrail/contrail-control.conf file.

The following are examples:

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_bgp_disable 1

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_xmpp_disable 1

service contrail-control restart

For more details about graceful restart configuration, see https://github.com/Juniper/contrail-controller/
wiki/Graceful-Restart .

437

https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart
https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart

Cautions for Graceful Restart

Be aware of the following caveats when configuring and using graceful restart.

• Using the graceful restart/long-lived graceful restart feature with a peer is effective either to all
negotiated address families or to none. If a peer signals support for graceful restart/long-lived
graceful restart for only a subset of the negotiated address families, the graceful restart helper mode
does not come into effect for any family in the set of negotiated address families.

• Because graceful restart is not yet supported for contrail-vrouter-agent, the parameter should not be
set for graceful_restart_xmpp_helper_enable. If the vrouter agent restarts, the data plane is reset and the
routes and flows are reprogrammed anew, which typically results in traffic loss for several seconds
for new and /existing flows.

• Graceful restart/long-lived graceful restart is not supported for multicast routes.

• Graceful restart/long-lived graceful restart helper mode may not work correctly for EVPN routes, if
the restarting node does not preserve forwarding state for EVPN routes.

Configuring Graceful Restart with the Contrail User Interface

To configure graceful restart in the Contrail UI, go to Configure > Infrastructure > Global Config, then
select the BGP Options tab. The Edit BGP Options window opens. Click the box for Graceful Restart to
enable graceful restart, and enter a non-zero value for the Restart Time. Click the helper boxes as
needed for BGP Helper and XMPP Helper. You can also enter values for the long-lived graceful restart
time in seconds, and for the end of RIB in seconds. See Figure 63 on page 439.

438

Figure 63: Configuring Graceful Restart

439

	Table of Contents
	About This Guide
	Installing and Upgrading Contrail
	Understanding Contrail
	Understanding Contrail Networking
	Understanding Contrail Networking Components
	Understanding Contrail Containers
	Understanding Contrail Microservices Architecture
	Understanding contrail-ansible-deployer used in Contrail Command

	Supported Platforms and Server Requirements
	Server Requirements and Supported Platforms

	Contrail Command
	Installing Contrail Command
	Requirements
	Overview
	Installation
	Sample command_servers.yml Files

	Installing a Contrail Cluster Using Contrail Command
	Requirements
	Overview
	Configuration

	Installing Contrail Cluster using Contrail Command and instances.yml
	Importing Contrail Cluster Data using Contrail Command
	Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command

	Installing Contrail
	Installing Contrail with OpenStack and Kolla Ansible
	Adding a New Compute Node to Existing Contrail Cluster

	Using Contrail with AppFormix
	Contrail and AppFormix Deployment Requirements
	Installing AppFormix and AppFormix Flows using Contrail Command

	Using Contrail with Kubernetes
	Installing and Managing Contrail Microservices Architecture Using Helm Charts
	Provisioning of Kubernetes Clusters
	Provisioning of a Standalone Kubernetes Cluster
	Provisioning of Nested Contrail Kubernetes Clusters
	Configure network connectivity to Contrail configuration and data plane functions.
	Generate a single yaml file to create a Contrail-k8s cluster
	Instantiate the Contrail-k8s cluster

	Provisioning of Non-Nested Contrail Kubernetes Clusters

	Installing Standalone Kubernetes Contrail Cluster using the Contrail Command UI
	Requirements
	Overview
	Configuration

	Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability
	Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata
	Accessing a Contrail OpenStack Helm Cluster
	Frequently Asked Questions About Contrail and Helm Charts
	Installing Contrail Networking for Kubernetes using Helm
	Verifying Configuration for CNI for Kubernetes
	View Pod Name and IP Address
	Verify Reachability of Pods
	Verify If Isolated Namespace-Pods Are Not Reachable
	Verify If Non-Isolated Namespace-Pods Are Reachable
	Verify If a Namespace is Isolated

	Using Contrail with Mesos
	Understanding Contrail with Mesos Architecture
	Installing Contrail with Mesos

	Using VMware vCenter with Containerized Contrail
	Integrating vCenter for Contrail
	Prerequisites
	ESX Agent Manager
	Set Up vCenter Server
	Configure Contrail Parameters
	Install Contrail
	Monitor and Manage ContrailVM from ESX Agent Manager

	Configuring Underlay Network for ContrailVM
	Standard Switch Setup
	Distributed Switch Setup
	PCI Pass-Through Setup
	SR-IOV Setup

	Installing and Provisioning Contrail VMware vRealize Orchestrator Plugin
	Accessing vRO Control Center
	Installing vRO Plugin
	Accessing vRO Desktop Client
	Connecting to vRO using the Desktop Client
	Connecting to Contrail Controller
	Deploying Contrail vRO Plugin

	Using Contrail with Red Hat OpenStack
	Understanding Red Hat OpenStack Platform Director
	Red Hat OpenStack Platform Director
	Contrail Roles
	Undercloud Requirements
	Overcloud Requirements
	Networking Requirements
	Compatibility Matrix
	Installation Summary

	Setting Up the Infrastructure
	Target Configuration (Example)
	Configure the External Physical Switch
	Configure KVM Hosts
	Create the Overcloud VM Definitions on the Overcloud KVM Hosts
	Create the Undercloud VM Definition on the Undercloud KVM Host

	Setting Up the Undercloud
	Install the Undercloud
	Perform Post-Install Configuration

	Setting Up the Overcloud
	Configuring the Overcloud
	Customizing the Contrail Service with Templates (contrail-services.yaml)
	Customizing the Contrail Network with Templates
	Overview
	Roles Configuration (roles_data_contrail_aio.yaml)
	Network Parameter Configuration (contrail-net.yaml)
	Network Interface Configuration (*-NIC-*.yaml)
	Advanced vRouter Kernel Mode Configuration
	Advanced vRouter DPDK Mode Configuration
	Advanced vRouter SRIOV + Kernel Mode Configuration
	Advanced vRouter SRIOV + DPDK Mode Configuration
	Advanced Scenarios

	Installing Overcloud

	Using Netronome SmartNIC vRouter with Contrail Networking

	Using Contrail with Red Hat OpenShift
	Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using Contrail OpenShift Deployer
	Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible Deployer

	Using Contrail with Juju Charms
	Installing Contrail with OpenStack by Using Juju Charms
	Preparing to Deploy Contrail by Using Juju Charms
	Deploying Contrail Charms
	Deploying Contrail Charms in a Bundle
	Deploying Juju Charms with OpenStack Manually

	Options for Juju Charms

	Installing Contrail with Kubernetes by Using Juju Charms
	Understanding Juju Charms with Kubernetes
	Preparing to Deploy Contrail with Kubernetes by Using Juju Charms
	Deploying Contrail Charms with Kubernetes
	Deploying Contrail Charms in a Bundle
	Deploying Juju Charms with Kubernetes Manually

	Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms

	Using Contrail and AppFormix with Kolla/Ocata OpenStack
	Contrail, AppFormix, and OpenStack Kolla/Ocata Deployment Requirements
	Preparing for the Installation
	Run the Playbooks
	Accessing Contrail in AppFormix Management Infrastructure in UI
	Notes and Caveats
	Example Instances.yml for Contrail and AppFormix OpenStack Deployment
	Installing AppFormix for OpenStack
	Install AppFormix for OpenStack in HA

	Upgrading Contrail Software
	Upgrading Contrail Command using Backup Restore Procedure
	Upgrading Contrail Networking using Contrail Command UI
	Upgrading Contrail Networking using contrail-ansible Deployer
	Upgrading Contrail Networking using In-Place Upgrade Procedure
	Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat Openstack
	Prerequisites
	Before You Begin
	Updating Contrail Networking in an Environment using Red Hat Openstack

	Upgrading Contrail Networking with Red Hat Openstack 13 using ISSU
	When to Use This Procedure
	Before you begin
	Procedure
	Troubleshoot
	Failed upgrade run command for OpenStack controller
	Failed upgrade run command for any overcloud node

	How to Upgrade From Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking Release 1912.L1 or 1912.L2 with RHOSP13
	When to Use This Procedure
	Before You Begin
	Upgrading Contrail Networking Release 4.1.4 with RHOSP10 to Contrail Networking Release 1912.L1 or 1912.L2 with RHOSP13

	How to Upgrade From Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking Release 1907 with RHOSP13
	When to Use This Procedure
	Before You Begin
	Upgrading Contrail Networking Release 3.x or 4.x with RHOSP10 to Contrail Networking Release 1907 with RHOSP13

	Upgrading Contrail Networking using the Ansible Deployer In-Service Software Upgrade Procedure in OpenStack Environments

	Backup and Restore Contrail Software
	How to Backup and Restore Contrail Databases in JSON Format

	Post Installation Tasks
	Configuring Role and Resource-Based Access Control
	Configuring Role-Based Access Control for Analytics
	Configuring the Control Node with BGP
	Configuring the Control Node from Contrail Web UI
	Configuring the Control Node with BGP from Contrail Command

	Configuring MD5 Authentication for BGP Sessions
	Configuring Transport Layer Security-Based XMPP in Contrail
	Configuring Graceful Restart and Long-lived Graceful Restart

