
Contrail® Networking

Contrail Networking for Container
Networking Environments User Guide

Published

2023-07-13

RELEASE

21.4



Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail® Networking Contrail Networking for Container Networking Environments User Guide
21.4
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/


Table of Contents

About this guide  |  viii

1 Overview: Contrail Networking with Kubernetes

Contrail Integration with Kubernetes  |  2

2 Contrail Networking with Red Hat Openshift

How to Install Contrail Networking and Red Hat OpenShift 4.6  |  11

How to Install Contrail Networking and Red Hat OpenShift 4.6 using a VM Running in a KVM
Module  |  12

When to Use This Procedure  |  12

Prerequisites  |  12

Install Contrail Networking and Red Hat Openshift 4.6  |  13

How to Install Contrail Networking and Red Hat OpenShift 4.6 on Amazon Web Services  |  28

When to Use This Procedure  |  29

Prerequisites  |  29

Configure DNS  |  29

Configure AWS Credentials  |  29

Download the OpenShift Installer and the Command Line Tools  |  30

Deploy the Cluster  |  30

How to Add a User After Completing the Installation  |  35

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  37

How to Install Contrail Networking and Red Hat OpenShift 4.5  |  38

How to Install Contrail Networking and Red Hat OpenShift 4.5 using a VM Running in a KVM
Module  |  39

When to Use This Procedure  |  39

Prerequisites  |  40

Install Contrail Networking and Red Hat Openshift 4.5  |  40

How to Install Contrail Networking and Red Hat OpenShift 4.5 on Amazon Web Services  |  57

When to Use This Procedure  |  58

Prerequisites  |  58

iii



Configure DNS  |  58

Configure AWS Credentials  |  58

Download the OpenShift Installer and the Command Line Tools  |  59

Deploy the Cluster  |  59

How to Add a User After Completing the Installation  |  66

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  68

How to Install Contrail Networking and Red Hat OpenShift 4.4  |  69

How to Install Contrail Networking and Red Hat OpenShift 4.4 using a VM Running in a KVM
Module  |  70

When to Use This Procedure  |  70

Prerequisites  |  70

Install Contrail Networking and Red Hat Openshift 4.4  |  71

How to Install Contrail Networking and Red Hat OpenShift 4.4 on Amazon Web Services  |  86

When to Use This Procedure  |  86

Prerequisites  |  86

Configure DNS  |  86

Configure AWS Credentials  |  87

Download the OpenShift Installer and the Command Line Tools  |  87

Deploy the Cluster  |  88

How to Add a User After Completing the Installation  |  92

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  94

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail
Using Contrail OpenShift Deployer  |  94

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail
Ansible Deployer  |  106

3
Contrail Networking with the Elastic Kubernetes Service (EKS)in Amazon
Web Services (AWS)

How to Install Contrail Networking within an Amazon Elastic Kubernetes Service (EKS)
Environment in AWS  |  122

When to Use This Procedure  |  123

Prerequisites  |  123

iv



Install Contrail Networking as the CNI for EKS  |  123

4 Contrail Networking with Google Anthos

How to Integrate Kubernetes Clusters using Contrail Networking into Google Cloud
Anthos  |  140

Prerequisites  |  141

Creating Kubernetes Clusters  |  141

On-Premises: Creating the Private Kubernetes Cluster  |  142

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service
(EKS) Environment  |  144

Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine
(GKE)  |  146

Preparing Your Clusters for Anthos  |  148

Configure Your Google Cloud Platform Account for Anthos  |  149

How to Register an External Kubernetes Cluster to Google Connect  |  150

Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos  |  155

On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace
Onto an On-premises Cloud  |  155

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace  |  161

Configuration Management in Anthos  |  166

Overview: Anthos Configuration Management  |  166

Installing the Configuration Management Operator  |  166

Configuring the Clusters for Anthos Configuration Management  |  168

Using Nomos to Manage the Anthos Configuration Manager  |  169

5 Using KubeVirt

How to Integrate Kubernetes Clusters using Contrail Networking into Google Cloud
Anthos  |  173

Prerequisites  |  174

Creating Kubernetes Clusters  |  174

On-Premises: Creating the Private Kubernetes Cluster  |  175

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service
(EKS) Environment  |  177

v



Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine
(GKE)  |  179

Preparing Your Clusters for Anthos  |  181

Configure Your Google Cloud Platform Account for Anthos  |  182

How to Register an External Kubernetes Cluster to Google Connect  |  183

Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos  |  188

On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace
Onto an On-premises Cloud  |  188

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace  |  194

Configuration Management in Anthos  |  199

Overview: Anthos Configuration Management  |  199

Installing the Configuration Management Operator  |  199

Configuring the Clusters for Anthos Configuration Management  |  201

Using Nomos to Manage the Anthos Configuration Manager  |  202

6 Using Contrail Networking with Kubernetes

Provisioning of Kubernetes Clusters  |  206

Provisioning of a Standalone Kubernetes Cluster  |  206

Provisioning of Nested Contrail Kubernetes Clusters  |  207

Configure network connectivity to Contrail configuration and data plane functions.  |  208

Generate a single yaml file to create a Contrail-k8s cluster  |  210

Instantiate the Contrail-k8s cluster  |  211

Provisioning of Non-Nested Contrail Kubernetes Clusters  |  211

How to Enable Multi-Interface Pods in a Kubernetes Environment  |  213

Installing Standalone Kubernetes Contrail Cluster using the Contrail Command UI  |  217

Requirements  |  217

Overview  |  218

Configuration  |  218

Verifying Configuration for CNI for Kubernetes   |  224

View Pod Name and IP Address  |  225

vi



Verify Reachability of Pods  |  225

Verify If Isolated Namespace-Pods Are Not Reachable  |  226

Verify If Non-Isolated Namespace-Pods Are Reachable  |  227

Verify If a Namespace is Isolated  |  228

Implementation of Kubernetes Network Policy with Contrail Firewall Policy  |  228

How to Enable Keystone Authentication in a Juju Cluster within a Kubernetes
Environment  |  244

Overview: Keystone Authentication in Kubernetes Environments with a Juju Cluster  |  244

How to Enable Keystone Authentication in a Kubernetes Environment  |  245

Multiple Network Interfaces for Containers  |  248

Kubernetes Updates  |  253

vii



About this guide

This guide covers Contrail Networking in container networking environments that are using Contrail
Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking. Cloud-
Native Contrail Networking offers significant enhancements to optimize networking performance in
container networking environments. Container networking environments are cloud environments that
use Kubernetes for orchestration and Contrail Networking for networking. See the Cloud-Native
Contrail Networking Techlibrary homepage.

Use this guide to install and perform foundational tasks when using Contrail Networking in container
networking environments.

This guide covers the following scenarios:

• Contrail Networking with Kubernetes Overview

• Contrail Networking with Red Hat Openshift

• Contrail Networking with the Elastic Kubernetes Service (EKS) in Amazon Web Services (AWS)

• Contrail Networking with Google Anthos

• Using KubeVirt

• Using Contrail Networking with Kubernetes

Contrail Networking product documentation is organized into multiple guides as shown in Table 1,
according to the task you want to perform or the deployment scenario.

Table 1: Contrail Networking Guides

Guide Name Description

Contrail Networking Installation and Upgrade
Guide

Provides step-by-step instructions to install and bring up
Contrail and its various components.

Contrail Networking Fabric Lifecycle
Management Guide

Provides information about Contrail underlay management and
data center automation.

Contrail Networking and Security User Guide Provides information about creating and orchestrating highly
secure virtual networks.

viii



Table 1: Contrail Networking Guides (Continued)

Guide Name Description

Contrail Networking Service Provider Focused
Features Guide

Provides information about the features that are used by
service providers.

Contrail Networking Monitoring and
Troubleshooting Guide

Provides information about Contrail Insights and Contrail
analytics.

ix



1
CHAPTER

Overview: Contrail Networking with
Kubernetes

Contrail Integration with Kubernetes  |  2

 



Contrail Integration with Kubernetes

IN THIS SECTION

What is Kubernetes?  |  2

Configuration Modes for Contrail Integrated with Kubernetes  |  3

Kubernetes Services  |  6

Ingress  |  7

Contrail Kubernetes Solution  |  8

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Contrail Networking supports the Container Network Interface (CNI) for integrating Contrail with the
Kubernetes automation platform.

What is Kubernetes?

Kubernetes, also called K8s, is an open source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts, providing container-centric infrastructure.
It provides a portable platform across public and private clouds. Kubernetes supports deployment,
scaling, and auto-healing of applications.

Kubernetes supports a pluggable framework called Container Network Interface (CNI) for most of the
basic network connectivity, including container pod addressing, network isolation, policy-based security,

2

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


a gateway, SNAT, load-balancer, and service chaining capability for Kubernetes orchestration. Contrail
Networking is supported as a CNI in Kubernetes environments starting in Contrail Release 4.0.

Kubernetes provides a flat networking model in which all container pods can talk to each other. Network
policy is added to provide security between the pods. Contrail integrated with Kubernetes adds
additional networking functionality, including multi-tenancy, network isolation, micro-segmentation with
network policies, load-balancing, and more.

Table 2 on page 3 lists the mapping between Kubernetes concepts and Tungsten Fabric resources.

Table 2: Kubernetes to Tungsten Fabric Mapping

Kubernetes Tungsten Fabric Resources

Namespace Shared or single project

Pod Virtual-machine, Interface, Instance-ip

Service ECMP-based native Loadbalancer

Ingress HAProxy-based L7 Loadbalancer for URL routing

Network policy Security group based on namespace and pod selectors

What is a Kubernetes Pod?

A Kubernetes pod is a group of one or more containers (such as Docker containers), the shared storage
for those containers, and options on how to run the containers. Pods are always co-located and co-
scheduled, and run in a shared context. The shared context of a pod is a set of Linux namespaces,
cgroups, and other facets of isolation. Within the context of a pod, individual applications might have
further sub-isolations applied.

You can find more information about Kubernetes at: http://kubernetes.io/docs/whatisk8s/.

Configuration Modes for Contrail Integrated with Kubernetes

Contrail can be configured in several different modes in Kubernetes. This section describes the various
configuration modes.

3

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/


Default Mode

In Kubernetes, all pods can communicate with all other pods without using network address translation
(NAT). This is the default mode of Contrail Kubernetes cluster. In the default mode, Contrail creates a
virtual-network that is shared by all namespaces, from which service and pod IP addresses are allocated.

All pods in all namespaces that are spawned in the Kubernetes cluster are able to communicate with one
another. The IP addresses for all of the pods are allocated from a pod subnet that is configured in the
Contrail Kubernetes manager.

NOTE: System pods that are spawned in the kube-system namespace are not run in the
Kubernetes cluster; they run in the underlay, and networking for these pods is not handled by
Contrail.

Namespace Isolation Mode

In addition to the default networking model mandated by Kubernetes, Contrail supports additional
custom networking models that make available the many rich features of Contrail to the users of the
Kubernetes cluster. One such feature is network isolation for Kubernetes namespaces.

For namespace isolation mode, the cluster administrator can configure a namespace annotation to turn
on isolation. As a result, services in that namespace are not accessible from other namespaces, unless
security groups or network policies are explicitly defined to allow access.

A Kubernetes namespace can be configured as isolated by annotating the Kubernetes namespace
metadata:

opencontrail.org/isolation : true

Namespace isolation provides network isolation to pods, because the pods in isolated namespaces are
not reachable to pods in other namespaces in the cluster.

Namespace isolation also provides service isolation to pods. If any Kubernetes service is implemented by
pods in an isolated namespace, those pods are reachable only to pods in the same namespace through
the Kubernetes service-ip.

To make services remain reachable to other namespaces, service isolation can be disabled by the
following additional annotation on the namespace:

opencontrail.org/isolation.service : false

Disabling service isolation makes the services reachable to pods in other namespaces, however pods in
isolated namespaces still remain unreachable to pods in other namespaces.

4



A namespace annotated as “isolated” for both pod and service isolation has the following network
behavior:

• All pods created in an isolated namespace have network reachability with each other.

• Pods in other namespaces in the Kubernetes cluster cannot reach pods in the isolated namespace.

• Pods created in isolated namespaces cannot reach pods in non-isolated namespaces.

• Pods in isolated namespaces can reach non-isolated services in any namespace in the Kubernetes
cluster.

• Pods from other namespaces cannot reach services in isolated namespaces.

A namespace annotated as “isolated”, with service-isolation disabled and only pod isolation enabled, has
the following network behavior:

• All pods created in an isolated namespace have network reachability with each other.

• Pods in other namespaces in the Kubernetes cluster cannot reach pods in the isolated namespace.

• Pods created in isolated namespaces cannot reach pods in non-isolated namespaces.

• Pods in isolated namespaces can reach non-isolated services in any namespace in the Kubernetes
cluster.

• Pods from other namespaces can reach services in isolated namespaces.

Custom Isolation Mode

Administrators and application developers can add annotations to specify the virtual network in which a
pod or all pods in a namespace are to be provisioned. The annotation to specify this custom virtual
network is:

"opencontrail.org/network: <fq_network_name>"

where fq-network-name is the name of the virtual network.

Example:

annotations: {
    "opencontrail.org/network" : '{"domain":"default-domain", "project": "k8s-default", 
"name":"k8s-blue-net-pod-network"}'
  }

5



If this annotation is configured on a pod spec then the pod is launched in that network. If the annotation
is configured in the namespace spec then all the pods in the namespace are launched in the provided
network.

NOTE: The virtual network must be created using Contrail VNC APIs or Contrail-UI prior to
configuring it in the pod or namespace spec.

For additional information on custom isolation, see Isolation (Namespace and Custom) in Github. A
Github account may be required.

Nested Mode

Contrail supports the provisioning of Kubernetes cluster inside an OpenStack cluster. While this nesting
of clusters by itself is not unique, Contrail provides a collapsed control and data plane in which a single
Contrail control plane and a single network stack manage and service both the OpenStack and
Kubernetes clusters. With unified control and data planes, interworking and configuring these clusters is
seamless, and the lack of replication and duplicity makes this a very efficient option.

In nested mode, a Kubernetes cluster is provisioned in the virtual machine of an OpenStack cluster. The
CNI-plugin and the Contrail-kubernetes manager of the Kubernetes cluster interface directly with
Contrail components that manage the OpenStack cluster.

In a nested-mode deployment, all Kubernetes features, functions, and specifications are supported as is.
Nested deployment stretches the boundaries and limits of Kubernetes by allowing it to operate on the
same plane as underlying OpenStack cluster.

For more information, see "Provisioning of Kubernetes Clusters" on page 206.

Kubernetes Services

A Kubernetes service is an abstraction that defines a logical set of pods and the policy used to access
the pods. The set of pods implementing a service are selected based on the LabelSelector field in the
service definition. In Contrail, a Kubernetes service is implemented as an ECMP-native load-balancer.

The Contrail Kubernetes integration supports the following ServiceTypes:

• `clusterIP`: This is the default mode. Choosing this ServiceType makes the service reachable through
the cluster network.

6

https://github.com/ovaleanujnpr/kubernetes/blob/master/docs/k8s_lab.md#isolation-namespace-and-custom


• `LoadBalancer`: Designating a ServiceType as `LoadBalancer` enables the service to be accessed
externally. The `LoadBalancer` _Service_ is assigned both CluserIP and ExternalIP addresses. This
ServiceType assumes that the user has configured the public network with a floating-ip pool.

Contrail Kubernetes Service-integration supports TCP and UDP for protocols. Also, Service can expose
more than one port where port and targetPort are different. For example:

kind: Service
apiVersion: v1
metadata:
  name: my-service
spec:
    selector:
      app: MyApp
    ports:
      - name: http
        protocol: TCP
        port: 80
        targetPort: 9376
      - name: https
        protocol: TCP
        port: 443
        targetPort: 9377

Kubernetes users can specify spec.clusterIP and spec.externalIPs for both LoadBalancer and clusterIP
ServiceTypes.

If ServiceType is LoadBalancer and no spec.externalIP is specified by the user, then contrail-kube-
manager allocates a floating-ip from the public pool and associates it to the ExternalIP address.

Ingress

Kubernetes services can be exposed externally or exposed outside of the cluster in many ways. See
https://kubernetes.io/docs/concepts/services-networking/ingress/#alternatives for a list of all methods
of exposing Kubernetes services externally. Ingress is one such method. Ingress provides Layer 7 load-
balancing whereas the other methods provide Layer 4 load-balancing. Contrail supports http-based
single-service ingress, simple-fanout ingress, and name-based virtual hosting ingress.

7

https://kubernetes.io/docs/concepts/services-networking/ingress/#alternatives


Contrail Kubernetes Solution

Contrail Kubernetes solution includes the following elements.

Contrail Kubernetes Manager

The Contrail Kubernetes implementation requires listening to the Kubernetes API messages and creating
corresponding resources in the Contrail API database.

A new module, contrail-kube-manager, runs in a Docker container to listen to the messages from the
Kubernetes API server.

ECMP Load-Balancers for Kubernetes Services

Each service in Kubernetes is represented by a load-balancer object. The service IP allocated by
Kubernetes is used as the VIP for the load-balancer. Listeners are created for the port on which the
service is listening. Each pod is added as a member of the listener pool. The contrail-kube-manager
listens for any changes based on service labels or pod labels, and updates the member pool list with any
added, updated, or deleted pods.

Load-balancing for services is Layer 4 native, non-proxy load-balancing based on ECMP. The instance-ip
(service-ip) is linked to the ports of each of the pods in the service. This creates an ECMP next-hop in
Contrail and traffic is load-balanced directly from the source pod.

HAProxy Loadbalancer for Kubernetes Ingress

Kubernetes Ingress is implemented through the HAProxy load-balancer feature in Contrail. Whenever
ingress is configured in Kubernetes, contrail-kube-manager creates the load-balancer object in contrail-
controller. The Contrail service monitor listens for the load-balancer objects and launches the HAProxy
with appropriate configuration, based on the ingress specification rules in active-standby mode.

See Using Load Balancers in Contrail for more information on load balancers.

Security Groups for Kubernetes Network Policy

Kubernetes network policy is a specification of how groups of pods are allowed to communicate with
each other and other network endpoints. NetworkPolicy resources use labels to select pods and define
allow list rules which allow traffic to the selected pods in addition to what is allowed by the isolation
policy for a given namespace.

For more information about Kubernetes network policies, see https://kubernetes.io/docs/concepts/
services-networking/networkpolicies/.

8

https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
https://kubernetes.io/docs/concepts/services-networking/networkpolicies/


The contrail-kube-manager listens to the Kubernetes network policy events for create, update, and
delete, and translates the Kubernetes network policy to Contrail security group objects applied to virtual
machine interfaces (VMIs). The VMIs are dynamically updated as pods and labels are added and deleted.

Kubernetes Support for Security Policy

Network policies created in a Kubernetes environment are implemented by using Contrail Security
Policy framework. Labels from the Kubernetes environment are exposed as tags in Contrail. Starting in
Contrail Release 5.0, you can define tags for a Kubernetes environment. Contrail security policy uses
these tags to implement specified Kubernetes policies. You can define tags in the UI or upload
configurations in JSON format. The newly-defined tags can be used to create and enforce policies in
Contrail Security.

Domain Name Server (DNS)

Kubernetes implements DNS using SkyDNS, a small DNS application that responds to DNS requests for
service name resolution from pods. SkyDNS runs as a pod in Kubernetes.

Supported Kubernetes Annotations

Currently, Contrail Networking supports the following Kubernetes annotations:

 
'opencontrail.org/network': '{"domain":"default-domain", "project": "k8s-contrail", 
"name":"deu"}'
'opencontrail.org/isolation': 'true'
'opencontrail.org/fip-pool': '{"domain": "default-domain", "project": "k8s-default", "network": 
"k8s-default-svc-public", "name": "default"}'

For further details, refer to https://kubernetes.io/docs/concepts/overview/working-with-objects/
annotations/.

RELATED DOCUMENTATION

Verifying Configuration for CNI for Kubernetes   |  224

9

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


2
CHAPTER

Contrail Networking with Red Hat
Openshift

How to Install Contrail Networking and Red Hat OpenShift 4.6  |  11

How to Install Contrail Networking and Red Hat OpenShift 4.5  |  38

How to Install Contrail Networking and Red Hat OpenShift 4.4  |  69

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with
Contrail Using Contrail OpenShift Deployer  |  94

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using
Contrail Ansible Deployer  |  106

 



How to Install Contrail Networking and Red Hat
OpenShift 4.6

IN THIS SECTION

How to Install Contrail Networking and Red Hat OpenShift 4.6 using a VM Running in a KVM Module  |  12

How to Install Contrail Networking and Red Hat OpenShift 4.6 on Amazon Web Services  |  28

How to Add a User After Completing the Installation  |  35

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  37

NOTE: This topic covers Contrail Networking in Red Hat Openshift environments that are using
Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail offers significant enhancements to optimize networking performance in
Kubernetes-orchestrated environments. Cloud-Native Contrail supports Red Hat Openshift and
we strongly recommend using Cloud-Native Contrail for networking in environments using Red
Hat Openshift.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Starting in Contrail Networking Release 2011.L1, you can install Contrail Networking with Red Hat
Openshift 4.6 in multiple environments.

This document shows one method of installing Red Hat Openshift 4.6 with Contrail Networking in two
separate contexts—on a VM running in a KVM module and within Amazon Web Services (AWS).

There are many implementation and configuration options available for installing and configuring Red
Hat OpenShift 4.6 and the scope of all options is beyond this document. For additional information on
Red Hat Openshift 4.6 implementation options, see the OpenShift Container Platform 4.6
Documentation from Red Hat.

This document includes the following sections:

11

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://docs.openshift.com/container-platform/4.6/welcome/index.html
https://docs.openshift.com/container-platform/4.6/welcome/index.html


How to Install Contrail Networking and Red Hat OpenShift 4.6 using a
VM Running in a KVM Module

IN THIS SECTION

When to Use This Procedure  |  12

Prerequisites  |  12

Install Contrail Networking and Red Hat Openshift 4.6  |  13

This section illustrates how to install Contrail Networking with Red Hat OpenShift 4.6 orchestration,
where Contrail Networking and Red Hat Openshift are running on virtual machines (VMs) in a Kernel-
based Virtual Machine (KVM) module.

This procedure can also be performed to configure an environment where Contrail Networking and Red
Hat OpenShift 4.6 are running in an environment with bare metal servers. You can, for instance, use this
procedure to establish an environment where the master nodes host the VMs that run the control plane
on KVM while the worker nodes operate on physical bare metal servers.

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.6 orchestration on a
virtual machine (VM) running in a Kernel-based Virtual Machine (KVM) module. Support for Contrail
Networking installations onto VMs in Red Hat OpenShift 4.6 environments is introduced in Contrail
Networking Release 2011.L1. See Contrail Networking Supported Platforms.

You can also use this procedure to install Contrail Networking and Red Hat OpenShift 4.6 orchestration
on a bare metal server.

You cannot incrementally upgrade from an environment using an earlier version of Red Hat OpenShift
and Contrail Networking to an environment using Red Hat OpenShift 4.6. You must use this procedure
to install Contrail Networking with Red Hat Openshift 4.6.

This procedure should work with all versions of Openshift 4.6.

Prerequisites

This document makes the following assumptions about your environment:

• the KVM environment is operational.

12

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


• the server meets the platform requirements for the Contrail Networking installation. See Contrail
Networking Supported Platforms.

• Minimum server requirements:

• Master nodes: 8 CPU, 40GB RAM, 250GB SSD storage

NOTE: The term master node refers to the nodes that build the control plane in this
document.

• Worker nodes: 4 CPU, 16GB RAM, 120GB SSD storage

NOTE: The term worker node refers to nodes running compute services using the data
plane in this document.

• Helper node: 4 CPU, 8GB RAM, 30GB SSD storage

• In single node deployments, do not use spinning disk arrays with low Input/Output Operations Per
Second (IOPS) when using Contrail Networking with Red Hat Openshift. Higher IOPS disk arrays are
required because the control plane always operates as a high availability setup in single node
deployments.

IOPS requirements vary by environment due to multiple factors beyond Contrail Networking and Red
Hat Openshift. We, therefore, provide this guideline but do not provide direct guidance around IOPS
requirements.

Install Contrail Networking and Red Hat Openshift 4.6

IN THIS SECTION

Create a Virtual Network or a Bridge Network for the Installation  |  14

Create a Helper Node with a Virtual Machine Running CentOS 7 or 8  |  14

Prepare the Helper Node  |  16

Create the Ignition Configurations  |  20

Launch the Virtual Machines  |  24

Monitor the Installation Process and Delete the Bootstrap Virtual Machine  |  25

Finish the Installation  |  26

13

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Perform these steps to install Contrail Networking and Red Hat OpenShift 4.6 using a VM running in a
KVM module:

Create a Virtual Network or a Bridge Network for the Installation

To create a virtual network or a bridge network for the installation:

1. Log onto the server that will host the VM that will run Contrail Networking.

Download the virt-net.xml virtual network configuration file from the Red Hat repository.

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
virt-net.xml

2. Create a virtual network using the virt-net.xml file.

You may need to modify your virtual network for your environment.

Example:

# virsh net-define --file virt-net.xml

3. Set the OpenShift 4 virtual network to autostart on bootup:

# virsh net-autostart openshift4
# virsh net-start openshift4

NOTE: If the worker nodes are running on physical bare metal servers in your environment,
this virtual network will be a bridge network with IP address allocations within the same
subnet. This addressing scheme is similar to the scheme for the KVM server.

Create a Helper Node with a Virtual Machine Running CentOS 7 or 8

This procedure requires a helper node with a virtual machine that is running either CentOS 7 or 8.

To create this helper node:

1. Download the Kickstart file for the helper node from the Red Hat repository:

14



CentOS 8

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks8.cfg -O helper-ks.cfg

CentOS 7

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks.cfg -O helper-ks.cfg

2. If you haven’t already configured a root password and the NTP server on the helper node, enter the
following commands:

Example Root Password

rootpw --plaintext password

Example NTP Configuration

timezone America/Los_Angeles --isUtc --
ntpservers=0.centos.pool.ntp.org,1.centos.pool.ntp.org,2.centos.pool.ntp.org,3.centos.pool.ntp
.org

3. Edit the helper-ks.cfg file for your environment and use it to install the helper node.

The following examples show how to install the helper node without having to take further actions:

CentOS 8

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=50 \
--os-variant centos8 --network network=openshift4,model=virtio \
--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-8.2.2004-x86_64-dvd1.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

CentOS 7

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=30 \
--os-variant centos7.0 --network network=openshift4,model=virtio \

15



--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-7-x86_64-Minimal-2003.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

The helper node is installed with the following settings, which are pulled from the virt-net.xml file:

• HELPER_IP: 192.168.7.77

• NetMask: 255.255.255.0

• Default Gateway: 192.168.7.1

• DNS Server: 8.8.8.8

4. Monitor the helper node installation progress in the viewer:

# virt-viewer --domain-name ocp4-aHelper

When the installation process is complete, the helper node shuts off.

5. Start the helper node:

# virsh start ocp4-aHelper

Prepare the Helper Node

To prepare the helper node after the helper node installation:

1. Login to the helper node:

# ssh -l root HELPER_IP

NOTE: The default HELPER_IP, which was pulled from the virt-net.xml file, is 192.168.7.77.

2. Install Enterprise Linux and update CentOS.

# yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$(rpm -E 
%rhel).noarch.rpm
# yum -y update
# reboot

16



3. Install Ansible and Git and clone the helpernode repository onto the helper node.

# yum -y install ansible git
# git clone https://github.com/RedHatOfficial/ocp4-helpernode
# cd ocp4-helpernode

4. Copy the vars.yaml file into the top-level directory:

# cp docs/examples/vars.yaml .

Review the vars.yml file. Consider changing any value that requires changing in your environment.

The following values should be reviewed especially carefully:

• The domain name, which is defined using the domain: parameter in the dns: hierarchy. If you are
using local DNS servers, modify the forwarder parameters—forwarder1: and forwarder2: are used
in this example—to connect to these DNS servers.

• Hostnames for master and worker nodes. Hostnames are defined using the name: parameter in
either the primaries: or workers: hierarchies.

• IP and DHCP settings. If you are using a custom bridge network, modify the IP and DHCP settings
accordingly.

• VM and BMS settings.

If you are using a VM, set the disk: parameter as disk: vda.

If you are using a BMS, set the disk: parameter as disk: sda.

A sample vars.yml file:

disk: vda
helper:
  name: "helper"
  ipaddr: "192.168.7.77"
dns:
  domain: "example.com"
  clusterid: "ocp4"
  forwarder1: "8.8.8.8"
  forwarder2: "8.8.4.4"
dhcp:
  router: "192.168.7.1"
  bcast: "192.168.7.255"

17



  netmask: "255.255.255.0"
  poolstart: "192.168.7.10"
  poolend: "192.168.7.30"
  ipid: "192.168.7.0"
  netmaskid: "255.255.255.0"
bootstrap:
  name: "bootstrap"
  ipaddr: "192.168.7.20"
  macaddr: "52:54:00:60:72:67"
masters:
  - name: "master0"
    ipaddr: "192.168.7.21"
    macaddr: "52:54:00:e7:9d:67"
  - name: "master1"
    ipaddr: "192.168.7.22"
    macaddr: "52:54:00:80:16:23"
  - name: "master2"
    ipaddr: "192.168.7.23"
    macaddr: "52:54:00:d5:1c:39"
workers:
  - name: "worker0"
    ipaddr: "192.168.7.11"
    macaddr: "52:54:00:f4:26:a1"
  - name: "worker1"
    ipaddr: "192.168.7.12"
    macaddr: "52:54:00:82:90:00"

NOTE: If you are using physical servers to host worker nodes, change the provisioning
interface for the worker nodes to the mac address.

5. Review the vars/main.yml file to ensure the file reflects the correct version of Red Hat OpenShift. If
you need to change the Red Hat Openshift version in the file, change it.

In the following sample main.yml file, Red Hat Openshift 4.6 is installed:

ssh_gen_key: true
install_filetranspiler: false
staticips: false
force_ocp_download: false
remove_old_config_files: false
ocp_bios: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.6/4.6.8/

18



rhcos-4.6.8-x86_64-live-rootfs.x86_64.img"
ocp_initramfs: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.6/4.6.8/
rhcos-4.6.8-x86_64-live-initramfs.x86_64.img"
ocp_install_kernel: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/
4.6/4.6.8/rhcos-4.6.8-x86_64-live-kernel-x86_64"
ocp_client: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.6.12/openshift-
client-linux-4.6.12.tar.gz"
ocp_installer: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.6.12/openshift-
install-linux-4.6.12.tar.gz"
helm_source: "https://get.helm.sh/helm-v3.5.0-linux-amd64.tar.gz"
chars: (\\_|\\$|\\\|\\/|\\=|\\)|\\(|\\&|\\^|\\%|\\$|\\#|\\@|\\!|\\*)
ppc64le: false
uefi: false
chronyconfig:
  enabled: false
setup_registry:
  deploy: false
  autosync_registry: false
  registry_image: docker.io/library/registry:2
  local_repo: "ocp4/openshift4"
  product_repo: "openshift-release-dev"
  release_name: "ocp-release"
  release_tag: "4.6.1-x86_64"

6. Run the playbook to setup the helper node:

# ansible-playbook -e @vars.yaml tasks/main.yml

7. After the playbook is run, gather information about your environment and confirm that all services
are active and running:

# /usr/local/bin/helpernodecheck services
Status of services:
===================
Status of dhcpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago
Status of named svc         ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of haproxy svc     ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of httpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago

19



Status of tftp svc         ->    Active: active (running) since Mon 2020-09-28 06:13:34 EDT; 
1s ago
Unit local-registry.service could not be found.
Status of local-registry svc         ->

Create the Ignition Configurations

To create Ignition configurations:

1. On your hypervisor and helper nodes, check that your NTP server is properly configured in
the /etc/chrony.conf file:

chronyc tracking

The installation fails with a X509: certificate has expired or is not yet valid message when NTP is
not properly configured.

2. Create a location to store your pull secret objects:

# mkdir -p ~/.openshift

3. From Get Started with Openshift website, download your pull secret and save it in the
~/.openshift/pull-secret directory.

# ls -1 ~/.openshift/pull-secret
/root/.openshift/pull-secret

4. (Contrail containers in password protected registries only) If the Contrail containers in your
environment are in password protected registries, also add the authentication information for the
registries in the root/.openshift/pull-secret directory.

# cat ~/.openshift/pull-secret
{
  "auths": {
    "hub.juniper.net": {
      "email": "example@example.com",
      "auth": "<base64 encoded concatenated line username:password>"
    },
    "cloud.openshift.com": {
      "auth": "…",
     …},

20

https://www.openshift.com/try


…
    }

5. An SSH key is created for you in the ~/.ssh/helper_rsa directory after completing the previous step.
You can use this key or create a unique key for authentication.

# ls -1 ~/.ssh/helper_rsa
/root/.ssh/helper_rsa

6. Create an installation directory.

# mkdir ~/ocp4
# cd ~/ocp4

7. Create an install-config.yaml file.

An example file:

# cat <<EOF > install-config.yaml
apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
  name: worker
  replicas: 0
controlPlane:
  hyperthreading: Enabled
  name: master
  replicas: 3
metadata:
  name: ocp4
networking:
  clusterNetworks:
  - cidr: 10.254.0.0/16
    hostPrefix: 24
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  none: {}
pullSecret: '$(< ~/.openshift/pull-secret)'

21



sshKey: '$(< ~/.ssh/helper_rsa.pub)'
EOF

8. Create the installation manifests:

# openshift-install create manifests

9. Set the mastersSchedulable: variable to false in the manifests/cluster-scheduler-02-config.yml file.

# sed -i 's/mastersSchedulable: true/mastersSchedulable: false/g' manifests/cluster-
scheduler-02-config.yml

A sample cluster-scheduler-02-config.yml file after this configuration change:

# cat manifests/cluster-scheduler-02-config.yml
apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
  creationTimestamp: null
  name: cluster
spec:
  mastersSchedulable: false
  policy:
    name: ""
status: {}

This configuration change is needed to prevent pods from being scheduled on control plane
machines.

10. Download the tf-openshift installer (tf-openshift-release-tag.tgz) and the tf-operator (tf-operator-
release-tag.tgz) for your release from the Contrail Networking Software Download Site.

See the README Access to Contrail Registry 20XX to obtain the release tags for the installer for
your version of Contrail Networking.

11. Install the YAML files to apply the Contrail configuration:

Configure the YAML file for your environment, paying particular attention to the registry, container
tag, cluster name, and domain fields.

22

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


The container tag for any R2011 and R2011.L release can be retrieved from README Access to
Contrail Registry 20XX.

yum -y install git jq python3
python3 -m pip install jinja2
export INSTALL_DIR=$PWD
./tf-openshift/scripts/apply_install_manifests.sh $INSTALL_DIR
export CONTRAIL_CONTAINER_TAG="2011.L1.297"
export CONTAINER_REGISTRY="hub.juniper.net/contrail"
export DEPLOYER="openshift"
export KUBERNETES_CLUSTER_NAME="ocp4"
export KUBERNETES_CLUSTER_DOMAIN="example.com"
export CONTRAIL_REPLICAS=3
./tf-operator/contrib/render_manifests.sh
for i in $(ls ./tf-operator/deploy/crds/) ; do
  cp ./tf-operator/deploy/crds/$i $INSTALL_DIR/manifests/01_$i
done
for i in namespace service-account role cluster-role role-binding cluster-role-binding ; do
  cp ./tf-operator/deploy/kustomize/base/operator/$i.yaml $INSTALL_DIR/manifests/02-tf-
operator-$i.yaml
done
oc kustomize ./tf-operator/deploy/kustomize/operator/templates/ | sed -n 'H; /---/h; $
{g;p;}' > $INSTALL_DIR/manifests/02-tf-operator.yaml
oc kustomize ./tf-operator/deploy/kustomize/contrail/templates/ > $INSTALL_DIR/manifests/03-
tf.yaml

12. NTP synchronization on all master and worker nodes is required for proper functioning.

If your environment has to use a specific NTP server, set the environment using the steps in the
Openshift 4.x Chrony Configuration document.

13. Generate the Ignition configurations:

# openshift-install create ignition-configs

14. Copy the Ignition files in the Ignition directory for the webserver:

# cp ~/ocp4/*.ign /var/www/html/ignition/
# restorecon -vR /var/www/html/
# restorecon -vR /var/lib/tftpboot/
# chmod o+r /var/www/html/ignition/*.ign

23

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://github.com/Juniper/contrail-operator/blob/R2008/deploy/openshift/docs/chrony-ntp-configuration.md


Launch the Virtual Machines

To launch the virtual machines:

1. From the hypervisor, use PXE booting to launch the virtual machine or machines. If you are using a
bare metal server, use PXE booting to boot the servers.

2. Launch the bootstrap virtual machine:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:60:72:67 --name ocp4-
bootstrap --ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
bootstrap.qcow2,size=120 --vnc

The following actions occur as a result of this step:

• a bootstrap node virtual machine is created.

• the bootstrap node VM is connected to the PXE server. The PXE server is our helper node.

• an IP address is assigned from DHCP.

• A Red Hat Enterprise Linux CoreOS (RHCOS) image is downloaded from the HTTP server.

The ignition file is embedded at the end of the installation process.

3. Use SSH to run the helper RSA:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.20

4. Review the logs:

journalctl -f

5. On the bootstrap node, a temporary etcd and bootkube is created.

You can monitor these services when they are running by entering the sudo crictl ps command.

[core@bootstrap ~]$ sudo crictl ps
CONTAINER      IMAGE         CREATED             STATE    NAME                            POD 
ID
33762f4a23d7d  976cc3323...  54 seconds ago      Running  manager                         
29a...
ad6f2453d7a16  86694d2cd...  About a minute ago  Running  kube-apiserver-insecure-readyz  
4cd...
3bbdf4176882f  quay.io/...   About a minute ago  Running  kube-scheduler                  

24



b3e...
57ad52023300e  quay.io/...   About a minute ago  Running  kube-controller-manager         
596...
a1dbe7b8950da  quay.io/...   About a minute ago  Running  kube-apiserver                  
4cd...
5aa7a59a06feb  quay.io/...   About a minute ago  Running  cluster-version-operator        
3ab...
ca45790f4a5f6  099c2a...     About a minute ago  Running  etcd-metrics                    
081...
e72fb8aaa1606  quay.io/...   About a minute ago  Running  etcd-member                     
081...
ca56bbf2708f7  1ac19399...   About a minute ago  Running  machine-config-server           
c11...

NOTE: Output modified for readability.

6. From the hypervisor, launch the VMs on the master nodes:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:e7:9d:67 --name ocp4-master0 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master0.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:80:16:23 --name ocp4-master1 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master1.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:d5:1c:39 --name ocp4-master2 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master2.qcow2,size=250 --vnc

You can login to the master nodes from the helper node after the master nodes have been
provisioned:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.21
# ssh -i ~/.ssh/helper_rsa core@192.168.7.22
# ssh -i ~/.ssh/helper_rsa core@192.168.7.23

Enter the sudo crictl ps at any point to monitor pod creation as the VMs are launching.

Monitor the Installation Process and Delete the Bootstrap Virtual Machine

To monitor the installation process:

25



1. From the helper node, navigate to the ~/ocp4 directory.

2. Track the install process log:

# openshift-install wait-for bootstrap-complete --log-level debug

Look for the DEBUG Bootstrap status: complete and the INFO It is now safe to remove the bootstrap
resources messages to confirm that the installation is complete.

INFO Waiting up to 30m0s for the Kubernetes API at https://api.ocp4.example.com:6443...
INFO API v1.13.4+838b4fa up
INFO Waiting up to 30m0s for bootstrapping to complete...
DEBUG Bootstrap status: complete
INFO It is now safe to remove the bootstrap resources

Do not proceed to the next step until you see these messages.

3. From the hypervisor, delete the bootstrap VM and launch the worker nodes.

NOTE: If you are using physical bare metal servers as worker nodes, skip this step.

Boot the bare metal servers using PXE instead.

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:f4:26:a1 --name ocp4-worker0 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker0.qcow2,size=120 --vnc

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:82:90:00 --name ocp4-worker1 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker1.qcow2,size=120 --vnc

Finish the Installation

To finish the installation:

1. Login to your Kubernetes cluster:

# export KUBECONFIG=/root/ocp4/auth/kubeconfig

26



2. Your installation might be waiting for worker nodes to approve the certificate signing request (CSR).
The machineconfig node approval operator typically handles CSR approval.

CSR approval, however, sometimes has to be performed manually.

To check pending CSRs:

# oc get csr

To approve all pending CSRs:

# oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

You may have to approve all pending CSRs multiple times, depending on the number of worker nodes
in your environment and other factors.

To monitor incoming CSRs:

# watch -n5 oc get csr

Do not move to the next step until incoming CSRs have stopped.

3. Set your cluster management state to Managed:

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

4. Setup your registry storage.

For most environments, see Configuring registry storage for bare metal in the Red Hat Openshift
documentation.

For proof of concept labs and other smaller environments, you can set storage to emptyDir.

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

5. If you need to make the registry accessible:

# oc patch configs.imageregistry.operator.openshift.io/cluster --type merge -p '{"spec":
{"defaultRoute":true}}'

27

https://docs.openshift.com/container-platform/4.5/installing/installing_bare_metal/installing-bare-metal.html#registry-configuring-storage-baremetal_installing-bare-metal


6. Wait for the installation to finish:

# openshift-install wait-for install-complete
INFO Waiting up to 30m0s for the cluster at https://api.ocp4.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/
root/ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.ocp4.example.com
INFO Login to the console with user: kubeadmin, password: XXX-XXXX-XXXX-XXXX

7. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 35.

RELATED DOCUMENTATION

Contrail Networking Supported Platforms

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer  |  94

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer  |  106

How to Install Contrail Networking and Red Hat OpenShift 4.6 on
Amazon Web Services

IN THIS SECTION

When to Use This Procedure  |  29

Prerequisites  |  29

Configure DNS  |  29

Configure AWS Credentials  |  29

Download the OpenShift Installer and the Command Line Tools  |  30

Deploy the Cluster  |  30

28

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Follow these procedures to install Contrail Networking and Red Hat Openshift 4.6 on Amazon Web
Services (AWS):

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.6 orchestration in AWS.
Support for Contrail Networking and Red Hat OpenShift 4.6 environments is introduced in Contrail
Networking Release 2011.L1. See Contrail Networking Supported Platforms.

Prerequisites

This document makes the following assumptions about your environment:

• the server meets the platform requirements for the Contrail Networking installation. See Contrail
Networking Supported Platforms.

• You have the Openshift binary version 4.4.8 files or later. See the Openshift Installation site if you
need to update your binary files.

• You can access Openshift image pull secrets. See Using image pull secrets from Red Hat.

• You have an active AWS account.

• AWS CLI is installed. See Installing the AWS CLI from AWS.

• You have an SSH key that you can generate or provide on your local machine during the installation.

Configure DNS

A DNS zone must be created and available in Route 53 for your AWS account before starting this
installation. You must also register a domain for your Contrail cluster in AWS Route 53. All entries
created in AWS Route 53 are expected to be resolvable from the nodes in the Contrail cluster.

For information on configuring DNS zones in AWS Route 53, see the Amazon Route 53 Developer
Guide from AWS.

Configure AWS Credentials

The installer used in this procedure creates multiple resources in AWS that are needed to run your
cluster. These resources include Elastic Compute Cloud (EC2) instances, Virtual Private Clouds (VPCs),
security groups, IAM roles, and other necessary network building blocks.

AWS credentials are needed to access these resources and should be configured before starting this
installation.

To configure AWS credentials, see the Configuration and credential file settings section of the AWS
Command Line Interface User Guide from AWS.

29

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://cloud.redhat.com/openshift/install
https://docs.openshift.com/container-platform/4.5/openshift_images/managing_images/using-image-pull-secrets.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Download the OpenShift Installer and the Command Line Tools

To download the installer and the command line tools:

1. Check which versions of the OpenShift installer are available:

$ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/ | \
  awk '{print $5}'| \
  grep -o '4.[0-9].[0-9]*' | \
  uniq | \
  sort | \
  column

2. Set the version and download the OpenShift installer and the CLI tool.

In this example output, the Openshift version is 4.6.12.

$ VERSION=4.6.12
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-install-
mac-$VERSION.tar.gz
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-
mac-$VERSION.tar.gz

$ tar -xvzf openshift-install-mac-${VERSION}.tar.gz -C /usr/local/bin
$ tar -xvzf openshift-client-mac-${VERSION}.tar.gz -C /usr/local/bin

$ openshift-install version
$ oc version
$ kubectl version

Deploy the Cluster

To deploy the cluster:

1. Generate an SSH private key and add it to the agent:

$ ssh-keygen -b 4096 -t rsa -f ~/.ssh/id_rsa -N ""

2. Create a working folder:

30



In this example, a working folder named aws-ocp4 is created and the user is then moved into the
new directory.

$ mkdir ~/aws-ocp4 ; cd ~/aws-ocp4

3. Create an installation configuration file. See Creating the installation configuration file section of
the Installing a cluster on AWS with customizations document from Red Hat OpenShift.

$ openshift-install create install-config

An install-config.yaml file needs to be created and added to the current directory. A sample install-
config.yaml file is provided below.

Be aware of the following factors while creating the install-config.yaml file:

• The networkType field is usually set as OpenShiftSDN in the YAML file by default.

For configuration pointing at Contrail cluster nodes, the networkType field needs to be
configured as Contrail.

• OpenShift master nodes need larger instances. We recommend setting the type to m5.2xlarge or
larger for OpenShift nodes.

• Most OpenShift worker nodes can use the default instance sizes. You should consider using
larger instances, however, for high demand performance workloads.

• Many of the installation parameters in the YAML file are described in more detail in the
Installation configuration parameters section of the Installing a cluster on AWS with
customizations document from Red Hat OpenShift.

• You may want to add the credentials to the Contrail secured registry at hub.juniper.net at this
point of the procedure.

A sample install-config.yaml file:

apiVersion: v1
baseDomain: ovsandbox.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    aws:
      rootVolume:

31

https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-initializing_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-configuration-parameters_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html


        iops: 2000
        size: 500
        type: io1
      type: m5.4xlarge
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    aws:
      rootVolume:
        iops: 4000
        size: 500
        type: io1
      type: m5.2xlarge
  replicas: 3
metadata:
  creationTimestamp: null
  name: w1
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  aws:
    region: eu-west-1
publish: External
pullSecret: '{"auths"...}'
sshKey: |
  ssh-rsa ...

4. Create the installation manifests:

# openshift-install create manifests

32



5. Download the tf-openshift installer (tf-openshift-release-tag.tgz) and the tf-operator (tf-operator-
release-tag.tgz) for your release from the Contrail Networking Software Download Site.

See the README Access to Contrail Registry 20XX to obtain the release tags for the installer for
your version of Contrail Networking.

6. Install the YAML files to apply the Contrail configuration.

Configure the YAML file for your environment, paying particular attention to the registry, container
tag, cluster name, and domain fields.

The container tag for any R2011 and R2011.L release can be retrieved from README Access to
Contrail Registry 20XX.

yum -y install git jq python3
python3 -m pip install jinja2
export INSTALL_DIR=$PWD./tf-openshift/scripts/apply_install_manifests.sh $INSTALL_DIR

export CONTRAIL_CONTAINER_TAG="2011.L1.297"
export CONTAINER_REGISTRY="hub.juniper.net/contrail"
export DEPLOYER="openshift"
export KUBERNETES_CLUSTER_NAME="ocp4"
export KUBERNETES_CLUSTER_DOMAIN="example.com"
export CONTRAIL_REPLICAS=3
./tf-operator/contrib/render_manifests.sh
for i in $(ls ./tf-operator/deploy/crds/) ; do
  cp ./tf-operator/deploy/crds/$i $INSTALL_DIR/manifests/01_$i
done
for i in namespace service-account role cluster-role role-binding cluster-role-binding ; do
  cp ./tf-operator/deploy/kustomize/base/operator/$i.yaml $INSTALL_DIR/manifests/02-tf-
operator-$i.yaml
done
oc kustomize ./tf-operator/deploy/kustomize/operator/templates/ | sed -n 'H; /---/h; $
{g;p;}' > $INSTALL_DIR/manifests/02-tf-operator.yaml
oc kustomize ./tf-operator/deploy/kustomize/contrail/templates/ > $INSTALL_DIR/manifests/03-
tf.yaml

7. Modify the YAML files for your environment.

The scope of each potential configuration changes is beyond the scope of this document.

Common configuration changes include:

• If you are using non-default network-CIDR subnets for your pods or services, open the deploy/
openshift/manifests/cluster-network-02-config.yml file and update the CIDR values.

33

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


• The default number of master nodes in a Kubernetes cluster is 3. If you are using a different
number of master nodes, modify the deploy/openshift/manifests/00-contrail-09-manager.yaml
file and set the spec.commonConfiguration.replicas field to the number of master nodes.

8. Create the cluster:

$ openshift-install create cluster --log-level=debug

• Contrail Networking needs to open some networking ports for operation within AWS. These
ports are opened by adding rules to security groups.

Follow this procedure to add rules to security groups when AWS resources are manually
created:

a. Build the Contrail CLI tool for managing security group ports on AWS. This tool allows you to
automatically open ports that are required for Contrail to manage security group ports on
AWS that are attached to Contrail cluster resources.

To build this tool:

i. Clone the tool operator into AWS. In this sample output, the
operator is cloned for Contrail Networking Release 2011:

git clone https://github.com/tungstenfabric/tf-operator.git -b R2011

ii. Build the operator tool:

cd /root/tf-operator/contrib/aws/
    go build .

iii. Start the tool:

./tf-sc-open -cluster-name name of your Openshift cluster -region AWS region 
where cluster is located

After entering this command, you should be in the tf-sc-open tool in your directory.
This interface is the compiled tool.

34



b. Verify that the service has been created:

oc -n openshift-ingress get service router-default

Proceed to the next step after confirming the service was created.

9. When the service router-default is created in openshift-ingress, use the following command to
patch the configuration:

$ oc -n openshift-ingress patch service router-default --patch '{"spec": 
{"externalTrafficPolicy": "Cluster"}}'

10. Monitor the screen messages.

Look for the INFO Install complete!.

The final messages from a sample successful installation:

INFO Waiting up to 10m0s for the openshift-console route to be created...
DEBUG Route found in openshift-console namespace: console
DEBUG Route found in openshift-console namespace: downloads
DEBUG OpenShift console route is created
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export 
KUBECONFIG=/Users/ovaleanu/aws1-ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.w1.ovsandbox.com
INFO Login to the console with user: kubeadmin, password: XXXxx-XxxXX-xxXXX-XxxxX

11. Access the cluster:

$ export KUBECONFIG=~/aws-ocp4/auth/kubeconfig

12. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 35.

How to Add a User After Completing the Installation

The process for adding an Openshift user is identical in KVM or on AWS.

35



Redhat OpenShift 4.6 supports a single kubeadmin user by default. This kubeadmin user is used to
deploy the initial cluster configuration.

You can use this procedure to create a Custom Resource (CR) to define a HTTPasswd identity provider.

1. Generate a flat file that contains the user names and passwords for your cluster by using the
HTPasswd identity provider:

$ htpasswd -c -B -b users.htpasswd testuser MyPassword

A file called users.httpasswd is created.

2. Define a secret password that contains the HTPasswd user file:

$ oc create secret generic htpass-secret --from-file=htpasswd=/root/ocp4/users.htpasswd -n 
openshift-config

This custom resource shows the parameters and acceptable values for an HTPasswd identity
provider.

$ cat htpasswdCR.yaml
apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: testuser
    mappingMethod: claim
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret

3. Apply the defined custom resource:

$ oc create -f htpasswdCR.yaml

36



4. Add the user and assign the cluster-admin role:

$ oc adm policy add-cluster-role-to-user cluster-admin testuser

5. Login using the new user credentials:

oc login -u testuser
Authentication required for https://api.ocp4.example.com:6443 (openshift)
Username: testuser
Password:
Login successful.

The kubeadmin user can now safely be removed. See the Removing the kubeadmin user document
from Red Hat OpenShift.

How to Install Earlier Releases of Contrail Networking and Red Hat
OpenShift

If you have a need to install Contrail Networking with earlier versions of Red Hat Openshift, earlier
versions of Contrail Networking are also supported with Red Hat Openshift versions 4.5, 4.4, and 3.11.

For information on installing Contrail Networking with Red Hat Openshift 4.5, see "How to Install
Contrail Networking and Red Hat OpenShift 4.5" on page 38.

For information on installing Contrail Networking with Red Hat Openshift 4.4, see "How to Install
Contrail Networking and Red Hat OpenShift 4.4" on page 69.

For information on installing Contrail Networking with Red Hat Openshift 3.11, see the following
documentation:

• "Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer" on page 94

• "Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer" on page 106

37

https://docs.openshift.com/container-platform/4.5/authentication/remove-kubeadmin.html


NOTE: The session affinity by client with ClusterIP service is not supported. Contrail Networking
implementation of ClusterIP service uses ECMP load balancer and supports stickiness per flow,
not per client IP address.

How to Install Contrail Networking and Red Hat
OpenShift 4.5

IN THIS SECTION

How to Install Contrail Networking and Red Hat OpenShift 4.5 using a VM Running in a KVM Module  |  39

How to Install Contrail Networking and Red Hat OpenShift 4.5 on Amazon Web Services  |  57

How to Add a User After Completing the Installation  |  66

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  68

NOTE: This topic covers Contrail Networking in Red Hat Openshift environments that are using
Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail offers significant enhancements to optimize networking performance in
Kubernetes-orchestrated environments. Cloud-Native Contrail supports Red Hat Openshift and
we strongly recommend using Cloud-Native Contrail for networking in environments using Red
Hat Openshift.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Starting in Contrail Networking Release 2011, you can install –Contrail Networking with Red Hat
Openshift 4.5 in multiple environments.

This document shows one method of installing Red Hat Openshift 4.5 with Contrail Networking in two
separate contexts—on a VM running in a KVM module and within Amazon Web Services (AWS).

38

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


There are many implementation and configuration options available for installing and configuring Red
Hat OpenShift 4.5 and the scope of all options is beyond this document. For additional information on
Red Hat Openshift 4.5 implementation options, see the OpenShift Container Platform 4.5
Documentation from Red Hat.

This document includes the following sections:

How to Install Contrail Networking and Red Hat OpenShift 4.5 using a
VM Running in a KVM Module

IN THIS SECTION

When to Use This Procedure  |  39

Prerequisites  |  40

Install Contrail Networking and Red Hat Openshift 4.5  |  40

This section illustrates how to install Contrail Networking with Red Hat OpenShift 4.5 orchestration,
where Contrail Networking and Red Hat Openshift are running on virtual machines (VMs) in a Kernel-
based Virtual Machine (KVM) module.

This procedure can also be performed to configure an environment where Contrail Networking and Red
Hat OpenShift 4.5 are running in an environment with bare metal servers. You can, for instance, use this
procedure to establish an environment where the master nodes host the VMs that run the control plane
on KVM while the worker nodes operate on physical bare metal servers.

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.5 orchestration on a
virtual machine (VM) running in a Kernel-based Virtual Machine (KVM) module. Support for Contrail
Networking installations onto VMs in Red Hat OpenShift 4.5 environments is introduced in Contrail
Networking Release 2011. See Contrail Networking Supported Platforms.

You can also use this procedure to install Contrail Networking and Red Hat OpenShift 4.5 orchestration
on a bare metal server.

This procedure should work with all versions of Openshift 4.5.

39

https://docs.openshift.com/container-platform/4.5/welcome/index.html
https://docs.openshift.com/container-platform/4.5/welcome/index.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Prerequisites

This document makes the following assumptions about your environment:

• the KVM environment is operational.

• the server meets the platform requirements for the Contrail Networking installation. See Contrail
Networking Supported Platforms.

• Minimum server requirements:

• Master nodes: 8 CPU, 40GB RAM, 250GB SSD storage

NOTE: The term master node refers to the nodes that build the control plane in this
document.

• Worker nodes: 4 CPU, 16GB RAM, 120GB SSD storage

NOTE: The term worker node refers to nodes running compute services using the data
plane in this document.

• Helper node: 4 CPU, 8GB RAM, 30GB SSD storage

• In single node deployments, do not use spinning disk arrays with low Input/Output Operations Per
Second (IOPS) when using Contrail Networking with Red Hat Openshift. Higher IOPS disk arrays are
required because the control plane always operates as a high availability setup in single node
deployments.

IOPS requirements vary by environment due to multiple factors beyond Contrail Networking and Red
Hat Openshift. We, therefore, provide this guideline but do not provide direct guidance around IOPS
requirements.

Install Contrail Networking and Red Hat Openshift 4.5

IN THIS SECTION

Create a Virtual Network or a Bridge Network for the Installation  |  41

Create a Helper Node with a Virtual Machine Running CentOS 7 or 8  |  42

Prepare the Helper Node  |  43

Create the Ignition Configurations  |  47

40

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Launch the Virtual Machines  |  52

Monitor the Installation Process and Delete the Bootstrap Virtual Machine  |  54

Finish the Installation  |  55

Perform these steps to install Contrail Networking and Red Hat OpenShift 4.5 using a VM running in a
KVM module:

Create a Virtual Network or a Bridge Network for the Installation

To create a virtual network or a bridge network for the installation:

1. Log onto the server that will host the VM that will run Contrail Networking.

Download the virt-net.xml virtual network configuration file from the Red Hat repository.

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
virt-net.xml

2. Create a virtual network using the virt-net.xml file.

You may need to modify your virtual network for your environment.

Example:

# virsh net-define --file virt-net.xml

3. Set the OpenShift 4 virtual network to autostart on bootup:

# virsh net-autostart openshift4
# virsh net-start openshift4

NOTE: If the worker nodes are running on physical bare metal servers in your environment,
this virtual network will be a bridge network with IP address allocations within the same
subnet. This addressing scheme is similar to the scheme for the KVM server.

41



Create a Helper Node with a Virtual Machine Running CentOS 7 or 8

This procedure requires a helper node with a virtual machine that is running either CentOS 7 or 8.

To create this helper node:

1. Download the Kickstart file for the helper node from the Red Hat repository:

CentOS 8

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks8.cfg -O helper-ks.cfg

CentOS 7

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks.cfg -O helper-ks.cfg

2. If you haven’t already configured a root password and the NTP server on the helper node, enter the
following commands:

Example Root Password

rootpw --plaintext password

Example NTP Configuration

timezone America/Los_Angeles --isUtc --
ntpservers=0.centos.pool.ntp.org,1.centos.pool.ntp.org,2.centos.pool.ntp.org,3.centos.pool.ntp
.org

3. Edit the helper-ks.cfg file for your environment and use it to install the helper node.

The following examples show how to install the helper node without having to take further actions:

CentOS 8

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=50 \
--os-variant centos8 --network network=openshift4,model=virtio \
--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-8.2.2004-x86_64-dvd1.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

42



CentOS 7

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=30 \
--os-variant centos7.0 --network network=openshift4,model=virtio \
--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-7-x86_64-Minimal-2003.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

The helper node is installed with the following settings, which are pulled from the virt-net.xml file:

• HELPER_IP: 192.168.7.77

• NetMask: 255.255.255.0

• Default Gateway: 192.168.7.1

• DNS Server: 8.8.8.8

4. Monitor the helper node installation progress in the viewer:

# virt-viewer --domain-name ocp4-aHelper

When the installation process is complete, the helper node shuts off.

5. Start the helper node:

# virsh start ocp4-aHelper

Prepare the Helper Node

To prepare the helper node after the helper node installation:

1. Login to the helper node:

# ssh -l root HELPER_IP

NOTE: The default HELPER_IP, which was pulled from the virt-net.xml file, is 192.168.7.77.

43



2. Install Enterprise Linux and update CentOS.

# yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$(rpm -E 
%rhel).noarch.rpm
# yum -y update

3. Install Ansible and Git and clone the helpernode repository onto the helper node.

# yum -y install ansible git
# git clone https://github.com/RedHatOfficial/ocp4-helpernode
# cd ocp4-helpernode

4. Copy the vars.yaml file into the top-level directory:

# cp docs/examples/vars.yaml .

Review the vars.yml file. Consider changing any value that requires changing in your environment.

The following values should be reviewed especially carefully:

• The domain name, which is defined using the domain: parameter in the dns: hierarchy. If you are
using local DNS servers, modify the forwarder parameters—forwarder1: and forwarder2: are used
in this example—to connect to these DNS servers.

• Hostnames for master and worker nodes. Hostnames are defined using the name: parameter in
either the primaries: or workers: hierarchies.

• IP and DHCP settings. If you are using a custom bridge network, modify the IP and DHCP settings
accordingly.

• VM and BMS settings.

If you are using a VM, set the disk: parameter as disk: vda.

If you are using a BMS, set the disk: parameter as disk: sda.

A sample vars.yml file:

disk: vda
helper:
  name: "helper"
  ipaddr: "192.168.7.77"
dns:

44



  domain: "example.com"
  clusterid: "ocp4"
  forwarder1: "8.8.8.8"
  forwarder2: "8.8.4.4"
dhcp:
  router: "192.168.7.1"
  bcast: "192.168.7.255"
  netmask: "255.255.255.0"
  poolstart: "192.168.7.10"
  poolend: "192.168.7.30"
  ipid: "192.168.7.0"
  netmaskid: "255.255.255.0"
bootstrap:
  name: "bootstrap"
  ipaddr: "192.168.7.20"
  macaddr: "52:54:00:60:72:67"
masters:
  - name: "master0"
    ipaddr: "192.168.7.21"
    macaddr: "52:54:00:e7:9d:67"
  - name: "master1"
    ipaddr: "192.168.7.22"
    macaddr: "52:54:00:80:16:23"
  - name: "master2"
    ipaddr: "192.168.7.23"
    macaddr: "52:54:00:d5:1c:39"
workers:
  - name: "worker0"
    ipaddr: "192.168.7.11"
    macaddr: "52:54:00:f4:26:a1"
  - name: "worker1"
    ipaddr: "192.168.7.12"
    macaddr: "52:54:00:82:90:00"

NOTE: If you are using physical servers to host worker nodes, change the provisioning
interface for the worker nodes to the mac address.

5. Review the vars/main.yml file to ensure the file reflects the correct version of Red Hat OpenShift. If
you need to change the Red Hat Openshift version in the file, change it.

45



In the following sample main.yml file, Red Hat Openshift 4.5 is installed:

ssh_gen_key: true
install_filetranspiler: false
staticips: false
force_ocp_download: false
remove_old_config_files: false
ocp_bios: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.5/4.5.6/
rhcos-4.5.6-x86_64-metal.x86_64.raw.gz"
ocp_initramfs: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.5/4.5.6/
rhcos-4.5.6-x86_64-installer-initramfs.x86_64.img"
ocp_install_kernel: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/
4.5/4.5.6/rhcos-4.5.6-x86_64-installer-kernel-x86_64"
ocp_client: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.5.21/openshift-
client-linux-4.5.21.tar.gz"
ocp_installer: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/4.5.21/openshift-
install-linux-4.5.21.tar.gz"
helm_source: "https://get.helm.sh/helm-v3.2.4-linux-amd64.tar.gz"
chars: (\\_|\\$|\\\|\\/|\\=|\\)|\\(|\\&|\\^|\\%|\\$|\\#|\\@|\\!|\\*)
ppc64le: false
chronyconfig:
  enabled: false
setup_registry:
  deploy: false
  autosync_registry: false
  registry_image: docker.io/library/registry:2
  local_repo: "ocp4/openshift4"
  product_repo: "openshift-release-dev"
  release_name: "ocp-release"
  release_tag: "4.5.21-x86_64"

6. Run the playbook to setup the helper node:

# ansible-playbook -e @vars.yaml tasks/main.yml

7. After the playbook is run, gather information about your environment and confirm that all services
are active and running:

# /usr/local/bin/helpernodecheck services
Status of services:
===================

46



Status of dhcpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago
Status of named svc         ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of haproxy svc     ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of httpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago
Status of tftp svc         ->    Active: active (running) since Mon 2020-09-28 06:13:34 EDT; 
1s ago
Unit local-registry.service could not be found.
Status of local-registry svc         ->

Create the Ignition Configurations

To create Ignition configurations:

1. On your hypervisor and helper nodes, check that your NTP server is properly configured in
the /etc/chrony.conf file:

chronyc tracking

The installation fails with a X509: certificate has expired or is not yet valid message when NTP is
not properly configured.

2. Create a location to store your pull secret objects:

# mkdir -p ~/.openshift

3. From Get Started with Openshift website, download your pull secret and save it in the
~/.openshift/pull-secret directory.

# ls -1 ~/.openshift/pull-secret
/root/.openshift/pull-secret

4. An SSH key is created for you in the ~/.ssh/helper_rsa directory after completing the previous step.
You can use this key or create a unique key for authentication.

# ls -1 ~/.ssh/helper_rsa
/root/.ssh/helper_rsa

47

https://www.openshift.com/try


5. Create an installation directory.

# mkdir ~/ocp4
# cd ~/ocp4

6. Create an install-config.yaml file.

An example file:

# cat <<EOF > install-config.yaml
apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
  name: worker
  replicas: 0
controlPlane:
  hyperthreading: Enabled
  name: master
  replicas: 3
metadata:
  name: ocp4
networking:
  clusterNetworks:
  - cidr: 10.254.0.0/16
    hostPrefix: 24
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  none: {}
pullSecret: '$(< ~/.openshift/pull-secret)'
sshKey: '$(< ~/.ssh/helper_rsa.pub)'
EOF

7. Create the installation manifests:

# openshift-install create manifests

48



8. Set the mastersSchedulable: variable to false in the manifests/cluster-scheduler-02-config.yml file.

# sed -i 's/mastersSchedulable: true/mastersSchedulable: false/g' manifests/cluster-
scheduler-02-config.yml

A sample cluster-scheduler-02-config.yml file after this configuration change:

# cat manifests/cluster-scheduler-02-config.yml
apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
  creationTimestamp: null
  name: cluster
spec:
  mastersSchedulable: false
  policy:
    name: ""
status: {}

This configuration change is needed to prevent pods from being scheduled on control plane
machines.

9. Install the YAML files to apply the Contrail configuration:

bash <<EOF
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-01-namespace.yaml -o manifests/00-contrail-01-namespace.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-admin-password.yaml -o manifests/00-contrail-02-admin-
password.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-rbac-auth.yaml -o manifests/00-contrail-02-rbac-auth.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-registry-secret.yaml -o manifests/00-contrail-02-registry-
secret.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-03-cluster-role.yaml -o manifests/00-contrail-03-cluster-role.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-04-serviceaccount.yaml -o manifests/00-contrail-04-
serviceaccount.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/

49



manifests/00-contrail-05-rolebinding.yaml -o manifests/00-contrail-05-rolebinding.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-06-clusterrolebinding.yaml -o manifests/00-contrail-06-
clusterrolebinding.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_cassandras_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_cassandras_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_commands_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_commands_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_configs_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_configs_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_contrailcnis_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailcnis_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_fernetkeymanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_fernetkeymanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_contrailmonitors_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailmonitors_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_contrailstatusmonitors_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailstatusmonitors_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_controls_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_controls_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_keystones_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_keystones_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_kubemanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_kubemanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_managers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_managers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_memcacheds_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_memcacheds_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_postgres_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_postgres_crd.yaml;\

50



curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_provisionmanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_provisionmanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_rabbitmqs_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_rabbitmqs_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swiftproxies_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swiftproxies_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swifts_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swifts_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swiftstorages_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swiftstorages_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_vrouters_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_vrouters_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_webuis_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_webuis_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_zookeepers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_zookeepers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
releases/R2011/manifests/00-contrail-08-operator.yaml -o manifests/00-contrail-08-
operator.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
releases/R2011/manifests/00-contrail-09-manager.yaml -o manifests/00-contrail-09-
manager.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/cluster-network-02-config.yml -o manifests/cluster-network-02-config.yml
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-iptables-machine-config.yaml -o openshift/99_master-iptables-machine-
config.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-kernel-modules-overlay.yaml -o openshift/99_master-kernel-modules-
overlay.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master_network_functions.yaml -o openshift/99_master_network_functions.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master_network_manager_stop_service.yaml -o openshift/
99_master_network_manager_stop_service.yaml;\

51



curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-pv-mounts.yaml -o openshift/99_master-pv-mounts.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker-iptables-machine-config.yaml -o openshift/99_worker-iptables-machine-
config.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker-kernel-modules-overlay.yaml -o openshift/99_worker-kernel-modules-
overlay.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker_network_functions.yaml -o openshift/99_worker_network_functions.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker_network_manager_stop_service.yaml -o openshift/
99_worker_network_manager_stop_service.yaml;
EOF

10. If your environment has to use a specific NTP server, set the environment using the steps in the
Openshift 4.x Chrony Configuration document.

11. Generate the Ignition configurations:

# openshift-install create ignition-configs

12. Copy the Ignition files in the Ignition directory for the webserver:

# cp ~/ocp4/*.ign /var/www/html/ignition/
# restorecon -vR /var/www/html/
# restorecon -vR /var/lib/tftpboot/
# chmod o+r /var/www/html/ignition/*.ign

Launch the Virtual Machines

To launch the virtual machines:

1. From the hypervisor, use PXE booting to launch the virtual machine or machines. If you are using a
bare metal server, use PXE booting to boot the servers.

2. Launch the bootstrap virtual machine:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:60:72:67 --name ocp4-
bootstrap --ram=8192 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
bootstrap.qcow2,size=120 --vnc

52

https://github.com/Juniper/contrail-operator/blob/R2008/deploy/openshift/docs/chrony-ntp-configuration.md


The following actions occur as a result of this step:

• a bootstrap node virtual machine is created.

• the bootstrap node VM is connected to the PXE server. The PXE server is our helper node.

• an IP address is assigned from DHCP.

• A Red Hat Enterprise Linux CoreOS (RHCOS) image is downloaded from the HTTP server.

The ignition file is embedded at the end of the installation process.

3. Use SSH to run the helper RSA:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.20

4. Review the logs:

journalctl -f

5. On the bootstrap node, a temporary etcd and bootkube is created.

You can monitor these services when they are running by entering the sudo crictl ps command.

[core@bootstrap ~]$ sudo crictl ps
CONTAINER      IMAGE         CREATED             STATE    NAME                            POD 
ID
33762f4a23d7d  976cc3323...  54 seconds ago      Running  manager                         
29a...
ad6f2453d7a16  86694d2cd...  About a minute ago  Running  kube-apiserver-insecure-readyz  
4cd...
3bbdf4176882f  quay.io/...   About a minute ago  Running  kube-scheduler                  
b3e...
57ad52023300e  quay.io/...   About a minute ago  Running  kube-controller-manager         
596...
a1dbe7b8950da  quay.io/...   About a minute ago  Running  kube-apiserver                  
4cd...
5aa7a59a06feb  quay.io/...   About a minute ago  Running  cluster-version-operator        
3ab...
ca45790f4a5f6  099c2a...     About a minute ago  Running  etcd-metrics                    
081...
e72fb8aaa1606  quay.io/...   About a minute ago  Running  etcd-member                     
081...

53



ca56bbf2708f7  1ac19399...   About a minute ago  Running  machine-config-server           
c11...

NOTE: Output modified for readability.

6. From the hypervisor, launch the VMs on the master nodes:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:e7:9d:67 --name ocp4-master0 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master0.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:80:16:23 --name ocp4-master1 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master1.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:d5:1c:39 --name ocp4-master2 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master2.qcow2,size=250 --vnc

You can login to the master nodes from the helper node after the master nodes have been
provisioned:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.21
# ssh -i ~/.ssh/helper_rsa core@192.168.7.22
# ssh -i ~/.ssh/helper_rsa core@192.168.7.23

Enter the sudo crictl ps at any point to monitor pod creation as the VMs are launching.

Monitor the Installation Process and Delete the Bootstrap Virtual Machine

To monitor the installation process:

1. From the helper node, navigate to the ~/ocp4 directory.

2. Track the install process log:

# openshift-install wait-for bootstrap-complete --log-level debug

54



Look for the DEBUG Bootstrap status: complete and the INFO It is now safe to remove the bootstrap
resources messages to confirm that the installation is complete.

INFO Waiting up to 30m0s for the Kubernetes API at https://api.ocp4.example.com:6443...
INFO API v1.13.4+838b4fa up
INFO Waiting up to 30m0s for bootstrapping to complete...
DEBUG Bootstrap status: complete
INFO It is now safe to remove the bootstrap resources

Do not proceed to the next step until you see these messages.

3. From the hypervisor, delete the bootstrap VM and launch the worker nodes.

NOTE: If you are using physical bare metal servers as worker nodes, skip this step.

Boot the bare metal servers using PXE instead.

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:f4:26:a1 --name ocp4-worker0 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker0.qcow2,size=120 --vnc

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:82:90:00 --name ocp4-worker1 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker1.qcow2,size=120 --vnc

Finish the Installation

To finish the installation:

1. Login to your Kubernetes cluster:

# export KUBECONFIG=/root/ocp4/auth/kubeconfig

2. Your installation might be waiting for worker nodes to approve the certificate signing request (CSR).
The machineconfig node approval operator typically handles CSR approval.

CSR approval, however, sometimes has to be performed manually.

55



To check pending CSRs:

# oc get csr

To approve all pending CSRs:

# oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

You may have to approve all pending CSRs multiple times, depending on the number of worker nodes
in your environment and other factors.

To monitor incoming CSRs:

# watch -n5 oc get csr

Do not move to the next step until incoming CSRs have stopped.

3. Set your cluster management state to Managed:

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

4. Setup your registry storage.

For most environments, see Configuring registry storage for bare metal in the Red Hat Openshift
documentation.

For proof of concept labs and other smaller environments, you can set storage to emptyDir.

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

5. If you need to make the registry accessible:

# oc patch configs.imageregistry.operator.openshift.io/cluster --type merge -p '{"spec":
{"defaultRoute":true}}'

56

https://docs.openshift.com/container-platform/4.5/installing/installing_bare_metal/installing-bare-metal.html#registry-configuring-storage-baremetal_installing-bare-metal


6. Wait for the installation to finish:

# openshift-install wait-for install-complete
INFO Waiting up to 30m0s for the cluster at https://api.ocp4.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/
root/ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.ocp4.example.com
INFO Login to the console with user: kubeadmin, password: XXX-XXXX-XXXX-XXXX

7. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 66.

RELATED DOCUMENTATION

Contrail Networking Supported Platforms

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer  |  94

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer  |  106

How to Install Contrail Networking and Red Hat OpenShift 4.5 on
Amazon Web Services

IN THIS SECTION

When to Use This Procedure  |  58

Prerequisites  |  58

Configure DNS  |  58

Configure AWS Credentials  |  58

Download the OpenShift Installer and the Command Line Tools  |  59

Deploy the Cluster  |  59

57

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Follow these procedures to install Contrail Networking and Red Hat Openshift 4.5 on Amazon Web
Services (AWS):

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.5 orchestration in AWS.
Support for Contrail Networking and Red Hat OpenShift 4.5 environments is introduced in Contrail
Networking Release 2011. See Contrail Networking Supported Platforms.

Prerequisites

This document makes the following assumptions about your environment:

• the server meets the platform requirements for the Contrail Networking installation. See Contrail
Networking Supported Platforms.

• You have the Openshift binary version 4.4.8 files or later. See the Openshift Installation site if you
need to update your binary files.

• You can access Openshift image pull secrets. See Using image pull secrets from Red Hat.

• You have an active AWS account.

• AWS CLI is installed. See Installing the AWS CLI from AWS.

• You have an SSH key that you can generate or provide on your local machine during the installation.

Configure DNS

A DNS zone must be created and available in Route 53 for your AWS account before starting this
installation. You must also register a domain for your Contrail cluster in AWS Route 53. All entries
created in AWS Route 53 are expected to be resolvable from the nodes in the Contrail cluster.

For information on configuring DNS zones in AWS Route 53, see the Amazon Route 53 Developer
Guide from AWS.

Configure AWS Credentials

The installer used in this procedure creates multiple resources in AWS that are needed to run your
cluster. These resources include Elastic Compute Cloud (EC2) instances, Virtual Private Clouds (VPCs),
security groups, IAM roles, and other necessary network building blocks.

AWS credentials are needed to access these resources and should be configured before starting this
installation.

To configure AWS credentials, see the Configuration and credential file settings section of the AWS
Command Line Interface User Guide from AWS.

58

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://cloud.redhat.com/openshift/install
https://docs.openshift.com/container-platform/4.5/openshift_images/managing_images/using-image-pull-secrets.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Download the OpenShift Installer and the Command Line Tools

To download the installer and the command line tools:

1. Check which versions of the OpenShift installer are available:

$ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/ | \
  awk '{print $5}'| \
  grep -o '4.[0-9].[0-9]*' | \
  uniq | \
  sort | \
  column

2. Set the version and download the OpenShift installer and the CLI tool.

In this example output, the Openshift version is 4.5.21.

$ VERSION=4.5.21
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-install-
mac-$VERSION.tar.gz
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-
mac-$VERSION.tar.gz

$ tar -xvzf openshift-install-mac-${VERSION}.tar.gz -C /usr/local/bin
$ tar -xvzf openshift-client-mac-${VERSION}.tar.gz -C /usr/local/bin

$ openshift-install version
$ oc version
$ kubectl version

Deploy the Cluster

To deploy the cluster:

1. Generate an SSH private key and add it to the agent:

$ ssh-keygen -b 4096 -t rsa -f ~/.ssh/id_rsa -N ""

2. Create a working folder:

59



In this example, a working folder named aws-ocp4 is created and the user is then moved into the
new directory.

$ mkdir ~/aws-ocp4 ; cd ~/aws-ocp4

3. Create an installation configuration file. See Creating the installation configuration file section of
the Installing a cluster on AWS with customizations document from Red Hat OpenShift.

$ openshift-install create install-config

An install-config.yaml file needs to be created and added to the current directory. A sample install-
config.yaml file is provided below.

Be aware of the following factors while creating the install-config.yaml file:

• The networkType field is usually set as OpenShiftSDN in the YAML file by default.

For configuration pointing at Contrail cluster nodes, the networkType field needs to be
configured as Contrail.

• OpenShift master nodes need larger instances. We recommend setting the type to m5.2xlarge or
larger for OpenShift nodes.

• Most OpenShift worker nodes can use the default instance sizes. You should consider using
larger instances, however, for high demand performance workloads.

• Many of the installation parameters in the YAML file are described in more detail in the
Installation configuration parameters section of the Installing a cluster on AWS with
customizations document from Red Hat OpenShift.

A sample install-config.yaml file:

apiVersion: v1
baseDomain: ovsandbox.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    aws:
      rootVolume:
        iops: 2000
        size: 500

60

https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-initializing_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-configuration-parameters_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html


        type: io1
      type: m5.4xlarge
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    aws:
      rootVolume:
        iops: 4000
        size: 500
        type: io1
      type: m5.2xlarge
  replicas: 3
metadata:
  creationTimestamp: null
  name: w1
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  aws:
    region: eu-west-1
publish: External
pullSecret: '{"auths"...}'
sshKey: |
  ssh-rsa ...

4. Create the installation manifests:

# openshift-install create manifests

61



5. Install the YAML files to apply the Contrail configuration:

bash <<EOF
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-01-namespace.yaml -o manifests/00-contrail-01-namespace.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-admin-password.yaml -o manifests/00-contrail-02-admin-
password.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-rbac-auth.yaml -o manifests/00-contrail-02-rbac-auth.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-02-registry-secret.yaml -o manifests/00-contrail-02-registry-
secret.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-03-cluster-role.yaml -o manifests/00-contrail-03-cluster-role.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-04-serviceaccount.yaml -o manifests/00-contrail-04-
serviceaccount.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-05-rolebinding.yaml -o manifests/00-contrail-05-rolebinding.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/00-contrail-06-clusterrolebinding.yaml -o manifests/00-contrail-06-
clusterrolebinding.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_cassandras_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_cassandras_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_commands_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_commands_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_configs_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_configs_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_contrailcnis_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailcnis_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_fernetkeymanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_fernetkeymanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_contrailmonitors_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailmonitors_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/

62



contrail.juniper.net_contrailstatusmonitors_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_contrailstatusmonitors_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_controls_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_controls_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_keystones_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_keystones_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_kubemanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_kubemanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_managers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_managers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_memcacheds_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_memcacheds_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_postgres_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_postgres_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_provisionmanagers_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_provisionmanagers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_rabbitmqs_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_rabbitmqs_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swiftproxies_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swiftproxies_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swifts_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swifts_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_swiftstorages_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_swiftstorages_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_vrouters_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_vrouters_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_webuis_crd.yaml -o manifests/00-contrail-07-
contrail.juniper.net_webuis_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/crds/
contrail.juniper.net_zookeepers_crd.yaml -o manifests/00-contrail-07-

63



contrail.juniper.net_zookeepers_crd.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
releases/R2011/manifests/00-contrail-08-operator.yaml -o manifests/00-contrail-08-
operator.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
releases/R2011/manifests/00-contrail-09-manager.yaml -o manifests/00-contrail-09-
manager.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
manifests/cluster-network-02-config.yml -o manifests/cluster-network-02-config.yml
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-iptables-machine-config.yaml -o openshift/99_master-iptables-machine-
config.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-kernel-modules-overlay.yaml -o openshift/99_master-kernel-modules-
overlay.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master_network_functions.yaml -o openshift/99_master_network_functions.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master_network_manager_stop_service.yaml -o openshift/
99_master_network_manager_stop_service.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_master-pv-mounts.yaml -o openshift/99_master-pv-mounts.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker-iptables-machine-config.yaml -o openshift/99_worker-iptables-machine-
config.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker-kernel-modules-overlay.yaml -o openshift/99_worker-kernel-modules-
overlay.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker_network_functions.yaml -o openshift/99_worker_network_functions.yaml;\
curl https://raw.githubusercontent.com/Juniper/contrail-operator/R2011/deploy/openshift/
openshift/99_worker_network_manager_stop_service.yaml -o openshift/
99_worker_network_manager_stop_service.yaml;
EOF

6. Modify the YAML files for your environment.

The scope of each potential configuration changes is beyond the scope of this document.

Common configuration changes include:

• Modify the 00-contrail-02-registry-secret.yaml file to providing proper configuration with
credentials to a registry. The most commonly used registry is the Contrail repository at
hub.juniper.net.

64



NOTE: You can create a base64 encoded value for configuration with the script provided
in this directory. If you want to use this value for security, copy the output of the script
and paste it into the Contrail registry secret configuration by replacing the
DOCKER_CONFIG variable with the generated base64 encoded value string.

• If you are using non-default network-CIDR subnets for your pods or services, open the deploy/
openshift/manifests/cluster-network-02-config.yml file and update the CIDR values.

• The default number of master nodes in a Kubernetes cluster is 3. If you are using a different
number of master nodes, modify the deploy/openshift/manifests/00-contrail-09-manager.yaml
file and set the spec.commonConfiguration.replicas field to the number of master nodes.

7. Create the cluster:

$ openshift-install create cluster --log-level=debug

• Contrail Networking needs to open some networking ports for operation within AWS. These
ports are opened by adding rules to security groups.

Follow this procedure to add rules to security groups when AWS resources are manually
created:

a. Build the Contrail CLI tool for managing security group ports on AWS. This tool allows you to
automatically open ports that are required for Contrail to manage security group ports on
AWS that are attached to Contrail cluster resources.

To build this tool:

go build .

After entering this command, you should be in the binary contrail-sc-open in your directory.
This interface is the compiled tool.

b. Start the tool:

./contrail-sc-open -cluster-name name of your Openshift cluster -region AWS region 
where cluster is located

65



c. Verify that the service has been created:

oc -n openshift-ingress get service router-default

Proceed to the next step after confirming the service was created.

8. When the service router-default is created in openshift-ingress, use the following command to
patch the configuration:

$ oc -n openshift-ingress patch service router-default --patch '{"spec": 
{"externalTrafficPolicy": "Cluster"}}'

9. Monitor the screen messages.

Look for the INFO Install complete!.

The final messages from a sample successful installation:

INFO Waiting up to 10m0s for the openshift-console route to be created...
DEBUG Route found in openshift-console namespace: console
DEBUG Route found in openshift-console namespace: downloads
DEBUG OpenShift console route is created
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export 
KUBECONFIG=/Users/ovaleanu/aws1-ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.w1.ovsandbox.com
INFO Login to the console with user: kubeadmin, password: XXXxx-XxxXX-xxXXX-XxxxX

10. Access the cluster:

$ export KUBECONFIG=~/aws-ocp4/auth/kubeconfig

11. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 66.

How to Add a User After Completing the Installation

The process for adding an Openshift user is identical in KVM or on AWS.

66



Redhat OpenShift 4.5 supports a single kubeadmin user by default. This kubeadmin user is used to
deploy the initial cluster configuration.

You can use this procedure to create a Custom Resource (CR) to define a HTTPasswd identity provider.

1. Generate a flat file that contains the user names and passwords for your cluster by using the
HTPasswd identity provider:

$ htpasswd -c -B -b users.htpasswd testuser MyPassword

A file called users.httpasswd is created.

2. Define a secret password that contains the HTPasswd user file:

$ oc create secret generic htpass-secret --from-file=htpasswd=/root/ocp4/users.htpasswd -n 
openshift-config

This custom resource shows the parameters and acceptable values for an HTPasswd identity
provider.

$ cat htpasswdCR.yaml
apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: testuser
    mappingMethod: claim
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret

3. Apply the defined custom resource:

$ oc create -f htpasswdCR.yaml

67



4. Add the user and assign the cluster-admin role:

$ oc adm policy add-cluster-role-to-user cluster-admin testuser

5. Login using the new user credentials:

oc login -u testuser
Authentication required for https://api.ocp4.example.com:6443 (openshift)
Username: testuser
Password:
Login successful.

The kubeadmin user can now safely be removed. See the Removing the kubeadmin user document
from Red Hat OpenShift.

How to Install Earlier Releases of Contrail Networking and Red Hat
OpenShift

If you have a need to install Contrail Networking with earlier versions of Red Hat Openshift, Contrail
Networking is also supported with Red Hat Openshift versions 4.4 and 3.11.

For information on installing Contrail Networking with Red Hat Openshift 4.4, see "How to Install
Contrail Networking and Red Hat OpenShift 4.4" on page 69.

For information on installing Contrail Networking with Red Hat Openshift 3.11, see the following
documentation:

• "Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer" on page 94

• "Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer" on page 106

68

https://docs.openshift.com/container-platform/4.5/authentication/remove-kubeadmin.html


How to Install Contrail Networking and Red Hat
OpenShift 4.4

IN THIS SECTION

How to Install Contrail Networking and Red Hat OpenShift 4.4 using a VM Running in a KVM Module  |  70

How to Install Contrail Networking and Red Hat OpenShift 4.4 on Amazon Web Services  |  86

How to Add a User After Completing the Installation  |  92

How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift  |  94

NOTE: This topic covers Contrail Networking in Red Hat Openshift environments that are using
Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail offers significant enhancements to optimize networking performance in
Kubernetes-orchestrated environments. Cloud-Native Contrail supports Red Hat Openshift and
we strongly recommend using Cloud-Native Contrail for networking in environments using Red
Hat Openshift.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

You can install Contrail Networking with Red Hat Openshift 4.4 in multiple environments.

This document shows one method of installing Red Hat Openshift 4.4 with Contrail Networking in two
separate contexts—on a VM running in a KVM module and within Amazon Web Services (AWS). There
are many implementation and configuration options available for installing and configuring Red Hat
OpenShift 4.4 and the scope of all options is beyond this document. For additional information on Red
Hat Openshift 4.4 implementation options, see the OpenShift Container Platform 4.4 Documentation
from Red Hat.

This document includes the following sections:

69

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://docs.openshift.com/container-platform/4.4/welcome/index.html


How to Install Contrail Networking and Red Hat OpenShift 4.4 using a
VM Running in a KVM Module

IN THIS SECTION

When to Use This Procedure  |  70

Prerequisites  |  70

Install Contrail Networking and Red Hat Openshift 4.4  |  71

This section illustrates how to install Contrail Networking with Red Hat OpenShift 4.4 orchestration,
where Contrail Networking and Red Hat Openshift are running on virtual machines (VMs) in a Kernel-
based Virtual Machine (KVM) module. This procedure can also be performed to configure an
environment where Contrail Networking and Red Hat OpenShift 4.4 are running on a bare metal server.

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.4 orchestration on a
virtual machine (VM) running in a Kernel-based Virtual Machine (KVM) module. Support for Contrail
Networking installations onto VMs in Red Hat OpenShift 4.4 environments is introduced in Contrail
Networking Release 2008. See Contrail Networking Supported Platforms.

You can also use this procedure to install Contrail Networking and Red Hat OpenShift 4.4 orchestration
on a bare metal server.

This procedure should work with all versions of Openshift 4.4.

Prerequisites

This document makes the following assumptions about your environment:

• the KVM environment is operational.

• the server meets the platform requirements for the installation. See Contrail Networking Supported
Platforms.

• Minimum server requirements:

• Primary nodes: 8 CPU, 40GB RAM, 250GB SSD storage

• Backup nodes: 4 CPU, 16GB RAM, 120GB SSD storage

• Helper node: 4 CPU, 8GB RAM, 30GB SSD storage

70

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


• In single node deployments, do not use spinning disk arrays with low Input/Output Operations Per
Second (IOPS) when using Contrail Networking with Red Hat Openshift. Higher IOPS disk arrays are
required because the control plane always operates as a high availability setup in single node
deployments.

IOPS requirements vary by environment due to multiple factors beyond Contrail Networking and Red
Hat Openshift. We, therefore, provide this guideline but do not provide direct guidance around IOPS
requirements.

Install Contrail Networking and Red Hat Openshift 4.4

IN THIS SECTION

Create a Virtual Network or a Bridge Network for the Installation  |  71

Create a Helper Node with a Virtual Machine Running CentOS 7 or 8  |  72

Prepare the Helper Node  |  73

Create the Ignition Configurations  |  77

Launch the Virtual Machines  |  81

Monitor the Installation Process and Delete the Bootstrap Virtual Machine  |  83

Finish the Installation  |  84

Perform these steps to install Contrail Networking and Red Hat OpenShift 4.4 using a VM running in a
KVM module:

Create a Virtual Network or a Bridge Network for the Installation

To create a virtual network or a bridge network for the installation:

1. Log onto the server that will host the VM that will run Contrail Networking.

Download the virt-net.xml virtual network configuration file from the Red Hat repository.

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
virt-net.xml

2. Create a virtual network using the virt-net.xml file.

You may need to modify your virtual network for your environment.

71



Example:

# virsh net-define --file virt-net.xml

3. Set the OpenShift 4.4 virtual network to autostart on bootup:

# virsh net-autostart openshift4
# virsh net-start openshift4

Create a Helper Node with a Virtual Machine Running CentOS 7 or 8

This procedure requires a helper node with a virtual machine that is running either CentOS 7 or 8.

To create this helper node:

1. Download the Kickstart file for the helper node from the Red Hat repository:

CentOS 8

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks8.cfg -O helper-ks.cfg

CentOS 7

# wget https://raw.githubusercontent.com/RedHatOfficial/ocp4-helpernode/master/docs/examples/
helper-ks.cfg -O helper-ks.cfg

2. If you haven’t already configured a root password and the NTP server on the helper node, enter the
following commands:

Example Root Password

rootpw --plaintext password

Example NTP Configuration

timezone America/Los_Angeles --isUtc --
ntpservers=0.centos.pool.ntp.org,1.centos.pool.ntp.org,2.centos.pool.ntp.org,3.centos.pool.ntp
.org

3. Edit the helper-ks.cfg file for your environment and use it to install the helper node.

72



The following examples show how to install the helper node without having to take further actions:

CentOS 8

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=50 \
--os-variant centos8 --network network=openshift4,model=virtio \
--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-8.2.2004-x86_64-dvd1.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

CentOS 7

# virt-install --name="ocp4-aHelper" --vcpus=2 --ram=4096 \
--disk path=/var/lib/libvirt/images/ocp4-aHelper.qcow2,bus=virtio,size=30 \
--os-variant centos7.0 --network network=openshift4,model=virtio \
--boot hd,menu=on --location /var/lib/libvirt/iso/CentOS-7-x86_64-Minimal-2003.iso \
--initrd-inject helper-ks.cfg --extra-args "inst.ks=file:/helper-ks.cfg" --noautoconsole

The helper node is installed with the following settings, which are pulled from the virt-net.xml file:

• HELPER_IP: 192.168.7.77

• NetMask: 255.255.255.0

• Default Gateway: 192.168.7.1

• DNS Server: 8.8.8.8

4. Monitor the helper node installation progress in the viewer:

# virt-viewer --domain-name ocp4-aHelper

When the installation process is complete, the helper node shuts off.

5. Start the helper node:

# virsh start ocp4-aHelper

Prepare the Helper Node

To prepare the helper node after the helper node installation:

73



1. Login to the helper node:

# ssh -l root HELPER_IP

NOTE: The default HELPER_IP, which was pulled from the virt-net.xml file, is 192.168.7.77.

2. Install Enterprise Linux and update CentOS.

# yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-$(rpm -E 
%rhel).noarch.rpm
# yum -y update

3. Install Ansible and Git and clone the helpernode repository onto the helper node.

# yum -y install ansible git
# git clone https://github.com/RedHatOfficial/ocp4-helpernode
# cd ocp4-helpernode

4. Copy the vars.yaml file into the top-level directory:

# cp docs/examples/vars.yaml .

Review the vars.yml file. Consider changing any value that requires changing in your environment.

The following values should be reviewed especially carefully:

• The domain name, which is defined using the domain: parameter in the dns: hierarchy. If you are
using local DNS servers, modify the forwarder parameters—forwarder1: and forwarder2: are used
in this example—to connect to these DNS servers.

• Hostnames for primary and worker nodes. Hostnames are defined using the name: parameter in
either the primaries: or workers: hierarchies.

• IP and DHCP settings. If you are using a custom bridge network, modify the IP and DHCP settings
accordingly.

• VM and BMS settings.

If you are using a VM, set the disk: parameter as disk: vda.

If you are using a BMS, set the disk: parameter as disk: sda.

74



A sample vars.yml file:

disk: vda
helper:
  name: "helper"
  ipaddr: "192.168.7.77"
dns:
  domain: "example.com"
  clusterid: "ocp4"
  forwarder1: "8.8.8.8"
  forwarder2: "8.8.4.4"
dhcp:
  router: "192.168.7.1"
  bcast: "192.168.7.255"
  netmask: "255.255.255.0"
  poolstart: "192.168.7.10"
  poolend: "192.168.7.30"
  ipid: "192.168.7.0"
  netmaskid: "255.255.255.0"
bootstrap:
  name: "bootstrap"
  ipaddr: "192.168.7.20"
  macaddr: "52:54:00:60:72:67"
masters:
  - name: "master0"
    ipaddr: "192.168.7.21"
    macaddr: "52:54:00:e7:9d:67"
  - name: "master1"
    ipaddr: "192.168.7.22"
    macaddr: "52:54:00:80:16:23"
  - name: "master2"
    ipaddr: "192.168.7.23"
    macaddr: "52:54:00:d5:1c:39"
workers:
  - name: "worker0"
    ipaddr: "192.168.7.11"
    macaddr: "52:54:00:f4:26:a1"
  - name: "worker1"
    ipaddr: "192.168.7.12"
    macaddr: "52:54:00:82:90:00"

75



5. Review the vars/main.yml file to ensure the file reflects the correct version of Red Hat OpenShift. If
you need to change the Red Hat Openshift version in the file, change it.

In the following sample main.yml file, Red Hat Openshift 4.4.21 is installed:

ssh_gen_key: true
install_filetranspiler: false
staticips: false
force_ocp_download: false
ocp_bios: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.4/latest/
rhcos-4.4.17-x86_64-metal.x86_64.raw.gz"
ocp_initramfs: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.4/latest/
rhcos-4.4.17-x86_64-installer-initramfs.x86_64.img"
ocp_install_kernel: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.4/
latest/rhcos-4.4.17-x86_64-installer-kernel-x86_64"
ocp_client: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable-4.4/openshift-
client-linux.tar.gz"
ocp_installer: "https://mirror.openshift.com/pub/openshift-v4/clients/ocp/stable-4.4/
openshift-install-linux.tar.gz"
helm_source: "https://get.helm.sh/helm-v3.2.4-linux-amd64.tar.gz"
chars: (\\_|\\$|\\\|\\/|\\=|\\)|\\(|\\&|\\^|\\%|\\$|\\#|\\@|\\!|\\*)
ppc64le: false
chronyconfig:
  enabled: false
setup_registry:
  deploy: false
  autosync_registry: false
  registry_image: docker.io/library/registry:2
  local_repo: "ocp4/openshift4"
  product_repo: "openshift-release-dev"
  release_name: "ocp-release"
  release_tag: "4.4.21-x86_64"

6. Run the playbook to setup the helper node:

# ansible-playbook -e @vars.yaml tasks/main.yml

7. After the playbook is run, gather information about your environment and confirm that all services
are active and running:

# /usr/local/bin/helpernodecheck services
Status of services:

76



===================
Status of dhcpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago
Status of named svc         ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of haproxy svc     ->    Active: active (running) since Mon 2020-09-28 05:40:08 EDT; 
33min ago
Status of httpd svc         ->    Active: active (running) since Mon 2020-09-28 05:40:10 EDT; 
33min ago
Status of tftp svc         ->    Active: active (running) since Mon 2020-09-28 06:13:34 EDT; 
1s ago
Unit local-registry.service could not be found.
Status of local-registry svc         ->

Create the Ignition Configurations

To create Ignition configurations:

1. On your hypervisor and helper nodes, check that your NTP server is properly configured in
the /etc/chrony.conf file:

chronyc tracking

The installation fails with a X509: certificate has expired or is not yet valid message when NTP is
not properly configured.

2. Create a location to store your pull secret objects:

# mkdir -p ~/.openshift

3. From Get Started with Openshift website, download your pull secret and save it in the
~/.openshift/pull-secret directory.

# ls -1 ~/.openshift/pull-secret
/root/.openshift/pull-secret

77

https://www.openshift.com/try


4. An SSH key is created for you in the ~/.ssh/helper_rsa directory after completing the previous step.
You can use this key or create a unique key for authentication.

# ls -1 ~/.ssh/helper_rsa
/root/.ssh/helper_rsa

5. Create an installation directory.

# mkdir ~/ocp4
# cd ~/ocp4

6. Create an install-config.yaml file.

An example file:

# cat <<EOF > install-config.yaml
apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Disabled
  name: worker
  replicas: 0
controlPlane:
  hyperthreading: Disabled
  name: master
  replicas: 3
metadata:
  name: ocp4
networking:
  clusterNetworks:
  - cidr: 10.254.0.0/16
    hostPrefix: 24
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  none: {}
pullSecret: '$(< ~/.openshift/pull-secret)'
sshKey: '$(< ~/.ssh/helper_rsa.pub)'
EOF

78



7. Create the installation manifests:

# openshift-install create manifests

8. Set the mastersSchedulable: variable to false in the manifests/cluster-scheduler-02-config.yml file.

# sed -i 's/mastersSchedulable: true/mastersSchedulable: false/g' manifests/cluster-
scheduler-02-config.yml

A sample cluster-scheduler-02-config.yml file after this configuration change:

# cat manifests/cluster-scheduler-02-config.yml
apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
  creationTimestamp: null
  name: cluster
spec:
  mastersSchedulable: false
  policy:
    name: ""
status: {}

This configuration change is needed to prevent pods from being scheduled on control plane
machines.

9. Clone the contrail operator repository:

# git clone https://github.com/Juniper/contrail-operator.git
# git checkout R2008

10. Create the Contrail operator configuration file.

Example:

# cat <<EOF > config_contrail_operator.yaml
CONTRAIL_VERSION=2008.121
CONTRAIL_REGISTRY=hub.juniper.net/contrail
DOCKER_CONFIG=<this_needs_to_be_generated>
EOF

79



where:

• CONTRAIL_VERSION is the Contrail Networking container tag of the version of Contrail
Networking that you are downloading.

This procedure is initially supported in Contrail Networking Release 2008. You can obtain the
Contrail Networking container tags for all Contrail Networking 20 releases in README Access
to Contrail Networking Registry 20XX.

• CONTRAIL_REGISTRY is the path to the container registry. The default Juniper Contrail
Container Registry contains the files needed for this installation and is located at
hub.juniper.net/contrail.

If needed, email mailto:contrail-registry@juniper.net to obtain your username and password
credentials to access the Contrail Container registry.

• DOCKER_CONFIG is the registry secret credential. Set the DOCKER_CONFIG to registry secret
with proper data in base64.

NOTE: You can create base64 encoded values using a script. See DOCKER_CONFIG
generate.

To start the script:

# ./contrail-operator/deploy/openshift/tools/docker-config-generate/generate-docker-
config.sh

You can copy output generated from the script and use it as the DOCKER_CONFIG value
in this file.

11. Install Contrail manifests:

# ./contrail-operator/deploy/openshift/install-manifests.sh --dir ./ --config ./
config_contrail_operator.yaml

12. If your environment has to use a specific NTP server, set the environment using the steps in the
Openshift 4.x Chrony Configuration document.

13. Generate the Ignition configurations:

# openshift-install create ignition-configs

80

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
mailto:contrail-registry@juniper.net
https://github.com/Juniper/contrail-operator/tree/master/deploy/openshift/tools/docker-config-generate
https://github.com/Juniper/contrail-operator/tree/master/deploy/openshift/tools/docker-config-generate
https://github.com/Juniper/contrail-operator/blob/R2008/deploy/openshift/docs/chrony-ntp-configuration.md


14. Copy the Ignition files in the Ignition directory for the webserver:

# cp ~/ocp4/*.ign /var/www/html/ignition/
# restorecon -vR /var/www/html/
# restorecon -vR /var/lib/tftpboot/
# chmod o+r /var/www/html/ignition/*.ign

Launch the Virtual Machines

To launch the virtual machines:

1. From the hypervisor, use PXE booting to launch the virtual machine or machines. If you are using a
bare metal server, use PXE booting to boot the servers.

2. Launch the bootstrap virtual machine:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:60:72:67 --name ocp4-
bootstrap --ram=8192 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
bootstrap.qcow2,size=120 --vnc

The following actions occur as a result of this step:

• a bootstrap node virtual machine is created.

• the bootstrap node VM is connected to the PXE server. The PXE server is our helper node.

• an IP address is assigned from DHCP.

• A Red Hat Enterprise Linux CoreOS (RHCOS) image is downloaded from the HTTP server.

The ignition file is embedded at the end of the installation process.

3. Use SSH to run the helper RSA:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.20

4. Review the logs:

journalctl -f

5. On the bootstrap node, a temporary etcd and bootkube is created.

81



You can monitor these services when they are running by entering the sudo crictl ps command.

[core@bootstrap ~]$ sudo crictl ps
CONTAINER      IMAGE         CREATED             STATE    NAME                            POD 
ID
33762f4a23d7d  976cc3323...  54 seconds ago      Running  manager                         
29a...
ad6f2453d7a16  86694d2cd...  About a minute ago  Running  kube-apiserver-insecure-readyz  
4cd...
3bbdf4176882f  quay.io/...   About a minute ago  Running  kube-scheduler                  
b3e...
57ad52023300e  quay.io/...   About a minute ago  Running  kube-controller-manager         
596...
a1dbe7b8950da  quay.io/...   About a minute ago  Running  kube-apiserver                  
4cd...
5aa7a59a06feb  quay.io/...   About a minute ago  Running  cluster-version-operator        
3ab...
ca45790f4a5f6  099c2a...     About a minute ago  Running  etcd-metrics                    
081...
e72fb8aaa1606  quay.io/...   About a minute ago  Running  etcd-member                     
081...
ca56bbf2708f7  1ac19399...   About a minute ago  Running  machine-config-server           
c11...

NOTE: Output modified for readability.

6. From the hypervisor, launch the VMs on the primary nodes:

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:e7:9d:67 --name ocp4-master0 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master0.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:80:16:23 --name ocp4-master1 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master1.qcow2,size=250 --vnc
# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:d5:1c:39 --name ocp4-master2 
--ram=40960 --vcpus=8 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
master2.qcow2,size=250 --vnc

82



You can login to the primary nodes from the helper node after the primary nodes have been
provisioned:

# ssh -i ~/.ssh/helper_rsa core@192.168.7.21
# ssh -i ~/.ssh/helper_rsa core@192.168.7.22
# ssh -i ~/.ssh/helper_rsa core@192.168.7.23

Enter the sudo crictl ps at any point to monitor pod creation as the VMs are launching.

Monitor the Installation Process and Delete the Bootstrap Virtual Machine

To monitor the installation process:

1. From the helper node, navigate to the ~/ocp4 directory.

2. Track the install process log:

# openshift-install wait-for bootstrap-complete --log-level debug

Look for the DEBUG Bootstrap status: complete and the INFO It is now safe to remove the bootstrap
resources messages to confirm that the installation is complete.

INFO Waiting up to 30m0s for the Kubernetes API at https://api.ocp4.example.com:6443...
INFO API v1.13.4+838b4fa up
INFO Waiting up to 30m0s for bootstrapping to complete...
DEBUG Bootstrap status: complete
INFO It is now safe to remove the bootstrap resources

Do not proceed to the next step until you see these messages.

3. From the hypervisor, delete the bootstrap VM and launch the worker nodes.

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:f4:26:a1 --name ocp4-worker0 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker0.qcow2,size=120 --vnc

# virt-install --pxe --network bridge=openshift4 --mac=52:54:00:82:90:00 --name ocp4-worker1 
--ram=16384 --vcpus=4 --os-variant rhel8.0 --disk path=/var/lib/libvirt/images/ocp4-
worker1.qcow2,size=120 --vnc

83



Finish the Installation

To finish the installation:

1. Login to your Kubernetes cluster:

# export KUBECONFIG=/root/ocp4/auth/kubeconfig

2. Your installation might be waiting for worker nodes to approve the certificate signing request (CSR).
The machineconfig node approval operator typically handles CSR approval.

CSR approval, however, sometimes has to be performed manually.

To check pending CSRs:

# oc get csr

To approve all pending CSRs:

# oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

You may have to approve all pending CSRs multiple times, depending on the number of worker nodes
in your environment and other factors.

To monitor incoming CSRs:

# watch -n5 oc get csr

Do not move to the next step until incoming CSRs have stopped.

3. Set your cluster management state to Managed:

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

4. Setup your registry storage.

For most environments, see Configuring registry storage for bare metal in the Red Hat Openshift
documentation.

84

https://docs.openshift.com/container-platform/4.5/installing/installing_bare_metal/installing-bare-metal.html#registry-configuring-storage-baremetal_installing-bare-metal


For proof of concept labs and other smaller environments, you can set storage to emptyDir.

# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

5. If you need to make the registry accessible:

# oc patch configs.imageregistry.operator.openshift.io/cluster --type merge -p '{"spec":
{"defaultRoute":true}}'

6. Wait for the installation to finish:

# openshift-install wait-for install-complete
INFO Waiting up to 30m0s for the cluster at https://api.ocp4.example.com:6443 to initialize...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/
root/ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.ocp4.example.com
INFO Login to the console with user: kubeadmin, password: XXX-XXXX-XXXX-XXXX

7. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 92.

RELATED DOCUMENTATION

Contrail Networking Supported Platforms

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer  |  94

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer  |  106

85

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


How to Install Contrail Networking and Red Hat OpenShift 4.4 on
Amazon Web Services

IN THIS SECTION

When to Use This Procedure  |  86

Prerequisites  |  86

Configure DNS  |  86

Configure AWS Credentials  |  87

Download the OpenShift Installer and the Command Line Tools  |  87

Deploy the Cluster  |  88

Follow these procedures to install Contrail Networking and Red Hat Openshift 4.4 on Amazon Web
Services (AWS):

When to Use This Procedure

This procedure is used to install Contrail Networking and Red Hat OpenShift 4.4 orchestration in AWS.
Support for Contrail Networking and Red Hat OpenShift 4.4 environments is introduced in Contrail
Networking Release 2008. See Contrail Networking Supported Platforms.

Prerequisites

This document makes the following assumptions about your environment:

• the server meets the platform requirements for the installation. See Contrail Networking Supported
Platforms.

Configure DNS

A DNS zone must be created and available in Route 53 for your AWS account before starting this
installation. You must also register a domain for your Contrail cluster in AWS Route 53. All entries
created in AWS Route 53 are expected to be resolvable from the nodes in the Contrail cluster.

For information on configuring DNS zones in AWS Route 53, see the Amazon Route 53 Developer
Guide from AWS.

86

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf


Configure AWS Credentials

The installer used in this procedure creates multiple resources in AWS that are needed to run your
cluster. These resources include Elastic Compute Cloud (EC2) instances, Virtual Private Clouds (VPCs),
security groups, IAM roles, and other necessary network building blocks.

AWS credentials are needed to access these resources and should be configured before starting this
installation.

To configure AWS credentials, see the Configuration and credential file settings section of the AWS
Command Line Interface User Guide from AWS.

Download the OpenShift Installer and the Command Line Tools

To download the installer and the command line tools:

1. Check which versions of the OpenShift installer are available:

$ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/ | \
  awk '{print $5}'| \
  grep -o '4.[0-9].[0-9]*' | \
  uniq | \
  sort | \
  column

2. Set the version and download the OpenShift installer and the CLI tool.

In this example output, the Openshift version is 4.4.20.

$ VERSION=4.4.20
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-install-
mac-$VERSION.tar.gz
$ wget https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-
mac-$VERSION.tar.gz

$ tar -xvzf openshift-install-mac-4.4.20.tar.gz -C /usr/local/bin
$ tar -xvzf openshift-client-mac-4.4.20.tar.gz -C /usr/local/bin

$ openshift-install version
$ oc version
$ kubectl version

87

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Deploy the Cluster

To deploy the cluster:

1. Generate an SSH private key and add it to the agent:

$ ssh-keygen -b 4096 -t rsa -f ~/.ssh/id_rsa -N ""

2. Create a working folder:

In this example, a working folder named aws-ocp4 is created and the user is then moved into the
new directory.

$ mkdir ~/aws-ocp4 ; cd ~/aws-ocp4

3. Create an installation configuration file. See Creating the installation configuration file section of
the Installing a cluster on AWS with customizations document from Red Hat OpenShift.

$ openshift-install create install-config

An install-config.yaml file needs to be created and added to the current directory. A sample install-
config.yaml file is provided below.

Be aware of the following factors while creating the install-config.yaml file:

• The networkType field is usually set as OpenShiftSDN in the YAML file by default.

For configuration pointing at Contrail cluster nodes, the networkType field needs to be
configured as Contrail.

• OpenShift primary nodes need larger instances. We recommend setting the type to m5.2xlarge
or larger for OpenShift primary nodes.

• Most OpenShift worker nodes can use the default instance sizes. You should consider using
larger instances, however, for high demand performance workloads.

• Many of the installation parameters in the YAML file are described in more detail in the
Installation configuration parameters section of the Installing a cluster on AWS with
customizations document from Red Hat OpenShift.

A sample install-config.yaml file:

apiVersion: v1
baseDomain: ovsandbox.com

88

https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-initializing_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html#installation-configuration-parameters_installing-aws-customizations
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.5/installing/installing_aws/installing-aws-customizations.html


compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    aws:
      rootVolume:
        iops: 2000
        size: 500
        type: io1
      type: m5.4xlarge
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    aws:
      rootVolume:
        iops: 4000
        size: 500
        type: io1
      type: m5.2xlarge
  replicas: 3
metadata:
  creationTimestamp: null
  name: w1
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: Contrail
  serviceNetwork:
  - 172.30.0.0/16
platform:
  aws:
    region: eu-west-1
publish: External
pullSecret: '{"auths"...}'

89



sshKey: |
  ssh-rsa ...

4. Create the installation manifests:

# openshift-install create manifests

5. Clone the Contrail operator repository:

$ git clone https://github.com/Juniper/contrail-operator.git
$ git checkout R2008

6. Create the Contrail operator configuration file.

Example:

# cat <<EOF > config_contrail_operator.yaml
CONTRAIL_VERSION=2008.121
CONTRAIL_REGISTRY=hub.juniper.net/contrail
DOCKER_CONFIG=<this_needs_to_be_generated>
EOF

where:

• CONTRAIL_VERSION is the Contrail Networking container tag of the version of Contrail
Networking that you are downloading.

This procedure is initially supported in Contrail Networking Release 2008. You can obtain the
Contrail Networking container tags for all Contrail Networking 20 releases in README Access
to Contrail Networking Registry 20XX.

• CONTRAIL_REGISTRY is the path to the container registry. The default Juniper Contrail
Container Registry contains the files needed for this installation and is located at
hub.juniper.net/contrail.

If needed, email mailto:contrail-registry@juniper.net to obtain your username and password
credentials to access the Contrail Container registry.

• DOCKER_CONFIG is the registry secret credential. Set the DOCKER_CONFIG to registry secret
with proper data in base64.

90

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
mailto:contrail-registry@juniper.net


NOTE: You can create base64 encoded values using a script. See DOCKER_CONFIG
generate.

To start the script:

# ./contrail-operator/deploy/openshift/tools/docker-config-generate/generate-docker-
config.sh

You can copy output generated from the script and use it as the DOCKER_CONFIG value
in this file.

7. Install Contrail manifests:

# ./contrail-operator/deploy/openshift/install-manifests.sh --dir ./ --config ./
config_contrail_operator.yaml

8. Create the cluster:

$ openshift-install create cluster --log-level=debug

• Contrail Networking needs to open some networking ports for operation within AWS. These
ports are opened by adding rules to security groups.

Follow this procedure to add rules to security groups when AWS resources are manually
created:

a. Build the Contrail CLI tool for managing security group ports on AWS. This tool allows you to
automatically open ports that are required for Contrail to manage security group ports on
AWS that are attached to Contrail cluster resources.

To build this tool:

go build .

After entering this command, you should be in the binary contrail-sc-open in your directory.
This interface is the compiled tool.

91

https://github.com/Juniper/contrail-operator/tree/master/deploy/openshift/tools/docker-config-generate
https://github.com/Juniper/contrail-operator/tree/master/deploy/openshift/tools/docker-config-generate


b. Start the tool:

./contrail-sc-open -cluster-name name of your Openshift cluster -region AWS region 
where cluster is located

9. When the service router-default is created in openshift-ingress, use the following command to
patch the configuration:

$ oc -n openshift-ingress patch service router-default --patch '{"spec": 
{"externalTrafficPolicy": "Cluster"}}'

10. Monitor the screen messages.

Look for the INFO Install complete!.

The final messages from a sample successful installation:

INFO Waiting up to 10m0s for the openshift-console route to be created...
DEBUG Route found in openshift-console namespace: console
DEBUG Route found in openshift-console namespace: downloads
DEBUG OpenShift console route is created
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export 
KUBECONFIG=/Users/ovaleanu/aws1-ocp4/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.w1.ovsandbox.com
INFO Login to the console with user: kubeadmin, password: XXXxx-XxxXX-xxXXX-XxxxX

11. Access the cluster:

$ export KUBECONFIG=~/aws-ocp4/auth/kubeconfig

12. Add a user to the cluster. See "How to Add a User After Completing the Installation" on page 92.

How to Add a User After Completing the Installation

The process for adding an Openshift user is identical in KVM or on AWS.

Redhat OpenShift 4.4 supports a single kubeadmin user by default. This kubeadmin user is used to
deploy the initial cluster configuration.

92



You can use this procedure to create a Custom Resource (CR) to define a HTTPasswd identity provider.

1. Generate a flat file that contains the user names and passwords for your cluster by using the
HTPasswd identity provider:

$ htpasswd -c -B -b users.htpasswd testuser MyPassword

A file called users.httpasswd is created.

2. Define a secret password that contains the HTPasswd user file:

$ oc create secret generic htpass-secret --from-file=htpasswd=/root/ocp4/users.htpasswd -n 
openshift-config

This custom resource shows the parameters and acceptable values for an HTPasswd identity
provider.

$ cat htpasswdCR.yaml
apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: testuser
    mappingMethod: claim
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret

3. Apply the defined custom resource:

$ oc create -f htpasswdCR.yaml

4. Add the user and assign the cluster-admin role:

$ oc adm policy add-cluster-role-to-user cluster-admin testuser

93



5. Login using the new user credentials:

oc login -u testuser
Authentication required for https://api.ocp4.example.com:6443 (openshift)
Username: testuser
Password:
Login successful.

The kubeadmin user can now safely be removed. See the Removing the kubeadmin user document
from Red Hat OpenShift.

How to Install Earlier Releases of Contrail Networking and Red Hat
OpenShift

If you have a need to install Contrail Networking with earlier versions of Red Hat Openshift, Contrail
Networking is also supported with Red Hat Openshift 3.11.

For information on installing Contrail Networking with Red Hat Openshift 3.11, see the following
documentation:

• "Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer" on page 94

• "Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer" on page 106

Installing a Standalone Red Hat OpenShift Container
Platform 3.11 Cluster with Contrail Using Contrail
OpenShift Deployer

NOTE: This topic covers Contrail Networking in Red Hat Openshift environments that are using
Contrail Networking Release 21-based releases.

94

https://docs.openshift.com/container-platform/4.5/authentication/remove-kubeadmin.html


Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail offers significant enhancements to optimize networking performance in
Kubernetes-orchestrated environments. Cloud-Native Contrail supports Red Hat Openshift and
we strongly recommend using Cloud-Native Contrail for networking in environments using Red
Hat Openshift.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

You can install Contrail Networking together with a standalone Red Hat OpenShift Container Platform
3.11 cluster using Contrail OpenShift deployer. Consider the topology illustrated here.

Prerequisites

The recommended system requirements are:

System
Requirements

Primary Node Infrastructure Node Compute Node

CPU/RAM 8 vCPU, 16 GB RAM 16 vCPU, 64 GB RAM As per OpenShift
recommendations.

Disk 100 GB 250 GB

NOTE: If you use NFS mount volumes, check disk capacity and mounts. Also, openshift-logging
with NFS is not recommended.

95

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html


Figure 1: Sample installation topology

Perform the following steps to install a standalone OpenShift 3.11 cluster along with Contrail
Networking using contrail-openshift-deployer.

1. Set up environment nodes for RHEL OpenShift enterprise installations:

a. Subscribe to RHEL.

(all-nodes)# subscription-manager register --username <> --password <> --force

b. From the list of available subscriptions, find and attach the pool ID for the OpenShift Container
Platform subscription.

(all-nodes)# subscription-manager attach --pool=pool-ID

c. Disable all yum repositories.

(all-nodes)# subscription-manager repos --disable="*"

96



d. Enable only the required repositories.

 (all-nodes)# subscription-manager repos \
    --enable="rhel-7-server-rpms" \
    --enable="rhel-7-server-extras-rpms" \
    --enable="rhel-7-server-ose-3.11-rpms" \
    --enable=rhel-7-fast-datapath-rpms \
    --enable="rhel-7-server-ansible-2.6-rpms"

e. Install required packages, such as python-netaddr, iptables-services, and so on.

(all-nodes)# yum install -y tcpdump wget git net-tools bind-utils yum-utils iptables-services bridge-utils
bash-completion kexec-tools sos psacct python-netaddr openshift-ansible

NOTE: CentOS OpenShift Origin installations are not supported.

2. Get the files from the latest tar ball. Download the OpenShift Container Platform install package
from Juniper software download site and modify the contents of the openshift-ansible inventory file.

a. Download the Openshift Deployer (contrail-openshift-deployer-release-tag.tgz) installer from the
Juniper software download site, https://www.juniper.net/support/downloads/?p=contrail#sw. See
README Access for Contrail Networking Registry 19xx for appropriate release tags.

b. Copy the install package to the node from where Ansible is deployed. Ensure that the node has
password-free access to the OpenShift primary and slave nodes.

scp contrail-openshift-deployer-release-tag.tgz openshift-ansible-node:/root/

c. Log in to the Ansible node and untar the contrail-openshift-deployer-release-tag.tgz package.

tar -xzvf contrail-openshift-deployer-release-tag.tgz -C /root/

d. Verify the contents of the openshift-ansible directory.

cd /root/openshift-ansible/

e. Modify the inventory/ose-install file to match your OpenShift environment.

Populate the inventory/ose-install file with Contrail configuration parameters specific to your
system. The following mandatory parameters must be set. For example:

contrail_version=5.1
contrail_container_tag=<>
contrail_registry="hub.juniper.net/contrail-nightly"
contrail_registry_username=<>
contrail_registry_password=<>

97

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf


openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

NOTE: The contrail_container_tag value for this release can be found in the README Access
to Contrail Registry 19XX file.

Juniper Networks recommends that you obtain the Ansible source files from the latest
release.

This procedure assumes that there is one primary node, one infrastructure node, and one compute
node.

master : server1 (1x.xx.xx.11)
infrastructure : server2 (1x.xx.xx.22)
compute : server3 (1x.xx.xx.33)

3. Edit /etc/hosts to include all the nodes information.

[root@server1]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
1x.xx.xx.100 puppet
1x.xx.xx.11 server1.contrail.juniper.net server1
1x.xx.xx.22 server2.contrail.juniper.net server2
1x.xx.xx.33 server3.contrail.juniper.net server3

4. Set up password-free SSH access to the Ansible node and all the nodes.

ssh-keygen -t rsa
ssh-copy-id root@1x.xx.xx.11
ssh-copy-id root@1x.xx.xx.22
ssh-copy-id root@1x.xx.xx.33

98

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf


5. Run Ansible playbook to install OpenShift Container Platform with Contrail. Before you run Ansible
playbook, ensure that you have edited inventory/ose-install file.

(ansible-node)# cd /root/openshift-ansible
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/prerequisites.yml
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/deploy_cluster.yml

For a sample inventory/ose-install file, see "No Link Title" on page 99.

6. Create a password for the admin user to log in to the UI from the primary node.

(master-node)# htpasswd /etc/origin/master/htpasswd admin

NOTE: If you are using a load balancer, you must manually copy the htpasswd file into all your
primary nodes.

7. Assign cluster-admin role to admin user.

(master-node)# oc adm policy add-cluster-role-to-user cluster-admin admin
(master-node)# oc login -u admin

8. Open a Web browser and type the entire fqdn name of your primary node or load balancer node,
followed by :8443/console.

https://<your host name from your ose-install inventory>:8443/console

Use the user name and password created in step 6 to log in to the Web console.

Your DNS should resolve the host name for access. If the host name is not resolved, modify the /etc/
hosts file to route to the above host.

NOTE: OpenShift 3.11 cluster upgrades are not supported.

Sample inventory/ose-install File

[OSEv3:vars]

###########################################################################

99



### OpenShift Basic Vars
###########################################################################
openshift_deployment_type=openshift-enterprise
deployment_type=openshift-enterprise
containerized=false
openshift_disable_check=docker_image_availability,memory_availability,package_availability,disk_a
vailability,package_version,docker_storage

# Default node selectors
openshift_hosted_infra_selector="node-role.kubernetes.io/infra=true"

oreg_auth_user=<>
oreg_auth_password=<>

###########################################################################
### OpenShift Master Vars
###########################################################################

openshift_master_api_port=8443
openshift_master_console_port=8443
openshift_master_cluster_method=native

# Set this line to enable NFS
openshift_enable_unsupported_configurations=True

###########################################################################
### OpenShift Network Vars
###########################################################################

openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

###########################################################################
### OpenShift Authentication Vars
###########################################################################

# htpasswd Authentication
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

###########################################################################

100



### OpenShift Router and Registry Vars
###########################################################################

openshift_hosted_router_replicas=1
openshift_hosted_registry_replicas=1

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/export
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true
openshift_hosted_router_selector="node-role.kubernetes.io/infra=true"
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###########################################################################
### OpenShift Service Catalog Vars
###########################################################################

openshift_enable_service_catalog=True

template_service_broker_install=True
openshift_template_service_broker_namespaces=['openshift']

ansible_service_broker_install=True

openshift_hosted_etcd_storage_kind=nfs
openshift_hosted_etcd_storage_nfs_options="*(rw,root_squash,sync,no_wdelay)"
openshift_hosted_etcd_storage_nfs_directory=/export
openshift_hosted_etcd_storage_labels={'storage': 'etcd-asb'}
openshift_hosted_etcd_storage_volume_name=etcd-asb
openshift_hosted_etcd_storage_access_modes=['ReadWriteOnce']
openshift_hosted_etcd_storage_volume_size=2G

###########################################################################
### OpenShift Metrics and Logging Vars

101



###########################################################################
# Enable cluster metrics
openshift_metrics_install_metrics=True

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/export
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=2Gi
openshift_metrics_storage_labels={'storage': 'metrics'}

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":"true"}

# Enable cluster logging. (( 
####openshift_logging_install_logging=True
openshift_logging_install_logging=False
#openshift_logging_storage_kind=nfs
#openshift_logging_storage_access_modes=['ReadWriteOnce']
#openshift_logging_storage_nfs_directory=/export
#openshift_logging_storage_nfs_options='*(rw,root_squash)'
#openshift_logging_storage_volume_name=logging
#openshift_logging_storage_volume_size=5Gi
#openshift_logging_storage_labels={'storage': 'logging'}
#openshift_logging_es_cluster_size=1
#openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":"true"}

###########################################################################
### OpenShift Prometheus Vars
###########################################################################

## Add Prometheus Metrics:
openshift_hosted_prometheus_deploy=True
openshift_prometheus_node_selector={"node-role.kubernetes.io/infra":"true"}
openshift_prometheus_namespace=openshift-metrics

# Prometheus
openshift_prometheus_storage_kind=nfs
openshift_prometheus_storage_access_modes=['ReadWriteOnce']

102



openshift_prometheus_storage_nfs_directory=/export
openshift_prometheus_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_storage_volume_name=prometheus
openshift_prometheus_storage_volume_size=1Gi
openshift_prometheus_storage_labels={'storage': 'prometheus'}
openshift_prometheus_storage_type='pvc'

# For prometheus-alertmanager
openshift_prometheus_alertmanager_storage_kind=nfs
openshift_prometheus_alertmanager_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertmanager_storage_nfs_directory=/export
openshift_prometheus_alertmanager_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertmanager_storage_volume_name=prometheus-alertmanager
openshift_prometheus_alertmanager_storage_volume_size=1Gi
openshift_prometheus_alertmanager_storage_labels={'storage': 'prometheus-alertmanager'}
openshift_prometheus_alertmanager_storage_type='pvc'

# For prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_kind=nfs
openshift_prometheus_alertbuffer_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertbuffer_storage_nfs_directory=/export
openshift_prometheus_alertbuffer_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertbuffer_storage_volume_name=prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_volume_size=1Gi
openshift_prometheus_alertbuffer_storage_labels={'storage': 'prometheus-alertbuffer'}
openshift_prometheus_alertbuffer_storage_type='pvc'

#########################################################################
### Openshift HA
#########################################################################

# Openshift HA
openshift_master_cluster_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89
openshift_master_cluster_public_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

#########################################################################
### Contrail Variables
########################################################################

service_subnets="172.30.0.0/16"
pod_subnets="10.128.0.0/14"

103



# Below are Contrail variables. Comment them out if you don't want to install Contrail through 
ansible-playbook
contrail_version=5.1
contrail_container_tag=<>
contrail_registry=hub.juniper.net/contrail
contrail_registry_username=<>
contrail_registry_password=<>
openshift_docker_insecure_registries=hub.juniper.net/contrail
contrail_nodes=[10.0.0.5,10.0.0.3,10.0.0.4]
vrouter_physical_interface=eth0

###########################################################################
### OpenShift Hosts
###########################################################################
[OSEv3:children]
masters
etcd
nodes
lb
nfs
openshift_ca

[masters]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[etcd]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[lb]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[nodes]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
controller-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
compute-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'

104



kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
compute-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'

[nfs]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[openshift_ca]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

NOTE: The /etc/resolv.conf must have write permissions.

Caveats and Troubleshooting Instructions

• If a Java error occurs, install the yum install java-1.8.0-openjdk-devel.x86_64 package and rerun
deploy_cluster.

• If the service_catalog parameter does not pass but the cluster is operational, check whether the /etc/
resolv.conf has cluster.local in its search line, and the nameserver as host IP address.

• NTP is installed by OpenShift and must be synchronized by the user. This does not affect any
Contrail functionality but is displayed in the contrail-status output.

• If the ansible_service_broker component of OpenShift is not up and its ansible_service_broker_deploy
displays an error, it means that the ansible_service_broker pod did not come up properly. The most
likely reason is that the ansible_service_broker pod failed its liveliness and readiness checks. Modify the
liveliness and readiness checks of this pod when it’s brought online to make it operational. Also,
verify that the ansible_service_broker pod uses the correct URL from Red Hat.

RELATED DOCUMENTATION

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer  |  106

105



Installing a Nested Red Hat OpenShift Container
Platform 3.11 Cluster Using Contrail Ansible
Deployer

NOTE: This topic covers Contrail Networking in Red Hat Openshift environments that are using
Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail offers significant enhancements to optimize networking performance in
Kubernetes-orchestrated environments. Cloud-Native Contrail supports Red Hat Openshift and
we strongly recommend using Cloud-Native Contrail for networking in environments using Red
Hat Openshift.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

You can install a nested Red Hat OpenShift Container Platform 3.11 cluster along with Contrail
Networking using Contrail Ansible deployer.

Prerequisites

Ensure that the following prerequisites are met for a successful provisioning of a nested Contrail-
OpenShift cluster.

• The recommended system requirements are:

System
Requirements

Primary Node Infrastructure Node Compute Node

CPU/RAM 8 vCPU, 16 GB RAM 16 vCPU, 64 GB RAM As per OpenShift
recommendations.

Disk 100 GB 250 GB

• A running Red Hat OpenStack Platform Director (RHOSPD) 13 cluster with Contrail. OpenShift
Contrail release must be same as RHOSPD 13 Contrail release.

106

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html


• RHOSPD environments require that the Contrail vrouter, Contrail config and OpenStack keystone are
in “internal-api” network. Modify the ServiceNetMap parameters in the contrail-services.yaml file to
configure in “internal-api” network.

parameter_defaults:
  ServiceNetMap:
    ContrailDatabaseNetwork: internal_api
    ContrailAnalyticsNetwork: internal_api
    ContrailAnalyticsAlarmNetwork: internal_api
    ContrailAnalyticsDatabaseNetwork: internal_api
    ContrailAnalyticsSnmpNetwork: internal_api
    ContrailConfigNetwork: internal_api
    ContrailControlNetwork: internal_api
    ContrailWebuiNetwork: internal_api
    ContrailVrouterNetwork: internal_api
    ContrailCertmongerUserNetwork: internal_api
    KeystoneAdminApiNetwork: internal_api

• Ensure that the vRouter gateway in the contrail-services.yaml file is part of “internal-api” network.

# Custom Contrail container configuration settings
  ContrailSettings:
    VROUTER_GATEWAY: 10.1.0.254

• OpenShift nodes (VMs) must have Internet connectivity.

• Default security group of the virtual-network where OpenShift nodes are launched must be modified
to allow all ingress traffic to communicate with OpenShift networks provided in the OpenShift
inventory file.

107



Provisioning Nested OpenShift Cluster

Provisioning a nested OpenShift cluster is a two-step process.

1. Create link-local services in the Contrail-OpenStack cluster.

A nested OpenShift cluster is managed by the same Contrail controller that manages the underlying
OpenStack cluster. Hence, the nested Openshift cluster needs IP reachability to the Contrail
controller and OpenStack keystone service. Since the OpenShift cluster is actually an overlay on the
OpenStack cluster, we use the Link Local Service feature of Contrail to provide IP reachability to and
from the overlay OpenShift cluster and OpenStack cluster.

To configure a Link Local Service, we need a Fabric IP and Service IP. Fabric IP is the node IP on which
the Contrail Controller and OpenStack services are running. Service IP is a unique and unused IP in
the entire OpenStack cluster and is shared with the OpenShift cluster to reach Contrail Controller
and OpenStack services. Service IP (along with port number) is used by the data plane to identify the
fabric IP. For each node of the OpenStack cluster, one service IP must be identified.

You must configure the following Link Local Services in Contrail.

Contrail Controller
and OpenStack
Process

Service IP Service Port Fabric IP Fabric Port

108



Contrail Config <Service IP for the running
node>

8082 <Node IP of running
node>

8082

Contrail Analytics <Service IP for the running
node>

8086 <Node IP of running
node>

8086

Contrail Msg Queue <Service IP for the running
node>

5673 <Node IP of running
node>

5673

Contrail VNC DB <Service IP for the running
node>

9161 <Node IP of running
node>

9161

Keystone <Service IP for the running
node>

35357 <Node IP of running
node>

35357

K8s-cni-to-agent <Service IP for the running
node>

9091 <Node IP of running
node>

9091

For example, consider a sample cluster of seven nodes.

Contrail Config : 192.168.1.100
Contrail Analytics : 192.168.1.100, 192.168.1.101
Contrail Msg Queue : 192.168.1.100
Contrail VNC DB : 192.168.1.100, 192.168.1.101, 192.168.1.102
Keystone: 192.168.1.200
Vrouter: 192.168.1.201, 192.168.1.202, 192.168.1.203

Allocate seven unused IP addresses for the seven nodes.

192.168.1.100  --> 10.10.10.1
192.168.1.101  --> 10.10.10.2
192.168.1.102  --> 10.10.10.3
192.168.1.200  --> 10.10.10.4
192.168.1.201/192.168.1.202/192.168.1.203  --> 10.10.10.5 

109



NOTE: One Service IP address can represent all vRouter nodes.

The following link-local services must be created:

Contrail controller and OpenStack process Service IP Service Port Fabric IP Fabric Port

Contrail Config 10.10.10.1 8082 192.168.1.100 8082

Contrail Analytics 1 10.10.10.1 8086 192.168.1.100 8086

Contrail Analytics 2 10.10.10.1 8086 192.168.1.101 8086

Contrail Msg Queue 10.10.10.2 5673 192.168.1.100 5673

Contrail VNC DB 1 10.10.10.1 9161 192.168.1.100 9161

Contrail VNC DB 2 10.10.10.2 9161 192.168.1.101 9161

Contrail VNC DB 3 10.10.10.2 9161 192.168.1.102 9161

Keystone 10.10.10.4 35357 192.168.1.200 35357

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

2. Install OpenShift using OpenShift Ansible deployer.

Perform the following steps to install the nested OpenShift 3.11 cluster along with Contrail
Networking using OpenShift Ansible deployer.

a. Set up environment nodes for RHEL OpenShift enterprise installations:

i. Subscribe to RHEL.

(all-nodes)# subscription-manager register --username <> --password <> --force

ii. From the list of available subscriptions, find and attach the pool
ID for the OpenShift Container Platform subscription.

110



(all-nodes)# subscription-manager attach --pool=pool-ID

iii. Disable all yum repositories.

(all-nodes)# subscription-manager repos --disable="*"

iv. Enable only the required repositories.

 (all-nodes)# subscription-manager repos \
        --enable="rhel-7-server-rpms" \
        --enable="rhel-7-server-extras-rpms" \
        --enable="rhel-7-server-ose-3.11-rpms" \
        --enable=rhel-7-fast-datapath-rpms \
        --enable="rhel-7-server-ansible-2.6-rpms"
      

v. Install required packages, such as python-netaddr, iptables-
services, and so on.

(all-nodes)# yum install -y tcpdump wget git net-tools bind-utils yum-utils iptables-services
bridge-utils bash-completion kexec-tools sos psacct python-netaddr openshift-ansible

NOTE: CentOS OpenShift Origin installations are not supported.

b. Get the files from the latest tar ball. Download the OpenShift Container Platform install package
from Juniper software download site and modify the contents of the openshift-ansible inventory
file.

i.

i. Download Openshift Ansible (contrail-ansible-deployer-release-tag.tgz) installer from the
Juniper software download site, https://www.juniper.net/support/downloads/?
p=contrail#sw. See README Access to Contrail Networking Registry 20xx for appropriate
release tags.

ii. Copy the install package to the node from where Ansible is
deployed. Ensure that the node has password-free access to the
OpenShift primary and slave nodes.

scp contrail-ansible-deployer-release-tag.tgz openshift-ansible-node:/root/

iii. Log in to the Ansible node and untar the contrail-ansible-deployer-release-tag.tgz package.

tar -xzvf contrail-ansible-deployer-release-tag.tgz -C /root/

111

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


iv. Verify the contents of the openshift-ansible directory.

cd /root/openshift-ansible/

v. Modify the inventory/ose-install file to match your OpenShift environment.

Populate the inventory/ose-install file with Contrail configuration parameters specific to
your system. The following mandatory parameters must be set.

contrail_version=1907
            contrail_container_tag=<>
            contrail_registry="hub.juniper.net/contrail"
            contrail_registry_username=<>
            contrail_registry_password=<>
            openshift_use_openshift_sdn=false
            os_sdn_network_plugin_name='cni'
            openshift_use_contrail=true
          

NOTE: The contrail_container_tag value for this release can be found in the README
Access to Contrail Networking Registry 20xx file.

NOTE: Juniper Networks recommends that you obtain the Ansible source files from the
latest release.

This procedure assumes that there is one primary node, one infrastructure node, and one
compute node.

master : server1 (1x.xx.xx.11)
infrastructure : server2 (1x.xx.xx.22)
compute : server3 (1x.xx.xx.33)

c. Edit /etc/hosts to include all the nodes information.

[root@server1]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
1x.xx.xx.100 puppet

112

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


1x.xx.xx.11 server1.contrail.juniper.net server1
1x.xx.xx.22 server2.contrail.juniper.net server2
1x.xx.xx.33 server3.contrail.juniper.net server3

d. Set up password-free SSH access to the Ansible node and all the nodes.

ssh-keygen -t rsa
ssh-copy-id root@1x.xx.xx.11
ssh-copy-id root@1x.xx.xx.22
ssh-copy-id root@1x.xx.xx.33

e. Run Ansible playbook to install OpenShift Container Platform with Contrail. Before you run
Ansible playbook, ensure that you have edited inventory/ose-install file.

(ansible-node)# cd /root/openshift-ansible
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/prerequisites.yml
(ansible-node)# ansible-playbook -i inventory/ose-install playbooks/deploy_cluster.yml

For a sample inventory/ose-install file, see "No Link Title" on page 114.

f. Create a password for the admin user to log in to the UI from the primary node.

(master-node)# htpasswd /etc/origin/master/htpasswd admin

NOTE: If you are using a load balancer, you must manually copy the htpasswd file into all
your primary nodes.

g. Assign cluster-admin role to admin user.

(master-node)# oc adm policy add-cluster-role-to-user cluster-admin admin
(master-node)# oc login -u admin

h. Open a Web browser and type the entire fqdn name of your primary node or load balancer node,
followed by :8443/console.

https://<your host name from your ose-install inventory>:8443/console

113



Use the user name and password created in step "2.f" on page 113 to log in to the Web console.

Your DNS should resolve the host name for access. If the host name is not resolved, modify
the /etc/hosts file to route to the above host.

NOTE: OpenShift 3.11 cluster upgrades are not supported.

Sample inventory/ose-install File

[OSEv3:vars]

###########################################################################
### OpenShift Nested mode vars
###########################################################################
nested_mode_contrail=true
rabbitmq_node_port=5673
contrail_nested_masters_ip="1.1.1.1 2.2.2.2 3.3.3.3"          <---  ips of contrail controllers
auth_mode=keystone
keystone_auth_host=<w.x.y.z>        <--- This should be the IP where Keystone service is running.
keystone_auth_admin_tenant=admin
keystone_auth_admin_user=admin
keystone_auth_admin_password=MAYffWrX7ZpPrV2AMAa9zAUvG     <-- Keystone admin password.
keystone_auth_admin_port=35357
keystone_auth_url_version=/v3
#k8s_nested_vrouter_vip is a service IP for the running node which we configured above
k8s_nested_vrouter_vip=10.10.10.5   <-- Service IP configured for CNI to Agent communication.
(K8s-cni-to-agent in above examples)
#k8s_vip is kubernetes api server ip
k8s_vip=<W.X.Y.Z>                   <-- IP of the Openshift Master Node.
#cluster_network is the one which vm network belongs to
cluster_network="{'domain': 'default-domain', 'project': 'admin', 'name': 'net1'}" <-- FQName of 
the Virtual Network where Virtual Machines are running. The VMs in which Openshift cluster is 
being installed in nested mode.
#config_nodes="x.x.x.x,y.y.y.y.y"
#analytics_nodes="x.x.x.x,y.y.y.y.y"
#config_api_vip=x.x.x.x
#analytics_api_vip=x.x.x.x

###########################################################################

114



### OpenShift Basic Vars
###########################################################################
openshift_deployment_type=openshift-enterprise
deployment_type=openshift-enterprise
containerized=false
openshift_disable_check=docker_image_availability,memory_availability,package_availability,disk_a
vailability,package_version,docker_storage

# Default node selectors
openshift_hosted_infra_selector="node-role.kubernetes.io/infra=true"

oreg_auth_user=<>
oreg_auth_password=<>

###########################################################################
### OpenShift Master Vars
###########################################################################

openshift_master_api_port=8443
openshift_master_console_port=8443
openshift_master_cluster_method=native

# Set this line to enable NFS
openshift_enable_unsupported_configurations=True

###########################################################################
### OpenShift Network Vars
###########################################################################

openshift_use_openshift_sdn=false
os_sdn_network_plugin_name='cni'
openshift_use_contrail=true

###########################################################################
### OpenShift Authentication Vars
###########################################################################

# htpasswd Authentication
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 
'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

###########################################################################

115



### OpenShift Router and Registry Vars
###########################################################################

openshift_hosted_router_replicas=1
openshift_hosted_registry_replicas=1

openshift_hosted_registry_storage_kind=nfs
openshift_hosted_registry_storage_access_modes=['ReadWriteMany']
openshift_hosted_registry_storage_nfs_directory=/export
openshift_hosted_registry_storage_nfs_options='*(rw,root_squash)'
openshift_hosted_registry_storage_volume_name=registry
openshift_hosted_registry_storage_volume_size=10Gi
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true
openshift_hosted_router_selector="node-role.kubernetes.io/infra=true"
openshift_hosted_registry_selector="node-role.kubernetes.io/infra=true"

###########################################################################
### OpenShift Service Catalog Vars
###########################################################################

openshift_enable_service_catalog=True

template_service_broker_install=True
openshift_template_service_broker_namespaces=['openshift']

ansible_service_broker_install=True

openshift_hosted_etcd_storage_kind=nfs
openshift_hosted_etcd_storage_nfs_options="*(rw,root_squash,sync,no_wdelay)"
openshift_hosted_etcd_storage_nfs_directory=/export
openshift_hosted_etcd_storage_labels={'storage': 'etcd-asb'}
openshift_hosted_etcd_storage_volume_name=etcd-asb
openshift_hosted_etcd_storage_access_modes=['ReadWriteOnce']
openshift_hosted_etcd_storage_volume_size=2G

###########################################################################
### OpenShift Metrics and Logging Vars

116



###########################################################################
# Enable cluster metrics
openshift_metrics_install_metrics=True

openshift_metrics_storage_kind=nfs
openshift_metrics_storage_access_modes=['ReadWriteOnce']
openshift_metrics_storage_nfs_directory=/export
openshift_metrics_storage_nfs_options='*(rw,root_squash)'
openshift_metrics_storage_volume_name=metrics
openshift_metrics_storage_volume_size=2Gi
openshift_metrics_storage_labels={'storage': 'metrics'}

openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra":"true"}
openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra":"true"}

# Enable cluster logging. (( 
####openshift_logging_install_logging=True
openshift_logging_install_logging=False
#openshift_logging_storage_kind=nfs
#openshift_logging_storage_access_modes=['ReadWriteOnce']
#openshift_logging_storage_nfs_directory=/export
#openshift_logging_storage_nfs_options='*(rw,root_squash)'
#openshift_logging_storage_volume_name=logging
#openshift_logging_storage_volume_size=5Gi
#openshift_logging_storage_labels={'storage': 'logging'}
#openshift_logging_es_cluster_size=1
#openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra":"true"}
#openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra":"true"}

###########################################################################
### OpenShift Prometheus Vars
###########################################################################

## Add Prometheus Metrics:
openshift_hosted_prometheus_deploy=True
openshift_prometheus_node_selector={"node-role.kubernetes.io/infra":"true"}
openshift_prometheus_namespace=openshift-metrics

# Prometheus
openshift_prometheus_storage_kind=nfs
openshift_prometheus_storage_access_modes=['ReadWriteOnce']

117



openshift_prometheus_storage_nfs_directory=/export
openshift_prometheus_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_storage_volume_name=prometheus
openshift_prometheus_storage_volume_size=1Gi
openshift_prometheus_storage_labels={'storage': 'prometheus'}
openshift_prometheus_storage_type='pvc'

# For prometheus-alertmanager
openshift_prometheus_alertmanager_storage_kind=nfs
openshift_prometheus_alertmanager_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertmanager_storage_nfs_directory=/export
openshift_prometheus_alertmanager_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertmanager_storage_volume_name=prometheus-alertmanager
openshift_prometheus_alertmanager_storage_volume_size=1Gi
openshift_prometheus_alertmanager_storage_labels={'storage': 'prometheus-alertmanager'}
openshift_prometheus_alertmanager_storage_type='pvc'

# For prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_kind=nfs
openshift_prometheus_alertbuffer_storage_access_modes=['ReadWriteOnce']
openshift_prometheus_alertbuffer_storage_nfs_directory=/export
openshift_prometheus_alertbuffer_storage_nfs_options='*(rw,root_squash)'
openshift_prometheus_alertbuffer_storage_volume_name=prometheus-alertbuffer
openshift_prometheus_alertbuffer_storage_volume_size=1Gi
openshift_prometheus_alertbuffer_storage_labels={'storage': 'prometheus-alertbuffer'}
openshift_prometheus_alertbuffer_storage_type='pvc'

#########################################################################
### Openshift HA
#########################################################################

# Openshift HA
openshift_master_cluster_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89
openshift_master_cluster_public_hostname=load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

#########################################################################
### Contrail Variables
########################################################################

service_subnets="172.30.0.0/16"
pod_subnets="10.128.0.0/14"

118



# Below are Contrail variables. Comment them out if you don't want to install Contrail through 
ansible-playbook
contrail_version=1907
contrail_container_tag=<>
contrail_registry=hub.juniper.net/contrail
contrail_registry_username=<>
contrail_registry_password=<>
openshift_docker_insecure_registries=hub.juniper.net/contrail
contrail_nodes=[10.0.0.5,10.0.0.3,10.0.0.4]
vrouter_physical_interface=eth0

###########################################################################
### OpenShift Hosts
###########################################################################
[OSEv3:children]
masters
etcd
nodes
lb
nfs
openshift_ca

[masters]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[etcd]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

[lb]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[nodes]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
controller-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
compute-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-2-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'

119



kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-master'
compute-0-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-compute'
controller-1-3eba0c20dc494dfc93d5d50d06bbde89 openshift_node_group_name='node-config-infra'

[nfs]
load-balancer-0-3eba0c20dc494dfc93d5d50d06bbde89

[openshift_ca]
kube-master-2-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-1-3eba0c20dc494dfc93d5d50d06bbde89
kube-master-0-3eba0c20dc494dfc93d5d50d06bbde89

NOTE: The /etc/resolv.conf must have write permissions.

Release History Table

Release Description

1907 You can install a nested Red Hat OpenShift Container Platform 3.11 cluster along with Contrail
Networking using Contrail Ansible deployer.

RELATED DOCUMENTATION

Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using
Contrail OpenShift Deployer  |  94

120



3
CHAPTER

Contrail Networking with the Elastic
Kubernetes Service (EKS)in Amazon
Web Services (AWS)

How to Install Contrail Networking within an Amazon Elastic Kubernetes Service
(EKS) Environment in AWS  |  122

 



How to Install Contrail Networking within an
Amazon Elastic Kubernetes Service (EKS)
Environment in AWS

IN THIS SECTION

When to Use This Procedure  |  123

Prerequisites  |  123

Install Contrail Networking as the CNI for EKS  |  123

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

The Elastic Kubernetes Service (EKS) runs Kubernetes-orchestrated environments within Amazon Web
Services (AWS).

Kubernetes supports a pluggable framework—called the Container Networking Interface (CNI)—for
networking. See Pod networking (CNI) from AWS for information on how the CNI framework is
implemented by EKS.

Contrail Networking is supported as a custom CNI in Kubernetes-orchestrated environments. This
document show you how to install Contrail Networking as the CNI when a Kubernetes environment is
running in EKS on AWS.

It includes the following sections:

122

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://docs.aws.amazon.com/eks/latest/userguide/pod-networking.html


When to Use This Procedure

Use this procedure to enable Contrail Networking as the CNI in a Kubernetes-orchestrated environment
running on AWS. Contrail Networking is used in this procedure to enable an MPLS data plane and a BGP
control plane within the environment.

The procedure in this document was validated for Contrail Networking 2008 running in EKS 1.16. This
procedure should work in EKS 1.16 and all later EKS releases.

Prerequisites

This procedure makes the following assumptions about your environment:

• A Kubernetes client is installed.

• The aws-iam-authenticator is installed to allow authentication into your EKS cluster. See Installing
aws-iam-authenticator from AWS.

• AWS CLI is installed. See Installing the AWS CLI from AWS.

• You have obtained the login credentials to the Juniper Networks Contrail docker private secure
registry at hub.juniper.net. If you need to obtain these credentials, email mailto:contrail-
registry@juniper.net.

Install Contrail Networking as the CNI for EKS

This procedure installs Contrail Networking as the CNI in a Kubernetes orchestrated environment in the
EKS service within AWS.

The procedure uses the following sample topology:

123

https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net


To install Contrail Networking as the CNI in a Kubernetes-orchestrated environment running in EKS:

1. (Recommended) Review the video procedure of this installation. See the Deep Dive: Contrail SDN
and AWS EKS channel on Youtube.

2. Download the EKS deployer:

wget https://s3-eu-central-1.amazonaws.com/contrail-one-click-deployers/EKS-Scripts.zip -O 
EKS-Scripts.zip
unzip EKS-Scripts.zip
cd contrail-as-the-cni-for-aws-eks/

We recommend running this procedure in the eu-central-1 default region during your first attempt.

The procedure supports most AWS regions. You can run the procedure in other regions by updating
the variables.sh file after familiarizing yourself with the steps.

3. Modify the variables.sh file to fit your environment.

The following fields must be updated:

• CLOUDFORMATIONREGION—the AWS region that your client is configured to use.
Cloudformation deploys EKS into this region using the quickstart. The default region is eu-
west-1.

124

https://www.youtube.com/playlist?list=PLBO-FXA5nIK_Xi-FbfxLFDCUx4EvIy6_d
https://www.youtube.com/playlist?list=PLBO-FXA5nIK_Xi-FbfxLFDCUx4EvIy6_d


• JUNIPERREPONAME—username to access the Contrail repository. You can email
mailto:contrail-registry@juniper.net to obtain your username and password credentials, if
needed.

• JUNIPERREPOPASS—password to access the Contrail repository. You can email mailto:contrail-
registry@juniper.net to obtain your username and password credentials, if needed.

• RELEASE—Contrail Networking Release container tag. The container tag is used to identify
images in the Contrail repository. The container tag for any Contrail Release 20xx image can be
found in README Access to Contrail Registry 20XX.

• EC2KEYNAME—an existing keyname in your specified AWS region.

• BASTIONSSHKEYPATH—the local path, which is usually the path on your PC, to the private key
file for the AWS EC2 key.

Example file:

###############################################################################
#complete the below variables for your setup and run the script
###############################################################################
#this is the aws region you are connected to and want to deploy EKS and Contrail into
export CLOUDFORMATIONREGION="eu-west-1"
#this is the region for my quickstart, only change if you plan to deploy your own quickstart
export S3QUICKSTARTREGION="eu-west-1"
export LOGLEVEL="SYS_NOTICE"
#example Juniper docker login, change to yours
export JUNIPERREPONAME="JNPR-FieldUserxxx"
export JUNIPERREPOPASS="Exxxxxxxxxxu"
export RELEASE="2008.121"
export K8SAPIPORT="443"
export PODSN="10.20.0.0/24"
export SERVICESN="10.100.0.0/16"
export FABRICSN="10.20.2.0/24"
export ASN="64513"
export MYEMAIL="example@mail.com"
#example key, change these two to your existing ec2 ssh key name and private key file for 
the region
#also don't forget to chmod 0400 [your private key]
export EC2KEYNAME="ContrailKey"
export BASTIONSSHKEYPATH="/Users/user1/Downloads/ContrailKey-1.pem"

125

mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


4. Deploy the cloudformation-resources.sh file:

. ./cloudformation-resources.sh

This step is needed to prepare the environment in some AWS regions.

5. From the AWS CLI, deploy the EKS quickstart stack:

. ./eks-ubuntu.sh

This step can take 45 minutes or longer to deploy.

NOTE: You can also use the Cloudformation user interface to deploy this stack. You will
have to manually complete all parameters if you use the Cloudformation user interface. See
this document from AWS.

You can monitor the status of the deployment using this command:

aws cloudformation describe-stacks --stack-name Amazon-EKS-Contrail-CNI --output table | 
grep StackStatus
||  StackStatus                  |  CREATE_COMPLETE

6. Return to your PC.

126

https://console.aws.amazon.com/cloudformation/home?region=eu-central-1#/stacks/new?stackName=Amazon-EKS-Contrail-CNI&templateURL=https://aws-quickstart-401595a06877a9b8b2fcf5fe.s3-eu-west-1.amazonaws.com/quickstart-amazon-eks/templates/amazon-eks-master.template.yaml


Install the aws-iam-authenticator and the register:

aws sts get-caller-identity
export CLUSTER=$(aws eks list-clusters --output text | awk -F ' ' '{print $2}')
export REGION=$CLOUDFORMATIONREGION
aws eks --region $REGION update-kubeconfig --name $CLUSTER

7. From the Kubernetes CLI, verify your cluster parameters:

$ kubectl get nodes
NAME                                         STATUS   ROLES   AGE   VERSION
ip-100-72-0-19.eu-west-1.compute.internal    Ready    (none)  19m   v1.14.8
ip-100-72-0-210.eu-west-1.compute.internal   Ready    (none)  19m   v1.14.8
ip-100-72-0-44.eu-west-1.compute.internal    Ready    (none)  19m   v1.14.8
ip-100-72-1-124.eu-west-1.compute.internal   Ready    (none)  19m   v1.14.8
ip-100-72-1-53.eu-west-1.compute.internal    Ready    (none)  19m   v1.14.8

$ kubectl get pods -A -o wide
NAMESPACE    NAME                      READY   STATUS    AGE  IP            NODE
kube-system  aws-node-7gh94            1/1     Running   21m  100.72.1.124  
ip-100-72-1-124.eu-west-1.compute.internal
kube-system  aws-node-bq2x9            1/1     Running   21m  100.72.1.53   
ip-100-72-1-53.eu-west-1.compute.internal
kube-system  aws-node-gtdz7            1/1     Running   21m  100.72.0.44   
ip-100-72-0-44.eu-west-1.compute.internal
kube-system  aws-node-jr4gn            1/1     Running   21m  100.72.0.19   
ip-100-72-0-19.eu-west-1.compute.internal
kube-system  aws-node-zlrbj            1/1     Running   21m  100.72.0.210  
ip-100-72-0-210.eu-west-1.compute.internal
kube-system  coredns-6987776bbd-ggsjt  1/1     Running   33m  100.72.0.5    
ip-100-72-0-44.eu-west-1.compute.internal
kube-system  coredns-6987776bbd-v7ckc  1/1     Running   33m  100.72.1.77   
ip-100-72-1-53.eu-west-1.compute.internal
kube-system  kube-proxy-k6hdc          1/1     Running   21m  100.72.0.210  
ip-100-72-0-210.eu-west-1.compute.internal
kube-system  kube-proxy-m59sb          1/1     Running   21m  100.72.0.44   
ip-100-72-0-44.eu-west-1.compute.internal
kube-system  kube-proxy-qrrqn          1/1     Running   21m  100.72.0.19   
ip-100-72-0-19.eu-west-1.compute.internal
kube-system  kube-proxy-r2vqw          1/1     Running   21m  100.72.1.53   
ip-100-72-1-53.eu-west-1.compute.internal

127



kube-system  kube-proxy-vzkcd          1/1     Running   21m  100.72.1.124  
ip-100-72-1-124.eu-west-1.compute.internal

NOTE: Some command output fields removed for readability.

8. Upgrade the worker nodes to the latest EKS version:

kubectl apply -f upgrade-nodes.yaml

After a few minutes, confirm that the EKS version has updated on all nodes.

In this sample output, the EKS version was updated to 1.16.15.

$ kubectl get nodes
NAME                                       STATUS AGE VERSION
ip-100-72-0-174.eu-west-1.compute.internal Ready  19m v1.16.15
ip-100-72-0-93.eu-west-1.compute.internal  Ready  19m v1.16.15
ip-100-72-0-95.eu-west-1.compute.internal  Ready  19m v1.16.15
ip-100-72-1-23.eu-west-1.compute.internal  Ready  19m v1.16.15
ip-100-72-1-85.eu-west-1.compute.internal  Ready  19m v1.16.15

NOTE: Command output slightly modified for readability.

After confirming that the EKS version is updated on all nodes, delete the upgrade pods:

kubectl delete -f upgrade-nodes.yaml

9. Apply the OS fixes for the EC2 worker nodes for Contrail Networking:

kubectl apply -f cni-patches.yaml

10. Deploy Contrail Networking as the CNI for EKS:

. ./deploy-me.sh

This step typically takes about 5 minutes to complete.

128



11. Deploy the setup bastion to provide SSH access for worker nodes:

. ./setup-bastion.sh

12. Run the Contrail setup file to provide a base Contrail Networking configuration:

. ./setup-contrail.sh

13. Check Contrail status:

$ . ./contrail-status.sh
 
**************************************
******node is 100.72.0.19
**************************************
 
###############################################################################
#     ___        ______     ___        _      _      ____  _             _    #
#    / \ \      / / ___|   / _ \ _   _(_) ___| | __ / ___|| |_ __ _ _ __| |_  #
#   / _ \ \ /\ / /\___ \  | | | | | | | |/ __| |/ / \___ \| __/ _` | '__| __| #
#  / ___ \ V  V /  ___) | | |_| | |_| | | (__|   <   ___) | || (_| | |  | |_  #
# /_/   \_\_/\_/  |____/   \__\_\\__,_|_|\___|_|\_\ |____/ \__\__,_|_|   \__| #
#-----------------------------------------------------------------------------#
#                      Amazon EKS Quick Start bastion host                    #
#    https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/   #
###############################################################################
Unable to find image 'hub.juniper.net/contrail/contrail-status:2008.121' locally
2008.121: Pulling from contrail/contrail-status
f34b00c7da20: Already exists
5a390a7d68be: Already exists
07ca884ff4ba: Already exists
0d7531696e74: Already exists
eda9dec1319f: Already exists
c52247bf208e: Already exists
a5dc1d3a1a1f: Already exists
0297580c16ad: Already exists
e341bea3e3e5: Pulling fs layer
12584a95f49f: Pulling fs layer
367eed12f241: Pulling fs layer
367eed12f241: Download complete
12584a95f49f: Download complete

129



e341bea3e3e5: Verifying Checksum
e341bea3e3e5: Download complete
e341bea3e3e5: Pull complete
12584a95f49f: Pull complete
367eed12f241: Pull complete
Digest: sha256:54ba0b280811a45f846d673addd38d4495eec0e7c3a7156e5c0cd556448138a7
Status: Downloaded newer image for hub.juniper.net/contrail/contrail-status:2008.121
Pod              Service         Original Name                          Original Version  
State    Id            Status
                 redis           contrail-external-redis                2008-121          
running  bf3a68e58446  Up 9 minutes
analytics        api             contrail-analytics-api                 2008-121          
running  4d394a8fa343  Up 9 minutes
analytics        collector       contrail-analytics-collector           2008-121          
running  1772e258b8b4  Up 9 minutes
analytics        nodemgr         contrail-nodemgr                       2008-121          
running  f7cb3d64ff2d  Up 9 minutes
analytics        provisioner     contrail-provisioner                   2008-121          
running  4f73934a4744  Up 7 minutes
analytics-alarm  alarm-gen       contrail-analytics-alarm-gen           2008-121          
running  472b5d2fd7dd  Up 9 minutes
analytics-alarm  kafka           contrail-external-kafka                2008-121          
running  88641415d540  Up 9 minutes
analytics-alarm  nodemgr         contrail-nodemgr                       2008-121          
running  35e75ddd5b6e  Up 9 minutes
analytics-alarm  provisioner     contrail-provisioner                   2008-121          
running  e82526c4d835  Up 7 minutes
analytics-snmp   nodemgr         contrail-nodemgr                       2008-121          
running  6883986527fa  Up 9 minutes
analytics-snmp   provisioner     contrail-provisioner                   2008-121          
running  91c7be2f4ac9  Up 7 minutes
analytics-snmp   snmp-collector  contrail-analytics-snmp-collector      2008-121          
running  342a11ca471e  Up 9 minutes
analytics-snmp   topology        contrail-analytics-snmp-topology       2008-121          
running  f4fa7aa0d980  Up 9 minutes
config           api             contrail-controller-config-api         2008-121          
running  17093d75ec93  Up 9 minutes
config           device-manager  contrail-controller-config-devicemgr   2008-121          
running  f2c11a305851  Up 6 minutes
config           nodemgr         contrail-nodemgr                       2008-121          
running  8322869eaf34  Up 9 minutes
config           provisioner     contrail-provisioner                   2008-121          
running  3d2618f9a20b  Up 7 minutes

130



config           schema          contrail-controller-config-schema      2008-121          
running  e3b7cbff4ef7  Up 6 minutes
config           svc-monitor     contrail-controller-config-svcmonitor  2008-121          
running  49c3a0f44466  Up 6 minutes
config-database  cassandra       contrail-external-cassandra            2008-121          
running  0eb7d5c56612  Up 9 minutes
config-database  nodemgr         contrail-nodemgr                       2008-121          
running  8f1bb252f002  Up 9 minutes
config-database  provisioner     contrail-provisioner                   2008-121          
running  4b23ff9ad2bc  Up 7 minutes
config-database  rabbitmq        contrail-external-rabbitmq             2008-121          
running  22ab5777e1fa  Up 9 minutes
config-database  zookeeper       contrail-external-zookeeper            2008-121          
running  5d1e33e545ae  Up 9 minutes
control          control         contrail-controller-control-control    2008-121          
running  05e3ac0e4de3  Up 9 minutes
control          dns             contrail-controller-control-dns        2008-121          
running  ea24d045f221  Up 9 minutes
control          named           contrail-controller-control-named      2008-121          
running  977ddeb4a636  Up 9 minutes
control          nodemgr         contrail-nodemgr                       2008-121          
running  248ae2888c15  Up 9 minutes
control          provisioner     contrail-provisioner                   2008-121          
running  c666bd178d29  Up 9 minutes
database         cassandra       contrail-external-cassandra            2008-121          
running  9e840c1a5034  Up 9 minutes
database         nodemgr         contrail-nodemgr                       2008-121          
running  355984d1689c  Up 9 minutes
database         provisioner     contrail-provisioner                   2008-121          
running  60d472efb042  Up 7 minutes
database         query-engine    contrail-analytics-query-engine        2008-121          
running  fa56e2c7c765  Up 9 minutes
kubernetes       kube-manager    contrail-kubernetes-kube-manager       2008-121          
running  584013153ef8  Up 9 minutes
vrouter          agent           contrail-vrouter-agent                 2008-121          
running  7bc5b164ed44  Up 8 minutes
vrouter          nodemgr         contrail-nodemgr                       2008-121          
running  5c9201f4308e  Up 8 minutes
vrouter          provisioner     contrail-provisioner                   2008-121          
running  ce9d14aaba89  Up 8 minutes
webui            job             contrail-controller-webui-job          2008-121          
running  d92079688dda  Up 9 minutes
webui            web             contrail-controller-webui-web          2008-121          

131



running  8efed46b98d6  Up 9 minutes
 
vrouter kernel module is PRESENT
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active
 
== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active
 
== Contrail kubernetes ==
kube-manager: active
 
== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active
 
== Contrail analytics ==
nodemgr: active
api: active
collector: active
 
== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active
 
== Contrail webui ==
web: active
job: active
 
== Contrail vrouter ==
nodemgr: active
agent: timeout
 
== Contrail analytics-snmp ==
snmp-collector: active

132



nodemgr: active
topology: active
 
== Contrail config ==
svc-monitor: backup
nodemgr: active
device-manager: backup
api: active
schema: backup

NOTE: A vRouter agent timeout might appear in the output. In most cases, the vRouter is
working fine and this is a cosmetic issue.

14. Confirm that the pods are running:

$ kubectl get pods -A -o wide
NAMESPACE     NAME                                READY   STATUS    RESTARTS   AGE     
IP             NODE
kube-system   cni-patches-dgjnc                   1/1     Running   0          44s     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   cni-patches-krss8                   1/1     Running   0          44s     
100.72.1.53    ip-100-72-1-53.eu-west-1.compute.internal
kube-system   cni-patches-r9vgj                   1/1     Running   0          44s     
100.72.1.124   ip-100-72-1-124.eu-west-1.compute.internal
kube-system   cni-patches-wcc9p                   1/1     Running   0          44s     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   cni-patches-xqrw8                   1/1     Running   0          44s     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   config-zookeeper-2mspv              1/1     Running   0          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   config-zookeeper-k65hk              1/1     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   config-zookeeper-nj2qb              1/1     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   contrail-agent-2cqbz                3/3     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-agent-kbd7v                3/3     Running   0          16m     
100.72.1.53    ip-100-72-1-53.eu-west-1.compute.internal 
kube-system   contrail-agent-kc4gk                3/3     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal

133



kube-system   contrail-agent-n7shj                3/3     Running   0          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-agent-vckdh                3/3     Running   0          16m     
100.72.1.124   ip-100-72-1-124.eu-west-1.compute.internal
kube-system   contrail-analytics-9llmv            4/4     Running   1          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-analytics-alarm-27x47      4/4     Running   1          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-analytics-alarm-rzxgv      4/4     Running   1          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   contrail-analytics-alarm-z6w9k      4/4     Running   1          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-analytics-jmjzk            4/4     Running   1          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-analytics-snmp-4prpn       4/4     Running   1          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-analytics-snmp-s4r4g       4/4     Running   1          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   contrail-analytics-snmp-z8gxh       4/4     Running   1          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-analytics-xbbfz            4/4     Running   1          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-analyticsdb-gkcnw          4/4     Running   1          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-analyticsdb-k89fl          4/4     Running   1          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-analyticsdb-txkb4          4/4     Running   1          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-configdb-6hp6v             3/3     Running   1          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-configdb-w7sf8             3/3     Running   1          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   contrail-configdb-wkcpp             3/3     Running   1          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-controller-config-h4g7l    6/6     Running   4          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-controller-config-pmlcb    6/6     Running   3          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-controller-config-vvklq    6/6     Running   3          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   contrail-controller-control-56d46   5/5     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-controller-control-t4mrf   5/5     Running   0          16m     

134



100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   contrail-controller-control-wlhzq   5/5     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-controller-webui-t4bzd     2/2     Running   0          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   contrail-controller-webui-wkqzz     2/2     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   contrail-controller-webui-wnf4z     2/2     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-kube-manager-fd6mr         1/1     Running   0          3m23s   
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   contrail-kube-manager-jhl2l         1/1     Running   0          3m33s   
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   contrail-kube-manager-wnmxt         1/1     Running   0          3m23s   
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   coredns-6987776bbd-8vzv9            1/1     Running   0          12m     
10.20.0.250    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   coredns-6987776bbd-w8h8d            1/1     Running   0          12m     
10.20.0.249    ip-100-72-1-124.eu-west-1.compute.internal
kube-system   kube-proxy-k6hdc                    1/1     Running   1          50m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   kube-proxy-m59sb                    1/1     Running   1          50m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   kube-proxy-qrrqn                    1/1     Running   1          50m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   kube-proxy-r2vqw                    1/1     Running   1          50m     
100.72.1.53    ip-100-72-1-53.eu-west-1.compute.internal 
kube-system   kube-proxy-vzkcd                    1/1     Running   1          50m     
100.72.1.124   ip-100-72-1-124.eu-west-1.compute.internal
kube-system   rabbitmq-754b8                      1/1     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal
kube-system   rabbitmq-bclkx                      1/1     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal
kube-system   rabbitmq-mk76f                      1/1     Running   0          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal
kube-system   redis-8wr29                         1/1     Running   0          16m     
100.72.0.19    ip-100-72-0-19.eu-west-1.compute.internal 
kube-system   redis-kbtmd                         1/1     Running   0          16m     
100.72.0.44    ip-100-72-0-44.eu-west-1.compute.internal 
kube-system   redis-rmr8h                         1/1     Running   0          16m     
100.72.0.210   ip-100-72-0-210.eu-west-1.compute.internal

135



15. Setup Contrail user interface access.

. ./setup-contrail-ui.sh

To view the Contrail user interface after performing this step:

a. In your web browser, enter https://bastion-public-ip-address:8143 as the address.

b. Enter your credentials.

The default credentials use admin as the user and contrail123 as the password. We recommend
changing these credentials to maximize security.

NOTE: You may get some BGP alarm messages upon login. These messages occur
because sample BGP peering relationships are established with gateway devices and
federated clusters. Delete the BGP peers in your environment if you want to clear the
alarms.

16. Modify the auto scaling groups so that you can stop instances that are not in use.

export SCALINGGROUPS=( $(aws autoscaling describe-auto-scaling-groups --query 
"AutoScalingGroups[].AutoScalingGroupName" --output text) )
    aws autoscaling suspend-processes --auto-scaling-group-name ${SCALINGGROUPS[0]}
    aws autoscaling suspend-processes --auto-scaling-group-name ${SCALINGGROUPS[1]}

136

https://bastion-public-ip-address:8143


NOTE: If you plan on deleting stacks at a later time, you will have to reset this configuration
and use the resume-processes option before deleting the primary stack:

export SCALINGGROUPS=( $(aws autoscaling describe-auto-scaling-groups --query 
"AutoScalingGroups[].AutoScalingGroupName" --output text) )
    aws autoscaling resume-processes --auto-scaling-group-name ${SCALINGGROUPS[0]}
    aws autoscaling resume-processes --auto-scaling-group-name ${SCALINGGROUPS[1]}

17. (Optional) If you have a public network that you’d like to use for ingress via a gateway, perform the
following configuration steps:

a. Enter https://bastion-public-ip-address:8143 to connect to the web user interface.

b. Navigate to Configure > Networks > k8s-default > networks (left side of page) > Add network
(+)

c. In the Add network box, enter the following parameters:

• Name: k8s-public

• Subnet: Select ipv4, then enter the IP address of your public service network.

Leave all other fields in subnet as default.

• advanced: External=tick

• advanced: Share-tick

• route target: Click +. Enter a route target for your public network. For example, 64512:1000.

Click Save.

18. Deploy a test application on each node:

cd TestDaemonSet
./Create.sh
kubectl get pods -A -o wide

19. Deploy a multitier test application:

cd ../TestApp
./Create.sh
kubectl get deployments -n justlikenetflix
kubectl get pods -o wide -n justlikenetflix

137

https://bastion-public-ip-address:8143


kubectl get services -n justlikenetflix
kubectl get ingress -n justlikenetflix

138



4
CHAPTER

Contrail Networking with Google
Anthos

How to Integrate Kubernetes Clusters using Contrail Networking into Google
Cloud Anthos  |  140

 



How to Integrate Kubernetes Clusters using Contrail
Networking into Google Cloud Anthos

IN THIS SECTION

Prerequisites  |  141

Creating Kubernetes Clusters  |  141

Preparing Your Clusters for Anthos  |  148

Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos  |  155

Configuration Management in Anthos  |  166

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Anthos is an application management platform developed by Google that provides a consistent
development and operations experience for users working in cloud networking clusters that were
created in Google Cloud or on third-party cloud platforms. For additional information on Anthos, see the
Anthos technical overview from Google Cloud.

The purpose of this document is to illustrate how cloud environments using Kubernetes for
orchestration and Contrail Networking for networking can be integrated into the Anthos management
platform. This document shows how to create clusters in three separate cloud environments—a private
on-premises cloud, a cloud created using the Elastic Kubernetes Service (EKS) in Amazon Web Services
(AWS), and a cloud created using the Google Kubernetes Engine (GKE) in the Google Cloud Platform—
and add those clusters into Anthos.

This document also provides instructions on introductory configuration and usage tasks after the clouds
have been integrated into Anthos. It includes a section on Anthos Configuration management and a

140

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://cloud.google.com/anthos/docs/concepts/overview


section showing how to load applications from the Google Marketplace into third-party cloud
environments.

This document covers the following topics:

Prerequisites

The procedures in this document make the following assumptions about your environment:

• All Environments

The following CLI tools have been downloaded:

• kubectl. See Install and Set Up kubectl.

• (Recommend for management) kubectx and kubens. See kubectx + kubens: Power tools for
kubectl in Github.

• Google Cloud Platform

• The GCP CLI tools from the Cloud SDK package are operational. See Getting Started with Cloud
SDK from Google.

• Amazon Web Services

• This procedure assumes that you have an active AWS account with operating credentials and that
the AWS CLI is working on your system. See the Configuring the AWS CLI document from AWS.

• the eksctl CLI tool is running. See eksctl from the eksctl website.

Creating Kubernetes Clusters

IN THIS SECTION

On-Premises: Creating the Private Kubernetes Cluster  |  142

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service (EKS)
Environment  |  144

Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine (GKE)  |  146

141

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://eksctl.io/introduction/#getting-started


This sections shows how to create the following Kubernetes clusters:

On-Premises: Creating the Private Kubernetes Cluster

Create an on-premises Kubernetes cluster that includes Contrail Networking. See Installing Kubernetes
with Contrail.

The procedure used in this document installs Kubernetes 1.18.9 on a server node running Ubuntu
18.04.5:

$ kubectl get nodes -o wide
NAME         STATUS  ROLES   VERSION  OS-IMAGE            KERNEL-VERSION
k8s-master1  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-master2  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-master3  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-node1    Ready   <none>  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-112-generic
k8s-node2    Ready   <none>  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-112-generic

NOTE: Some output fields removed for readability.

After deploying the Kubernetes cluster, Contrail is installed using a single YAML file.

$ kubectl get po -n kube-system
NAME                                  READY   STATUS    RESTARTS   AGE
config-zookeeper-4klts                1/1     Running   0          19h
config-zookeeper-cs2fk                1/1     Running   0          19h
config-zookeeper-wgrtb                1/1     Running   0          19h
contrail-agent-ch8kv                  3/3     Running   2          19h
contrail-agent-kh9cf                  3/3     Running   1          19h
contrail-agent-kqtmz                  3/3     Running   0          19h
contrail-agent-m6nrz                  3/3     Running   1          19h
contrail-agent-qgzxt                  3/3     Running   3          19h
contrail-analytics-6666s              4/4     Running   1          19h
contrail-analytics-jrl5x              4/4     Running   4          19h
contrail-analytics-x756g              4/4     Running   4          19h
contrail-configdb-2h7kd               3/3     Running   4          19h
contrail-configdb-d57tb               3/3     Running   4          19h
contrail-configdb-zpmsq               3/3     Running   4          19h
contrail-controller-config-c2226      6/6     Running   9          19h
contrail-controller-config-pbbmz      6/6     Running   5          19h

142

https://github.com/ovaleanujnpr/Kubernetes/wiki/Installing-Kubernetes-with-Contrail
https://github.com/ovaleanujnpr/Kubernetes/wiki/Installing-Kubernetes-with-Contrail


contrail-controller-config-zqkm6      6/6     Running   4          19h
contrail-controller-control-2kz4c     5/5     Running   2          19h
contrail-controller-control-k522d     5/5     Running   0          19h
contrail-controller-control-nr54m     5/5     Running   2          19h
contrail-controller-webui-5vxl7       2/2     Running   0          19h
contrail-controller-webui-mzpdv       2/2     Running   1          19h
contrail-controller-webui-p8rc2       2/2     Running   1          19h
contrail-kube-manager-88c4f           1/1     Running   0          19h
contrail-kube-manager-fsz2z           1/1     Running   0          19h
contrail-kube-manager-qc27b           1/1     Running   0          19h
coredns-684f7f6cb4-4mmgc              1/1     Running   0          93m
coredns-684f7f6cb4-dvpjk              1/1     Running   0          107m
coredns-684f7f6cb4-m6sj7              1/1     Running   0          84m
coredns-684f7f6cb4-nfkfh              1/1     Running   0          84m
coredns-684f7f6cb4-tk48d              1/1     Running   0          86m
etcd-k8s-master1                      1/1     Running   0          94m
etcd-k8s-master2                      1/1     Running   0          95m
etcd-k8s-master3                      1/1     Running   0          92m
kube-apiserver-k8s-master1            1/1     Running   0          94m
kube-apiserver-k8s-master2            1/1     Running   0          95m
kube-apiserver-k8s-master3            1/1     Running   0          92m
kube-controller-manager-k8s-master1   1/1     Running   0          94m
kube-controller-manager-k8s-master2   1/1     Running   0          95m
kube-controller-manager-k8s-master3   1/1     Running   0          92m
kube-proxy-975tn                      1/1     Running   0          108m
kube-proxy-9qzc9                      1/1     Running   0          108m
kube-proxy-fgwqt                      1/1     Running   0          109m
kube-proxy-n6nnq                      1/1     Running   0          109m
kube-proxy-wf289                      1/1     Running   0          108m
kube-scheduler-k8s-master1            1/1     Running   0          94m
kube-scheduler-k8s-master2            1/1     Running   0          95m
kube-scheduler-k8s-master3            1/1     Running   0          90m
rabbitmq-82lmk                        1/1     Running   0          19h
rabbitmq-b2lz8                        1/1     Running   0          19h
rabbitmq-f2nfc                        1/1     Running   0          19h
redis-42tkr                           1/1     Running   0          19h
redis-bj76v                           1/1     Running   0          19h
redis-ctzhg                           1/1     Running   0          19h

143



You should also configure user roles using role-based access control (RBAC). This example shows you
how to grant the customer-admin RBAC role to all Kubernetes namespaces:

$ kubectl create clusterrolebinding permissive-binding \
  --clusterrole=cluster-admin \
  --user=admin \
  --user=kubelet \
  --group=system:serviceaccounts

kubectl auth can-i '*' '*' --all-namespaces

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes
Service (EKS) Environment

To create a Kubernetes cluster within the Elastic Kubernetes Service (EKS) in AWS, perform following
procedure using the eksctl CLI tool :

1. Create the cluster. To create a cluster that includes Contrail running in Kubernetes within EKS, follow
the instructions in "How to Install Contrail Networking within an Amazon Elastic Kubernetes Service
(EKS) Environment in AWS" on page 122.

2. View the nodes:

$ kubectl get nodes -o wide
NAME                                           STATUS  ROLES   VERSION   OS-IMAGE            
KERNEL-VERSION
ip-100-72-0-119.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-0-220.eu-central-1.compute.internal  Ready   <none>  v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-0-245.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-1-116.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-1-67.eu-central-1.compute.internal   Ready   <none>  v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws

3. View the pods.

144



Note the Contrail pods to confirm that Contrail is running in the environment.

$ kubectl get pods --all-namespaces
NAME                                          READY   STATUS    RESTARTS   AGE
cni-patches-2jm8n                             1/1     Running   0          4d21h
cni-patches-2svt6                             1/1     Running   0          4d21h
cni-patches-9mpss                             1/1     Running   0          4d21h
cni-patches-fdbws                             1/1     Running   0          4d21h
cni-patches-ggdph                             1/1     Running   0          4d21h
config-management-operator-5994858fbb-9xvmx   1/1     Running   0          2d20h
config-zookeeper-fz5zv                        1/1     Running   0          4d21h
config-zookeeper-n7wgk                        1/1     Running   0          4d21h
config-zookeeper-pjffv                        1/1     Running   0          4d21h
contrail-agent-69zpn                          3/3     Running   0          4d21h
contrail-agent-gqtfv                          3/3     Running   0          4d21h
contrail-agent-lb8tj                          3/3     Running   0          4d21h
contrail-agent-lrrp8                          3/3     Running   0          4d21h
contrail-agent-z4qjc                          3/3     Running   0          4d21h
contrail-analytics-2bv7c                      4/4     Running   0          4d21h
contrail-analytics-4jgq6                      4/4     Running   0          4d21h
contrail-analytics-sn6cj                      4/4     Running   0          4d21h
contrail-configdb-bhvlw                       3/3     Running   0          4d21h
contrail-configdb-kvvk4                       3/3     Running   0          4d21h
contrail-configdb-vbczf                       3/3     Running   0          4d21h
contrail-controller-config-8vrrm              6/6     Running   1          4d21h
contrail-controller-config-lxsms              6/6     Running   3          4d21h
contrail-controller-config-r7ncm              6/6     Running   4          4d21h
contrail-controller-control-5795l             5/5     Running   0          4d21h
contrail-controller-control-dz6pl             5/5     Running   0          4d21h
contrail-controller-control-qznf9             5/5     Running   0          4d21h
contrail-controller-webui-2g5jx               2/2     Running   0          4d21h
contrail-controller-webui-7kg48               2/2     Running   0          4d21h
contrail-controller-webui-ww5z9               2/2     Running   0          4d21h
contrail-kube-manager-2jhzc                   1/1     Running   2          4d21h
contrail-kube-manager-8psh9                   1/1     Running   0          4d21h
contrail-kube-manager-m8zg7                   1/1     Running   1          4d21h
coredns-5fdf64ff8-bf2fc                       1/1     Running   0          4d21h
<additional output removed for readability>

4. Use role-based access control (RBAC) to define access roles for users accessing cluster resources.

145



This sample configuration illustrates how to configure RBAC to set the cluster admin role to all
namespaces in the cluster. The remaining procedures in this document assume that the user has
cluster admin access to all cluster resources.

$ kubectl create clusterrolebinding permissive-binding \
  --clusterrole=cluster-admin \
  --user=admin \
  --user=kubelet \
  --group=system:serviceaccounts

kubectl auth can-i '*' '*' --all-namespaces

Other RBAC options are available and the discussion of those options is beyond the scope of this
document. See Using RBAC Authorization from Kubernetes.

Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes
Engine (GKE)

To create a Kubernetes cluster in Google Cloud using the Google Kubernetes Engine (GKE):

1. Create a project by entering the following command:

$ gcloud init

Follow the onscreen process to create the project.

2. Verify that the project was created:

$ gcloud projects list

3. Select a project:

$ gcloud config set project contrail-k8s-289615

4. Assign the required IAM user roles.

In this sample configuration, IAM user roles are set so that users have complete control of all
registration tasks. For more information on IAM user role options, see Grant the required IAM roles
to the user registering the cluster document from Google Cloud.

PROJECT_ID=contrail-k8s-289615
$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \

146

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#grant_iam_roles
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#grant_iam_roles


 --member user:[GCP_EMAIL_ADDRESS] \
 --role=roles/gkehub.admin \
 --role=roles/iam.serviceAccountAdmin \
 --role=roles/iam.serviceAccountKeyAdmin \
 --role=roles/resourcemanager.projectIamAdmin

5. APIs are required to access resources in Google Cloud. See the Enable the required APIs in your
project content in Google Cloud.

To enable the APIs required for this project:

gcloud services enable \
 --project=${PROJECT_ID} \
 container.googleapis.com \
 compute.googleapis.com \
 gkeconnect.googleapis.com \
 gkehub.googleapis.com \
 cloudresourcemanager.googleapis.com \
 cloudtrace.googleapis.com \
 anthos.googleapis.com \
 iamcredentials.googleapis.com \
 meshca.googleapis.com \
 meshconfig.googleapis.com \
 meshtelemetry.googleapis.com \
 monitoring.googleapis.com \
 logging.googleapis.com \
 runtimeconfig.googleapis.com

6. Create the Kubernetes cluster:

$ export KUBECONFIG=gke-config
$ gcloud container clusters create gke-cluster-1 \
--zone "europe-west2-b" \
--disk-type "pd-ssd" \
--disk-size "150GB" \
--machine-type "n2-standard-4" \
--num-nodes=3 \
--image-type "COS" \
--enable-stackdriver-kubernetes \
--addons HorizontalPodAutoscaling,HttpLoadBalancing,Istio,CloudRun \
--istio-config auth=MTLS_PERMISSIVE \
--cluster-version "1.17.9-gke.1504"

147

https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#enable_apis
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#enable_apis


kubectl create clusterrolebinding cluster-admin-binding \
  --clusterrole cluster-admin \
  --user $(gcloud config get-value account)

7. To assist with later management tasks, merge the cloud configurations into a single configuration.

In this example, the on-premises, EKS, and GKE configuration directories are copied into the same
directory:

$ cp *-config ~/.kube
$ KUBECONFIG=$HOME/.kube/eks-config:$HOME/.kube/contrail-config:$HOME/.kube/gke-config 
kubectl config view --merge --flatten > $HOME/.kube/config

$ kubectx gke_contrail-k8s-289615_europe-west2-b_gke-cluster-1
$ kubectx gke=.

$ kubectx arn:aws:eks:eu-central-1:927874460243:cluster/EKS-YC0U0TU5
$ kubectx eks-contrail=.

$ kubectx kubernetes-admin@kubernetes
$ kubectx onprem-k8s-contrail=.

8. Confirm the contexts representing the Kubernetes clusters.

This output illustrates an environment where an on-premises and an EKS cluster were created using
the procedures in this document.

$ kubectx
eks-contrail
gke
onprem-k8s-contrail

Preparing Your Clusters for Anthos

IN THIS SECTION

Configure Your Google Cloud Platform Account for Anthos  |  149

148



How to Register an External Kubernetes Cluster to Google Connect  |  150

This section describes how to prepare your Google Cloud Platform account and your clusters for
Anthos.

It includes the following sections:

Configure Your Google Cloud Platform Account for Anthos

You need to create a service account in GCP and provision a JSON file with the Google Cloud service
account credentials for external clusters—in this example, the external clusters are the on-premises
cloud and the AWS cloud networks—before you can connect the clusters created by third-party
providers into Google Anthos.

To configure your Google Cloud Platform for Anthos:

1. Create the Google Cloud service account.

This step includes creating a project ID and creating an IAM profile for the account:

$ PROJECT_ID=contrail-k8s-289615
$ SERVICE_ACCOUNT_NAME=anthos-connect

$ gcloud iam service-accounts create ${SERVICE_ACCOUNT_NAME} --project=${PROJECT_ID}

2. Bind the gkehub.connect IAM role to the service account:

$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \
 --member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
 --role="roles/gkehub.connect"

3. Create a private key JSON file for the service account in the current directory. This JSON file is
required to register the clusters.

$ gcloud iam service-accounts keys create ./${SERVICE_ACCOUNT_NAME}-svc.json \
  --iam-account=${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com \
  --project=${PROJECT_ID}

149



How to Register an External Kubernetes Cluster to Google Connect

The Google Connect feature is part of Anthos and it allows you to connect your Kubernetes clusters—
including clusters created outside Google Cloud—into Google Cloud. This support within Google
Connect provides the external Kubernetes clusters with the ability to use many cluster and workload
management features from Google Cloud, including the Cloud Console unified user interface. See
Connect Overview from Google for additional information on Google Connect and Cloud Console from
Google for additional information on Google Cloud Console.

To register external Kubernetes clusters into Google connect:

1. Connect the cluster to the Google Kubernetes Engine (GKE). A GKE agent which is responsible for
allowing the cloud network to communicate with the GKE hub is installed in the cloud network
during this step.

• To add an on-premises cluster:

gcloud container hub memberships register onpremk8s-contrail-cluster-1 \
   --project=${PROJECT_ID} \
   --context=onprem-k8s-contrail \
   --kubeconfig=$HOME/.kube/config \
   --service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running after the command is executed:

$ kubectx onprem-k8s-contrail
Switched to context "onprem-k8s-contrail".

$ kubectl get pods -n gke-connect
NAMESPACE      NAME                                               READY   STATUS
gke-connect    gke-connect-agent-20200918-01-00-7bc77884d-st4r2   1/1     Running

NOTE: SNAT usually needs to be enabled in Contrail Networking to allow the GKE
connect agent to connect to the Internet.

• To add a cluster running in Elastic Kubernetes Service (EKS) on Amazon Web Services (AWS):

gcloud container hub memberships register eks-contrail-cluster-1 \
   --project=${PROJECT_ID} \
   --context=eks-contrail \

150

https://cloud.google.com/anthos/multicluster-management/connect/overview
https://cloud.google.com/cloud-console


   --kubeconfig=$HOME/.kube/config \
   --service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running after executing the command:

$ kubectx eks-contrail
Switched to context "eks-contrail".

$ kubectl get pods -n gke-connect
NAME                                                READY   STATUS
gke-connect-agent-20201002-01-00-5749bfc847-qhvft   1/1     Running

• To add a cluster running in GKE on Google Cloud Platform:

gcloud container hub memberships register gke-cluster-1 \
--project=${PROJECT_ID} \
--gke-cluster=europe-west2-b/gke-cluster-1 \
--service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running in the cluster after executing the command.

Note that the on-premises and AWS EKS clusters that were connected to the GKE hub in the
earlier bulletpoints are also visible in the command output.

$ gcloud container hub memberships list
NAME                          EXTERNAL_ID
onpremk8s-contrail-cluster-1  78f7890b-3a43-4bc7-8fd9-44c76953781b
eks-contrail-cluster-1        42e532ba-a0d9-4087-baed-647be8bca7e9
gke-cluster-1                 6671599e-87af-461b-aff9-7105ebda5c66

2. A bearer token will be used in this procedure to login to the external clusters from the Google Anthos
Console. A Kubernetes service account (KSA) will be created in the cluster to generate this bearer
token.

To create and apply this bearer token for an on-premises cluster:

a. Create and apply the node-reader role in role-based access control (RBAC) using the node-reader
role in the node-reader.yaml file:

$ cat <<EOF > node-reader.yaml
kind: ClusterRole

151



apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: node-reader
rules:
- apiGroups: [""]
  resources: ["nodes"]
  verbs: ["get", "list", "watch"]
EOF
F

$ kubectx onpremk8s-contrail-cluster-1

$ kubectl apply -f node-reader.yaml

b. Create and authorize a Kubernetes service account (KSA):

$ KSA_NAME=anthos-sa
$ kubectl create serviceaccount ${KSA_NAME}
$ kubectl create clusterrolebinding anthos-view --clusterrole view --serviceaccount 
default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-node-reader --clusterrole node-reader --
serviceaccount default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-cluster-admin --clusterrole cluster-admin --
serviceaccount default:${KSA_NAME}

c. Acquire the bearer token for the KSA:

$ SECRET_NAME=$(kubectl get serviceaccount ${KSA_NAME} -o jsonpath='{$.secrets[0].name}')
$ kubectl get secret ${SECRET_NAME} -o jsonpath='{$.data.token}' | base64 --decode

d. Use the output token in the Cloud Console to login to the cluster.

To create and apply this bearer token for an EKS cluster in AWS:

a. Perform the parallel steps for an on-premises cluster for an AWS EKS cluster:

$ kubectx eks-contrail
$ $ kubectl apply -f node-reader.yaml

$ kubectl create serviceaccount ${KSA_NAME}

152



$ kubectl create clusterrolebinding anthos-view --clusterrole view --serviceaccount 
default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-node-reader --clusterrole node-reader --
serviceaccount default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-cluster-admin --clusterrole cluster-admin --
serviceaccount default:${KSA_NAME}

$ SECRET_NAME=$(kubectl get serviceaccount ${KSA_NAME} -o jsonpath='{$.secrets[0].name}')
$ kubectl get secret ${SECRET_NAME} -o jsonpath='{$.data.token}' | base64 --decode

3. Verify the clusters.

a. Verify that the clusters are visible in Anthos:

b. Verify that cluster details are visible from the Kubernetes Engine tab:

153



154



Deploying GCP Applications into Third Party Clusters That are Integrated
Into Anthos

IN THIS SECTION

On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace Onto an On-
premises Cloud  |  155

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace  |  161

This section shows how to deploy an application from Google Marketplace onto clusters created outside
GCP and integrated into Anthos.

It includes the following sections:

On-premises Kubernetes cluster: How to Deploy Applications from the GCP
Marketplace Onto an On-premises Cloud

This procedure shows how to add an application—illustrated using the PostgreSQL application—from the
Google Cloud Marketplace into an on-premises cluster that was built outside of Google Cloud and
integrated into Anthos.

Perform the following steps to deploy the application:

1. Create a namespace called application-system for Google Cloud Marketplace components.

You must create this namespace to deploy applications to Google Anthos in an on-premises cluster.
The namespace must be called application-system and must apply an imagePullSecret credential to
the default service account for the namespace.

$ kubectl create ns application-system

$ kubens application-system
Context "kubernetes-admin@kubernetes" modified.
Active namespace is "application-system".

2. Create a service account and download an associated JSON token.

155



This step is required to pull images from the Google Cloud Repository.

$ PROJECT_ID=contrail-k8s-289615

$ gcloud iam service-accounts create gcr-sa \
    --project=${PROJECT_ID}

$ gcloud iam service-accounts list \
    --project=${PROJECT_ID}

$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \
 --member="serviceAccount:gcr-sa@${PROJECT_ID}.iam.gserviceaccount.com" \
 --role="roles/storage.objectViewer"

$ gcloud iam service-accounts keys create ./gcr-sa.json \
  --iam-account="gcr-sa@${PROJECT_ID}.iam.gserviceaccount.com" \
  --project=${PROJECT_ID}

3. Create a secret credential with the contents of the token:

$ kubectl create secret docker-registry gcr-json-key \
--docker-server=https://marketplace.gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

4. Patch the default service account within the namespace to use the secret credential for pulling
images from the Google Cloud Repository instead of the Docker Hub.

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

5. Annotate the application-system namespace to enable the deployment of Kubernetes Applications
from the GCP Marketplace:

$ kubectl annotate namespace application-system marketplace.cloud.google.com/
imagePullSecret=gcr-json-key

6. Create a default storage class named standard by either renaming your storage class to standard or
creating a new storage class. This step is necessary because the GCP Marketplace expects a storage
class named standard as the default storage class.

156



To rename your storage class:

$ cat sc.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: standard
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

$ kubectl get sc
NAME                 PROVISIONER                    AGE
standard (default)   kubernetes.io/no-provisioner   6m14s

To create a new storage class, see Setup a Local Persistent Volume for a Kubernetes cluster.

This namespace will be utilized by the GCP Marketplace Apps to dynamically provision Persistent
Volume (PV) and Persistent Volume Claim (PVC).

7. Create and configure a namespace for an app that will be deployed from the GCP Marketplace.

We’ll illustrate how to deploy PostgreSQL in this document.

$ kubectl create ns pgsql

$ kubens pgsql

$ kubectl create secret docker-registry gcr-json-key \
 --docker-server=https://gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

8. Patch the default service account within the namespace to use the secret credential to pull images
from the Google Cloud repository instead of Docker Hub.

In this sample case, the default service account is within the pgsql namespace.

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

157

https://github.com/ovaleanujnpr/kubernetes/blob/master/docs/add_local_pv_k8s.md


9. Annotate the namespace—in this case, the pgsql namespace—to enable the deployment of
Kubernetes Apps from the GCP Marketplace:

$ kubectl annotate namespace pgsql marketplace.cloud.google.com/imagePullSecret=gcr-json-key

10. Choose the app—in this case, PostgresSQL Server—from GCP Marketplace and click on Configure
to start the deployment procedure.

11. Choose the contrail-cluster-1 external cluster from the Cluster drop-down menu:

12. Select the namespace that you previously created from the Namespace drop-down menu and set
the StorageClass as standard.

158



Click Deploy. Wait a couple of minutes.

The Application details screen appears.

Review the Status row in the Components table to confirm that all components successfully
deployed.

You can also verify that the app is running from the CLI:

$ kubectl get po -n pgsql
NAME                          READY   STATUS      RESTARTS   AGE
postgresql-1-deployer-nzpfn   0/1     Completed   0          91s
postgresql-1-postgresql-0     2/2     Running     0          46s

159



$ kubectl get pvc
NAME                                                    STATUS   VOLUME              
CAPACITY   ACCESS MODES   STORAGECLASS   AGE
postgresql-1-postgresql-pvc-postgresql-1-postgresql-0   Bound    local-pv-e00b14f6   
62Gi       RWO            standard       91s

13. Use filtering within the GKE Console to see the applications deployed in the on-premises cluster.

14. To access the application:

• Forward the PostgreSQL port locally:

$ export NAMESPACE=pgsql
$ export APP_INSTANCE_NAME="postgresql-1"
$ kubectl port-forward --namespace "${NAMESPACE}" "${APP_INSTANCE_NAME}-postgresql-0" 
5432
Forwarding from 127.0.0.1:5432 -> 5432
Forwarding from [::1]:5432 -> 5432

• Connect to the database

$ apt -y install postgresql-client-10 postgresql-client-common
$ export PGPASSWORD=$(kubectl get secret "postgresql-1-secret" --
output=jsonpath='{.data.password}' | base64 -d)

160



$ psql (10.12 (Ubuntu 10.12-0ubuntu0.18.04.1), server 9.6.18)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, 
compression: off)
Type "help" for help.

postgres=#

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace

You can deploy an application from the Google Marketplace into an EKS cluster that is using Contrail
Networking in AWS after the cluster is enabled in Anthos. This procedure will illustrate this process by
deploying Prometheus and Grafana from Google Marketplace

Perform the following steps to deploy an application from Google Marketplace onto an EKS cluster in
AWS that is using Contrail Networking.

1. Enable credentials within the eks-contrail context:

$ kubectx eks-contrail
Switched to context "eks-contrail"

$ kubectl create ns application-system

$ kubens application-system
Context "kubernetes-admin@kubernetes" modified.
Active namespace is "application-system".

$ kubectl create secret docker-registry gcr-json-key \
--docker-server=https://marketplace.gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

$ kubectl annotate namespace application-system marketplace.cloud.google.com/
imagePullSecret=gcr-json-key

2. The GCP Marketplace expects a storage class named standard to be configured in a context. The
default story class name in EKS, however, is gp2.

To change the storage class name:

161



a. Remove the default flag from the gp2 storage class using the patch command:

$  kubectl patch storageclass gp2 -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"false"}}}'

b. Create a new storage class for the Amazon EKS context and mark it as the default storage class:

$ cat <<EOF > eks-sc.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: standard
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/aws-ebs
parameters:
  type: gp2
  fsType: ext4
EOF

$ kubectl create -f eks-sc.yaml
storageclass.storage.k8s.io/standard created

$ kubectl get sc
NAME                 PROVISIONER             AGE
gp2                  kubernetes.io/aws-ebs   2d
standard (default)   kubernetes.io/aws-ebs   5s

3. Create a namespace for the applications:

$ kubectl create ns monitoring

$ kubens monitoring

kubectl create secret docker-registry gcr-json-key \
 --docker-server=https://gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

162



$ kubectl annotate namespace monitoring marketplace.cloud.google.com/imagePullSecret=gcr-json-
key

4. Choose Prometheus and Grafana from GCP Marketplace. Click the Configure button to start the
deployment procedure.

5. Choose the EKS cluster from the cluster drop-down menu.

6. Select the namespace and storage class. Click Deploy.

163



Wait several minutes for the application to deploy.

You can also verify that the application has deployed using the CLI:

$ kubectl get pods -n monitoring
NAME                                               READY   STATUS      RESTARTS   AGE
prometheus-1-alertmanager-0                        1/1     Running     0          2m36s
prometheus-1-alertmanager-1                        1/1     Running     0          88s
prometheus-1-deployer-blm5f                        0/1     Completed   0          3m20s
prometheus-1-grafana-0                             1/1     Running     0          2m36s

164



prometheus-1-kube-state-metrics-6f64b67684-shtdg   2/2     Running     0          2m37s
prometheus-1-node-exporter-5scf4                   1/1     Running     0          2m36s
prometheus-1-node-exporter-gdp77                   1/1     Running     0          2m36s
prometheus-1-node-exporter-k8vfn                   1/1     Running     0          2m36s
prometheus-1-node-exporter-v6w7g                   1/1     Running     0          2m36s
prometheus-1-node-exporter-zffs9                   1/1     Running     0          2m36s
prometheus-1-prometheus-0                          1/1     Running     0          2m36s
prometheus-1-prometheus-1                          1/1     Running     0          2m36s

7. If you have a private service, consider how your going to make it accessible.

In this case, the Grafana user interface is exposed in the ClusterP-only service named prometheus-1-
grafana. To connect to the Grafana user interface, either change the service to a public service
endpoint or keep the service private and access it from your local environment.

kubectl get svc -n monitoring
NAME                                 TYPE        CLUSTER-IP       EXTERNAL-IP   
PORT(S)             AGE
prometheus-1-alertmanager            ClusterIP   10.100.92.6      <none>        9093/
TCP            10m
prometheus-1-alertmanager-operated   ClusterIP   None             <none>        6783/TCP,9093/
TCP   10m
prometheus-1-grafana                 ClusterIP   10.100.126.78    <none>        80/
TCP              10m
prometheus-1-kube-state-metrics      ClusterIP   10.100.46.18     <none>        8080/TCP,8081/
TCP   10m
prometheus-1-prometheus              ClusterIP   10.100.214.104   <none>        9090/
TCP            10m

You can use the kubectl port forwarding feature to forward Graffana traffic to your local machine by
running the following command:

$ kubectl port-forward --namespace monitoring prometheus-1-grafana-0 3000
Now you can access Grafana UI with http://localhost:3000/.

165



Configuration Management in Anthos

IN THIS SECTION

Overview: Anthos Configuration Management  |  166

Installing the Configuration Management Operator  |  166

Configuring the Clusters for Anthos Configuration Management  |  168

Using Nomos to Manage the Anthos Configuration Manager  |  169

This section covers Configuration Management in Anthos.

It includes the following sections:

Overview: Anthos Configuration Management

Google Cloud uses a tool called Config Sync that acts as the bridge between an external source code
repository and the Kubernetes API server. See Config Sync overview from Google Cloud for additional
information.

Anthos Configuration Management (ACM) uses Config Sync to extend configuration to non-GCP
clusters that are connected using Anthos.

In the following sections, a GitHub repository is used as a single source for deployments and
configuration. An ACM component is installed onto each of the clusters that are included with Anthos to
monitor the external repositories for changes and synchronizing them across Anthos.

GitOps-style deployments are used in the following procedures to push workloads across all registered
clusters through Anthos Config Management. GitOps provides a method of performing Kubernetes
cluster management and application delivery. It works by using Git as a single source of truth for
declarative infrastructure and applications and using the YAML or JSON files used in Kubernetes to
combine with Anthos for code.

Installing the Configuration Management Operator

The Configuration Management Operator is a controller that manages installation of the Anthos
Configuration Manager. The operator will be installed on all three clusters using these instructions.

To install the Configuration Management Operator:

166

https://cloud.google.com/kubernetes-engine/docs/add-on/config-sync/overview


1. Download the Configuration Management Operator and apply it to each cluster:

gsutil cp gs://config-management-release/released/latest/config-management-operator.yaml 
config-management-operator.yaml

$ kubectl create -f config-management-operator.yaml
customresourcedefinition.apiextensions.k8s.io/configmanagements.configmanagement.gke.io 
configured
clusterrolebinding.rbac.authorization.k8s.io/config-management-operator configured
clusterrole.rbac.authorization.k8s.io/config-management-operator configured
serviceaccount/config-management-operator configured
deployment.apps/config-management-operator configured
namespace/config-management-system configured

Run this command in each cluster.

2. Confirm that the operator was created:

$ kubectl describe crds configmanagements.configmanagement.gke.io
Name:         configmanagements.configmanagement.gke.io
Namespace:
Labels:       controller-tools.k8s.io=1.0
Annotations:  <none>
API Version:  apiextensions.k8s.io/v1
Kind:         CustomResourceDefinition
Metadata:
  Creation Timestamp:  2020-10-09T13:13:17Z
  Generation:          1
  Resource Version:    363244
  Self Link:           /apis/apiextensions.k8s.io/v1/customresourcedefinitions/
configmanagements.configmanagement.gke.io
  UID:                 a088edbc-8232-419f-8f42-365fa36de110
Spec:
  Conversion:
    Strategy:  None
  Group:       configmanagement.gke.io
  Names:
    Kind:                   ConfigManagement
    List Kind:              ConfigManagementList
    Plural:                 configmanagements

167



    Singular:               configmanagement
....

Configuring the Clusters for Anthos Configuration Management

To configure the clusters for Anthos Configuration Management:

1. Create an SSH keypair to allow the Operator to authenticate to your Git repository:

$ ssh-keygen -t rsa -b 4096 -C "git-user1" -N '' -f "~/.ssh/gke-github"

2. Configure your repository to recognize the newly-created public key. See Adding a new SSH key to
your GitHub account from GitHub.

Add a private key to a new secret in the cluster:

$ kubectl create secret generic git-creds \
  --namespace=config-management-system \
  --from-file=ssh="/Users/user1/.ssh/gke-github"

Repeat this step for each individual cluster

3. (Optional) Gather the name of each cluster, if needed:

$ gcloud container hub memberships list
NAME                          EXTERNAL_ID
onpremk8s-contrail-cluster-1  78f7890b-3a43-4bc7-8fd9-44c76953781b
eks-contrail-cluster-1        42e532ba-a0d9-4087-baed-647be8bca7e9
gke-cluster-1                 6671599e-87af-461b-aff9-7105ebda5c66

4. Create a config-management.yaml file for each cluster. Replace the clusterName with the registered
clustered name in Anthos in each file.

$ cat config-management.yaml
apiVersion: configmanagement.gke.io/v1
kind: ConfigManagement
metadata:
  name: config-management
spec:
  # clusterName is required and must be unique among all managed clusters
  clusterName:
  git:

168

https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account


    syncRepo: git@github.com:git-user1/csp-config-management.git
    syncBranch: 1.0.0
    secretType: ssh
    policyDir: foo-corp
    proxy: {}

$ kubectx eks-contrail
$ kubectl apply -f config-management.yaml

$ kubectx onprem-k8s-contrail
$ kubectl apply -f config-management.yaml

$ kubectx gke
$ kubectl apply -f config-management.yaml

5. Verify that the pods are running on each cluster.

To verify in the CLI:

$ kubectl get pods -n config-management-system
NAME                            READY   STATUS    RESTARTS   AGE
git-importer-584bd49676-46bjq   3/3     Running   0          4m23s
monitor-c8c68d5ff-bdhzl         1/1     Running   0          4m25s
syncer-7dbbc8868c-gtp8d         1/1     Running   0          4m25s

To verify on the Anthos dashboard:

Using Nomos to Manage the Anthos Configuration Manager

The Google Cloud Platform offers a utility called Nomos which can be used to manage the Anthos
Configuration Manager (ACM). See Using the nomos command from Google Cloud for more information
on Nomos.

To enable Nomos:

169

https://cloud.google.com/anthos-config-management/docs/how-to/nomos-command


1. Get the utility and copy it into a local directory:

$ gsutil cp gs://config-management-release/released/latest/darwin_amd64/nomos nomos

$ cp ./nomos /usr/local/bin
$ chmod +x /usr/local/bin/nomos

2. Verify that nomos is running in the clusters connected using Anthos:

$ nomos status
Connecting to clusters...
Current   Context               Sync Status      Last Synced Token   Sync Branch   Resource 
Status
-------   -------               -----------      -----------------   -----------   
---------------
*         eks-contrail          SYNCED           7da177ce            1.0.0         Healthy
          gke                   SYNCED           7da177ce            1.0.0         Healthy
          onprem-k8s-contrail   SYNCED           7da177ce            1.0.0         Healthy

3. List the namespaces that are currently managed by Anthos Configuration Management.

In this sample output, configurations are stored in the cluster/ and namespace/ directories. All
objects managed by Anthos Config Management have the app.kubernetes.io/managed-by label set to
configmanagement.gke.io.

$ kubectl get ns -l app.kubernetes.io/managed-by=configmanagement.gke.io
NAME               STATUS   AGE
audit              Active   13m
shipping-dev       Active   13m
shipping-prod      Active   13m
shipping-staging   Active   13m

4. In the following sequence, we’ll validate that nomos and Anthos Configuration Management are
efficiently managing the configuration of configuration in a third-party cluster by deleting a
namespace in EKS and confirming that a new namespace is quickly recreated.

$ kubectx eks-contrail

$ kubectl delete ns audit
namespace "audit" deleted

170



$ kubectl get ns audit
NAME    STATUS   AGE
audit   Active   5s

The output shows that a new audit workspace was created 5 seconds ago, confirming that Anthos
Configuration Management is working.

171



5
CHAPTER

Using KubeVirt

How to Integrate Kubernetes Clusters using Contrail Networking into Google
Cloud Anthos  |  173

 



How to Integrate Kubernetes Clusters using Contrail
Networking into Google Cloud Anthos

IN THIS SECTION

Prerequisites  |  174

Creating Kubernetes Clusters  |  174

Preparing Your Clusters for Anthos  |  181

Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos  |  188

Configuration Management in Anthos  |  199

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Anthos is an application management platform developed by Google that provides a consistent
development and operations experience for users working in cloud networking clusters that were
created in Google Cloud or on third-party cloud platforms. For additional information on Anthos, see the
Anthos technical overview from Google Cloud.

The purpose of this document is to illustrate how cloud environments using Kubernetes for
orchestration and Contrail Networking for networking can be integrated into the Anthos management
platform. This document shows how to create clusters in three separate cloud environments—a private
on-premises cloud, a cloud created using the Elastic Kubernetes Service (EKS) in Amazon Web Services
(AWS), and a cloud created using the Google Kubernetes Engine (GKE) in the Google Cloud Platform—
and add those clusters into Anthos.

This document also provides instructions on introductory configuration and usage tasks after the clouds
have been integrated into Anthos. It includes a section on Anthos Configuration management and a

173

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://cloud.google.com/anthos/docs/concepts/overview


section showing how to load applications from the Google Marketplace into third-party cloud
environments.

This document covers the following topics:

Prerequisites

The procedures in this document make the following assumptions about your environment:

• All Environments

The following CLI tools have been downloaded:

• kubectl. See Install and Set Up kubectl.

• (Recommend for management) kubectx and kubens. See kubectx + kubens: Power tools for
kubectl in Github.

• Google Cloud Platform

• The GCP CLI tools from the Cloud SDK package are operational. See Getting Started with Cloud
SDK from Google.

• Amazon Web Services

• This procedure assumes that you have an active AWS account with operating credentials and that
the AWS CLI is working on your system. See the Configuring the AWS CLI document from AWS.

• the eksctl CLI tool is running. See eksctl from the eksctl website.

Creating Kubernetes Clusters

IN THIS SECTION

On-Premises: Creating the Private Kubernetes Cluster  |  175

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service (EKS)
Environment  |  177

Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine (GKE)  |  179

174

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/ahmetb/kubectx
https://github.com/ahmetb/kubectx
https://cloud.google.com/sdk/docs/quickstart
https://cloud.google.com/sdk/docs/quickstart
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://eksctl.io/introduction/#getting-started


This sections shows how to create the following Kubernetes clusters:

On-Premises: Creating the Private Kubernetes Cluster

Create an on-premises Kubernetes cluster that includes Contrail Networking. See Installing Kubernetes
with Contrail.

The procedure used in this document installs Kubernetes 1.18.9 on a server node running Ubuntu
18.04.5:

$ kubectl get nodes -o wide
NAME         STATUS  ROLES   VERSION  OS-IMAGE            KERNEL-VERSION
k8s-master1  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-master2  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-master3  Ready   master  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-118-generic
k8s-node1    Ready   <none>  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-112-generic
k8s-node2    Ready   <none>  v1.18.9  Ubuntu 18.04.5 LTS  4.15.0-112-generic

NOTE: Some output fields removed for readability.

After deploying the Kubernetes cluster, Contrail is installed using a single YAML file.

$ kubectl get po -n kube-system
NAME                                  READY   STATUS    RESTARTS   AGE
config-zookeeper-4klts                1/1     Running   0          19h
config-zookeeper-cs2fk                1/1     Running   0          19h
config-zookeeper-wgrtb                1/1     Running   0          19h
contrail-agent-ch8kv                  3/3     Running   2          19h
contrail-agent-kh9cf                  3/3     Running   1          19h
contrail-agent-kqtmz                  3/3     Running   0          19h
contrail-agent-m6nrz                  3/3     Running   1          19h
contrail-agent-qgzxt                  3/3     Running   3          19h
contrail-analytics-6666s              4/4     Running   1          19h
contrail-analytics-jrl5x              4/4     Running   4          19h
contrail-analytics-x756g              4/4     Running   4          19h
contrail-configdb-2h7kd               3/3     Running   4          19h
contrail-configdb-d57tb               3/3     Running   4          19h
contrail-configdb-zpmsq               3/3     Running   4          19h
contrail-controller-config-c2226      6/6     Running   9          19h
contrail-controller-config-pbbmz      6/6     Running   5          19h

175

https://github.com/ovaleanujnpr/Kubernetes/wiki/Installing-Kubernetes-with-Contrail
https://github.com/ovaleanujnpr/Kubernetes/wiki/Installing-Kubernetes-with-Contrail


contrail-controller-config-zqkm6      6/6     Running   4          19h
contrail-controller-control-2kz4c     5/5     Running   2          19h
contrail-controller-control-k522d     5/5     Running   0          19h
contrail-controller-control-nr54m     5/5     Running   2          19h
contrail-controller-webui-5vxl7       2/2     Running   0          19h
contrail-controller-webui-mzpdv       2/2     Running   1          19h
contrail-controller-webui-p8rc2       2/2     Running   1          19h
contrail-kube-manager-88c4f           1/1     Running   0          19h
contrail-kube-manager-fsz2z           1/1     Running   0          19h
contrail-kube-manager-qc27b           1/1     Running   0          19h
coredns-684f7f6cb4-4mmgc              1/1     Running   0          93m
coredns-684f7f6cb4-dvpjk              1/1     Running   0          107m
coredns-684f7f6cb4-m6sj7              1/1     Running   0          84m
coredns-684f7f6cb4-nfkfh              1/1     Running   0          84m
coredns-684f7f6cb4-tk48d              1/1     Running   0          86m
etcd-k8s-master1                      1/1     Running   0          94m
etcd-k8s-master2                      1/1     Running   0          95m
etcd-k8s-master3                      1/1     Running   0          92m
kube-apiserver-k8s-master1            1/1     Running   0          94m
kube-apiserver-k8s-master2            1/1     Running   0          95m
kube-apiserver-k8s-master3            1/1     Running   0          92m
kube-controller-manager-k8s-master1   1/1     Running   0          94m
kube-controller-manager-k8s-master2   1/1     Running   0          95m
kube-controller-manager-k8s-master3   1/1     Running   0          92m
kube-proxy-975tn                      1/1     Running   0          108m
kube-proxy-9qzc9                      1/1     Running   0          108m
kube-proxy-fgwqt                      1/1     Running   0          109m
kube-proxy-n6nnq                      1/1     Running   0          109m
kube-proxy-wf289                      1/1     Running   0          108m
kube-scheduler-k8s-master1            1/1     Running   0          94m
kube-scheduler-k8s-master2            1/1     Running   0          95m
kube-scheduler-k8s-master3            1/1     Running   0          90m
rabbitmq-82lmk                        1/1     Running   0          19h
rabbitmq-b2lz8                        1/1     Running   0          19h
rabbitmq-f2nfc                        1/1     Running   0          19h
redis-42tkr                           1/1     Running   0          19h
redis-bj76v                           1/1     Running   0          19h
redis-ctzhg                           1/1     Running   0          19h

176



You should also configure user roles using role-based access control (RBAC). This example shows you
how to grant the customer-admin RBAC role to all Kubernetes namespaces:

$ kubectl create clusterrolebinding permissive-binding \
  --clusterrole=cluster-admin \
  --user=admin \
  --user=kubelet \
  --group=system:serviceaccounts

kubectl auth can-i '*' '*' --all-namespaces

Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes
Service (EKS) Environment

To create a Kubernetes cluster within the Elastic Kubernetes Service (EKS) in AWS, perform following
procedure using the eksctl CLI tool :

1. Create the cluster. To create a cluster that includes Contrail running in Kubernetes within EKS, follow
the instructions in "How to Install Contrail Networking within an Amazon Elastic Kubernetes Service
(EKS) Environment in AWS" on page 122.

2. View the nodes:

$ kubectl get nodes -o wide
NAME                                           STATUS  ROLES   VERSION   OS-IMAGE            
KERNEL-VERSION
ip-100-72-0-119.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-0-220.eu-central-1.compute.internal  Ready   <none>  v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-0-245.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-1-116.eu-central-1.compute.internal  Ready   infra   v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws
ip-100-72-1-67.eu-central-1.compute.internal   Ready   <none>  v1.16.15  Ubuntu 18.04.3 LTS  
4.15.0-1054-aws

3. View the pods.

177



Note the Contrail pods to confirm that Contrail is running in the environment.

$ kubectl get pods --all-namespaces
NAME                                          READY   STATUS    RESTARTS   AGE
cni-patches-2jm8n                             1/1     Running   0          4d21h
cni-patches-2svt6                             1/1     Running   0          4d21h
cni-patches-9mpss                             1/1     Running   0          4d21h
cni-patches-fdbws                             1/1     Running   0          4d21h
cni-patches-ggdph                             1/1     Running   0          4d21h
config-management-operator-5994858fbb-9xvmx   1/1     Running   0          2d20h
config-zookeeper-fz5zv                        1/1     Running   0          4d21h
config-zookeeper-n7wgk                        1/1     Running   0          4d21h
config-zookeeper-pjffv                        1/1     Running   0          4d21h
contrail-agent-69zpn                          3/3     Running   0          4d21h
contrail-agent-gqtfv                          3/3     Running   0          4d21h
contrail-agent-lb8tj                          3/3     Running   0          4d21h
contrail-agent-lrrp8                          3/3     Running   0          4d21h
contrail-agent-z4qjc                          3/3     Running   0          4d21h
contrail-analytics-2bv7c                      4/4     Running   0          4d21h
contrail-analytics-4jgq6                      4/4     Running   0          4d21h
contrail-analytics-sn6cj                      4/4     Running   0          4d21h
contrail-configdb-bhvlw                       3/3     Running   0          4d21h
contrail-configdb-kvvk4                       3/3     Running   0          4d21h
contrail-configdb-vbczf                       3/3     Running   0          4d21h
contrail-controller-config-8vrrm              6/6     Running   1          4d21h
contrail-controller-config-lxsms              6/6     Running   3          4d21h
contrail-controller-config-r7ncm              6/6     Running   4          4d21h
contrail-controller-control-5795l             5/5     Running   0          4d21h
contrail-controller-control-dz6pl             5/5     Running   0          4d21h
contrail-controller-control-qznf9             5/5     Running   0          4d21h
contrail-controller-webui-2g5jx               2/2     Running   0          4d21h
contrail-controller-webui-7kg48               2/2     Running   0          4d21h
contrail-controller-webui-ww5z9               2/2     Running   0          4d21h
contrail-kube-manager-2jhzc                   1/1     Running   2          4d21h
contrail-kube-manager-8psh9                   1/1     Running   0          4d21h
contrail-kube-manager-m8zg7                   1/1     Running   1          4d21h
coredns-5fdf64ff8-bf2fc                       1/1     Running   0          4d21h
<additional output removed for readability>

4. Use role-based access control (RBAC) to define access roles for users accessing cluster resources.

178



This sample configuration illustrates how to configure RBAC to set the cluster admin role to all
namespaces in the cluster. The remaining procedures in this document assume that the user has
cluster admin access to all cluster resources.

$ kubectl create clusterrolebinding permissive-binding \
  --clusterrole=cluster-admin \
  --user=admin \
  --user=kubelet \
  --group=system:serviceaccounts

kubectl auth can-i '*' '*' --all-namespaces

Other RBAC options are available and the discussion of those options is beyond the scope of this
document. See Using RBAC Authorization from Kubernetes.

Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes
Engine (GKE)

To create a Kubernetes cluster in Google Cloud using the Google Kubernetes Engine (GKE):

1. Create a project by entering the following command:

$ gcloud init

Follow the onscreen process to create the project.

2. Verify that the project was created:

$ gcloud projects list

3. Select a project:

$ gcloud config set project contrail-k8s-289615

4. Assign the required IAM user roles.

In this sample configuration, IAM user roles are set so that users have complete control of all
registration tasks. For more information on IAM user role options, see Grant the required IAM roles
to the user registering the cluster document from Google Cloud.

PROJECT_ID=contrail-k8s-289615
$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \

179

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#grant_iam_roles
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#grant_iam_roles


 --member user:[GCP_EMAIL_ADDRESS] \
 --role=roles/gkehub.admin \
 --role=roles/iam.serviceAccountAdmin \
 --role=roles/iam.serviceAccountKeyAdmin \
 --role=roles/resourcemanager.projectIamAdmin

5. APIs are required to access resources in Google Cloud. See the Enable the required APIs in your
project content in Google Cloud.

To enable the APIs required for this project:

gcloud services enable \
 --project=${PROJECT_ID} \
 container.googleapis.com \
 compute.googleapis.com \
 gkeconnect.googleapis.com \
 gkehub.googleapis.com \
 cloudresourcemanager.googleapis.com \
 cloudtrace.googleapis.com \
 anthos.googleapis.com \
 iamcredentials.googleapis.com \
 meshca.googleapis.com \
 meshconfig.googleapis.com \
 meshtelemetry.googleapis.com \
 monitoring.googleapis.com \
 logging.googleapis.com \
 runtimeconfig.googleapis.com

6. Create the Kubernetes cluster:

$ export KUBECONFIG=gke-config
$ gcloud container clusters create gke-cluster-1 \
--zone "europe-west2-b" \
--disk-type "pd-ssd" \
--disk-size "150GB" \
--machine-type "n2-standard-4" \
--num-nodes=3 \
--image-type "COS" \
--enable-stackdriver-kubernetes \
--addons HorizontalPodAutoscaling,HttpLoadBalancing,Istio,CloudRun \
--istio-config auth=MTLS_PERMISSIVE \
--cluster-version "1.17.9-gke.1504"

180

https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#enable_apis
https://cloud.google.com/anthos/multicluster-management/connect/prerequisites#enable_apis


kubectl create clusterrolebinding cluster-admin-binding \
  --clusterrole cluster-admin \
  --user $(gcloud config get-value account)

7. To assist with later management tasks, merge the cloud configurations into a single configuration.

In this example, the on-premises, EKS, and GKE configuration directories are copied into the same
directory:

$ cp *-config ~/.kube
$ KUBECONFIG=$HOME/.kube/eks-config:$HOME/.kube/contrail-config:$HOME/.kube/gke-config 
kubectl config view --merge --flatten > $HOME/.kube/config

$ kubectx gke_contrail-k8s-289615_europe-west2-b_gke-cluster-1
$ kubectx gke=.

$ kubectx arn:aws:eks:eu-central-1:927874460243:cluster/EKS-YC0U0TU5
$ kubectx eks-contrail=.

$ kubectx kubernetes-admin@kubernetes
$ kubectx onprem-k8s-contrail=.

8. Confirm the contexts representing the Kubernetes clusters.

This output illustrates an environment where an on-premises and an EKS cluster were created using
the procedures in this document.

$ kubectx
eks-contrail
gke
onprem-k8s-contrail

Preparing Your Clusters for Anthos

IN THIS SECTION

Configure Your Google Cloud Platform Account for Anthos  |  182

181



How to Register an External Kubernetes Cluster to Google Connect  |  183

This section describes how to prepare your Google Cloud Platform account and your clusters for
Anthos.

It includes the following sections:

Configure Your Google Cloud Platform Account for Anthos

You need to create a service account in GCP and provision a JSON file with the Google Cloud service
account credentials for external clusters—in this example, the external clusters are the on-premises
cloud and the AWS cloud networks—before you can connect the clusters created by third-party
providers into Google Anthos.

To configure your Google Cloud Platform for Anthos:

1. Create the Google Cloud service account.

This step includes creating a project ID and creating an IAM profile for the account:

$ PROJECT_ID=contrail-k8s-289615
$ SERVICE_ACCOUNT_NAME=anthos-connect

$ gcloud iam service-accounts create ${SERVICE_ACCOUNT_NAME} --project=${PROJECT_ID}

2. Bind the gkehub.connect IAM role to the service account:

$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \
 --member="serviceAccount:${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com" \
 --role="roles/gkehub.connect"

3. Create a private key JSON file for the service account in the current directory. This JSON file is
required to register the clusters.

$ gcloud iam service-accounts keys create ./${SERVICE_ACCOUNT_NAME}-svc.json \
  --iam-account=${SERVICE_ACCOUNT_NAME}@${PROJECT_ID}.iam.gserviceaccount.com \
  --project=${PROJECT_ID}

182



How to Register an External Kubernetes Cluster to Google Connect

The Google Connect feature is part of Anthos and it allows you to connect your Kubernetes clusters—
including clusters created outside Google Cloud—into Google Cloud. This support within Google
Connect provides the external Kubernetes clusters with the ability to use many cluster and workload
management features from Google Cloud, including the Cloud Console unified user interface. See
Connect Overview from Google for additional information on Google Connect and Cloud Console from
Google for additional information on Google Cloud Console.

To register external Kubernetes clusters into Google connect:

1. Connect the cluster to the Google Kubernetes Engine (GKE). A GKE agent which is responsible for
allowing the cloud network to communicate with the GKE hub is installed in the cloud network
during this step.

• To add an on-premises cluster:

gcloud container hub memberships register onpremk8s-contrail-cluster-1 \
   --project=${PROJECT_ID} \
   --context=onprem-k8s-contrail \
   --kubeconfig=$HOME/.kube/config \
   --service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running after the command is executed:

$ kubectx onprem-k8s-contrail
Switched to context "onprem-k8s-contrail".

$ kubectl get pods -n gke-connect
NAMESPACE      NAME                                               READY   STATUS
gke-connect    gke-connect-agent-20200918-01-00-7bc77884d-st4r2   1/1     Running

NOTE: SNAT usually needs to be enabled in Contrail Networking to allow the GKE
connect agent to connect to the Internet.

• To add a cluster running in Elastic Kubernetes Service (EKS) on Amazon Web Services (AWS):

gcloud container hub memberships register eks-contrail-cluster-1 \
   --project=${PROJECT_ID} \
   --context=eks-contrail \

183

https://cloud.google.com/anthos/multicluster-management/connect/overview
https://cloud.google.com/cloud-console


   --kubeconfig=$HOME/.kube/config \
   --service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running after executing the command:

$ kubectx eks-contrail
Switched to context "eks-contrail".

$ kubectl get pods -n gke-connect
NAME                                                READY   STATUS
gke-connect-agent-20201002-01-00-5749bfc847-qhvft   1/1     Running

• To add a cluster running in GKE on Google Cloud Platform:

gcloud container hub memberships register gke-cluster-1 \
--project=${PROJECT_ID} \
--gke-cluster=europe-west2-b/gke-cluster-1 \
--service-account-key-file=./anthos-connect-svc.json

To confirm that the GKE connect agent is running in the cluster after executing the command.

Note that the on-premises and AWS EKS clusters that were connected to the GKE hub in the
earlier bulletpoints are also visible in the command output.

$ gcloud container hub memberships list
NAME                          EXTERNAL_ID
onpremk8s-contrail-cluster-1  78f7890b-3a43-4bc7-8fd9-44c76953781b
eks-contrail-cluster-1        42e532ba-a0d9-4087-baed-647be8bca7e9
gke-cluster-1                 6671599e-87af-461b-aff9-7105ebda5c66

2. A bearer token will be used in this procedure to login to the external clusters from the Google Anthos
Console. A Kubernetes service account (KSA) will be created in the cluster to generate this bearer
token.

To create and apply this bearer token for an on-premises cluster:

a. Create and apply the node-reader role in role-based access control (RBAC) using the node-reader
role in the node-reader.yaml file:

$ cat <<EOF > node-reader.yaml
kind: ClusterRole

184



apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: node-reader
rules:
- apiGroups: [""]
  resources: ["nodes"]
  verbs: ["get", "list", "watch"]
EOF
F

$ kubectx onpremk8s-contrail-cluster-1

$ kubectl apply -f node-reader.yaml

b. Create and authorize a Kubernetes service account (KSA):

$ KSA_NAME=anthos-sa
$ kubectl create serviceaccount ${KSA_NAME}
$ kubectl create clusterrolebinding anthos-view --clusterrole view --serviceaccount 
default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-node-reader --clusterrole node-reader --
serviceaccount default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-cluster-admin --clusterrole cluster-admin --
serviceaccount default:${KSA_NAME}

c. Acquire the bearer token for the KSA:

$ SECRET_NAME=$(kubectl get serviceaccount ${KSA_NAME} -o jsonpath='{$.secrets[0].name}')
$ kubectl get secret ${SECRET_NAME} -o jsonpath='{$.data.token}' | base64 --decode

d. Use the output token in the Cloud Console to login to the cluster.

To create and apply this bearer token for an EKS cluster in AWS:

a. Perform the parallel steps for an on-premises cluster for an AWS EKS cluster:

$ kubectx eks-contrail
$ $ kubectl apply -f node-reader.yaml

$ kubectl create serviceaccount ${KSA_NAME}

185



$ kubectl create clusterrolebinding anthos-view --clusterrole view --serviceaccount 
default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-node-reader --clusterrole node-reader --
serviceaccount default:${KSA_NAME}
$ kubectl create clusterrolebinding anthos-cluster-admin --clusterrole cluster-admin --
serviceaccount default:${KSA_NAME}

$ SECRET_NAME=$(kubectl get serviceaccount ${KSA_NAME} -o jsonpath='{$.secrets[0].name}')
$ kubectl get secret ${SECRET_NAME} -o jsonpath='{$.data.token}' | base64 --decode

3. Verify the clusters.

a. Verify that the clusters are visible in Anthos:

b. Verify that cluster details are visible from the Kubernetes Engine tab:

186



187



Deploying GCP Applications into Third Party Clusters That are Integrated
Into Anthos

IN THIS SECTION

On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace Onto an On-
premises Cloud  |  188

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace  |  194

This section shows how to deploy an application from Google Marketplace onto clusters created outside
GCP and integrated into Anthos.

It includes the following sections:

On-premises Kubernetes cluster: How to Deploy Applications from the GCP
Marketplace Onto an On-premises Cloud

This procedure shows how to add an application—illustrated using the PostgreSQL application—from the
Google Cloud Marketplace into an on-premises cluster that was built outside of Google Cloud and
integrated into Anthos.

Perform the following steps to deploy the application:

1. Create a namespace called application-system for Google Cloud Marketplace components.

You must create this namespace to deploy applications to Google Anthos in an on-premises cluster.
The namespace must be called application-system and must apply an imagePullSecret credential to
the default service account for the namespace.

$ kubectl create ns application-system

$ kubens application-system
Context "kubernetes-admin@kubernetes" modified.
Active namespace is "application-system".

2. Create a service account and download an associated JSON token.

188



This step is required to pull images from the Google Cloud Repository.

$ PROJECT_ID=contrail-k8s-289615

$ gcloud iam service-accounts create gcr-sa \
    --project=${PROJECT_ID}

$ gcloud iam service-accounts list \
    --project=${PROJECT_ID}

$ gcloud projects add-iam-policy-binding ${PROJECT_ID} \
 --member="serviceAccount:gcr-sa@${PROJECT_ID}.iam.gserviceaccount.com" \
 --role="roles/storage.objectViewer"

$ gcloud iam service-accounts keys create ./gcr-sa.json \
  --iam-account="gcr-sa@${PROJECT_ID}.iam.gserviceaccount.com" \
  --project=${PROJECT_ID}

3. Create a secret credential with the contents of the token:

$ kubectl create secret docker-registry gcr-json-key \
--docker-server=https://marketplace.gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

4. Patch the default service account within the namespace to use the secret credential for pulling
images from the Google Cloud Repository instead of the Docker Hub.

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

5. Annotate the application-system namespace to enable the deployment of Kubernetes Applications
from the GCP Marketplace:

$ kubectl annotate namespace application-system marketplace.cloud.google.com/
imagePullSecret=gcr-json-key

6. Create a default storage class named standard by either renaming your storage class to standard or
creating a new storage class. This step is necessary because the GCP Marketplace expects a storage
class named standard as the default storage class.

189



To rename your storage class:

$ cat sc.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: standard
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

$ kubectl get sc
NAME                 PROVISIONER                    AGE
standard (default)   kubernetes.io/no-provisioner   6m14s

To create a new storage class, see Setup a Local Persistent Volume for a Kubernetes cluster.

This namespace will be utilized by the GCP Marketplace Apps to dynamically provision Persistent
Volume (PV) and Persistent Volume Claim (PVC).

7. Create and configure a namespace for an app that will be deployed from the GCP Marketplace.

We’ll illustrate how to deploy PostgreSQL in this document.

$ kubectl create ns pgsql

$ kubens pgsql

$ kubectl create secret docker-registry gcr-json-key \
 --docker-server=https://gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

8. Patch the default service account within the namespace to use the secret credential to pull images
from the Google Cloud repository instead of Docker Hub.

In this sample case, the default service account is within the pgsql namespace.

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

190

https://github.com/ovaleanujnpr/kubernetes/blob/master/docs/add_local_pv_k8s.md


9. Annotate the namespace—in this case, the pgsql namespace—to enable the deployment of
Kubernetes Apps from the GCP Marketplace:

$ kubectl annotate namespace pgsql marketplace.cloud.google.com/imagePullSecret=gcr-json-key

10. Choose the app—in this case, PostgresSQL Server—from GCP Marketplace and click on Configure
to start the deployment procedure.

11. Choose the contrail-cluster-1 external cluster from the Cluster drop-down menu:

12. Select the namespace that you previously created from the Namespace drop-down menu and set
the StorageClass as standard.

191



Click Deploy. Wait a couple of minutes.

The Application details screen appears.

Review the Status row in the Components table to confirm that all components successfully
deployed.

You can also verify that the app is running from the CLI:

$ kubectl get po -n pgsql
NAME                          READY   STATUS      RESTARTS   AGE
postgresql-1-deployer-nzpfn   0/1     Completed   0          91s
postgresql-1-postgresql-0     2/2     Running     0          46s

192



$ kubectl get pvc
NAME                                                    STATUS   VOLUME              
CAPACITY   ACCESS MODES   STORAGECLASS   AGE
postgresql-1-postgresql-pvc-postgresql-1-postgresql-0   Bound    local-pv-e00b14f6   
62Gi       RWO            standard       91s

13. Use filtering within the GKE Console to see the applications deployed in the on-premises cluster.

14. To access the application:

• Forward the PostgreSQL port locally:

$ export NAMESPACE=pgsql
$ export APP_INSTANCE_NAME="postgresql-1"
$ kubectl port-forward --namespace "${NAMESPACE}" "${APP_INSTANCE_NAME}-postgresql-0" 
5432
Forwarding from 127.0.0.1:5432 -> 5432
Forwarding from [::1]:5432 -> 5432

• Connect to the database

$ apt -y install postgresql-client-10 postgresql-client-common
$ export PGPASSWORD=$(kubectl get secret "postgresql-1-secret" --
output=jsonpath='{.data.password}' | base64 -d)

193



$ psql (10.12 (Ubuntu 10.12-0ubuntu0.18.04.1), server 9.6.18)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, 
compression: off)
Type "help" for help.

postgres=#

AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google
Marketplace

You can deploy an application from the Google Marketplace into an EKS cluster that is using Contrail
Networking in AWS after the cluster is enabled in Anthos. This procedure will illustrate this process by
deploying Prometheus and Grafana from Google Marketplace

Perform the following steps to deploy an application from Google Marketplace onto an EKS cluster in
AWS that is using Contrail Networking.

1. Enable credentials within the eks-contrail context:

$ kubectx eks-contrail
Switched to context "eks-contrail"

$ kubectl create ns application-system

$ kubens application-system
Context "kubernetes-admin@kubernetes" modified.
Active namespace is "application-system".

$ kubectl create secret docker-registry gcr-json-key \
--docker-server=https://marketplace.gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

$ kubectl annotate namespace application-system marketplace.cloud.google.com/
imagePullSecret=gcr-json-key

2. The GCP Marketplace expects a storage class named standard to be configured in a context. The
default story class name in EKS, however, is gp2.

To change the storage class name:

194



a. Remove the default flag from the gp2 storage class using the patch command:

$  kubectl patch storageclass gp2 -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"false"}}}'

b. Create a new storage class for the Amazon EKS context and mark it as the default storage class:

$ cat <<EOF > eks-sc.yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: standard
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/aws-ebs
parameters:
  type: gp2
  fsType: ext4
EOF

$ kubectl create -f eks-sc.yaml
storageclass.storage.k8s.io/standard created

$ kubectl get sc
NAME                 PROVISIONER             AGE
gp2                  kubernetes.io/aws-ebs   2d
standard (default)   kubernetes.io/aws-ebs   5s

3. Create a namespace for the applications:

$ kubectl create ns monitoring

$ kubens monitoring

kubectl create secret docker-registry gcr-json-key \
 --docker-server=https://gcr.io \
--docker-username=_json_key \
--docker-password="$(cat ./gcr-sa.json)" \
--docker-email=[GCP_EMAIL_ADDRESS]

$ kubectl patch serviceaccount default -p '{"imagePullSecrets": [{"name": "gcr-json-key"}]}'

195



$ kubectl annotate namespace monitoring marketplace.cloud.google.com/imagePullSecret=gcr-json-
key

4. Choose Prometheus and Grafana from GCP Marketplace. Click the Configure button to start the
deployment procedure.

5. Choose the EKS cluster from the cluster drop-down menu.

6. Select the namespace and storage class. Click Deploy.

196



Wait several minutes for the application to deploy.

You can also verify that the application has deployed using the CLI:

$ kubectl get pods -n monitoring
NAME                                               READY   STATUS      RESTARTS   AGE
prometheus-1-alertmanager-0                        1/1     Running     0          2m36s
prometheus-1-alertmanager-1                        1/1     Running     0          88s
prometheus-1-deployer-blm5f                        0/1     Completed   0          3m20s
prometheus-1-grafana-0                             1/1     Running     0          2m36s

197



prometheus-1-kube-state-metrics-6f64b67684-shtdg   2/2     Running     0          2m37s
prometheus-1-node-exporter-5scf4                   1/1     Running     0          2m36s
prometheus-1-node-exporter-gdp77                   1/1     Running     0          2m36s
prometheus-1-node-exporter-k8vfn                   1/1     Running     0          2m36s
prometheus-1-node-exporter-v6w7g                   1/1     Running     0          2m36s
prometheus-1-node-exporter-zffs9                   1/1     Running     0          2m36s
prometheus-1-prometheus-0                          1/1     Running     0          2m36s
prometheus-1-prometheus-1                          1/1     Running     0          2m36s

7. If you have a private service, consider how your going to make it accessible.

In this case, the Grafana user interface is exposed in the ClusterP-only service named prometheus-1-
grafana. To connect to the Grafana user interface, either change the service to a public service
endpoint or keep the service private and access it from your local environment.

kubectl get svc -n monitoring
NAME                                 TYPE        CLUSTER-IP       EXTERNAL-IP   
PORT(S)             AGE
prometheus-1-alertmanager            ClusterIP   10.100.92.6      <none>        9093/
TCP            10m
prometheus-1-alertmanager-operated   ClusterIP   None             <none>        6783/TCP,9093/
TCP   10m
prometheus-1-grafana                 ClusterIP   10.100.126.78    <none>        80/
TCP              10m
prometheus-1-kube-state-metrics      ClusterIP   10.100.46.18     <none>        8080/TCP,8081/
TCP   10m
prometheus-1-prometheus              ClusterIP   10.100.214.104   <none>        9090/
TCP            10m

You can use the kubectl port forwarding feature to forward Graffana traffic to your local machine by
running the following command:

$ kubectl port-forward --namespace monitoring prometheus-1-grafana-0 3000
Now you can access Grafana UI with http://localhost:3000/.

198



Configuration Management in Anthos

IN THIS SECTION

Overview: Anthos Configuration Management  |  199

Installing the Configuration Management Operator  |  199

Configuring the Clusters for Anthos Configuration Management  |  201

Using Nomos to Manage the Anthos Configuration Manager  |  202

This section covers Configuration Management in Anthos.

It includes the following sections:

Overview: Anthos Configuration Management

Google Cloud uses a tool called Config Sync that acts as the bridge between an external source code
repository and the Kubernetes API server. See Config Sync overview from Google Cloud for additional
information.

Anthos Configuration Management (ACM) uses Config Sync to extend configuration to non-GCP
clusters that are connected using Anthos.

In the following sections, a GitHub repository is used as a single source for deployments and
configuration. An ACM component is installed onto each of the clusters that are included with Anthos to
monitor the external repositories for changes and synchronizing them across Anthos.

GitOps-style deployments are used in the following procedures to push workloads across all registered
clusters through Anthos Config Management. GitOps provides a method of performing Kubernetes
cluster management and application delivery. It works by using Git as a single source of truth for
declarative infrastructure and applications and using the YAML or JSON files used in Kubernetes to
combine with Anthos for code.

Installing the Configuration Management Operator

The Configuration Management Operator is a controller that manages installation of the Anthos
Configuration Manager. The operator will be installed on all three clusters using these instructions.

To install the Configuration Management Operator:

199

https://cloud.google.com/kubernetes-engine/docs/add-on/config-sync/overview


1. Download the Configuration Management Operator and apply it to each cluster:

gsutil cp gs://config-management-release/released/latest/config-management-operator.yaml 
config-management-operator.yaml

$ kubectl create -f config-management-operator.yaml
customresourcedefinition.apiextensions.k8s.io/configmanagements.configmanagement.gke.io 
configured
clusterrolebinding.rbac.authorization.k8s.io/config-management-operator configured
clusterrole.rbac.authorization.k8s.io/config-management-operator configured
serviceaccount/config-management-operator configured
deployment.apps/config-management-operator configured
namespace/config-management-system configured

Run this command in each cluster.

2. Confirm that the operator was created:

$ kubectl describe crds configmanagements.configmanagement.gke.io
Name:         configmanagements.configmanagement.gke.io
Namespace:
Labels:       controller-tools.k8s.io=1.0
Annotations:  <none>
API Version:  apiextensions.k8s.io/v1
Kind:         CustomResourceDefinition
Metadata:
  Creation Timestamp:  2020-10-09T13:13:17Z
  Generation:          1
  Resource Version:    363244
  Self Link:           /apis/apiextensions.k8s.io/v1/customresourcedefinitions/
configmanagements.configmanagement.gke.io
  UID:                 a088edbc-8232-419f-8f42-365fa36de110
Spec:
  Conversion:
    Strategy:  None
  Group:       configmanagement.gke.io
  Names:
    Kind:                   ConfigManagement
    List Kind:              ConfigManagementList
    Plural:                 configmanagements

200



    Singular:               configmanagement
....

Configuring the Clusters for Anthos Configuration Management

To configure the clusters for Anthos Configuration Management:

1. Create an SSH keypair to allow the Operator to authenticate to your Git repository:

$ ssh-keygen -t rsa -b 4096 -C "git-user1" -N '' -f "~/.ssh/gke-github"

2. Configure your repository to recognize the newly-created public key. See Adding a new SSH key to
your GitHub account from GitHub.

Add a private key to a new secret in the cluster:

$ kubectl create secret generic git-creds \
  --namespace=config-management-system \
  --from-file=ssh="/Users/user1/.ssh/gke-github"

Repeat this step for each individual cluster

3. (Optional) Gather the name of each cluster, if needed:

$ gcloud container hub memberships list
NAME                          EXTERNAL_ID
onpremk8s-contrail-cluster-1  78f7890b-3a43-4bc7-8fd9-44c76953781b
eks-contrail-cluster-1        42e532ba-a0d9-4087-baed-647be8bca7e9
gke-cluster-1                 6671599e-87af-461b-aff9-7105ebda5c66

4. Create a config-management.yaml file for each cluster. Replace the clusterName with the registered
clustered name in Anthos in each file.

$ cat config-management.yaml
apiVersion: configmanagement.gke.io/v1
kind: ConfigManagement
metadata:
  name: config-management
spec:
  # clusterName is required and must be unique among all managed clusters
  clusterName:
  git:

201

https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account


    syncRepo: git@github.com:git-user1/csp-config-management.git
    syncBranch: 1.0.0
    secretType: ssh
    policyDir: foo-corp
    proxy: {}

$ kubectx eks-contrail
$ kubectl apply -f config-management.yaml

$ kubectx onprem-k8s-contrail
$ kubectl apply -f config-management.yaml

$ kubectx gke
$ kubectl apply -f config-management.yaml

5. Verify that the pods are running on each cluster.

To verify in the CLI:

$ kubectl get pods -n config-management-system
NAME                            READY   STATUS    RESTARTS   AGE
git-importer-584bd49676-46bjq   3/3     Running   0          4m23s
monitor-c8c68d5ff-bdhzl         1/1     Running   0          4m25s
syncer-7dbbc8868c-gtp8d         1/1     Running   0          4m25s

To verify on the Anthos dashboard:

Using Nomos to Manage the Anthos Configuration Manager

The Google Cloud Platform offers a utility called Nomos which can be used to manage the Anthos
Configuration Manager (ACM). See Using the nomos command from Google Cloud for more information
on Nomos.

To enable Nomos:

202

https://cloud.google.com/anthos-config-management/docs/how-to/nomos-command


1. Get the utility and copy it into a local directory:

$ gsutil cp gs://config-management-release/released/latest/darwin_amd64/nomos nomos

$ cp ./nomos /usr/local/bin
$ chmod +x /usr/local/bin/nomos

2. Verify that nomos is running in the clusters connected using Anthos:

$ nomos status
Connecting to clusters...
Current   Context               Sync Status      Last Synced Token   Sync Branch   Resource 
Status
-------   -------               -----------      -----------------   -----------   
---------------
*         eks-contrail          SYNCED           7da177ce            1.0.0         Healthy
          gke                   SYNCED           7da177ce            1.0.0         Healthy
          onprem-k8s-contrail   SYNCED           7da177ce            1.0.0         Healthy

3. List the namespaces that are currently managed by Anthos Configuration Management.

In this sample output, configurations are stored in the cluster/ and namespace/ directories. All
objects managed by Anthos Config Management have the app.kubernetes.io/managed-by label set to
configmanagement.gke.io.

$ kubectl get ns -l app.kubernetes.io/managed-by=configmanagement.gke.io
NAME               STATUS   AGE
audit              Active   13m
shipping-dev       Active   13m
shipping-prod      Active   13m
shipping-staging   Active   13m

4. In the following sequence, we’ll validate that nomos and Anthos Configuration Management are
efficiently managing the configuration of configuration in a third-party cluster by deleting a
namespace in EKS and confirming that a new namespace is quickly recreated.

$ kubectx eks-contrail

$ kubectl delete ns audit
namespace "audit" deleted

203



$ kubectl get ns audit
NAME    STATUS   AGE
audit   Active   5s

The output shows that a new audit workspace was created 5 seconds ago, confirming that Anthos
Configuration Management is working.

204



6
CHAPTER

Using Contrail Networking with
Kubernetes

Provisioning of Kubernetes Clusters  |  206

How to Enable Multi-Interface Pods in a Kubernetes Environment  |  213

Installing Standalone Kubernetes Contrail Cluster using the Contrail Command
UI  |  217

Verifying Configuration for CNI for Kubernetes   |  224

Implementation of Kubernetes Network Policy with Contrail Firewall Policy  |  228

How to Enable Keystone Authentication in a Juju Cluster within a Kubernetes
Environment  |  244

Multiple Network Interfaces for Containers  |  248

Kubernetes Updates  |  253

 



Provisioning of Kubernetes Clusters

IN THIS SECTION

Provisioning of a Standalone Kubernetes Cluster  |  206

Provisioning of Nested Contrail Kubernetes Clusters  |  207

Provisioning of Non-Nested Contrail Kubernetes Clusters  |  211

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Contrail Networking supports the following ways of provisioning Kubernetes clusters:

Provisioning of a Standalone Kubernetes Cluster

You can provision a standalone Kubernetes cluster using contrail-ansible-deployer.

Perform the following steps to install one Kubernetes cluster and one Contrail cluster and integrate
them together.

1. See the Supported Platforms document for a list of supported Contrail Networking version and
orchestration combinations.

2. Install the necessary tools.

yum -y install epel-release git ansible net-tools

3. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Contrail Downloads page and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

206

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/support/downloads/?p=contrail#sw


4. Navigate to the contrail-ansible-deployer directory.

cd contrail-ansible-deployer

5. Edit the config/instances.yaml and enter the necessary values. See Understanding contrail-ansible-
deployer used in Contrail Command for a sample config/instances.yaml file.

6. Turn off the swap functionality on all nodes.

swapoff -a

7. Configure the nodes.

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/configure_instances.yml

8. Install Kubernetes and Contrail.

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_k8s.yml

ansible-playbook -e orchestrator=kubernetes -i inventory/ playbooks/install_contrail.yml

9. Turn on the swap functionality on all nodes.

swapon -a

Provisioning of Nested Contrail Kubernetes Clusters

IN THIS SECTION

Configure network connectivity to Contrail configuration and data plane functions.  |  208

Generate a single yaml file to create a Contrail-k8s cluster  |  210

Instantiate the Contrail-k8s cluster  |  211

When Contrail provides networking for a Kubernetes cluster that is provisioned on the workloads of a
Contrail-OpenStack cluster, it is called a nested Kubernetes cluster. Contrail components are shared
between the two clusters.

Prerequisites

Ensure that the following prerequisites are met before provisioning a nested Kubernetes cluster:

1. Ensure that you have an operational Contrail-OpenStack cluster based on Contrail Networking
Release 19<xx>..

2. Ensure that you have an operational Kubernetes v1.12.9 cluster on virtual machines created on an
Contrail-OpenStack cluster.

207



3. Update the /etc/hosts file on the Kubernetes primary node with entries for each node of the cluster.

For example, if the Kubernetes cluster is made up of three nodes such as master1 (IP: x.x.x.x),
minion1 (IP: y.y.y.y), and minion2 (IP: z.z.z.z). The /etc/hosts on the Kubernetes primary node must
have the following entries:

x.x.x.x master1
y.y.y.y minion1
z.z.z.z minion2

4. If Contrail container images are stored in a secure docker registry, a Kubernetes secret must be
created and referenced during "Generate a single yaml file to create a Contrail-k8s cluster" on page
210, with credentials of the private docker registry.

kubectl create secret docker-registry name --docker-server=registry --docker-
username=username --docker-password=password --docker-email=email -n namespace

Command options:

• name—Name of the secret.

• registry—Name of the registry. Example: hub.juniper.net/contrail.

• username—Username to log in to the registry.

• password—Password to log in to the registry.

• email—Registered email of the registry account.

• namespace—Kubernetes namespace where the secret must be created. This should be the
namespace where you intend to create the Contrail pods.

The following steps describe how to provision a nested Contrail Kubernetes cluster.

Configure network connectivity to Contrail configuration and data plane functions.

A nested Kubernetes cluster is managed by the same Contrail control processes that manage the
underlying OpenStack cluster.

The kube-manager is essentially a part of the Contrail Config function. In a nested deployment, one
kube-manager instance will is provisioned in each overlay cluster. This necessitates the need The kube-
manager running in the overlay must have network reachability to Contrail config functions of the
underlay OpenStack cluster.

Network connectivity for the following Contrail config functions are required:

208



• Contrail Config

• Contrail Analytics

• Contrail Msg Queue

• Contrail VNC DB

• Keystone

In addition to config connectivity, the CNI for the Kubernetes cluster needs network reachability to the
vRouter on its Compute node. Network connectivity for the vRouter data plane function is also required.

You can use the link local service feature or a combination of link local service with fabric Source
Network Address Translation (SNAT) feature of Contrail to provide IP reachability to and from the
overlay Kubernetes cluster config and data components to corresponding config and data compoenents
of the underlay OpenStack cluster.

To provide IP reachability to and from the Kubernetes cluster using the fabric SNAT with link local
service, perform the following steps.

1. Enable fabric SNAT on the virtual network of the VMs.

The fabric SNAT feature must be enabled on the virtual network of the virtual machines on which
the Kubernetes primary and minions are running.

2. Create a link local service for the Container Network Interface (CNI) to communicate with its vRouter
Agent. This link local service should be configured using the Contrail GUI, in the following example:

Contrail Process Service IP Service Port Fabric IP Fabric Port

vRouter Service-IP for the active node 9091 127.0.0.1 9091

NOTE: Fabric IP address is 127.0.0.1 since you must make the CNI communicate with the
vRouter on its underlay node.

For example, the following link local services must be created:

Link Local Service Name Service IP Service Port Fabric IP Fabric Port

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

209



NOTE: Here 10.10.10.5 is the Service IP address that you chose. This can be any unused IP in
the cluster. This IP address is primarily used to identify link local traffic and has no other
significance.

Generate a single yaml file to create a Contrail-k8s cluster

Contrail components are installed on the Kubernetes cluster as pods. The configuration to create these
pods in Kubernetes is encoded in a yaml file.

This file can be generated as follows:

1. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Juniper Networks and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

2. Navigate to the contrail-container-builder directory.

cd contrail-container-builder

3. Populate the common.env file located in the top directory of the cloned contrail-container-builder
repo with information corresponding to your cluster and environment.

For a sample common.env file with the required bare minimum configurations, see the
common.env.sample.nested_mode sample configuration file.

NOTE: If Contrail container images are stored in a secure docker registry, a Kubernetes secret
must be created and referenced as documented in "4" on page 208 of Prerequisites. Populate
the variable KUBERNETES_SECRET_CONTRAIL_REPO=<secret-name> with the name of the
generated Kubernetes secret, in the common.env file.

4. Generate the yaml file as following in your shell:

cd contrail-container-build-repo/kubernetes/manifests

./resolve-manifest.sh contrail-kubernetes-nested.yaml  > nested-contrail.yml

5. Copy the output (or file) generated from 4 to the primary node in your Kubernetes cluster.

210

https://www.juniper.net/support/downloads/?p=contrail#sw
https://github.com/tungstenfabric/tf-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.nested_mode


Instantiate the Contrail-k8s cluster

Create contrail components as pods on the Kubernetes cluster.

root@k8s:~# kubectl get pods -n kube-system
NAME                                  READY     STATUS    RESTARTS   AGE
contrail-kube-manager-lcjbc           1/1       Running   0          3d
contrail-kubernetes-cni-agent-w8shc   1/1       Running   0          3d

You will see the following pods running in the kube-system namespace:

contrail-kube-manager-xxxxxx—This is the manager that acts as conduit between Kubernetes and
OpenStack clusters

contrail-kubernetes-cni-agent-xxxxx—This installs and configures Contrail CNI on Kubernetes nodes

Provisioning of Non-Nested Contrail Kubernetes Clusters

Prerequisites

Ensure that the following prerequisites are met before provisioning a non-nested Kubernetes cluster:

1. You must have an installed and operational Contrail OpenStack cluster based on the Contrail
Networking Release 19xx release.

2. You must have an installed and operational Kubernetes cluster on the server where you want to
install the non-nested Contrail Kubernetes cluster.

3. Label the Kubernetes primary node with the Contrail controller label:

kubectl label node node node-role.opencontrail.org/config=true

4. Ensure that the Kubelet running on the Kubernetes primary node is not run with network plugin
options. If kubelet is running with network plugin option, then disable or comment out the
KUBELET_NETWORK_ARGS option in the /etc/systemd/system/kubelet.service.d/10-
kubeadm.conf configuration file.

NOTE: It is recommended that the Kubernetes primary should not be configured with a
network plugin, so as to not install vRouter kernel module on the control node. However, this
is optional.

211



5. Restart the kubelet service:

systemctl daemon-reload; 
systemctl restart kubelet.service

In non-nested mode, a Kubernetes cluster is provisioned side by side with an OpenStack cluster with
networking provided by the same Contrail components of the OpenStack cluster.

Provisioning a Contrail Kubernetes Cluster

Follow these steps to provision Contrail Kubernetes cluster.

1. Download the contrail-ansible-deployer-19<xx>.<NN>.tgz Ansible Deployer application tool package onto
your provisioning host from Juniper Networks and extract the package.

- tar xvf contrail-ansible-deployer-19<xx>.<NN>.tgz

2. Navigate to the contrail-container-builder directory.

cd contrail-container-builder

3. Populate the common.env file located in the top directory of the cloned contrail-container-builder
repo with information corresponding to your cluster and environment.

For a sample common.env file with required bare minimum configurations, see the
common.env.sample.non_nested_mode sample configuration file.

NOTE: If Config API is not secured by keystone, ensure that AUTH_MODE and KEYSTONE_*
variables are not configured or present while populating the common.env file.

4. Generate the yaml file as shown below:

cd contrail-container-build-repo/kubernetes/manifests

./resolve-manifest.sh contrail-kubernetes-nested.yaml  > non-nested-contrail.yml

5. Copy the file generated from 4 to the primary node in your Kubernetes cluster.

6. Create contrail components as pods on the Kubernetes cluster as follows:

kubectl apply -f non-nested-contrail.yml

212

https://www.juniper.net/support/downloads/?p=contrail#sw
https://github.com/tungstenfabric/tf-container-builder/blob/master/kubernetes/sample_config_files/common.env.sample.non_nested_mode


7. Create the following Contrail pods on the Kubernetes cluster. Ensure that contrail-agent pod is
created only on the worker node.

[root@b4s403 manifests]# kubectl get pods --all-namespaces -o wide
       NAMESPACE     NAME                             READY     STATUS    RESTARTS   
AGE       IP            NODE
       kube-system   contrail-agent-mxkcq             2/2       Running   0          
1m        <x.x.x.x>     b4s402
       kube-system   contrail-kube-manager-glw5m      1/1       Running   0          
1m        <x.x.x.x>     b4s403

RELATED DOCUMENTATION

Contrail Integration with Kubernetes  |  2

How to Enable Multi-Interface Pods in a Kubernetes
Environment

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

For information about enabling a multi-interface pod using Cloud-Native Contrail, see Enable
Pods with Multiple Network Interfaces.

Contrail Networking, when used as the CNI in a Kubernetes environment, natively has the capability to
create a Kubernetes pod with multiple interfaces.

213

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/task/cn-cloud-native-multiple-interface-pod.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native22/cn-cloud-native-feature-guide/cn-cloud-native-network-feature/topics/task/cn-cloud-native-multiple-interface-pod.html


This procedure demonstrates how to configure a multi-interface pod in Kubernetes running Contrail
Networking Release 2008. In this example, two virtual networks are created and a Kubernetes pod has
interfaces in each virtual network.

To configure a multi-interface pod:

1. Create two virtual networks in Contrail.

In this example, two virtual networks—red-net and green-net—are created.

$ cat red-green-net.yaml
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: red-net
 annotations: {
   "opencontrail.org/cidr" : "20.20.20.0/24",
   "opencontrail.org/ip_fabric_snat": "true"
   }
spec:
 config: '{
   "cniVersion": "0.3.1",
   "type": "contrail-k8s-cni"
}'

---
apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: green-net
 annotations: {
   "opencontrail.org/cidr" : "30.30.30.0/24",
   "opencontrail.org/ip_fabric_snat": "true"
  }
spec:
 config: '{
   "cniVersion": "0.3.1",
   "type": "contrail-k8s-cni"
}'

$ kubectl create -f red-green-net.yaml

2. Create a pod with network interfaces in both networks.

214



In this example, a pod with interfaces in red-net and green-net is created.

$ cat ubuntu-multi-nic.yaml
apiVersion: v1
kind: Pod
metadata:
 name: multi-intf-pod
 annotations:
   k8s.v1.cni.cncf.io/networks: '[
     { "name": "red-net" },
     { "name": "green-net" }
   ]'
spec:
 containers:
   - name: ubuntuapp
     image: ubuntu-upstart

$ kubectl create -f ubuntu-multi-nic.yaml
$ kubectl get pods | grep multi
multi-intf-pod      1/1     Running   0          5m10s

3. Connect to the pod to check both network interfaces.

In this sample output, the pod has a network interface in each virtual network as well as an interface
in the default pod network.

$ kubectl describe pod/multi-intf-pod
Name:         multi-intf-pod
Namespace:    default
Priority:     0
Node:         ru16-k8s-node2/172.16.133.155
Start Time:   Tue, 20 Oct 2020 09:00:05 -0400
Labels:       <none>
Annotations:  k8s.v1.cni.cncf.io/network-status:
                [
                    {
                        "ips": "20.20.20.252",
                        "mac": "02:2c:6f:b2:38:12",
                        "name": "red-net"
                    },
                    {
                        "ips": "30.30.30.252",

215



                        "mac": "02:2c:88:4b:18:12",
                        "name": "green-net"
                    },
                    {
                        "ips": "10.47.255.224",
                        "mac": "02:2c:59:66:f4:12",
                        "name": "cluster-wide-default"
                    }
                ]
              k8s.v1.cni.cncf.io/networks: [ { "name": "red-net" }, { "name": "green-net" } ]
Status:       Running
IP:           10.47.255.224

$ kubectl exec -it multi-intf-pod -- bash
root@multi-intf-pod:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
2: ip_vti0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
48: eth0@if49: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
    link/ether 02:2c:59:66:f4:12 brd ff:ff:ff:ff:ff:ff
    inet 10.47.255.224/12 scope global eth0
       valid_lft forever preferred_lft forever
50: eth1@if51: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
    link/ether 02:2c:6f:b2:38:12 brd ff:ff:ff:ff:ff:ff
    inet 20.20.20.252/24 scope global eth1
       valid_lft forever preferred_lft forever
52: eth2@if53: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
    link/ether 02:2c:88:4b:18:12 brd ff:ff:ff:ff:ff:ff
    inet 30.30.30.252/24 scope global eth2
       valid_lft forever preferred_lft forever

216



Installing Standalone Kubernetes Contrail Cluster
using the Contrail Command UI

IN THIS SECTION

Requirements  |  217

Overview  |  218

Configuration  |  218

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Starting with Contrail Release 5.1, you can use Contrail Command to initiate Kubernetes Contrail cluster
deployment. This example topic describes how to use the Contrail Command User interface (UI) to
deploy a standalone Kubernetes Contrail cluster.

Requirements

• Contrail Controller — 8 vCPU, 64G memory, 300G storage.

• Contrail Server Node (CSN) — 4 vCPU, 16G memory, 100G storage.

• Compute nodes— Dependent on the workloads.

217

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


Overview

You can use Contrail Command to initiate a standalone Kubernetes Contrail cluster deployment. You
must install the controller and compute nodes first. When the host nodes are operational, Contrail
Command uses the underlying Ansible deployer to install a standalone Kubernetes Contrail cluster.
Contrail Command supports the management and provisioning of Contrail components. To provision
Kubernetes resources, such as pods, services, and so on, use the Kubernetes API server or the kubectl
CLI on the Kubernetes master node.

Configuration

IN THIS SECTION

Deploying a Kubernetes Contrail Cluster  |  218

Sample command_servers.yml File  |  224

Deploying a Kubernetes Contrail Cluster

Step-by-Step Procedure

To deploy a Kubernetes Contrail cluster using Contrail Command, perform the following steps.

1. Click the Create button on the Setup > Servers tab to add physical servers. The Create Server page is
displayed. You can add a server in the following ways:

• Express

• Detailed

• Bulk Import (csv)

NOTE: Create server login credentials before adding the servers.

218



Figure 2: Create Server

Click Create to create the server. The list of servers is displayed in the Inventory page. Click Next to
continue creating a cluster. The Contrail Cluster page appears.

2. Create a Contrail cluster.

If Container registry = hub.juniper.net/contrail . This registry is secure. Unselect the Insecure box.
Also, Contrail version = contrail_container_tag for your release of Contrail as listed in README
Access to Contrail Registry 20XX.

Default vRouter Gateway = Default gateway for the compute nodes. If any one of the compute
nodes has a different default gateway than the one provided here, enter that gateway in "5" on page
221 and "6" on page 222 for service nodes.

Set the order of Encapsulation Priority for the EVPN supported methods - MPLS over UDP, MPLS
over GRE And VxLAN.

VXLAN, MPLSoUDP, MPLSoGRE

219

https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf


Figure 3: Contrail Cluster

Click Next. The Control Nodes page appears.

3. Select the Contrail control nodes.

Figure 4: Control Nodes

Click Next. The Orchestrator Nodes page appears.

4. Select the Kubernetes orchestration type.

Select the Kubernetes nodes from the list of available servers.

220



Select the Kubernetes nodes from the list of available servers and assign corresponding roles to the
servers. By default , the Kubernetes nodes are assigned the kubernetes_master_node,
kubernetes_kubemanager_node, and kubernetes_node roles.

Figure 5: Orchestrator Nodes

Click Next. The Compute Nodes page appears.

5. Select the compute node associated with the kunernetes_node role from the list of available
servers, .

221



Figure 6: Compute Nodes

Click Next. The Contrail Service Nodes page appears.

6. (Optional) Select the Contrail service nodes from the list of available servers.

Figure 7: Contrail Service Nodes

Click Next. The Appformix Nodes page appears.

7. (Optional) Select the Contrail Insights nodes from the list of available nodes.

222



Figure 8: Contrail Insights Nodes

Click Next. The Summary page appears.

8. The summary page displays the cluster details as well as the node details. Verify the summary of your
cluster configuration and click Provision.

Figure 9: Summary - Cluster Overview

223



Figure 10: Summary - Nodes Overview

Sample command_servers.yml File

RELATED DOCUMENTATION

Installing Contrail Command

Installing a Contrail Cluster using Contrail Command and instances.yml

Importing Contrail Cluster Data using Contrail Command

Verifying Configuration for CNI for Kubernetes

IN THIS SECTION

View Pod Name and IP Address  |  225

Verify Reachability of Pods  |  225

Verify If Isolated Namespace-Pods Are Not Reachable  |  226

Verify If Non-Isolated Namespace-Pods Are Reachable  |  227

224

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html


Verify If a Namespace is Isolated  |  228

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Use the verification steps in this topic to view and verify your configuration of Contrail Container
Network Interface (CNI) for Kubernetes.

View Pod Name and IP Address

Use the following command to view the IP address allocated to a pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide 
NAMESPACE         NAME               READY     STATUS    RESTARTS   AGE       
IP                         NODE
default               client-1            1/1           Running       0                  
19d       10.47.25.247   k8s-minion-1-3
default               client-2            1/1          Running       0                  
19d       10.47.25.246   k8s-minion-1-1
default               client-x             1/1           Running       0                  
19d       10.84.21.272   k8s-minion-1-1

Verify Reachability of Pods

Perform the following steps to verify if the pods are reachable to each other.

225

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


1. Determine the IP address and name of the pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide
NAME                        READY     STATUS    RESTARTS   AGE       IP              NODE
example1-36xpr   1/1       Running   0          43s       10.47.25.251   b3s37
example2-pldp1   1/1       Running   0          39s       10.47.25.250   b3s37

2. Ping the destination pod from the source pod to verify if the pod is reachable.

root@device ~]# kubectl exec -it example1-36xpr  ping 10.47.25.250
PING 10.47.25.250 (10.47.25.250): 56 data bytes
64 bytes from 10.47.25.250: icmp_seq=0 ttl=63 time=1.510 ms
64 bytes from 10.47.25.250: icmp_seq=1 ttl=63 time=0.094 ms

Verify If Isolated Namespace-Pods Are Not Reachable

Perform the following steps to verify if pods in isolated namespaces cannot be reached by pods in non-
isolated namespaces.

1. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME                        READY     STATUS    RESTARTS   AGE       IP              NODE
example3-bvqx5   1/1       Running   0          1h        10.47.25.249   b3s37

2. Determine the IP address of a pod in a non-solated namespace.

[root@device ~]# kubectl get pods
NAME                        READY     STATUS    RESTARTS   AGE
example1-36xpr   1/1       Running   0          15h
example2-pldp1   1/1       Running   0          15h

226



3. Ping the IP address of the pod in the isolated namespace from the pod in the non-isolated
namespace.

[root@device ~]# kubectl exec -it example1-36xpr ping 10.47.25.249
        --- 10.47.255.249 ping statistics ---
 2 packets transmitted, 0 packets received, 100% packet loss

Verify If Non-Isolated Namespace-Pods Are Reachable

Perform the following steps to verify if pods in non-isolated namespaces can be reached by pods in
isolated namespaces.

1. Determine the IP address of a pod in a non-isolated namespace.

[root@device ~]# kubectl get pods -o wide
NAME                        READY     STATUS    RESTARTS   AGE       IP              NODE
example1-36xpr   1/1       Running   0          15h       10.47.25.251   b3s37
example2-pldp1   1/1       Running   0          15h       10.47.25.250   b3s37

2. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME                        READY     STATUS    RESTARTS   AGE       IP              NODE
example3-bvqx5   1/1       Running   0          1h        10.47.25.249   b3s37

3. Ping the IP address of the pod in the non-isolated namespace from a pod in the isolated namespace.

[root@device ~]# kubectl exec -it example3-bvqx5 -n test-isolated-ns ping 10.47.25.251
PING 10.47.25.251 (10.47.25.251): 56 data bytes
64 bytes from 10.47.25.251: icmp_seq=0 ttl=63 time=1.467 ms
64 bytes from 10.47.25.251: icmp_seq=1 ttl=63 time=0.137 ms
^C--- 10.47.25.251 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.137/0.802/1.467/0.665 ms

227



Verify If a Namespace is Isolated

Namespace annotations are used to turn on isolation in a Kubernetes namespace. In isolated Kubernetes
namespaces, the namespace metadata is annotated with the opencontrail.org/isolation : true annotation.

Use the following command to view annotations on a namespace.

[root@a7s16 ~]#
kubectl describe namespace test-isolated-ns   
Name:       test-isolated-ns
Labels:     <none>
Annotations:    opencontrail.org/isolation : true     Namespace is isolated
Status:     Active

RELATED DOCUMENTATION

Contrail Integration with Kubernetes  |  2

Implementation of Kubernetes Network Policy with
Contrail Firewall Policy

IN THIS SECTION

Kubernetes Network Policy Characteristics  |  229

Representing Kubernetes Network Policy as Contrail Firewall Security Policy  |  230

Contrail Firewall Policy Naming Convention  |  232

Implementation of Kubernetes Network Policy  |  233

Example Network Policy Configurations  |  233

Cluster-wide Policy Action Enforcement  |  242

228



NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Contrail Networking—starting in Contrail Networking Release 5.0—supports implementing Kubernetes
1.9.2 network policy in Contrail using the Contrail firewall security policy framework. While Kubernetes
network policy can be implemented using other security objects in Contrail like security groups and
Contrail network policies, the support of tags by Contrail firewall security policy aids in the simplification
and abstraction of Kubernetes workloads.

Contrail firewall security policy allows decoupling of routing from security policies and provides multi-
dimension segmentation and policy portability while significantly enhancing user visibility and analytics
functions. Contrail firewall security policy uses tags to achieve multi-dimension traffic segmentation
among various entities, and with security features. Tags are key-value pairs associated with different
entities in the deployment. Tags can be pre-defined or custom defined. Kubernetes network policy is a
specification of how groups of Kubernetes workloads, which are hereafter referred to as pods, are
allowed to communicate with each other and other network endpoints. Network policy resources use
labels to select pods and define rules which specify what traffic is allowed to the selected pods.

Kubernetes Network Policy Characteristics

Kubernetes network policies have the following characteristics:

• A network policy is pod specific and applies to a pod or a group of pods. If a specified network policy
applies to a pod, the traffic to the pod is dictated by rules of the network policy.

• If a network policy is not applied to a pod then the pod accepts traffic from all sources.

• A network policy can define traffic rules for a pod at the ingress, egress, or both directions. By
default, a network policy is applied to the ingress direction, if no direction is explicitly specified.

• When a network policy is applied to a pod, the policy must have explicit rules to specify an allowlist
of permitted traffic in the ingress and egress directions. All traffic that does not match the allowlist
rules are denied and dropped.

229

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


• Multiple network policies can be applied on any pod. Traffic matching any one of the network
policies must be permitted.

• A network policy acts on connections rather than individual packets. For example, if traffic from pod
A to pod B is allowed by the configured policy, then the return packets for that connection from pod
B to pod A are also allowed, even if the policy in place does not allow pod B to initiate a connection
to pod A.

• Ingress Policy: An ingress rule consists of the identity of the source and the protocol:port type of
traffic from the source that is allowed to be forwarded to a pod.

The identity of the source can be of the following types:

• Classless Interdomain Routing (CIDR) block—If the source IP address is from the CIDR block and
the traffic matches the protocol:port, then traffic is forwarded to the pod.

• Kubernetes namespaces—Namespace selectors identify namespaces, whose pods can send the
defined protocol:port traffic to the ingress pod.

• Pods—Pod selectors identify the pods in the namespace corresponding to the network policy, that
can send matching protocol:port traffic to the ingress pods.

• Egress Policy: This specifies an allowlist CIDR to which a particular protocol:port type of traffic is
permitted from the pods targeted by the network policy

The identity of the destination can be of the following types:

• CIDR block—If the destination IP address is from the CIDR block and the traffic matches the
protocol:port, then traffic is forwarded to the destination.

• Kubernetes namespaces—Namespace selectors identify namespaces, whose pods can send the
defined protocol:port traffic to the egress pod.

• Pods—Pod selectors identify the pods in the namespace corresponding to the network policy, that
can receive matching protocol:port traffic from the egress pods.

Representing Kubernetes Network Policy as Contrail Firewall Security
Policy

Kubernetes and Contrail firewall policy are different in terms of the semantics in which network policy is
specified in each. The key to efficient implementation of a Kubernetes network policy through Contrail
firewall policy is in mapping the corresponding configuration constructs between these two entities.

The constructs are mapped as displayed in Table 3 on page 231:

230



Table 3: Kubernetes Network Policy and Contrail Firewall Policy Mapping

Kubernetes Network Policy Constructs Contrail Firewall Policy Constructs

Label Custom Tag (one for each label)

Namespace Custom Tag (one for each namespace)

Network Policy Firewall Policy (one firewall policy per Network Policy)

Rule Firewall Rule (one firewall rule per network policy rule)

CIDR Rules Address Group

Cluster Default Application Policy Set

NOTE: The project in which Contrail firewall policy constructs are created is the one that houses
the Kubernetes cluster. For example, the Contrail firewall policy constructs are created in the
global scope, if the Kubernetes cluster is a standalone cluster and the Contrail firewall policy
constructs are created in the project scope, if the Kubernetes cluster is a nested cluster.

Resolving Kubernetes Network Policy Labels

The representation of pods in Contrail firewall policy is exactly the same as in the corresponding
Kubernetes network policy. Contrail firewall policy deals with labels or tags in Contrail terminology.
Contrail does not expand labels to IP addresses.

For example, in the default namespace, if network policy-podSelector specifies: role=db, then the
corresponding firewall rule specifies the pods as (role=db && namespace=default). No other translations to
pod IP address or otherwise are done.

If the same network-policy also has namespaceSelector as namespace=myproject, then the corresponding firewall
rule represents that namespace as (namespace=myproject). No other translations or rules representing pods
in “myproject“ namespace is done.

Similarly, each CIDR is represented by one rule. In essence, the Kubernetes network policy is translated
1:1 to Contrail firewall policy. There is only one additional firewall rule created for each Kubernetes
network policy. The purpose of that rule is to implement the implicit deny requirements of the network
policy and no other rule is created.

231



Contrail Firewall Policy Naming Convention

Contrail firewall security policies and rules are named as follows:

• A Contrail firewall security policy created for a Kubernetes network policy is named in the following
format:

< Namespace-name >-< Network Policy Name >

For example, a network policy "world" in namespace "Hello" is named:

Hello-world

• Contrail firewall rules created for a Kubernetes network policy are named in the following format:

< Namespace-name >-<PolicyType>-< Network Policy Name >-<Index of from/to blocks>-<selector 
type>-<rule-index>-<svc/port index>

For example:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: world
  namespace: hello
spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          role: frontend

232



A rule corresponding to this policy is named:

hello-ingress-world-0-podSelector-0-0

Implementation of Kubernetes Network Policy

The contrail-kube-manager daemon binds Kubernetes and Contrail together. This daemon connects to
the API server of Kubernetes clusters and coverts Kubernetes events, including network policy events,
into appropriate Contrail objects. With respect to a Kubernetes network policy, contrail-kube-manager
performs the following actions:

• Creates a Contrail tag for each Kubernetes label

• Creates a firewall policy for each Kubernetes network policy

• Creates an Application Policy Set (APS) to represent the cluster. All firewall policies created in that
cluster are attached to this application policy set.

• Modifications to existing Kubernetes network policies result in the corresponding firewall policies
being updated.

Example Network Policy Configurations

The following examples illustrate various sample network policies and the corresponding firewall
security policies created.

Example 1 - Conditional egress and ingress traffic

The following policy specifies a sample network policy with specific conditions for ingress and egress
traffic to and from all pods in a namespace:

Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: test-network-policy
  namespace: default

233



spec:
  podSelector:
    matchLabels:
      role: db
  policyTypes:
  - Ingress
  - Egress
  ingress:
  - from:
    - ipBlock:
        cidr: 17x.xx.0.0/16
        except:
        - 17x.xx.1.0/24
    - namespaceSelector:
        matchLabels:
          project: myproject
    - podSelector:
        matchLabels:
          role: frontend
    ports:
    - protocol: TCP
      port: 6379
  egress:
  - to:
    - ipBlock:
        cidr: 10.0.0.0/24
    ports:
    - protocol: TCP
      port: 5978

Sample Contrail firewall security policy

The test-network-policy defined in Kubernetes results in the following objects being created in Contrail.

Tags—The following tags are created, if they do not exist. In a regular workflow, these tags must have
been created by the time the namespace and pods were created.

Key Value

role db

234



(Continued)

Key Value

namespace default

Address Groups

The following address groups are created:

Name Prefix

17x.xx.1.0/24 17x.xx.1.0/24

17x.xx.0.0/16 17x.xx.0.0/16

10.0.0.0/24 10.0.0.0/24

Firewall Rules

The following firewall rules are created:

Rule Name Action Services Endpoint1 Dir Endpoint2 Match
Tags

default-ingress-test-
network-policy-0-
ipBlock-0-17x.xx.1.0/24-0

deny tcp:6379 Address Group:
17x.xx.1.0/24

> role=db &&
namespace=default

default-ingress-test-
network-policy-0-
ipBlock-0-
cidr-17x.xx.0.0/16-0

pass tcp:6379 Address Group:
17x.xx.0.0/16

> role=db &&
namespace=default

default-ingress-test-
network-policy-0-
namespaceSelector-1-0

pass tcp:6379 project=myproject > role=db &&
namespace=default

235



(Continued)

Rule Name Action Services Endpoint1 Dir Endpoint2 Match
Tags

default-ingress-test-
network-policy-0-
podSelector-2-0

pass tcp:6379 namespace=default
&& role=frontend

> role=db &&
namespace=default

default-egress-test-
network-policy-ipBlock-0-
cidr-10.0.0.0/24-0

pass tcp:5978 role=db &&
namespace=default

> Address Group:
10.0.0.0/24

Firewall Policy

The following firewall security policy is created with the following rules.

Name Rules

default-test-network-policy • default-ingress-test-network-policy-0-ipBlock-0-17x.xx.1.0/24-0

• default-ingress-test-network-policy-0-ipBlock-0-cidr-17x.xx.0.0/16-0

• default-ingress-test-network-policy-0-namespaceSelector-1-0

• default-ingress-test-network-policy-0-podSelector-2-0

• default-egress-test-network-policy-ipBlock-0-cidr-10.0.0.0/24-0

Example 2 - Allow all Ingress Traffic

The following policy explicitly allows all traffic for all pods in a namespace:

Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: allow-all-ingress
    spec:
      podSelector:

236



      ingress:
      - {}

Sample Contrail firewall security policy

Tags—The following tags are created, if they do not exist. In a regular workflow, these tags are created
before the namespace and pods are created.

Key Value

namespace default

Address Groups - None

Firewall Rules

The following firewall rule is created:

Rule Name Action Services Endpoint1 Dir Endpoint2 Match Tags

default-ingress-allow-all-ingress-0-
allow-all-0

pass any any > namespace=default

Firewall Policy

The following firewall policy are created:

Name Rules

default-allow-all-ingress default-ingress-allow-all-ingress-0-allow-all-0

Example 3 - Deny all ingress traffic

The following policy explicitly denies all ingress traffic to all pods in a namespace:

Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

237



  name: deny-ingress
spec:
  podSelector:
  policyTypes:
  - Ingress

Sample Contrail firewall security policy

Tags—The following tags are created, if they do not exist. In a regular workflow, these tags are created
before the namespace and pods are created.

Key Value

namespace default

Address Groups - None

Firewall Rules - None

NOTE: The implicit behavior of any network policy is to deny traffic not matching explicit allow
flows. However in this policy, there are no explicit allow rules. Hence, no firewall rules are
created for this policy.

Firewall Policy

The following firewall policy is created:

Name Rules

default-deny-ingress

Example 4 - Allow all egress traffic

The following policy explicitly allows all egress traffic from all pods in a namespace:

Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

238



metadata:
  name: allow-all-egress
spec:
  podSelector:
  egress:
  - {}

Sample Contrail firewall security policy

Tags—The following tag is created, if they do not exist. In a regular workflow, these tags are created
before the namespace and pods are created.

Key Value

namespace default

Address Groups - None

Firewall Rules

The following firewall rule is created:

Rule Name Action Services Endpoint1 Dir Endpoint2 Match Tags

default-egress-allow-all-egress-
allow-all-0

pass any namespace=default > any

Firewall Policy

The following firewall policy is created:

Name Rules

default-allow-all-egress default-egress-allow-all-egress-allow-all-0

Example 5 - Default deny all egress traffic

The following policy explicitly denies all egress traffic from all pods in a namespace:

239



Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: deny-all-egress
spec:
  podSelector: {}
  policyTypes:
  - Egress

Sample Contrail firewall security policy

Tags—The following tag is created, if they do not exist. In a regular workflow, these tags are created
before the namespace and pods are created.

Key Value

namespace default

Address Groups - None

Firewall Rules - None

NOTE: The implicit behavior of any network policy with egress policy type is to deny egress
traffic not matching explicit egress allow flows. In this policy, there are no explicit egress allow
rules. Hence, no firewall rules are created for this policy.

Firewall Policy

The following firewall policy is created:

Name Rules

default-deny-all-egress

240



Example 6 - Default deny all ingress and egress traffic

The following policy explicitly denies all ingress and egress traffic to and from all pods in that
namespace:

Sample Kubernetes network policy

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: deny-all-ingress-egress
spec:
  podSelector:
  policyTypes:
  - Ingress
  - Egress

Sample Contrail firewall security policy

Tags—The following tags is created, if they do not exist. In a regular workflow, these tags are created
before the namespace and pods are created.

Key Value

namespace default

Address Groups - None

Firewall Rules - None

NOTE: The implicit behavior of any network policy with ingress/egress policy type is to deny
corresponding traffic not matching explicit allow flows. In this policy, there are no explicit allow
rules. Hence, no firewall rules are created for this policy.

Firewall Policy

The following firewall policy is created:

241



Name Rules

default-deny-all-ingress-egress

Cluster-wide Policy Action Enforcement

The specification and the syntax of network policies allow for maximum flexibility and varied
combinations. However, you must exercise caution while configuring the network policies.

Consider a case where two network policies are created:

• Policy 1: Pod A can send to Pod B.

• Policy 2: Pod B can only receive from Pod C.

From a networking flow perspective, there is an inherent contradiction between the above policies.
Policy 1 states that a flow from Pod A to Pod B is allowed. Policy 2 implies that flow from Pod A to Pod
B is not allowed. From a networking perspective, Contrail prioritizes flow behavior as more critical. In
the event of inherent contradiction in network policies, Contrail will honor the flow perspective. One of
the core aspects of this notion is that if a policy matches a flow, the action is honored cluster-wide.

For instance, if a flow matches a policy at the source, the flow will match the same policy in the
destination as well. Therefore, the flow behavior in a Contrail-managed Kubernetes cluster is as shown
below:

• Flow from Pod A to Pod B is allowed (due to Policy 1)

• Flow from Pod C to Pod B is allowed (due to Policy 2)

• Any other flow to Pod B is disallowed (due to Policy 2)

Example Network Policy Action Enforcement Scenarios

Consider the following examples of network policy action enforcement:

• Allow all egress traffic and deny all ingress traffic

Setup: Namespace NS1 has two pods, Pod A and Pod B.

Policy: A network policy applied on namespace NS1 states:

• Rule 1. Allow all egress traffic from all pods in NS1.

242



• Rule 2. Deny all ingress traffic to all pods in NS1.

Behavior:

• Pod A can send traffic to Pod B (due to rule 1)

• Pod B can send traffic to Pod A (due to rule 1)

• PodX from a different namespace cannot send traffic to Pod A or Pod B (due to rule 2)

• Allow all ingress traffic and deny all egress traffic

Setup: Namespace NS1 has two pods, Pod A and Pod B.

Policy: A network policy applied on namespace NS1 states:

• Rule 1. Allow all ingress traffic to all pods in NS1

• Rule 2. Deny all egress traffic from all pods in NS1.

Behavior:

• Pod A can send traffic to Pod B (due to rule 1)

• Pod B can send traffic to Pod A (due to rule 1)

• Pod A and Pod B cannot send traffic to pods in any other namespace.

• Egress CIDR rule

Setup: Namespace NS1 has two pods, Pod A and Pod B.

Policy: A network policy applied on namespace NS1 states:

• Policy 1: Allow Pod A to send traffic to CIDR of Pod B.

• Policy 2: Deny all ingress traffic to all pods in NS1.

Behavior:

• Pod A can send traffic to Pod B (due to Policy 1)

• All other traffic to Pod A and Pod B is dropped (due to policy 2)

RELATED DOCUMENTATION

Kubernetes Updates  |  253

243



How to Enable Keystone Authentication in a Juju
Cluster within a Kubernetes Environment

IN THIS SECTION

Overview: Keystone Authentication in Kubernetes Environments with a Juju Cluster  |  244

How to Enable Keystone Authentication in a Kubernetes Environment  |  245

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Starting in Contrail Networking Release 2011, Kubernetes can use the Keystone authentication service
in Openstack for authentication in environments that contain cloud networks using Openstack and
Kubernetes orchestrators when the Kubernetes environment is using Juju. This capability is available
when the cloud networks are both using Contrail Networking and when the Kubernetes cluster was
created in an environment using Juju.

This document discusses how to enable keystone authentication in Kubernetes environments and
contains the following sections:

Overview: Keystone Authentication in Kubernetes Environments with a
Juju Cluster

A cloud environment that includes Contrail clusters in Kubernetes-orchestrated environments and
OpenStack-orchestrated environments can simplify authentication processes by having a single
authentication service in place of each orchestrator authenticating separately. The ability for a

244

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


Kubernetes-orchestrated environment to authenticate using the Keystone service from Openstack can
provide this capability when the Kubernetes environment is using Juju.

Kubernetes is able to authenticate users using Keystone when the contrail-controller charm in Juju has
relations with both an Openstack orchestrator and the Kubernetes orchestrator. The contrail-controller
charm—when the Keystone service in Kubernetes is enabled—passes the credentials from Keystone to
the contrail-kubernetes-master charm. The contrail-kubernetes-master charm then passes the Keystone
parameters to kubemanager.

Both orchestrators use their native authentication processes by default. The ability for Kubernetes to
use Keystone authentication in an environment using Juju was introduced in Contrail Networking
Release 2011 and must be user-enabled.

How to Enable Keystone Authentication in a Kubernetes Environment

To enable Keystone authentication for Kubernetes:

1. In Juju running in the Kubernetes cluster, add a relation between the kubernetes-master and
Keystone and configure the Kubernetes master to use Keystone authorization:

juju add-relation kubernetes-master keystone
juju config kubernetes-master authorization-mode="Node,RBAC" enable-keystone-
authorization=true

2. Ensure that IP Fabric Forwarding for the pod network in the default kube-system project is disabled
and that SNAT is enabled. SNAT enablement is required to reach the Keystone service from the
keystone-auth pod in Kubernetes.

You can disable IP Fabric Forwarding and enable SNAT from the kubectl CLI or from the Tungsten
Fabric GUI.

• Kubectl:

Navigate to kubectl edit ns default and add the following configuration:

metadata:
  annotations:
    opencontrail.org/ip_fabric_snat: "true"

• Tungsten Fabric Graphical User Interface

245



Change the appropriate settings in the Configure > Networking > Networks > default-domain >
k8s-kube-system workflow.

3. In Juju, apply the policy.json configuration:

juju config kubernetes-master keystone-policy="$(cat policy.json)"

The JSON configuration varies by environment and the JSON configuration option descriptions are
beyond the scope of this document.

A sample JSON configuration file is provided for reference:

apiVersion: v1
kind: ConfigMap
metadata:
  name: k8s-auth-policy
  namespace: kube-system
  labels:
    k8s-app: k8s-keystone-auth
data:
  policies: |
    [
      {
       "resource": {
          "verbs": ["get", "list", "watch"],
          "resources": ["*"],
          "version": "*",
          "namespace": "*"
        },
        "match": [
          {
            "type": "role",
            "values": ["*"]
          },
          {
            "type": "project",
            "values": ["k8s"]
          }
        ]
      },
      {
       "resource": {
          "verbs": ["*"],

246



          "resources": ["*"],
          "version": "*",
          "namespace": "myproject"
        },
        "match": [
          {
            "type": "role",
            "values": ["*"]
          },
          {
            "type": "project",
            "values": ["k8s-myproject"]
          }
        ]
      }
    ]

4. Install client tools on the jumphost or an another node outside of the cluster.

sudo snap install kubectl --classic
sudo snap install client-keystone-auth --edge

5. In Kubernetes, configure the Keystone context and set credentials:

kubectl config set-context keystone --user=keystone-user
kubectl config use-context keystone
kubectl config set-credentials keystone-user --exec-command=/snap/bin/client-keystone-auth
kubectl config set-credentials keystone-user --exec-api-version=client.authentication.k8s.io/
v1beta1

6. Apply the required settings to the environment:

export OS_IDENTITY_API_VERSION=3
export OS_USER_DOMAIN_NAME=admin_domain
export OS_USERNAME=admin
export OS_PROJECT_DOMAIN_NAME=admin_domain
export OS_PROJECT_NAME=admin
export OS_DOMAIN_NAME=admin_domain
export OS_PASSWORD=password
export OS_AUTH_URL=http://192.168.30.78:5000/v3

247



If preferred, you can also perform this step from stackrc.

7. From kubectl, use the configuration to create a namespace from keystone authentication.

root@noden18:[~]$ kubectl -v=5 --insecure-skip-tls-verify=true -s https://192.168.30.29:6443 
get pods --all-namespaces
NAMESPACE     NAME                                READY   STATUS    RESTARTS   AGE
default       cirros                              1/1     Running   0          30h
kube-system   coredns-6b59b8bd9f-2nb4x            1/1     Running   3          33h
kube-system   k8s-keystone-auth-db47ff559-sh59p   1/1     Running   0          33h
kube-system   k8s-keystone-auth-db47ff559-vrfwd   1/1     Running   0          33h

Multiple Network Interfaces for Containers

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

Starting in Release 4.0, Contrail provides networking support for containers using Kubernetes
Orchestration. You can allocate a network interface to every container that you create using standard
Container Networking Interface (CNI plugin). For more information on Contrail Containers Networking,
see "Contrail Integration with Kubernetes" on page 2.

Starting in Contrail Release 5.1, you can allocate multiple network interfaces (multi-net) to a container to
enable the container to connect to multiple networks. You can specify the networks the container can
connect to. A network interface is either a physical interface or a virtual interface and is connected to
the Linux network namespace. A network namespace is the network stack in the Linux kernel. More
than one container can share the same network namespace.

The following limitations and caveats apply when you create multi-net interfaces:

• You cannot add or remove sidecar networks while the pod is still running.

248

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


• The administrator is responsible for removing corresponding Contrail pods before deleting the
network attachment definition from the Kubernetes API server.

• Contrail creates a default cluster-wide-network in addition to custom networks.

• Contrail CNI plugin is not a delegating plugin. It does not support specifications for delegating
plugins that are provided in the Kubernetes Network Custom Resource Definition De Facto Standard
Version 1. For more information, view [v1] Kubernetes Network Custom Resource Definition De-
facto Standard.md from the https://github.com/K8sNetworkPlumbingWG/multi-net-spec page.

Contrail multi-net support is based on the Kubernetes multi-net model. Kubernetes multi-net model has
a specific design and construct, and can be extended to non-kubernetes models like Contrail multi-net.
Contrail multi-net model does not require changes to the Kubernetes API and Kubernetes CNI driver.
Contrail multi-net model, as in the case of Kubernetes multi-net model, does not change the existing
cluster-wide network behavior.

Creating Multi-Net Interfaces

Follow these steps to create multi-net interfaces.

1. Create Network Object Model.

You create the network object model if the cluster does not support the model.

The object model of the container orchestration platform represents the network and attaches the
network to a container. If the model does not support network objects by default, you can use
extensions to represent the network.

Creating Network Object Model by using Kubernetes NetworkAttachmentDefinition CRD object

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
  # name must match the spec fields below, and be in the form: <plural>.<group>
  name: network-attachment-definitions.k8s.cni.cncf.io
spec:
  # group name to use for REST API: /apis/<group>/<version>
  group: k8s.cni.cncf.io
  # version name to use for REST API: /apis/<group>/<version>
  version: v1
  # either Namespaced or Cluster
  scope: Namespaced
  names:
    # plural name to be used in the URL: /apis/<group>/<version>/<plural>
    plural: network-attachment-definitions
    # singular name to be used as an alias on the CLI and for display

249

https://github.com/K8sNetworkPlumbingWG/multi-net-spec


    singular: network-attachment-definition
    # kind is normally the CamelCased singular type. Your resource manifests use this.
    kind: NetworkAttachmentDefinition
    # shortNames allow shorter string to match your resource on the CLI
    shortNames:
    - net-attach-def
  validation:
    openAPIV3Schema:
      properties:
        spec:
          properties:
            config:
              type: string

Kubernetes uses custom extensions to represent networks in its object model.
CustomResourceDefinition(CRD) feature of Kubernetes helps support custom extensions.

NOTE: A CRD is created automatically when you install Contrail. Networks specified by CRD
are sidecars that are not recognized by Kubernetes. The interaction of additional pod network
attachments with Kubernetes API and its objects, such as services, endpoints, proxies, etc. are
not specified. Kubernetes does not recognize the association of these objects to any pod.

2. Create networks.

You create networks in the cluster:

• Through the API server.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  annotations:
    opencontrail.org/cidr: "<ip address>/24"
    opencontrail.org/ip_fabric_forwarding: "false"
    opencontrail.org/ip_fabric_snat: "false"
  name: right-network
  namespace: default
spec:
  config: '{ "cniVersion": "0.3.0", "type": "contrail-k8s-cni" }' 
 

Create a right-network.yaml file.

250



• By mapping to an existing network created from the Contrail Web user interface or from the
Contrail Command user interface.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: extns-network
  annotations:
    "opencontrail.org/network" : '{"domain":"default-domain", "project": "k8s-extns", 
"name":"k8s-extns-pod-network"}'
spec:
  config: '{
    "cniVersion": "0.3.1",
    "type": "contrail-k8s-cni"
}'

Command to create the network:

kubectl apply -f right-network.yaml

3. Assign networks to pods.

You assign the networks that you created in Step 2 to pods. Each pod also has a default network
assigned to it. Therefore, each pod will have the following networks assigned:

• default network (assigned by Kubernetes)

NOTE: Contrail internally creates a default network called cluster-wide-network. This
interface is the default interface for the pod

• network that you created in Step 2

Assigning networks to pods by using k8s-semantics:

Option 1

apiVersion: v1
kind: Pod
metadata:
  name: multiNetworkPod
  annotations:

251



    k8s.v1.cni.cncf.io/networks: '[
      { "name": "network-a" },
      { "name": "network-b" }
    ]'
spec:
  containers:
  - image: busybox
    command:
      - sleep
      - "3600"
    imagePullPolicy: IfNotPresent
    name: busybox
    stdin: true
    tty: true
  restartPolicy: Always

Option 2

apiVersion: v1
kind: Pod
metadata:
  name: ubuntu-pod-3
  annotations:
    k8s.v1.cni.cncf.io/networks: left-network,blue-network,right-network,extns/data-network
spec:
  containers:
  - name: ubuntuapp
    image: ubuntu-upstart
    securityContext:
      capabilities:
        add:
        - NET_ADMIN

RELATED DOCUMENTATION

Contrail Integration with Kubernetes  |  2

252



Kubernetes Updates

IN THIS SECTION

TLS Bootstrapping of Kubernetes Nodes  |  253

Priority Based Multitenancy  |  254

Improved Autoscaling  |  254

Reachability to Kubernetes Pods Using the IP Fabric Forwarding Feature  |  254

Service Isolation Through Virtual Networks  |  254

Contrail ip-fabric-snat Feature  |  255

Third-Party Ingress Controllers  |  255

Custom Network Support for Ingress Resources  |  256

Kubernetes Probes and Kubernetes Service Node-Port  |  256

Kubernetes Network-Policy Support  |  256

NOTE: This topic covers Contrail Networking in Kubernetes-orchestrated environments that are
using Contrail Networking Release 21-based releases.

Starting in Release 22.1, Contrail Networking evolved into Cloud-Native Contrail Networking.
Cloud-Native Contrail Networking offers significant enhancements to optimize networking
performance in Kubernetes-orchestrated environments. We recommend using Cloud-Native
Contrail for networking in most Kubernetes-orchestrated environments.

For general information about Cloud-Native Contrail, see the Cloud-Native Contrail Networking
Techlibrary homepage.

This topic describes updates to Kubernetes and supported features in Contrail.

TLS Bootstrapping of Kubernetes Nodes

Contrail supports TLS Bootstrapping of Kubernetes Nodes starting in Contrail Networking Release 5.1.
TLS bootstrapping streamlines Kubernetes’ ability to add and remove nodes from the Contrail cluster.

253

https://www.juniper.net/documentation/product/us/en/cloud-native-contrail-networking


Priority Based Multitenancy

Contrail supports priority on the various resource quotas through the ResourceQuotaScopeSelector
feature starting in Contrail Networking Release 5.1.

Improved Autoscaling

Contrail Networking supports improved pod autoscaling by creating and deleting pods based on the load
starting in Contrail Networking Release 5.1.

Reachability to Kubernetes Pods Using the IP Fabric Forwarding Feature

A Kubernetes pod is a group of one or more containers (such as Docker containers), the shared storage
for those containers, and options on how to run the containers. Since pods are in the overlay network,
they cannot be reached directly from the underlay without a gateway or vRouter. Starting in Contrail
Networking Release 5.0, the IP fabric forwarding (ip-fabric-forwarding) feature enables virtual networks to
be created as part of the underlay network and eliminates the need for encapsulation and decapsulation
of data. The ip-fabric-forwarding feature is only applicable for pod networks. If ip-fabric-forwarding is
enabled, pod-networks are associated to ip-fabric-ipam instead of pod-ipam which is also a flat subnet.

The ip-fabric-forwarding feature is enabled and disabled in the global and namespace levels. By default,
ip-fabric-forwarding is disabled in the global level. To enable it in global level, you must set
“ip_fabric_forwarding” to “true” in the “[KUBERNETES]” section of the /etc/contrail/contrail-kubernetes.conf
file. To enable or disable the feature in namespace level, you must set “ip_fabric_forwarding” to “true” or
“false” respectively in namespace annotation. For example, “opencontrail.org/ip_fabric_forwarding”: “true”.
Once the feature is enabled, it cannot be disabled.

For more information, see Gateway-less Forwarding.

Service Isolation Through Virtual Networks

In namespace isolation mode, services in one namespace are not accessible from other namespaces,
unless security groups or network policies are explicitly defined to allow access. If any Kubernetes
service is implemented by pods in an isolated namespace, those services are reachable only to pods in
the same namespace through the Kubernetes service-ip.

254

https://github.com/tungstenfabric/tf-specs/blob/master/gateway-less-forwarding.md


The Kubernetes service-ip is allocated from the cluster network despite being in an isolated namespace.
So, by default, service from one namespace can reach services from another namespace. However,
security groups in isolated namespaces prevent reachability from external namespace and also prevent
reachability from outside of the cluster. In order to enable access by external namespaces, the security
group must be edited to allow access to all namespaces which defeats the purpose of isolation.

Contrail Networking—starting in Contrail Networking Release 5.0—enables service or ingress
reachability from external clusters in isolated namespaces. Two virtual networks are created in isolated
namespaces. One network is dedicated to pods and one is dedicated to services. Contrail network-policy
is created between the pod network and the service network for reachability between pods and
services. Service uses the same service-ipam which is a flat-subnet like pod-ipam. It is applicable for
default namespace as well.

Contrail ip-fabric-snat Feature

With the Contrail ip-fabric-snat feature, pods that are in the overlay can reach the Internet without
floating IPs or a logical-router. The ip-fabric-snat feature uses compute node IP for creating a source
NAT to reach the required services and is applicable only to pod networks. The kube-manager reserves
ports 56000 through 57023 for TCP and 57024 through 58047 for UDP to create a source NAT in
global-config during the initialization.

The ip-fabric-snat feature can be enabled or disabled in the global or namespace levels. By default, the
feature is disabled in the global level. To enable the ip-fabric-snat feature in the global level, you must
set “ip-fabric-snat” to “true” in the “[KUBERNETES]” section in the /etc/contrail/contrail-kubernetes.conf file.
To enable or disable it in the namespace level, you must set “ip_fabric_snat” to “true” or “false”
respectively in namespace annotation. For example, “opencontrail.org/ip_fabric_snat”: “true”. The
ip_fabric_snat feature can be at enabled and disabled any time. To enable or disable the ip_fabric_snat
feature in the default-pod-network, default namespace must be used. If the ip_fabric_forwarding is
enabled, ip_fabric_snat is ignored.

For more information, see Distributed SNAT.

Third-Party Ingress Controllers

Multiple ingress controllers can co-exist in Contrail. If “kubernetes.io/ingress.class” is absent or is
“opencontrail” in the annotations of the Kubernetes ingress resource, the kube-manager creates a
HAProxy loadbalancer. Otherwise it is ignored and the respective ingress controller handles the ingress
resource. Since Contrail ensures the reachability between pods and services, any ingress controller can
reach the endpoints or pods directly or through services.

255

https://github.com/tungstenfabric/tf-specs/blob/master/distributed-snat.md


Custom Network Support for Ingress Resources

Contrail supports custom networks in namespace level for pods. Starting with Contrail Release 5.0,
custom networks are supported for ingress resources as well.

Kubernetes Probes and Kubernetes Service Node-Port

The Kubelet needs reachability to pods for liveness and readiness probes. Contrail network policy is
created between the IP fabric network and pod network to provide reachability between node and pods.
Whenever the pod network is created, the network policy is attached to the pod network to provide
reachability between node and pods. So, any process in the node can reach the pods.

Kubernetes Service Node-Port is based on node reachability to pods. Since Contrail provides
connectivity between node and pods through Contrail the network policy, Node Port is supported.

Kubernetes Network-Policy Support

Contrail Networking supports the following Kubernetes release 1.12 network policy features:

• Egress support for network policy—Each NetworkPolicy includes a policyTypes list which can include
either Ingress, Egress, or both. The policyTypes field indicates whether or not the given policy applies to
ingress traffic to selected pod, egress traffic from the selected pod, or both. Contrail Networking—
starting in Contrail Networking Release 5.1—supports the podSelector&namespaceSelector egress
specification. Contrail Networking—starting in Contrail Networking Release 5.0—supports podSelector,
namespaceSelector, and egress CIDR egress specifications.

• Classless Interdomain Routing (CIDR) selector support for egress and ingress network policies

• Contrail-ansible-deployer provisioning—Contrail-ansible-deployer is updated to support Kubernetes
1.12.

Contrail Networking supports Kubernetes release 1.9.2 and enables implementing Kubernetes network
policy in Contrail using the Contrail firewall security policy framework. While Kubernetes network policy
can be implemented using other security objects in Contrail like security groups and Contrail network
policies, the support of tags by Contrail firewall security policy aids in the simplification and abstraction
of workloads.

For more information, see "Implementation of Kubernetes Network Policy with Contrail Firewall Policy"
on page 228.

256



RELATED DOCUMENTATION

Implementation of Kubernetes Network Policy with Contrail Firewall Policy  |  228

Contrail Integration with Kubernetes  |  2

257


	Table of Contents
	About this guide
	Overview: Contrail Networking with Kubernetes
	Contrail Integration with Kubernetes

	Contrail Networking with Red Hat Openshift
	How to Install Contrail Networking and Red Hat OpenShift 4.6
	How to Install Contrail Networking and Red Hat OpenShift 4.6 using a VM Running in a KVM Module
	When to Use This Procedure
	Prerequisites
	Install Contrail Networking and Red Hat Openshift 4.6
	Create a Virtual Network or a Bridge Network for the Installation
	Create a Helper Node with a Virtual Machine Running CentOS 7 or 8
	Prepare the Helper Node
	Create the Ignition Configurations
	Launch the Virtual Machines
	Monitor the Installation Process and Delete the Bootstrap Virtual Machine
	Finish the Installation


	How to Install Contrail Networking and Red Hat OpenShift 4.6 on Amazon Web Services
	When to Use This Procedure
	Prerequisites
	Configure DNS
	Configure AWS Credentials
	Download the OpenShift Installer and the Command Line Tools
	Deploy the Cluster

	How to Add a User After Completing the Installation
	How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift

	How to Install Contrail Networking and Red Hat OpenShift 4.5
	How to Install Contrail Networking and Red Hat OpenShift 4.5 using a VM Running in a KVM Module
	When to Use This Procedure
	Prerequisites
	Install Contrail Networking and Red Hat Openshift 4.5
	Create a Virtual Network or a Bridge Network for the Installation
	Create a Helper Node with a Virtual Machine Running CentOS 7 or 8
	Prepare the Helper Node
	Create the Ignition Configurations
	Launch the Virtual Machines
	Monitor the Installation Process and Delete the Bootstrap Virtual Machine
	Finish the Installation


	How to Install Contrail Networking and Red Hat OpenShift 4.5 on Amazon Web Services
	When to Use This Procedure
	Prerequisites
	Configure DNS
	Configure AWS Credentials
	Download the OpenShift Installer and the Command Line Tools
	Deploy the Cluster

	How to Add a User After Completing the Installation
	How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift

	How to Install Contrail Networking and Red Hat OpenShift 4.4
	How to Install Contrail Networking and Red Hat OpenShift 4.4 using a VM Running in a KVM Module
	When to Use This Procedure
	Prerequisites
	Install Contrail Networking and Red Hat Openshift 4.4
	Create a Virtual Network or a Bridge Network for the Installation
	Create a Helper Node with a Virtual Machine Running CentOS 7 or 8
	Prepare the Helper Node
	Create the Ignition Configurations
	Launch the Virtual Machines
	Monitor the Installation Process and Delete the Bootstrap Virtual Machine
	Finish the Installation


	How to Install Contrail Networking and Red Hat OpenShift 4.4 on Amazon Web Services
	When to Use This Procedure
	Prerequisites
	Configure DNS
	Configure AWS Credentials
	Download the OpenShift Installer and the Command Line Tools
	Deploy the Cluster

	How to Add a User After Completing the Installation
	How to Install Earlier Releases of Contrail Networking and Red Hat OpenShift

	Installing a Standalone Red Hat OpenShift Container Platform 3.11 Cluster with Contrail Using Contrail OpenShift Deployer
	Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible Deployer

	Contrail Networking with the Elastic Kubernetes Service (EKS)in Amazon Web Services (AWS)
	How to Install Contrail Networking within an Amazon Elastic Kubernetes Service (EKS) Environment in AWS
	When to Use This Procedure
	Prerequisites
	Install Contrail Networking as the CNI for EKS


	Contrail Networking with Google Anthos
	How to Integrate Kubernetes Clusters using Contrail Networking into Google Cloud Anthos
	Prerequisites
	Creating Kubernetes Clusters
	On-Premises: Creating the Private Kubernetes Cluster
	Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service (EKS) Environment
	Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine (GKE)

	Preparing Your Clusters for Anthos
	Configure Your Google Cloud Platform Account for Anthos
	How to Register an External Kubernetes Cluster to Google Connect

	Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos
	On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace Onto an On-premises Cloud
	AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google Marketplace

	Configuration Management in Anthos
	Overview: Anthos Configuration Management
	Installing the Configuration Management Operator
	Configuring the Clusters for Anthos Configuration Management
	Using Nomos to Manage the Anthos Configuration Manager



	Using KubeVirt
	How to Integrate Kubernetes Clusters using Contrail Networking into Google Cloud Anthos
	Prerequisites
	Creating Kubernetes Clusters
	On-Premises: Creating the Private Kubernetes Cluster
	Amazon Web Services (AWS): Install Contrail Networking in an Elastic Kubernetes Service (EKS) Environment
	Google Cloud Platform (GCP): Creating a Kubernetes Cluster in Google Kubernetes Engine (GKE)

	Preparing Your Clusters for Anthos
	Configure Your Google Cloud Platform Account for Anthos
	How to Register an External Kubernetes Cluster to Google Connect

	Deploying GCP Applications into Third Party Clusters That are Integrated Into Anthos
	On-premises Kubernetes cluster: How to Deploy Applications from the GCP Marketplace Onto an On-premises Cloud
	AWS Elastic Kubernetes Service Cluster: How to Deploy an Application from Google Marketplace

	Configuration Management in Anthos
	Overview: Anthos Configuration Management
	Installing the Configuration Management Operator
	Configuring the Clusters for Anthos Configuration Management
	Using Nomos to Manage the Anthos Configuration Manager



	Using Contrail Networking with Kubernetes
	Provisioning of Kubernetes Clusters
	Provisioning of a Standalone Kubernetes Cluster
	Provisioning of Nested Contrail Kubernetes Clusters
	Configure network connectivity to Contrail configuration and data plane functions.
	Generate a single yaml file to create a Contrail-k8s cluster
	Instantiate the Contrail-k8s cluster

	Provisioning of Non-Nested Contrail Kubernetes Clusters

	How to Enable Multi-Interface Pods in a Kubernetes Environment
	Installing Standalone Kubernetes Contrail Cluster using the Contrail Command UI
	Requirements
	Overview
	Configuration

	Verifying Configuration for CNI for Kubernetes
	View Pod Name and IP Address
	Verify Reachability of Pods
	Verify If Isolated Namespace-Pods Are Not Reachable
	Verify If Non-Isolated Namespace-Pods Are Reachable
	Verify If a Namespace is Isolated

	Implementation of Kubernetes Network Policy with Contrail Firewall Policy
	How to Enable Keystone Authentication in a Juju Cluster within a Kubernetes Environment
	Overview: Keystone Authentication in Kubernetes Environments with a Juju Cluster
	How to Enable Keystone Authentication in a Kubernetes Environment

	Multiple Network Interfaces for Containers
	Kubernetes Updates


