JUDLR@! | Engineering

Simplicity

Contrail® Networking

Contrail Networking Service Provider
Focused Features Guide

Published
2023-08-10

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail® Networking Contrail Networking Service Provider Focused Features Guide
2011
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https:/support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | v

1 Data Plane Optimization
Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter | 2
Configuring Single Root I/0 Virtualization (SR-IOV) | 6
Optimizing DPDK vRouter Performance Through Full CPU Partitioning and Isolation | 14
Contrail DPDK vRouter Support for Intel DDP Technology in Fortville NICs | 16

Contrail vRouter MAC Address - IP Address Learning and Bidirectional Forwarding and
Detection Health Checking for Pods on Virtual Machines | 18

2 Advanced Network Topologies

Configuring Virtual Networks for Hub-and-Spoke Topology | 22

Route Targets for Virtual Networks in Hub-and-Spoke Topology | 22
Example: Hub-and-Spoke Topology | 23
Troubleshooting Hub-and-Spoke Topology | 24
Remote Compute | 28
3 Advanced Service Chain Configuration
Customized Hash Field Selection for ECMP Load Balancing | 40
Routing Policy | 43
Creating a Routing Policy With Extended Communities in Contrail Command | 56
Creating Routing Policies for QFX Series Devices in Contrail Networking | 62

Service Instance Health Checks | 68

Health Check Object | 68
Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces | 73

Bidirectional Forwarding and Detection Health Check for BGPaaS | 73

Health Check of Transparent Service Chain | 74

Service Instance Fate Sharing | 74
ECMP Support in Service Chain | 75
Route Reflector Support in Contrail Control Node | 76
Configuring Route Reflectors from Contrail Command | 78

BGP as a Service | 80

Understanding BGP as a Service | 81
Configuring BGPaa$ using VNC API | 84

Configuring BGPaa$ from Contrail Web Ul | 84

Configuring BGPaa$S from Contrail Command | 86

Fat Flows | 89

Understanding Fat Flow | 90
Configuring Fat Flow from Contrail Command | 91
Limitations of Fat Flow | 104

Use Case: Configuring Fat Flows from Contrail Command | 104

Overview | 105
Prerequisites | 107
Getting Started | 108

Configuration | 109

Create Virtual Network | 110
Create Virtual Machine | 111
Create Service Template | 113
Add Service Instance | 114
Configure Fat Flow | 115
Create Service Policy | 118
Attach Service Policy | 119

Launch Virtual Machine | 119

Understanding Flow Sampling | 121

About This Guide

Use this guide to understand the features that would be used by service providers. This guide also
provides information about advanced service chain configuration in Contrail Networking.

Contrail Networking product documentation is organized into multiple guides as shown in Table 1 on
page v, according to the task you want to perform or the deployment scenario.

Table 1: Contrail Networking Guides

Guide Name

Contrail Networking Installation

and Upgrade Guide

Contrail Networking for
Container Networking
Environments User Guide

Contrail Networking Fabric
Lifecycle Management Guide

Contrail Networking and
Security User Guide

Contrail Networking Service
Provider Focused Features
Guide

Contrail Networking
Monitoring and
Troubleshooting Guide

RELATED DOCUMENTATION

Description

Provides step-by-step instructions to install and bring up Contrail and its
various components.

Provides information about installing and using Contrail Networking in
containerized environments using Kubernetes orchestration.

Provides information about Contrail underlay management and data center
automation.

Provides information about creating and orchestrating highly secure virtual
networks.

Provides information about the features that are used by service providers.

Provides information about Contrail Insights and Contrail analytics.

README Access to Contrail Networking Registry 20XX

Contrail Networking Release Notes 2011

Contrail Networking Configuration API Reference, Release 2011.L1

https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-install-and-upgrade-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-install-and-upgrade-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-networking-security-user-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-networking-security-user-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/index.html
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-pages/api-guide-2011L1/index.html

Tungsten Fabric Architecture Guide
Juniper Networks TechWiki: Contrail Networking

Vi

https://tungstenfabric.github.io/website/Tungsten-Fabric-Architecture.html
https://forums.juniper.net/t5/Contrail/tkb-p/Contrail

CHAPTER

Data Plane Optimization

Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail
vRouter | 2

Configuring Single Root I/O Virtualization (SR-IOV) | 6

Optimizing DPDK vRouter Performance Through Full CPU Partitioning and
Isolation | 14

Contrail DPDK vRouter Support for Intel DDP Technology in Fortville NICs | 16

Contrail vRouter MAC Address - IP Address Learning and Bidirectional Forwarding
and Detection Health Checking for Pods on Virtual Machines | 18

Configuring the Data Plane Development Kit
(DPDK) Integrated with Contrail vRouter

IN THIS SECTION

DPDK Support in Contrail | 2
Preparing the Environment File for Provisioning a Cluster Node with DPDK | 2
Creating a Flavor for DPDK | 4

Configuring and Verifying MTU for DPDK vRouter | 5

DPDK Support in Contrail

Contrail Networking supports the Data Plane Development Kit (DPDK). DPDK is an open source set of
libraries and drivers for fast packet processing. DPDK enables fast packet processing by allowing
network interface cards (NICs) to send direct memory access (DMA) packets directly into an
application’s address space, allowing the application to poll for packets, and thereby avoiding the
overhead of interrupts from the NIC.

Integrating with DPDK allows a Contrail vRouter to process more packets per second than is possible
when running as a kernel module.

In Contrail Networking, before you use DPDK the DPDK configuration should be defined in
instances.yaml for ansible based provision, or in host.yaml for helm-based provision. The AGENT_MODE
configuration specifies whether the hypervisor is provisioned in the DPDK mode of operation.

When a Contrail compute node is provisioned with DPDK, the corresponding yaml file specifies the
number of CPU cores to use for forwarding packets, the number of huge pages to allocate for DPDK,
and the UIO driver to use for DPDK.

Preparing the Environment File for Provisioning a Cluster Node with
DPDK

The environment file is used at provisioning to specify all of the options necessary for the installation of
a Contrail cluster, including whether any node should be configured to use DPDK.

Each node to be configured with the DPDK vRouter must be listed in the provisioning file with a
dictionary entry, along with the percentage of memory for DPDK huge pages and the CPUs to be used.

The following are descriptions of the required entries for the server configuration. :

e HUGE_PAGES—Specify the percentage of host memory to be reserved for the DPDK huge pages. The
reserved memory will be used by the vRouter and the Quick Emulator (QEMU) for allocating memory
resources for the virtual machines (VMs) spawned on that host.

NOTE: The percentage allocated to HUGE_PAGES should not be too high, because the host Linux
kernel also requires memory.

e (CPU_CORE_MASK—Specify a CPU affinity mask with which vRouter will run. vRouter will use only the
CPUs specified for its threads of execution. These CPU cores will be constantly polling for packets,
and they will be displayed as 100% busy in the output of “top”.

The supported format is hexadecimal (for example, Oxf).
e DPDK_UIO_DRIVER—Specify the UIO driver to be used with DPDK.
The supported values include:

e vfio-pci—Specify that the vfio module in the Linux kernel should be used instead of uio. The vfio
module protects memory access using the IOMMU when a SR-IOQV virtual function is used as the
physical interface of vrouter.

e uio_pci_generic—Specify that the UIO driver built into the Linux kernel should be used. This option
does not support the use of SR-IOV VFs. This is the default option if DPDK_UIO_DRIVER is not
specified.

e nlnx - For Mellanox ConnectX-4 and Mellanox ConnectX-5 NICs.

NOTE: For RHEL and Intel x710 Fortville-based NIC, use vfio-pci instead of the default
uio_pci_generic.

Use the standard Ansible or helm-based provision procedure. Upon completion, your cluster, with
specified nodes using the DPDK vRouter implementation, is ready to use.

Sample configuration in instances.yml for ansible-based provision

Bms1:

provider: bms

ip: Ip-address
roles:
vrouter:
AGENT_MODE : dpdk
CPU_CORE_MASK: “@xff”
DPDK_UIO_DRIVER: uio_pci_generic
HUGE_PAGES: 32000

Sample configuration in host.yml for helm-based provision

AGENT_MODE : dpdk

CPU_CORE_MASK: “@Oxff”
DPDK_UIO_DRIVER: uio_pci_generic
HUGE_PAGES: 32000

Creating a Flavor for DPDK

To launch a VM in a DPDK-enabled vRouter hypervisor, the flavor for the VM should be set to use huge
pages. The use of huge pages is a requirement for using a DPDK vRouter.

Use the following command to add the flavor, where m1.1large is the name of the flavor. When a VM is
created using this flavor, OpenStack ensures that the VM will only be spawned on a compute node that
has huge pages enabled.

openstack flavor set ml.large --property hw:mem_page_size=large

Huge pages are enabled for compute nodes where vRouter is provisioned with DPDK.

If a VM is spawned with a flavor that does not have huge pages enabled, the VM should not be created
on a compute node on which vRouter is provisioned with DPDK.

You can use OpenStack availability zones or host aggregates to exclude the hosts where vRouter is
provisioned with DPDK.

NOTE: Note: By default, 2MB huge pages are provisioned. If 1GB huge page is required, it must
be done by the Administrator.

Configuring and Verifying MTU for DPDK vRouter

This section describes how you configure the maximum transmission unit (MTU) for DPDK vRouter. To
set MTU, you need to specify the desired value for mtu in the contrail_vrouter_dpdk_bond.yaml file.

network_config:
type: contrail_vrouter_dpdk
name: vhosto
members:
type: interface
name: em3

type: interface
name: eml
mtu: 9100
bond_mode: 2
bond_policy: 802.3ad

You can verify the configured value from hypervisor by running the following command:

$ ip link list vhost@
39: vhost@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9100 qdisc pfifo_fast state UNKNOWN mode
DEFAULT group default glen 1000

link/ether 98:03:9b:a7:3b:a0 brd ff:.ff.ff.ff.ff.ff

You can use the vif -g or vif --get command to view the status of the bond interfaces in a DPDK
vRouter.

For example,

vif --get 0

Vrouter Interface Table

[...]

vifo/0 PCI: 0000:00:00.0 (Speed 20000, Duplex 1) NH: 4
Type:Physical HWaddr:00:1b:21:bb:f9:48 IPaddr:0.0.0.0
Vrf:0 Mcast Vrf:65535 Flags:TcL3L2VpEr Q0S:-1 Ref:26

RX device packets:668852 bytes:110173140 errors:0

RX port packets:207344 errors:0

RX queue errors to Icore 0 0 0 0 0 000000000000
Fabric Interface: eth_bond_bondd Status: UP Driver: net_bonding
Slave Interface(o): 0000:02:00.0 Status: UP Driver: net_ixgbe
Slave Interface(1): 0000:02:00.1 Status: UP Driver: net_ixgbe
Vlan Id: 101 VLAN fwd Interface: bond

RX packets:207344 bytes:45239337 errors:0

TX packets:326159 bytes:237905360 errors:4

Drops:0

TX port packets:326145 errors:10

TX device packets:915402 bytes:511551768 errors:Q

See vRouter Command Line Utilities for a list of vRouter command line utilities.

Configuring Single Root |/O Virtualization (SR-IOV) | 6
Monitoring Bond Interfaces in DPDK Enabled Devices

vRouter Command Line Utilities

http:/www.dpdk.org

Configuring Single Root I/0 Virtualization (SR-IOV)

IN THIS SECTION

Overview: Configuring SR-IOV | 7

Enabling ASPM in BIOS | 7

Configuring SR-I0V Using the Ansible Deployer | 7
Configuring SR-IOV Using Helm | 9

Launching SR-IOV Virtual Machines | 11

http://www.dpdk.org

Overview: Configuring SR-IOV

Contrail Networking supports single root I/O virtualization (SR-IOV) on Ubuntu systems and on Red Hat
Enterprise Linux (RHEL) operating systems as well.

SR-IOV is an interface extension of the PCI Express (PCle) specification. SR-IOV allows a device, such as
a network adapter to have separate access to its resources among various hardware functions.

As an example, the Data Plane Development Kit (DPDK) library has drivers that run in user space for
several network interface cards (NICs). However, if the application runs inside a virtual machine (VM), it
does not see the physical NIC unless SR-IOV is enabled on the NIC.

This topic shows how to configure SR-IOV with your Contrail Networking system.

Enabling ASPM in BIOS

To use SR-IOV, it must have Active State Power Management (ASPM) enabled for PCI Express (PCle)
devices. Enable ASPM in the system BIOS.

NOTE: The BIOS of your system might need to be upgraded to a version that can enable ASPM.

Configuring SR-IOV Using the Ansible Deployer

You must perform the following tasks to enable SR-IOV on a system.

1. Enable the Intel Input/Ouput Memory Management Unit (IOMMU) on Linux.

2. Enable the required number of Virtual Functions (VFs) on the selected NIC.

3. Configure the names of the physical networks whose VMs can interface with the VFs.

4. Reboot Nova compute.

service nova-compute restart

5. Configure a Nova Scheduler filter based on the new PCI configuration, as in the following example:

/etc/nova/nova.conf
[default]
scheduler_default_filters = PciPassthroughFilter

scheduler_available_filters = nova.scheduler.filters.all_filters

scheduler_available_filters
nova.scheduler.filters.pci_passthrough_filter.PciPassthroughFilter

6. Restart Nova Scheduler.

service nova-scheduler restart

The above tasks are handled by the Ansible Deployer playbook. The cluster members and its
configuration parameters are specified in the instances.yaml file located in the config directory within
the ansible-deployer repository.

The compute instances that are going to be in SR-IOV mode should have an SR-IOV configuration. The
instance.yaml snippet below shows a sample instance definition.

instances:
bms1:
provider: bms
ip: ip-address
roles:
openstack:
bms2:
provider: bms
ip: ip-address
roles:
config_database:
config:
control:
analytics_database:
analytics:
webui:
bms3:
provider: bms
ip: ip-address

roles:

openstack_compute:

vrouter:
SRIOV: true
SRIOV_VF: 3
SRIOV_PHYSICAL_INTERFACE: enol
SRIOV_PHYS_NET: physnet1

Configuring SR-IOV Using Helm

You must perform the following tasks to enable SR-IOV on a system.

1.

2.

Enable the Intel Input/Ouput Memory Management Unit (IOMMU) on Linux.
Enable the required number of Virtual Functions (VFs) on the selected NIC.
Configure the names of the physical networks whose VMs can interface with the VFs.

Reboot Nova compute.

service nova-compute restart

Configure a Nova Scheduler filter based on the new PCI configuration, as in the following example:

/etc/nova/nova. conf
[default]
scheduler_default_filters = PciPassthroughFilter
scheduler_available_filters = nova.scheduler.filters.all_filters

scheduler_available_filters
nova.scheduler.filters.pci_passthrough_filter.PciPassthroughFilter

6. Restart Nova Scheduler.

service nova-scheduler restart

The above tasks are handled by the Helm charts. The cluster members and its configuration parameters
are specified in the multinode-inventory file located in the config directory within the openstack-helm-
infra repository.

For Helm, the configuration and SR-IOV environment-specific parameters must be updated in three
different places:

e The compute instance must be set as contrail-vrouter-sriov.

For example, the following is a snippet from the tools/gate/devel/multinode-inventory.yaml file in
the openstack-helm-infra repository.

all:
children:
primary:
hosts:
nodel:
ansible_port: 22
ansible_host: host-ip-address
ansible_user: ubuntu
ansible_ssh_private_key_file: /home/ubuntu/.ssh/insecure.pem
ansible_ssh_extra_args: -o StrictHostKeyChecking=no
nodes:
children:

openstack-compute:
children:
contrail-vrouter-sriov: #compute instance set to contrail-vrouter-sriov
hosts:
node7:
ansible_port: 22
ansible_host: host-ip-address
ansible_user: ubuntu
ansible_ssh_private_key_file: /home/ubuntu/.ssh/insecure.pem

ansible_ssh_extra_args: -o StrictHostKeyChecking=no

e Contrail-vrouter-sriov must be labeled appropriately.

For example, the following is a snippet from the tools/gate/devel/multinode-vars.yaml in the
openstack-helm-infra repository.

nodes:
labels:
primary:
- name: openstack-helm-node-class

value: primary

all:
- name: openstack-helm-node-class
value: general
contrail-controller:
- name: opencontrail.org/controller
value: enabled
openstack-compute:
- name: openstack-compute-node
value: enabled
contrail-vrouter-dpdk:
- name: opencontrail.org/vrouter-dpdk
value: enabled
contrail-vrouter-sriov: # label as contrail-vrouter-sriov
- name: vrouter-sriov

value: enabled

e SR-IOV config parameters must be updated in the contrail-vrouter/values.yaml file.

For example, the following is a snippet from the contrail-vrouter/values.yaml file in the contrail-

helm-deployer repository.

contrail_env_vrouter_kernel:
AGENT_MODE: kernel

contrail_env_vrouter_sriov:
SRIOV: true
per_compute_info:
node_name: k8snodel
SRIOV_VF: 10
SRIOV_PHYSICAL_INTERFACE: enp129s0f1
SRIOV_PHYS_NET: physnet]1

Launching SR-IOV Virtual Machines

After ensuring that SR-IOV features are enabled on your system, use one of the following procedures to
create a virtual network from which to launch an SR-IOV VM, either by using the Contrail Web Ul or the

CLI. Both methods are included.

Using the Contrail Web Ul to Enable and Launch an SR-IOV Virtual Machine

To use the Contrail Web Ul to enable and launch an SR-IOV VM:

1. At Configure > Networking > Networks, create a virtual network with SR-IOV enabled. Ensure the
virtual network is created with a subnet attached. In the Advanced section, select the Provider
Network check box, and specify the physical network already enabled for SR-IQV (in testbed.py or
nova.conf) and its VLAN ID. See Figure 1 on page 12.

Figure 1: Edit Network

Provider Network

d

Physical Network VLAN

Network Name 0-4094

2. On the virtual network, create a Neutron port (Configure > Networking > Ports), and in the Port
Binding section, define a Key value of SR-IOV and a Value of direct. See Figure 2 on page 13.

Figure 2: Create Port

Create

ECMP Hashing Fields

None -
Port Binding(s)

Key Value +
SR-10V (vnic_type:direct) ¥ | |direct + =

Disable Policy

Sub Interface

Mirroring

5018551

3. Using the UUID of the Neutron port you created, use the nova boot command to launch the VM from
that port.

nova boot --flavor m1.large --image <image name> --nic port-id=<wwid of above port> <vm name>

Using the CLI to Enable and Launch SR-IOV Virtual Machines

To use CLI to enable and launch an SR-IOV VM:

1. Create a virtual network with SR-IOV enabled. Specify the physical network already enabled for SR-
IOV (in testbed.py or nova.conf) and its VLAN ID.

The following example creates vn1 with a VLAN ID of 100 and is part of physnet1:

neutron net-create --provider:physical_network=physnet1 --provider:segmentation_id=100 vn1
2. Create a subnet in vn1l.

neutron subnet-create vn1 a.b.c.0/24

3. On the virtual network, create a Neutron port on the subnet, with a binding type of direct.

13

neutron port-create --fixed-ip subnet_id=<subnet uuid>,ip_address=<IP address from above subnet> --name <name
of port> <vn uuid> --binding:vnic_type direct

4. Using the UUID of the Neutron port created, use the nova boot command to launch the VM from that
port.

nova boot --flavor ml.large --image <image name> --nic port-id=<wuid of above port> <vm name>

5. Log in to the VM and verify that the Ethernet controller is VF by using the 1spci command to list the
PCl buses.

The VF that gets configured with the VLAN can be observed using the ip link command.

‘ Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter | 2

Optimizing DPDK vRouter Performance Through
Full CPU Partitioning and Isolation

Contrail Networking Release 2003 supports full CPU partitioning. CPU isolation is an RHEL method to
partition and isolate the CPU cores on a compute node from the symmetric multiprocessing (SMP)
balancing and scheduler algorithms. The full CPU isolation feature optimizes the performance of DPDK
vRouter when deployed with the DPDK settings recommended for RHOSP.

CPU isolation helps isolate forwarding cores, VNF cores, and service cores so that VNF threads and
service threads do not send processing requests to forwarding cores. By applying CPU isolation, you can
allocate dedicated forwarding cores to the DPDK VM and ensure that other processes do not send
processing requests to the cores allocated to DPDK vRouter, which in turn improves the performance of
vRouter to a large extent.

For CPU isolation and partitioning, RedHat recommends two methods. The first method is by using a
utility called tuned, which partitions the CPU to virtual network functions (VNFs) and isolates these cores
from the host OS. The tuned method removes isolated CPUs from the common CPU list that is used to
process all tasks and perform CPU isolation after the system boot, by using the systemd process.

The second is isolcpus, a kernel parameter that keeps CPUs away from the Linux scheduler. Similar to
tuned, the isolcpus method also removes isolated CPUs from the common CPU list that is used to process
all tasks, and performs CPU isolation at system startup. To enable isolcpus, you need to modify the

GRUB configuration in /etc/default/grub so that a new set of isolated CPU is considered. The node
needs to be restarted for the changes to take effect.

To enable CPU isolation using tuned, configure the ContrailDpdkParameters in /tripleo-heat-templates/
environments/contrail/contrail-services.yaml for RHOSP and SERVICE_CORE_MASK and DPDK_CTRL_THREAD_MASK
parameters in /vrouter/agent-dpdk/entrypoint.sh file for Contrail Ansible Deployer.

In contrail-services.yaml

Tuned-d profile configuration
TunedProfileName - Name of tuned profile
IsolCpuslList - Logical CPUs list to be isolated from the host process (applied via cpu-
partitioning tuned).
It is mandatory to provide isolated cpus for tuned to achive optimal
performance.
Example: "3-8,12-15,18"

These paramters are to be set per a role, e.g.:
ComputeParameters:

TunedProfileName: "cpu-partitioning"

IsolCpusList: "3-8,12-15,20"
ContrailDpdkParameters:

TunedProfileName: "cpu-partitioning"

IsolCpusList: "3-20"
ContrailSriovParameters:

TunedProfileName: "cpu-partitioning"

IsolCpusList: "3-20"

H OH HF OH O H O H O H O HF O HF H R

In entrypoint.sh

Cpu coremask for DPDK

- forwarding threads pinning
#CPU_CORE_MASK="0x01"

- service threads pinning
#SERVICE_CORE_MASK=""

- dpdk ctrl threads pinning
#DPDK_CTRL_THREAD_MASK=""

To configure isolcpus, modify the following parameters in GRUB:

ContrailDpdkParameters:

KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=32 iommu=pt intel_iommu=on

isolcpus=3-20"

The isolcpu tuning needs to be done for VNFs (VM) as well. This is to ensure that the VM can protect
and isolate the Poll Mode Driver (PMD) thread cores from CPU usage by other processes. On Centos
and RHEL, CPU tuning is done by using the utilities isolcpu and tuned.

Contrail DPDK vRouter Support for Intel DDP
Technology in Fortville NICs

In Contrail Networking Release 2011, the Contrail DPDK enabled vRouter uses the Intel dynamic device
personalization (DDP) technology. The Intel DDP technology provides a programmable pipeline, which
enables you to meet specific use cases as per your requirement. Similarly in Contrail Networking, the
Intel DDP technology enables you to forward packets with MPLSoGRE encapsulation. The Intel DDP
technology is supported only by Intel Ethernet 700 Series (Fortville Series) NICs.

In previous releases, Intel Ethernet 500 Series (Niantic Series) NICs are unable to perform load-balancing
for MPLSoGRE packets as they lack in port information. Due to this, all incoming packets between a pair
of compute nodes start lining up in the same hardware receiving queue (Rx) of the NIC. The vRouter
performs software load-balancing by distributing the packets to other CPU cores, which processes the
packets in the Rx queue. This reduces the capacity of the vRouter and affects its performance.

In release 2011, Contrail Networking uses the Intel DDP technology, which enables the Fortville NICs to
perform load-balancing for the MPLSoGRE packets. The Intel DDP technology allows dynamic re-
configuration of the packet processing pipeline in the NIC at runtime, without rebooting the server.
Contrail Networking is configured with an MPLSoGRE profile to process the incoming packets with
MPLSoGRE encapsulation. The MPLSoGRE profile enables the NIC to distribute the packets evenly
across different hardware Rx queues and enables the CPU cores to perform proportionally. This
increases the performance of the vRouter.

Starting from release 2011, you can use the following commands to enable, add, delete, or view the list
of DDP profiles loaded in a DPDK enabled vRouter:

o The Intel DDP profile is not enabled by default in DPDK enabled vRouter. You can pass --ddp as a
command line argument when the system comes up to enable DDP in DPDK enabled vRouters for
Fortville NICs.

e Alternatively, during runtime you can execute the dpdkconf -ddp add command present in the contrail-
tools container to enable DDP in vRouter for Fortville NICs.

(contrail-tools)[root@cs-scale-02 /1$ dpdkconf --ddp add
Programming DDP image mplsogreudp - success

e Use the dpdkconf --ddp delete command on the CLI to remove a DDP profile already loaded in the
vRouter for Fortville NICs.

(contrail-tools)[root@cs-scale-02 /]$ dpdkconf --ddp delete
vr_dpdk_ddp_del: Removed DDP image mplsogreudp - success

e Use the dpdkinfo --ddp list command on the CLI to display the list of DDP profiles loaded in the
vRouter for Fortville NICs.

(contrail-tools)[root@cs-scale-02 /]$ dpdkinfo --ddp list
Profile count is: 1

Profile 0:
Track id: 0x8000000c
Version: 1.0.0.0

Profile name: L2/L3 over MPLSoGRE/MPLSoUDP
(contrail-tools)[root@cs-scale-02 /1$

Release History Table

Release = Description
2011 In Contrail Networking Release 2011, the Contrail DPDK enabled vRouter uses the Intel dynamic device

personalization (DDP) technology. The Intel DDP technology provides a programmable pipeline, which
enables you to meet specific use cases as per your requirement

vRouter Command Line Utilities

Contrail vRouter MAC Address - IP Address Learning
and Bidirectional Forwarding and Detection Health
Checking for Pods on Virtual Machines

In Contrail Networking Release 2011, the Contrail vRouter agent dynamically learns the MAC address-IP
address binding of a pod deployed on a virtual machine (VM). This enables the vRouter agent to perform
an efficient pod to pod communication in Contrail Networking.

In previous releases, the MAC address - IP address of a pod is assigned by OpenStack. Contrail
Networking is unable to perform pod to pod communication as it does not have the reachability
information of the pods hosted by the VMs.

In the Contrail Command user interface (Ul), the Dynamic Address Learning checkbox must be enabled
while creating a virtual network. This enables the vRouter agent to learn the MAC address-IP address of
the pods connected to the virtual network.

In release 2011, Contrail Networking also supports Bidirectional Forwarding and Detection (BFD) based
health check to verify the liveliness of a pod. In the Contrail Command user interface (Ul), you must
create a BFD health check service, where the Health Check Type is assigned as VN IP List. The BFD
session is enabled for a list of target IP addresses. In release 2011, Contrail Networking supports IPv4
target IP addresses. The vRouter agent learns these IP addresses through the MAC address - IP address
learning feature. The BFD health check session is initiated, when the vRouter agent learns the target IP
address assigned to the BFD health check service. The BFD health check monitors the target list of
health check for newly learnt IP addresses. If the BFD session is detected as DOWN, the vRouter agent
deletes the routes generated for the MAC address - IP address of a pod learned by the vRouter.

The vRouter agent also sends address resolution protocol (ARP) packets in regular intervals to newly
learnt IP addresses. The vRouter agent performs this action to check a pod’s liveliness. If a pod responds
to the ARP request sent by the vRouter, the pod is considered as UP. If the pod does not respond to the
ARP packets, the pod is considered as DOWN. If vRouter identifies a pod as DOWN, it deletes the
routes generated for the respective MAC address-IP address of the pod.

You must perform the following steps to enable the vRouter to dynamically learn the MAC address - IP
address of a pod:

1. Navigate to Overlay > Virtual Networks page. Click Create to create a new virtual network.

Alternatively, you can also edit the properties of an existing virtual network. To edit an existing
virtual network, select a virtual network from the displayed list and click the Edit (pencil) icon.

2. Follow the steps given Create Virtual Network to create a virtual network.

3. In the Create Virtual Network page, select Dynamic Address Learning to enable vRouter to learn the
MAC address - IP address of pods dynamically.

4. Click Create to create a VN where the vRouter can learn the MAC address - IP address of the pods
connected to the VN.

The Virtual Networks page is displayed listing the newly created virtual network.
You must perform the following steps to enable BFD based healthcheck for the pods deployed on a VM:
1. Navigate to Services > Health Check. Click Create to create a new BFD based health check service.

Alternatively, you can also edit the properties of an existing virtual network. To edit an existing
virtual network, select a virtual network from the displayed list and click the Edit (pencil) icon.

2. Enter values in the Create Health Check Service page according to the guidelines provided in Table 2
on page 19.

3. Click Create.
The Health Check tab is displayed listing the newly created health check service.

Table 2: Create Health Check Fields

Field Description

Name Enter a name for the health check service you are creating.

Health Check Type Select VN IP List to run health check on the IP addresses of the virtual
networks.

Protocol Protocol is set to BFD by default when VN IP List is selected as
theHealth Check Type. BFD health check enables you to verify pod
liveliness.

Add all option Select this to run BFD health check for all IP addresses learned by the

vRouter Agent from learning the MAC address - IP address of a pod.

Target IP List Select IP addresses from list to run BFD health check on the selected IP
addresses.
Desired Min Tx Interval (milli secs) Enter the desired minimum transmission (Tx) interval before transmitting

BFD packets.

Table 2: Create Health Check Fields (Continued)

Field Description

Required Min Rx Interval (milli secs) Enter the minimum interval between successive BFD packets that is
supported by the system.

Multiplier Enter the number of BFD packets that must be missed successively from
the remote end to declare the BFD session as DOWN.

Release History Table
Release = Description
2011 In Contrail Networking Release 2011, the Contrail vRouter agent dynamically learns the MAC address-IP

address binding of a pod deployed on a virtual machine (VM). This enables the vRouter agent to perform
an efficient pod to pod communication in Contrail Networking.

2011 In release 2011, Contrail Networking also supports Bidirectional Forwarding and Detection (BFD) based
health check to verify the liveliness of a pod.

Service Instance Health Checks | 68

CHAPTER

Advanced Network Topologies

Configuring Virtual Networks for Hub-and-Spoke Topology | 22

Remote Compute | 28

Configuring Virtual Networks for Hub-and-Spoke
Topology

IN THIS SECTION

Route Targets for Virtual Networks in Hub-and-Spoke Topology | 22
Example: Hub-and-Spoke Topology | 23

Troubleshooting Hub-and-Spoke Topology | 24

Contrail Networking supports hub-and-spoke topology, which can be used to ensure that virtual
machines (VMs) don’t communicate with each other directly; their communication is only allowed
indirectly by means of a designated hub virtual network.

Route Targets for Virtual Networks in Hub-and-Spoke Topology

Hub-and-spoke topology can be used to ensure that virtual machines (VMs) don’t communicate with
each other directly; their communication is only allowed indirectly by means of a designated hub virtual
network (VN). The VMs are configured in spoke VNs.

This is useful for enabling VMs in a spoke VN to communicate by means of a policy or firewall, where
the firewall exists in a hub site.

hub-and-spoke topology is implemented using two route targets (hub-rt and spoke-rt), as follows:
e Hub route target (hub-rt):
e The hub VN exports all routes tagged with hub-rt.

e The spoke VN imports routes tagged with hub-rt, ensuring that the spoke VN has only routes
exported by the hub VN.

o To attract spoke traffic, the hub VN readvertises the spoke routes or advertises the default route.
e Spoke route target (spoke-rt):

o All spoke VNs export routes with route target spoke-rt.

23

e The hub VN imports all spoke routes, ensuring that hub VN has all spoke routes.

NOTE: The hub VN or VRF can reside in an external gateway, such as an MX Series router, while
the spoke VN resides in the Contrail controller.

| Example: Hub-and-Spoke Topology

In the example shown in Figure 3 on page 23, the hub-vn is configured as a hub virtual network, and the
three spoke-vns are configured as spoke virtual networks. The hub and spokes each use a unique export
route target. The hub-vn exports its hub-rt (target:1:1) routes to the spokes, and each spoke-vn imports
them. Each spoke-vn exports its spoke-rt (target:1:2, target:1:3, target:1:4) routes to the hub, and the hub-vn
imports them.

Figure 3: Hub-and-Spoke Topology

spoke-vnl

Export Route Target
(target:1:2)

Import Route Target
(target:1:1)

Hub-rt
(target:1:1)

Spoke-rt
(target:1:2)

hub-vn

Export Route Target
(target:1:1)
Import Route Targets
(target:1:2),
(target: 1:3),
Spoke-rt (target: 1:4) Spoke-rt
(target:1:4) (target:1:3)

Hub-rt
(target:1:1)

Hub-rt
(target:1:1)

spoke-vn3 spoke-vn2
Export Route Target Export Route Target

(target: 1:4) (target:1:3)
Import Route Target Import Route Target
(target:1:1) (target:1:1)

£300884

Troubleshooting Hub-and-Spoke Topology

The following examples provide methods to help you troubleshoot hub-and-spoke configurations.
Example: Validating the Configuration on the Virtual Network

The following example uses the api-server HTTP get request to validate the configuration on the virtual
network.

Hub VN configuration:

curl -u admin:<password> http://<host ip>/virtual-network/<hub-vn-uuid>| python -m json.tool

"virtual-network": {
"display_name": "hub-vn",
"fq_name": [

"default-domain",
"admin",
"hub-vn"
1,
"export_route_target_list": {
"route_target": [
"target:1:2"

P
"import_route_target_list": {
"route_target": [

"target:1:1"

Spoke VN configuration:

curl -u admin:<password> http://<host ip>:8095/virtual-network/<spoke-vn-uuid> | python -m json.tool

"virtual-network": {

"display_name": "spoke-vnl",

"fq_name": [
"default-domain",
"admin",

"spoke-vn1"

1

"export_route_target_list": {
"route_target": [

"target:1:1"

}Y
"import_route_target_list": {
"route_target": [
"target:1:2"

Example: Validate the Configuration on the Routing Instance

The following example uses api-server HTTP get request to validate the configuration on the routing
instance.

Spoke VRF configuration (with a system-created VRF by schema transformer):

user@node:/opt/contrail/utils# curl -u admin:<password> http://<host ip>:8095/routing-instance/<spoke-vrf-uuid>|

python -m json.tool

"routing-instance": {
"display_name": "spoke-vnl",

"fq_name": [
"default-domain",
"admin",
"spoke-vn1",
"spoke-vn1"

A

"route_target_refs": [
{

"attr": {

"import_export": "export"

h

"href": "http://<host ip>:8095/route-target/446a3bbe-f263-4b58-
a537-8333878dd7c3",
"to": [
"target:1:1"
1
"uuid": "446a3bbe-f263-4b58-a537-8333878dd7c3"

"attr": {
"import_export": null
Y
"href": "http://<host ip>:8095/route-target/7668088d-
€403-414f-8f5d-649ed80e0689",
"to": [
"target:64512:8000012"
i[p
"uuid": "7668088d-e403-414f-8f5d-649ed80e0689"

"attr": {
"import_export": "import"
1,
"href": "http://<host ip>:8095/route-target/8f216064-8488-4486-8fce-
b4afb87266bb",
"to": [
"target:1:2"
1
"uuid": "8f216064-8488-4486-8fce-b4afb87266bb"
}
i[p
"routing_instance_is_default": true,
}
}
Hub VRF configuration:

curl -u admin:<password> http://<host ip>:8095/routing-instance/<hub-vrf-uuid> | python -m json.tool

"routing-instance": {

"display_name": "hub-vn",

"fq_name": [
"default-domain",

"admin",
"hub-vn",
"hub-vn"
i[p
"route_target_refs": [
{
"attr": {
"import_export": "import"
Y

"href": "http://<host ip>:8095/route-target/446a3bbe-f263-4b58-
a537-8333878dd7c3",
"to": [
"target:1:1"
i[p
"uuid": "446a3bbe-f263-4b58-a537-8333878dd7c3"

"attr": {
"import_export": "export"
1,
"href": "http://<host ip>:8095/route-target/8f216064-8488-4486-8fce-
b4afb87266bb",
"to": [
"target:1:2"
1

"uuid": "8f216064-8488-4486-8fce-b4afb87266bb"

"attr": {
"import_export": null
Y
"href": "http://<host ip>:8095/route-target/a85fec19-eed2-430c-
af23-9919acaldd12",
"to": [
"target:64512:8000016"
i[p
"uuid": "a85fec19-eed2-430c-af23-9919acaldd12"

1,

"routing_instance_is_default": true,

Example: Using Contrail Control Introspect

Figure 4 on page 28 shows the import and export targets for hub-vn and spoke-vns, by invoking contrail-

control-introspect.

Figure 4: Contrail Introspect

'.;
|

L
L}

e

Remote Compute

IN THIS SECTION

Remote Compute Overview | 29
Remote Compute Features | 29
Remote Compute Operations | 30
Inter Subcluster Route Filtering | 31

Provisioning a Remote Compute Cluster | 31

Contrail Networking supports remote compute, a method of managing a Contrail deployment across
many small distributed data centers efficiently and cost effectively.

Remote Compute Overview

Remote compute enables the deployment of Contrail Networking in many small distributed data centers,
up to hundreds or even thousands, for telecommunications point-of-presence (PoPs) or central offices
(COs). Each small data center has only a small number of computes, typically 5-20 in a rack, running a
few applications such as video caching, traffic optimization, and virtual Broadband Network Gateway
(VBNG). It is not cost effective to deploy a full Contrail controller cluster of nodes of control,
configuration, analytics, database, and the like, in each distributed PoP on dedicated servers.
Additionally, manually managing hundreds or thousands of clusters is not feasible operationally.

Remote Compute Features

Remote compute is implemented by means of a subcluster that manages compute nodes at remote sites
to receive configurations and exchange routes.

The key concepts of Contrail remote compute include:

o Remote compute employs a subcluster to manage remote compute nodes away from the primary
data center.

e The Contrail control cluster is deployed in large centralized data centers, where it can remotely
manage compute nodes in small distributed small data centers.

o A lightweight version of the controller is created, limited to the control node, and the config node,
analytics, and analytics database are shared across several control nodes.

e Many lightweight controllers are co-located on a small number of servers to optimize efficiency and
cost.

e The control nodes peer with the remote compute nodes by means of XMPP and peer with local
gateways by means of MP-eBGP.

Remote Compute Operations

A subcluster object is created for each remote site, with a list of links to local compute nodes that are
represented as vrouter objects, and a list of links to local control nodes that are represented as BGP
router objects, with an ASN as property.

The subclusters are identified in the provision script. The vrouter and bgp-router provision scripts take
each subcluster as an optional argument to link or delink with the subcluster object.

It is recommended to spawn the control nodes of the remote cluster in the primary cluster, and they are
IGBP-meshed among themselves within that subcluster. The control nodes BGP-peer with their
respective SDN gateway, over which route exchange occurs with the primary control nodes.

Compute nodes in the remote site are provisioned to connect to their respective control nodes to
receive configuration and exchange routes. Data communication among workloads between these
clusters occurs through the provider backbone and their respective SDN gateways. The compute nodes
and the control nodes push analytics data to analytics nodes hosted on the primary cluster.

Subcluster Properties

The Contrail Web Ul shows a list of subcluster objects, each with a list of associated vrouters and BGP
routers that are local in that remote site and the ASN property.

General properties of subclusters include:

e A subcluster control node never directly peers with another subcluster control node or with primary
control nodes.

e A subcluster control node has to be created, and is referred to, in virtual-router and bgp-router
objects.

e A subcluster object and the control nodes under it should have the same ASN.

e The ASN cannot be modified in a subcluster object.

NOTE: Multinode service chaining across subclusters is not supported.

Inter Subcluster Route Filtering

Contrail Networking Release 2005 supports inter subcluster route filtering (Beta). With this release, a
new extended community called origin-sub-cluster (similar to origin-vn) is added to all routes originating
from a subcluster.

The format of this new extended community is subcluster:<asm>:<icb.

This new extended community is added by encoding the subcluster ID in the ID field within the
extended community. The subcluster ID helps you determine the subcluster from which the route
originated, and is unique for each subcluster. For a 2-byte ASN format, type/subtype is 0x8085 and
subcluster ID can be 4-byte long. For a 4-byte ASN format, type/subtype is 0x8285 and subcluster ID
can be 2-byte long.

You create a routing policy matching this new extended community to be able to filter routes. Routing
policies are always applied to primary routes. However, a routing policy is applied to a secondary route
in the following scenarios:

e There is no subcluster extended community associated with the route.
e Self subcluster ID does not match the subcluster ID associated with the route.

Figure 5 on page 32 shows a data center network topology. All routing policies are configured on
virtual networks in the main data center, POPO. Consider the following example routing policy:

From 0/0 & subcluster:<asn>:1 then LP=150
From 0/0 & subcluster:<asn>:2 then LP=140
From 0/0 then reject

Where, 1 and 2 are the subcluster IDs of subclusters POP1 and POP2 respectively.

In this example, for routes directed to POPO from subclusters POP1 and POP2, the LP will be changed.
Routes that do not match the extended community are rejected. Default routes with no extended
community are also rejected.

Provisioning a Remote Compute Cluster

Contrail Networking enables you to provision remote compute using an instances.yaml file. /nstalling a
Contrail Cluster using Contrail Command and instances.ym/shows a bare minimum configuration. The
YAML file described in this section builds upon that minimum configuration and uses Figure 5 on page
32 as an example data center network topology.

Figure 5: Example Multi-Cluster Topology

Data Center 1 (POPO)

Subcluster, POP1 Controller Subcluster, POP2
Control Control : Control Control Control
10.0.0.9 10.0.0.10 10.0.0.11 10.0.0.12

iBGP

SDN Gateway
10.60.0.1

SDN Gateway SDN Gateway
10.70.0.1 10.80.0.1

Data Center 2 (POP1) Data Center 3 (POP2)

Remote | Remote Remote == Remote
Compute Compute Compute Compute

10.20.0.5 10.20.0.6 10.30.0.5 10.30.0.6

In this topology, there is one main data center (pop0) and two remote data centers (pop1 and pop2.)
pop0 contains two subclusters: one for pop1, and the other for pop2. Each subcluster has two control
nodes. The control nodes within a subcluster, for example 10.0.0.9 and 10.0.0.10, communicate with
each other through iBGP.

Communication between the control nodes within a subcluster and the remote data center is through
the SDN Gateway; there is no direct connection. For example, the remote compute in pop1 (IP address
10.20.0.5) communicates with the control nodes (IP addresses 10.0.0.9 and 10.0.0.10) in subcluster 1
through the SDN Gateway.

To configure remote compute in the YAML file:

1. First, create the remote locations or subclusters. In this example, we create data centers 2 and 3
(with the names pop1 and pop2, respectively), and define unique ASN numbers for each. Subcluster
names must also be unique.

remote_locations:
popl:
BGP_ASN: 12345
SUBCLUSTER: popl
pop2:
BGP_ASN: 12346
SUBCLUSTER: pop2

2. Create the control nodes for pop1 and pop2 and assign an IP address and role. These IP addresses
are the local IP address. In this example, there are two control nodes for each subcluster.

control_1_only_popl: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.0.0.9
roles:
control:

location: pop1

control_2_only_pop1: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.0.0.10
roles:
control:

location: pop1l

control_1_only_pop2: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.0.0.11
roles: # Optional.
control:

location: pop2

control_2_only_pop2: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.0.0.12
roles: # Optional.
control:

location: pop2

3. Now, create the remote compute nodes for pop1 and pop2 and assign an IP address and role. In this
example, there are two remote compute nodes for each data center. The 10.60.0.x addresses are the

management IP addresses for the control service.

compute_1_pop1:
provider: bms
ip: 10.20.0.5
roles:
openstack_compute:

vrouter:

Mandatory.
Mandatory.

Optional.

CONTROL_NODES: 10.60.0.9,10.60.0.10

VROUTER_GATEWAY :
location: pop1
compute_2_pop1:
provider: bms
ip: 10.20.0.6
roles:
openstack_compute:

vrouter:

10.70.0.1

Mandatory.
Mandatory.

Optional.

CONTROL_NODES: 10.60.0.9,10.60.0.10

VROUTER_GATEWAY :
location: pop1l
compute_1_pop2:
provider: bms
ip: 10.30.0.5
roles:
openstack_compute:

vrouter:

10.70.0.1

Mandatory.
Mandatory.

Optional.

CONTROL_NODES: 10.60.0.11,10.60.0.12

VROUTER_GATEWAY :
location: pop2
compute_2_pop2:
provider: bms
ip: 10.30.0.6
roles:
openstack_compute:

vrouter:

10.80.0.1

Mandatory.
Mandatory.

Optional.

CONTROL_NODES: 10.60.0.11,10.60.0.12

VROUTER_GATEWAY :
location: pop2

10.80.0.1

The entire YAML file is contained below.

Instance name

Instance runs on BMS

Instance name

Instance runs on BMS

Instance name

Instance runs on BMS

Instance name

Instance runs on BMS

Example instance.yaml with subcluster configuration

provider_config:
bms:
ssh_pwd: <password>
ssh_user: <root_user>
ntpserver: 10.84.5.100
domainsuffix: local
instances:
openstack_node:
provider: bms
ip: 10.0.0.4
roles:

openstack:

all_contrail_roles_default_pop:

provider: bms
ip: 10.0.0.5
roles:
config_database:
config:
control:
analytics_database:
analytics:
webui:
compute_3_default_pop:
provider: bms
ip: 10.0.0.6
roles:
openstack_compute:
vrouter:
VROUTER_GATEWAY :
compute_1_default_pop:
provider: bms
ip: 10.0.0.7
roles:
openstack_compute:
vrouter:
VROUTER_GATEWAY :
compute_2_default_pop:
provider: bms
ip: 10.0.0.8
roles:

10.60.0.1

10.60.0.1

Mandatory. Instance name

Mandatory. Instance runs on BMS

Optional.
Instance

Mandatory. name

+H+

Mandatory. Instance runs on BMS
Optional.
Optional.
Optional.
Optional.
Optional.
Optional.
Optional.
Instance

Mandatory. name

H O H HF HF H H H H =

Mandatory. Instance runs on BMS

+H+

Mandatory. Instance name

+=+

Mandatory. Instance runs on BMS

Mandatory. Instance name

Mandatory. Instance runs on BMS

openstack_compute:

vrouter:

VROUTER_GATEWAY :

control_1_only_popl:
provider: bms
ip: 10.0.0.9
roles:
control:
location: popl
control_2_only_popl:
provider: bms
ip: 10.0.0.10
roles:
control:
location: popl
control_1_only_pop2:
provider: bms
ip: 10.0.0.11
roles:
control:
location: pop2
control_2_only_pop2:
provider: bms
ip: 10.0.0.12
roles:
control:
location: pop2
compute_1_pop1:
provider: bms
ip: 10.20.0.5
roles:

openstack_compute:

vrouter:

CONTROL_NODES: 10.60.0.9,10.
VROUTER_GATEWAY :

location: pop
compute_2_pop1:
provider: bms
ip: 10.20.0.6
roles:

openstack_compute:

vrouter:

CONTROL_NODES: 10.60.0.9,10.

10.60.0.1

10.70.0.1

Mandatory.
Mandatory.

Mandatory.
Mandatory.

Mandatory.
Mandatory.

Optional.

Mandatory.
Mandatory.

Optional.

Mandatory.
Mandatory.

Optional.

60.0.10

Optional.

60.0.10

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance

Instance

name

runs

name

runs

name

runs

name

runs

name

runs

Mandatory. Instance name

on BMS

on BMS

on BMS

on BMS

on BMS

Mandatory. Instance runs on BMS

VROUTER_GATEWAY: 10.70.0.1

location: popT

compute_1_pop2: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.30.0.5
roles:
openstack_compute: # Optional.
vrouter:

CONTROL_NODES: 10.60.0.11,10.60.0.12
VROUTER_GATEWAY: 10.80.0.1
location: pop2

compute_2_pop2: # Mandatory. Instance name
provider: bms # Mandatory. Instance runs on BMS
ip: 10.30.0.6
roles:
openstack_compute: # Optional.
vrouter:

CONTROL_NODES: 10.60.0.11,10.60.0.12
VROUTER_GATEWAY: 10.80.0.1
location: pop2
global_configuration:
CONTAINER_REGISTRY: 10.xx.x.81:5000
REGISTRY_PRIVATE_INSECURE: True

contrail_configuration: # Contrail service configuration section
CONTRAIL_VERSION: <contrail_version>
CONTROLLER_NODES: 10.60.0.5
CLOUD_ORCHESTRATOR: openstack
KEYSTONE_AUTH_HOST: 10.60.0.100
KEYSTONE_AUTH_URL_VERSION: /v3
RABBITMQ_NODE_PORT: 5673
PHYSICAL_INTERFACE: ethi
CONTROL_DATA_NET_LIST: 10.60.0.0/24,10.70.0.0/24,10.80.0.0/24

kolla_config:
kolla_globals:

network_interface: "ethl"

enable_haproxy: "yes
contrail_api_interface_address: 10.60.0.5
kolla_internal_vip_address: 10.60.0.100
kolla_external_vip_address: 10.0.0.100
kolla_external_vip_interface: "eth@"

kolla_passwords:

keystone_admin_password: <password>

remote_locations:
pop1:
BGP_ASN: 12345
SUBCLUSTER: pop1

pop2:
BGP_ASN: 12346
SUBCLUSTER: pop2

NOTE: Replace <contrail_version> with the correct contrail_container_tag value for your Contrail
Networking release. The respective contrail_container_tag values are listed in README Access to

Contrail Registry.

Release History Table

Release Description

2005 Contrail Networking Release 2005 supports inter subcluster route filtering (Beta).

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf

CHAPTER

Advanced Service Chain

Configuration

Customized Hash Field Selection for ECMP Load Balancing | 40
Routing Policy | 43

Creating a Routing Policy With Extended Communities in Contrail Command |
56

Creating Routing Policies for QFX Series Devices in Contrail Networking | 62
Service Instance Health Checks | 68

ECMP Support in Service Chain | 75

Route Reflector Support in Contrail Control Node | 76

Configuring Route Reflectors from Contrail Command | 78

BGP as a Service | 80

Fat Flows | 89

Use Case: Configuring Fat Flows from Contrail Command | 104

Understanding Flow Sampling | 121

Customized Hash Field Selection for ECMP Load
Balancing

IN THIS SECTION

Overview: Custom Hash Feature | 40

Using ECMP Hash Fields Selection | 42

Overview: Custom Hash Feature

Contrail Networking enables you to configure the set of fields used to hash upon during equal-cost
multipath (ECMP) load balancing.

With the custom hash feature, users can configure an exact subset of fields to hash upon when choosing
the forwarding path among a set of eligible ECMP candidates.

The custom hash configuration can be applied in the following ways:
e globally

e per virtual network (VN)

e per virtual network interface (VMI)

VMI configurations take precedence over VN configurations, and VN configurations take precedence
over global level configuration (if present).

Custom hash is useful whenever packets originating from a particular source and addressed to a
particular destination must go through the same set of service instances during transit. This might be
required if source, destination, or transit nodes maintain a certain state based on the flow, and the state
behavior could also be used for subsequent new flowsl, between the same pair of source and
destination addresses. In such cases, subsequent flows must follow the same set of service nodes
followed by the initial flow.

You can use the Contrail Web Ul to identify specific fields in the network upon which to hash at the
Configure > Networking > Network, Create Network window, in the ECMP Hashing Fields section as
shown in the following figure.

Create Network

up

Shared External

Allow Transit Flood Unknown Unicast

Reverse Path Forwarding Multiple Service Chains

Forwarding Mode

Default

Extend to Physical Router(s) Static Route(s)

Select Physical Router(s) Select Static Route(s)

ECMP Hashing Fields

destination-ip x source-port x

If the hashing fields are configured for a virtual network, all traffic destined to that VN will be subject to
the customized hash field selection during forwarding over ECMP paths by vRouters. This may not be
desirable in all cases, as it could potentially skew all traffic to the destination network over a smaller set
of paths across the IP fabric.

A more practical scenario is one in which flows between a source and destination must go through the
same service instance in between, where one could configure customized ECMP fields for the virtual
machine interface of the service instance. Then, each service chain route originating from that virtual
machine interface would get the desired ECMP field selection applied as its path attribute, and
eventually get propagated to the ingress vRouter node. See the following example.

Edit Poey (defaul-gomain_agmin_firefly-mn-network-nat-5_1_eft_J)
LecH Pretenesds

D T

ECMP lunfing Fieidy

SOUTTE-Ip ¥ cestination-ip = |

Fat Marwe
Prese sl

“ Add Fat Fiow
Do e Compuie LD

Compite - O TH - TES-8000- 9339 FRTIThO Eal -

T nieriace

41

Using ECMP Hash Fields Selection

Custom hash fields selection is most useful in scenarios where multiple ECMP paths exist for a
destination. Typically, the multiple ECMP paths point to ingress service instance nodes, which could be
running anywhere in the Contrail cloud.

Configuring ECMP Hash Fields Over Service Chains

Use the following steps to create customized hash fields with ECMP over service chains.

1. Create the virtual networks needed to interconnect using service chaining, with ECMP load-
balancing.

2. Create a service template and enable scaling.

3. Create a service instance, and using the service template, configure by selecting:
o the desired number of instances for scale-out
o the left and right virtual network to connect

e the shared address space, to make sure that instantiated services come up with the same IP
address for left and right, respectively

This configuration enables ECMP among all those service instances during forwarding.

4. Create a policy, then select the service instance previously created and apply the policy to to the
desired VMIs or VNs.

5. After the service VMs are instantiated, the ports of the left and right interfaces are available for
further configuration. At the Contrail Web Ul Ports section under Networking, select the ports on
the left interface (virtual machine interface) of the service instance and apply the desired ECMP hash
field configuration.

NOTE: Currently the ECMP field selection configuration for the service instance left or right
interface must be applied by using the Ports (VMlIs) section under Networking and explicitly
configuring the ECMP fields selection for each of the instantiated service instances' VMIs.
This must be done for all service interfaces of the group, to ensure the end result is as
expected, because the load balance attribute of only the best path is carried over to the
ingress vRouter. If the load balance attribute is not configured, it is not propagated to the
ingress vRouter, even if other paths have that configuration.

When the configuration is finished, the vRouters get programmed with routing tables with the ECMP
paths to the various service instances. The vRouters are also programmed with the desired ECMP hash
fields to be used during load balancing of the traffic.

Routing Policy

IN THIS SECTION

Applying Routing Policy | 44

Routing Policy Configuration | 48

Configuring and Troubleshooting Routing Policy | 49

Using a VNC Script to Create Routing Policy | 51

Verify Routing Policy in API Server | 51

Verify Routing Policy in the Control Node | 52

Verify Routing Policy Configuration in the Control Node | 53
Verify Routing Policy Configuration on the Routing Instance | 53
Control for Route Reorigination | 54

Configuring and Troubleshooting Reorigination Control | 55

Starting with Contrail Networking Release 1910, virtual network routing policies are automatically
applied to secondary routes. See "Applying Routing Policies to Secondary Routes" on page 47.

Contrail Networking uses routing policy infrastructure to manipulate the route and path attribute
dynamically and supports attaching the import routing policy on the service instances.

The routing policy contains list terms. A term can be a terminal rule, meaning that upon a match on the
specified term, no further terms are evaluated and the route is dropped or accepted, based on the action
in that term.

If the term is not a terminal rule, subsequent terms are evaluated for the given route.

The list terms are structured as in the following example.

Policy {
Term-1

Term-2

The matches and actions of the policy term lists operate similarly to the Junos language match and
actions operations. A visual representation is the following.

Match ———» Action —— Match —— > Action

Term 1 Term 2

300536

Each term is represented as in the following:

from {
match-condition-1
match-condition-2

}

then {
action
update-action-1
update-action-2

}

The term should not contain an any match condition, for example, an empty from should not be present.
If an any match condition is present, all routes are considered as matching the term.

However, the then condition can be empty or the action can be unspecified.

Applying Routing Policy

The routing policy evaluation has the following key points:

If the term of a routing policy consists of multiple match conditions, a route must satisfy all match
conditions to apply the action specified in the term.

If a term in the policy does not specify a match condition, all routes are evaluated against the match.

If a match occurs but the policy does not specify an accept, reject, or next term action, one of the
following occurs:

e The next term, if present, is evaluated.
e If no other terms are present, the next policy is evaluated.
¢ If no other policies are present, the route is accepted. The default routing policy action is “accept”.

If a match does not occur with a term in a policy, and subsequent terms in the same policy exist, the
next term is evaluated.

If a match does not occur with any terms in a policy, and subsequent policies exist, the next policy is
evaluated.

If a match does not occur by the end of a policy or all policies, the route is accepted.

A routing policy can consist of multiple terms. Each term consists of match conditions and actions to
apply to matching routes.

Each route is evaluated against the policy as follows:

1.

The route is evaluated against the first term. If it matches, the specified action is taken. If the action
is to accept or reject the route, that action is taken and the evaluation of the route ends. If the next
term action is specified or if no action is specified, or if the route does not match, the evaluation
continues as described above to subsequent terms.

Upon hitting the last non-terminal term of the given routing policy, the route is evaluated against the
next policy, if present, in the same manner as described in step 1.

Match Condition: From

The match condition from contains a list of match conditions to be satisfied for applying the action
specified in the term. It is possible that the term doesn’t have any match condition. This indicates that all
routes match this term and action is applied according to the action specified in the term.

The following table describes the match conditions supported by Contrail Networking.

Match Condition User Input

Prefix List of prefixes to match
Community Community string to match
Protocol Array of path source or path

protocol to match

Routing Policy Action and Update Action

Description

Each prefix in the list is represented as prefix and
match type, where the prefix match type can be:
e exact

e orlonger

e longer

Example: 1.1.0.0/16 orlonger

A route matches this condition if its prefix
matches any of the prefixes in the list.

Represented as either a well-known community
string with no export or no reoriginate, or a string
representation of a community (64512:11).

BGP | XMPP | StaticRoute | ServiceChain |
Aggregate. A path is considered as matching this
condition if the path protocol is one of protocols
in the list.

The policy action contains two parts, action and update action.

The following table describes action as supported by Contrail Networking.

Action Terminal?
Reject Yes
Accept Yes

Description

Reject the route that matches this term. No
more terms are evaluated after hitting this term.

Accept the route that matches this term. No
more terms are evaluated after hitting this term.
The route is updated using the update specified
in the policy action.

(Continued)

Action Terminal? Description

Next Term No This is the default action taken upon matching
the policy term. The route is updated according
to the update specified in the policy action. Next
terms present in the routing policy are processed
on the route. If there are no more terms in the
policy, the next routing policy is processed, if
present.

The update action section specifies the route modification to be performed on the matching route.

The following table describes update action as supported by Contrail Networking.

Update Action User Input Description

Community List of community As part of the policy update, the following

actions can be taken for community:

e Add a list of community to the
existing community.

e Set a list of community.

e Remove a list of community (if
present) from the existing community.

MED Update the MED of the BgpPath = Unsigned integer representing the MED
local-pref Update the local-pref of the Unsigned integer representing local-pref
BgpPath

Applying Routing Policies to Secondary Routes

A virtual network routing policy is automatically applied to secondary routes. The ability to apply routing
policies to secondary routes is especially useful as a mechanism to modify routes imported from MP-
BGP, including routes that are imported from the MPLS network.

NOTE: Routing policies that are attached to service instances are applied to primary routes only.
These routing policies are not applied to secondary routes.

I Routing Policy Configuration

Routing policy is configured on the service instance. Multiple routing policies can be attached to a single
service instance interface.

When the policy is applied on the left interface, the policy is evaluated for all the routes that are
reoriginated in the left VN for routes belonging to the right VN. Similarly, the routing policy attached to
the right interface influences the route reorigination in the right VN, for routes belonging to the left VN.

The following figure illustrates a routing policy configuration.

Service Chain

Left VRF <+—> INEGEINREY «———> [MEHEINEIECE «—> Right VRF

left_seq: “1.0";
right_seq:
“ o

Schema transformer }
links the routing-policy
to service internal
routing instance

routing_policy_entries: {
term: {

term_match_condition: {
prefix:

prefix_type: "orlonger",
prefix: "2.2.2.0/24"

}

term_action_list: {
action: "accept"”
update: {
) local_pref: 200

8300443

The policy sequence number specified in the routing policy link data determines the order in which the
routing policy is evaluated. The routing policy link data on the service instance also specifies whether
the policy needs to be applied to the left service interface, to the right service interface, or to both
interfaces.

48

It is possible to attach the same routing policy to both the left and right interfaces for a service instance,
in a different order of policy evaluation. Consequently, the routing policy link data contains the
sequence number for policy evaluation separately for the left and right interfaces.

The schema transformer links the routing policy object to the internal routing instance created for the
service instance. The transformer also copies the routing policy link data to ensure the same policy
order.

Configuring and Troubleshooting Routing Policy
This section shows how to create a routing policy for service chains and how to validate the policy.

Create Routing Policy

First, create the routing policy, Configure > Networking > Routing > Create >Routing Policy. See the
following example.

Create Routing Policy

NOTE: The Contrail Web Ul and REST APIs enable you to configure a BGP routing policy and
then assign it to a virtual network, but the routing policy will not be applied if the virtual network
is attached to an L3VPN.

49

Configure Service Instance

Create a service instance and attach the routing policy to both the left and right interfaces. The order of

the policy is calculated by the Ul, based on the order of the policy specified in the list.

Create Senvice Instance

Fuli-cha st-with-policy - [transparent (lefc right)] -v1 =

= |Interface Details

nerface Type Virtual Network
lefr Auto Configured -
nterface Type Virtual Metwork
right Auto Configured -

= Advanced Optons

= Routing ™olicy

- |

vy
interface Type Roucing Policy -~
tefi - failover = - .5'

righet - ! failpwver = | | -

Configure the Network Policy for the Service Chain

At Edit Policy, create a policy for the service chain, see the following example.

BEdit Policy (service-chain-poboy)

Policy Mame

By LE-Chan-gal gy

Policy Rules
Action Protocol Source Ports Direction Destinaton Ports Log Services Mirror
PASS AMNY befr Ay == right AN - -

Service Instance shaggregate m | ha-chain = i
[
o

Add Rule b |
(¥R
=

50

Using a VNC Script to Create Routing Policy

The following example shows use of a VNC API script to create a routing policy.

from vnc_api.vnc_api import *

vnc_lib = VncApi("admin", "<password>", "admin")
project=vnc_lib.project_read(fg_name=["default-domain", "admin"])
routing_policy=RoutingPolicy(name="vnc_3", parent_obj=project)
policy_term=PolicyTermType()
policy_statement=PolicyStatementType()

match_condition=TermMatchConditionType(protocol=["bgp"], community="22:33")
prefix_match=PrefixMatchType(prefix="1.1.1.0/24", prefix_type="orlonger")

match_condition.set_prefix([prefix_match])

term_action=TermActionListType(action="accept")
action_update=ActionUpdateType(local_pref=101, med=10)
add_community=ActionCommunityType()
comm_list=CommunitylListType(["11:22"])
add_community.set_add(comm_list)
action_update.set_community(add_community)
term_action.set_update(action_update)

policy_term.set_term_action_list(term_action)

policy_term.set_term_match_condition(match_condition)
policy_statement.add_term(policy_term)

routing_policy.set_routing_policy_entries(policy_statement)

vnc_lib. routing_policy_create(routing_policy)

Verify Routing Policy in API Server

You can verify the service instance references and the routing instance references for the routing policy
by looking in the API server configuration database. See the following example.

s e e g s e s e s s s b
= routing_policy_sntries: {
- tearmr |
=
= worm_match_conditlon: |
- prefixy [
=
prafiy eypa: “orlosgar”,
prefiss *2.2.2.0/24°

1
be
- Lorm_sction_listi {
sction: “accept”,
- updake: |
local _prefs Z00
¥

1
|
= id_pormsi (=},
- routing_lsstamce_rafs: |

=
- Lo [
"dofaplit-domalin®,
"sdmin®,
*right®,
"porvico-aceTanlii-36al-41d1-%fec-Tfa?7000d8 T -doefault~domaln sdnin ha-chaln"
¥
hraf: P A oLt atd bleedd =57
= attry
saqueace: "1
wuidr "“IIbTecdd-5Tca-4cdd-bbbd-513f VEdbEe0 60"
}l
- f
e |
*defauit-domain®,
“adnin®,
"lafe™,
“service-acelacdl=5al-42d1=-96ec-TEa7 708849 Ti~defaulc-domalin_sdein ha-chaim®
1a
hrafs
- awtE: {
saquencel "1°
}1
wudd: "Gadifidl-adl-4TES-bEcd-L3JacSdd24b2"
¥
3.
=~ sorvice_isstance_reofsi |
- ton [
“defauilt-Comain”,
~adRin”

"ha-chaln™

= stEEs |
Llafe_ssguesos: 17,
right_segquancaer “1°
}a
wulds "HEIBEYOb-BYLd-ddic-baldd-33adTicaaTda"

Bame: "fallovaz"

Verify Routing Policy in the Control Node

You can verify the routing policy in the control node.
Point your browser to:
http://<control-node>:8083/Snh_ShowRoutingPolicyReq?search_string=failover

See the following example.

s018732

Aintireg bl
File
dafaul i ~domain:adwin: fatl lovar falsa
ool L g 1] Lt
e [0 2 00N orongae | acca
Bl 0

Sefoul t-domarin: defoul t-prodect 1oefoul L -routing-policy & Tl

Verify Routing Policy Configuration in the Control Node
You can verify the routing policy configuration in the control node.
Point your browser to:

http://<control-node>:8083/Snh_ShowBgpRoutingPolicyConfigReq?search_string=failover

See the following example.

ShowBgpRoutingPolicyConfigResp

routing_policies
name tarms

defoult-domain:admin: foilover 1ams

match action

from { then {
prefix 2.2.2.9/24 orlonger local-preference 200
} accept

w.
£8T05

CLL

Verify Routing Policy Configuration on the Routing Instance

You can verify the routing policy configuration on the internal routing instance.

Point your browser to:

http://<control-node>:8083/Snh_ShowBgpInstanceConfigReq?search_string=<mame-of-internal-vrf>

53

See the following example.

e DR eiey WD e B TTwies Tiadng pokoey

] B e Rt chan s foeleen s ealass e e
inet defectt-domainsadmin Fight right 1.1.0.0 Befult-doredn:ocdrin:ta-chein
2o

You can also verify the routing policy on the routing instance operational object.
Point your browser to:
http://<control-node>.8083/Snh_ShowRoutingInstanceReq?x=<name-of-internal-vr>

See the following example.

routing_policies

routing_polices
policy name generation
defoult-domain:odmin:foilover @

I Control for Route Reorigination

The ability to prevent reorigination of interface static routes is typically required when routes are
configured on an interface that belongs to a service VM.

As an example, the following image shows a service chain that has multiple service instances, with an in-
net-nat service instance as the last service VM, also with the right VN as the public VN.

The last service instance performs NAT by using a NAT pool. The right interface of the service VM must
be configured with an interface static route for the NAT pool so that the destination in the right VN
knows how to reach addresses in the NAT pool. However, the NAT pool prefix should not be
reoriginated into the left VN.

To prevent route reorigination, the interface static route is tagged with a well-known BGP community
called no-reoriginate.

54

When the control node is reoriginating the route, it skips the routes that are tagged with the BGP
community.

Left Interface Right Interface

Left VN Service Chain Public VN

—
VM ’
1.1.1.11/32 Transient S| In-Net-NAT

Static Route on Right Sl Interface

prefix: 10.2.2.0/24
community_attributes; {
community_attribute; [
“no-reoriginate”

8300444

I Configuring and Troubleshooting Reorigination Control

The community attribute on the static routes for the interface static route of the service instance is
specified during creation of the service instance. See the following example.

Create Service Instance

Marme Service Template

gi-with-static s-with-static - [in-network-nat (left, right)] - v1 =
nierface Type Wirtual Mebwork

laft Select Virtuiad Nebwork -
nterface Type Wirtiuial Metawdrk

rght Select Virtuad Network e

=+ Add Static Routes

Prefix HNext Hop Cormirmiumni Ty
10.2.2.0/24 interface 2 | no-recriginatel [-
E
-
= Rouling Policy *-\L:_i

Intasrfare Turms B il Bl

Use the following example to verify that the service instance configuration object in the API server has
the correct community set for the static route. See the following example.

i
- soervice-instance: {
+ wvirtual machine back_refs: [-].
+ [£q_name: [..]. :
vald: "atelé?lf-f828-43deé-a493-6193b4LTIdaed” ,
parent_type: “project”,
parent_uuid: "634f£930d49-daé2-4c2f-aZ38-Teclolals55a5”,
parent_href: “http: /nodeg?:B0E2/project/634f90d49%-dabZ-dc2f-alZ
- service_Linstance_properties: {
right_wirtual network: "defauvlt-domain:admin:etwig”™,
- interface_list: |
virtu.ﬂ.l_nntul:’rll:: "default-dosainradsinififa”
|
-
wvirtual network: “"default-domain:admin:twig®,
- statie_routes: {
- route: |
=4
proefix: "10.2.2.0/247,
nazl—._hn-p: mall,
- community_ attributea: {
- community attribute: |
"no-recriginate”
]
;#:t_hup_typu: nuall
}
1
}
g ® oA
laft_wirtual_ pnetwork: “"default-domain:adamin:fifo”, E
- scale_out: { =
max_instances: 1 2
.
Release History Table
Release = Description
1910 Starting with Contrail Networking Release 1910, virtual network routing policies are automatically

applied to secondary routes. See "Applying Routing Policies to Secondary Routes" on page 47.

RELATED DOCUMENTATION

| Creating a Routing Policy With Extended Communities in Contrail Command | 56

Creating a Routing Policy With Extended
Communities in Contrail Command

Contrail Networking supports extended communities on the import routing policy function. Contrail
Networking also enables you to import routing policy terms to match on extended communities and
perform import routing policy actions to add, set, and remove extended communities. Filtering routes

56

based on extended communities prevent advertising unnecessary service interface and static routes
from the control node.

The following extended communities are supported:

e Route Target

Encapsulation

e Security Group

e Origin VN

¢ MAC Mobility

e Load Balance

o Tag

For information on these extended communities, see BGP Extended Communities.

Creating a Routing Policy

This section shows how to create a routing policy for a virtual network with extended communities.

1. Click the Create button in Overlay > Routing > Routing Policies.
2. Enter routing policy information according to the guidelines provided in Table 3 on page 57
3. Click Create to create the routing policy.
The Routing Policies tab is displayed listing the newly created policy.
4. Navigate to the Overlay > Virtual Networks page.

5. Select the check box for the virtual network that you want to attach the routing policy to, and click

the Edit icon.
The Edit Virtual Network page appears.

6. Scroll down to the Routing, Bridging, and Policies section in the Network tab, and select the newly
created routing policy in the Routing Policies field.

7. Click Save to add the routing policy to the virtual network.

Table 3: Create Routing Policy

Field Guidelines

Name Enter a name for the routing policy.

https://github.com/Juniper/contrail-controller/wiki/BGP-Extended-Communities

Table 3: Create Routing Policy (Continued)

Field Guidelines
Type Select Physical Device or vRouter. You can create a routing policy for the type of device you
select.

Select vRouter to create a routing policy for a virtual network with extended communities.

Term(s)

Community Select the community string to match for the routing policy. The community string is
represented with accept-own, no-advertise, no-export, no-export-subconfed, no-reoriginate..

Match All Select the check box to match all the community strings.

Extended Select the extended community string to match for the routing policy.

Community

Match All Select the check box to match the extended community strings.

Protocol Select the protocol for the routing policy which is an array of path source or path protocol to
match. The protocols are interface, aggregate, bgp, BGPaaS, interface-static, service-chain,
service-interface, static, and xmpp. A path is considered as matching this condition if the path
protocol is one of protocols in the list.

Prefixes Select a list of prefixes to match.

Each prefix in the list is represented as prefix and match type, where the prefix match type can
be:

e exact
e orlonger
e longer

Example: 10.x.x.0/16 orlonger

A route matches this condition if its prefix matches any of the prefixes in the list.

Table 3: Create Routing Policy (Continued)

Field Guidelines

Then

Table 3: Create Routing Policy (Continued)

Field Guidelines

Actions Select the actions to be performed on the matching routes. The supported actions and the

values are:

Action

action

add community

Add a list of community
to the existing
community.

add extended community

Add a list of extended
community to the
existing community.

as-path

Select different AS paths
to control routing
decisions

local-preference

Value

Reject-Reject the route that matches this term. No more terms
are evaluated after hitting this term.

Accept-Accept the route that matches this term. No more
terms are evaluated after hitting this term.

Next-This is the default action taken upon matching the policy
term. The route is updated according to the update specified in
the policy action. Next terms present in the routing policy are
processed on the route. If there are no more terms in the policy,
the next routing policy is processed, if present.

The community is of type unsigned 32 bit integer:unsigned 32
bit integer.

For example, 64512:55555.

An eight octet string representation of value
type:administrator:assigned-number where type is two octets,
administrator is four octets, and assigned-number is two octets
or it can be a hexadecimal representation of the community
like: OxFFffA101.

Unsigned 32-bit integer representing the as-path.

For example, 444.

Unsigned 32-bit integer representing local-preference.

For example, 444.

Table 3: Create Routing Policy (Continued)

Field Guidelines

Select the local
preference to distinguish
routes and take further
action.

med Unsigned 32-bit integer representing the MED.

Select the MED of the For example, 444.
BgpPath.

remove community The community is of type unsigned 32 bit integer:unsigned 32

. bit integer.
Remove a list of

community (if present)
from the existing

community.
remove extended An eight octet string representation of value
community type:administrator:assigned-number where type is two octets,

administrator is four octets, and assigned-number is two octets
or it can be a hexadecimal representation of the community
like: OxFFffA101.

Remove a list of
extended community (if
present) from the existing
community.

set community The community is of type unsigned 32 bit integer:unsigned 32

. . bit integer.
Set a list of community.

set extended community | An eight octet string representation of value
type:administrator:assigned-number where type is two octets,

Seta list of extended administrator is four octets, and assigned-number is two octets

ity.
community or it can be a hexadecimal representation of the community

like: OxFFffA101.

\ Routing Policy | 43

Creating Routing Policies for QFX Series Devices in
Contrail Networking

Starting with Contrail Networking Release 2005, you can create routing policies with routing policy
terms supported by QFX Series devices. In releases prior to release 2005, you could not configure
routing policies on physical devices. You could configure routing policies only on vRouters.

In release 2005, you can use routing policies to leak routes between logical routers set up on QFX Series
devices. You must configure the routing policies with matching conditions that are supported by a QFX
Series device. To leak routes across logical routers deployed in a fabric, you must configure a source
logical router and one or more destination logical routers. As specified in the routing policy terms, if an
incoming route meets the matching conditions, corresponding actions are performed on the routes. The
accepted routes are leaked from a source logical router to all the destination logical routers.

Perform the following steps in Contrail Command to create or edit routing policies and assign routing
policy terms that are supported by QFX Series devices.

1. Navigate to Overlay>Routing>Routing Policies.
2. Click Create to create a new routing policy.

Alternatively, you can also edit an existing routing policy for a QFX Series device. To edit an existing
policy, select a policy from the displayed list and click the Edit (pencil) icon.

The Create Routing Policy page is displayed.
3. Enter routing policy information according to the guidelines provided in Table 4 on page 63.
4. Click Create to create the routing policy for a QFX Series device.

The Routing Policies tab is displayed listing the newly created policy along with existing policies.

The routing policies are listed according to their name, type, and the routing policy terms assigned to
them. The Name column indicates the name of the routing policy and the Terms column indicates the
routing policy terms assigned to the routing policy. Starting with release 2005, the Type column
indicates if a routing policy is created for a QFX Series device or a vRouter.

Table 4: Create Routing Policy for a QFX Series Device

Field

Name

Type

Term(s)

From

Add Route filter
> Route Filter

Type

Community

Match All

Click Add match
condition. The
Additional
Match
conditions field
is displayed. To
add more match
conditions, click
on Add match
condition.

Guidelines

Enter a name for the routing policy in the Name field.

Select Physical Device or vRouter. You can create a routing policy for the type of device you

select.

Select Physical Device to create a routing policy for a QFX Series device.

Select the matching conditions to be satisfied by the incoming routes.

Enter an IP prefix address as a route filter in the Route Filter field.

Select one or more type of prefix. If an incoming route satisfies the prefix match condition, the
route is processed.

Select the community string to match for the routing policy. The community string is
represented with no-advertise, no-export, and no-export-subconfed.

Select the check box to match all the community strings.

Select a match condition from the list. A route must match the criteria of the match condition
you selected. You can define one or more match conditions. If a route matches all match
conditions, one or more actions are applied to the route.

Table 4: Create Routing Policy for a QFX Series Device (Continued))

Additional Match conditions

Table 4: Create Routing Policy for a QFX Series Device (Continued)

AS-path

External

Select AS-path from the list. In the Type/Value field, enter the name of the path regular
expression of an autonomous systems (AS). In the BGP routes, the AS path that matches the
regular expression are processed.

Select External from the list. In the Type/Value field, select the type of OSPF route: OSPF
Typel or OSPF Type2. External OSPF routes, including routes exported from one level to
another are processed.

Table 4: Create Routing Policy for a QFX Series Device (Continued))

Family

local-pref

Select Family from the list. In the Type/Value field, select the type of BGP family from the list
to which the route belongs:

® evpn

e inet

e inet-vpn

Select local-pref from the list. In the Type/Value field, enter a preference value between

0-4,294,967,295 (2732 - 1). A route that matches the BGP local preference attribute, is
processed.

Table 4: Create Routing Policy for a QFX Series Device (Continued))

NLRI

Select NLRI from the list. In the Type/Value field, select a NLRI route type from the list: Type 1
to Type 10. You can specify multiple route types in a single policy.

Prefix List Select Prefix List from the list. In the Type/Value field, select a prefix from the list of prefixes in
the prefix list. You must select a prefix length qualifier from the list beside the Type/Value
field:

e exact
e orlonger
e longer

Example: 10.1.0.0/16 orlonger

A route matches this condition if its prefix matches any of the prefixes in the list.

Protocol Select Protocol from the list. In the Type/Value field, select the name of the protocol from
which the route was learned or to which the route is being advertised. The protocols are
aggregate, bgp, direct, evpn, ospf, ospf3, pim, and static.

Table 4: Create Routing Policy for a QFX Series Device (Continued))

Select the actions to be performed on the matching routes. The supported actions and the

values are:

Action

action

add community

Add a list of community to the existing
community.

as-path-extend

Extract the last AS number in the existing
AS path and affix that AS number to the

beginning of the AS path n times, where n is

a number from 1 through 32

as-path-prepend

Affix one or more AS numbers at the
beginning of the AS path. The AS numbers
are added after the local AS number has
been added to the path.

external

Value

Reject-Reject the route that matches this
term. No more terms are evaluated after
hitting this term.

Accept-Accept the route that matches this
term. No more terms are evaluated after
hitting this term.

Next-This is the default action taken upon
matching the policy term. The route is
updated according to the update specified
in the policy action. Next terms present in
the routing policy are processed on the
route. If there are no more terms in the
policy, the next routing policy is processed,
if present.

The community is of type unsigned 32 bit
integer:unsigned 32 bit integer.

For example, 64512:55555.

Unsigned 32-bit integer representing the
as-path-extend .

For example, 444.

Unsigned 32-bit integer representing the
as-path-prepend .

For example, 444,

Unsigned 32-bit integer representing the
as-path .

Set the acceptable external routes exported = For example, Type 1 or Type 2.
by OSPF. You must specify the OSPF type.

local-preference Unsigned 32-bit integer representing local-
preference.

Select the local preference to distinguish

routes and take further action. For example, 444.

med Unsigned 32-bit integer representing the
MED.

Select the MED of the BgpPath.
For example, 444.

remove community The community is of type unsigned 32 bit

. o integer:unsigned 32 bit integer.
Remove a list of community (if present)

from the existing community.

set community The community is of type unsigned 32 bit

. . integer:unsigned 32 bit integer.
Set a list of community.

Release History Table

Release = Description

2005 Starting with Contrail Networking Release 2005, you can create routing policies with routing policy
terms supported by QFX Series devices

Logical Router Interconnect
Routing Policy | 43
Routing Policy Match Conditions

Actions in Routing Policy Terms

Service Instance Health Checks

IN THIS SECTION

Health Check Object | 68

Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces | 73
Bidirectional Forwarding and Detection Health Check for BGPaaS | 73

Health Check of Transparent Service Chain | 74

Service Instance Fate Sharing | 74

Contrail Networking enables you to use a service instance health check to determine the liveliness of a
service provided by a virtual machine (VM).

Health Check Object

IN THIS SECTION

Health Check Overview | 68

Health Check Object Configuration | 69

Creating a Health Check with the Contrail Web Ul | 70
Using the Health Check | 72

Health Check Process | 72

Health Check Overview

The service instance health check is used to determine the liveliness of a service provided by a VM,
checking whether the service is operationally up or down. The vRouter agent uses ping and an HTTP
URL to the link-local address to check the liveliness of the interface.

If the health check determines that a service is no longer operational, it removes the routes for the VM,
thereby disabling packet forwarding to the VM.

The service instance health check is used with service template version 2.

Health Check Object Configuration

Table 5 on page 69 shows the configurable properties of the health check object.

Table 5: Health Check Configurable Parameters

Field Description
- enabled Indicates that health check is enabled. The default is False.
- health-check-type Indicates the health check type: link-1ocal, end-to-end, bgp-

as-a-service, and so on.. The default is 1ink-1local.

- monitor-type The protocol type to be used: PING or HTTP.

- delay The delay, in seconds, to repeat the health check.

- timeout The number of seconds to wait for a response.

- max-retries The number of retries to attempt before declaring an

instance health down.

- http-method When the monitor protocol is HTTP, the type of HTTP
method used, such as GET, PUT, POST, and so on.

- url-path When the monitor protocol is HTTP, the URL to be used. For
all other cases, such as ICMP, the destination IP address.

- expected-codes When the monitor protocol is HTTP, the expected return
code for HTTP operations.

Health Check Modes

The following modes are supported for the service instance health check:

e link-local—A local check for the service VM on the vRouter where the VM is running. In this case, the
source IP of the packet is the service chain IP.

e end-to-end—A remote address or URL is provided for a service health check through a chain of
services. The destination of the health check probe is allowed to be outside the service instance.
However, the health check probe must be reachable through the interface of the service instance
where the health check is attached. The end-to-end health check probe is transmitted all the way to
the actual destination outside the service instance. The response to the health check probe is
received and processed by the service health check to evaluate the status.

Restrictions include:
e This check is applicable for a chain where the services are not scaled out.

e When this mode is configured, a new health check IP is allocated and used as the source IP of the
packet.

e The health check IP is allocated per virtual-machine-interface of the service VM where the health
check is attached.

e The agent relies on the service-health-check-ip flag to use as the source IP.

NOTE: Contrail Networking supports a segment-based health check for transparent service
chain.

Creating a Health Check with the Contrail Web Ul

To create a health check with the Contrail Web Ul:

1. Navigate to Configure > Services > Health Check Service, and click to open the Create screen. See
Figure 6 on page 71.

Figure 6: Create Health Check Screen

Create

Name

Protoco

PING

Delay (secs)

3

Retries

2

Health Check Service

ext_hc_service

Permissions

Monitor Target

- 8.8.8.8 -

Timeout (secs)

5

Health Check Type

End-To-End -

766

s018

i
O

2. Complete the fields to define the permissions for the health check, see Table 6 on page 71.

Table 6: Create Health Check Fields

Field

Name

Protocol

Monitor Target

Delay (secs)

Timeout (secs)

Description

Enter a name for the health check service you are creating.

Select from the list the protocol to use for the health check, PING,
HTTP, BFD, and so on.

Select from the list the address of the target to be monitored by the
health check.

The delay, in seconds, to repeat the health check.

The number of seconds to wait for a response.

71

Table 6: Create Health Check Fields (Continued)

Field Description

Retries The number of retries to attempt before declaring an instance health
down.

Health Check Type Select from the list the type of health check—link-local, end-to-end,

segment-based, bgp-as-a-service, and so on.

Using the Health Check

A REST API can be used to create a health check object and define its associated properties, then a link
is added to the VM interface.

The health check object can be linked to multiple VM interfaces. Additionally, a VM interface can be
associated with multiple health check objects. The following is an example:

HealthCheckObject 1 ---------------- VirtualMachineInterface 1 ----------------
HealthCheckObject 2

|

I

VirtualMachineInterface 2

Health Check Process

The Contrail vRouter agent is responsible for providing the health check service. The agent spawns a
Python script to monitor the status of a service hosted on a VM on the same compute node, and the
script updates the status to the vRouter agent.

The vRouter agent acts on the status provided by the script to withdraw or restore the exported
interface routes. It is also responsible for providing a link-local metadata IP for allowing the script to
communicate with the destination IP from the underlay network, using appropriate NAT translations. In
a running system, this information is displayed in the vRouter agent introspect at:

http://<compute-node-ip>:8085/Snh_Heal thCheckSandeshReq?uuid=

NOTE: Running health check creates flow entries to perform translation from underlay to
overlay. Consequently, in a heavily loaded environment with a full flow table, it is possible to
observe false failures.

Bidirectional Forwarding and Detection Health Check over Virtual
Machine Interfaces

Contrail Networking supports BFD-based health checks for VMIs.

Health check for VMIs is already supported as poll-based checks with ping and curl commands. When
enabled, these health checks run periodically, once every few seconds. Consequently, failure detection
times can be quite large, always in seconds.

Health checks based on the BFD protocol provide failure detection and recovery in sub-second intervals,
because applications are notified immediately upon BFD session state changes.

If BFD-based health check is configured, whenever a BFD session status is detected as Up or Down by the
health-checker, corresponding logs are generated.

Logging is enabled in the contrail-vrouter-agent.conf file with the log severity level SYS_NOTICE.

You can view the log file in the location /var/log/contrail/contrail-vrouter-agent.log

Snippet of sample log message related to BFD session events

2019-02-26 Tue 14:38:49:417.479 SYS_NOTICE BFD session Down interface: test-bfd-hc-vmi.st2
vrf: default-domain:admin:VN.hc.st2:VN.hc.st2

2019-02-26 Tue 14:38:49:479.733 PST SYS_NOTICE BFD session Up interface: test-bfd-hc-vmi.st2
vrf: default-domain:admin:VN.hc.st2:VN.hc.st2

Bidirectional Forwarding and Detection Health Check for BGPaa$S

The Bidirectional Forwarding and Detection (BFD) health check should not be confused with the BFD-
based health check over VMIs feature. The BFD-based health check for VMIs cannot be used for a

BGPaaS session, because the session shares a tenant destination address over a set of VMIs, with only
one virtual machine interface active at any given time.

When the BFD-based health check for BGP as a Service (BGPaa$S) is configured, any time a BFD-for-
BGP session is detected as down by the health-checker, corresponding logs and alarms are generated.

When the BFD-based health check is configured, whenever a BFD session is detected as Up or Down by
the health-checker, corresponding logs are generated.

Logging for this scenario is enabled in the contrail-vrouter-agent.conf file with the log level SYS_NOTICE.

To enable this health check, configure the ServiceHeal thCheckType property and associate it with a bgp-as-a-
service configuration object. This can also be accomplished in the Contrail Web Ul.

Health Check of Transparent Service Chain

Contrail Networking enhances service chain redundancy by implementing an end-to-end health check
for the transparent service chain. The service health check monitors the status of the service chain and
if there is a failure, the control node no longer considers the service chain as a valid next hop, triggering
traffic failover.

A segment-based health check is used to verify the health of a single instance in a transparent service
chain. The user creates a service-health-check object, with type segment-based, and attaches it to either
the left or right interface of the service instance. The service health check packet is injected to the
interface to which it is attached. When the packet comes out of the other interface, a reply packet is
injected on that interface. If health check requests fail after 30-second retries, the service instance is
considered unhealthy and the service VLAN routes of the left and right interfaces are removed. When
the agent receives health check replies successfully, it adds the retracted routes back onto both
interfaces, which triggers the control node to start reoriginating routes to other service instances on that
service chain.

For more information, see https:/github.com/tungstenfabric/tf-specs/blob/master/
transparent_sc_health_check.md

Service Instance Fate Sharing

Contrail Networking supports service instance (Sl) fate sharing that prevents a Sl failure from causing a
null route. In earlier releases, when an Sl fails, the service chain continues to forward packets and routes
reoriginate on both sides of the service chain. The packets are dropped in the Sl or by the vRouter
causing a null route.

https://github.com/tungstenfabric/tf-specs/blob/master/transparent_sc_health_check.md
https://github.com/tungstenfabric/tf-specs/blob/master/transparent_sc_health_check.md

As part of Sl fate sharing in Contrail Networking, a gateway node automatically reroutes traffic to an
alternate cluster and stops the service chain. If one or more than one Sl in a service chain fails, routes on
both sides of the service chain stops reoriginating and routes automatically converge to a backup service
chain that is part of another Contrail cluster.

Contrail Networking uses segment-based health check to verify the health of a Sl in a service chain. To
identify a failure of an SI, segment-based health check is configured either on the egress or ingress
interface of the SI. When Sl health check fails, the vRouter agent drops an Sl route or a connected route.
A connected route is also dropped if the vRouter agent restarts due to a software failure, when a
compute node reboots, or when long-lived graceful restart (LLGR) is not enabled. You can detect an Sl
failure by keeping track of corresponding connected routes of the service chain address.

NOTE: When an Sl is scaled out, the connected route for an Sl interface goes down only when all
associated VMs have failed.

The control node uses the service-chain-id in ServiceChainInfo to link all Sls in a service chain. When the
control node detects that any Sl of the same service-chain-id is down, it stops reoriginating routes in
egress and ingress directions for all Sls. The control node reoriginates routes only when the connected
routes of all the Sls are up.

ECMP Support in Service Chain

IN THIS SECTION

Service Chain with Equal-Cost Multipath in Active-Active Mode | 75
Service Chain with Health Check | 76

Equal-cost multipath (ECMP) can be used to distribute traffic across VMs.

Service Chain with Equal-Cost Multipath in Active-Active Mode

To support ECMP in the service chain, create multiple port tuples within the same service instance. The
labels should be the same for the VM ports in each port tuple. For example, if port tuple 1 uses the

labels left and right, then port tuple 2 in the same service instance should also use the labels left and
right for its ports.

When there are multiple port tuples, the default mode of operation is active-active.

Service Chain with Health Check

Service chain Version 2 also allows service instance health check configuration on a per interface label.
This is used to monitor the health of the service.

For more information about the service instance health check, see "Service Instance Health Checks" on
page 68.

Route Reflector Support in Contrail Control Node

IN THIS SECTION

Benefits of RRs in Contrail | 77

Contrail Networking supports Route Reflector (RR) functionality in the Control node for Internal Border
Gateway Protocol (iBGP) peers. Route reflection is a BGP feature that enables BGP routers to acquire
route information from one iBGP router and reflect or advertise the information to other iBGP peers in
the same autonomous system (AS).

In a large scale AS, deploying BGP routers peering with the Control Node in a full-mesh topology affects
scalability and leads to maintenance and configurational issues. The issues are caused while exchanging
large volumes of routing information and maintaining connectivity among a large number of devices in
the AS. A Route Reflector provides a scalable alternative to full-mesh internal BGP peering. See Figure 7
on page 77.

Figure 7: Advantage of BGP Route Reflector over Full-mesh Topology

Route Advertising in Full-mesh Topology Route Advertising using Route Reflector
BGP Router BGP Router
BGP Router Route Reflector
< > o~
&
8
BGP Router BGP Router BGP Router BGP Router

You can create any number of RRs in the network. Each RR must have a unique cluster ID to prevent
looping among the RRs.

Contrail nodes support Edge Reflection Multicasting Virtual Private Networking (ERMVPN) of the BGP
Address Family. As non-Contrail nodes do not support ERMVPN, RR is configured separately for Contrail
nodes, and external BGP speakers. If a single RR is deployed between Contrail nodes and non-Contrail
nodes, the RR cannot advertise ERMVPN routes to the Contrail nodes. Contrail deploys a separate RR
peering session among Contrail nodes that supports ERMVPN and helps in propagating routes among all
Contrail nodes.

Benefits of RRs in Contrail

e RRs can be deployed at multiple locations in the network, which helps to scale the BGP network at
lower cost.

e The RR feature conserves data center rack space by replacing physical route reflectors.

RELATED DOCUMENTATION

Configuring Route Reflectors from Contrail Command | 78

77

‘ Configuring the Control Node with BGP

Configuring Route Reflectors from Contrail
Command

Contrail Networking enables you to configure a control node as a route reflector from the Contrail
Command user interface (Ul).

Follow these steps to configure a route reflector from Contrail Command Ul:

1. Click the Infrastructure > Cluster page.

The Overview tab is displayed.
2. Click the Advanced Options tab.

The Global Config tab is displayed, which lists all system configuration information.
3. Click the BGP Routers tab.

A list of control nodes are displayed. See Figure 8 on page 79.

Figure 8: BGP Routers List

| [B defaultdomain > B} defaultproject ~ | & Admin ~

| INFRASTRUCTURE » Cluster » Advanced

< Back Global Config Virtual Routers BGP Routers. Control Node Zones Quality of Service Security Encryption Link Local Services Endpoints
‘ BGP Routers P
= . o
control-node contrail nodecd Z
192.0.2.230 control-nede contrail nodecs
192.0.2.233 control-node contrail nodecé
Litem selected Select all Deselect all

4. Select the desired control node from the check box and click the Edit icon.

The BGP tab in the Edit BGP Router page is displayed.
5. To configure the control node as route reflector, you must assign a Cluster ID value in IPv4 format.

See Figure 9 on page 80.

79

80

Figure 9: Add Cluster ID value

‘ INFRASTRUCTURE » Cluster » Advanced » EditBGPRouter ‘ [@ defaultdomain > [defaultproject = | & Admin ~

Control Node nodecd contrail

BGP Router ASN

+ Associate Peers

+ Advanced Options

6. Click Save.
The Cluster ID information is saved and the BGP Routers tab is displayed.

The selected control node starts functioning as a route reflector.

RELATED DOCUMENTATION

| Route Reflector Support in Contrail Control Node | 76

BGP as a Service

IN THIS SECTION

® Understanding BGP as a Service | 81

® Configuring BGPaaS using VNC API | 84

Configuring BGPaa$S from Contrail Web Ul | 84

Configuring BGPaa$S from Contrail Command | 86

Understanding BGP as a Service

IN THIS SECTION

Contrail BGPaaS Features | 81
BGPaaS Use Cases | 83

The BGP as a Service (BGPaaS) feature allows a guest virtual machine (VM) to place routes in its own
virtual routing and forwarding (VRF) instance using BGP.

Contrail BGPaaS Features

Using BGPaaS with Contrail Networking requires the guest VM to have connectivity to the control node
and to be able to advertise routes into the VRF instance.

With the BGPaaS feature:

e The vRouter agent is able to accept BGP connections from the VMs and proxy them to the control
node.

e The vRouter agent always selects one of the control nodes that it is using as an XMPP server.

Contrail Networking provides route export functionality for BGPaaS sessions. The next hop for all routes
advertised to the tenant VM is set to the default gateway address of the subnet of the tenant VM. This
allows the tenant BGP implementation to be relatively simple, by not requiring support for recursive
resolution of BGP next hops.

The BGPaaS object is associated with a virtual machine interface, not just a virtual machine (VM), which
enables a tenant VM to have BGP sessions in multiple virtual networks, if required.

BGPaaS in Contrail Networking has the following features:

e By default, all BGPaaS sessions are configured to have bidirectional exchange of routes. The Boolean
property bgpaas-suppress-route-advertisement ensures no advertisement of routes to the tenant VM.

If inet6é routes are being advertised to the tenant VM, they are advertised with the IPv6 subnet's
default gateway address as the BGP next hop. A Boolean property, bgpaas-ipv4-mapped-ipv6-nexthop,
causes the IPv4 subnet's default gateway, in IPv4-mapped IPv6 format, to be used instead as the
next hop.

If multiple tenant VMs in the same virtual network have BGPaaS sessions and they use eBGP, the
standard BGP AS path loop prevention rules prevent routes advertised by one tenant VM from being
advertised to the other tenant VMs. The as-override field, added to the existing BgpSessionAttributes in
the BGPaaS$ object, causes the control node to replace the AS number of the tenant VM with it's own
AS number, when advertising routes learned from a tenant VM to another tenant VM in the same
virtual network. The tenant VM does not need to implement any new functionality.

Contrail Networking provides support for high availability (HA) architectures, BGPaaS supports control
node zone selection, with options available to configure BGPaa$S control node zone peers.

This capability enables you to set up primary and secondary control node zones, which can have one or
more control nodes. The reason for this is because BGPaaS is often being relied upon to provide routing
to and from VNFs, which are comprised of several nodes across different computes, and the VNFs
usually rely upon two BGP peers for HA. These control node zone features increase the robustness and
failover capabilities for BGPaa$S in Contrail.

The following are caveats:

BGP sessions must use IPv4 transport.

The VNF must support RFC 2545, Use of BGP-4 Multiprotocol Extensions for IPvé Inter-Domain
Routing, to carry IPvé6 routes over the IPv4 peer.

Only IPv4 (inet) and IPvé6 (inet6é) address families are supported.

The following features are supported in Contrail Networking for BGPaaS configuration:

Global-System-Config has an option to add, modify, or delete control node zones
Control-Node-Zone has an option to add, modify, or delete control nodes

Control node has an option to add, modify or delete a control node zone and it can have only one
control node zone

BGPaaS has an option to add, modify, or delete a primary or secondary control node zone

If control node zone has more than one control-node, selection of control-node for BGP Peering is
random in a control node zone

Using just one control node in each zone, VNF can predictably establish bgp-peering to that
particular control node.

83

BGPaaS Use Cases

This section provides example scenarios for implementing BGPaa$S with Contrail.

Dynamic Tunnel Insertion Within a Tenant Overlay

Various applications need to insert dynamic tunnels into virtual networks. Virtual network functions
(VNFs) provide the function of tunnel termination. Tunnel termination types vary across application
types, such as business VPN, mobility small site backhaul, VPC, and the like. The key requirement is that
tunnels need to insert dynamically new network reachability information into the virtual network. The
predominant methods of tunnel network reachability insertion use BGP.

BGPaaS allows the migration of brownfield VNFs into Contrail, preserving the application behavior and
requirement for BGP, without rewriting the application.

Figure 10 on page 83 shows the need to insert a dynamic tunnel into a virtual network.

Figure 10: Dynamic Tunnel Insertion

VN Untrusted VN Trusted

Internet
Client

300441

Tunnel (i.e. IPsec)

Dynamic Network Reachability of Applications

The Domain Name System (DNS) is a widespread application that uses BGP as a mechanism to tune
reachability of its services, based on metrics such as load, maintenance, availability, and the like. As DNS
services are migrated to environments using overlays, a mechanism to preserve the existing application
behavior and requirements is needed, including the ability to announce and withdraw reachability to the
available application.

This requirement is not limited to DNS. Other applications, such as virtualized evolved packet core
(VEPC) and others, use BGP as a mechanism for network reachability based on availability and load.

Liveness Detection for High Availability

Various keepalive mechanisms for tenant reachability have been provided by network components such
as BGP, OSPF, PING, VRRP, BFD, or application-specific mechanisms. With BGP on the vRouter agent,
BGP can be used to provide a liveness detection mechanism between the tenant on the local compute
node and the services that the specific tenant VM is providing.

Configuring BGPaa$ using VNC API

To configure BGPaa$S using VNC APIs:

1. Access the default project.
default_project = self._vnc_lib.project_read(fq_name=[u'default-domain', ‘bgpaas-tenant’])
2. Create a BGPaaS object.
bgpaas_obj = BgpAsAService(name=‘bgpaas_1’, parent_obj=default_project)
3. Attach the BGP object to a precreated virtual machine interface.
bgpaas_obj.add_virtual_machine_interface(vmi)
4. Set the ASN. It must be an eBGP session.

bgpaas_obj.set_autonomous_system('65000')
If the ASN is not set, the primary instance IP will be chosen.

bgpaas_obj.set_bgpaas_ip_address(u’10.1.1.5")
5. Set session attributes.

bgp_addr_fams = AddressFamilies(['inet’, ‘inet6’]) bgp_sess_attrs =
BgpSessionAttributes(address_families=bgp_addr_fams,hold_time=60)

bgpaas_obj.set_bgpaas_session_attributes(bgp_sess_attrs) self._vnc_lib.bgp_as_a_service_create(bgpaas_obj)
To delete a BGPaaS object, follow the given code:

fg_name=[u'default-domain', ‘bgpaas-tenant’, ‘bgpaas_1’] bgpaas_obj =

self._vnc_lib.bgp_as_a_service_read(fq_name=fq_name) bgpaas_obj.del_virtual_machine_interface(vmi)

self._vnc_lib.bgp_as_a_service_update(bgpaas_obj) self._vnc_lib.bgp_as_a_service_delete(id=bgpaas_obj.get_uuid())

Configuring BGPaa$S from Contrail Web Ul

To configure BGPaa$ within a tenant:

85

1. Select Configure > Services > BGP as a Service from the Contrail Web User Interface (Ul). The BGP
as a Service page is displayed.

2. Click the + button on the BGPaaS page. The Create BGP as a Service page is displayed. See Figure 11

on page 85.

Figure 11: Create BGP as a Service

Create BGP as a Service

Name IP Address

bgpaas-1 11.95.197.1

Autonomous System Address Family

50000 inet x inet6 x

Virtual Machine Interface(s)

7d8fb01c-26af-4128-b030-ab446d3dale5 (11.95.197.1)

~ Advanced Options

Hold Time Admin State

%

Cancel || Save

3. In the Create BGPaa$ page, populate the fields with the following values to create your service.

Fields

Name

IP Address

Virtual Machine Interface

Address Family

Autonomous System

Advanced Options

Description

Enter a name for the BGP service The name can be a unique string of not more
than 15 characters that contains alphanumeric characters and hyphen (-).

Enter the IPv4 or IPv6 source-address on the BGPaaS VM.

Enter IP address of a virtual machine interface.

Choose inet or inet6 from the Address Family list according to your requirement.

Enter AS number in the range 1- 65,534.

(Continued)

Fields Description

Hold Time Enter the maximum time a BGP session remains active if no Keepalives are
received.

Admin State Select the Admin state box to enable the state as UP and deselect the box to

disable the state to DOWN.

4. Click Save to create the BGP object.

Configuring BGPaa$S from Contrail Command

To configure BGPaa$S within a tenant:

1. Select Services > BGPaaS. from the Contrail Command user interface (Ul). The BGPaaS page is
displayed.

2. Click the Create button on the BGPaaS page. The Create BGPaa$ page is displayed. See Figure 12 on
page 87.

Figure 12: Create BGPaa$

SERVICES » BGPaaS + Create BGPaa$ ‘ B3 admin ‘ & admin ¥

~ Advanced Options

(o)

3. In the Create BGPaaS page, populate the fields with the following values to create your BGP object.

Fields Description

Name Enter a name for the BGP service. The name can be a unique string of not more
than 15 characters that contains alphanumeric characters and hyphen (-).

Virtual Machine Enter IP address of a virtual machine interface.

Interface

Address Family Choose inet or inet6 from the Address Family list according to your requirement.
Autonomous System Enter autonomous system (AS) number in the range of 1-65,535.

If you enable 4 Byte ASN in Global Config, you can enter 4-byte AS number in the
range of 1-4,294,967,295.

Advanced Options

(Continued)

Fields

IP Address

Shared

Route Origin

Route Origin Override

Service Health Check

Hold Time

Loop Count

Local ASN

AS Override

Description

Enter the IPv4 or IPv6 source-address on the BGPaaS VM.

Select this check box to link all VMIs with the common bgp-router object. If this
box is not selected, each virtual machine interface individually links to its own
bgp-router object.

e Choose BGP from the list if the route originated on a BGP router.

o Choose EGP from the list if the route originated from an External Gateway
Protocols (EGP) session.

e Choose Incomplete from the list if the Network Layer Reachability
Information (NLRI) is learned through methods such as redistribution of the
routes into BGP, and not through BGP.

Select this check box to override the origin attribute of the advertised route origin
into Incomplete.

Select any Service Health Check object from the list according to your
requirement.

Enter the maximum time a BGP session remains active if no Keepalives are
received.

Enter the number of times the same ASN can be seen in a route-update. The
route is discarded when the loop count is exceeded.

Enter autonomous system (AS) number in the range of 1-65,535.

If you enable 4 Byte ASN in Global Config, you can enter 4-byte AS number in the
range of 1-4,294,967,295.

Select this check box to replace the AS number of the control node with the AS
number of the tenant VM.

(Continued)

Fields Description

Use IPv4-mapped IPvé Select this check box to use IPv4-mapped IPvé6 format as the next hop instead of

Nexthop the IPv4 subnet's default gateway.

Suppress Route Select this check box to prevent advertisement of routes to tenant VM.
Advertisement

Primary Control Node You can choose the control-node with which the BGPaaS VM can perform a BGP
Zone session.

Secondary Control Node = You can choose the control-node with which the BGPaaS VM can perform a BGP
Zone session.

4. Click the Create button to create the BGP object.

Fat Flows

IN THIS SECTION

Understanding Fat Flow | 90
Configuring Fat Flow from Contrail Command | 91

Limitations of Fat Flow | 104

Service Providers provide services to several subscribers and as a result, large volume of flows are
processed at the Contrail vRouter-level and Contrail Agent-level. Processing large volume of flows
affects the flow setup rate and increases latency. Fat flow helps reduce the number of flows that are
handled by Contrail.

Understanding Fat Flow

Contrail Networking optimizes the number of flows that are sent or received by a virtual machine by
reusing a flow. A single flow pair or a fat flow comprises of a single forward and single reverse flow
entry. A fat flow is used for a number of sessions between two end points that use the same application
protocol.

For example, multiple DNS sessions from a client to a server can be set up by using a single flow pair. In
Contrail Neyworking, the flow key can be reduced from five tuples to two tuples, which consists of
source IP address, destination IP address, server port, and internet protocol. This can be configured by
specifying the fat flow protocol on the virtual machine interface. The client port, however, is not used in
the flow key.

You can configure fat flows by specifying the list of fat-flow protocols on a virtual machine interface. For
each such application protocol, the list contains the protocol and port pairs. If you want to enable the fat
flow feature on the client side, the configuration must be applied on the client virtual machine interface
as well. Contrail Networking also enables you to configure fat flow at the virtual network (VN) level.
When configured at the VN level, the fat flow configuration is applied to all VMIs under the configured
VN.

Contrail Networking supports aggregation of multiple flows into a single flow by ignoring source and
destination ports or IP addresses, with the following possible options:

e ignore source and/or destination ports

e ignore source and/or destination IP addresses

e ignore a combination of source and/or destination ports and IP addresses
Prefix-Based Fat Flow

Contrail Networking enables you to configure the Ignore Address field that reduces the number of flows.
You can also create fat flows by configuring prefix length. Service provider subscribers in a common IP
address pool can access any IP address in the pool. Contrail Networking also supports prefix-based fat
flows. Prefix-based fat flow supports mask processing where you can create flows based on a group of
subscribers. This ensures that continuous flows in the same subnet are grouped into a common fat flow
that is configured with the same protocol and port numbers. You can apply prefix length-based fat flow
on source |IP address while the Ignore Address option is configured on the destination IP address,
resulting in a reduction of flow processing.

For example, you use prefix-based fat flow to create one flow for 255 IP end points in a /24 subnet
(aggregate) mask or one flow for 65,535 IP end points in a /16 subnet (aggregate) mask. This results in a
huge reduction on the number of flows created, and a corresponding increase in the number of traffic
flows going through vRouter without being limited by vRouter flow setup rate.

I Configuring Fat Flow from Contrail Command

You use the Contrail Command user interface (Ul) to configure fat flow.
You can configure fat flow from:

e Overlay>Ports or

e Overlay>Virtual Networks

Configuring Fat Flow from Overlay>Ports

To configure fat flow from Overlay>Ports:

1. Click Overlay>Ports.
The Ports page is displayed. See Figure 13 on page 91.

Figure 13: Ports Page

OVERLAY » Ports | @Default > q&ladmin hd ‘ Cog admin
NAME uuID TA.. N.. Fl... FL.. DE...
fa085e76-e0b7-43cb-8caT-e3d56f03c6aa fa085e76-e0b7-43cb-8ca7-e3d56f03c6aa - Mi... 2. - b... A
left_vmi_1 1045e12f-6164-46ad-8hce-7574b629ed4c - le... 1... - n...
left_vmi_10 a2d17fec-53b0-4636-8e71-1299f5b45971 - le... 1... - n...
left_vmi_11 8124fe0a-3c01-4711-a343-1e4b19c3b5b2 - le... 1... - n..
left_vmi_12 9277bd19-844b-4€22-9097-f584e42994aa - le... 1. - n..

2. Select the port you want to configure by selecting the check box next to the name of the port, and
then click the Edit icon.

The Edit Port page is displayed. See Figure 14 on page 92.

91

Figure 14: Edit Port Page

OVERLAY » Ports » Edit Port

Port Tags Permissions
Port Name™*
left_vmi_12
Netwaork™ Security Group
¥ Expand All

» Advanced Options

» DHCP Option(s)

» Fat Flow(s)

s N

3. Click Fat Flow(s) to display the fields that you can edit.

You can edit the fields listed in Table 7 on page 93.

Floating IPs

@ Default > [E admin

92

Table 7: Edit Fat Flow(s)

Field

Protocol

Port

Action

Change the protocol that is currently
being used to any one of the following
protocols given in the Protocol list:

e ICMP
e SCTP
e TCP (default)
e UDP

You can select ICMP for both IPv4 and
IPvé6 traffic.

Edit the Port field to any value between O
through 65,535.

Enter O to ignore both source and
destination port numbers.

NOTE: If you select ICMP as the protocol,
the PORT field is not enabled.

Table 7: Edit Fat Flow(s) (Continued)

Field

Ignore Address

Prefix Aggregation Source Source Subnet

Action

Change the Ignore Address field to any
one of the following options:

e Destination—If you choose
Destination as the option, Prefix
Aggregation Source fields are only
enabled. See Figure 15 on page 96.

e None (default)—If you choose None as
the option, both Prefix Aggregation
Source and Prefix Aggregation
Destination fields are enabled. See
Figure 16 on page 97.

e Source—If you choose Source as the
option, Prefix Aggregation Destination
fields are only enabled. See Figure 17
on page 97.

NOTE: Fat flow in Contrail Networking
supports aggregation of multiple flows
into a single flow by ignoring source and
destination ports or IP addresses.

Edit source IP subnet.

Ensure that the source subnet of the flows
match. For example, to create fat flows
with 192.0.2.0/24 as the subnet, enter
192.0.2.0/24 in the Source Subnet field.

Valid range of the subnet mask: /8
through /32.

For more information, refer to the
Understanding Source and Destination
section.

Table 7: Edit Fat Flow(s) (Continued)

Field

Prefix

Prefix Aggregation Destination Destination Subnet

Action

Edit source subnet prefix length.

The prefix length you enter is used to
aggregate flows matching the source
subnet. For example, when the source
subnet is 10.1.0.0/16 and prefix length is
24, the flows matching the source subnet
is aggregated to 10.1.x.0/24 flows.

Valid range of the prefix length: /(subnet
mask of the source subnet) through /32.

For more information, refer to the
Understanding Source and Destination
section.

NOTE: Contrail Networking enables you
to configure subnet and prefix length.

Edit destination IP address.

Ensure that the destination subnet of the
flows match. For example, to create fat
flows with 192.0.2.0/24 as the subnet,
enter 192.0.2.0/24 in the Destination
Subnet field.

Valid range of the subnet mask: /8
through /32.

For more information, refer to the
Understanding Source and Destination
section.

Table 7: Edit Fat Flow(s) (Continued)

Field

Prefix

Figure 15: Ignore Address—Destination

Fat Flow(s)
Protocol Port*
TCP 3002

Prefix Aggregation Source

Source Subnet Prefix

192.0.2.0/24 24

Ignore Address

Destination

Action

Edit destination subnet prefix length.

The prefix length you enter is used to
aggregate flows matching the destination
subnet. For example, when the destination
subnet is 10.1.0.0/16 and prefix length is
24, the flows matching the destination
subnet is aggregated to 10.1.x.0/24 flows.

Valid range of the prefix length: /(subnet
mask of the destination subnet)
through /32.

For more information, refer to the
Understanding Source and Destination
section.

NOTE: Contrail Networking enables you
to configure subnet and prefix length.

Figure 16: Ignore Address—None

Fat Flow(s)
Protocol Port™ Ignore Address
TCP 3002

None

Prefix Aggregation Source Prefix Aggregation Destination

Source Subnet Prefix Destination Subnet Prefix

192.0.2.0/24 24 198.51.100.0/24 24

Figure 17: Ignore Address—Source

Fat Flow(s)
Protocol Port™ Ignore Address
TCP 3002

Source

Prefix Aggregation Destination
Destination Subnet Prefix
192.0.2.0/24 24

4. Click Save to update new configuration information.

NOTE: Understanding Source and Destination

e Source—For packets from the local virtual machine, source refers to the source IP of the
packet. For packets from the physical interface, source refers to the destination IP of the
packet.

[]

Destination—For packets from the local virtual machine, destination refers to the destination

IP of the packet. For packets from the physical interface, destination refers to the source IP of
the packet.

Configuring Fat Flow from Overlay>Virtual Networks

98

Contrail Networking also enables you to configure fat flow at the virtual network (VN) level. When you
configure fat flow from the VN level, the fat flow configuration is applied to all VMIs under the
configured VN.

To configure fat flow from Overlay>Virtual Networks:
1. Click Overlay>Virtual Networks.

The Virtual Networks page is displayed. See Figure 18 on page 98.

Figure 18: Virtual Networks Page

OVERLAY » Virtual Networks ‘ @ Default > [Eadmin -

All networks Summary Menitoring

AME ITERFACES 82 256 % 128 a]
__contrail_lr_internal_vn_02fobdde-d1b0-4f... 0
__contrail_lr_internal_vn_036481f1-0f7e-42... 0
__contrail_lr_internal_vn_03d96dd6-e21e-4... 0
__contrail_lr_internal_vn_0418884d-db3a-4... 0
__contrail_lr_internal_vn_041fc6b7-9fbc-4fe... 0
__contrail_lr_internal_vn_051630b2-0d98-4...]
__contrail_lr_internal_vn_06053335-84ac-42... 0

2. Select the virtual network you want to edit by selecting the check box next to the name of the virtual
network, and then click the Edit icon.

The Edit Virtual Network page is displayed. See Figure 19 on page 99.

99

Figure 19: Edit Virtual Network Page

OVERLAY » Virtual Networks » Edit Virtual Network @ Default > [Eladmin v

Network Tags Permissions

User defined subnet only

VxLAN Network Identifier
115

Subnets

+Add

¥ Expand All

+ Floating IP pools

» Fat Flows

» Routing, Bridging and Policies

» Advanced

<

3. Click Fat Flows to display the fields that you can edit.

You can edit the fields listed in Table 8 on page 100.

Table 8: Edit Fat Flows

Field

Protocol

Port

Action

Change the protocol that is currently
being used to any one of the following
protocols given in the Protocol list:

e ICMP
e SCTP
e TCP (default)
e UDP

You can select ICMP for both IPv4 and
IPvé6 traffic.

Edit the Port field to any value between O
through 65,535.

Enter O to ignore both source and
destination port numbers.

NOTE: If you select ICMP as the protocol,
the PORT field is not enabled.

Table 8: Edit Fat Flows (Continued)

Field

Ignore Address

Prefix Aggregation Source Source Subnet

Action

Change the Ignore Address field to any
one of the following options:

e Destination—If you choose
Destination as the option, Prefix
Aggregation Source fields are only
enabled. See Figure 15 on page 96.

e None (default)—If you choose None as
the option, both Prefix Aggregation
Source and Prefix Aggregation
Destination fields are enabled. See
Figure 16 on page 97.

e Source—If you choose Source as the
option, Prefix Aggregation Destination
fields are only enabled. See Figure 17
on page 97.

NOTE: Fat flow in Contrail Networking
supports aggregation of multiple flows
into a single flow by ignoring source and
destination ports or IP addresses.

Edit source IP address.

Ensure that the source subnet of the flows
match. For example, to create fat flows
with 192.0.2.0/24 as the subnet, enter
192.0.2.0/24 in the Source Subnet field.

Valid range of the subnet mask: /8
through /32.

For more information, refer to the
Understanding Source and Destination
section.

Table 8: Edit Fat Flows (Continued)

Field

Prefix

Prefix Aggregation Destination Destination Subnet

Action

Edit source subnet prefix length.

The prefix length you enter is used to
aggregate flows matching the source
subnet. For example, when the source
subnet is 10.1.0.0/16 and prefix length is
24, the flows matching the source subnet
is aggregated to 10.1.x.0/24 flows.

Valid range of the prefix length: /(subnet
mask of the source subnet) through /32.

For more information, refer to the
Understanding Source and Destination
section.

NOTE: Contrail Networking enables you
to configure subnet and prefix length.

Edit destination IP address.

Ensure that the destination subnet of the
flows match. For example, to create fat
flows with 192.0.2.0/24 as the subnet,
enter 192.0.2.0/24 in the Destination
Subnet field.

Valid range of the subnet mask: /8
through /32.

For more information, refer to the
Understanding Source and Destination
section.

Table 8: Edit Fat Flows (Continued)

Field Action

Prefix Edit destination subnet prefix length.

The prefix length you enter is used to
aggregate flows matching the destination
subnet. For example, when the destination
subnet is 10.1.0.0/16 and prefix length is
24, the flows matching the destination
subnet is aggregated to 10.1.x.0/24 flows.

Valid range of the prefix length: /(subnet
mask of the destination subnet)
through /32.

For more information, refer to the
Understanding Source and Destination
section.

NOTE: Contrail Networking enables you
to configure subnet and prefix length.

4. (Optional) If you have not already added fat flow information, you can add information by clicking
+Add. You can enter information as given in Table 8 on page 100.

5. Click Save to add new configuration information.

NOTE:

e A service virtual machine (SVM) is a virtualized network function (VNF) that is a part of a
service chain. Fat flow configuration on SVM is supported when:

e Left virtual machine interface: Ignore source address and/or Prefix aggregation destination

e Right virtual machine interface: Ignore destination address and/or Prefix aggregation
source

e Fat flow on service virtual machine interfaces (SVMIs) in scale-out mode is supported when all
SVMIs are on the same compute, and not on the source or destination compute.

e Fat flow configuration across all SVMs must be consistent.

Limitations of Fat Flow

The following are the limitations of fat flow.
e Drop in packet per second (pps) performance depends on the number of rules or configuration.

e Network policy configuration must be consistent with fat flow configuration.

Use Case: Configuring Fat Flows from Contrail
Command

IN THIS SECTION

Overview | 105
Prerequisites | 107
Getting Started | 108
Configuration | 109

This topic provides step-by-step instructions to create an in-network service chain and configure fat
flows.

A service chain is a set of services that are connected across networks. A service chain consists of
service instances, left and right virtual networks, and a service policy attached to the networks. In an in-
network service chain, packets are routed between service instance interfaces. When a packet is routed
through the service chain, the source address of the packet entering the left interface of the service
chain and source address of the packet exiting the right interface is the same. For more information, see
Service Chaining. You can also configure fat flows while you create an in-network-NAT or transparent
service chain.

Overview

IN THIS SECTION

Ignore Address - Source, Destination | 105

Ignore Address - None | 106

Service Providers provide services to several subscribers and as a result, large volume of flows are
processed at the Contrail vRouter-level and Contrail Agent-level. Processing large volume of flows
affects the flow setup rate and increases latency. Fat flow helps reduce the number of flows that are
handled by Contrail.

Contrail Networking enables you to configure the Ignore Address field that reduces the number of flows.
You can also create fat flows by configuring prefix length. Service provider subscribers in a common IP
address pool can access any IP address in the pool. Contrail Networking also supports prefix-based fat
flows. Prefix-based fat flow supports mask processing, where you can create flows based on a group of
subscribers. This ensures that continuous flows in the same subnet are grouped into a common fat flow
that is configured with the same protocol and port numbers. You can apply prefix length-based fat flow
on source IP address while the Ignore Address option is configured on the destination IP address,
resulting in a reduction of flow processing.

Topology Information
These topologies provide information on how you can configure the Ignore Address field to reduce the

number of flows.

Ignore Address - Source, Destination

Figure 20 on page 106 depicts a scenario where you have selected the following options from the
Ignore Address list.

e Destination—for the test-left-VN (subscribers network).

e Source—for the test-right-VN (service provider network).

Figure 20: Ignore Source, Destination

Fat flow rule

Protocol - TCP

Port -0

Aggregate Source - 192.0.2.0/24
Ignore Destination

[

Fat flow rule

Protocol - TCP

Port - 0

Ignore Source

Aggregate Destination - 192.0.2.0/24

Service Provider

Subscribers
(Incoming)

Original Flows -
HTTP(192.0.2.1, 198.51.100.1, 6, 32768, 80)

===
Service VN

.. FlowSetup

Network
(Outgoing)

HTTP (192.0.2.2, 198.51.100.1, 6, 10000, 80)
HTTP (192.0.2.100, 198.51.100.1, 6, 20000, 80)

Fat Flows created in Contrail vRouter
(192.0.2.0, 0, 6,0,0%) - Forward flow

(0, 192.0.2.0, 6,0,0%) - Reverse flow
0* = any

©
o
K
(=3
(=]
!
oo

Understanding Source and Destination

e Source—For packets from the local virtual machine, source refers to the source IP of the packet.

e Destination—For packets from the local virtual machine, destination refers to the destination IP of
the packet.

By choosing Destination in the subscribers network, the Prefix Aggregation Source fields are enabled in
the network. And by choosing Source in the service providers network, the Prefix Aggregation
Destination fields are enabled in the network. When you configure Ignore Address, Contrail Networking
helps you to aggregate multiple flows into a single flow by ignoring source and/or destination ports.

To create fat flows in subscribers network with 192.0.2.0/24 as the subnet, enter 192.0.2.0/24 in the
Source Subnet field and 24 in the Prefix field. The prefix length, 24, is used to aggregate flows matching
the source subnet. The flows matching the source subnet is aggregated to 192.0.2.X/24 flows.

Similarly to create fat flows in service provider network with 192.0.2.0/24 as the subnet, enter
192.0.2.0/24 in the Destination Subnet field and 24 in the Prefix field. The prefix length, 24, is used to
aggregate flows matching the destination subnet. The flows matching the destination subnet is
aggregated to 192.0.2.X/24 flows.

Ignore Address - None

Figure 21 on page 107 depicts a scenario where you have selected None from the Ignore Address list.

Figure 21: Ignore None

Fat flow rule

Protocol - TCP

Port - 0

Aggregate Source - 192.0.2.0/24
Aggregate Destination - 198.51.100.0/24

Fat flow rule

Protocol - TCP

Port - 0

Aggregate Source - 198.51.100.0/24
Aggregate Destination - 192.0.2.0/24

. —— Service Provider
Subscribers ===
. (Incoming) " Network
: Service VN (Outgoing)
H Flow Setup

Original Flows -

HTTP(192.0.2.1, 198.51.100.1, 6, 32768, 80)
HTTP(192.0.2.2, 198.51.100.1, 6, 10000, 80)
HTTP (192.0.2.100, 198.51.100.1, 6, 20000, 80)

Fat Flows created in Contrail vRouter
(192.0.2.0, 198.51.100.0, 6,0,0*) - Forward flow
(198.51.100.0, 192.0.2.0, 6,0,0*) - Reverse flow
0* = any

<
o
K
(=3
(=]
!
oo

By choosing None in the subscribers network and service providers network, the Prefix Aggregation
Destination fields and Prefix Aggregation Source fields are enabled in both networks.

In this scenario, the subnet that you enter in the Source Subnet field of the subscribers network matches
the subnet that you enter in Destination Subnet field of the service providers network. Similarly, the
subnet that you enter in the Destination Subnet field of the subscribers network matches the subnet
that you enter in the Source Subnet field of the service providers network.

Prerequisites

Before you begin, ensure that the following prerequisites are met.
¢ Hardware Requirements
e Processor: 4 core x86

Memory: 32GB RAM

Storage: at least 128GB hard disk

e Software Requirements

e Contrail Networking Release 5.0 or later

e Create three network IPAMs (IP Address Management).

You can create a new Network IPAM by following these steps:

1. Click Overlay>IPAM.

The IP Address Management page is displayed.
2. Click Create to create a new network IPAM.
3. In the Name field, enter a name for the IPAM.

For left network, enter test-left-IPAM. For right network, enter test-right-IPAM. For management
network, enter mgmt-right-IPAM.

4, Select Default from the DNS list.

5. Enter valid IP address in the NTP Server IP field.
6. Enter domain name in the Domain Name field.
7. Click Create.

The IP Address Management page is displayed.

Getting Started

The instructions provided in the topics given below will help you to
1. Create the following virtual networks:
e Left Virtual Network
e Right Virtual Network
e Management Virtual Network
For steps to create virtual networks, see "Create Virtual Network" on page 110.
2. Create three virtual machines.
Each virtual machine must be created with left, right, and management interfaces.
e Left Virtual Machine
e Right Virtual Machine
e Management Virtual Machine

For steps to create virtual machines by using OpenStack, see "Create Virtual Machines by using
OpenStack" on page 111.

For steps to create virtual machines by using Contrail Command, see "Create Virtual Machines by
using Contrail Command" on page 112.

3. Create a service template.

For steps to create a service template, see "Create Service Template" on page 113.
4, Add a service instance.

For steps to add a service instance, see "Add Service Instance" on page 114.
5. Configure fat flows for these virtual networks.

o Left Virtual Network

e Right Virtual Network

For steps to configure fat flows, see "Configure Fat Flow" on page 115.
6. Create a service policy for the left virtual network and right virtual network.

For steps to create a service policy, see "Create Service Policy" on page 118.
7. Attach the service policy to the left virtual network and right virtual network.

For steps to attach a service policy to a virtual network, see "Attach Service Policy" on page 119.
8. Ping right virtual machine from left virtual machine.

For steps to ping the right virtual machine by using OpenStack, see "Launch a Virtual Machine from
OpenStack" on page 119.

For steps to ping the right virtual machine by using Contrail Command, see "Launch a Virtual
Machine from Contrail Command" on page 120.

Configuration

IN THIS SECTION

Create Virtual Network | 110
Create Virtual Machine | 111
Create Service Template | 113
Add Service Instance | 114
Configure Fat Flow | 115

Create Service Policy | 118

Attach Service Policy | 119

Launch Virtual Machine | 119

These topics provide instructions to configure fat flows by creating an in-network service chain.

Create Virtual Network

Use the Contrail Command Ul to create a left virtual network, right virtual network, and management
virtual network.

To create a left virtual network:

1. Click Overlay>Virtual Networks.
The All Networks page is displayed.
2. Click Create to create a network.
The Create Virtual Network page is displayed.
3. In the Name field enter test-left-VN for the left virtual network.
4. Select (Default) User defined subnet only from the Allocation Mode list.
5. Click +Add in the Subnets section to add subnets.
In the row that is displayed,

a. Click the arrow in the Network IPAM field and select left-ipam for the left virtual network.

For the right virtual network, select right-ipam and for the management network, select mgmt-
ipam.

NOTE: Management network is not used to route packets. This network is used to help
debug issues with the virtual machine.

6. Enter 192.0.2.0/24 in the CIDR field.
7. Click Create.
The All Networks page is displayed. All virtual networks that you created are displayed in this page.

Repeat steps 2 through 7 to create the right virtual network (test-right-VN) and management virtual
network (test-mgmt-VN).

Create Virtual Machine

IN THIS SECTION

Create Virtual Machines by using OpenStack | 111

Create Virtual Machines by using Contrail Command | 112

You use OpenStack or Contrail Command to create virtual machines for left, right, and management
networks. You create the virtual networks with left, right, and management interfaces.

Create Virtual Machines by using OpenStack

Follow these steps to create left virtual machine by using OpenStack.

1.

Click Project>Compute>Instances.

The Instances page is displayed.

. Click Launch Instance to create an instance.

The Details tab of the Launch Instance page is displayed.

. Enter test-left-VM for the left virtual machine in the Instance Name field and click the Source tab.

The Source tab of the Launch Instance page is displayed.

Select an vSRX image from the Available list by clicking the add (+) icon next to the image file.

5. Click the Flavor tab.

The Flavor tab of the Launch Instance page is displayed.

NOTE: vSRX image with M1.large flavor is recommended for in-network virtual machine.

Select M1.large as the flavor from the Available list by clicking the add (+) icon next to the flavor
name.

Click the Networks tab.
The Network tab of the Launch Instance page is displayed.

Select a network you want to associate with the virtual machine instance by clicking the add (+) icon
next to the network name.

For the left virtual machine, select test-left-VN. For the right virtual machine, select test-right-VN.
For the management virtual machine, select test-mgmt-VN.

. Click Launch Instance to launch the virtual machine instance.

The Instances page is displayed.

All virtual machine instances that you created are displayed on the Instances page.

Repeat steps 2 through 9 to create the right virtual machine (test-right-VM) and management virtual
machine (test-mgmt-VM).

Create Virtual Machines by using Contrail Command

Follow these steps to create a left virtual machine by using the Contrail Command Ul.

1. Click Workloads > Instances.
The Instances page is displayed.
2. Click Create.
The Create Instance page is displayed.
3. Select Virtual Machine option button as the serve type.
Enter test-left-VM for the left virtual machine in the Instance Name field.

5. Select Image as the boot source from the Select Boot Source list.

NOTE: vSRX image with M1.large flavor is recommended for in-network virtual machine.

Select vSRX image file from the Select Image list.
Select M1.large flavor from the Select Flavor list.

Select the network you want to associate with the left virtual machine by clicking > next to the
name of the virtual machine listed in the Available Networks table.

For the left virtual machine, select test-left-VN. For the right virtual machine, select test-right-VN.
For the management virtual machine, select test-mgmt-VN.

The network is added to the Allocated Networks table.

9. Select nova from the Availability Zone list.

NOTE: You can choose any other availability zone.

10. Select 5 from the Count (1-10) list.

NOTE: You can choose any value from 1 through 10.

11. Click Create to launch the left virtual machine instance.

The Instances page is displayed. The virtual machine instances that you created are listed on the
Instances page.

Repeat steps 2 through 11 to create right virtual machine instance (test-right-VM) and management
virtual machine instance (test-mgmt-VM).

Create Service Template
Follow these steps to create a service template by using the Contrail Command Ul:

1. Click Services>Catalog.

The VNF Service Templates page is displayed.
2. Click Create.

The Create VNF Service Template page is displayed.
3. Enter test-service-template in the Name field.

4. Select v2 as the version type.

NOTE: Contrail Networking supports only Service Chain Version 2 (v2).

Select Virtual Machine as the virtualization type.
Select In-Network as the service mode.

Select Firewall as the service type.

© N o WU

From the Interface section,

o Select left as the interface type from the Interface Type list.
e Click + Add.

The Interface Type list is added to the table.

Select right as the interface type.
e Click + Add again.

Another Interface Type list is added to the table.

Select management as the interface type.

NOTE: The interfaces created on the virtual machine must follow the same sequence as that
of the interfaces in the service template.

114

Figure 22: Adding Interfaces

SERVICES » Catalog » Create VNF Service Template

Service Template Tags Permissions

Name™
test-service-template
Version™ Virtualization Type”*
v2 Virtual Machine
Service Mode™
In-Network
Service Type™

Firewall

Interface
Interface Type

left

Interface Type

‘ right

9. Click Create to create the service template.

The VNF Service Templates page is displayed. The service template that you created is displayed in
the VNF Service Templates page.

Add Service Instance
Follow these steps to add a service instance by using the Contrail Command Ul:

1. Click Services>Deployments.

The VNF Service Instances page is displayed.
2. Click Create.

The Create VNF Service Instance page is displayed.
3. Enter test-service-instance in the Name field.

4. Select test-service-template - [in-network, (left, right, management)] - v2 from the Service Template
list.

The Interface Type and Virtual Network fields are displayed.

5. Select the virtual network for each interface type as given below.

o |eft—Select the left virtual network (test-left-VN) that you created.
e right—Select the right virtual network (test-right-VN) that you created.

¢ management—Select the management virtual network (test-management-VN) that you created.

Figure 23: Adding Service Instance

SERVICES » Deployments » Create VNF Service Instance

Service Instances Tags Permissions

Name™®

test-service-instance

Service Template™

test-service-template - ...

Interface Type Virtual Network™®
left test-left-VN
Interface Type Virtual Network™
right test-right-VN
Interface Type Virtual Network*

management testmgmt-VN
¥ Expand All

» Port Tuples

6. Click Create to create the service instance.

The VNF Service Instances page is displayed. The service instance that you created is displayed in the
VNF Service Instances page.

Configure Fat Flow

In Contrail Networking, you can configure fat flow at the virtual network (VN) level. When you configure
fat flow from the VN level, the fat flow configuration is applied to all VMIs under the configured VN.

For more information, see "Fat Flows" on page 89.

115

Follow these steps to configure fat flows by using the Contrail Command UL.

1.

Click Overlay>Virtual Networks.
The Virtual Networks page is displayed.

Select test-left-VN by selecting the check box next to the name of the virtual network, and then click
the Edit icon.

The Edit Virtual Network page is displayed.

NOTE: You must configure fat flows on all the virtual networks that you created.

. Click Fat Flow(s) to display the fields that you can edit.

You can edit the fields listed in Table 9 on page 116.

Table 9: Edit Fat Flow(s)

Field Action

Protocol Select ICMP from the Protocol list.

You can select ICMP for both IPv4 and
IPvé traffic.

Port Edit the Port field to any value between O
through 65,535.

Enter O to ignore both source and
destination port numbers.

NOTE: If you select ICMP as the protocol,
the PORT field is not enabled.

Ignore Address Select None from the Ignore Address list.

For more information on Destination and
Source options, see "Fat Flows" on page
89.

NOTE: Fat flow in Contrail Networking
supports aggregation of multiple flows
into a single flow by ignoring source and
destination ports or IP addresses.

Table 9: Edit Fat Flow(s) (Continued)

Field

Prefix Aggregation Source Source Subnet

Prefix

Prefix Aggregation Destination Destination Subnet

Prefix

Figure 24: Configure Fat Flows for test-left-VN

Fat Flows
Protocol Port® Ignore Address
ICMP 0 None
Prefix Aggregation Source Prefix Aggregation Destination
Source Subnet Prefix Destination Subnet

192,0.2.0/24 24 198.51.100.0/24

Action

For test-left-VN, enter 192.0.2.0/24 in the
Source Subnet field. See Figure 24 on
page 117.

For test-right-VN, enter 198.51.100.0/24
in the Source Subnet field. See Figure 25
on page 118.

Enter 24 in the Prefix field.

For test-left-VN, enter 198.51.100.0/24 in
the Source Subnet field. See Figure 24 on
page 117.

For test-right-VN, enter 192.0.2.0/24 in
the Source Subnet field. See Figure 25 on
page 118.

Enter 24 in the Prefix field.

Prefix
24

Figure 25: Configure Fat Flows for test-right-VN

Fat Flows

Protocol Port™ Ignore Address
ICMP 0 None

Prefix Aggregation Source Prefix Aggregation Destination

Source Subnet Prefix Destination Subnet Prefix
198.51.100.0/24 24 192.0.2.0/24 24

4. Click Save to update new configuration information.

The All Networks page is displayed.

Repeat steps 2 through 4 to configure fat flows for the test-right-VN.

Create Service Policy
Follow these steps to create a service policy by using the Contrail Command Ul.

1. Click Overlay > Network Policies.

The Network Policies page is displayed.
2. Click Create.

The Network Policy tab of the Create Network Policy page is displayed.
3. Enter test-network-policy in the Policy Name field.

4. In the Policy Rule(s) section,

e Select pass from the Action list.

e Select ANY from the Protocol list.

e Select Network from the Source Type list.

e Select the test-left-VN from the Source list.

¢ In the Source Port field, leave the default option, Any, as is.
e Select < > from the Direction list.

¢ Select Network from the Destination Type list.

e Select the test-right-VNfrom the Destination list.

¢ In the Destination Ports field, leave the default option, Any, as is.

5. Click Create to create the service policy.

The Network Policies page is displayed. All policies that you created are displayed in the Network
Policies page.

Attach Service Policy

Follow these steps to attach a service policy:

1. Click Overlay>Virtual Networks.
The All networks page is displayed.

2. Attach service policy to the left virtual network (test-left-VN) and right virtual network (test-right-
VN) that you created.

To attach service policy,
a. Select the check box next to the name of the virtual network.

b. Hover over to the end of the selected row and click the Edit icon.

The Edit Virtual Network page is displayed.

c. Select the network policy from the Network Policies list.
3. Click Save to save the changes.

The Virtual Networks page is displayed.

Launch Virtual Machine

IN THIS SECTION

Launch a Virtual Machine from OpenStack | 119

Launch a Virtual Machine from Contrail Command | 120

You can launch a virtual machine from OpenStack or from Contrail Command Ul.

Launch a Virtual Machine from OpenStack

You can launch virtual machines from OpenStack and test the traffic through the service chain by doing
the following:

1. Launch the left virtual machine in left virtual network. See "Create Virtual Machines by using
OpenStack" on page 111.

2. Launch the right virtual machine in right virtual network. See "Create Virtual Machines by using
OpenStack" on page 111.

3. Ping the left virtual machine IP address from the right virtual machine.

Follow these steps to ping a virtual machine:
a. Click Project > Compute > Instances.
All virtual machine instances that you created are displayed on the Instances page.
b. From the list of virtual machines, click test-right-VM.
The Overview tab of the test-right-VM is displayed.
c. Click the Console tab.
The Instance Console is displayed.
d. Log in using the root user credentials.
e. Ping the left virtual machine IP address (190.0.2.3) from the Instance Console.

See Figure 26 on page 121 for a sample output.

Launch a Virtual Machine from Contrail Command

You can launch virtual machines from Contrail Command and test the traffic through the service chain
by doing the following:

1. Launch the left virtual machine in left virtual network. See "Create Virtual Machines by using Contrail
Command" on page 112.

2. Launch the right virtual machine in right virtual network. See "Create Virtual Machines by using
Contrail Command" on page 112.

3. Ping the left virtual machine IP address from the right virtual machine.

Follow these steps to ping a virtual machine:

a. Click Workloads>Instances.

The Instances page is displayed.

b. Click the open console icon next to test-right-VM.

The Console page is displayed.
c. Log in using the root user credentials.

d. Ping the left virtual machine IP address (190.0.2.3) from the Console.
See Figure 26 on page 121 for a sample output.

Figure 26: Ping test-left-VM

1006ms

\ Fat Flows | 89

Understanding Flow Sampling

IN THIS SECTION

Flow Sampling | 121

Flow Handling | 122

Flow Aging | 123

TCP State-Based Flow Handling and Aging | 123

This topic describes how flow records are sampled and exported to the Contrail collector, flow handling,
and flow aging.

Flow Sampling

The Contrail vRouter agent exports flow records to the Contrail collector when a flow is created or
deleted. It also updates flow statistics at regular intervals.

If all flow records are exported from the agent, depending on the scale of flows, some of the exported
flows might be dropped due to queue overflow.

Based on sampling, flow records are sampled and exported to the Contrail Controller of Contrail
Networking. This enables Contrail Networking to reduce queue overflow.

The flows that are exported are selected based on the following parameters used in the algorithm:
e The configured flow export rate. This is configured as part of the global-vrouter-config object.
e The actual flow export rate.

e The sampling threshold. This is a dynamic value calculated internally. If the flow statistics in a flow
sample are above this threshold, the flow record is exported.

Each flow is subjected to the following algorithm at regular intervals. The algorithm determines whether
to export the sample or not.

e Flows with traffic that is greater than or equal to the sampling threshold are always exported. The
byte and packet counts are reported without modification.

o Flows with traffic that is less than the sampling threshold are exported according to the probability.
The byte and packet counts are adjusted upwards according to the probability.

The probability is calculated as (bytes during the interval) / (sampling threshold).

e The system generates a random number less than the sampling threshold. If the byte count during
the interval is less than the random number, then the flow sample is not exported.

¢ If none of these conditions are met, the flow sample is exported after normalizing the byte count and
packet count during the interval. Normalization is done by dividing the byte count and packet count
during the interval by the probability. This normalization is used as a heuristic to account for statistics
of flow samples that are dropped.

The actual flow export rate is close to the configured export rate. If there is a large deviation, the
sampling threshold is adjusted to bring the actual flow export rate close to the configured flow export
rate.

Flow Handling

When a virtual machine sends or receives IP traffic, forward and reverse flow entries are set up. When
the first packet arrives, a flow key is used to hash into a flow table (identify a hash bucket). The flow key
is based on five-tuples consisting of source and destination IP addresses, ports, and the IP protocol.

A flow entry is created and the packet is sent to the Contrail vRouter agent. Configured policies are
applied and the flow action is updated. The agent also creates a flow entry for the reverse direction
where relevant. Subsequent packets match the established flow entries and are forwarded, dropped,
NAT translated, and so on, based on the flow action.

When the hash bucket is full, entries are created in an overflow table. Contrail Networking maintains the
overflow entries as a list against the hash bucket.

By default, the maximum number of flow table and overflow table entries are 512,000 and 8000
respectively. These can be modified by configuring them as vRouter module parameters, for example:

vr_flow_entries and vr_oflow_entries.

For more information about the vRouter module parameters, see https:/github.com/Juniper/contrail-
controller/wiki/Vrouter-Module-Parameters.

Flow Aging

Flows are aged out based on inactivity for a specified period of time. By default, the timeout value is
180 seconds. This can be modified by configuring the flow_cache_timeout parameter under the DEFAULT
section in the /etc/contrail/contrail-vrouter-agent.conf file.

TCP State-Based Flow Handling and Aging

TCP State-Based Flow Handling

The Contrail vRouter in Contrail Networking monitors TCP flows to identify entries that can be reused
without going through the standard aging cycle.

All flow entries that match TCP flows that have experienced a connection teardown, either through the
standard TCP closure cycle (FIN/ACK-FIN/ACK) or the RST indicator, are torn down by the vRouter and
are immediately available for use by new qualified flows.

The vRouter also keeps track of connection establishment cycles and exports the necessary information
to the vRouter agent, such as SYN/ACK and a digested established flag. This allows the vRouter agent to
tear down flows that do not experience a full connection cycle.

Flows that the vRouter identifies as reuse candidates, or eviction candidates, are marked as such in the
flow entry. Flows are in the evicted state when they become available for other new flows to be reused.

This two-step transition is used so that the flow entry remains valid until the packet reaches the
destination, preventing the flow from getting remapped to another flow entry in the interim.

https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters
https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters

Protocol-Based Flow Aging

Although TCP flows are deleted based on TCP state, you are sometimes required to age out specific
protocol flows more aggressively. One example is when a DNS server is run in one VM. In this case,
multiple flows are set up for DNS. A pair of flows are set up to serve each query. Because the flows are
no longer required after the query is served, the timeout can be lower for these flows. To handle these
cases, protocol-based flow aging is used.

With protocol-based flow aging, the aging timeout can be configured per protocol. All other protocols
continue to use the default aging timeout.

Protocol-based flow aging is also supported in Contrail Networking.

The configuration for protocol-based flow aging can be done in the global-vrouter-config object. For
example, to have all DNS flows aged out in five seconds, use the following entry: protocol = udp, port = 53

will be set an aging timeout of 5 seconds.

	Table of Contents
	About This Guide
	Data Plane Optimization
	Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter
	Configuring Single Root I/O Virtualization (SR-IOV)
	Optimizing DPDK vRouter Performance Through Full CPU Partitioning and Isolation
	Contrail DPDK vRouter Support for Intel DDP Technology in Fortville NICs
	Contrail vRouter MAC Address - IP Address Learning and Bidirectional Forwarding and Detection Health Checking for Pods on Virtual Machines

	Advanced Network Topologies
	Configuring Virtual Networks for Hub-and-Spoke Topology
	Route Targets for Virtual Networks in Hub-and-Spoke Topology
	Example: Hub-and-Spoke Topology
	Troubleshooting Hub-and-Spoke Topology

	Remote Compute

	Advanced Service Chain Configuration
	Customized Hash Field Selection for ECMP Load Balancing
	Routing Policy
	Creating a Routing Policy With Extended Communities in Contrail Command
	Creating Routing Policies for QFX Series Devices in Contrail Networking
	Service Instance Health Checks
	Health Check Object
	Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces
	Bidirectional Forwarding and Detection Health Check for BGPaaS
	Health Check of Transparent Service Chain
	Service Instance Fate Sharing

	ECMP Support in Service Chain
	Route Reflector Support in Contrail Control Node
	Configuring Route Reflectors from Contrail Command
	BGP as a Service
	Understanding BGP as a Service
	Configuring BGPaaS using VNC API
	Configuring BGPaaS from Contrail Web UI
	Configuring BGPaaS from Contrail Command

	Fat Flows
	Understanding Fat Flow
	Configuring Fat Flow from Contrail Command
	Limitations of Fat Flow

	Use Case: Configuring Fat Flows from Contrail Command
	Overview
	Prerequisites
	Getting Started
	Configuration
	Create Virtual Network
	Create Virtual Machine
	Create Virtual Machines by using OpenStack
	Create Virtual Machines by using Contrail Command

	Create Service Template
	Add Service Instance
	Configure Fat Flow
	Create Service Policy
	Attach Service Policy
	Launch Virtual Machine
	Launch a Virtual Machine from OpenStack
	Launch a Virtual Machine from Contrail Command

	Understanding Flow Sampling

