
Contrail® Networking

Contrail Networking Installation and
Upgrade Guide

Published

2025-03-24

RELEASE

21.4

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail® Networking Contrail Networking Installation and Upgrade Guide
21.4
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | xiv

1 Installing and Upgrading Contrail

Understanding Contrail | 2

Understanding Contrail Networking | 2

Understanding Contrail Networking Components | 4

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding contrail-ansible-deployer used in Contrail Command | 7

Supported Platforms and Server Requirements | 16

Server Requirements and Supported Platforms | 16

Hardware and Server Requirements | 17

Hardware Requirements for Contrail Networking Release 2011 | 17

Hardware Requirements for Contrail Networking Release 2008 | 19

Contrail Command | 22

How to Install Contrail Command and Provision Your Contrail Cluster | 22

When to Use This Document | 23

Server Requirements | 23

Software Requirements | 23

How to Obtain Contrail Images | 24

How to Install Contrail Command | 24

Before You Begin | 25

Preparing Your Contrail Command Server for the Installation | 25

Installing Contrail Command | 30

How to Provision Servers into the Contrail Cluster | 34

Before You Begin | 34

How to Provision the Contrail Cluster | 34

Sample command_servers.yml Files for Installing Contrail Command | 54

Minimal command_servers.yml file | 54

iii

Complete command_servers.yml File | 56

Disaster Recovery and Troubleshooting | 60

How to Login to Contrail Command | 62

Navigating the Contrail Command UI | 64

Using the Get Started with Contrail Enterprise Multicloud Panel | 65

Navigating to pages using the side panel | 67

Hiding the side panel | 68

Search functionality | 68

Pinning favorite pages | 70

Opening external applications | 75

Using the What’s New Panel | 75

Supported Browsers for Installing Contrail Command | 76

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Importing Contrail Cluster Data using RedHat Director | 83

Importing Contrail Cluster Data using Contrail Command | 86

Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command | 91

How to Deploy Contrail Command and Import a Cluster Using Juju | 95

Overview: Deploying Contrail Command with a Contrail Cluster Using Juju | 96

Preparing the SSL Certificate Authority (CA) for the Deployment | 96

Deploy Contrail Command and Import a Contrail Cluster Using Juju | 98

Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju | 102

Prerequisites for Contrail Insights and Contrail Insights Flow | 104

Contrail Insights Installation for Ubuntu Focal | 104

Install Contrail Insights on the Juju Cluster after Contrail Command is Installed | 105

Install Contrail Insights Flows on the Juju Cluster after Contrail Insights is Installed | 106

Importing a Canonical Openstack Deployment Into Contrail Command | 109

Overview: Canonical Openstack Deployment into Contrail Command | 109

Importing Canonical Openstack Into Contrail Command | 109

Upgrading Contrail Software | 113

Upgrading Contrail Networking using Contrail Command | 114

Upgrading Contrail Command using Backup Restore Procedure | 117

iv

Fast Forward Upgrade: Updating Contrail Networking 1912.L4 and Red Hat OpenStack 13 to
Contrail Networking 21.4.L2 and Red Hat Openstack 16.2 | 119

When to Use This Procedure | 120

Preparing for the Upgrade and Upgrading the Undercloud | 120

Upgrading the Overcloud | 120

How to Perform a Zero Impact Contrail Networking Upgrade using the Ansible Deployer | 124

Updating Contrail Networking Release 21.4 with Openstack 16.2 to Contrail Networking Release
21.4.L1 with Openstack 16.2.3 using Zero Impact Upgrade Process | 130

When to Use This Procedure | 130

Prerequisites | 131

Before You Begin | 131

Updating Contrail Networking in an Environment using Red Hat Openstack 16.2 | 132

Updating Contrail Networking Containers Without Updating OpenStack | 139

When to Use This Procedure | 139

Prerequisites | 140

Before You Begin | 140

Updating Contrail Networking | 140

Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red
Hat Openstack 16.1 | 144

When to Use This Procedure | 145

Prerequisites | 145

Before You Begin | 146

Updating Contrail Networking in an Environment using Red Hat Openstack 16.1 | 146

Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack
Multi-model Deployment with Juju Charms | 153

Prerequisites | 153

When to Use This Procedure | 153

Recommendations | 154

Updating Contrail Networking in a Canonical Openstack Multi-model Deployment Using Juju
Charms | 155

Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack
Deployment with Juju Charms | 159

Prerequisites | 159

When to Use This Procedure | 160

v

Recommendations | 161

Updating Contrail Networking in a Canonical Openstack Deployment Using Juju Charms | 161

Upgrading Contrail Networking Release 1912.L2 with RHOSP13 to Contrail Networking Release
2011.L3 with RHOSP16.1 | 165

Upgrading Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to
Contrail Networking Release 21.4 with RHOSP 16.2 | 167

When to Use This Procedure | 168

Prerequisites | 169

Before You Begin | 170

Upgrade Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to
Contrail Networking Release 21.4 with RHOSP 16.2 | 170

Upgrading Contrail Networking until 21.4.L2 using the Ansible Deployer In-Service Software
Upgrade Procedure in OpenStack Environments | 178

Upgrading Contrail Networking to Release 21.4.L3 using Ansible Deployer in Service Software
Upgrade Procedure in OpenStack Environment | 195

Contrail In-Service Software Upgrade from Releases 21.4 L2 and 21.4 L3 to 21.4 L4 using Ansible
Deployer | 213

How to Upgrade Contrail Networking Through Kubernetes and/or Red Hat OpenShift | 222

Deploying Red Hat Openstack with Contrail Control Plane Managed by Tungsten Fabric Operator | 227

Backup and Restore Contrail Software | 231

How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using
the Openstack 16.1 Director Deployment | 231

How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using
the Openstack 13 or Ansible Deployers | 243

Setting Up Contrail with Red Hat OpenStack 17.1 | 266

Understanding Red Hat OpenStack Platform Director 17.1 | 266

Red Hat OpenStack Platform Director | 266

Contrail Networking Roles | 267

RHVM and KVM Requirements | 268

Undercloud Requirements | 268

Overcloud Requirements | 268

Networking Requirements | 269

Compatibility Matrix | 270

vi

Installation Summary | 271

Setting Up the Infrastructure (Contrail Networking Release 21.4.L4 or Later) | 272

When to Use This Procedure | 272

Set Up the Infrastructure | 274

Setting Up the Undercloud for RHOSP 17.1 | 275

Prepare for Director Installation | 275

Install the Director | 278

Obtain and Import the Base Overcloud Images | 281

Setting Up the Overcloud for RHOSP 17.1 | 282

Download Heat Templates | 282

Upload Container Images to the Undercloud Registry | 283

Provision Overcloud Networks | 285

Provision Bare Metal Overcloud Nodes | 289

Configure Contrail | 294

Create the Overcloud | 305

Advanced Configuration | 306

Setting Up Contrail with Red Hat OpenStack 16.1 | 318

Understanding Red Hat OpenStack Platform Director | 318

Red Hat OpenStack Platform Director | 318

Contrail Networking Roles | 319

RVM and KVM Requirements | 320

Undercloud Requirements | 320

Overcloud Requirements | 321

Networking Requirements | 321

Compatibility Matrix | 323

Installation Summary | 323

Setting Up the Infrastructure (Contrail Networking Release 21.3 or Earlier) | 324

When to Use This Procedure | 324

Target Configuration (Example) | 324

Configure the External Physical Switch | 326

Configure KVM Hosts | 327

Create the Overcloud VM Definitions on the Overcloud KVM Hosts | 329

Create the Undercloud VM Definition on the Undercloud KVM Host | 331

vii

Setting Up the Undercloud | 333

Install the Undercloud | 333

Perform Post-Install Configuration | 335

Setting Up the Overcloud | 336

Configuring the Overcloud | 337

Customizing the Contrail Service with Templates (contrail-services.yaml) | 341

Customizing the Contrail Network with Templates | 344

Overview | 344

Roles Configuration (roles_data_contrail_aio.yaml) | 345

Network Parameter Configuration (contrail-net.yaml) | 348

Network Interface Configuration (*-NIC-*.yaml) | 349

Advanced vRouter Kernel Mode Configuration | 360

Advanced vRouter DPDK Mode Configuration | 363

Advanced vRouter SRIOV + Kernel Mode Configuration | 366

Advanced vRouter SRIOV + DPDK Mode Configuration | 369

Installing Overcloud | 372

Setting Up Contrail with Red Hat OpenStack 16.2 | 373

Understanding Red Hat OpenStack Platform Director 16.2 | 373

Red Hat OpenStack Platform Director | 373

Contrail Networking Roles | 374

RVM and KVM Requirements | 375

Undercloud Requirements | 375

Overcloud Requirements | 376

Networking Requirements | 376

Compatibility Matrix | 378

Installation Summary | 378

Setting Up the Infrastructure (Contrail Networking Release 21.4 or Later) | 379

When to Use This Procedure | 379

Understanding Red Hat Virtualization | 379

Prepare the Red Hat Virtualization Manager Hosts | 380

Deploy Hosts with Red Hat Enterprise Linux | 380

Install and enable required software | 380

Confirm the Domain Names | 383

Deploy Red Hat Virtualization Manager on the First Node | 383

viii

Enable the Red Hat Virtualization Manager Appliance | 384

Deploy the Self-Hosted Engine | 384

Enable virh CLI to Use oVirt Authentication | 385

Enabling the Red Hat Virtualization Manager Repositories | 385

Deploy Nodes and Enable Networking | 386

Prepare the Ansible env Files | 386

Deploy Nodes and Networking | 392

Check Hosts | 392

Prepare images | 392

Create Overcloud VMs | 392

Prepare Images for the Kubernetes Cluster | 393

Prepare Overcloud VM Definitions | 393

Create Contrail Control Plane VMs for Kubernetes-based Deployments | 397

Customize VM image for Kubernetes VMs | 397

Define the Kubernetes VMs | 398

Configure VLANs for RHOSP Internal API networks | 401

Create Undercloud VM | 402

Customize the image for Undercloud VM | 402

Define Undercloud VM | 403

Create FreeIPA VM | 405

Customize VM image for RedHat IDM (FreeIPA) VM | 405

Enable the RedHat IDM (FreeIPA) VM | 406

Access to RHVM via a web browser | 408

Access to VMs via serial console | 408

Setting Up the Undercloud for RHOSP 16.2 | 408

Install the Undercloud | 408

Perform Post-Install Configuration | 410

Setting Up the Overcloud for RHOSP 16.2 | 411

Configuring the Overcloud | 412

Customizing the Contrail Service with Templates (contrail-services.yaml) | 416

Customizing the Contrail Network with Templates | 419

Overview | 419

Roles Configuration (roles_data_contrail_aio.yaml) | 420

Network Parameter Configuration (contrail-net.yaml) | 423

Network Interface Configuration (*-NIC-*.yaml) | 424

ix

Advanced vRouter Kernel Mode Configuration | 435

Advanced vRouter DPDK Mode Configuration | 437

Advanced vRouter SRIOV + Kernel Mode Configuration | 440

Advanced vRouter SRIOV + DPDK Mode Configuration | 443

Installing Overcloud | 446

Setting Up Contrail with Red Hat OpenStack 13 | 448

Understanding Red Hat OpenStack Platform Director | 448

Red Hat OpenStack Platform Director | 448

Contrail Roles | 449

Undercloud Requirements | 450

Overcloud Requirements | 450

Networking Requirements | 451

Compatibility Matrix | 452

Installation Summary | 453

Setting Up the Infrastructure | 453

Target Configuration (Example) | 453

Configure the External Physical Switch | 456

Configure KVM Hosts | 457

Create the Overcloud VM Definitions on the Overcloud KVM Hosts | 459

Create the Undercloud VM Definition on the Undercloud KVM Host | 461

Setting Up the Undercloud | 463

Install the Undercloud | 463

Perform Post-Install Configuration | 465

Setting Up the Overcloud | 466

Configuring the Overcloud | 466

Customizing the Contrail Service with Templates (contrail-services.yaml) | 472

Customizing the Contrail Network with Templates | 473

Overview | 474

Roles Configuration (roles_data_contrail_aio.yaml) | 474

Network Parameter Configuration (contrail-net.yaml) | 477

Network Interface Configuration (*-NIC-*.yaml) | 478

Advanced vRouter Kernel Mode Configuration | 489

Advanced vRouter DPDK Mode Configuration | 492

x

Advanced vRouter SRIOV + Kernel Mode Configuration | 494

Advanced vRouter SRIOV + DPDK Mode Configuration | 497

Advanced Scenarios | 500

Installing Overcloud | 509

Using Netronome SmartNIC vRouter with Contrail Networking | 510

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Configuring Virtual Networks | 519

Creating Projects in OpenStack for Configuring Tenants in Contrail | 519

Creating a Virtual Network with OpenStack Contrail | 521

Creating an Image for a Project in OpenStack Contrail | 525

Using Security Groups with Virtual Machines (Instances) | 528

Security Groups Overview | 528

Creating Security Groups and Adding Rules | 528

Using Contrail Resources in Heat Templates | 534

Using the Contrail Heat Template | 534

QoS Support in Contrail Networking | 539

Quality of Service in Contrail | 539

Configuring Network QoS Parameters | 547

Overview | 547

QoS Configuration Examples | 548

Limitations | 549

Load Balancers | 550

Using Load Balancers in Contrail | 550

Support for OpenStack LBaaS | 564

Configuring Load Balancing as a Service in Contrail | 568

Overview: Load Balancing as a Service | 569

Contrail LBaaS Implementation | 570

Configuring LBaaS Using CLI | 571

Configuring LBaaS using the Contrail Command UI | 573

Optimizing Contrail Networking | 581

xi

Multiqueue Virtio Interfaces in Virtual Machines | 581

Contrail Networking OpenStack Analytics | 583

Ceilometer Support in Contrail | 583

Overview | 583

Ceilometer Details | 584

Verification of Ceilometer Operation | 584

Contrail Ceilometer Plugin | 587

Ceilometer Installation and Provisioning | 590

Contrail OpenStack APIs | 591

Working with Neutron | 591

Data Structure | 591

Network Sharing in Neutron | 592

Commands for Neutron Network Sharing | 593

Support for Neutron APIs | 593

Contrail Neutron Plugin | 594

DHCP Options | 594

Incompatibilities | 595

Using Contrail with Juju Charms | 596

Installing Contrail with OpenStack by Using Juju Charms | 596

Preparing to Deploy Contrail by Using Juju Charms | 597

Deploying Contrail Charms | 599

Deploy Contrail Charms in a Bundle | 599

Deploying Juju Charms with OpenStack Manually | 607

Options for Juju Charms | 612

Ironic Support with Juju | 622

Installing Contrail with Kubernetes by Using Juju Charms | 653

Understanding Juju Charms with Kubernetes | 653

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms | 653

Deploying Contrail Charms with Kubernetes | 656

Deploying Contrail Charms in a Bundle | 656

Deploying Juju Charms with Kubernetes Manually | 662

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms | 666

xii

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

Using Netronome SmartNIC vRouter with Contrail Networking and Juju Charms | 679

Prepare to Install Contrail Networking by Using Juju Charms | 680

Deploy Contrail Charms in a Bundle | 682

Using Contrail and Contrail Insights with Kolla/Ocata OpenStack | 691

Contrail, Contrail Insights, and OpenStack Kolla/Ocata Deployment Requirements | 691

Preparing for the Installation | 692

Run the Playbooks | 696

Accessing Contrail in Contrail Insights Management Infrastructure in UI | 697

Notes and Caveats | 697

Example Instances.yml for Contrail and Contrail Insights OpenStack Deployment | 698

Contrail Insights Installation and Configuration for OpenStack | 702

Contrail Insights Installation for OpenStack in HA | 716

Post Installation Tasks | 721

Configuring Role and Resource-Based Access Control | 721

Configuring Role-Based Access Control for Analytics | 730

Configuring the Control Node with BGP | 731

Configuring the Control Node from Contrail Web UI | 732

Configuring the Control Node with BGP from Contrail Command | 737

Configuring MD5 Authentication for BGP Sessions | 741

Configuring Transport Layer Security-Based XMPP in Contrail | 742

Configuring Graceful Restart and Long-lived Graceful Restart | 745

Scaling Up Contrail Networking Configuration API Server Instances | 755

Scaling Up Contrail Networking Configuration API | 758

xiii

About This Guide

Use this guide to install and upgrade the Contrail Networking solution for your environment. This guide
covers various installation scenarios including:

• Contrail Command

• Contrail with Contrail Insights

• Contrail with Openstack, including Openstack, Red Hat Openstack, and Canonical Openstack

For information on Contrail Networking installations and upgrades in containerized environments using
Kubernetes orchestration, see the Contrail Networking for Container Networking Environments User
Guide.

Contrail Networking product documentation is organized into multiple guides as shown in Table 1 on
page xiv, according to the task you want to perform or the deployment scenario.

Table 1: Contrail Networking Guides

Guide Name Description

Contrail Networking for
Container Networking
Environments User Guide

Provides information about installing and using Contrail Networking in
containerized environments using Kubernetes orchestration.

Contrail Networking Fabric
Lifecycle Management Guide

Provides information about Contrail underlay management and data center
automation.

Contrail Networking and
Security User Guide

Provides information about creating and orchestrating highly secure virtual
networks.

Contrail Networking Service
Provider Focused Features
Guide

Provides information about the features that are used by service providers.

Contrail Networking
Monitoring and
Troubleshooting Guide

Provides information about Contrail Insights and Contrail analytics.

xiv

https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-cloud-native-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-fabric-lifecycle-management-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-networking-security-user-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-networking-security-user-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-service-provider-feature-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html
https://www.juniper.net/documentation/en_US/contrail21/information-products/pathway-pages/contrail-analytics-troubleshooting-guide.html

RELATED DOCUMENTATION

README Access to Contrail Networking Registry 21xx

Contrail Networking Release Notes 21xx

Tungsten Fabric Architecture Guide

Juniper Networks TechWiki: Contrail Networking

xv

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/index.html
https://tungstenfabric.github.io/website/Tungsten-Fabric-Architecture.html
https://forums.juniper.net/t5/Contrail/tkb-p/Contrail

1
PART

Installing and Upgrading Contrail

Understanding Contrail | 2

Supported Platforms and Server Requirements | 16

Contrail Command | 22

Upgrading Contrail Software | 113

Backup and Restore Contrail Software | 231

Setting Up Contrail with Red Hat OpenStack 17.1 | 266

Setting Up Contrail with Red Hat OpenStack 16.1 | 318

Setting Up Contrail with Red Hat OpenStack 16.2 | 373

Setting Up Contrail with Red Hat OpenStack 13 | 448

Configuring Virtual Networks | 519

Using Contrail Resources in Heat Templates | 534

QoS Support in Contrail Networking | 539

Load Balancers | 550

Optimizing Contrail Networking | 581

Contrail Networking OpenStack Analytics | 583

Contrail OpenStack APIs | 591

Using Contrail with Juju Charms | 596

Using Contrail and Contrail Insights with Kolla/Ocata OpenStack | 691

Post Installation Tasks | 721

CHAPTER 1

Understanding Contrail

IN THIS CHAPTER

Understanding Contrail Networking | 2

Understanding Contrail Networking Components | 4

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding contrail-ansible-deployer used in Contrail Command | 7

Understanding Contrail Networking

Contrail Networking provides dynamic end-to-end networking policy and control for any cloud, any
workload, and any deployment, from a single user interface. It translates abstract workflows into specific
policies, simplifying the orchestration of virtual overlay connectivity across all environments.

It unifies policy for network automation with seamless integrations for systems such as: Kubernetes,
OpenShift, Mesos, OpenStack, VMware, a variety of popular DevOps tools like Ansible, and a variety of
Linux operating systems with or without virtualization like KVM and Docker containers.

Contrail Networking is a fundamental building block of Contrail Enterprise Multicloud for enterprises. It
manages your data center networking devices, such as QFX Series Switches, Data Center Interconnect
(DCI) infrastructures, as well as public cloud gateways, extending the continuous connectivity from your
on-premises to private and public clouds.

Contrail Networking reduces the friction of migrating to cloud by providing a virtual networking overlay
layer that delivers virtual routing, bridging, and networking services (IPAM, NAT, security, load balancing,
VPNs, etc.) over any existing physical or cloud IP network. It also provides multitenant structure and API
compatibility with multitenant public clouds like Amazon Web Services (AWS) virtual private clouds
(VPCs) for truly unifying policy semantics for hybrid cloud environments.

For service providers, Contrail Networking automates network resource provisioning and orchestration
to dynamically create highly scalable virtual networks and to chain a rich set of Juniper Networks or
third-party virtualized network functions (VNFs) and physical network functions (PNFs) to form
differentiated service chains on demand.

2

Contrail Networking is also integrated with Contrail Cloud for service providers. It enables you to run
high-performance Network Functions Virtualization (NFV) with always-on reliability so that you can
deliver innovative services with greater agility.

Contrail Networking is equipped with always-on advanced analytics capabilities to provide deep insights
into application and infrastructure performance for better visualization, easier diagnostics, rich
reporting, custom application development, and machine automation. It also supports integration with
other analytics platforms like Juniper Networks Contrail Insights and streaming analytics through
technologies like Apache Kafka and its API.

Contrail Networking also provides a Graphical User Interface (GUI).This GUI is built entirely using the
REST APIs.

Figure 1: Contrail Networking Architecture

3

RELATED DOCUMENTATION

Understanding Contrail Containers | 5

Understanding Contrail Microservices Architecture | 6

Understanding Contrail Networking Components

Contrail Networking is comprised of the following key components:

• Contrail Networking management Web GUI and plug-ins integrate with orchestration platforms such
as Kubernetes, OpenShift, Mesos, OpenStack, VMware vSphere, and with service provider
operations support systems/business support systems (OSS/BSS). Many of these integrations are
built, certified, and tested with technology alliances like Red Hat, Mirantis, Canonical, NEC, and more.
Contrail Networking sits under such orchestration systems and integrates northbound via published
REST APIs. It can be automatically driven through the APIs and integrations, or managed directly
using the Web GUI, called Contrail Command GUI.

• Contrail Networking control and management system, commonly called the controller, have several
functions. Few of the major functions are:

• Configuration Nodes—This function accepts requests from the API to provision workflows like
adding new virtual networks, new endpoints, and much more. It converts these abstract high-level
requests, with optional detail, into low-level directions that map to the internal data model.

• Control Nodes—This function maintains a scalable, highly available network model and state by
federating with other peer instances of itself. It directs network provisioning for the Contrail
Networking vRouters using Extensible Messaging and Presence Protocol (XMPP). It can also
exchange network connectivity and state with peer physical routers using open industry-standard
MP-BGP which is useful for routing the overlay networks and north-south traffic through a high-
performance cloud gateway router.

• Analytics Nodes—This function collects, stores, correlates, and analyzes data across network
elements. This information, which includes statistics, logs, events, and errors, can be consumed by
end-user or network applications through the northbound REST API or Apache Kafka. Through
the Web GUI, the data can be analyzed with SQL style queries.

• Contrail Networking vRouter runs on the compute nodes of the cloud or NFV infrastructure. It gets
network tenancy, VPN, and reachability information from the control function nodes and ensures
native Layer 3 services for the Linux host on which it runs or for the containers or virtual machines of
that host. Each vRouter is connected to at least two control nodes to optimize system resiliency. The
vRouters run in one of two high performance implementations: as a Linux kernel module or as an
Intel Data Plane Development Kit (DPDK)-based process.

4

Figure 2: Contrail Networking Overview

RELATED DOCUMENTATION

Understanding Contrail Networking | 2

Understanding Contrail Containers

IN THIS SECTION

Contrail Containers | 6

Some subsystems of Contrail Networking solution are delivered as Docker containers.

5

Contrail Containers

The following are key features of the architecture of Contrail containers:

• All of the Contrail containers are multiprocess Docker containers.

• Each container has an INI-based configuration file that has the configurations for all of the
applications running in that container.

• Each container is self-contained, with minimal external orchestration needs.

• A single tool, Ansible, is used for all levels of building, deploying, and provisioning the containers. The
Ansible code for the Contrail system is named contrail-ansible and kept in a separate repository. The
Contrail Ansible code is responsible for all aspects of Contrail container build, deployment, and basic
container orchestration.

NOTE: Starting in Contrail Release 21.4, the Red Hat Universal Base Image 8 (ubi8) is
used as the base for Contrail container images.

Understanding Contrail Microservices Architecture

IN THIS SECTION

What is Contrail Microservices Architecture? | 6

Installing Contrail with Microservices Architecture | 7

What is Contrail Microservices Architecture?

Employing microservices provides a number of benefits which includes:

• Deploying patches without updating the entire Contrail deployment.

• Better ways to manage the lifecycles of containers.

• Improved user experiences with Contrail provisioning and upgrading.

• Provisioning with minimum information provided.

6

• Configuring every feature.

• Simplify application complexity by implementing small, independent processes.

The containers and their processes are grouped as services and microservices, and are similar to pods in
the Kubernetes open-source software used to manage containers on a server cluster.

Figure 3 on page 7 shows how the Contrail containers and microservices are grouped into a pod
structure upon installation.

Figure 3: Contrail Containers, Pods, and Microservices

Installing Contrail with Microservices Architecture

These procedures help you to install and manage Contrail with microservices architecture. Refer to the
following topics for installation for the operating system appropriate for your system:

• "Understanding contrail-ansible-deployer used in Contrail Command" on page 7

Understanding contrail-ansible-deployer used in Contrail Command

IN THIS SECTION

What is the contrail-ansible-deployer? | 8

Preparing to Install with Contrail Command | 9

7

Supported Providers | 9

Configure the instances.yaml File for Your Environment | 9

Instances Configuration | 13

Installing a Contrail System | 15

This topic provides an overview of contrail-ansible-deployer used by Contrail Command tool. It is used for
installing Contrail Networking with microservices architecture.

To understand Contrail microservices, refer to "Understanding Contrail Microservices Architecture" on
page 6. For step by step procedure on how to install Contrail using Contrail Command deployer, refer to
"Installing a Contrail Cluster using Contrail Command and instances.yml" on page 78.

What is the contrail-ansible-deployer?

The contrail-ansible-deployer is a set of Ansible playbooks designed to deploy Contrail Networking with
microservices architecture.

The contrail-ansible-deployer contains three playbooks:

provision_instances.yml

This playbook provisions the operating system instances for hosting the containers. It supports the
following infrastructure providers:

• kvm.

• gce.

• aws.

configure_instances.yml

This playbook configures the provisioned instances. The playbook installs software and configures the
operating system to meet the required prerequisite standards. This is applicable to all providers.

install_contrail.yml

This playbook pulls, configures, and starts the Contrail containers.

8

Preparing to Install with Contrail Command

This section helps you prepare your system before installing Contrail Networking using contrail-command-
deployer.

Prerequisites

Make sure your system meets the following requirements before running contrail-command-deployer.

• Confirm that you are running compatible versions of CentOS, Ansible, Docker, and any other
software component for your system in your environment. See Contrail Networking Supported
Platforms List.

• Name resolution is operational for long and short host names of the cluster nodes, through either
DNS or the host file.

• For high availability (HA), confirm that the time is in sync between the cluster nodes.

• The time must be synchronized between the cluster nodes using Network Time Protocol (ntp).

Supported Providers

The playbooks support installing Contrail Networking on the following providers:

• bms—bare metal server.

• kvm—kernel-based virtual machine (KVM)-hosted virtual machines.

• gce—Google compute engine (GCE)-hosted virtual machines.

• aws—Amazon Web Services (AWS)-hosted virtual machines.

Configure the instances.yaml File for Your Environment

The configuration for all three playbooks is contained in a single file, config/instances.yaml.

The configuration has multiple main sections, including:

The main sections of the instances.yaml file are described in this section. Using the sections that are
appropriate for your system, configure each with parameters specific to your environment.

Provider Configuration

The section provider_config configures provider-specific settings.

9

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

KVM Provider Example

Use this example if you are in a kernel-based virtual machine (kvm) hosted environment.

NOTE: Passwords are provided in this output for illustrative purposes only. We suggest
using unique passwords in accordance with your organization’s security guidelines in
your environment.

provider_config: # the provider section contains all provider
relevant configuration
 kvm: # Mandatory.
 image: CentOS-7-x86_64-GenericCloud-1710.qcow2.xz # Mandatory for provision play. Image
to be deployed.
 image_url: https://cloud.centos.org/centos/7/images/ # Mandatory for provision play. Path/
url to image.
 ssh_pwd: contrail123 # Mandatory for provision/
configuration/install play. Ssh password set/used.
 ssh_user: centos # Mandatory for provision/
configuration/install play. Ssh user set/used.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional for provision/configuration/
install play.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional for provision/configuration/
install play.
 vcpu: 12 # Mandatory for provision play.
 vram: 64000 # Mandatory for provision play.
 vdisk: 100G # Mandatory for provision play.
 subnet_prefix: ip-address # Mandatory for provision play.
 subnet_netmask: subnet-mask # Mandatory for provision play.
 gateway: gateway-ip-address # Mandatory for provision play.
 nameserver: dns-ip-address # Mandatory for provision play.
 ntpserver: ntp-server-ip-address # Mandatory for provision/
configuration play.
 domainsuffix: local # Mandatory for provision play.

BMS Provider Example

Use this example if you are in a bare metal server (bms) environment.

10

NOTE: Passwords are provided in this output for illustrative purposes only. We suggest
using unique passwords in accordance with your organization’s security guidelines in
your environment.

provider_config:
 bms: # Mandatory.
 ssh_pwd: contrail123 # Optional. Not needed if ssh keys are used.
 ssh_user: centos # Mandatory.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional. Not needed if ssh password is used.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional. Not needed if ssh password is used.
 ntpserver: ntp-server-ip-address # Optional. Needed if ntp server should be configured.
 domainsuffix: local # Optional. Needed if configuration play
should configure /etc/hosts

CAUTION: SSH Host Identity Keys must be accepted or installed on the Deployer node
before proceeding with Contrail installation.

To do so:

• Make SSH connection to each target machine from the Deployer VM using Deployer
user credentials and click Yes to accept the SSH Host Key.

or

• Set the environmental variable ANSIBLE_HOST_KEY_CHECKING value to False.

ANSIBLE_HOST_KEY_CHECKING=false

or

• Set [defaults] host_key_checking value to False in ansible.cfg file.

[defaults] host_key_checking=false

11

AWS Provider Example

Use this example if you are in an Amazon Web Services (AWS) environment.

provider_config:
 aws: # Mandatory.
 ec2_access_key: THIS_IS_YOUR_ACCESS_KEY # Mandatory.
 ec2_secret_key: THIS_IS_YOUR_SECRET_KEY # Mandatory.
 ssh_public_key: /home/centos/.ssh/id_rsa.pub # Optional.
 ssh_private_key: /home/centos/.ssh/id_rsa # Optional.
 ssh_user: centos # Mandatory.
 instance_type: t2.xlarge # Mandatory.
 image: ami-337be65c # Mandatory.
 region: eu-central-1 # Mandatory.
 security_group: SECURITY_GROUP_ID # Mandatory.
 vpc_subnet_id: VPC_SUBNET_ID # Mandatory.
 assign_public_ip: yes # Mandatory.
 volume_size: 50 # Mandatory.
 key_pair: KEYPAIR_NAME # Mandatory.

GCE Provider Example

Use this example if you are in a Google Cloud environment.

provider_config:
 gce: # Mandatory.
 service_account_email: # Mandatory. GCE service account email address.
 credentials_file: # Mandatory. Path to GCE account json file.
 project_id: # Mandatory. GCE project name.
 ssh_user: # Mandatory. Ssh user for GCE instances.
 ssh_pwd: # Optional. Ssh password used by ssh user, not needed when
public is used
 ssh_private_key: # Optional. Path to private SSH key, used by by ssh user, not
needed when ssh-agent loaded private key
 machine_type: n1-standard-4 # Mandatory. Default is too small
 image: centos-7 # Mandatory. For provisioning and configuration only centos-7
is currently supported.
 network: microservice-vn # Optional. Defaults to default
 subnetwork: microservice-sn # Optional. Defaults to default

12

 zone: us-west1-aA # Optional. Defaults to ?
 disk_size: 50 # Mandatory. Default is too small

Global Services Configuration

This section sets global service parameters. All parameters are optional.

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 REGISTRY_PRIVATE_INSECURE: True
 CONTAINER_REGISTRY_USERNAME: YourRegistryUser
 CONTAINER_REGISTRY_PASSWORD: YourRegistryPassword

Contrail Services Configuration

This section sets global Contrail service parameters. All parameters are optional.

contrail_configuration: # Contrail service configuration section
 CONTRAIL_VERSION: latest
 UPGRADE_KERNEL: true

For a complete list of parameters available for contrail_configuration.md, see Contrail Configuration
Parameters for Ansible Deployer.

Kolla Services Configuration

If OpenStack Kolla is deployed, this section defines the parameters for Kolla.

kolla_config:

Instances Configuration

Instances are the operating systems on which the containers will be launched. The instance
configuration has a few provider-specific parameters. The instance configuration specifies which roles
are installed on which instance. Additionally, instance-wide and role-specific Contrail and Kolla
configurations can be specified, overwriting the parameters from the global Contrail and Kolla
configuration settings.

13

https://github.com/tungstenfabric/tf-ansible-deployer/blob/master/contrail_configuration.md
https://github.com/tungstenfabric/tf-ansible-deployer/blob/master/contrail_configuration.md

KVM Contrail Plane Instance

The following example is a KVM-based instance only, installing Contrail control plane containers.

instances:
 kvm1:
 provider: kvm
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 kubemanager:
 k8s_master:

GCE Default All-in-One Instance

The following example is a very simple all-in-one GCE instance. It will install all Contrail roles and the
Kubernetes master and node, using the default configuration.

instances:
 gce1: # Mandatory. Instance name
 provider: gce # Mandatory. Instance runs on GCE

AWS Default Three Node HA Instance

The following example uses three AWS EC2 instances to deploy a three node high availability setup with
all roles and default parameters.

instances:
 aws1:
 provider: aws
 aws2:
 provider: aws
 aws3:
 provider: aws

14

More Examples

Refer to the following for more configuration examples for instances.

• GCE Kubernetes (k8s) HA with separate control and data plane instances

• AWS Kolla HA with separate control and data plane instances

Installing a Contrail System

To perform a full installation of a Contrail system, refer to the installation instructions in: "Installing a
Contrail Cluster using Contrail Command and instances.yaml" on page 78.

15

https://github.com/tungstenfabric/tf-ansible-deployer/blob/master/examples/gce1.md
https://github.com/tungstenfabric/tf-ansible-deployer/blob/master/examples/aws1.md

CHAPTER 2

Supported Platforms and Server Requirements

IN THIS CHAPTER

Server Requirements and Supported Platforms | 16

Hardware and Server Requirements | 17

Server Requirements and Supported Platforms

This topic discusses server requirements in a Contrail Networking cluster.

Each server must have a minimum of:

• 64 GB memory.

• 300 GB hard drive.

• 4 CPU cores.

• At least one Ethernet port.

A server can either be a physical device or a virtual machine. For scalability and availability reasons, it is
highly recommended to use physical servers in most use cases whenever possible.

Server role assignments vary by environment. All non-compute roles can be configured in each
controller node if desired in your topology.

All installation images are available in repositories and can also be downloaded from Contrail Downloads
page.

The Contrail image includes the following software:

• All dependent software packages needed to support installation and operation of OpenStack and
Contrail.

• Contrail Controller software – all components.

• OpenStack release currently in use for Contrail.

16

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw

All components required for installing the Contrail Controller are available for each Contrail release, for
the supported Linux operating systems and versions, and for the supported versions of OpenStack.

For a list of supported platforms for all Contrail Networking releases, see Contrail Networking Supported
Platforms List.

Access Container Tags are located at README Access to Contrail Registry 21XX.

If you need access to Contrail docker private secure registry, e-mail contrail-registry@juniper.net for
Contrail container registry credentials.

RELATED DOCUMENTATION

Hardware and Server Requirements | 17

Hardware and Server Requirements

IN THIS SECTION

Hardware Requirements for Contrail Networking Release 2011 | 17

Hardware Requirements for Contrail Networking Release 2008 | 19

The following tables list the minimum and total memory and disk requirements per x86 server or per
virtual machine for installing Contrail Networking.

Hardware Requirements for Contrail Networking Release 2011

IN THIS SECTION

Baseline Server Requirement for an All-In-One Setup | 18

Contrail Controller for Object Scale (Number of VLANs) | 18

Baseline Server Requirement for a HA Setup | 18

Contrail Insights Scale | 19

17

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

The following tables list the minimum and total memory and disk requirements for installing Contrail
Networking Release 2011.

Baseline Server Requirement for an All-In-One Setup

Baseline for 32 switches.

Role vCPUs (hyper threaded) Memory (GB) Disk (GB) Networking

Contrail Command 4 32 100 1 Ethernet port

Control Host 20 48 350 2 Ethernet ports

Contrail Insights + Flow Node 10 50 300 2 Ethernet ports

Contrail Controller for Object Scale (Number of VLANs)

Baseline for 256 switches.

Number of Devices Number of VMIs (2500 VPGs each with
102 VLANs)

vCPUs (hyper threaded) RAM (GB) Disk (GB)

256 256K 38 135 350

Baseline Server Requirement for a HA Setup

Role vCPUs (hyper
threaded)/ Node

Memory (GB)/
Node

Disk (GB)/
Node

Networking

Contrail Command 4 32 100 1 Ethernet port

Control Host (x3) 20 48 350 2 Ethernet ports

18

Contrail Insights + Flow Node
(x3)
Note: Number of sampled
flows: 500K

10 50 300 2 Ethernet ports

Contrail Insights Scale

Number of Contrail Insight
Nodes

Number of VMs Number of Compute Nodes vCPUs RAM (GB) Disk (TB)

3 10K 300 64 64 2

5 100K 1000 64 128 4

Hardware Requirements for Contrail Networking Release 2008

IN THIS SECTION

Baseline Server Requirement for an All-In-One Setup | 19

Contrail Controller for Object Scale (Number of VLANs) | 20

Baseline Server Requirement for a HA Setup | 20

Contrail Insights Scale | 20

The following tables list the minimum and total memory and disk requirements for installing Contrail
Networking Release 2008.

Baseline Server Requirement for an All-In-One Setup

Baseline for 32 switches.

Role vCPUs (hyper threaded) Memory (GB) Disk (GB) Networking

Contrail Command 4 32 100 1 Ethernet port

19

Control Host 20 48 350 2 Ethernet ports

Contrail Insights + Flow Node 10 50 300 2 Ethernet ports

Contrail Controller for Object Scale (Number of VLANs)

Baseline for 128 switches.

Number of Devices Number of VMIs (2500 VPGs each with
102 VLANs)

vCPUs (hyper threaded) RAM (GB) Disk (GB)

128 256K 35 133 350

Baseline Server Requirement for a HA Setup

Role vCPUs (hyper
threaded)/ Node

Memory (GB)/
Node

Disk (GB)/
Node

Networking

Contrail Command 4 32 100 1 Ethernet port

Control Host (x3) 20 48 350 2 Ethernet ports

Contrail Insights + Flow Node
(x3)
Note: Number of sampled
flows: 500K

10 50 300 2 Ethernet ports

Contrail Insights Scale

Number of Contrail Insight
Nodes

Number of VMs Number of Compute Nodes vCPUs RAM (GB) Disk (TB)

3 10K 300 64 64 2

20

5 100K 1000 64 128 4

RELATED DOCUMENTATION

Server Requirements and Supported Platforms | 16

21

CHAPTER 3

Contrail Command

IN THIS CHAPTER

How to Install Contrail Command and Provision Your Contrail Cluster | 22

How to Login to Contrail Command | 62

Navigating the Contrail Command UI | 64

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Importing Contrail Cluster Data using RedHat Director | 83

Importing Contrail Cluster Data using Contrail Command | 86

Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command | 91

How to Deploy Contrail Command and Import a Cluster Using Juju | 95

Importing a Canonical Openstack Deployment Into Contrail Command | 109

How to Install Contrail Command and Provision Your Contrail Cluster

IN THIS SECTION

When to Use This Document | 23

Server Requirements | 23

Software Requirements | 23

How to Obtain Contrail Images | 24

How to Install Contrail Command | 24

How to Provision Servers into the Contrail Cluster | 34

Sample command_servers.yml Files for Installing Contrail Command | 54

22

Use this document to install Contrail Command—the graphical user interface for Contrail Networking—
and provision your servers or VMs as nodes in a Contrail cluster. Servers or VMs are provisioned into
compute nodes, control nodes, orchestrator nodes, Contrail Insights nodes, Contrail Insights Flows
nodes, or service nodes to create your Contrail cluster using this procedure.

NOTE: Contrail Insights and Contrail Insights Flows were previously named Appformix
and Appformix Flows.

When to Use This Document

We strongly recommend Contrail Command as the primary interface for configuring and maintaining
Contrail Networking.

You should, therefore, complete the procedures in this document as an initial configuration task in your
Contrail Networking environment.

Server Requirements

A Contrail Networking environment can include physical servers or VMs providing server functions,
although we highly recommended using physical servers for scalability and availability reasons whenever
possible.

Each server in a Contrail environment must have a minimum of:

• 64 GB memory.

• 300 GB hard drive.

• 4 CPU cores.

• At least one Ethernet port.

For additional information on server requirements for Contrail Networking, see "Server Requirements
and Supported Platforms" on page 16.

Software Requirements

• Contrail Command and Contrail Networking

Contrail Command and Contrail Networking are updated simultaneously and always run the same
version of Contrail Networking software.

Each Contrail Networking release has software compatibility requirements based on the
orchestration platform version, the deployer used to deploy the orchestration platform, the
supported server operating system version, and other software requirements.

23

For a list of supported platforms for all Contrail Networking releases and additional environment-
specific software requirements, see Contrail Networking Supported Platforms List.

• Contrail Insights and Contrail Insights Flows

Starting in Contrail Release 2005, the Contrail Insights and Contrail Insights Flows images that
support a Contrail Networking release are automatically provisioned within Contrail Command.
When you download your version of Contrail Command, Contrail Command pulls the Contrail
Insights and Contrail Insights Flows images for your Contrail Networking version automatically from
within the Juniper Contrail registry. You do not, therefore, need to separately download any
individual Contrail Insights software or have awareness of Contrail Insights or Contrail Insights
version numbers for your installation.

How to Obtain Contrail Images

The procedures used in this document download the Contrail Command, Contrail Insights, and Contrail
Insights Flows software from the Juniper Networks Contrail docker private secure registry at
hub.juniper.net. Email mailto:contrail-registry@juniper.net to obtain access credentials to this registry.

You will need to know the Container Tags for your Contrail image to retrieve Contrail images from the
Contrail registry. See README Access to Contrail Registry 21XX.

Contrail Networking images are also available at the Contrail Downloads page. Enter Contrail
Networking as the product name.

Contrail Insights and Contrail Insights Flows images are also available at the Contrail Insights Download
page. Enter Contrail Insights as the product name.

How to Install Contrail Command

IN THIS SECTION

Before You Begin | 25

Preparing Your Contrail Command Server for the Installation | 25

Installing Contrail Command | 30

Contrail Command is a single pane-of-glass GUI interface for Contrail Networking. For an optimized
Contrail Networking experience, we strongly recommend installing Contrail Command before creating
your Contrail clusters. Contrail Command is installed using these instructions.

For additional information on Contrail Command, see "Understanding Contrail Networking Components"
on page 4.

24

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/support/downloads/?p=contrail#sw
https://support.juniper.net/support/downloads/?p=contrail-insights
https://support.juniper.net/support/downloads/?p=contrail-insights

Before You Begin

Ensure your Contrail Command server—the server that will host Contrail Command—is a virtual machine
(VM) or a physical x86 server that meets these minimum system requirements:

• 4 vCPUs

• 32 GB RAM

• 100 GB disk storage with all user storage in the “/” partition.

If the “/home” partition exists, remove it and increase the “/” partition by the amount of freed
storage.

• Meets the specifications listed in "Server Requirements" on page 23.

• Runs a version of CentOS that supports your version of Contrail Networking.

For a list of CentOS versions that are supported with Contrail Networking and orchestration platform
combinations, see Contrail Networking Supported Platforms List.

You can install CentOS with updated packages using the yum update command.

• Has access to the Contrail Container registry at hub.juniper.net. This access is needed because the
Contrail Command deployer, which includes the Contrail Command docker images, is retrieved from
this registry during this installation procedure.

If you do not have access to the Contrail Container registry, email mailto:contrail-registry@juniper.net
to obtain access credentials. See README Access to Contrail Registry 21XX for additional
information about accessing this registry.

• Has an active connection to the Internet.

• Includes at least one active IP interface attached to the management network. Contrail Command
manages Contrail and orchestrator clusters over a management IP interface.

Obtain the container tag for the release that you are installing. A container tag is necessary to identify
the Contrail Command container files in the hub.juniper.net repository that are installed during this
procedure.

The container tag for any Contrail Release 21-based image can be found in README Access to Contrail
Registry 21XX.

Preparing Your Contrail Command Server for the Installation

To prepare your servers or VMs for the installation:

25

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

1. Log onto the server that will host Contrail Command and all servers in your Contrail cluster. The
servers in your Contrail cluster are the devices that will be provisioned into compute, control,
orchestrator, Contrail Insights, Contrail Insights Flows, or service node roles.

2. Verify the hosts in the hosts file, and add the name and IP address of each host that you are adding
to the file.

In this example, the hosts file is edited using VI to include the name and IP address of the three other
servers—contrail-cluster, insights, and insights-flows—that will be provisioned into the contrail cluster
during this procedure.

[root@ix-cn-ccmd-01 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

[root@ix-cn-ccmd-01 ~]# vi /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
10.1.1.2 contrail-cluster
10.1.1.3 insights
10.1.1.4 insights-flows

NOTE: The hosts file is typically overwritten during the provisioning process. This step
can be skipped in most Contrail cluster provisioning scenarios, but is recommended as a
precaution.

3. Verify the hostname file listing on the Contrail Command server.

[root@ix-cn-ccmd-01 ~]# cat /etc/hostname
ix-cn-ccmd-01

If needed, update the Contrail Command hostname accordingly to match the hostname that you will
use in the Contrail Command cluster.

NOTE: The hostname file is typically overwritten during the provisioning process. This
step can be skipped in most Contrail cluster provisioning scenarios, but is recommended
as a precaution.

26

4. If you haven’t already generated a shared RSA key for the servers in the cluster, generate and share
the RSA key.

[root@ix-cn-ccmd-01 ~]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:$ABC123
root@ix-cn-ccmd-01
The key's randomart image is:
+---[RSA 2048]----+
| .o=o*. |
| . =o+ o |
| o. o= + |
| .o.+ +B |
| ..S.+++. |
| ...o..o.. |
| .. oo=oo|
| . ..=o*=|
| E...=+=|
+----[SHA256]-----+

[root@ix-cn-ccmd-01 ~]# ssh-copy-id -i /root/.ssh/id_rsa.pub 10.1.1.2
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/root/.ssh/id_rsa.pub"
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys
root@10.1.1.2's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh '10.1.1.2'"
and check to make sure that only the key(s) you wanted were added.

[root@ix-cn-ccmd-01 ~]# ssh-copy-id -i /root/.ssh/id_rsa.pub 10.1.1.3
...

27

[root@ix-cn-ccmd-01 ~]# ssh-copy-id -i /root/.ssh/id_rsa.pub 10.1.1.4
...

5. SSH into each server that will be provisioned into the Contrail cluster to confirm reachability and
accessibility:

[root@ix-cn-ccmd-01 ~]# ssh 10.1.1.2
[root@contrail-cluster ~]# exit
logout
Connection to 10.1.1.2 closed.

[root@ix-cn-ccmd-01 ~]# ssh 10.1.1.3
[root@insights ~]# exit
logout
Connection to 10.1.1.3 closed.

[root@ix-cn-ccmd-01 ~]# ssh 10.1.1.4
[root@insights-flows ~]# exit
logout
Connection to 10.1.1.4 closed.

6. Verify that routes to each server are established on your server.

NOTE: The routes connecting the servers are created outside the Contrail Networking
environment and the process to create the routes varies by environment. This
procedure, therefore, does not provide the instructions for creating these routes.

In this example, the routes are verified on the Contrail Command server.

[root@ix-cn-ccmd-01 ~]# ip route
default via 10.102.70.254 dev ens192 proto static metric 100
10.1.1.0/24 dev ens224 proto kernel scope link src 10.1.1.1 metric 101
10.102.70.0/24 dev ens192 proto kernel scope link src 10.102.70.216 metric 100

Perform this step on the Contrail Command server and all servers in your Contrail cluster.

7. Ping each server to verify connectivity.

28

In this example, each node in the Contrail cluster is pinged from the Contrail Command server.

[root@ix-cn-ccmd-01 ~]# ping 10.1.1.2
PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.
64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=0.602 ms
64 bytes from 10.1.1.2: icmp_seq=2 ttl=64 time=0.220 ms
^C
--- 10.1.1.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.220/0.411/0.602/0.191 ms

[root@ix-cn-ccmd-01 ~]# ping 10.1.1.3
PING 10.1.1.3 (10.1.1.3) 56(84) bytes of data.
64 bytes from 10.1.1.3: icmp_seq=1 ttl=64 time=0.435 ms
64 bytes from 10.1.1.3: icmp_seq=2 ttl=64 time=0.299 ms
64 bytes from 10.1.1.3: icmp_seq=3 ttl=64 time=0.260 ms
^C
--- 10.1.1.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.260/0.331/0.435/0.076 ms

[root@ix-cn-ccmd-01 ~]# ping 10.1.1.4
PING 10.1.1.4 (10.1.1.4) 56(84) bytes of data.
64 bytes from 10.1.1.4: icmp_seq=1 ttl=64 time=0.248 ms
64 bytes from 10.1.1.4: icmp_seq=2 ttl=64 time=0.266 ms
64 bytes from 10.1.1.4: icmp_seq=3 ttl=64 time=0.232 ms
^C
--- 10.1.1.4 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.232/0.248/0.266/0.022 ms
[root@ix-cn-ccmd-01 ~]#

Perform this step on the Contrail Command server and all servers in your Contrail cluster.

8. Check the Linux kernel version and, if needed, update the Linux kernel version. If a kernel version
update is performed, reboot the server to complete the update.

NOTE: Obtaining the Linux kernel is not shown in this document.

29

In this example, the Linux kernel is verified on the Contrail Command server.

[root@ix-cn-ccmd-01 ~]# uname -a
Linux ix-cn-ccmd-01 3.10.0-1062.el7.x86_64 #1 SMP Wed Aug 7 18:08:02 UTC 2019 x86_64 x86_64
x86_64 GNU/Linux

[root@ix-cn-ccmd-01 ~]# ls
anaconda-ks.cfg kernel-3.10.0-1062.12.1.el7.x86_64.rpm

[root@ix-cn-ccmd-01 ~]# rpm -ihv kernel-3.10.0-1062.12.1.el7.x86_64.rpm
warning: kernel-3.10.0-1062.12.1.el7.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID
f4a80eb5: NOKEY
Preparing... ################################# [100%]
Updating / installing...
 1:kernel-3.10.0-1062.12.1.el7 ################################# [100%]

[root@ix-cn-ccmd-01 ~]# shutdown -r now

After the server reboots, confirm that the kernel is updated.

[root@ix-cn-ccmd-01 ~]# uname -a
Linux ix-cn-ccmd-01 3.10.0-1062.12.1.el7.x86_64 #1 SMP Tue Feb 4 23:02:59 UTC 2020 x86_64
x86_64 x86_64 GNU/Linux

Perform this step on the Contrail Command server and all servers in your Contrail cluster.

Installing Contrail Command

To install Contrail Command onto a server:

1. Log into the server that will host the Contrail Command containers. This server will be called the
Contrail Command server for the remainder of this procedure.

$ ssh root@10.12.70.192
root@10.12.70.192's password: password

2. Remove all installed Python Docker libraries—docker and docker-py—from the Contrail Command
server:

pip uninstall docker docker-py

30

The Python Docker libraries will not exist on the server if a new version of CentOS 7-based software
was recently installed. Entering this command when no Python Docker libraries are installed does not
harm any system functionality.

The Contrail Command Deployer, which is deployed later in this procedure, installs all necessary
libraries, including the Python Docker libraries.

3. Install and start the Docker Engine.

There are multiple ways to perform this step. In this example, Docker Community Edition version
18.03 is installed using yum install and yum-config-manager commands and started using the systemctl
start docker command.

NOTE: The Docker version supported with Contrail Networking changes between
Contrail releases and orchestration platforms. See Contrail Networking Supported
Platforms List. The yum install -y docker-ce-18.03.1.ce command is used to illustrate
the command for one version of Docker.

yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce-18.03.1.ce
systemctl start docker

4. Retrieve the contrail-command-deployer Docker image by logging into hub.juniper.net and entering the
docker pull command.

docker login hub.juniper.net --username <container_registry_username> --password
<container_registry_password>
docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

Variables:

• <container_registry_username> and <container_registry_password>—Registry access credentials.
You can email mailto:contrail-registry@juniper.net to obtain your username and password
credentials to access the Contrail Container registry.

• <container_tag>—container tag for the Contrail Command (UI) container deployment for the
release that you are installing. The <container_tag> for any Contrail Release 21xx image can be
found in README Access to Contrail Registry 21XX.

5. Create and save the command_servers.yml configuration file on the Contrail Command server.

The configuration of the command_servers.yml file is unique to your environment and complete
documentation describing all command_servers.yml configuration options is beyond the scope of this

31

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

document. Two sample command_servers.yml files for a Contrail environment are provided with this
document in "Sample command_servers.yml Files for Installing Contrail Command" on page 54 to
provide configuration assistance.

Be aware of the following key configuration parameters when configuring the command_servers.yml file
for Contrail Command:

• The contrail_config: hierarchy defines the Contrail Command login credentials:

contrail_config:
 database:
 type: postgres
 dialect: postgres
 password: contrail123
 keystone:
 assignment:
 data:
 users:
 admin:
 password: contrail123

CAUTION: For security purposes, we strongly recommend creating unique
username and password combinations in your environment.

• (Contrail Networking Release 2003 or earlier) The following configuration lines must be entered if
you want to deploy Contrail Insights and Contrail Insights Flows:

NOTE: Appformix and Appformix Flows were renamed Contrail Insights and Contrail
Insights Flows. The Appformix naming conventions still appear during product usage,
including within these directory names.

user_command_volumes:
- /opt/software/appformix:/opt/software/appformix
- /opt/software/xflow:/opt/software/xflow

The configuration lines must be entered outside of the “command_servers” hierarchy, either
immediately after the "---" at the very top of the file or as the last two lines at the very bottom of

32

the file. See "Complete command_servers.yml File" on page 56 for an example of these lines
added at the beginning of the command_servers.yml file.

This step is not required to install Contrail Insights and Contrail Insights Flows starting in Contrail
Networking Release 2005.

6. Run the contrail-command-deployer container to deploy Contrail Command.

docker run -td --net host -v <ABSOLUTE_PATH_TO_command_servers.yml_FILE>:/command_servers.yml
--privileged --name contrail_command_deployer hub.juniper.net/contrail/contrail-command-
deployer:<container_tag>

where <ABSOLUTE_PATH_TO_command_servers.yml_FILE> is the absolute path to the
command_servers.yml file that you created in step 5, and <container_tag> is the container tag for the
Contrail Command (UI) container deployment for the release that you want to install. The
<container_tag> for any Contrail Release 21xx image can be found in README Access to Contrail
Registry 21XX.

7. (Optional) Track the progress of step 6.

docker logs -f contrail_command_deployer

8. Verify that the Contrail Command containers are running:

[root@centos254 ~]# docker ps -a
CONTAINER ID IMAGE <trimmed> STATUS <trimmed> NAMES
2e62e778aa91 hub.juniper.net/... Up <trimmed> contrail_command
c8442860e462 circleci/postgre... Up <trimmed> contrail_psql
57a666e93d1a hub.juniper.net/... Exited <trimmed> contrail_command_deployer

The contrail_command container is the GUI and the contrail_psql container is the database. Both
containers should have a STATUS of Up.

The contrail-command-deployer container should have a STATUS of Exited because it exits when the
installation is complete.

9. Open a web browser and enter https://<Contrail-Command-Server-IP-Address>:9091 as the URL. The
Contrail Command home screen appears.

Enter the username and password combination specified in the command_servers.yml file in step 5. If you
use the sample command_servers.yml files in "Sample command_servers.yml Files for Installing Contrail
Command" on page 54, the username is admin and the password is contrail123.

33

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

CAUTION: For security purposes, we strongly recommend creating unique username
and password combinations in your environment.

For additional information on logging into Contrail Command, see "How to Login to Contrail
Command" on page 62.

How to Provision Servers into the Contrail Cluster

IN THIS SECTION

Before You Begin | 34

How to Provision the Contrail Cluster | 34

Use this procedure to provision servers into your Contrail cluster. A Contrail cluster is a collection of
interconnected servers that have been provisioned as compute nodes, control nodes, orchestrator
nodes, Contrail Insights nodes, Contrail Insights Flows nodes, or service nodes in a cloud networking
environment.

Before You Begin

Before you begin:

• Plan your topology.

• Ensure an out-of-band management network is established.

• Ensure Contrail Command is installed. See "How to Install Contrail Command" on page 24.

• Ensure all servers hosting Contrail cluster functions meet the specifications listed in "Server
Requirements" on page 23.

How to Provision the Contrail Cluster

To provision the Contrail cluster:

1. (Contrail Networking Release 2003 target release installations using Appformix only) Download the
Appformix and—if your also using Appformix Flows—the Appformix Flows images from the

Contrail Appformix Download page.

34

https://support.juniper.net/support/downloads/?p=contrail-insights

NOTE: Appformix and Appformix Flows were renamed Contrail Insights and Contrail
Insights Flows. The Appformix filename conventions are used to name these files for
use with Contrail Networking Release 2003.

For Contrail Release 2003, the supported AppFormix version is 3.1.15 and the
supported AppFormix Flows version is 1.0.7.

appformix-<version>.tar.gz
appformix-platform-images-<version>.tar.gz
appformix-dependencies-images-<version>.tar.gz
appformix-network_device-images-<version>.tar.gz
appformix-openstack-images-<version>.tar.gz
appformix-flows-<version>.tar.gz
appformix-flows-ansible-<version>.tar.gz

• Copy the tar.gz files to the /opt/software/appformix/ directory on the Contrail Command
server.

• Copy your AppFormix license to the /opt/software/appformix/ directory.

• (Appformix Flows environments only) Copy the two appformix-flows files to the /opt/software/
xflow directory.

You can ignore this step if you are not using Appformix Flows.

You can skip this step if you are using Contrail Networking Release 2005 or later or are not using
Appformix or Appformix Flows in your environment.

2. Login to Contrail Command at https://<Contrail-Command-Server-IP-Address>:9091 in most scenarios. See
"How to Login to Contrail Command" on page 62 if you are not seeing the Contrail Command
login screen at this URL.

Leave the Select Cluster field blank to enter Contrail Command in a wizard that guides you through
the cluster provisioning process. If Contrail Command is not currently managing a cluster, this is
your only Contrail Command login option.

Your Contrail Command access credentials were specified in the command_servers.yml files in step
5 when you installed Contrail Command. If you used the sample command_servers.yml file to
enable Contrail Command, your username is admin and your password is contrail123.

NOTE: Username and password combinations are provided in this document for
illustrative purposes only. We suggest using unique username and password

35

combinations to maximize security in accordance with your organization’s security
guidelines.

3. You are placed into the Infrastructure > Clusters menu upon login. Click the Add Cluster button to
start the cluster provisioning process.

Figure 4: Clusters

4. Click the Credentials tab to move to the Credentials box, then the Add button to add access
credentials for a device that will be added to the cluster.

36

Figure 5: Available Credentials

5. In the Add box, add the access credentials for a device in your cluster. Click the Add button to
complete the process and add the access credentials.

Figure 6: Add Dialog

Repeat steps 4 and 5 to add the access credentials for each server or VM in your cluster.

37

6. After clicking the Add button to add the credentials of your last server or VM, click the Server tab
to return to the Available servers box.

7. Click the Add button in the Available Servers box.

Figure 7: Available Servers

The Create Server dialog box appears.

8. Complete the fields in the Create Server dialog box for each physical server or VM in your Contrail
cluster. Each physical server or VM that will function as a compute node, control node, orchestrator
node, Contrail Insights node, Contrail Insights Flows node, or service node in your cluster must be
added as a server at this stage of the provisioning process.

38

Figure 8: Create Server

Field descriptions:

• Choose Mode—Options include: Express, Detailed, or Bulk Import (CSV). We recommend using
the Detailed or Bulk Import (CSV) modes in most environments to ensure all server field data is
entered and to avoid performing manual configuration tasks later in the procedure.

• Express—includes a limited number of required fields to enter for each server or VM.

• Detailed—provides all fields to enter for each server or VM.

• Bulk Import (CSV)—Import the physical server or VM fields from a CSV file.

• Select workload type this server will be used for

• Physical/Virtual Node—A virtualized physical server or a VM. This is the option used for most
servers or VMs in Contrail Networking environments.

• Baremetal—A non-virtualized server.

• Hostname—the name of the physical server or VM.

• Management IP—the management IP address of the physical server or VM.

• Management Interface—the name of the management-network facing interface on the physical
server or VM.

• Credentials—Select any credentials that appear in the drop-down menu.

39

• Disk Partition(s)—(Optional) Specify the disk partitions that you want to use.

This field is often left blank.

• Name (Network interfaces)—the name of a network-facing interface on the physical server or
VM.

• IP Address (Network interfaces)—the IP address of the network-facing interface on the physical
server or VM.

Click Add in the Network Interfaces box to add additional network interfaces for the server or VM.

Click the Create button after completing all fields to add the server or VM.

Repeat this step for each physical server or VM that will function as a compute node, control node,
orchestrator node, Contrail Insights node, Contrail Insights Flows node, or service node in the
Contrail cluster.

9. You are returned to the Infrastructure > Clusters > Servers menu after adding the final server. Click
the Next button to proceed to the Provisioning Options page.

Figure 9: Available Servers

10. Complete the fields on the Provisioning Options page.

40

Figure 10: Provisioning Options

Field Descriptions:

• Choose Provisioning Manager

• Contrail Cloud—Contrail Cloud Provisioning Manager. Do not use this provisioning manager
option.

• Contrail Enterprise Multicloud—(Default) Contrail Enterprise Multicloud Provisioning
Manager. Select Contrail Enterprise Multicloud as your provisioning manager.

The remaining steps of this procedure assume Contrail Enterprise Multicloud is selected as
the provisioning manager.

• Cluster Name—Name the Contrail cluster.

• Container Registry—Path to the container registry to obtain the Contrail Networking image. The
path to the Juniper container registry is hub.juniper.net/contrail and is set as the default
container registry path. Enter this path or the path to the repository used by your organization.

• Insecure checkbox—This option should only be selected if you want to connect to an insecure
registry using a non-secure protocol like HTTP.

This box is unchecked by default. Leave this box unchecked to connect to the Juniper container
registry at hub.juniper.net/contrail or to access any other securely-accessible registry.

• Container Registry Username—Username to access the container registry.

41

The Juniper container registry is often used in this field to obtain the Contrail Networking image.
Email mailto:contrail-registry@juniper.net to receive a registry username and password
combination to access the Juniper container registry.

• Container Registry Password—Password to access the container registry.

The Juniper container registry is often used in this field to obtain the Contrail Networking image.
Email mailto:contrail-registry@juniper.net to receive a registry username and password
combination to access the Juniper container registry.

• Contrail Version—Specify the version of the Contrail Networking image to use for the upgrade
that is in the repository.

You can use the latest tag to retrieve the most recent image in the repository, which is the
default setting. You can also specify a specific release in this field using the version’s release tag.

See README Access to Contrail Registry 21XX to obtain the release tag for any Contrail
Networking Release 21XX release tag.

• Domain Suffix—(Optional) Domain name for the cluster.

• NTP Server—The IP address of the NTP server.

• Default vRouter Gateway—The IP address of the default vRouter gateway.

This address is typically the IP address of the interface on the leaf device in the fabric that
connects to the server’s network-facing interface.

• Encapsulation Priority—Select the Encapsulation priority order from the drop down menu.

Select VXLAN, MPLSoUDP, MPLSoGRE in most Contrail Networking environments.

• Fabric Management checkbox—Select this option if your deploying in an environment using
Openstack for orchestration.

• To fill the Contrail Configuration details, click Add. This adds the Key-Value pair to the Contrail
Configuration section as shown below:

42

mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Figure 11: Contrail configuration

Enter the Key/Value pair details following the table given below:

Table 2: Contrail Configuration Section

Key Value

CONTROL_NODES List of comma-separated fabric underlay interface IP
addresses of the Contrail Control node. For example,
using Value as '10.1.11.1' implies you’ll be installing the
control node on the Contrail Cluster server. This IP
address is therefore the IP address that connects the
Contrail Cluster server to the fabric underlay.

PHYSICAL_INTERFACE Name of the interface that connects to the fabric
underlay.

TSN_NODES This field is 'OPTIONAL'. It specifies the list of comma-
separated fabric underlay interface IP addresses of the
Contrail Service node. For example, you will be installing
the service node, '10.1.11.1' on the Contrail Cluster
server. This IP address is therefore the IP address that
connects the Contrail Cluster server to the fabric
underlay.

43

Table 2: Contrail Configuration Section (Continued)

Key Value

CONTRAIL_CONTAINER_TAG The container tag for the desired Contrail and OpenStack
release combination as specified in README Access to
Contrail Registry 21XX.

API__DEFAULTS__enable_latency_stats_log (Optional. Available starting in Contrail Networking
Release 2008) Enable logging and storing of latency
statistics in Contrail Networking and Contrail Insights for
calls to Cassandra, Zookeeper, and Keystone from the API
server.

API__DEFAULTS__enable_api_stats_log (Optional Available starting in Contrail Networking
Release 2008) Enable logging and storing of latency
statistics and call time statistics in Contrail Networking
and Contrail Insights for Rest API calls.

For more information about the key-value descriptions, see the following references:

• Contrail Networking Quick Start Guide

• Contrail Cloud Getting Started Guide

• Contrail Enterprise Multicloud: Contrail Service Node (CSN) Overview

Click the Next button to proceed to the Control Nodes provisioning page.

11. From the Control Nodes provisioning page, assign any server that you created in step 8 as a control
node by clicking the > icon next to the server to move it into the Assigned Control Nodes box.

You have the option to remove roles from a control node within the Assigned Control Nodes. There
is no need to remove control node roles in most deployments and you should only remove roles if
you are an expert user familiar with the consequences.

44

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/us/en/quick-start/software/contrail-networking21/cn-quick-start/cn-quick-start.pdf
https://www.juniper.net/documentation/us/en/software/contrail-cloud13/contrail-cloud-getting-started-13/contrail-cloud-getting-started-13.pdf
https://www.youtube.com/watch?v=-bCRvVod4u8

Figure 12: Assigned Control Nodes

(Installations using VMWare vCenter only) Complete the following steps to install a control node
that is integrated with VMware vCenter. For additional information on vCenter integration with
Contrail Networking, see Understanding VMware-Contrail Networking Fabric Integration.

NOTE: Starting from Contrail Networking Release 21.4.L3, Juniper has stopped
VMWare support with Contrail Networking.

Prerequisites:

• Installed vCenter version 6.5 or later.

• Installed ESX version 6.5 or later.

• A vCenter license with Distributed Virtual Switch (DVS) support.

• Login credentials for vCenter.

To perform the integration:

a. Select the Manage vCenter check box.

The vCenter Credentials section is displayed.

b. Enter the following information:

• Enter the vCenter IP address in the vCenter IP Address field.

45

https://www.juniper.net/documentation/en_US/contrail/topics/concept/understanding-vmware-fabric-mode.html

• In the Data Center Name field, enter the name of the data center under vCenter that CVFM
will work on.

• Enter the vCenter username in the Username field.

• Enter the vCenter password in the Password field.

c. Click >, next to the name of the server, to assign a server from the Available Servers table as a
control node. The server is then added to the Assigned Control Nodes table.

Note that the contrail_vcenter_fabric_manager_node is added to the list of roles.

d. Click Next.

After assigning all control nodes, click the Next button to move to the Orchestrator Nodes
provisioning page.

12. Select your orchestration platform from the Orchestrator Type drop-down menu.

Assign any one of the servers that you created in step 8 as an orchestrator node by clicking the >
icon next to the server to move it into the Assigned nodes box.

Figure 13: Assigned nodes

The remaining processes for this step depend on your orchestration platform:

• Openstack

Click the Show Advanced box then scroll to Kolla Globals and click +Add.

46

Add the following Kolla global Key and Value pairs in most environments:

Table 3: Kolla Globals Key Value Pairs

Key Value

enable_haproxy no

enable_ironic no

enable_swift yes

swift_disk_partition_size 20GB

After assigning all orchestrator nodes and Kolla global keys and values, click the Next button to
progress to the Compute Nodes provisioning page.

• Kubernetes

Select the Kubernetes nodes from the list of available servers and assign corresponding roles to
the servers.

By default, the Kubernetes nodes are assigned the kubernetes_master_node,
kubernetes_kubemanager_node, and kubernetes_node roles.

After assigning roles to all nodes, click the Next button to progress to the Compute Nodes
provisioning page.

13. Assign any server that you created in step 8 as a compute node by clicking the > icon next to the
server to move it into the Assigned Compute nodes box.

Enter the default vRouter gateway IP Address in the Default Vrouter Gateway box after moving the
server into the Assigned Compute nodes box.

47

Figure 14: Assigned Compute nodes

After assigning all compute nodes, click the Next button to progress to the Contrail Service Nodes
provisioning page.

14. Assign any server that you created in step 8 as a Contrail Services node by clicking the > icon next
to the server to move it into the Assigned Service Nodes box.

Contrail service nodes are only used in environments with bare metal servers. If you are not using
Contrail Service nodes in your environment, click the Next button without assigning any servers
into the Assigned Service Nodes box.

The default vRouter gateway IP Address might be autocompleted in the Default Vrouter Gateway
box. This default vRouter gateway is typically the IP address of a leaf device in the fabric that is
directly connected to the server fulfilling the service node role.

After assigning all Contrail Service nodes, click the Next button to progress to the Insights Nodes
provisioning page.

NOTE: The Insights Nodes provisioning workflow is called the Appformix Nodes
workflow in Contrail Networking Release 2005 and earlier releases.

15. Contrail Insights is an optional product that isn’t used in all environments. If your are not using
Contrail Insights in your environment, simply click the Next button without assigning a server as an
Appformix node in this step.

48

NOTE: Appformix was renamed Contrail Insights. The Appformix naming is still used
in some Contrail Command screens.

• Contrail Insights

If you are using Contrail Insights in your environment, click the > icon next to the server or VM
in the Available servers box to move it into the Assigned Insights Nodes box.

NOTE: The Assigned Insights Nodes box is called Assigned Appformix Nodesin
Contrail Networking Release 2005 and earlier releases.

By default, the server is assigned the appformix_platform_node role. You can maintain this
default setting in most environments. If the role needs to be changed, click within the Roles
drop-down menu and select from the available roles.

• Contrail Insights Flows

If you are also using Contrail Insights Flows in your environment, click the > icon next to the
server or VM in the Available servers box to move it into the Assigned Insights Nodes box.

NOTE: The Assigned Insights Nodes box is called Assigned Appformix Nodesin
Contrail Networking Release 2005 and earlier releases.

Click within the Roles drop-down menu and uncheck the default appformix_platform_node role
selection. Select appformix_bare_host_node from within the Roles drop-down menu to set it as
the role.

Click the Next button to progress to the Appformix Flows provisioning page.

16. Contrail Insights Flows is an optional product that isn’t used in all environments. If your are not
using Contrail Insights Flows in your environment, simply click the Next button without assigning a
server as an Appformix Flows node in this step.

NOTE: Appformix Flows was renamed Contrail Insights Flows. The Appformix Flows
naming is still used on this Contrail Command page.

If you are using Contrail Insights Flows in your environment, make the following configuration
selections:

• Appformix Flows Node Provisioning Type:

49

• Out-of-Band—(Default) The Appformix Flows node is managed from an out-of-band
management network.

• In-Band—The Appformix Flows node is managed from an in-band connection.

• Virtual IP Address—The virtual IP address management address on the Appformix Flows node
that connects the node to the management network.

(Contrail Insights and Contrail Insights Flows on same server only) Starting in Contrail Networking
Release 2008, you can enable Contrail Insights and Contrail Insights Flows on the same server
node.

Perform these steps if you are enabling Contrail Insights and Contrail Insights Flows on the same
node:

a. Click the Show Advanced box. The advanced configuration options appear.

b. From the AppFormix Flows Configuration Parameters box, click the +Add option to open the
Key and Value configuration options.

Add the following key value pairs:

• Key: health_port

Value: 8205

• Key: kafka_broker_port

Value: 9195

• Key: zookeeper_client_port

Value: 3281

• Key: redis_port

Value: 6479

50

Figure 15: AppFormix Flows Configuration Parameters

Click the > icon next to the server or VM in the Available servers box to move it into the Assigned
AppFormix Flows Nodes box.

Figure 16: Available servers

Click the Next button to progress to the Summary page.

51

17. Review your settings in the Cluster overview screen.

Figure 17: Cluster Overview

Click any tab in the Nodes Overview box to review any configuration.

52

Figure 18: Nodes Overview

Click the Provision button after verifying your settings to provision the cluster.

The cluster provisioning process begins. This provisioning process time varies by environment and
deployment. It has routinely taken 90 minutes or more in our testing environments.

18. (Optional) Monitor the provisioning process by logging onto the Contrail Command server and
entering the docker exec contrail-command tail /var/log/contrail/deploy.log command.

19. When the provisioning process completes, click the Proceed to Login option.

You are taken to the Contrail Command login screen.

20. Login to Contrail Command from the web browser.

Enter the following values:

• Select Cluster: Select a Contrail Cluster from the dropdown menu. The cluster is presented in
the <cluster-name>-<string> format. The <cluster-name> options should include the cluster that
you just created and should match the cluster name assigned in step 10 of this procedure.

• Username: Enter the username credential to access Contrail Command. This username was set
in the command_servers.yml file configured in step 5 of the "How to Install Contrail Command" on
page 24 procedure.

• Password: Enter the password credential to access Contrail Command. This password was set in
the command_servers.yml file configured in step 5 of the "How to Install Contrail Command" on page
24 procedure.

53

• Domain: You can often leave this field blank. Contrail Command logs into the default_domain—
the default domain for all orchestration platforms supported by Contrail Command except
Canonical Openstack—when the Domain field is empty.

If you are logging into a cluster that includes Canonical Openstack as it’s orchestration platform,
you can enter admin_domain—the default domain name for Canonical Openstack—in the
Domain field if your default domain name was not manually changed.

You can enter the personalized domain name of your cloud network’s orchestration platform in
the Domain field if you’ve changed the default domain name.

See "How to Login to Contrail Command" on page 62 for additional information on logging into
Contrail Command.

21. (Optional. Contrail Insights only) Click the Contrail Insights icon on the bottom-left hand corner of
the Contrail Command page to open Contrail Insights.

NOTE: This is an Appformix icon in Contrail Networking Release 2005 and earlier
releases.

If you are not accessing Contrail Command through the fabric network, you might also have to
configure an External IP address to access Contrail Insights externally. Navigate to Infrastructure >
Advanced Options > Endpoints and locate insights in the Prefixes list. Click the Edit button—the
pencil icon—and change the Public URL field to a usable external IP address.

Contrail Insights Flows is integrated into Contrail Command. See Contrail Insights Flows in Contrail
Command.

Sample command_servers.yml Files for Installing Contrail Command

IN THIS SECTION

Minimal command_servers.yml file | 54

Complete command_servers.yml File | 56

Disaster Recovery and Troubleshooting | 60

Minimal command_servers.yml file

The following sample file has the minimum configuration that you need when you install Contrail
Command.

54

https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/telemetry-profiles-contrail-command.html
https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/telemetry-profiles-contrail-command.html

CAUTION: For security purposes, we strongly recommend creating unique username
and password combinations in your environment. Username and password combinations
are provided in this example for illustrative purposes only.

Required for Appformix and Appformix Flows installations in Release 2003 and earlier
user_command_volumes:
- /opt/software/appformix:/opt/software/appformix
- /opt/software/xflow:/opt/software/xflow
command_servers:
 server1:
 ip: <IP Address> # IP address of server where you want to install Contrail Command
 connection: ssh
 ssh_user: root
 ssh_pass: <contrail command server password>
 sudo_pass: <contrail command server root password>
 ntpserver: <NTP Server address>

 registry_insecure: false
 container_registry: hub.juniper.net/contrail
 container_tag: <container_tag>
 container_registry_username: <registry username>
 container_registry_password: <registry password>
 config_dir: /etc/contrail

 contrail_config:
 database:
 type: postgres
 dialect: postgres
 password: contrail123
 keystone:
 assignment:
 data:
 users:
 admin:
 password: contrail123
 insecure: true
 client:
 password: contrail123

55

Complete command_servers.yml File

The following sample file has an exhaustive list of configurations and supporting parameters that you
can use when you install Contrail Command.

CAUTION: For security purposes, we strongly recommend creating unique username
and password combinations in your environment. Username and password combinations
are provided in this example for illustrative purposes only.

Required for Appformix and Appformix Flows installations in Release 2003 and earlier
user_command_volumes:
- /opt/software/appformix:/opt/software/appformix
- /opt/software/xflow:/opt/software/xflow

User defined volumes
#user_command_volumes:
- /var/tmp/contrail:/var/tmp/contrail

command_servers:
 server1:
 ip: <IP Address>
 connection: ssh
 ssh_user: root
 ssh_pass: <contrail command server password>
 sudo_pass: <contrail command server root password>
 ntpserver: <NTP Server address>

 # Specify either container_path
 #container_path: /root/contrail-command-051618.tar
 # or registry details and container_name
 registry_insecure: false
 container_registry: hub.juniper.net/contrail
 container_name: contrail-command
 container_tag: <container_tag>
 container_registry_username: <registry username>
 container_registry_password: <registry password>
 config_dir: /etc/contrail

 # contrail command container configurations given here go to /etc/contrail/contrail.yml
 contrail_config:

56

 # Database configuration. PostgreSQL supported
 database:
 type: postgres
 dialect: postgres
 host: localhost
 user: root
 password: contrail123
 name: contrail_test
 # Max Open Connections for DB Server
 max_open_conn: 100
 connection_retries: 10
 retry_period: 3s

 # Log Level
 log_level: debug

 # Cache configuration
 cache:
 enabled: true
 timeout: 10s
 max_history: 100000
 rdbms:
 enabled: true

 # Server configuration
 server:
 enabled: true
 read_timeout: 10
 write_timeout: 5
 log_api: true
 address: ":9091"

 # TLS Configuration
 tls:
 enabled: true
 key_file: /usr/share/contrail/ssl/cs-key.pem
 cert_file: /usr/share/contrail/ssl/cs-cert.pem

 # Enable GRPC or not
 enable_grpc: false

 # Static file config
 # key: URL path

57

 # value: file path. (absolute path recommended in production)
 static_files:
 /: /usr/share/contrail/public

 # API Proxy configuration
 # key: URL path
 # value: String list of backend host
 #proxy:
 # /contrail:
 # - http://localhost:8082

 notify_etcd: false

 # VNC Replication
 enable_vnc_replication: true

 # Keystone configuration
 keystone:
 local: true
 assignment:
 type: static
 data:
 domains:
 default: &default
 id: default
 name: default
 projects:
 admin: &admin
 id: admin
 name: admin
 domain: *default
 demo: &demo
 id: demo
 name: demo
 domain: *default
 users:
 admin:
 id: admin
 name: Admin
 domain: *default
 password: contrail123
 email: admin@juniper.nets
 roles:

58

 - id: admin
 name: admin
 project: *admin
 bob:
 id: bob
 name: Bob
 domain: *default
 password: bob_password
 email: bob@juniper.net
 roles:
 - id: Member
 name: Member
 project: *demo
 store:
 type: memory
 expire: 36000
 insecure: true
 authurl: https://localhost:9091/keystone/v3

 # disable authentication with no_auth true and comment out keystone configuraion.
 #no_auth: true
 insecure: true

 etcd:
 endpoints:
 - localhost:2379
 username: ""
 password: ""
 path: contrail

 watcher:
 enabled: false
 storage: json

 client:
 id: admin
 password: contrail123
 project_name: admin
 domain_id: default
 schema_root: /
 endpoint: https://localhost:9091

 compilation:

59

 enabled: false
 # Global configuration
 plugin_directory: 'etc/plugins/'
 number_of_workers: 4
 max_job_queue_len: 5
 msg_queue_lock_time: 30
 msg_index_string: 'MsgIndex'
 read_lock_string: "MsgReadLock"
 master_election: true

 # Plugin configuration
 plugin:
 handlers:
 create_handler: 'HandleCreate'
 update_handler: 'HandleUpdate'
 delete_handler: 'HandleDelete'

 agent:
 enabled: true
 backend: file
 watcher: polling
 log_level: debug

 # The following are optional parameters used to patch/cherrypick
 # revisions into the contrail-ansible-deployer sandbox. These configs
 # go into the /etc/contrail/contrail-deploy-config.tmpl file
cluster_config:
ansible_fetch_url: "https://review.opencontrail.org/Juniper/contrail-ansible-
deployer refs/changes/80/40780/20"
ansible_cherry_pick_revision: FETCH_HEAD
ansible_revision: GIT_COMMIT_HASH

Disaster Recovery and Troubleshooting

SUMMARY

This section lists commonly seen errors and failure
scenarios and procedures to fix them.

IN THIS SECTION

Problem | 61

Solution | 61

60

Problem | 61

Solution | 62

Problem

Description

Recovering the Galera Cluster Upon Server Shutdown—In an OpenStack HA setup provisioned using
Kolla and OpenStack Rocky, if you shut down all the servers at the same time and bring them up later,
the Galera cluster fails.

Solution

To recover the Galera cluster, follow these steps:

1. Edit the /etc/kolla/mariadb/galera.cnf file to remove the wsrep address on one of the controllers as
shown here.

wsrep_cluster_address = gcomm://
#wsrep_cluster_address = gcomm://10.x.x.8:4567,10.x.x.10:4567,10.x.x.11:4567

NOTE: If all the controllers are shut down in the managed scenario at the same time,
you must select the controller that was shut down last.

2. Docker start mariadb on the controller on which you edited the file.

3. Wait for a couple of minutes, ensure that the mariadb container is not restarting, and then Docker
start mariadb on the remaining controllers.

4. Restore the /etc/kolla/mariadb/galera.cnf file changes and restart the mariadb container on the
previously selected controller.

Problem

Description

Containers from Private Registry Not Accessible—You might have a situation in which containers that
are pulled from a private registry named CONTAINER_REGISTRY are not accessible.

61

Solution

To resolve, check to ensure that REGISTRY_PRIVATE_INSECURE is set to True.

RELATED DOCUMENTATION

Video: Using Contrail Command to Install Contrail Networking 2005 and Contrail Insights

Server Requirements and Supported Platforms | 16

How to Login to Contrail Command

Contrail Command is a single pane-of-glass GUI that configures and monitors Contrail Networking. You
can login to Contrail Command using these instructions.

To login to Contrail Command:

Before you begin:

• Install Contrail Command. See "How to Install Contrail Command and Provision Your Contrail Cluster"
on page 22.

1. Open a web browser and enter https://<Contrail-Command-Server-IP-Address>:<port-number> as the URL.

The default port number is 9091 in most environments. The port number can be reset using the
address: field in the server: hierarchy within the command_servers.yml file.

The Contrail Command home screen appears.

2. Select your Contrail cluster from the Select Cluster drop-down menu. Leave this field blank if you are
logging into Contrail Command to create a cluster.

Your cluster is presented within the drop-down menu in the <cluster-name>-<string> format. Your
cluster-name was defined during the cluster creation process and the string is a randomly-generated
character string.

In Figure 19 on page 63, the cluster-name is clstr1.

62

https://www.youtube.com/watch?v=3a-x3wdVRMA&feature=youtu.be

Figure 19: Contrail Command Login Homepage—Select Cluster

3. Enter the username and password credentials in the Username and Password fields. The username
and password credentials are set in the command_servers.yml file during the Contrail Command
installation. See "How to Install Contrail Command and Provision Your Contrail Cluster" on page 22.

For security purposes, we strongly recommend creating unique username and password
combinations in your environment. If you didn’t change your password in the command_servers.yml file,
however, the default username to access Contrail Command in most deployments is admin and the
password is contrail123.

4. Enter the domain name of the cluster in the Domain field.

You can often leave this field blank. Contrail Command logs into the default_domain—the default
domain for all orchestration platforms supported by Contrail Command except Canonical Openstack
—when the Domain field is empty.

You may have to enter a domain in the following use cases:

• Canonical Openstack orchestration. If you are logging into a cluster that includes Canonical
Openstack as it’s orchestration platform, you can enter admin_domain—the default domain name
for Canonical Openstack—in the Domain field if your default domain name was not manually
changed.

• You have manually changed the domain name in your cloud network’s orchestration platform. You
can enter the personalized domain name of your cloud network’s orchestration platform in the
Domain field if you’ve changed the default domain name.

63

Figure 20: Contrail Command Login Page Example

5. Press the Log in button to enter Contrail Command.

RELATED DOCUMENTATION

How to Install Contrail Command and Provision Your Contrail Cluster | 22

Video: Using Contrail Command to Install Contrail Networking 2005 and Contrail Insights

Contrail Networking Installation and Upgrade Guide

Navigating the Contrail Command UI

IN THIS SECTION

Using the Get Started with Contrail Enterprise Multicloud Panel | 65

Navigating to pages using the side panel | 67

Hiding the side panel | 68

Search functionality | 68

64

https://www.youtube.com/watch?v=3a-x3wdVRMA

Pinning favorite pages | 70

Opening external applications | 75

Using the What’s New Panel | 75

Supported Browsers for Installing Contrail Command | 76

Contrail Networking Release 2003 introduces a redesigned Contrail Command UI. This topic describes
how to navigate the UI, some of the new and improved features that the UI offers, and the supported
browsers to install Contrail Command.

Using the Get Started with Contrail Enterprise Multicloud Panel

Starting with Contrail Networking Release 2003, you can use the Get Started with Contrail Enterprise
Multicloud panel in Contrail Command. This Get Started panel provides a user-friendly walkthrough of
initial Contrail Command configuration tasks. The panel includes Begin buttons that allow for quick task
initiation and a dynamic tracking mechanism that tracks task progress.

The Get Started panel appears automatically when Contrail Command is initially accessed and can
always be opened by selecting the Get Started with Contrail option in the ? help menu. If you choose to
close the panel, it remains closed within Contrail Command—including across login sessions—unless you
choose to open the panel by selecting the Get Started with Contrail option.

Figure 21 on page 66 shows the Get Started with Contrail Enterprise Multicloud panel home screen.

65

Figure 21: Get Started with Contrail Enterprise Multicloud Home Screen

Figure 22 on page 67 shows how to open the Get Started with Contrail Enterprise Multicloud panel
within Contrail Command.

66

Figure 22: Get Started with Contrail Option

The Get Started panel has the following limitations:

• if you switch between web browsers or login using incognito mode, the task status within the panel
is lost.

• If you clear your web browser cache or delete your web browser’s cookies, the task status within the
panel is lost.

• If you access Contrail Command from a different web browser or login using incognito mode, the
panel opens by default even if it had previously been closed.

• If you clear your web browser cache or delete your web browser’s cookies, the panel opens by
default even if it had previously been closed.

Navigating to pages using the side panel

All menu options are available in a side panel on the left of the UI. The side panel displays the main
menu categories available in Contrail Command. Mouse over each category to view the corresponding
second tier menu options. These second tier menu options correspond to pages and you can click the
menu option to open the page.

The category as well as the page name can be viewed in the bread crumbs visible on the top banner. You
can click on page names in the bread crumbs to navigate to the page, but the category name is not
clickable.

67

Figure 23: Contrail Command Side Panel

Hiding the side panel

You can also hide the side panel from view. To hide the side panel, click the toggle button (≡) on the top
left of the banner on any page in Contrail Command. To view the side panel, click the toggle button (≡)
again.

Search functionality

If you are unaware of the navigation path to any page, you can use the search functionality to search for
the page. The updated Contrail Command UI has a search text box at the top of the left side panel.
When you enter a string in the search text box, all the categories containing matching terms are
highlighted in a bold font. All other categories are greyed out.

68

Figure 24: Contrail Command Search Function–Relevant Categories

Mouse over each highlighted category to view the corresponding second tier menu options. While all
the menu options of the category are displayed, the pages matching the search input are highlighted in
yellow.

69

Figure 25: Contrail Command Search Function–Relevant Pages

Pinning favorite pages

You can pin frequently visited pages to the favorites category. The left side panel has a Favorites
category under the search text box and you can add second tier menu options to this category. Initially
this category is empty and is grayed out.

• Adding to Favorites – To add a page to favorites, mouse over a category in the side panel to display
the second tier menu options. Mouse over the menu option and click the pin icon in-line with the
page name to add to favorites.

70

Figure 26: Contrail Command Favorites Function–Add Page

Once pages are added, the Favorites category gets enabled and the pinned page is displayed
underneath it.

71

Figure 27: Contrail Command Favorites Function

NOTE: Pinned favorite pages are stored in the Web browser cache in local storage. The
existing favorite-page list disappears if you switch between Web browsers, or if you log
in under the incognito mode, or if you clear Web browser cache and cookies.

• Deleting from Favorites - You can delete pages from the favorites category in any one of the
following two ways. You can click the enabled pin icon available in-line with the pinned page in the
favorites category to remove the page.

72

Figure 28: Contrail Command Favorites Function–Remove Page In-line

Alternatively, mouse over the corresponding category of the pinned page to display all the second
tier menu options. Mouse over the pinned page and click the enabled pin icon in-line with the page
name to remove it from the favorites category.

73

Figure 29: Contrail Command Favorites Function–Remove Page in Panel

You can also collapse and expand the Favorites category by clicking the arrow icon (∧ or ∨) next to the
category name.

74

Opening external applications

To open integrated external applications such as Contrail Insights, click the application name in the
footer of the side panel on the left.

NOTE: If no external applications are available, the footer in the side panel is not visible.

Figure 30: Contrail Command Accessing External Applications

Using the What’s New Panel

Starting with Contrail Networking Release 2005, you can use the What’s New panel within Contrail
Command to gather a summary list of the new Contrail Networking features in your Contrail Networking
release. The What’s New panel provides a high-level description of each new feature and a See Release
Notes option that takes you to the Contrail Networking Release Notes for additional feature
information.

You can access the What’s New panel by selecting the What’s New option in the ? help menu.

75

Figure 31: What's New Panel

Supported Browsers for Installing Contrail Command

Use the following supported browsers to install Contrail Command.

Contrail Networking Release Supported Browsers and Versions

76

2008 • Chrome 80, 81, 83, 84

• Firefox 68, 75, 76, 77, 78

• Microsoft Edge 80, 81, 83, 84

• Opera 66, 67, 68, 69

• Safari 12, 12.1, 13, 13.1

2005 • Chrome 78, 79, 80, 81

• Firefox 68, 72, 73, 74, 75

• Microsoft Edge 18, 79, 80, 81

• Opera 65, 66, 67, 68

• Safari 12, 12.1, 13, 13.1

2003 • Chrome 77, 78, 79, 80

• Firefox 68, 71, 72, 73, 74

• Microsoft Edge 17, 18, 79, 80

• Opera 63, 64, 65, 66

• Safari 12, 12.1, 13, 13.1

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2003 Contrail Networking Release 2003 introduces a redesigned Contrail Command UI.

77

https://apps.juniper.net/feature-explorer/

Installing a Contrail Cluster using Contrail Command and instances.yml

Contrail Networking supports deploying Contrail cluster using Contrail Command and the instances.yml
file. A YAML file provides a concise format for specifying the instance settings.

We recommend installing Contrail Command and deploying your Contrail cluster from Contrail
Command in most Contrail Networking deployments. See "How to Install Contrail Command and
Provision Your Contrail Cluster" on page 22. You should only use the procedure in this document if you
have a strong reason to not use the recommended procedure.

System Requirements

• A VM or physical server with:

• 4 vCPUs

• 32 GB RAM

• 100 GB disk

• Internet access to and from the physical server, hereafter referred to as the Contrail Command server

• (Recommended) x86 server with CentOS 7.6 as the base OS to install Contrail Command

For a list of supported platforms for all Contrail Networking releases, see Contrail Networking Supported
Platforms List.

NOTE: Contrail Release 5.1 does not support Contrail Insights deployment from
command line with Contrail Cluster instances.yml file.

Before you begin

docker-py Python module is superseded by docker Python module. You must remove docker-py and docker
Python packages from all the nodes where you want to install the Contrail Command UI.

pip uninstall docker-py docker

Configuration

Perform the following steps to deploy a Contrail Cluster using Contrail Command and the instances.yml
file.

1. Install Docker to pull contrail-command-deployer container. This package is necessary to automate
the deployment of Contrail Command software.

yum install -y yum-utils device-mapper-persistent-data lvm2

78

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install -y docker-ce-18.03.1.ce

systemctl start docker

2. Download the contrail-command-deployer Docker container image from hub.juniper.net. To
download these containers and for access to hub.juniper.net, refer to the Access to Contrail Registry
topic on the Contrail software download page. Allow Docker to connect to the private secure
registry.

docker login hub.juniper.net --username <container_registry_username> --password <container_registry_password>

Pull contrail-command-deployer container from the private secure registry.

docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

Example, for container_tag: 5.1.0-0.38, use the following command:

docker pull hub.juniper.net/contrail/contrail-command-deployer:5.1.0-0.38

3. Edit the input configuration instances.yml file. See "No Link Title" on page 80 for a sample
instances.yml file.

4. Start the contrail_command_deployer container to deploy the Contrail Command (UI) server and
provision Contrail Cluster using the instances.yml file provided.

docker run -td --net host -e action=provision_cluster -v <ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/
command_servers.yml -v < ABSOLUTE_PATH_TO_INSTANCES_FILE>:/instances.yml --privileged --name
contrail_command_deployer hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

The contrail_command and contrail_psql Contrail Command containers will be deployed. Contrail Cluster
is also provisioned using the given instances.yml file.

5. (Optional) Track the progress of 4.

docker logs -f contrail_command_deployer

6. Once the playbook execution completes, log in to Contrail Command using https://Contrail-
Command-Server-IP-Address:9091. Use the same user name and password that was entered in 3.
Default username is admin and password is contrail123.

NOTE: We strongly recommend creating a unique username and password for Contrail
Command. See Installing Contrail Command for additional information on creating
username and password combinations.

NOTE: Enable subscription on all the RedHat nodes.

79

https://www.juniper.net/support/downloads/?p=contrail
https://Contrail-Command-Server-IP-Address:9091
https://Contrail-Command-Server-IP-Address:9091
https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

sudo subscription-manager register --username <USERNAME> –-password <PASSWORD>
sudo subscription-manager attach --pool pool_id

sudo subscription-manager repos --enable=rhel-7-server-rpms --enable=rhel-7-server-rh-
common-rpms --enable=rhel-ha-for-rhel-7-server-rpms --enable=rhel-7-server-extras-rpms

Sample instances.yml File

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:
 ssh_pwd: <Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <BMS IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 vrouter:
 openstack:
 openstack_compute:
 bms2:
 provider: bms
 ip: <BMS2 IP>
 roles:
 openstack:
 bms3:
 provider: bms

80

 ip: <BMS3 IP>
 roles:
 openstack:
 bms4:
 provider: bms
 ip: <BMS4 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms5:
 provider: bms
 ip: <BMS5 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms6:
 provider: bms
 ip: <BMS6 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms7:
 provider: bms
 ip: <BMS7 IP>
 roles:
 vrouter:
 PHYSICAL_INTERFACE: <Interface name>
 VROUTER_GATEWAY: <Gateway IP>
 openstack_compute:
 bms8:
 provider: bms

81

 ip: <BMS8 IP>
 roles:
 vrouter:
 # Add following line for TSN Compute Node
 TSN_EVPN_MODE: True
 openstack_compute:
contrail_configuration:
 CLOUD_ORCHESTRATOR: openstack
 CONTRAIL_VERSION: latest or <contrail_container_tag>

 RABBITMQ_NODE_PORT: 5673
 KEYSTONE_AUTH_PUBLIC_PORT: 5005
 VROUTER_GATEWAY: <Gateway IP>
 ENCAP_PRIORITY: VXLAN,MPLSoUDP,MPLSoGRE
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <Internal VIP>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONTROLLER_NODES: < list of mgmt. ip of control nodes >
 CONTROL_NODES: <list of control-data ip of control nodes>
 OPENSTACK_VERSION: queens
kolla_config:
 kolla_globals:
 openstack_release: queens
 kolla_internal_vip_address: <Internal VIP>
 kolla_external_vip_address: <External VIP>
 openstack_release: queens
 enable_haproxy: "no" ("no" by default, set "yes" to enable)
 enable_ironic: "no" ("no" by default, set "yes" to enable)
 enable_swift: "no" ("no" by default, set "yes" to enable)
 keystone_public_port: 5005
 swift_disk_partition_size = 10GB
 keepalived_virtual_router_id: <Value between 0-255>
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

NOTE: This representative instances.yaml file configures non-default Keystone ports by
setting the keystone_public_port: and KEYSTONE_AUTH_PUBLIC_PORT:.

82

RELATED DOCUMENTATION

Installing Contrail Command

Installing a Contrail Cluster using Contrail Command

Importing Contrail Cluster Data using Contrail Command | 86

Importing Contrail Cluster Data using RedHat Director

You can use this document to deploy Contrail Command and import an existing cluster into Contrail
Command with a single procedure in environments that are using Redhat Director.

If you want to perform this procedure in an environment that is using Contrail Networking but is not
using Redhat Director, see "Importing Contrail Cluster Data using Contrail Command" on page 86.

Prerequisites

This document makes the following assumptions about your environment:

• You are running Contrail Networking Release 21.4.L1 or later with RHEL 8.4.

• You have a VM or a BareMetal server available for running Contrail Command, the contrail-command
VM.

• Your Contrail Command node is registered with a RedHat subscription and you have a content lock
on RHEL-8.4.

• You have installed podman on the machine running Contrail Command.

You can install podman by entering the yum install podman command.

• Contrail Command has access to the RedHat provision network and a Keystone connection.

• Your Contrail Command node is configured with the proper DNS address in the /etc/resolv.conf file.

Example:

[root@command-vm-rcompute tmp]# cat /etc/resolv.conf
search 5b6s1.local
nameserver 192.168.24.252

• Your Contrail Command VM has an updated keystone access IP address in the /etc/hosts file.

83

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/contrail-command-cluster.html

Example:

[root@command-vm-rcompute tmp]# cat /etc/hosts
10.2.0.99 overcloud.5c7.local
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

Import the Contrail Cluster

Perform the following steps to import the Contrail Cluster data.

1. Create the command_servers.yml file.

Example:

[root@command-vm-rcompute ~]# cat command_servers.yml
command_servers:
 server1:
 ip: 10.87.86.111
 connection: ssh
 ssh_user: root
 ssh_pass: password
 sudo_pass: password
 ntpserver: 10.84.5.100
 registry_insecure: true
 container_registry: svl-artifactory.juniper.net/contrail-nightly
 container_tag: 21.4.L1.185
 contrail_config:
 database:
 type: postgres
 dialect: postgres
 password: password
 keystone:
 assignment:
 data:
 users:
 admin:
 password: keystone-password
 insecure: true
 client:
 password: password

84

2. Import the Contrail cluster by entering this command from the Contrail Command node:

podman run -td --net host -e orchestrator=tripleo -e undercloud=Undercloud-IP-address -e
undercloud_user=stack
-e undercloud_password=Undercloud-password -e action=import_cluster -v /root/
command_servers.yml:/command_servers.yml --privileged --name
contrail_command_deployer Container-Tag

You can obtain the Container-tag for your version of Contrail Networking at README Access to
Contrail Registry 21XX.

If you need to access the Contrail private secure registry, e-mail contrail-registry@juniper.net to
obtain credentials.

Example:

podman run -td --net host -e orchestrator=tripleo -e undercloud=192.168.24.1 -e
undercloud_user=stack -e undercloud_password=contrail
-e action=import_cluster -v /root/command_servers.yml:/command_servers.yml --privileged --
name contrail_command_deployer
enterprise-hub.juniper.net/contrail-container-prod/contrail-command-deployer:21.4.L1.185

[root@command-vm-rcompute ~]# podman images
REPOSITORY
TAG IMAGE ID CREATED SIZE
enterprise-hub.juniper.net/contrail-container-prod/contrail-command-deployer
21.4.L1.185 d500a3307c7f 4 weeks ago 1.13 GB

3. Enter the docker ps command to confirm that Contrail Command and other Contrail containers are
up and running.

[root@command-vm-rcompute ~]# docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS NAMES
8ce9ae465361 svl-artifactory.juniper.net/contrail-nightly/contrail-command:21.4.L1.184 "/bin/
commandappserv…" 4 weeks ago Up 4 weeks contrail_command
6af5bd0bf432 circleci/postgres:10.3-alpine
"docker-entrypoint.s…" 4 weeks ago Up 4 weeks contrail_psql

85

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Importing Contrail Cluster Data using Contrail Command

Contrail Networking supports importing of Contrail Cluster data to Contrail Command provisioned using
one of the following applications - OpenStack, Kubernetes, VMware vCenter, and TripleO.

Before you begin

docker-py Python module is superseded by docker Python module. You must remove docker-py and docker
Python packages from all the nodes where you want to install the Contrail Command UI.

pip uninstall docker-py docker

System Requirements

• A VM or physical server with:

• 4 vCPUs

• 32 GB RAM

• 100 GB storage

• Internet access to and from the physical server, which is the Contrail Command server.

• (Recommended) x86 server with CentOS 7.6 as the base OS to install Contrail Command.

For a list of supported platforms for all Contrail Networking releases, see Contrail Networking Supported
Platforms List.

Access Container Tags are located at README Access to Contrail Registry 21XX.

If you need access to Contrail docker private secure registry, e-mail contrail-registry@juniper.net for
Contrail container registry credentials.

Configuration

Perform the following steps to import Contrail Cluster data.

1. Install Docker to pull contrail-command-deployer container. This package is necessary to automate
the deployment of Contrail Command software.

yum install -y yum-utils device-mapper-persistent-data lvm2

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install -y docker-ce-18.03.1.ce

systemctl start docker

86

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

2. Download the contrail-command-deployer Docker container image to deploy contrail-command
(contrail_command, contrail_psql containers) from hub.juniper.net. Allow Docker to connect to the
private secure registry.

docker login hub.juniper.net --username <container_registry_username> --password <container_registry_password>

Pull contrail-command-deployer container from the private secure registry.

docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

Example, for container_tag:5.1.0-0.38, use the following command:

docker pull hub.juniper.net/contrail/contrail-command-deployer:5.1.0-0.38

3. Get the command_servers.yml file that was used to bring the Contrail Command server up and the
configuration file that was used to provision the Contrail Cluster.

NOTE: "For OpenShift orchestrator use the ose-install file instead of instances.yml file.

4. Start the contrail-command-deployer container to deploy the Contrail Command (UI) server and import
Contrail Cluster data to Contrail Command (UI) server using the Cluster configuration file provided.

• Import Contrail‑Cluster provisioned using a supported orchestrator (OpenStack/Kubernetes/
OpenShift/vCenter/Mesos).

docker run -td --net host -e orchestrator=<YOUR_ORCHESTRATOR> -e action=import_cluster -v <
ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/command_servers.yml -v < ABSOLUTE_PATH_TO_CLUSTER_CONFIG_FILE>:/
instances.yml --privileged --name contrail_command_deployer hub.juniper.net/contrail/contrail-command-
deployer:<container_tag>

To use the following supported orchestrators, replace <YOUR_ORCHESTRATOR> in the command with the
options given below.

• For OpenStack, use openstack.

• For Kubernetes, use kubernetes.

• For Red Hat OpenShift, use openshift.

NOTE: You must use ose-install file instead of instances.yml file.

• For VMware vCenter, use vcenter.

• For Mesos, use mesos.

• Import Contrail‑Cluster provisioned using OSPDirector/TripleO Life Cycle Manager for RedHat
OpenStack Orchestration.

87

Prerequisites:

• IP_ADDRESS_OF_UNDERCLOUD_NODE is an Undercloud node IP that must be reachable
from the contrail-command-deployer node. You must be able to SSH to Undercloud node from
the contrail-command-deployer node.

• External VIP is an Overcloud VIP where OpenStack and Contrail public endpoints are available.
External VIP must be reachable from Contrail Command node.

• DNS host name for Overcloud external VIP must be resolvable on Contrail Command node.
Add the entry in the /etc/hosts file.

docker run -td --net host -e orchestrator=tripleo -e action=import_cluster -e
undercloud=<IP_ADDRESS_OF_UNDERCLOUD_NODE> -e undercloud_user=<user-name> -e
undercloud_password=<STACK_USER_PASSWORD_FOR_SSH_TO_UNDERCLOUD> -v <
ABSOLUTE_PATH_TO_COMMAND_SERVERS_FILE>:/command_servers.yml --privileged --name contrail_command_deployer
hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

NOTE: undercloud_user is root by default. Otherwise, the undercloud username is
stack in most of the cases.

• Contrail command server must have access to External VIP network to communicate with the
configured endpoints.

Run the following commands:

ovs-vsctl add-port br0 vlan<externalNetworkVlanID> tag=<externalNetworkVlanID> -- set
interface vlan<externalNetworkVlanID> type=internal
ip link set dev vlan<externalNetworkVlanID> up
ip addr add <externalNetworkGatewayIP>/<subnetMask> dev vlan<externalNetworkVlanID>

• If you have used domain name for the external VIP, add the entry in the /etc/hosts file.

Run the following commands:

docker exec -it contrail_command bash
vi /etc/hosts
<externalVIP> <externalVIP’sDomainName>

88

Sample instances.yml file

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:
 ssh_pwd: <Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <BMS1 IP>
 roles:
 openstack:
 bms2:
 provider: bms
 ip: <BMS2 IP>
 roles:
 openstack:
 bms3:
 provider: bms
 ip: <BMS3 IP>
 roles:
 openstack:
 bms4:
 provider: bms
 ip: <BMS4 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms5:
 provider: bms
 ip: <BMS5 IP>
 roles:

89

 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms6:
 provider: bms
 ip: <BMS6 IP>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 bms7:
 provider: bms
 ip: <BMS7 IP>
 roles:
 vrouter:
 PHYSICAL_INTERFACE: <Interface name>
 VROUTER_GATEWAY: <Gateway IP>
 openstack_compute:
 bms8:
 provider: bms
 ip: <BMS8 IP>
 roles:
 vrouter:
 # Add following line for TSN Compute Node
 TSN_EVPN_MODE: True
 openstack_compute:
contrail_configuration:
 CLOUD_ORCHESTRATOR: openstack
 CONTRAIL_VERSION: latest or <contrail_container_tag>
 CONTRAIL_CONTAINER_TAG: <contrail_container_tag>-queens
 RABBITMQ_NODE_PORT: 5673
 VROUTER_GATEWAY: <Gateway IP>
 ENCAP_PRIORITY: VXLAN,MPLSoUDP,MPLSoGRE
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <Internal VIP>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONTROLLER_NODES: < list of mgmt. ip of control nodes >

90

 CONTROL_NODES: <list of control-data ip of control nodes>
 OPENSTACK_VERSION: queens
kolla_config:
 kolla_globals:
 openstack_release: queens
 kolla_internal_vip_address: <Internal VIP>
 kolla_external_vip_address: <External VIP>
 openstack_release: queens
 enable_haproxy: "no" ("no" by default, set "yes" to enable)
 enable_ironic: "no" ("no" by default, set "yes" to enable)
 enable_swift: "no" ("no" by default, set "yes" to enable)
 keepalived_virtual_router_id: <Value between 0-255>
 kolla_passwords:
 keystone_admin_password: <Keystone Admin Password>

RELATED DOCUMENTATION

Installing Contrail Command

Installing a Contrail Cluster Using Contrail Command

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Adding a New Compute Node to Existing Contrail Cluster Using Contrail
Command

You can add or remove a new node from an existing containerized Contrail cluster.

To add a new compute node to an existing Contrail OpenStack cluster:

1. Login to Contrail Command UI as a super user using credentials admin for username and contrail123
for password.

The default credentials for Contrail Command are admin for username and contrail123 for password.
We strongly recommend creating a unique username and password combination. See Installing
Contrail Command.

2. Click Servers.

a. Click Create.

91

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/contrail-command-cluster.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

b. Enter the required details.

c. Click Create.

3. Click Cluster.

a. Click Add under Compute Nodes.

b. Select the required server from Available Servers list.

92

c. Click Assign Nodes.

93

Perform the following steps to remove a compute node from an existing Contrail OpenStack cluster.

NOTE: Workloads on the deleted computes must be removed before removing the
compute node from the cluster.

1. Login to Contrail Command UI as a super user using credentials admin for username and contrail123
for password.

The default credentials for Contrail Command are admin for username and contrail123 for password.
We strongly recommend creating a unique username and password combination for security
purposes. See Installing Contrail Command.

2. Click Cluster.

3. Click Compute Nodes.

4. Remove the required compute node.

94

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

You can also add a compute node to existing Contrail cluster using instances.yaml file. For details, refer
to How to Add a New Compute Node to an Existing Contrail Cluster Using the instances.yaml File.

How to Deploy Contrail Command and Import a Cluster Using Juju

IN THIS SECTION

Overview: Deploying Contrail Command with a Contrail Cluster Using Juju | 96

Preparing the SSL Certificate Authority (CA) for the Deployment | 96

Deploy Contrail Command and Import a Contrail Cluster Using Juju | 98

Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju | 102

Prerequisites for Contrail Insights and Contrail Insights Flow | 104

Contrail Insights Installation for Ubuntu Focal | 104

Install Contrail Insights on the Juju Cluster after Contrail Command is Installed | 105

95

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/adding-new-cluster.html

Install Contrail Insights Flows on the Juju Cluster after Contrail Insights is Installed | 106

You can use this document to deploy Contrail Command and import an existing cluster into Contrail
Command using Juju with a single procedure. This procedure can be applied in environments using
Canonical Openstack or environments that are running Juju and using Kubernetes for orchestration.

If you are already running Contrail Command in a Canonical Openstack environment and want to import
a cluster, see "Importing a Canonical Openstack Deployment Into Contrail Command" on page 109.

Overview: Deploying Contrail Command with a Contrail Cluster Using Juju

Starting in Contrail Release 2005, you can deploy Contrail Command and import a cluster using Juju in a
Canonical Openstack environment.

Starting in Contrail Release 2008, you can deploy Contrail Command and import a cluster using Juju in
an environment using Kubernetes orchestration.

This document makes the following assumptions about your initial environment:

• Juju is already running in your environment, and your environment is either a Canonical Openstack
deployment or a deployment using Kubernetes orchestration.

• Contrail Networking Release 2005 or later is running if you are operating a Canonical Openstack
deployment.

Contrail Networking Release 2008 or later is running if you are operating an environment using
Kubernetes orchestration.

See Contrail Networking Supported Platforms for information on the supported software
components for any Contrail Networking release.

• A Juju controller is configured and reachable.

• Contrail Command is not running.

Preparing the SSL Certificate Authority (CA) for the Deployment

A base64-encoded SSL Certificate Authority (CA) for the Juju controller is required to deploy Contrail
Command with an existing cluster in a Canonical Openstack or Kubernetes environment.

There are multiple ways to generate a base64-encoded SSL CA. You can use this procedure or a more
familiar procedure to generate your base64-encoded SSL CA.

To create a base64-encoded SSL CA:

96

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

1. From the Juju jumphost, enter the juju show-controller command and locate the certificate output in
the ca-cert: hierarchy.

$ juju show-controller
 jc5-cloud:
 details:
 ...<output removed for readability>...
 ca-cert: |
 -----BEGIN CERTIFICATE-----
 MIIErTCCAxWgAwIBAgIVAKRPIub8Q7imJ2+T2U8AK4thOss7MA0GCSqGSIb3DQEB
 CwUAMG4xDTALBgNVBAoTBGp1anUxLjAsBgNVBAMMJWp1anUtZ2VuZXJhdGVkIENB
 IGZvciBtb2RlbCAianVqdS1jYSIxLTArBgNVBAUTJDI0ZDJjODg0LTllYWYtNDU2
 Ni04NTA0LWJkZGYxZWJiYTgzYjAeFw0yMDA0MTUwMzE2MzdaFw0zMDA0MjIwMzE2
 MzVaMG4xDTALBgNVBAoTBGp1anUxLjAsBgNVBAMMJWp1anUtZ2VuZXJhdGVkIENB
 IGZvciBtb2RlbCAianVqdS1jYSIxLTArBgNVBAUTJDI0ZDJjODg0LTllYWYtNDU2
 Ni04NTA0LWJkZGYxZWJiYTgzYjCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCCAYoC
 ggGBAL/7d3JtNcHW6ue6yOeKvOlSDhxgGs4vYLDO0QzlIMyW39+BytB4XY+05EBg
 A5JKfYV+u8xXL0meLvh+4yE87cwRObsT1WYFCDFVTiGSeSN3w+2UJxHWwuAubDl7
 zfAKnGgIzq/KZJJimxa6Yuqw5isCxffu3fQz+H5UlSpLCpFxvAq38VjrW7FnjEm1
 c4fFlBf07LUOqBxSIS0gxarO1DQE2IQv4mfIAFvJgT/5UKJYuGEX3NH9DerYqjJa
 NchyGMkXgyBj3YVec8bFE4+erDMISBvJHBMwyx74PTDQys+KlfNXptup5FH/FwBb
 9ZRBAD99c0f0VW6moNxoAkKhrGVZt1w7CxwvgRZnWUezthwoHI8yFqBvkT+lq6Nd
 jvLEv1DQ+3zmMfhz/emRD1DOQQfn3mQhSk40NdO3kw/B8bHOIXmgIgNbv48g0Ac7
 /hQO02moDxrLkCZNN0fVgOKvonDjbSo5YNCH/7fleacmQN3Mug3wXp9kYh7rKDHw
 6pkQQwIDAQABo0IwQDAOBgNVHQ8BAf8EBAMCAqQwDwYDVR0TAQH/BAUwAwEB/zAd
 BgNVHQ4EFgQUcGE6bMiGsQQyiDYKBl+txAfeFAkwDQYJKoZIhvcNAQELBQADggGB
 AG7pivQhJVNSCbG+9jVy3owhg/POnp2sewD1t8BMOkPTPgAa/37vrp4KSPdNXKZz
 hnFzBXkL8jBUP0qg2Vfy9iqlgXNdVAdb4Ijk44OhlwWNGUiZwl2nNbvnUL7NnTeh
 jqZaIb6Oe2y1ByNrQweVMO85qdrYJCelf9Wh9fYdtofx4TyOMg+ZqPqmvTRO8yTx
 KOupywxmezbjhEaaILXo9kouU4UV2gAIdYiHfvsbTaLkWbYeNgvvE5WAan8HuQqb
 YVnvxggIN45UgEgqGUHEgcj9tHgssfbnX3f2sCbOJkXL2cv7D+wK7hvUCS5tKS6H
 6O7OoXxfimFBdSZQuuqhqyiMYafnRo48Q2oCyQn1Q+g/qG+GYxmujIigoiYS1srV
 mIUaJQUGHtgXvyZGJFIvQiAzImQCylq1iyz77Da3myDRX0i0dauu5MACn5i9cgu9
 W7/MD2xR3kKMAY3b4y+pP7CKbEJ6UDswLyAQUkwPyeLi1r82vGh6CasinnGaUhk+
 zg==
 -----END CERTIFICATE-----
 ...<additional output removed for readability>...

2. Copy the contents of the SSL CA into the cert.pem file.

Copy and paste options vary by user interface. The SSL CA content—all highlighted text from step 1
starting at the beginning of the -----BEGIN CERTIFICATE----- line and ending at the end of the -----
END CERTIFICATE----- line—should be the only content in the cert.pem file.

97

Confirm that leading white spaces are not added to the SSL CA after copying the SSL CA into the
cert.pem file. These leading white spaces are introduced by some user interfaces—often at the start
of new lines—and will cause the SSL CA certification to be unusable. If leading whitespaces are
added to the SSL CA after it is copied into the cert.pem file, manually delete the whitespaces before
proceeding to the next step.

3. Generate the cert.pem file into base64-encoded output.

You can generate the cert.pem file into base64-encoded output without saving the file contents by
entering the following command:

cat cert.pem | base64

You can also generate the base-64 encoded output and save the SSL CA contents into a separate file.

In this example, the base64-encoded output is generated and a new file containing the output—
cert.pem.b64—is saved.

cat cert.pem | base64 > "cert.pem.b64"

The SSL CA in the cert.pem.b64 file is now a base64-encoded SSL CA.

The base64-encoded SSL CA will be entered as the juju-CA-certificate variable in "Deploy Contrail
Command and Import a Contrail Cluster Using Juju" on page 98.

Deploy Contrail Command and Import a Contrail Cluster Using Juju

To deploy Contrail Command and import a Contrail cluster into Contrail Command:

1. From the Juju jumphost, deploy Contrail Command using one of the following command strings:

juju deploy cs:~juniper-os-software/contrail-command --constraints tags=<machine-tag> --
config docker-registry=<registry-directory> --config image-tag=<image-tag>

juju deploy cs:~juniper-os-software/contrail-command --to <machine-name> --config docker-
registry=<registry-directory> --config image-tag=<image-tag>

where:

• machine-name—the name of the machine instance in Juju that will host Contrail Command.

The IP address of this machine—which can be obtained by entering the juju status command—is
used to access Contrail Command from a web browser after the installation is complete.

98

• registry-directory—the directory path to the Contrail Networking registry.

This registry-directory path can be obtained from Juniper Networks. Contact mailto:contrail-
registry@juniper.net for information on accessing the Juniper registry.

• image-tag—the image tag for your target Contrail release.

The image tag is used to identify your Contrail Networking image within the registry. You can
retrieve the image tag for any Contrail Release 21xx image from README Access to Contrail
Registry 21XX.

2. Create a juju relation between the Contrail Command charm and the Contrail Controller charm:

juju add-relation contrail-command contrail-controller

3. Import the Contrail cluster into Contrail command:

a. Create a config.yaml file with the following parameters:

 $ cat config.yaml
 juju-controller: juju-controller-ip
 juju-controller-password: password
 juju-ca-cert: |
 juju-CA-certificate
 juju-model-id: juju-model-id
 juju-controller-user: juju-controller-user

The command variables:

• juju-controller-ip—The IP address of the Juju controller.

You can retrieve the juju-controller-ip from the juju show-controller command output:

username@contrail-ci:~$ juju show-controller
 jc5-cloud:
 details:
 ...<output removed for readability>...
 api-endpoints: [10.102.72.40:17070]
 ...<output removed for readability>...

• password—The password for Juju controller access.

You can set the password for Juju controller access using the juju change-user-password
command.

99

mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

• juju-CA-certificate—The base64-encoded SSL Certificate Authority (CA) for the Juju controller.

The juju-CA-certificate is the base64-encoded SSL CA created in "Preparing the SSL
Certificate Authority (CA) for the Deployment" on page 96.

See "Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju" on
page 102 for a sample juju-CA-certificate entry.

• juju-model-id—The universally unique identifier (UUID) assigned to the model environment
that includes the Contrail Networking cluster..

You can retrieve the juju-model-id from the juju show-controller command output:

$ juju show-controller
jc5-cloud:
 ...<output removed for readability>...
 models:
 default:
 model-uuid: 4a62e0b0-bcfe-4b35-8db7-48e55f439217
 ...<output removed for readability>...

• juju_controller_user—(Optional) The username of the user with Juju controller access.

The admin username is used by default if no user with Juju controller access is configured.

See "Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju" on
page 102 for a sample config.yaml configuration for this deployment.

b. Save the config.yaml file.

c. Import the Contrail cluster with the parameters defined in the config.yaml file:

juju run-action contrail-command/0 import-cluster --params config.yaml
Action queued with id: 1

d. Check the cluster import status.

You can check the import status by entering the juju show-action-status action-ID and juju show-
action-output action-ID | grep result commands.

The action-ID is assigned immediately after entering the juju run-action command in the previous
step.

100

The cluster import is complete when the status field output in the juju show-action-status action-
ID command shows completed, or when the result field in the juju show-action-output action-ID
| grep result indicates Success.

Examples:

juju show-action-status 1
 actions:
 - action: import-cluster
 completed at: "2020-04-03 12:49:55"
 id: "60"
 status: completed
 unit: contrail-command/19

juju show-action-output 1 | grep result
 results:
 result: Success

4. Login to Contrail Command by opening a web browser and entering https://<juju-machine-ip-
address>:<port-number> as the URL.

The <juju-machine-ip-address> is the IP address of the machine hosting Contrail command that was
specified in 1. You can retrieve the IP address using the juju status command:

NOTE: Some juju status output removed for readability.

juju status
Unit Workload Agent Machine Public address
contrail-command/0* active idle 3 10.0.12.40

The port-number typically defaults to 9091 or 8079. You can, however, configure a unique port
number for your environment using the command_servers.yml file.

Enter the following values after the Contrail Command homescreen appears:

• Select Cluster: Select a Contrail Cluster from the dropdown menu. The cluster is presented in the
<cluster-name>-<string> format.

• Username: Enter the username of the Juju keystone user.

• Password: Enter the password of the Juju keystone user.

101

• Domain: If you are running Juju in a Canonical Openstack environment, enter admin_domain—the
default domain name for Canonical Openstack— if you haven’t established a unique domain in
Canonical Openstack. Enter the name of your domain if you have created a unique domain.

If you are running Juju in a Kubernetes environment, you can leave this field blank unless you’ve
established a unique domain name in Kubernetes. Enter the name of your domain if you have
created a unique domain.

Figure 32 on page 102 illustrates an example Contrail Command login to complete this procedure.

Figure 32: Contrail Command Login Example—Cluster in Environment using Canonical Openstack

See "How to Login to Contrail Command" on page 62 for additional information on logging into
Contrail Command.

Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju

This sample config.yml file provides a representative example of a configuration that could be used to
deploy Contrail Command with Contrail clusters in an environment running Juju.

See "Deploy Contrail Command and Import a Contrail Cluster Using Juju" on page 98 for step-by-step
procedures to create this config.yml file and "Preparing the SSL Certificate Authority (CA) for the
Deployment" on page 96 for instructions on generating the juju-ca-cert in the required base64-encoded
format.

This sample config.yml file does not contain the juju-controller-user: field to specify a user with Juju
controller access, so the default admin username is used.

102

CAUTION: The password password is used in this example for illustrative purposes only.

We strongly recommend creating a unique password that meets your organization’s
security requirements for your environment.

$ cat config.yaml
 juju-controller: 10.102.72.40
 juju-ca-cert: |
 LS0tLS9CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVyVENDQXhXZ0F3SUJBZ0lWQUtSUEl1YjhR
 N2ltSjIrVDJVOEFLNHRoT3NzN01BMEdDU3FHU0liM0RRRUIKQ3dVQU1HNHhEVEFMQmdOVkJBb1RC
 R3AxYW5VeExqQXNCZ05WQkFNTUpXcDFhblV0WjJWdVpYSmhkR1ZrSUVOQgpJR1p2Y2lCdGIyUmxi
 Q0FpYW5WcWRTMWpZU0l7TFRBckJnTlZCQVVUSkRJMFpESmpPRGcwTFRsbFlXWXRORFUyCk5pMDRO
 VEEwTFdKa1pHWXhaV0ppWVRnellqQWVGdzB5TURBME1UVXdNekUyTXpkYUZ3MHpNREEwTWpJd016
 RTIKTXpWYU1HNHhEVEFMQmdOVkJBb1RCR3AxYW5VeExqQXNCZ05WQkFNTUpXcDFhblV0WjJWdVpY
 SmhkR1ZrSUVOQgrJR1p2Y2lCdGIyUmxiQ0FpYW5WcWRTMWpZU0l4TFRBckJnTlZCQVVUSkRJMFpE
 SmpPRGcwTFRsaFlXWXRORFUyCk5pMDROVEEwTFdKa1pHWXhaV0ppWVRnellqQ0NBYUl3RFFZSktv
 WklodmNOQVFFQkJRQURnZ0dQQURDQ0FZb0MKZ2dHQkFMLzdkM0p0TmNIVzZ1ZTZ5T2VLdk9sU0Ro
 eGdHczR2WUxETzBRemxJTXlXMzkrQnl0QjRYWSswNUVCZwpBNUpLZllWK3U4eFhMMG1lTHZoKzR5
 RTg3Y3dST2JwVDFXWUZDREZWVGlHU2VTTjN3KzJVSnhIV3d1QXViRGw3CnpmQUtuR2dJenEvS1pK
 SmlteGE2WXVxdzVpc0N4ZmZ1M2ZReitINVVsU3BMQ3BGeHZBcTM4VmpyVzdGbmpFbTEKYzRmRmxC
 ZjA3TFVPcUJ4U0lTMGd4YXJPMURRRTJJUXY0bWZJQUZ2SmdULzVVS0pZdUdFWDNOSDlEZXJZcWpK
 YQpOY2h5R01rWGd5QmozWVZlYzhiRkU0K2VyRE1JU0J2SkhCTXd5eDc0UFREUXlzK0tsZk5YcHR1
 cDVGSC9Gd0JiCjlaUkJBRDk5YzBmMFZXNm1vTnhvQWtLaHJHVlp0MXc3Q3h3dmdSWm5XVWV6dGh3
 b0hJOHlGcUJ2a1QrbHE2TmQKanZMRXYxRFErM3ptTWZoei9lbVJEMURPUVFmbjNtUWhTazQwTmRA
 M2t3L0I4YkhPSVhtZ0lnTmJ2NDhnMEFjNwovaFFPMDJtb0R4ckxrQ1pOTjBmVmdPS3ZvbkRqYlNv
 NVlOQ0gvN2ZsZWFjbVFOM011ZzN3WHA5a1loN3JLREh3CjZwa1FRd0lEQVFBQm8wSXdRREFPQmdO
 VkhROEJBZjhFQkFNQ0FxUXdEd1lEVlIwVEFRSC9CQVV3QXdFQi96QWQKQmdOVkhRNEVGZ1FVY0dF
 NmJNaUdzUVF5aURZS0JpK3R4QWZlRkFrd0RRWUpLb1pJaHZjTkFRRUxCUUFEZ2dHQgpBRzdwaXZR
 aEpWTlNDYkcrOWpWeTNad2hnL1BPbnAyc2V3RDF0OEJNT2tQVFBnQWEvMzd2cnA0S1NQZE5YS1p6
 CmhuRnpCWGtMOGpCVVAwcWcyVmZ5OWlxbGdYTmRWQWRiNElqazQ0T2hsd1dOR1VpWndsMm5OYnZu
 VUw3Tm5UZWgKanFaYUliNk9lMnkxQnlOclF3ZVZNTzg1cWRyWUpDZWxmOVdoOWZZZHRvZng0VHlP
 TWcrWnFQcW12VFJPOHlUeApLT3VweXd4bWV6YmpoRWFhSUxYbzlrb3VVNFVWMmdBSWRZaUhmdnNi
 VGFMa1diWWVOZ3Z2RTVXQWFuOEh1UXFiCllWbnZ4Z2dJTjQ1VWdFZ3FHVUhFZ2NqOXRIZ3NzZmJu
 WDNmMnNDYk9Ka1hMMmN2N0Qrd0s3aHZVQ1M1dEtTNkgKNk83T29YeGZpbUZCZFNaUXV1cWhxeWlN
 WWFmblJvNDhRMm9DeRFuMVErZy9xRytHWXhtdWpJaWdvaVlTMXNyVgptSVVhSlFVR0h0Z1h2eVpH
 SkZJdlFpQXpJbVFDeWxxMWl5ejc3RGEzbXlEUlgwaTBkYXV1NU1BQ241aTljZ3U5Clc3L01EMnhS
 M2tLTUFZM2I0eStwUDdDS2JFSjZVRHN3THlBUVVrd1B5ZUxpMXI4MnZHaDZDYXNpbm5HYVVoaysK
 eac9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==
juju-model-id: 4a62e0b0-bcfe-4b35-8db7-48e55f439217
juju-controller-password: password

103

Prerequisites for Contrail Insights and Contrail Insights Flow

Contrail Networking Release 2011 supports installing Contrail Insights and Contrail Insights Flows on a
Juju cluster after Contrail Networking and Contrail Command are installed. The following prerequisites
apply.

docker, python2.7, python-pip must be installed on the Contrail Insights node and Contrail Insights Flows
node.

To install the Docker engine, you need the 64-bit version of one of these Ubuntu versions:

• Ubuntu Groovy 20.10

• Ubuntu Focal 20.04 (LTS)

• Ubuntu Bionic 18.04 (LTS)

• Ubuntu Xenial 16.04 (LTS)

Docker Engine is supported on x86_64 (or amd64), armhf, and arm64 architectures. For more
information, see https://docs.docker.com/engine/install/ubuntu/.

To install python 2.7 and python-pip run the following commands:

sudo apt install python2.7
sudo apt install python-pip

If you are running the playbooks as root user then this step can be skipped. As a non-root user (for
example, “ubuntu”), the user “ubuntu” needs access to the docker user group. The following command
adds the user to the docker group:

sudo usermod -aG docker ubuntu

For more information, see Contrail Insights Installation for OpenStack in HA.

Contrail Insights Installation for Ubuntu Focal

Contrail Insights Release 3.3.5 supports Ubuntu 20.04 (Focal).

Software Requirements

• docker-ce : 5:19.03.9~3-0~ubuntu-focal

NOTE: Python 2 is not installed by default with Ubuntu 20.04 (Focal).

104

https://docs.docker.com/engine/install/ubuntu/

Follow these steps before you install Contrail Insights.

1. Install python and python-pip on the Contrail Insights Controller nodes, and on the host(s) that the
Contrail Insights Agent runs on.

sudo apt-get install -y python python3-pip
sudo apt install python-is-python3

2. In group_vars/all, set appformix_ansible_python3_interpreter_enabled to true.

appformix_ansible_python3_interpreter_enabled: true

3. Run the iptables rule to access port 9000.

iptables -t filter -A IN_public_allow -p tcp --dport 9000 -j ACCEPT

NOTE: Ignore any errors that may arise if IN_public_allow does not exist.

After you have completed these steps, you can install Contrail Insights.

Install Contrail Insights on the Juju Cluster after Contrail Command is Installed

NOTE: Appformix and Appformix Flows were renamed Contrail Insights and Contrail
Insights Flows. The Appformix naming conventions still appear during product usage,
including within these directory names.

To install Contrail Insights on the Juju Cluster:

1. Copy the Contrail Insights and Contrail Insights Flows installation directories to the /opt/software/
appformix/ and /opt/software/xflow directories inside the Contrail Command container, if not already
present.

docker run -v /opt/software/appformix:/opt/software/appformix svl-artifactory.juniper.net/
contrail-nightly/appformix/appformix/contrail-insights-ansible:<Contrail Insights Version>

docker run -v /opt/software/flow:/opt/software/flow svl-artifactory.juniper.net/contrail-
nightly/appformix/flows/contrail-insights-flows-ansible:<Contrail Insights Flow Version>

For example <Contrail Insights Version> = 3.3.0-a8.

105

2. Create the following two inventory files:

docker exec -it contrail_command bash
vi /opt/software/appformix/inventory/group_vars/all
vi /opt/software/appformix/inventory/hosts

3. Run the following commands to install Contrail Insights in HA mode:

cd /usr/share/contrail/appformix-ansible-deployer/appformix/
. venv/bin/activate

cd /opt/software/appformix/
ansible-playbook -i inventory --skip-tags=install_docker contrail-insights-ansible/
appformix_openstack_ha.yml -v

Install Contrail Insights Flows on the Juju Cluster after Contrail Insights is Installed

Disclaimer: Official installation method for installation is using the Contrail-Command UI. contrail-
ansible-deployer installs all packages needed for Contrail Insights and Contrail Insights Flows. appformix-
ansible-deployer creates inventory files for the installation. There are many variables set in the inventory
files for specific releases, so setting them manually is prone to errors.

To install Contrail Insights Flows on the Juju Cluster:

1. Log in to the contrail-command container:

docker exec -it contrail_command bash

2. Run the following two commands:

cd /usr/share/contrail/appformix-ansible-deployer/xflow
source venv/bin/activate

3. Run one of the following commands dependent on your Contrail Networking Release version.

If you are running a Contrail Networking Release later than 2005:

bash deploy_contrail_insights_flows.sh <path-to-instances-yml>/instances.yml --cluster-id
<cluster_id>

106

If you are running a Contrail Networking Release earlier than 2005:

bash deploy_xflow.sh <path-to-instances-yml>/instances.yml

If you are running a Contrail Networking Release earlier than 2005, add the following snippet to the
end of the existing instances.yml before running the deploy_contrail_insights_flows.sh or deploy_xflow.sh.

Example instances.yml snippet for in-band configuration:

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:
 ssh_pwd: <Root Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances: < under existing hierarchy >
 a7s33:
 ip: 10.84.30.201
 provider: bms
 roles:
 appformix_flows:
 telemetry_in_band_interface_name: enp4s0f0
xflow_configuration:
 clickhouse_retention_period_secs: 7200
 loadbalancer_collector_vip: 30.1.1.3
 telemetry_in_band_cidr: 30.1.1.0/24
 loadbalancer_management_vip: 10.84.30.195
 telemetry_in_band_vlan_id: 11

Example instances.yml snippet for out-of-band configuration:

global_configuration:
 CONTAINER_REGISTRY: hub.juniper.net/contrail
 CONTAINER_REGISTRY_USERNAME: < container_registry_username >
 CONTAINER_REGISTRY_PASSWORD: < container_registry_password >
provider_config:
 bms:

107

 ssh_pwd: <Root Pwd>
 ssh_user: root
 ntpserver: <NTP Server>
 domainsuffix: local
instances: < under existing hierarchy >
 a7s33:
 ip: 10.84.30.201
 provider: bms
 roles:
 appformix_flows:
xflow_configuration:
 clickhouse_retention_period_secs: 7200
 loadbalancer_collector_vip: 10.84.30.195

4. Add the collector nodes:

bash deploy_insights_flows.sh <instance_file> --skip-provision --cluster-id <cluster_id>

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Contrail Networking Release 2011 supports installing Contrail Insights and Contrail Insights Flows on a
Juju cluster after Contrail Networking and Contrail Command are installed.

2008 Starting in Contrail Release 2008, you can deploy Contrail Command and import a cluster using Juju in
an environment using Kubernetes orchestration.

2005 Starting in Contrail Release 2005, you can deploy Contrail Command and import a cluster using Juju in a
Canonical Openstack environment.

RELATED DOCUMENTATION

How to Login to Contrail Command | 62

Importing a Canonical Openstack Deployment Into Contrail Command | 109

108

https://apps.juniper.net/feature-explorer/

Importing a Canonical Openstack Deployment Into Contrail Command

IN THIS SECTION

Overview: Canonical Openstack Deployment into Contrail Command | 109

Importing Canonical Openstack Into Contrail Command | 109

This document provides the steps needed to import a Canonical Openstack deployment into Contrail
Command.

This procedure assumes that Contrail Command is already running in your Contrail Networking
environment that is using Canonical Openstack as it’s orchestration platform. See "How to Deploy
Contrail Command and Import a Cluster Using Juju" on page 95 if you’d like to deploy Contrail
Command and import the Contrail cluster into Contrail Command in an environment using Contrail
Networking and Canonical Openstack.

Overview: Canonical Openstack Deployment into Contrail Command

Starting in Contrail Networking Release 2003, Canonical Openstack deployments can be managed using
Contrail Command.

This document provides the steps needed to import a Canonical Openstack deployment into Contrail
Command. Contrail Command can be used to manage the Canonical Openstack deployment after this
procedure is complete.

This document makes the following assumptions about your environment:

• A Canonical Openstack deployment managed by Contrail Networking is already operational.

• Contrail Command is running in your environment. See Installing Contrail Command.

• Contrail Command has access to the Juju jumphost and the Juju cluster.

Canonical Openstack is imported into Contrail Command using Juju in this procedure.

Importing Canonical Openstack Into Contrail Command

To import Canonical Openstack into Contrail Cloud:

1. Install and start the Docker Engine.

109

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

There are multiple ways to perform this step. In this example, Docker Community Edition version
18.03 is installed using yum install and yum-config-manager commands and started using the systemctl
start docker command.

yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce-18.03.1.ce
systemctl start docker

2. Retrieve the contrail-command-deployer Docker image by logging into hub.juniper.net and entering the
docker pull command.

docker login hub.juniper.net --username <container_registry_username> --password
<container_registry_password>
docker pull hub.juniper.net/contrail/contrail-command-deployer:<container_tag>

where <container_tag> is the container tag for the Contrail Command (UI) container deployment for
the release that you are installing.

The <container_tag> for any Contrail Release 21xx image can be found in README Access to
Contrail Registry 21XX.

3. Update the config.yml configuration file on the Contrail Command server.

The configuration of the config.yml file is unique to your environment and complete documentation
describing all config.yml configuration options is beyond the scope of this document.

The following configuration parameters must be present in the config.yml file to support Canonical
Openstack in Contrail Command:

• ntpserver: <NTP_IP>.

The NTP_IP variable is the IP address of the NTP server.

• vrouter_gateway: <VROUTER_GATEWAY_IP>

The VROUTER_GATEWAY_IP variable is the IP address of the vRouter gateway. The
vrouter_gateway: parameter can be left empty, but it must be present.

• container_registry: <CONTAINER_REGISTRY>

The CONTAINER_REGISTRY variable is the path to the container registry. The
CONTAINER_REGISTRY is hub.juniper.net/contrail in most deployments.

• container_tag: <COMMAND_BUILD_TAG>

110

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

The COMMAND_BUILD_TAG variable is the Contrail Command (UI) container deployment for the
release that you are installing. For any Contrail Release 21xx image, you can retrieve this value
from README Access to Contrail Registry 21XX.

• contrail_container_tag: <CONTRAIL_BUILD_TAG>

The CONTRAIL_BUILD_TAG variable is the Contrail build container for the release that you are
installing. For any Contrail Release 21xx image, you can retrieve this value from README Access
to Contrail Registry 21XX.

4. Run the Contrail Command deployer.

docker run -t --net host -e action=import_cluster -e orchestrator=juju -e
juju_controller=<juju_controller>
[-e juju_model=<juju_model_name>]
[-e juju_controller_user=<juju_controller_user>]
[-e juju_controller_password=<juju_controller_password>]
[-e delete_db=<delete_db>]
[-e persist_rules=<persist-rules>]
-v <config_file>:/cluster_config.yml --privileged --name contrail_command_deployer <CCD_image>

In the following example, Contrail Command is deployed from the Juju jump host at 172.31.40.101.

docker run -td --net host --privileged -e action=import_cluster -e orchestrator=juju -e
juju_model=controller -e juju_controller=172.31.40.101 -e juju_controller_user=ubuntu -e
juju_controller_password=password -v /home/ubuntu/contrail-command-deployer/config.yaml:/
cluster_config.yml -v /root/.ssh:/root/.ssh contrail-command-deployer:latest

The command variables:

• juju_controller—(Required) The IP address of the Juju jump host. We define the Juju jump host in
this context as the device that has installed the Juju CLI and is being used to run Juju commands.
The Contrail Command server must have access to the Juju jump host at this IP address.

• config_file—(Required) The path to the configuration file. This configuration file was created in the
previous step of this procedure.

• CCD_image—(Required) The Contrail Command deployer image.

• delete_db—(Optional) Specifies whether the PostgreSQL database is deleted during the process.
The PostgreSQL database is deleted by default. Enter no in this field if you do not want the
PostgreSQL database deleted.

• persist-rules—(Optional) Specify whether IP rules remain persistent across reboots.

111

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

• juju_model_name—(Optional) The name of the Juju model. The name can be retrieved by entering
the juju show-models command.

• juju_controller_user—(Optional) The username of the Juju user on the Juju jump server.

• juju_controller_password—(Optional) The password for the Juju user on the Juju jumpbox. This
password is used if no SSH keys have been installed.

5. (Optional) Track the progress of step 4.

docker logs -f contrail_command_deployer

6. Verify that the Contrail Command containers are running:

[root@centos254 ~]# docker ps -a
CONTAINER ID IMAGE <trimmed> STATUS <trimmed> NAMES
2e62e778aa91 hub.juniper.net/... Up <trimmed> contrail_command
c8442860e462 circleci/postgre... Up <trimmed> contrail_psql
57a666e93d1a hub.juniper.net/... Exited <trimmed> contrail_command_deployer

The contrail_command container is the GUI and the contrail_psql container is the database. Both
containers should have a STATUS of Up.

The contrail-command-deployer container should have a STATUS of Exited because it exits when the
installation is complete.

7. Open a web browser and enter https://<Contrail-Command-Server-IP-Address>:8079 as a URL. The
Contrail Command home screen appears.

Choose token from the drop-down menu. Enter the username and password combination to Juju as
the credentials, and use admin_domain as the domain.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2003 Starting in Contrail Networking Release 2003, Canonical Openstack deployments can be managed using
Contrail Command.

RELATED DOCUMENTATION

Installing Contrail Command

112

https://apps.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

CHAPTER 4

Upgrading Contrail Software

IN THIS CHAPTER

Upgrading Contrail Networking using Contrail Command | 114

Upgrading Contrail Command using Backup Restore Procedure | 117

Fast Forward Upgrade: Updating Contrail Networking 1912.L4 and Red Hat OpenStack 13 to Contrail
Networking 21.4.L2 and Red Hat Openstack 16.2 | 119

How to Perform a Zero Impact Contrail Networking Upgrade using the Ansible Deployer | 124

Updating Contrail Networking Release 21.4 with Openstack 16.2 to Contrail Networking Release 21.4.L1
with Openstack 16.2.3 using Zero Impact Upgrade Process | 130

Updating Contrail Networking Containers Without Updating OpenStack | 139

Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack 16.1 | 144

Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack Multi-model
Deployment with Juju Charms | 153

Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack Deployment
with Juju Charms | 159

Upgrading Contrail Networking Release 1912.L2 with RHOSP13 to Contrail Networking Release 2011.L3
with RHOSP16.1 | 165

Upgrading Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to Contrail
Networking Release 21.4 with RHOSP 16.2 | 167

Upgrading Contrail Networking until 21.4.L2 using the Ansible Deployer In-Service Software Upgrade
Procedure in OpenStack Environments | 178

Upgrading Contrail Networking to Release 21.4.L3 using Ansible Deployer in Service Software Upgrade
Procedure in OpenStack Environment | 195

Contrail In-Service Software Upgrade from Releases 21.4 L2 and 21.4 L3 to 21.4 L4 using Ansible
Deployer | 213

How to Upgrade Contrail Networking Through Kubernetes and/or Red Hat OpenShift | 222

Deploying Red Hat Openstack with Contrail Control Plane Managed by Tungsten Fabric Operator | 227

113

Upgrading Contrail Networking using Contrail Command

Use the following procedure to upgrade Contrail Networking using Contrail Command.

NOTE: Before performing any upgrade, install Docker serially over containers. However,
you can upgrade computes in parallel to Docker via script. After upgrading each docker
host, verify the status of contrail and services. Do not proceed with upgrade on next
hosts until all the services of contrail-status reports are running properly.

Use the following script to stop the running containers, upgrade the docker, and bring
containers back:

docker ps --format '{{.Names}}' > running_containers
for CONTAINER in $(cat running_containers); do sudo docker stop $CONTAINER; done
yum install -y docker-ce-20.10.9 docker-ce-cli-20.10.9 docker-ce-rootless-
extras-20.10.9
for CONTAINER in $(cat running_containers); do sudo docker start $CONTAINER; done

The procedure supports incremental model and you can use it to upgrade from Contrail Networking
Release N-1 to N.

1. Create snapshots of your current configurations and upgrade Contrail Command. See "Upgrading
Contrail Command using Backup Restore Procedure" on page 117.

2. Login to Contrail Command without logging into a Contrail cluster.

In most environments, Contrail Command is accessed by entering https://<Contrail-Command-Server-IP-
Address>:9091 in your web browser..

Leave the Select Cluster field blank. If the field is populated, use the drag-down menu to delete the
pre-populated cluster selection.

Enter your username and password credentials and click Log in

If you have any issues logging into Contrail Command, see "How to Login to Contrail Command" on
page 62.

114

3. Click on Clusters.

You will see the list of all the available clusters with the status.

4. Select the cluster you want to upgrade.

Hover your mouse over ellipsis next to the cluster and click on Upgrade.

5. Enter Contrail Version, Container Registry, Container Registry Username, Container Registry
Password.

Contrail Version depicts the current installed Contrail version. You must update the value to the
desired version number.

The values for Container Registry, Container Registry Username, and Container Registry Password
are pre-populated based on the values used during initial Contrail deployment.

Click on Contrail Configuration.

Add CONTRAIL_CONTAINER_TAG.

115

Access CONTRAIL_CONTAINER_TAG values for your targeted upgrade fromREADME Access to
Contrail Registry 21XX.

6. If you have Contrail Insights and Contrail Insights Flows installed in the cluster:

NOTE: Appformix and Appformix Flows were renamed Contrail Insights and Contrail
Insights Flows. The Appformix naming conventions still appear during product usage,
including within these directory names.

• Release 2005 or later: You do not need to provide appropriate versions of Contrail Insights and
Contrail Insights packages in the /opt/software/appformix and /opt/software/xflow directories.
This step is no longer required starting in Release 2005.

• Release 2003 or earlier:

Provide appropriate versions of Contrail Insights and Contrail Insights packages in the /opt/
software/appformix and /opt/software/xflow directories on the Contrail Command server. For
more details, refer to Installing Contrail Insights and Contrail Insights Flows using Contrail
Command.

Skip this step if you are not using Contrail Insights or Contrail Insights Flows.

7. Click on Upgrade.

Figure 33 on page 117 provides a representative illustration of a user completing the Upgrade
Cluster workflow to upgrade to Contrail Networking Release 2005.

116

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail/topics/concept/installing-appformix-using-contrail-command.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/installing-appformix-using-contrail-command.html

Figure 33: Upgrade Cluster Workflow Example

RELATED DOCUMENTATION

Installing Contrail Command

Upgrading Contrail Command using Backup Restore Procedure

You cannot use the SQL data with the new version of Contrail Command container if the database
schema changes while upgrading the Contrail Command container.

You can resolve the issue by:

1. Back up SQL database in yaml format db dump.

Run the following docker exec contrail_command command on the Contrail Command node to
backup the DB.

Contrail Networking Release 2005 or later:

117

https://www.juniper.net/documentation/en_US/contrail/topics/example/install-contrail-command.html

docker exec contrail_command commandutil convert --intype rdbms --outtype yaml --out /etc/contrail/db.yml -
c /etc/contrail/command-app-server.yml; mkdir ~/backups; mv /etc/contrail/db.yml ~/backups/

Contrail Networking Release 2003 or earlier:

docker exec contrail_command contrailutil convert --intype rdbms --outtype yaml --out /etc/contrail/db.yml -
c /etc/contrail/contrail.yml; mkdir ~/backups; mv /etc/contrail/db.yml ~/backups/

2. Upgrade the Contrail Command container.

Specify the desired version of Contrail Command container (container_tag) in the deployer input file
(command_servers.yml) and deploy playbook.

You must use PostgreSQL in the command_servers.yml file.

The step depends on how you have deployed the Contrail Command.

• Contrail Command is deployed using docker installation:

docker run -td --net host -v <ABSOLUTE_PATH_OF_COMMAND_SERVERS_FILE>:/command_servers.yml --privileged --
name contrail_command_deployer_<contrail_container_tag> hub.juniper.net/contrail/contrail-command-
deployer:<<contrail_container_tag>

• Contrail Command is deployed through juju-charms:

juju config contrail-command image-tag=<contrail_container_tag>

After entering this command, enter the juju config contrail-command image-tag command to
ensure the Contrail Command container is associated with the new image tag.

If the command output displays the old image tag, wait several minutes then retry the juju config
contrail-command image-tag command.

If the command output displays the new image tag, proceed to the next step. If the command
output continues to display the old image tag, re-enter the juju config contrail-command image-
tag=contrail_container_tag to upgrade the container.

The contrail_container_tag for any Contrail Release 21 software can be obtained from README
Access to Contrail Registry 21XX.

3. This step depends on your Contrail Networking release.

Contrail Networking Release 2005 or later:

Migrate the yaml formatted db dump to the new database schema:

docker exec contrail_command mkdir /root/backups
docker cp /root/backups/db.yml contrail_command:/root/backups/
docker exec contrail_command commandutil migrate --in /root/backups/db.yml --out /root/
backups/db_migrated.yml

118

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Contrail Networking Release 2003 or earlier:

Modify the yaml-formatted db dump by adding or removing the fields per the new database schema.

4. Restore the modified yaml formatted db dump to the SQL database.

Contrail Networking Release 2005 or later:

docker exec contrail_command commandutil convert --intype yaml --in /root/backups/
db_migrated.yml --outtype rdbms -c /etc/contrail/command-app-server.yml

Contrail Networking Release 2003 or earlier:

docker exec contrail_command mkdir /root/backups docker cp /root/backups/db.yml
contrail_command:/root/backups/
docker exec contrail_command contrailutil convert --intype yaml --in ~/backups/db.yml --
outtype rdbms -c /etc/contrail/contrail.yml

NOTE: If the restore procedure fails because of schema mismatch, repeat Step 3 and
Step 4 with incremental db dump changes.

Fast Forward Upgrade: Updating Contrail Networking 1912.L4 and Red
Hat OpenStack 13 to Contrail Networking 21.4.L2 and Red Hat
Openstack 16.2

IN THIS SECTION

When to Use This Procedure | 120

Preparing for the Upgrade and Upgrading the Undercloud | 120

Upgrading the Overcloud | 120

This document provides the steps needed to update an environment that is running Contrail Networking
Release 1912.L4 and Red Hat OpenStack 13 to an environment running Contrail Networking 21.4.L2
and Red Hat Openstack 16.2.

119

The procedure provides a fast forward upgrade (FFU). AN FFU upgrades the Red Hat OpenStack
software from it’s currently running version to a version that is several releases later. An FFU provides an
opportunity to upgrade to OpenStack versions that are considered long life versions and upgrade when
the next long life version is available. This document shows how to perform this FFU for Red Hat
Openstack while also upgrading Contrail Networking.

When to Use This Procedure

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 4: Validated Upgrade Scenarios

Starting Releases Target Releases

Contrail Networking Release 1912.L4
Red Hat Openstack 13

Contrail Networking Release 21.4.L2
Red Hat Openstack 16.2.4

Preparing for the Upgrade and Upgrading the Undercloud

This document will frequently reference the Red Hat Openstack document for performing the Red Hat
Openstack upgrade. See Framework for Upgrades (13 to 16.2)

To upgrade the undercloud, see the Planning and preparation for an in-place upgrade through the
Configuring the overcloud for a Leapp upgrade sections of the Framework for Upgrades (13 to 16.2)
guide.

Upgrading the Overcloud

Before you begin, we strongly recommend becoming familiar with processes to efficiently upgrade the
overcloud. See Speeding up an overcloud upgrade in the Framework for Upgrades (13 to 16.2) guide.

1. (Only needed if undercloud is used as a container registry) Create a Contrail container file and upload
the container file.

a. Create a Contrail container file using the Heat template tools and import the existing registry files
into the Contrail container file:

cd ~/tf-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-
u username] [-p password] [-c certificate path]

Examples:

120

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/planning-and-preparation-for-an-in-place-openstack-platform-upgrade_planning-preparation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/configuring-the-overcloud-for-a-leapp-upgrade_preparing-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index

To import the files from a password protected public registry:

./import_contrail_container.sh -f /tmp/contrail_container -r enterprise-hub.jnpr.net/
contrail-container-prod/contrail-base -u USERNAME -p PASSWORD -t 1234

To import the files from a private secure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -c
http://device.example.net/pub/device.example.net.crt -t 1234

To import the files from a private insecure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

b. From the undercloud, upload the container file:

openstack overcloud container image upload --config-file /tmp/contrail_container

2. Clone the Tungsten Fabric deployment repository:

WARNING: Review the files in the Github repository at https://github.com/
tungstenfabric/tf-deployment-test.git before entering this command to clone the files.

In most scenarios, you will need to update some file parameters for your environment
after cloning the repository.

git clone https://github.com/tungstenfabric/tf-deployment-test.git

Note the following key directory locations in the repository for a Contrail Networking upgrade:

• Tungsten fabric scripts location: tf-deployment-test/tree/master/rhosp/ffu_ziu_13_16/tf_specific

• Red Hat-specific steps are available in this directory: tf-deployment-test/tree/master/rhosp/
ffu_ziu_13_16/redhat_ffu_steps

3. Prepare the templates to upgrade all of the overcloud nodes.

Update the services.yaml file with the '21.4.L2' tag . Be aware of the following while performing this
step:

121

https://github.com/tungstenfabric/tf-deployment-test.git
https://github.com/tungstenfabric/tf-deployment-test.git

• Name the overcloud nodes using predictable NIC names. See the Using predictable NIC names for
overcloud nodes section of the Framework for Upgrades (13 to 16.2) guide from Red Hat.

ansible-playbook -i inventory.yaml tf-deployment-test/rhosp/ffu_ziu_13_16/redhat_files/
playbook-nics.yaml

After entering this command, follow the instructions in Speeding up an overcloud upgrade to
upgrade all overcloud nodes. All overcloud nodes should be upgraded in this step, including
Openstack nodes, Contrail controller nodes, and compute nodes.

4. For compute nodes, also perform these steps:

a. Migrate the existing workloads. See the Migrating virtual machine instances between Compute
nodes document from Red Hat.

b. Be aware of the following potential problems and the workarounds if you run into them:

• CEM-29946: A kernel upgrade fails during the compute node reboot. Containers are stuck in
the creating state.

Workaround: Reboot the node. After rebooting the node, add the following snippet to the ~/
tripleo-heat-templates/upgrades-environment.yaml file:

UpgradeInitCommand: |
 {% if 'Compute' in group_names %}
 sudo grubby --update-kernel=/boot/vmlinuz-$(uname -r) --
args="default_hugepagesz=1GB hugepagesz=1G hugepages=20"
 {% endif %}

NOTE: This snippet assumes you are not using custom roles.

If you are using custom roles, please replace Compute in line 2 of this snippet
with your custom name.

• CEM-29947: A compute node using DPDK fails during an FFU upgrade.

Workaround: Add the following snippet to the ~/tripleo-heat-templates/upgrades-
environment.yaml file:

UpgradeInitCommand: |
 {% if 'ContrailDpdk' in group_names %}
 sudo grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="intel_iommu=on
iommu=pt"

122

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/configuring-the-overcloud-for-a-leapp-upgrade_preparing-overcloud#using-predictable-nic-names-overcloud-leapp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/configuring-the-overcloud-for-a-leapp-upgrade_preparing-overcloud#using-predictable-nic-names-overcloud-leapp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#assembly_migrating-virtual-machine-instances-between-compute-nodes_migrating-instances
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#assembly_migrating-virtual-machine-instances-between-compute-nodes_migrating-instances

 sudo grub2-mkconfig -o /etc/grub2.cfg
 {% endif %}

NOTE: This snippet assumes your are not using custom roles.

If you are using custom roles, please replace ContrailDpdk in line 2 of this snippet
with your custom name.

c. Run the overcloud system upgrade prepare scripts.

To obtain the scripts from Github, see the following URLs:

• https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/
tf_specific/run_overcloud_system_upgrade_prepare.sh

• https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/
tf_specific/run_overcloud_system_upgrade_run.sh

d. Setup the vhost interfaces on the Contrail compute nodes by executing the playbook-nics-
vhost0.yaml playbook.

ansible-playbook -i inventory.yaml -l overcloud_ContrailDpdk tf-deployment-test/rhosp/
ffu_ziu_13_16/tf_specific/playbook-nics-vhost0.yaml
ansible-playbook -i inventory.yaml -l overcloud_Compute tf-deployment-test/rhosp/
ffu_ziu_13_16/tf_specific/playbook-nics-vhost0.yaml

e. Upgrade the compute nodes in parallel:

WARNING: Execute these two commands as listed in this step. Do not execute a
single command - for instance, openstack overcloud upgrade run --limit compute0 -
as suggested in the Red Hat documentation to compute the compute node upgrade.

openstack overcloud upgrade run --yes --stack overcloud --tags system_upgrade_prepare --
limit name-of-compute
openstack overcloud upgrade run --yes --stack overcloud --tags system_upgrade_run --limit
name-of-compute

Follow the steps in Upgrading Compute nodes in parallel to complete this step.

5. Starting with the Synchronizing the overcloud stack step from the Framework for Upgrades (13 to
16.2) Red Hat document, complete the upgrade.

123

https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/tf_specific/run_overcloud_system_upgrade_prepare.sh
https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/tf_specific/run_overcloud_system_upgrade_prepare.sh
https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/tf_specific/run_overcloud_system_upgrade_run.sh
https://github.com/tungstenfabric/tf-deployment-test/blob/master/rhosp/ffu_ziu_13_16/tf_specific/run_overcloud_system_upgrade_run.sh
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade#proc-upgrading-compute-nodes-in-parallel_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade#performing_the_upgrade-speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index

How to Perform a Zero Impact Contrail Networking Upgrade using the
Ansible Deployer

Before you begin:

• The target release for this upgrade must be Contrail Release 2005 or later.

• You can use this procedure to incrementally upgrade to the next Contrail Networking release only.
For instance, if you are running Contrail Networking Release 2003 and want to upgrade to the next
Contrail Release—which is Contrail Networking Release 2005—you can use this procedure to perform
the upgrade.

This procedure is not validated for upgrades between releases that are two or more releases apart.
For instance, it could not be used to upgrade from Contrail Networking Release 2002 to Contrail
Networking Release 2005.

For a list of Contrail Networking releases in a table that illustrates Contrail Networking release order,
see Contrail Networking Supported Platforms.

• The Contrail Ansible Deployer container can only be used in CentOS environments.

• Take snapshots of your current configurations before you proceed with the upgrade process. For
details, refer to "How to Backup and Restore Contrail Databases in JSON Format" on page 243.

Starting in Contrail Networking Release 2005, you can perform a Zero Impact Upgrade (ZIU) of Contrail
Networking using the Contrail Ansible Deployer container. The Contrail Ansible Deployer container
image can be loaded from the Juniper Networks Contrail Container Registry hosted at hub.juniper.net/
contrail.

Use the procedure in this document to perform a Zero Impact Upgrade (ZIU) of Contrail Networking
using the Contrail Ansible Deployer container. This ZIU allows Contrail Networking to upgrade while
sustaining minimal network downtime.

This procedure illustrates how to perform a ZIU using the Ansible deployer container. It includes a
representative example of the steps being performed to upgrade from Contrail Networking Release
2005 to Release 2008.

To perform the ZIU using the Ansible deployer:

1. Pull the contrail-ansible-deployer file for the target upgrade release. This procedure is typically
performed from a Contrail controller running in your environment, but it can also be performed
from a separate server which has network connectivity to the deployment that is being upgraded.

This procedure shows you how to load a 2008 image from the Juniper Networks Contrail Container
Registry. You can, however, also change the values to load the file from a private registry.

124

https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

The Juniper Networks Contrail Container Registry is hosted at hub.juniper.net/contrail. If you need
the credentials to access the registry, email mailto:contrail-registry@juniper.net.

Enter the following commands to pull the contrail-ansible-deployer file from the registry:

sudo docker login -u <username> -p <password> hub.juniper.net
sudo docker pull hub.juniper.net/contrail/contrail-kolla-ansible-
deployer:2008.<contrail_container_tag>

where:

• username—username to access the registry. Email mailto:contrail-registry@juniper.net if you
need to obtain username and password credentials.

• password—password to access the registry. Email mailto:contrail-registry@juniper.net if you
need to obtain username and password credentials.

• contrail_container_tag—the container tag ID for your target Contrail Networking release. The
contrail_container_tag for any Contrail Release 21 software can be obtained from README
Access to Contrail Registry 21XX.

2. Start the Contrail Ansible Deployer:

docker run -t --net host -d --privileged --name contrail-kolla-ansible-deployer
hub.juniper.net/contrail/contrail-kolla-ansible-deployer:2008.<contrail_container_tag>

3. Navigate to the instances.yaml file and open it for editing.

The instances.yaml file was used to initially deploy the setup. The instances.yaml can be loaded into
the Contrail Ansible Deployer and edited to supported the target upgrade version.

Contrail Release 2008 Target Upgrade Example using VI as the editor:

docker cp instances.yaml contrail-kolla-ansible-deployer:/root/contrail-ansible-deployer/
config/instances.yaml
docker exec -it contrail-kolla-ansible-deployer bash
cd /root/contrail-ansible-deployer/config/
vi instances.yaml

4. Update the CONTRAIL_CONTAINER_TAG to the desired version tag in the instances.yaml file from
the existing deployment. The CONTRAIL_CONTAINER_TAG variable is in the
contrail_configuration: hierarchy within the instances.yaml file.

The CONTRAIL_CONTAINER_TAG for any Contrail Release 21 software can be obtained from
README Access to Contrail Registry 21XX.

125

mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
mailto:contrail-registry@juniper.net
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Here is an example instances.yml file configuration:

contrail_configuration:
 CONTRAIL_CONTAINER_TAG: "2008.121"
 CONFIG_DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: "2"
 DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: "2"
 JVM_EXTRA_OPTS: "-Xms1g -Xmx2g"
 VROUTER_ENCRYPTION: FALSE
 LOG_LEVEL: SYS_DEBUG
 CLOUD_ORCHESTRATOR: kubernetes

5. Navigate to a path from where you want to trigger the upgrade playbook.

cd /root/contrail-ansible-deployer

6. Upgrade the control plane by running the ziu.yml playbook file from inside the contrail ansible
deployer container.

• For Contrail Networking Release 2005 to Contrail Networking Release 2008:

Upgrade the control plane by running the ziu.yml playbook file.

sudo -E ansible-playbook -v -e orchestrator=openstack -e config_file=instances.yaml playbooks/ziu.yml

• For Contrail Networking Release 2011 and later:

Upgrade the control plane by running the controller stage of ziu.yml playbook file.

sudo -E ansible-playbook -v -e stage=controller -e orchestrator=openstack -e config_file=config/
instances.yaml playbooks/ziu.yml

7. Upgrade the Openstack plugin by running the install_openstack.yml playbook file.

• For Contrail Networking Release 2005 to Contrail Networking Release 2008:

sudo -E ansible-playbook -v -e orchestrator=openstack -e config_file=instances.yaml playbooks/
install_openstack.yml

• For Contrail Networking Release 2011 and later:

sudo -E ansible-playbook -v -e stage=openstack -e orchestrator=openstack -e config_file=config/
instances.yaml playbooks/ziu.yml

8. Enter the contrail-status command to monitor upgrade status. Ensure all pods reach the running
state and all services reach the active state.

This contrail-status command provides this output after a successful upgrade:

126

NOTE: Some output fields and data have been removed for readability.

 Original
Pod Service Name State
 redis contrail-external-redis running
 rsyslogd running
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
analytics-alarm nodemgr contrail-nodemgr running
analytics-alarm provisioner contrail-provisioner running
analytics-snmp nodemgr contrail-nodemgr running
analytics-snmp provisioner contrail-provisioner running
analytics-snmp snmp-collector contrail-analytics-snmp-collector running
analytics-snmp topology contrail-analytics-snmp-topology running
config api contrail-controller-config-api running
config device-manager contrail-controller-config-devicemgr running
config dnsmasq contrail-controller-config-dnsmasq running
config nodemgr contrail-nodemgr running
config provisioner contrail-provisioner running
config schema contrail-controller-config-schema running
config stats contrail-controller-config-stats running
config svc-monitor contrail-controller-config-svcmonitor running
config-database cassandra contrail-external-cassandra running
<trimmed>

vrouter kernel module is PRESENT
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active

127

alarm-gen: active

== Contrail kubernetes ==
kube-manager: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail vrouter ==
nodemgr: active
agent: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

9. Migrate workloads VM from one group of compute nodes. Leave them uncommented in the
instances.yaml file. Comment other computes not ready to upgrаde in instances.yaml.

128

10. Upgrade compute nodes.

• For Contrail Networking Release 2005 to Contrail Networking Release 2008:

Run the install_contrail.yml playbook file to upgrade the compute nodes that were
uncommented in the instances.yaml file. Only the compute nodes that were left uncommented
in 9 are upgraded to the target release in this step.

sudo -E ansible-playbook -v -e orchestrator=openstack -e config_file=instances.yaml playbooks/
install_contrail.yml

• For Contrail Networking Release 2011 and later:

Run the compute stage of ziu.yml playbook file to upgrade the compute nodes that were
uncommented in the instances.yaml file. Only the compute nodes that were left uncommented
in 9 are upgraded to the target release in this step.

sudo -E ansible-playbook -v -e stage=compute -e orchestrator=openstack -e config_file=config/
instances.yaml playbooks/ziu.yml

11. Repeat Steps 9 and 10 until all compute nodes are upgraded.

You can access the Ansible playbook logs of the upgrade at /var/log/ansible.log.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2005 Starting in Contrail Networking Release 2005, you can perform a Zero Impact Upgrade (ZIU) of Contrail
Networking using the Contrail Ansible Deployer container.

RELATED DOCUMENTATION

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Upgrading Contrail Networking using Contrail Command | 114

129

https://apps.juniper.net/feature-explorer/

Updating Contrail Networking Release 21.4 with Openstack 16.2 to
Contrail Networking Release 21.4.L1 with Openstack 16.2.3 using Zero
Impact Upgrade Process

IN THIS SECTION

When to Use This Procedure | 130

Prerequisites | 131

Before You Begin | 131

Updating Contrail Networking in an Environment using Red Hat Openstack 16.2 | 132

This document provides the steps needed to update a Contrail Networking deployment that is using Red
Hat Openstack 16.2 as it’s orchestration platform. The procedure provides a zero impact upgrade (ZIU)
with minimal disruption to network operations. This procedure upgrades Contrail Networking and the
Red Hat Openstack versions.

You have the option to perform a procedure that upgrades the Contrail Networking version without
upgrading OpenStack. For information on that procedure, see "Updating Contrail Networking Containers
Without Updating OpenStack" on page 139.

When to Use This Procedure

This procedure is used to upgrade Contrail Networking when it is running in environments using RHOSP
version 16.2 (RHOSP16.2).

You use this procedure to update Contrail Networking and OpenStack in the same procedure. You have
the option to perform a procedure that upgrades the Contrail Networking version without upgrading
OpenStack. For information on that procedure, see "Updating Contrail Networking Containers Without
Updating OpenStack" on page 139.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

130

Table 5: Contrail Networking with RHOSP16.2.x Validated Upgrade Scenarios

Starting Releases Target Releases

Contrail Release: 21.4 Openstack Release:
16.2

Contrail Release: 21.4.L1 Openstack Release:
16.2.3

Contrail Release: 21.4.L1 Openstack Release: 16.2.3

Contrail Release: 21.4.L2 Openstack Release: 16.2.4

NOTE: You can upgrade from Contrail Release: 21.4.L1 Openstack Release: 16.2.3 to
Contrail Release: 21.4.L2 Openstack Release: 16.2.4 using same upgrade procedure
given for Contrail Release: 21.4 Openstack Release: 16.2 to Contrail Release: 21.4.L1
Openstack Release: 16.2.3. However, do remember to update tags in accordance with
the release.

For a similar procedure to upgrade Contrail Networking in Openstack 16.1 environments, see Updating
Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack 16.1.

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Red Hat Openstack version 16.2 (RHOSP16.2) as the
orchestration platform is already operational.

• The overcloud nodes in the RHOSP16.2 environment have an enabled Red Hat Enterprise Linux
(RHEL) subscription.

• If you are updating Red Hat Openstack simultaneously with Contrail Networking, we assume that the
undercloud node is updated to the latest minor version and that new overcloud images are prepared
for an upgrade. See the Upgrading the Undercloud section of the Keeping Red Hat OpenStack
Platform Updated guide from Red Hat.

If the undercloud has been updated and a copy of the heat templates are used for the deployment,
update the copy of the heat template from the Red Hat’s core heat template collection at /usr/share/
openstack-tripleo-heat-templates. See the Understanding Heat Templates document from Red Hat for
information on this process.

Before You Begin

We recommend performing these procedures before starting the update:

131

https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-understanding_heat_templates

• Backup your Contrail configuration database before starting this procedure. See How to Backup and
Restore Contrail Databases in JSON Format in Openstack Environments Using the Openstack 16.1
Director Deployment.

• Each compute node agent will go down during this procedure, causing some compute node
downtime. The estimated downtime for a compute node varies by environment, but typically took
between 12 and 15 minutes in our testing environments.

If you have compute nodes with workloads that cannot tolerate this downtime, consider migrating
workloads or taking other steps to accommodate this downtime in your environment.

Updating Contrail Networking in an Environment using Red Hat Openstack 16.2

To update Contrail Networking in an environment that is using Red Hat Openstack 16.2 as the
orchestration platform:

1. Prepare your container registry. The registry is often included in the undercloud, but it can also be a
separate node.

2. Backup the Contrail TripleO Heat Templates. See Using the Contrail Heat Template.

3. Get the Contrail TripleO Heat Templates (Stable/Train branch) from https://github.com/Juniper/
contrail-tripleo-heat-templates.

Prepare the new tripleo-heat-templates with latest available software from Openstack and Contrail
Networking.

sudo cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates
sudo git clone https://github.com/tungstenfabric/tf-tripleo-heat-templates -b stable/train
sudo cp -r tf-tripleo-heat-templates/* tripleo-heat-templates/

4. Update the parameter ContrailImageTag to the new version.

The location of the ContrailImageTag variable varies by environment. In the most commonly-used
environments, this variable is set in the contrail-services.yaml file.

You can obtain the ContrailImageTag parameter from the README Access to Contrail Registry
21XX.

NOTE: If you are using the undercloud as a registry, ensure the new contrail image is
updated in undercloud before proceeding further.

5. Update the overcloud by entering the openstack overcloud update prepare command and include the
files that were updated during the previous steps with the overcloud update.

132

https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/configuration/heat-template-vnc.html
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Example:

(undercloud) [stack@uc-train ~]$ cat deploy-ipu-prepare.sh
python3 tripleo-heat-templates/tools/process-templates.py --clean \
-r roles_data_contrail_aio.yaml -p tripleo-heat-templates/
python3 tripleo-heat-templates/tools/process-templates.py \
-r roles_data_contrail_aio.yaml \
-p tripleo-heat-templates/
openstack overcloud update prepare --templates tripleo-heat-templates/ \
--stack overcloud --libvirt-type kvm \
--roles-file roles_data_contrail_aio.yaml \
-e ~/rhsm.yaml \
-e tripleo-heat-templates/environments/network-isolation.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-net.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-plugins.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-tls.yaml \
-e tripleo-heat-templates /environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e tripleo-heat-templates /environments/services/haproxy-public-tls-certmonger.yaml \
-e tripleo-heat-templates /environments/ssl/enable-internal-tls.yaml \
-e containers-prepare-parameter.yaml

6. Prepare the overcloud nodes that include Contrail containers for the update.

• Pull the images in the repository onto the overcloud nodes.

There are multiple methods for performing this step. Commonly used methods for performing
this operation include using the podman pull command for Docker containers and the openstack
overcloud container image upload command for Openstack containers, or running the tripleo-heat-
templates/upload.containers.sh and tools/contrail/update_contrail_preparation.sh scripts.

• (Not required in all setups) Provide export variables for the script if the predefined values aren’t
appropriate for your environment. The script location:

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

The following variables within the script are particularly significant for this upgrade:

• CONTRAIL_NEW_IMAGE_TAG—The image tag of the target upgrade version of Contrail. The default
value is latest.

If needed, you can obtain this parameter for a specific image from the README Access to
Contrail Registry 21XX.

133

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

NOTE: Some older deployments use the CONTRAIL_IMAGE_TAG variable in place of
the CONTRAIL_NEW_IMAGE_TAG variable. Both variables are recognized by the
update_contrail_preparation.sh script and perform the same function.

• SSH_USER—The SSH username for logging into overcloud nodes. The default value is heat-admin.

• SSH_OPTIONS—Custom SSH option values.

The default SSH options for your environment are typically pre-defined. You are typically
only changing this value if you want to customize your update.

• STOP_CONTAINERS—The list of containers that must be stopped before the upgrade can proceed.
The default value is contrail_config_api contrail_analytics_api.

• Run the script:

CAUTION: Contrail services stop working when the script starts running.

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

7. Update the Contrail Controller nodes:

• Run the openstack overcloud update run command on the first Contrail controller and, if needed, on
a Contrail Analytics node. The purpose of this step is to update one Contrail Controller and one
Contrail Analytics node to support the environment so the other Contrail Controllers and
analytics nodes can be updated without incurring additional downtime.

Example:

openstack overcloud update run --limit overcloud-contrailcontroller-0

Ensure that the contrail status is ok on overcloud-contrailcontroller-0 before proceeding.

If the analytics and the analyticsdb nodes are on separate nodes, you may have to update the
nodes individually:

openstack overcloud update run --limit overcloud-contrailcontroller-0
openstack overcloud update run --roles
ContrailAnalytics,ContrailAnalyticsDatabase

134

• After the upgrade, check the docker container status and versions for the Contrail Controllers
and the Contrail Analytics and AnalyticsDB nodes.

podman ps -a

• Update the remaining Contrail Controller nodes:

Example:

openstack overcloud update run --limit overcloud-contrailcontroller-1
openstack overcloud update run --limit overcloud-contrailcontroller-2
openstack overcloud update run --limit overcloud-contrailcontroller-3
...

8. Update the Openstack Controllers using the openstack overcloud update run commands:

Example:

openstack overcloud update run --limit overcloud-controller-0
openstack overcloud update run --limit overcloud-controller-1
openstack overcloud update run --limit overcloud-controller-2
...

9. Individually update the compute nodes.

NOTE: The compute node agent will be down during this step. The estimated
downtime varies by environment, but is typically between 1 and 5 minutes.

Consider migrating workloads that can’t tolerate this downtime before performing
this step

openstack overcloud update run --limit overcloud-novacompute-1
openstack overcloud update run --limit overcloud-novacompute-2
openstack overcloud update run --limit overcloud-novacompute-3
...

Reboot your compute node to complete the update.

135

NOTE: A reboot is required to complete this procedure only if a kernel update is also
needed. If you would like to avoid rebooting your compute node, check the log files
in the /var/log/yum.log file to see if kernel packages were updated during the compute
node update. A reboot is required only if kernel updates occurred as part of the
compute node update procedure.

sudo reboot

Use the contrail-status command to monitor upgrade status. Ensure all pods reach the running state
and all services reach the active state.

This contrail-status command provides output after a successful upgrade:

NOTE: Some output fields and data have been removed from this contrail-status
command sample for readability.

Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
analytics-alarm nodemgr contrail-nodemgr running
analytics-alarm provisioner contrail-provisioner running
analytics-alarm zookeeper contrail-external-zookeeper running
analytics-snmp nodemgr contrail-nodemgr running
analytics-snmp provisioner contrail-provisioner running
analytics-snmp snmp-collector contrail-analytics-snmp-collector running
analytics-snmp topology contrail-analytics-snmp-topology running
config api contrail-controller-config-api running
<trimmed>

== Contrail control ==
control: active
nodemgr: active
named: active

136

dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

10. Enter the openstack overcloud update converge command to finalize the update.

137

NOTE: The options used in the openstack overcloud update converge in this step will
match the options used with the openstack overcloud update prepare command entered
in 5.

(undercloud) [stack@uc-train ~]$ cat deploy-ipu-converge.sh
python3 tripleo-heat-templates/tools/process-templates.py --clean \
-r roles_data_contrail_aio.yaml -p tripleo-heat-templates/
python3 tripleo-heat-templates/tools/process-templates.py \
-r roles_data_contrail_aio.yaml \
-p tripleo-heat-templates/
openstack overcloud update converge --templates tripleo-heat-templates/ \
--stack overcloud --libvirt-type kvm \
--roles-file roles_data_contrail_aio.yaml \
-e ~/rhsm.yaml \
-e tripleo-heat-templates/environments/network-isolation.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-net.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-plugins.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-tls.yaml \
-e tripleo-heat-templates /environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e tripleo-heat-templates /environments/services/haproxy-public-tls-certmonger.yaml \
-e tripleo-heat-templates /environments/ssl/enable-internal-tls.yaml \
-e containers-prepare-parameter.yaml

Monitor screen messages indicating SUCCESS to confirm that the updates made in this step are
successful.

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

138

Updating Contrail Networking Containers Without Updating OpenStack

IN THIS SECTION

When to Use This Procedure | 139

Prerequisites | 140

Before You Begin | 140

Updating Contrail Networking | 140

In Contrail Networking Release 21.4, you have the option to upgrade your Contrail containers without
updating OpenStack. This document provides the steps to complete this upgrade.

NOTE: This upgrade procedure is not applicable to Contrail Networking Release 21.4.L1
and thereafter.

If you want to upgrade Contrail Networking and OpenStack in the same procedure, see "Updating
Contrail Networking Release 21.4 with Openstack 16.2 to Contrail Networking Release 21.4.L1 with
Openstack 16.2.3 using the Zero Impact Upgrade Process" on page 130.

When to Use This Procedure

This procedure is used to upgrade Contrail Networking when it is running in environments using RHOSP
version 16.2 (RHOSP16.2). RHOSP16.2 is not updated during this procedure.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 6: Contrail Networking with RHOSP 16.2 Validated Upgrade Scenarios

Starting Releases Target Releases

Contrail Networking: 21.4
Red Hat OpenStack: 16.2
Red Hat Enterprise Linux (RHEL): 8.4

Contrail Networking: 21.4.L1
Red Hat OpenStack: 16.2
Red Hat Enterprise Linux (RHEL): 8.4

139

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Red Hat Openstack version 16.2 (RHOSP16.2) as the
orchestration platform is already operational.

• The overcloud nodes in the RHOSP16.2 environment have an enabled Red Hat Enterprise Linux
(RHEL) subscription.

• Your environment is running Contrail Networking Release 21.4 and upgrading to Contrail Networking
Release 21.4.L1 or later.

Before You Begin

Before starting the update, it is recommended to perform the following procedures.

• Backup your Contrail configuration database before starting this procedure. See How to Backup and
Restore Contrail Databases in JSON Format in Openstack Environments Using the Openstack 16.1
Director Deployment.

• Each compute node agent will go down during this procedure, causing some compute node
downtime. The estimated downtime for a compute node varies by environment, but typically took
between 12 and 15 minutes in our testing environments.

If you have compute nodes with workloads that cannot tolerate this downtime, consider migrating
workloads or taking other steps to accommodate this downtime in your environment.

Updating Contrail Networking

To update the Contrail Networking version in an environment that is using Red Hat Openstack 16.2
without updating Red Hat OpenStack:

1. Register your nodes with the Contrail Networking Release 21.4 satellite key.

2. Prepare your container registry. The registry is often included in the undercloud, but it can also be a
separate node.

3. Backup the Contrail TripleO Heat Templates. See Using the Contrail Heat Template.

4. Get the Contrail TripleO Heat Templates (stable/queens branch) from https://github.com/Juniper/
contrail-tripleo-heat-templates.

140

https://www.juniper.net/documentation/en_US/contrail21/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail21/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail21/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/configuration/heat-template-vnc.html
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates

Prepare the new tripleo-heat-templates with latest available software from Openstack and Contrail
Networking.

sudo cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates
sudo git clone https://github.com/tungstenfabric/tf-tripleo-heat-templates -b stable/queens
sudo cp -r tf-tripleo-heat-templates/* tripleo-heat-templates/

5. Update the parameter ContrailImageTag to the new version.

The location of the ContrailImageTag variable varies by environment. In the most commonly-used
environments, this variable is set in the contrail-services.yaml file.

You can obtain the ContrailImageTag parameter from the README Access to Contrail Registry
21XX.

NOTE: If you are using the undercloud as a registry, ensure the new contrail image is
updated in undercloud before proceeding further.

6. Update the overcloud by entering the openstack overcloud update prepare command and include the
files that were updated during the previous steps with the overcloud update.

Example:

(overcloud) [stack@5cosp16 ~]$ cat prepare.sh
python3 ~/tripleo-heat-templates/tools/process-templates.py --clean -r ~/tripleo-heat-
templates/roles_data_contrail_aio.yaml -p ~/tripleo-heat-templates/
python3 ~/tripleo-heat-templates/tools/process-templates.py -r ~/tripleo-heat-templates/
roles_data_contrail_aio.yaml -p ~/tripleo-heat-templates/

openstack overcloud update prepare --templates ~/tripleo-heat-templates/ --stack overcloud
--libvirt-type kvm --roles-file
~/tripleo-heat-templates/roles_data_contrail_aio.yaml -e ~/rhsm.yaml -e ~/tripleo-heat-
templates/hostname-map.yaml -e
~/tripleo-heat-templates/environments/network-isolation.yaml -e ~/tripleo-heat-templates/
environments/contrail/contrail-services.yaml -e
~/tripleo-heat-templates/environments/contrail/contrail-net.yaml -e ~/tripleo-heat-
templates/environments/contrail/contrail-plugins.yaml -e
~/tripleo-heat-templates/environments/contrail/contrail-tls.yaml -e ~/tripleo-heat-
templates/environments/ssl/tls-everywhere-endpoints-dns.yaml -e
~/tripleo-heat-templates/environments/services/haproxy-public-tls-certmonger.yaml -e
~/tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml -e /home/stack/
containers-prepare-parameter.yaml

141

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

7. If you haven’t already migrated the workloads, migrate the workloads now.

8. Upgrade the Contrail controllers:

openstack overcloud update run –limit contrail-controller-vm-name

Example:

openstack overcloud update run --limit overcloud-contrailcontroller-0-5c5s
openstack overcloud update run --limit overcloud-contrailcontroller-1-5c5s
openstack overcloud update run --limit overcloud-contrailcontroller-2-5c5s

9. Upgrade the Openstack controller node:

openstack overcloud update run –limit openstack-node-name

10. Upgrade the Contrail compute nodes:

openstack overcloud update run –limit contrail-compute-node-name

11. Enter the openstack overcloud update converge command.

Example:

(overcloud) [stack@5cosp16 ~]$ cat converge.sh
python3 ~/tripleo-heat-templates/tools/process-templates.py --clean -r ~/tripleo-heat-
templates/roles_data_contrail_aio.yaml -p ~/tripleo-heat-templates/
python3 ~/tripleo-heat-templates/tools/process-templates.py -r ~/tripleo-heat-templates/
roles_data_contrail_aio.yaml -p ~/tripleo-heat-templates/

openstack overcloud update converge --templates ~/tripleo-heat-templates/ --stack overcloud
--libvirt-type kvm --roles-file
~/tripleo-heat-templates/roles_data_contrail_aio.yaml -e ~/rhsm.yaml -e ~/tripleo-heat-
templates/hostname-map.yaml -e
~/tripleo-heat-templates/environments/network-isolation.yaml -e ~/tripleo-heat-templates/
environments/contrail/contrail-services.yaml -e
~/tripleo-heat-templates/environments/contrail/contrail-net.yaml -e ~/tripleo-heat-
templates/environments/contrail/contrail-plugins.yaml -e
~/tripleo-heat-templates/environments/contrail/contrail-tls.yaml -e ~/tripleo-heat-
templates/environments/ssl/tls-everywhere-endpoints-dns.yaml -e
~/tripleo-heat-templates/environments/services/haproxy-public-tls-certmonger.yaml -e

142

~/tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml-e /home/stack/containers-
prepare-parameter.yaml

The Contrail containers should be up and running after this convergence operation is completed.

12. Confirm that the Contrail containers are up and running.

There are many methods of performing this step. In this provided example, the contrail-status and
podman ps commands are entered on a compute node to verify the Contrail containers on a
compute node:

[heat-admin@overcloud-contraildpdk-0-new ~]$ sudo su
[root@overcloud-contraildpdk-0-new heat-admin]# contrail-status
Pod Service Original Name Original Version State
Id Status
vrouter agent contrail-vrouter-agent ubi-train-21.4-224 running
349cd9d6ed6b Up 16 hours ago
vrouter agent-dpdk contrail-vrouter-agent-dpdk ubi-train-21.4-224 running
cf73460aaa4f Up 16 hours ago
vrouter nodemgr contrail-nodemgr ubi-train-21.4-224 running
3820b61bc50a Up 15 hours ago
vrouter provisioner contrail-provisioner ubi-train-21.4-224 running
66cc9f00f912 Up 16 hours ago

vrouter DPDK module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: active

[root@overcloud-contraildpdk-0-new heat-admin]# podman ps
CONTAINER ID
IMAGE
 COMMAND CREATED STATUS
PORTS NAMES
c2519bb82c66 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-
containers-rhosp-rhel8_openstack-nova-libvirt:16.2 kolla_start 25 hours ago Up
16 hours ago nova_virtlogd
720ba7851089 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-
containers-rhosp-rhel8_openstack-nova-libvirt:16.2 kolla_start 25 hours ago Up
16 hours ago nova_libvirt
48105e151d32 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-
containers-rhosp-rhel8_openstack-iscsid:16.2 kolla_start 25 hours ago Up
16 hours ago iscsid
e6eb82a63826 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-

143

containers-rhosp-rhel8_openstack-cron:16.2 kolla_start 25 hours ago Up
16 hours ago logrotate_crond
86d989d8cbc1 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-
containers-rhosp-rhel8_openstack-nova-compute:16.2 kolla_start 25 hours ago Up
16 hours ago nova_migration_target
691b92fde276 5cosp16.ctlplane.5c5s.local:8787/5c5s45-satellite-rhosp-16-rhel-8-product-
containers-rhosp-rhel8_openstack-nova-compute:16.2 kolla_start 25 hours ago Up
16 hours ago nova_compute
349cd9d6ed6b 192.168.24.1:8787/contrail-nightly/contrail-vrouter-
agent:21.4.L1.224 /usr/bin/
contrail... 17 hours ago Up 16 hours ago contrail_vrouter_agent
3820b61bc50a 192.168.24.1:8787/contrail-nightly/contrail-
nodemgr:21.4.L1.224 /bin/sh -
c /usr/b... 17 hours ago Up 15 hours ago contrail_vrouter_agent_nodemgr
66cc9f00f912 192.168.24.1:8787/contrail-nightly/contrail-
provisioner:21.4.L1.224 /usr/bin/
tail -f ... 17 hours ago Up 16 hours ago contrail_vrouter_agent_provisioner
cf73460aaa4f 192.168.24.1:8787/contrail-nightly/contrail-vrouter-agent-
dpdk:21.4.L1.224 /usr/bin/contrail...
16 hours ago Up 16 hours ago contrail-vrouter-agent-dpdk
[root@overcloud-contraildpdk-0-new heat-admin]#

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

Updating Contrail Networking using the Zero Impact Upgrade Process in
an Environment using Red Hat Openstack 16.1

IN THIS SECTION

When to Use This Procedure | 145

Prerequisites | 145

Before You Begin | 146

Updating Contrail Networking in an Environment using Red Hat Openstack 16.1 | 146

144

This document provides the steps needed to update a Contrail Networking deployment that is using Red
Hat Openstack 16.1 as it’s orchestration platform. The procedure provides a zero impact upgrade (ZIU)
with minimal disruption to network operations.

If you are using Contrail Networking in an environment that is using a Red Hat Openstack 13-based
release, see Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment
using Red Hat Openstack 13.

When to Use This Procedure

This procedure is used to upgrade Contrail Networking when it is running in environments using RHOSP
version 16.1 (RHOSP16.1).

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 7: Contrail Networking with RHOSP16.1 Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

2011.L1 or any later 2011.L release 2011.L2 or any later 2011.L release

2011.L1 or any later 2011.L release Any 21.3 Release

Any 21.3 Release Any 21.4 Release

A different procedure is followed for upgrading Contrail Networking in environments using Red Hat
Openstack 13. See Updating Contrail Networking using the Zero Impact Upgrade Process in an
Environment using Red Hat Openstack 13.

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Red Hat Openstack version 16.1 (RHOSP16.1) as the
orchestration platform is already operational.

• The overcloud nodes in the RHOSP16.1 environment have an enabled Red Hat Enterprise Linux
(RHEL) subscription.

• Your environment is running Contrail Release 2011.L1 and upgrading to Contrail Release 2011.L2 or
later.

145

https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html

• If you are updating Red Hat Openstack simultaneously with Contrail Networking, we assume that the
undercloud node is updated to the latest minor version and that new overcloud images are prepared
for an upgrade. See the Upgrading the Undercloud section of the Keeping Red Hat OpenStack
Platform Updated guide from Red Hat.

If the undercloud has been updated and a copy of the heat templates are used for the deployment,
update the copy of the heat template from the Red Hat’s core heat template collection at /usr/share/
openstack-tripleo-heat-templates. See the Understanding Heat Templates document from Red Hat for
information on this process.

Before You Begin

We recommend performing these procedures before starting the update:

• Backup your Contrail configuration database before starting this procedure. See How to Backup and
Restore Contrail Databases in JSON Format in Openstack Environments Using the Openstack 16.1
Director Deployment.

• Each compute node agent will go down during this procedure, causing some compute node
downtime. The estimated downtime for a compute node varies by environment, but typically took
between 12 and 15 minutes in our testing environments.

If you have compute nodes with workloads that cannot tolerate this downtime, consider migrating
workloads or taking other steps to accommodate this downtime in your environment.

Updating Contrail Networking in an Environment using Red Hat Openstack 16.1

To update Contrail Networking in an environment that is using Red Hat Openstack 16.1 as the
orchestration platform:

1. Prepare your container registry. The registry is often included in the undercloud, but it can also be a
separate node.

2. Backup the Contrail TripleO Heat Templates. See Using the Contrail Heat Template.

3. Get the Contrail TripleO Heat Templates (Stable/Train branch) from https://github.com/Juniper/
contrail-tripleo-heat-templates.

Prepare the new tripleo-heat-templates with latest available software from Openstack and Contrail
Networking.

sudo cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates
sudo git clone https://github.com/tungstenfabric/tf-tripleo-heat-templates -b stable/train
sudo cp -r tf-tripleo-heat-templates/* tripleo-heat-templates/

4. Update the parameter ContrailImageTag to the new version.

146

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/assembly-upgrading_the_undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/advanced_overcloud_customization/sect-understanding_heat_templates
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/configuration/heat-template-vnc.html
https://github.com/Juniper/contrail-tripleo-heat-templates
https://github.com/Juniper/contrail-tripleo-heat-templates

The location of the ContrailImageTag variable varies by environment. In the most commonly-used
environments, this variable is set in the contrail-services.yaml file.

You can obtain the ContrailImageTag parameter from the README Access to Contrail Registry
21XX.

NOTE: If you are using the undercloud as a registry, ensure the new contrail image is
updated in undercloud before proceeding further.

5. Update the overcloud by entering the openstack overcloud update prepare command and include the
files that were updated during the previous steps with the overcloud update.

Example:

(undercloud) [stack@uc-train ~]$ cat deploy-ipu-prepare.sh
python3 tripleo-heat-templates/tools/process-templates.py --clean \
-r roles_data_contrail_aio.yaml -p tripleo-heat-templates/
python3 tripleo-heat-templates/tools/process-templates.py \
-r roles_data_contrail_aio.yaml \
-p tripleo-heat-templates/
openstack overcloud update prepare --templates tripleo-heat-templates/ \
--stack overcloud --libvirt-type kvm \
--roles-file roles_data_contrail_aio.yaml \
-e ~/rhsm.yaml \
-e tripleo-heat-templates/environments/network-isolation.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-net.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-plugins.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-tls.yaml \
-e tripleo-heat-templates /environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e tripleo-heat-templates /environments/services/haproxy-public-tls-certmonger.yaml \
-e tripleo-heat-templates /environments/ssl/enable-internal-tls.yaml \
-e containers-prepare-parameter.yaml

6. Prepare the overcloud nodes that include Contrail containers for the update.

• Pull the images in the repository onto the overcloud nodes.

There are multiple methods for performing this step. Commonly used methods for performing
this operation include using the podman pull command for Docker containers and the openstack
overcloud container image upload command for Openstack containers, or running the tripleo-heat-
templates/upload.containers.sh and tools/contrail/update_contrail_preparation.sh scripts.

147

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

• (Not required in all setups) Provide export variables for the script if the predefined values aren’t
appropriate for your environment. The script location:

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

The following variables within the script are particularly significant for this upgrade:

• CONTRAIL_NEW_IMAGE_TAG—The image tag of the target upgrade version of Contrail. The default
value is latest.

If needed, you can obtain this parameter for a specific image from the README Access to
Contrail Registry 21XX.

NOTE: Some older deployments use the CONTRAIL_IMAGE_TAG variable in place of
the CONTRAIL_NEW_IMAGE_TAG variable. Both variables are recognized by the
update_contrail_preparation.sh script and perform the same function.

• SSH_USER—The SSH username for logging into overcloud nodes. The default value is heat-admin.

• SSH_OPTIONS—Custom SSH option values.

The default SSH options for your environment are typically pre-defined. You are typically
only changing this value if you want to customize your update.

• STOP_CONTAINERS—The list of containers that must be stopped before the upgrade can proceed.
The default value is contrail_config_api contrail_analytics_api.

• Run the script:

CAUTION: Contrail services stop working when the script starts running.

~/tripleo-heat-templates/tools/contrail/update_contrail_preparation.sh

7. Update the Contrail Controller nodes:

• Run the openstack overcloud update run command on the first Contrail controller and, if needed, on
a Contrail Analytics node. The purpose of this step is to update one Contrail Controller and one
Contrail Analytics node to support the environment so the other Contrail Controllers and
analytics nodes can be updated without incurring additional downtime.

148

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

Example:

openstack overcloud update run --limit overcloud-contrailcontroller-0

Ensure that the contrail status is ok on overcloud-contrailcontroller-0 before proceeding.

If the analytics and the analyticsdb nodes are on separate nodes, you may have to update the
nodes individually:

openstack overcloud update run --limit overcloud-contrailcontroller-0
openstack overcloud update run --roles
ContrailAnalytics,ContrailAnalyticsDatabase

• After the upgrade, check the docker container status and versions for the Contrail Controllers
and the Contrail Analytics and AnalyticsDB nodes.

podman ps -a

• Update the remaining Contrail Controller nodes:

Example:

openstack overcloud update run --limit overcloud-contrailcontroller-1
openstack overcloud update run --limit overcloud-contrailcontroller-2
openstack overcloud update run --limit overcloud-contrailcontroller-3
...

8. Update the Openstack Controllers using the openstack overcloud update run commands:

Example:

openstack overcloud update run --limit overcloud-controller-0
openstack overcloud update run --limit overcloud-controller-1
openstack overcloud update run --limit overcloud-controller-2
...

9. Individually update the compute nodes.

149

NOTE: The compute node agent will be down during this step. The estimated
downtime varies by environment, but is typically between 1 and 5 minutes.

Consider migrating workloads that can’t tolerate this downtime before performing
this step

openstack overcloud update run --limit overcloud-novacompute-1
openstack overcloud update run --limit overcloud-novacompute-2
openstack overcloud update run --limit overcloud-novacompute-3
...

Reboot your compute node to complete the update.

NOTE: A reboot is required to complete this procedure only if a kernel update is also
needed. If you would like to avoid rebooting your compute node, check the log files
in the /var/log/yum.log file to see if kernel packages were updated during the compute
node update. A reboot is required only if kernel updates occurred as part of the
compute node update procedure.

sudo reboot

Use the contrail-status command to monitor upgrade status. Ensure all pods reach the running state
and all services reach the active state.

This contrail-status command provides output after a successful upgrade:

NOTE: Some output fields and data have been removed from this contrail-status
command sample for readability.

Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running

150

analytics-alarm kafka contrail-external-kafka running
analytics-alarm nodemgr contrail-nodemgr running
analytics-alarm provisioner contrail-provisioner running
analytics-alarm zookeeper contrail-external-zookeeper running
analytics-snmp nodemgr contrail-nodemgr running
analytics-snmp provisioner contrail-provisioner running
analytics-snmp snmp-collector contrail-analytics-snmp-collector running
analytics-snmp topology contrail-analytics-snmp-topology running
config api contrail-controller-config-api running
<trimmed>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==

151

snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

10. Enter the openstack overcloud update converge command to finalize the update.

NOTE: The options used in the openstack overcloud update converge in this step will
match the options used with the openstack overcloud update prepare command entered
in 5.

(undercloud) [stack@uc-train ~]$ cat deploy-ipu-converge.sh
python3 tripleo-heat-templates/tools/process-templates.py --clean \
-r roles_data_contrail_aio.yaml -p tripleo-heat-templates/
python3 tripleo-heat-templates/tools/process-templates.py \
-r roles_data_contrail_aio.yaml \
-p tripleo-heat-templates/
openstack overcloud update converge --templates tripleo-heat-templates/ \
--stack overcloud --libvirt-type kvm \
--roles-file roles_data_contrail_aio.yaml \
-e ~/rhsm.yaml \
-e tripleo-heat-templates/environments/network-isolation.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-net.yaml \
-e tripleo-heat-templates /environments/contrail/contrail-plugins.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-tls.yaml \
-e tripleo-heat-templates /environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e tripleo-heat-templates /environments/services/haproxy-public-tls-certmonger.yaml \
-e tripleo-heat-templates /environments/ssl/enable-internal-tls.yaml \
-e containers-prepare-parameter.yaml

Monitor screen messages indicating SUCCESS to confirm that the updates made in this step are
successful.

152

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

Updating Contrail Networking using Zero Impact Upgrade Procedure in a
Canonical Openstack Multi-model Deployment with Juju Charms

IN THIS SECTION

Prerequisites | 153

When to Use This Procedure | 153

Recommendations | 154

Updating Contrail Networking in a Canonical Openstack Multi-model Deployment Using Juju Charms | 155

This document provides the steps needed to update a Contrail Networking deployment that is using
Canonical Openstack Multi-model as it’s orchestration platform. The procedure utilizes Juju charms and
provides a zero impact upgrade (ZIU) with minimal disruption to network operations.

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Canonical Openstack Multi-model as the orchestration
platform is already operational.

• Juju charms for Contrail services are active in your environment, and the Contrail Networking
controller has access to the Juju jumphost and the Juju cluster.

When to Use This Procedure

This procedure is used to upgrade Contrail Networking when it is running in environments using
Canonical Openstack Multi-model.

You can use this procedure to incrementally upgrade to the next main Contrail Networking release only.
This procedure is not validated for upgrades between releases that are two or more releases apart.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

153

Table 8: Contrail Networking with Canonical Openstack Multi-model Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

21.4.L2 Release 21.4.L3 Release

Recommendations

We strongly recommend performing the following tasks before starting this procedure:

• Backup your current environment.

• Enable huge pages for the kernel-mode vRouter.

Huge pages in Contrail Networking are used primarily to allocate flow and bridge table memory
within the vRouter. Huge pages for kernel-mode vRouters provide enough flow and bridge table
memory to avoid compute node reboots to complete future Contrail Networking software upgrades.

We recommend allotting 2GB of memory—either using the default 1024x2MB huge page size setting
or the 2x1GB size setting—for huge pages. Other huge page size settings should only be set by
expert users in specialized circumstances.

A compute node reboot is required to initially enable huge pages. Future compute node upgrades can
happen without reboots after huge pages are enabled. The 1024x2MB huge page setting is
configured by default starting in Contrail Networking Release 2005, but is not active in any compute
node until the compute node is rebooted to enable the setting.

2GB and 1MB huge page size settings cannot be enabled simultaneously in environments using Juju.

The huge page configurations can be changed by entering one of the following commands:

• Enable 1024 2MB huge pages (Default): juju config contrail-agent kernel-hugepages-2m=1024

Disable 2MB huge pages (empty value): juju config contrail-agent kernel-hugepages-2m=““

• Enable 2 1GB huge pages: juju config contrail-agent kernel-hugepages-1g=2

Disable 1GB huge pages (default. empty value): juju config contrail-agent kernel-hugepages-1g=““

NOTE: 1GB huge page settings can only be specified at initial deployment; you
cannot modify the setting in active deployments. The 1GB huge page setting can
also not be completely disabled after being activated on a compute node. Be sure
that you want to use 1GB huge page settings on your compute node before enabling
the setting.

154

Updating Contrail Networking in a Canonical Openstack Multi-model Deployment
Using Juju Charms

Before updating Contrail Networking in a Canonical Openstack Multi-model Deployment, you are
required to prepare the multi-model setup.

Preparing Multi-model Setup

You can initiate the creation of multi-model setup during Juju bootstrap and specify the multi-model
name with --add-model parameter. Let the initial model be called as 'openstack'. Perform the following
steps to prepare the multi-model setup:

1. Add 'openstack' model for Kubernetes.

juju add-model openstack

2. Deploy Contrail-Openstack bundle for openstack model.

juju -m openstack deploy ./openstack_bundle.yaml

3. Add 'kubernetes' model for Kubernetes.

juju add-model k8s

4. Deploy k8s bundle.

juju -m k8s deploy ./k8s_bundle.yaml

5. Add offer for contrail-controller and keystone (if you are using keystone authorization for k8s).

juju -m k8s offer openstack.tf-controller:contrail-controller
juju -m k8s offer openstack.keystone:identity-credentials

If easyrsa is implemented in Openstack model, then run the following command:

juju -m k8s offer openstack.easyrsa:client

155

6. Add relations to contrail-openstack.

juju -m k8s add-relation tf-kubernetes-master openstack.tf-controller
juju -m k8s add-relation tf-agent openstack.tf-controller
juju -m k8s add-relation kubernetes-master openstack.keystone

If easyrsa is implemented in Openstack model, then run the following commands:

juju -m k8s add-relation tf-kubernetes-master openstack.easyrsa
juju -m k8s add-relation tf-agent openstack.easyrsa
juju -m k8s add-relation kubernetes-master openstack.easyrsa
juju -m k8s add-relation etcd openstack.easyrsa

Zero Impact Upgrade Procedure for Multi-model Deployment

To update Contrail Networking in an environment that is using Canonical Openstack Multi-model as the
orchestration platform:

1. From the Juju jumphost, enter the run-action command to place all control plane services—Contrail
Controller, Contrail Analytics, and Contrail AnalyticsDB—into maintenance mode in preparation for
the upgrade.

juju run-action contrail-controller/leader upgrade-ziu

NOTE: The --wait option is not required to complete this step, but is recommended to
ensure this procedure completes without interfering with the procedures in the next
step.

Wait for all charms to move to the maintenance status. You can check the status of all charms by
entering the juju status command.

2. Upgrade all charms. See the Upgrading applications document from Juju.

3. Update the image tags on both modals with new-tag in Juju. The update applies to Contrail Analytics,
Contrail AnalyticsDB, Contrail Agent, Contrail Openstack and Contrail Controller services.

juju switch openstack
juju config contrail-analytics image-tag=<new tag>
juju config contrail-analyticsdb image-tag=<new tag>

156

https://juju.is/docs/upgrading-applications

juju config contrail-agent image-tag=<new tag>
juju config contrail-openstack image-tag=<new tag>
juju config contrail-controller image-tag=<new tag>

juju switch k8s
juju config contrail-kubernetes-master image-tag=<new tag>
juju config contrail-kubernetes-node image-tag=<new tag>
juju config contrail-agent image-tag=<new tag>

The upgrade process starts. It automatically passes six stages.

Stage 0. Pull new images.
Stage 1. Stops config containers.
Stage 2. Start config containers with new tag.
Stage 3. Restart control containers one-by-one.
Stage 4. Restart database containers one-by-one.
Stage 5. Restart contrail-agent container.

4. After updating the image tags, wait for all services to complete stage 5 of the ZIU upgrade process
workflow. The wait time for this step varies by environment, but often takes 40 minutes.

Enter the juju status command and review the Workload and Message field outputs to monitor
progress. The update is complete when all services are in the maintenance state—the Workload field
output is maintenance—and each individual service has completed stage 5 of the ZIU upgrade—
illustrated by the ziu is in progress - stage/done = 5/5 output in the Message field.

A sample output of an in-progress update that has not completed the image tag update process. The
Message field illustrates that the ZIU processes have not completed stage 5 of the upgrade.

juju status
Unit Workload Agent Machine Public address
Ports Message
contrail-analytics/0* maintenance idle 3 10.0.12.20 8081/
tcp ziu is in progress - stage/done = 4/4
contrail-analytics/1 maintenance idle 4 10.0.12.21 8081/
tcp ziu is in progress - stage/done = 4/4
contrail-analytics/2 maintenance idle 5 10.0.12.22 8081/
tcp ziu is in progress - stage/done = 4/4
contrail-analyticsdb/0* maintenance idle 3
10.0.12.20 ziu is in progress - stage/done = 4/4
contrail-analyticsdb/1 maintenance idle 4
10.0.12.21 ziu is in progress - stage/done = 4/3
contrail-analyticsdb/2 maintenance idle 5

157

10.0.12.22 ziu is in progress - stage/done = 4/3
contrail-controller/0* maintenance idle 3
10.0.12.20 ziu is in progress - stage/done = 4/4
 ntp/3 active idle 10.0.12.20 123/
udp chrony: Ready
contrail-controller/1 maintenance executing 4
10.0.12.21 ziu is in progress - stage/done = 4/3
 ntp/2 active idle 10.0.12.21 123/
udp chrony: Ready
contrail-controller/2 maintenance idle 5
10.0.12.22 ziu is in progress - stage/done = 4/3
 ntp/4 active idle 10.0.12.22 123/
udp chrony: Ready
contrail-keystone-auth/0* active idle 3/lxd/0
10.0.12.121 Unit is ready
contrail-keystone-auth/0* active idle Unit is ready

5. Upgrade every Contrail agent on each individual compute node:

juju run-action contrail-agent/0 upgrade
juju run-action contrail-agent/1 upgrade

Wait for each compute node and CSN node upgrade to finish. The wait time for this step varies by
environment, but typically takes around 5 minutes to complete per node.

6. If huge pages are not enabled for your vRouter, log into each individual compute node and reboot to
complete the procedure.

NOTE: A compute node reboot is required to initially enable huge pages. If huge pages
have been configured in Juju without a compute node reboot, you can also use this
reboot to enable huge pages. You can avoid rebooting the compute node during future
software upgrades after this initial reboot.

1024x2MB huge page support is configured by default starting in Contrail Networking
Release 2005, which is also the first Contrail Networking release that supports huge
pages. If you are upgrading to Release 2005 for the first time, a compute node reboot is
always required because huge pages could not have been previously enabled.

158

This reboot also enables the default 1024x2MB huge page configuration unless you
change the huge page configuration in Release 2005 or later.

sudo reboot

This step can be skipped if huge pages are enabled.

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

Updating Contrail Networking using Zero Impact Upgrade Procedure in a
Canonical Openstack Deployment with Juju Charms

IN THIS SECTION

Prerequisites | 159

When to Use This Procedure | 160

Recommendations | 161

Updating Contrail Networking in a Canonical Openstack Deployment Using Juju Charms | 161

This document provides the steps needed to update a Contrail Networking deployment that is using
Canonical Openstack as it’s orchestration platform. The procedure utilizes Juju charms and provides a
zero impact upgrade (ZIU) with minimal disruption to network operations.

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Canonical Openstack as the orchestration platform is
already operational.

• Juju charms for Contrail services are active in your environment, and the Contrail Networking
controller has access to the Juju jumphost and the Juju cluster.

159

When to Use This Procedure

This procedure is used to upgrade Contrail Networking when it is running in environments using
Canonical Openstack.

You can use this procedure to incrementally upgrade to the next main Contrail Networking release only.
This procedure is not validated for upgrades between releases that are two or more releases apart.

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 9: Contrail Networking with Canonical Openstack Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

Any 1912.L Release Any 1912.L Release

1912 or any 1912.L Release 2003

2003 2005

2005 2008

2008 2011

2011 Any 2011.L Release

Any 2011.L Release Any 2011.L Release

Any 2011 or 2011.L Release Any 21.3 Release

Any 21.3 Release Any 21.4 Release

2011 Release 21.4.L2 Release

2011 Release 21.4.L3 Release

2011.L5 Release Any 21.4 Release

160

Recommendations

We strongly recommend performing the following tasks before starting this procedure:

• Backup your current environment.

• Enable huge pages for the kernel-mode vRouter.

Starting in Contrail Networking Release 2005, you can enable huge pages in the kernel-mode
vRouter to avoid future compute node reboots during upgrades. Huge pages in Contrail Networking
are used primarily to allocate flow and bridge table memory within the vRouter. Huge pages for
kernel-mode vRouters provide enough flow and bridge table memory to avoid compute node reboots
to complete future Contrail Networking software upgrades.

We recommend allotting 2GB of memory—either using the default 1024x2MB huge page size setting
or the 2x1GB size setting—for huge pages. Other huge page size settings should only be set by
expert users in specialized circumstances.

A compute node reboot is required to initially enable huge pages. Future compute node upgrades can
happen without reboots after huge pages are enabled. The 1024x2MB huge page setting is
configured by default starting in Contrail Networking Release 2005, but is not active in any compute
node until the compute node is rebooted to enable the setting.

2GB and 1MB huge page size settings cannot be enabled simultaneously in environments using Juju.

The huge page configurations can be changed by entering one of the following commands:

• Enable 1024 2MB huge pages (Default): juju config contrail-agent kernel-hugepages-2m=1024

Disable 2MB huge pages (empty value): juju config contrail-agent kernel-hugepages-2m=““

• Enable 2 1GB huge pages: juju config contrail-agent kernel-hugepages-1g=2

Disable 1GB huge pages (default. empty value): juju config contrail-agent kernel-hugepages-1g=““

NOTE: 1GB huge page settings can only be specified at initial deployment; you
cannot modify the setting in active deployments. The 1GB huge page setting can
also not be completely disabled after being activated on a compute node. Be sure
that you want to use 1GB huge page settings on your compute node before enabling
the setting.

Updating Contrail Networking in a Canonical Openstack Deployment Using Juju
Charms

To update Contrail Networking in an environment that is using Canonical Openstack as the
orchestration platform:

161

1. From the Juju jumphost, enter the run-action command to place all control plane services—Contrail
Controller, Contrail Analytics, & Contrail AnalyticsDB—into maintenance mode in preparation for the
upgrade.

juju run-action --wait contrail-controller/leader upgrade-ziu

NOTE: The --wait option is not required to complete this step, but is recommended to
ensure this procedure completes without interfering with the procedures in the next
step.

Wait for all charms to move to the maintenance status. You can check the status of all charms by
entering the juju status command.

2. Upgrade all charms. See the Upgrade Juju document from Juju.

3. Update the image tags in Juju for the Contrail Analytics, Contrail AnalyticsDB, Contrail Agent, and
Contrail Openstack services.

 juju config contrail-analytics image-tag=master-latest
 juju config contrail-analyticsdb image-tag=master-latest
 juju config contrail-agent image-tag=master-latest
 juju config contrail-openstack image-tag=master-latest

If a Contrail Service node (CSN) is part of the cluster, also update the image tags in Juju for the
Contrail Service node.

juju config contrail-agent-csn image-tag=master-latest

4. Update the image tag in Juju for the Contrail Controller service:

juju config contrail-controller image-tag=master-latest

5. After updating the image tags, wait for all services to complete stage 5 of the ZIU upgrade process
workflow. The wait time for this step varies by environment, but often takes 30 to 90 minutes.

Enter the juju status command and review the Workload and Message field outputs to monitor
progress. The update is complete when all services are in the maintenance state—the Workload field
output is maintenance—and each individual service has completed stage 5 of the ZIU upgrade—
illustrated by the ziu is in progress - stage/done = 5/5 output in the Message field.

162

https://juju.is/docs/juju/upgrade-juju

A sample output of an in-progress update that has not completed the image tag update process. The
Message field illustrates that the ZIU processes have not completed stage 5 of the upgrade.

NOTE: Some juju status output fields removed for readability.

juju status
Unit Workload Agent Message
contrail-analytics/0* maintenance idle ziu is in progress - stage/done = 4/4
contrail-analytics/1 maintenance idle ziu is in progress - stage/done = 4/4
contrail-analytics/2 maintenance idle ziu is in progress - stage/done = 4/4
contrail-analyticsdb/0* maintenance idle ziu is in progress - stage/done = 4/4
contrail-analyticsdb/1 maintenance idle ziu is in progress - stage/done = 4/3
contrail-analyticsdb/2 maintenance idle ziu is in progress - stage/done = 4/3
contrail-controller/0* maintenance idle ziu is in progress - stage/done = 4/4
 ntp/3 active idle chrony: Ready
contrail-controller/1 maintenance executing ziu is in progress - stage/done = 4/3
 ntp/2 active idle chrony: Ready
contrail-controller/2 maintenance idle ziu is in progress - stage/done = 4/3
 ntp/4 active idle chrony: Ready
contrail-keystone-auth/0* active idle Unit is ready

A sample output of an update that has completed the image tag update process on all services. The
Workload field is maintenance for all services and the Message field explains that stage 5 of the ZIU
process is done.

NOTE: Some juju status output fields removed for readability.

juju status
Unit Workload Agent Message
contrail-analytics/0* maintenance idle ziu is in progress - stage/done = 5/5
contrail-analytics/1 maintenance idle ziu is in progress - stage/done = 5/5
contrail-analytics/2 maintenance idle ziu is in progress - stage/done = 5/5
contrail-analyticsdb/0* maintenance idle ziu is in progress - stage/done = 5/5
contrail-analyticsdb/1 maintenance idle ziu is in progress - stage/done = 5/5
contrail-analyticsdb/2 maintenance idle ziu is in progress - stage/done = 5/5
contrail-controller/0* maintenance idle ziu is in progress - stage/done = 5/5
 ntp/3 active idle chrony: Ready
contrail-controller/1 maintenance idle ziu is in progress - stage/done = 5/5
 ntp/2 active idle chrony: Ready

163

contrail-controller/2 maintenance idle ziu is in progress - stage/done = 5/5
 ntp/4 active idle chrony: Ready
contrail-keystone-auth/0* active idle Unit is ready
glance/0* active idle Unit is ready
haproxy/0* active idle Unit is ready
 keepalived/2 active idle VIP ready
haproxy/1 active idle Unit is ready
 keepalived/0* active idle VIP ready
haproxy/2 active idle Unit is ready
 keepalived/1 active idle VIP ready
heat/0* active idle Unit is ready
 contrail-openstack/3 active idle Unit is ready
keystone/0* active idle Unit is ready
mysql/0* active idle Unit is ready
neutron-api/0* active idle Unit is ready
 contrail-openstack/2 active idle Unit is ready
nova-cloud-controller/0* active idle Unit is ready
nova-compute/0* active idle Unit is ready

6. Upgrade every Contrail agent on each individual compute node:

juju run-action contrail-agent/0 upgrade
juju run-action contrail-agent/1 upgrade
juju run-action contrail-agent/2 upgrade
...

If Contrail Service nodes (CSNs) are part of the cluster, also upgrade every Contrail CSN agent:

juju run-action contrail-agent-csn/0 upgrade
...

Wait for each compute node and CSN node upgrade to finish. The wait time for this step varies by
environment, but typically takes around 10 minutes to complete per node.

7. If huge pages are not enabled for your vRouter, log into each individual compute node and reboot to
complete the procedure.

NOTE: A compute node reboot is required to initially enable huge pages. If huge pages
have been configured in Juju without a compute node reboot, you can also use this

164

reboot to enable huge pages. You can avoid rebooting the compute node during future
software upgrades after this initial reboot.

1024x2MB huge page support is configured by default starting in Contrail Networking
Release 2005, which is also the first Contrail Networking release that supports huge
pages. If you are upgrading to Release 2005 for the first time, a compute node reboot is
always required because huge pages could not have been previously enabled.

This reboot also enables the default 1024x2MB huge page configuration unless you
change the huge page configuration in Release 2005 or later.

sudo reboot

This step can be skipped if huge pages are enabled.

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

Upgrading Contrail Networking Release 1912.L2 with RHOSP13 to
Contrail Networking Release 2011.L3 with RHOSP16.1

The goal of this topic is to provide a combined procedure to upgrade Red Hat OpenStack Platform
(RHOSP) from RHOSP 13 to RHOSP 16.1 by leveraging Red Hat Fast Forward Upgrade (FFU) procedure
while simultaneously upgrading Contrail Networking from Release 1912.L2 to Release 2011.L3. This
procedure leverages the speeding up an overcloud upgrade process from RHOSP.

Follow chapter 2—Planning and preparation for an in-place upgrade through chapter 8.3— Copying the
Leapp data to the overcloud nodes of FRAMEWORK FOR UPGRADES (13 TO 16.1) procedure.

Before upgrading overcloud, refer Chapter 20—Speeding Up An Overcloud Upgrade.

To upgrade an overcloud:

1. Create a Contrail container file to upload the Contrail container image to undercloud, if the
undercloud has used a registry.

cd ~/tf-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-u
username] [-p password] [-c certificate path]

165

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/planning-and-preparation-for-an-in-place-openstack-platform-upgrade_planning-preparation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade

For example:

Import from password protected public registry:
./import_contrail_container.sh -f /tmp/contrail_container -r hub.juniper.net/contrail -u
USERNAME -p PASSWORD -t 1234

Import from private secure registry:
./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -c
http://device.example.net/pub/device.example.net.crt -t 1234

Import from private insecure registry:
./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

Run the following command from the undercloud to upload the Contrail container image.

openstack overcloud container image upload --config-file /tmp/contrail_container

2. Clone the tungsten fabric deployment code.

git clone https://github.com/tungstenfabric/tf-deployment-test.git

NOTE: Tungsten fabric scripts are located at - tf-deployment-test/tree/master/rhosp/
ffu_ziu_13_16/tf_specific.

3. Follow chapter 2—Planning and preparation for an in-place upgrade through chapter 8.3— Copying
the Leapp data to the overcloud nodes of FRAMEWORK FOR UPGRADES (13 TO 16.1) procedure to
upgrade the undercloud and prepare the environment.

4. Use predictable NIC names for overcloud nodes.

Follow Chapter 8.4—Using predictable NIC names for overcloud nodes.

ansible-playbook -i inventory.yaml tf-deployment-test/rhosp/ffu_ziu_13_16/redhat_files/
playbook-nics.yaml
ansible-playbook -i inventory.yaml tf-deployment-test/rhosp/ffu_ziu_13_16/redhat_files/
playbook-nics.yaml

166

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/planning-and-preparation-for-an-in-place-openstack-platform-upgrade_planning-preparation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/framework_for_upgrades_13_to_16.1/index#using-predictable-nic-names-overcloud-leapp

Follow Chapter 20.1—Running the overcloud upgrade preparation and Chapter 20.2—Upgrading the
control plane nodes of RedHat OpenStack Speeding Up an Overcloud Upgrade procedure to upgrade
openstack and other overcloud nodes including contrail controllers.

5. Run the playbook-nics-vhost0.yaml playbook to setup the vhost interface on Contrail compute nodes.

ansible-playbook -i inventory.yaml -l overcloud_Compute tf-deployment-test/rhosp/
ffu_ziu_13_16/tf_specific/playbook-nics-vhost0.yaml

ansible-playbook -i inventory.yaml -l overcloud_ContrailDpdk tf-deployment-test/rhosp/
ffu_ziu_13_16/tf_specific/playbook-nics-vhost0.yaml

NOTE: Stop or migrate the workloads running on the compute batch that you are going
to upgrade.

Follow Chapter 20.3—Upgrading Compute nodes in parallel of RedHat OpenStack Speeding Up an
Overcloud Upgrade procedure.

Instead of executing a single command for compute system upgrade, you can use a separate upgrade
command with the system_upgrade_prepare and system_upgrade_run tags.

openstack overcloud upgrade run --yes --stack overcloud --tags system_upgrade_prepare --limit
<name-of-compute>

openstack overcloud upgrade run --yes --stack overcloud --tags system_upgrade_run --limit
<name-of-compute>

6. Follow Chapter 20.4—Synchronizing the overcloud stack and later chapters of RedHat OpenStack
Speeding Up an Overcloud Upgrade procedure to complete the overcloud upgrade.

Upgrading Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP
13 or RHOSP 16.1 to Contrail Networking Release 21.4 with RHOSP 16.2

IN THIS SECTION

When to Use This Procedure | 168

167

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/framework_for_upgrades_13_to_16.1/assembly-speeding-up-an-overcloud-upgrade_speeding-up-upgrade

Prerequisites | 169

Before You Begin | 170

Upgrade Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to Contrail
Networking Release 21.4 with RHOSP 16.2 | 170

The goal of this topic is to provide a combined procedure to upgrade Red Hat OpenStack Platform
(RHOSP) from RHOSP 13 or RHOSP 16.1 to RHOSP 16.2 by leveraging Red Hat Fast Forward Upgrade
(FFU) procedure while simultaneously upgrading Contrail Networking from Release 1912.L4 or 2011.L3
to Release 21.4.

The downtime will be reduced by not requiring extra server reboots in addition to the ones that the
RHOSP FFU procedure already requires for Kernel/RHEL upgrades.

Before upgrading overcloud, refer Chapter 20—Speeding up an overcloud upgrade.

Refer to Framework for Upgrades (13 to 16.2) documentation for details on RHOSP 13 to RHOSP 16.2
Fast Forward Upgrade (FFU) procedure of OpenStack Platform environment from one long life version to
the next long life version.

Refer to Keeping Red Hat OpenStack Platform Updated documentation for details on RHOSP 16.1 to
RHOSP 16.2 to perform minor updates of Red Hat OpenStack Platform.

When to Use This Procedure

The procedure in this document has been validated for the following Contrail Networking upgrade
scenarios:

Table 10: Validated Upgrade Scenarios

Current Version Target Version

RHOSP 13 RHOSP 16.2

RHOSP 16.1 RHOSP 16.2

Contrail Networking Release 1912.L4 Contrail Networking Release 21.4

Contrail Networking Release 2011.L3 Contrail Networking Release 21.4

168

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud

Prerequisites

This document makes the following assumptions about your environment:

• A Contrail Networking deployment using Red Hat OpenStack version 13 (RHOSP 13) or RHOSP 16.1
as the orchestration platform is already operational.

• The overcloud nodes in the RHOSP 13 or RHOSP 16.1 environment have an enabled Red Hat
Enterprise Linux (RHEL) subscription.

• Your environment is running Contrail Release 1912.L4 or 2011.L3 and upgrading to Contrail Release
21.4.

• If you are updating Red Hat OpenStack simultaneously with Contrail Networking, we assume that the
undercloud node is updated to the latest minor version and that new overcloud images are prepared
for an upgrade. See the Chapter 2—Updating the undercloud section of the Keeping Red Hat
OpenStack Platform Updated guide from Red Hat. If the undercloud has been updated and a copy of
the heat templates are used for the deployment, update the copy of the heat template from the Red
Hat’s core heat template collection at /usr/share/openstack-tripleo-heat-templates. For more
information on this process, see the Understanding Heat Templates chapter from Red Hat.

• Per Red Hat OpenStack support guidelines, do not change IP addresses during this upgrade.

• New Contrail Control plane is deployed on K8s/OpenShift cluster with a self-signed root CA:

• You should generate a self-signed root CA and a key: k8s-root-ca.pem and k8s-root-ca-key.pem.

• You must deploy Contrail with the generated self-signed root CA and key as a Contrail root CA.

Example of input environment variables for deploying new Contrail Control plane on K8s/
OpenShift cluster with a self-signed root CA:

export SSL_CACERT=$(cat ~/k8s-root-ca.pem)
export SSL_CAKEY=$(cat ~/k8s-root-ca-key.pem)
... other actions to deploy from tf-operator ...

• Use CA bundle, if RHOSP uses IPA for the certificate management cluster. Example of how to
prepare CA bundle and use as Contrail root CA:

cat k8s-root-ca.pem /etc/ipa/ca.crt > ca-bundle.pem
export SSL_CACERT=$(cat ~/ca-bundle.pem)
export SSL_CAKEY=$(cat ~/k8s-root-ca-key.pem)
... other actions to deploy from tf-operator ...

169

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/index

Before You Begin

We recommend performing these procedures before you start the update:

• Backup your Contrail configuration database before starting this procedure, see:

• "How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments
Using the Openstack 13 or Ansible Deployers" on page 243

• "How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments
Using the Openstack 16.1 Director Deployment" on page 231

• Each compute node agent will go down during this procedure, causing some compute node
downtime. The estimated downtime for a compute node varies by environment, but typically took
between 12 and 15 minutes in our testing environments.

If you have compute nodes with workloads that cannot tolerate this downtime, consider migrating
workloads or taking other steps to accommodate this downtime in your environment.

• Obtain ContrailImageTag from:

• README Access to Contrail Registry 19XX

• README Access to Contrail Registry 20XX

• README Access to Contrail Registry 21XX

Upgrade Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP
16.1 to Contrail Networking Release 21.4 with RHOSP 16.2

To perform the upgrade:

1. Deploy new Contrail control plane on Kubernetes/Openshift cluster. See "Prerequisites" on page
169.

2. To prepare the cluster for ISSU update:

a. Ensure that overcloud VIP FQDNs and all overcloud nodes FQDNs are resolvable on the selected
ISSU node (modify /etc/hosts). For example:

cat /etc/hosts | grep overcloud
192.XXX.XX.200 overcloud.dev.localdomain
192.XXX.XX.105 overcloud-contrailcontroller-0.dev.localdomain
... IMPORTANT: all FQDNs of all overcloud nodes (all networks) ...

170

https://www.juniper.net/documentation/en_US/contrail19/information-products/topic-collections/release-notes/readme-contrail-19.pdf
https://www.juniper.net/documentation/en_US/contrail20/information-products/topic-collections/release-notes/readme-contrail-20.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

NOTE: Overcloud node FQDNs can be taken from /etc/hosts of one of the
overcloud node.

b. Distribute the self signed root CA of the Kubernetes cluster on Contrail Controller nodes as
trusted CA and switch Contrail RabbitMQ to use the CA bundle.

i. Make a CA bundle file.

cat /etc/ipa/ca.crt k8s-root-ca.pem > ca-bundle.pem

ii. Prepare the environment file ca-bundle.yaml.

create file
cat <<EOF > ca-bundle.yaml
resource_registry:
 OS::TripleO::NodeTLSCAData: tripleo-heat-templates/puppet/extraconfig/tls/ca-
inject.yaml
parameter_defaults:
 ContrailCaCertFile: "/etc/pki/ca-trust/source/anchors/contrail-ca-cert.pem"
 SSLRootCertificatePath: "/etc/pki/ca-trust/source/anchors/contrail-ca-cert.pem"
 SSLRootCertificate: |
EOF
append cert data
cat ca-bundle.pem | while read l ; do
 echo " $l" >> ca-bundle.yaml
done
check
cat ca-bundle.yaml

iii. Distribute the CA bundle. Add a new environment file and make Contrail services to use
the CA bundle to run the deploy command. For example:

note: ca-bundle.yaml must be after contrail-tls.yaml as it overrides params
openstack overcloud deploy \
 <all env files used before for deploy> \
 -e ca-bundle.yaml

3. Start the ISSU sync data:

171

a. Stop service Device Manager, Schema Transformer and SVC Monitor, edit manager's manifest, and
add devicemanager, schematransformer, and svcmonitor containers to the containers section.

kubectl -n tf edit manager

NOTE: Ensure that the config pod is restarted and the removed containers are not
listed in the containers section.

b. Select one master node to run the ISSU scripts and then label the master node (for example,
node1).

kubectl label nodes node1 contrail-issu=""

c. Collect data from the operator environment. For example:

kubectl -n tf exec -it config1-config-statefulset-0 \
-c api -- bash -c 'cat /etc/contrailconfigmaps/api.0.$POD_IP'

d. Prepare issu-configmap.

mkdir -p issu-configmap
cp tf-tripleo-heat-templates/tools/contrail/issu/issu.* \
 tf-tripleo-heat-templates/tools/contrail/issu/*.sh \
 issu-configmap/

e. Modify issu.env file according to your environment and create a configmap.

kubectl create configmap -n tf issu-configmap \
 --from-file=issu.env=issu-configmap/issu.env \
 --from-file=issu.conf=issu-configmap/issu.conf \
 --from-file=issu_node_pair.sh=issu-configmap/issu_node_pair.sh

f. Prepare jobs.

sudo mkdir -p /var/log/contrail/issu
mkdir -p issu-jobs

172

cp tf-tripleo-heat-templates/tools/contrail/issu/*.yaml \
 issu-jobs/

Modify the yaml files if you need to customize your configurations.

NOTE: Modify images to use already pulled images on K8s nodes. This is because,
the ISSU jobs do not pull images and rely on images used to deploy the K8s cluster.

g. Run a pair job to pair control nodes between the old and new clusters.

kubectl apply -f issu-jobs/issu-pair-add-job.yaml

Wait till the job is completed and log is validated.

kubectl get pods -n tf -w | grep issu
cat /var/log/contrail/issu/issu-pair-add-job.log
....
INFO: provision_control.py --host_name node-10-100-0-147.localdomain ... exit with code 0

h. Pre-synchronize data to the new cluster and run the presync job.

kubectl apply -f issu-jobs/issu-presync-job.yaml

Wait till the job is completed and log is validated.

kubectl get pods -n tf -w | grep issu
cat /var/log/contrail/issu/issu-presync-job.log
...
Done syncing Configdb uuid
Done syncing bgp keyspace
Done syncing useragent keyspace
Done syncing svc-monitor keyspace
Done syncing dm keyspace

i. Run the sync data between clusters.

173

i. Run the sync job.

kubectl apply -f issu-jobs/issu-sync-job.yaml

ii. Check that the sync job is running normally.

cat /var/log/contrail/issu/issu-sync-job.log
...
Config Sync initiated...
Config Sync done...
Started runtime sync...
Start Compute upgrade...

NOTE: At this point switch to main instruction and follow RHOSP update/
upgrade procedure.

j. Return to the main update workflow and update the cluster.

4. Upgrade the undercloud:

a. For RHOSP 13 to RHOSP 16.2, follow Chapter 4—Preparing for the undercloud upgrade to
Chapter 6—Upgrading director of Framework for Upgrades (13 to 16.2).

b. For RHOSP 16.1 to RHOSP 16.2, follow Chapter 2—Updating the undercloud of Keeping Red Hat
OpenStack Platform Updated.

5. Upgrade the overcloud:

a. For RHOSP 13 to RHOSP 16.2, follow Chapter 7—Initial steps for overcloud preparation through
Step 17.3—OpenStack overcloud external-upgrade run of Framework for Upgrades (13 to 16.2).

b. For RHOSP 16.1 to RHOSP 16.2, follow Step 3.1—Running the overcloud update preparation
through Step 3.9—Performing online database updates of Keeping Red Hat OpenStack Platform
Updated.

6. Stop the ISSU sync job, finalize sync data, and unpair control nodes:

a. Stop the ISSU sync job.

kubectl delete -f issu-jobs/issu-sync-job.yaml
wait till it deleted
kubectl get pods -n tf -w | grep issu

174

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud

b. Finalize the sync and run the sync job.

kubectl apply -f issu-jobs/issu-postsync-job.yaml

c. Check that the sync job is running normally.

kubectl get pods -n tf -w | grep issu
cat /var/log/contrail/issu/issu-postsync-job.log

d. Finalize the sync of ZK data and run the sync job.

kubectl apply -f issu-jobs/issu-post-zk-sync-job.yaml

e. Check that the sync job is running normally.

cat /var/log/contrail/issu/issu-post-zk-sync-job.log

f. Run the unpair job to delete pairing of control nodes between the old and new clusters.

kubectl apply -f issu-jobs/issu-pair-del-job.yaml

Wait till the job is completed and log is validated.

kubectl get pods -n tf -w | grep issu
cat /var/log/contrail/issu/issu-pair-del-job.log
....
INFO: operation finished successfully
...

g. Start service Device Manager, Schema Transformer and SVC Monitor, edit manager's manifest,
and add devicemanager, schematransformer, and svcmonitor containers to the containers section.

kubectl -n tf edit manager

175

NOTE: Ensure that the config pod is restarted and the removed containers are not
listed in the containers section.

Example of the edited config section:

config:
 metadata:
 labels:
 tf_cluster: cluster1
 name: config1
 spec:
 commonConfiguration:
 nodeSelector:
 node-role.kubernetes.io/master: ""
 serviceConfiguration:
 containers:
 - image: tungstenfabric/contrail-controller-config-devicemgr:latest
 name: devicemanager
 - image: tungstenfabric/contrail-controller-config-schema:latest
 name: schematransformer
 - image: tungstenfabric/contrail-controller-config-svcmonitor:latest
 name: servicemonitor
 - image: tungstenfabric/contrail-controller-config-api:latest
 name: api
 - image: tungstenfabric/contrail-controller-config-dnsmasq:latest
 name: dnsmasq
 - image: tungstenfabric/contrail-nodemgr:latest
 name: nodemanager
 - image: tungstenfabric/contrail-node-init:latest
 name: nodeinit
 - image: tungstenfabric/contrail-provisioner:latest
 name: provisioner

h. Remove the label from the ISSU node and issu-config configmap.

ajdust to use your node name
kubectl label nodes node1 contrail-issu-
kubectl delete configmap -n tf issu-configmap

176

i. Return to the main update workflow.

7. Continue with the overcloud upgrade process:

a. For RHOSP 13 to RHOSP 16.2, follow Step 17.4—OpenStack overcloud upgrade converge of
Framework for Upgrades (13 to 16.2).

b. For RHOSP 16.1 to RHOSP 16.2, follow Step 3.10—Finalizing the update of Keeping Red Hat
OpenStack Platform Updated.

8. Remove the old Contrail Control plane nodes.

set counts to 0
(note - use your file where counts are defined)
sed -i misc_opts.yaml -e 's/ContrailControllerCount: .*/ContrailControllerCount: 0/'
sed -i misc_opts.yaml -e 's/ContrailAnalyticsCount: .*/ContrailAnalyticsCount: 0/'
sed -i misc_opts.yaml -e 's/ContrailAnalyticsDatabaseCount: .*/
ContrailAnalyticsDatabaseCount: 0/'

delete nodes from overcloud
openstack overcloud node delete --yes --stack overcloud \
 overcloud-contrailcontroller-0 \
 other nodes ...

9. (Optional) Perform the post-upgrade tasks.

a. For RHOSP 13 to RHOSP 16.2, follow Chapter 25—Performing post-upgrade actions of
Framework for Upgrades (13 to 16.2).

b. For RHOSP 16.1 to RHOSP 16.2, follow Chapter 4—Rebooting the overcloud through Step 4.3—
Rebooting Compute nodes of Keeping Red Hat OpenStack Platform Updated.

RELATED DOCUMENTATION

How to Upgrade Contrail Networking Through Kubernetes and/or Red Hat OpenShift | 222

Deploying Red Hat Openstack with Contrail Control Plane Managed by Tungsten Fabric Operator |
 227

177

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/framework_for_upgrades_13_to_16.2/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/assembly_updating-the-overcloud_keeping-updated#proc_finalizing-the-update_updating-overcloud

Upgrading Contrail Networking until 21.4.L2 using the Ansible Deployer
In-Service Software Upgrade Procedure in OpenStack Environments

IN THIS SECTION

When to Use This Procedure? | 178

Contrail In-Service Software Upgrade (ISSU) Overview | 179

Prerequisites | 180

Preparing the Contrail System for the Ansible Deployer ISSU Procedure | 180

Provisioning Control Nodes and Performing Synchronization Steps | 182

Transferring the Compute Nodes into the New Cluster | 186

Finalizing the Contrail Ansible Deployer ISSU Process | 190

Troubleshooting link-loop in Release 21.4.L2 | 194

When to Use This Procedure?

NOTE: Before performing any upgrade procedure, install Docker serially over containers.
However, you can upgrade computes in parallel to Docker via script. After upgrading
each docker host, verify the status of contrail and services. Do not proceed with upgrade
on next hosts until all the services of contrail-status reports are running properly.

We recommend using the Zero Impact Upgrade (ZIU) procedures to upgrade Contrail Networking with
minimal network disruption in most environments using Openstack orchestration.

To perform a ZIU upgrade, follow the instructions in How to Perform a Zero Impact Contrail Networking
Upgrade using the Ansible Deployer. If you are running Red Hat Openstack 13 or 16.1, see Updating
Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack 13 or Updating Contrail Networking using the Zero Impact Upgrade Process in an
Environment using Red Hat Openstack 16.1.

The procedure in this document also provides a method of upgrading Contrail Networking with minimal
network disruption using the Ansible deployer in environments using Openstack orchestration.

The procedure in this document has been validated to upgrade Contrail Networking from Release 3.2 or
later to Release 5.0 or later. The starting Contrail release for this upgrade can be any Contrail
Networking Release after Release 3.2, including all Contrail Networking 4, 5, 19, 20, 21 upto 21.4.L1

178

https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html

releases. The target release for this upgrade can be any Contrail Networking Release after Release 5.0,
including all Contrail Networking 5, 19, 20, 21 until 21.4.L2 releases.

Table 11: Contrail Networking Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

Release 3.2 or Later

Any Release 4

Any Release 5

Any Release 19

Any Release 20

Any Release 21 prior to 21.4.L2

Any Release 5

Any Release 19

Any Release 20

Any Release 21 until 21.4.L2

Contrail In-Service Software Upgrade (ISSU) Overview

If your installed version is Contrail Release 3.2 or higher, you can perform an in-service software upgrade
(ISSU) to perform this upgrade using the Ansible deployer. In performing the ISSU, the Contrail controller
cluster is upgraded side-by-side with a parallel setup, and the compute nodes are upgraded in place.

NOTE: We recommend that you take snapshots of your current system before you
proceed with the upgrade process.

The procedure for performing the ISSU using the Contrail Ansible deployer is similar to previous ISSU
upgrade procedures.

NOTE: This Contrail ansible deployer ISSU procedure does not include steps for
upgrading OpenStack. If an OpenStack version upgrade is required, it should be
performed using applicable OpenStack procedures.

In summary, the ISSU process consists of the following parts, in sequence:

1. Deploy the new cluster.

2. Synchronize the new and old clusters.

3. Upgrade the compute nodes.

4. Finalize the synchronization and complete the upgrades.

179

Prerequisites

The following prerequisites are required to use the Contrail ansible deployer ISSU procedure:

• A previous version of Contrail installed, no earlier than Release 3.2.

• There are OpenStack controller and compute nodes, and Contrail nodes.

• OpenStack needs to have been installed from packages.

• Contrail and OpenStack should be installed on different nodes.

NOTE: Upgrade for compute nodes with Ubuntu 14.04 is not supported. Compute
nodes need to be upgraded to Ubuntu 16.04 first.

Preparing the Contrail System for the Ansible Deployer ISSU Procedure

In summary, these are the general steps for the system preparation phase of the Contrail ansible
deployer ISSU procedure:

1. Deploy the new version of Contrail using the Contrail ansible deployer, but make sure to include only
the following Contrail controller services:

• Config

• Control

• Analytics

• Databases

• Any additional support services like rmq, kafka, and zookeeper. (The vrouter service will be
deployed later on the old compute nodes.)

NOTE: You must provide keystone authorization information for setup.

2. After deployment is finished, you can log into the Contrail web interface to verify that it works.

The detailed steps for deploying the new controller using the ansible deployer are as follows:

1. To deploy the new controller, download contrail-ansible-deployer-release-tag.tgz onto your
provisioning host from Juniper Networks.

180

2. The new controller file config/instances.yaml appears as follows, with actual values in place of the
variables as shown in the example:

provider_config:
 bms:
 domainsuffix: local
 ssh_user: user
 ssh_pwd: password
instances:
 server1:
 ip: controller 1 ip
 provider: bms
 roles:
 analytics: null
 analytics_database: null
 config: null
 config_database: null
 control: null
 webui: null
contrail_configuration:
 CONTROLLER_NODES: controller ip-s from api/mgmt network
 CONTROL_NODES: controller ip-s from ctrl/data network
 AUTH_MODE: keystone
 KEYSTONE_AUTH_ADMIN_TENANT: old controller's admin's tenant
 KEYSTONE_AUTH_ADMIN_USER: old controller's admin's user name
 KEYSTONE_AUTH_ADMIN_PASSWORD: password for admin user
 KEYSTONE_AUTH_HOST: keystone host/ip of old controller
 KEYSTONE_AUTH_URL_VERSION: "/v3"
 KEYSTONE_AUTH_USER_DOMAIN_NAME: user's domain in case of keystone v3
 KEYSTONE_AUTH_PROJECT_DOMAIN_NAME: project's domain in case of keystone v3
 RABBITMQ_NODE_PORT: 5673
 IPFABRIC_SERVICE_HOST: metadata service host/ip of old controller
 AAA_MODE: cloud-admin
 METADATA_PROXY_SECRET: secret phrase that is used in old controller
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: keystone host/ip of old controller
 kolla_external_vip_address: keystone host/ip of old controller

181

3. Finally, run the ansible playbooks to deploy the new controller.

ansible-playbook -v -e orchestrator=none -i inventory/ playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

After successful completion of these commands, the new controller should be up and alive.

Provisioning Control Nodes and Performing Synchronization Steps

In summary, these are the general steps for the node provisioning and synchronization phase of the
Contrail ansible deployer ISSU procedure:

1. Provision new control nodes in the old cluster and old control nodes in the new cluster.

2. Stop the following containers in the new cluster on all nodes:

• contrail-device-manager

• contrail-schema-transformer

• contrail-svcmonitor

3. Switch the new controller into maintenance mode to prevent provisioning computes in the new
cluster.

4. Prepare the config file for the ISSU.

5. Run the pre-sync script from the ISSU package.

6. Run the run-sync script from the ISSU package in background mode.

The detailed steps to provision the control nodes and perform the synchronization are as follows:

1. Pair the old control nodes in the new cluster. It is recommended to run it from any config-api
container.

config_api_image=`docker ps | awk '/config-api/{print $1}' | head`

2. Run the following command for each old control node, substituting actual values where indicated:

docker exec -it $config_api_image /bin/bash -c "LOG_LEVEL=SYS_NOTICE source /common.sh ;
python /opt/contrail/utils/provision_control.py --host_name hostname of old control node

182

--host_ip IP of old control node --api_server_ip $(hostname -i)
 --api_server_port 8082 --oper add --router_asn 64512 --ibgp_auto_mesh \$AUTH_PARAMS"

3. Pair the new control nodes in the old cluster with similar commands (the specific syntax depends on
the deployment method of the old cluster), again substituting actual values where indicated.

python /opt/contrail/utils/provision_control.py --host_name new controller hostname
 --host_ip new controller IP --api_server_ip old api-server IP/VIP
 --api_server_port 8082 --oper add --admin_user admin --admin_password password
 --admin_tenant_name admin --router_asn 64512 --ibgp_auto_mesh

4. Stop all the containers for contrail-device-manager, contrail-schema-transformer, and contrail-
svcmonitor in the new cluster on all controller nodes.

docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_svcmonitor_1

5. For Kolla/Juju setup, perform the following steps to delete the contrail-device-manager queue from
Contrail rabbitmq after the contrail-device-manager container is stopped.

NOTE: Run the commands listed in this step from only one new controller.

a. Enter the Contrail rabbitmq container.

docker exec -it config_database_rabbitmq_1 bash

b. Find the name of the contrail-device-manager queue.

rabbitmqctl list_queues | grep -F device_manager

c. Delete the contrail-device-manager queue.

rabbitmqctl delete_queue <device_manager.queue>

183

For RHOSP setup, perform the following steps to delete the contrail-device-manager queue from
Contrail rabbitmq after the contrail-device-manager container is stopped.

a. Enter the Contrail rabbitmq container.

podman exec -it contrail_config_rabbitmq bash

b. Find the name of the contrail-device-manager queue.

rabbitmqctl list_queues | grep -F device_manager

c. Delete the contrail-device-manager queue.

rabbitmqctl delete_queue <device_manager.queue>

These next steps should be performed from any new controller. Then the configuration prepared for
ISSU runs. (For now, only manual preparation is available.)

NOTE: In various deployments, old cassandra may use port 9160 or 9161. You can learn
the configuration details for the old services on any old controller node, in the file /etc/
contrail-contrail-api.conf.

The configuration appears as follows and can be stored locally:

[DEFAULTS]
details about oldrabbit
old_rabbit_user = contrail
old_rabbit_password = ab86245f4f3640a29b700def9e194f72
old_rabbit_q_name = vnc-config.issu-queue
old_rabbit_vhost = contrail
old_rabbit_port = 5672
old_rabbit_address_list = ip-addresses
details about new rabbit
new_rabbit_user = rabbitmq
new_rabbit_password = password
new_rabbit_ha_mode =
new_rabbit_q_name = vnc-config.issu-queue
new_rabbit_vhost = /
new_rabbit_port = 5673

184

new_rabbit_address_list = ip-addresses
details about other old/new services
old_cassandra_user = controller
old_cassandra_password = 04dc0540b796492fad6f7cbdcfb18762
old_cassandra_address_list = ip-address:9161
old_zookeeper_address_list = ip-address:2181
new_cassandra_address_list = ip-address:9161 ip-address:9161 ip-address:9161
new_zookeeper_address_list = ip-address:2181
details about new controller nodes
new_api_info = {"ip-address": [("root"), ("password")], "ip-address": [("root"), ("password")],
"ip-address": [("root"), ("password")]}

1. Detect the config-api image ID.

image_id=`docker images | awk '/config-api/{print $3}' | head -1`

2. Run the pre-synchronization.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh $image_id -c "/usr/bin/contrail-issu-pre-
sync -c /etc/contrail/contrail-issu.conf"

3. Run the run-synchronization.

docker run --rm --detach -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/
contrail-issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id
 -c "/usr/bin/contrail-issu-run-sync -c /etc/contrail/contrail-issu.conf"

4. Check the logs of the run-sync process. To do this, open the run-sync container.

docker exec -it issu-run-sync /bin/bash
cat /var/log/contrail/issu_contrail_run_sync.log

185

Transferring the Compute Nodes into the New Cluster

In summary, these are the general steps for the node transfer phase of the Contrail ansible deployer
ISSU procedure:

NOTE: Before transferring the Compute Nodes into a new cluster, make sure that docker
was successfully updated.

1. Select the compute node(s) for transferring into the new cluster. This selects the virtual machines of
the compute node(s).

2. Migrate the Virtual Machines (VMs) manually from one compute node to another. The steps are as
follows:

NOTE: This procedure is useful when live migration cannot be done.

a. Identify the VM to migrate and its host. Run the following command to stop VM.

openstack server stop <vm-uuid>

b. Identify the VM disk image location on the source compute node where the VM instance was
launched, Usually, the disk image location is:

/var/lib/docker/volumes/nova_compute/_data/instances/<vm-UUID>

c. Copy this directory to the destination compute node.

d. On the destination compute node, run the following command to change the permission of this
directory:

chown -R 42436:42436 /var/lib/docker/volumes/nova_compute/_data/instances/<vm-UUID>

e. Update the nova database of this instance to new host.

docker exec -it mariadb bash
mysql -u <username> -p <password> nova
update instances set node='new host fqname', host='new hostname' where uuid='<VM-UUID>'

186

Example:

(mariadb)[mysql@nodem1 /]$ mysql -u root -p contrail123 nova
MariaDB [nova]> update instances
 -> set node='nodem2.englab.juniper.net', host='nodem2'
 -> where uuid='b7178be6-d4da-4074-9124-d246fa3a2105'
 -> ;

f. Run the following command to start the VM

openstack server start <vm-uuid>

3. For Contrail Release 3.x, remove Contrail from the node(s) as follows:

• Stop the vrouter-agent service.

• Remove the vhost0 interface.

• Switch the physical interface down, then up.

• Remove the vrouter.ko module from the kernel.

4. For Contrail Release 4.x and later, remove Contrail from the node(s) as follows:

• Stop the agent container.

• Restore the physical interface.

5. Add the required node(s) to instances.yml with the roles vrouter and openstack_legacy_compute.

6. Run the Contrail ansible deployer to deploy the new vrouter and to configure the old compute
service.

7. All new compute nodes will have:

• The collector setting pointed to the new Contrail cluster

• The Control/DNS nodes pointed to the new Contrail cluster

• The config-api setting in vnc_api_lib.ini pointed to the new Contrail cluster

8. (Optional) Run a test workload on transferred nodes to ensure the new vrouter-agent works
correctly.

Follow these steps to rollback a compute node, if needed:

187

1. Move the workload from the compute node.

2. Stop the new Contrail containers.

3. Ensure the network configuration has been successfully reverted.

4. Deploy the previous version of Contrail using the deployment method for that version.

The detailed steps for transferring compute nodes into the new cluster are as follows:

NOTE: After moving workload from the chosen compute nodes, you should remove the
previous version of contrail-agent. For example, for Ubuntu 16.04 and vrouter-agent
installed directly on the host, these would be the steps to remove the previous contrail-
agent:

stop services
systemctl stop contrail-vrouter-nodemgr
systemctl stop contrail-vrouter-agent
remove packages
apt-get purge -y contrail*
restore original interfaces definition
cd /etc/network/interfaces.d/
cp 50-cloud-init.cfg.save 50-cloud-init.cfg
rm vrouter.cfg
restart networking
systemctl restart networking.service
remove old kernel module
rmmod vrouter
maybe you need to restore default route
ip route add 0.0.0.0/0 via 10.0.10.1 dev ens3

For other kind of deployments, remove the vrouter-agent and vrouter-agent-nodemgr
containers, and disable vhost0 interface.

1. The new instance should be added to instances.yaml with two roles: vrouter and
openstack_compute_legacy. To avoid reprovisioning the compute node, set the maintenance mode to
TRUE. For example:

instances:
 server10:
 ip: compute 10 ip
 provider: bms
 roles:

188

 vrouter:
 MAINTENANCE_MODE: TRUE
 VROUTER_ENCRYPTION: FALSE
 openstack_compute_legacy: null

Make sure that instances.yaml nodes definition includes only the compute nodes you want to
upgrade. All other nodes should be commented out.

2. Run the ansible playbooks.

ansible-playbook -v -e orchestrator=none -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/install_contrail.yml

3. The contrail-status for the compute node appears as follows:

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (No Configuration for self)

4. Restart contrail-control on all new controller nodes after the upgrade is complete:

docker restart control_control_1

5. After upgrading the compute nodes, XMPP goes down due to SSLhandshake issue. Example:

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (XMPP:control-node:10.10.10.1, XMPP:dns-server:10.10.10.1 connection down,
No Configuration for self)

The steps to bring up XMPP are as follows:

189

a. Copy the following two files from new control node to upgraded compute node:

/etc/contrail/ssl/private/server-privkey.pem
/etc/contrail/ssl/certs/server.pem

b. Restart the VRouter agent of upgraded compute node.

docker restart vrouter_vrouter-agent_1

6. Check status of new compute nodes by running contrail-status on them. All components should be
active now. You can also check the status of the new instance by creating AZ/aggregates with the
new compute nodes and run some test workloads to ensure it operates correctly.

Finalizing the Contrail Ansible Deployer ISSU Process

Finalize the Contrail ansible deployer ISSU as follows:

1. Stop the issu-run-sync container.

docker rm -f issu-run-sync

2. Run the post synchronization commands.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-post-sync -c /etc/contrail/contrail-issu.conf"
docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-zk-sync -c /etc/contrail/contrail-issu.conf"

3. Run the following commands on all the new controller nodes.

docker-compose -f /etc/contrail/config/docker-compose.yaml restart api
docker-compose -f /etc/contrail/config/docker-compose.yaml up -d

190

4. Restart the container.

docker restart config_api_1

5. Disengage maintenance mode and start all previously stopped containers. To do this, set the entry
MAINTENANCE_MODE in instances.yaml to FALSE, then run the following command from the deployment
node:

ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

During this step, only the compute nodes should be included in the instances.yaml, and other nodes
should be commented out.

6. Clean up and remove the old Contrail controllers. Use the provision-issu.py script called from the
config-api container with the config issu.conf. Replace the credential variables and API server IP
with appropriate values as indicated.

[DEFAULTS]
db_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-address
or hostname", "ip-address": "node-ip-address or hostname"}
config_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
analytics_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
control_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
admin_password = <admin password>
admin_tenant_name = <admin tenant>
admin_user = <admin username>
api_server_ip= <any IP of new config-api controller>
api_server_port=8082

NOTE: Currently, the previous step works only with hostname and not with IP
Address.

7. Run the following commands from any controller node.

191

NOTE: All *host_info parameters should contain the list of new hosts.

docker cp issu.conf config_api_1:issu.conf
docker exec -it config_api_1 python /opt/contrail/utils/provision_issu.py -c issu.conf

8. Servers can be cleaned up if there are no other services present.

9. Navigate to the following path in old controller:

[root@nodem1 ~]# cd /etc/kolla/neutron-server/
[root@nodem1 neutron-server]# pwd
/etc/kolla/neutron-server
[root@nodem1 neutron-server]# cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <old_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa
m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None
[COLLECTOR]
analytics_api_ip = <old_controller_ip>
analytics_api_port = 8081
[keystone_authtoken]
auth_host = <old_controller_ip>
auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin
insecure = True
region_name = RegionOne

192

10. Modify the api_server_ip and analytics_api_ip addresses with the new controller IP addresses.

[root@nodem1 neutron-server]# pwd
/etc/kolla/neutron-server
[root@nodem1 neutron-server]# cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <new_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa
m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None

[COLLECTOR]
analytics_api_ip = <new_controller_ip>
analytics_api_port = 8081

[keystone_authtoken]
auth_host = <keystone_ip_addr>
auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin
insecure = True
region_name = RegionOne

11. Restart the neutron-server container in old controller.

[root@nodem1]# docker restart neutron_server

193

12. Go to neutron_server container in the old control node. Verify whether the ContrailPlugin.ini file
contains new controller IP's or not. It should contain new controller IP's.

[root@nodem1 ~]# docker exec -it neutron_server bash
(neutron-server)[neutron@nodem1 /]$ cd /etc/neutron/plugins/opencontrail
(neutron-server)[neutron@nodem1 /etc/neutron/plugins/opencontrail]$ cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <new_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa
m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None
[COLLECTOR]
analytics_api_ip = <new_controller_ip>
analytics_api_port = 8081
[keystone_authtoken]
auth_host = <keystone_ip_addr>
auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin
insecure = True
region_name = RegionOne

13. The heat configuration needs the same changes. Locate the parameter [clients_contrail]/api_server
and change it to point to the list of the new config-api IP addresses.

Troubleshooting link-loop in Release 21.4.L2

The ansible deployer of Contrail Networking Release 21.4.L2 introduces link-loop in the /var/log/contrail
directory present in the contrail config nodes. This happens every time the Contrail Networking Release
21.4.L2 ansible deployer is started. Re-running ansible deployer playbooks fails due to mentioned
recursion. This issue is resolved in Contrail Networking Release 21.4.L3. However, for Contrail
Networking Release 21.4.L2, it requires a manual intervention to follow the given workaround.

194

Workaround: Manually remove the incorrect symlink from all contrail config nodes:

sudo unlink /var/log/contrail/config-database-rabbitmq/config-database-rabbitmq

Upgrading Contrail Networking to Release 21.4.L3 using Ansible
Deployer in Service Software Upgrade Procedure in OpenStack
Environment

IN THIS SECTION

When to Use This Procedure? | 195

Contrail In-Service Software Upgrade (ISSU) Overview | 196

Prerequisites | 197

Preparing the Contrail System for the Ansible Deployer ISSU Procedure | 197

Provisioning Control Nodes and Performing Synchronization Steps | 199

Transferring the Compute Nodes into the New Cluster | 202

Finalizing the Contrail Ansible Deployer ISSU Process | 207

Troubleshooting link-loop in Release 21.4.L2 | 213

When to Use This Procedure?

NOTE: Before performing any upgrade procedure, install Docker serially over containers.
However, you can upgrade computes in parallel to Docker via script. After upgrading
each docker host, verify the status of contrail and services. Do not proceed with upgrade
on next hosts until all the services of contrail-status reports are running properly.

Use the following script to stop the running containers, upgrade the docker, and bring
containers back:

docker ps --format '{{.Names}}' > running_containers
for CONTAINER in $(cat running_containers); do sudo docker stop $CONTAINER; done
yum install -y docker-ce-20.10.9 docker-ce-cli-20.10.9 docker-ce-rootless-

195

extras-20.10.9
for CONTAINER in $(cat running_containers); do sudo docker start $CONTAINER; done

It is recommended to use Zero Impact Upgrade (ZIU) procedures to upgrade Contrail Networking with
minimal network disruption in most environments using Openstack orchestration.

To perform a ZIU upgrade, follow the instructions in How to Perform a Zero Impact Contrail Networking
Upgrade using the Ansible Deployer. If you are running Red Hat Openstack 13 or 16.1, see Updating
Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat
Openstack 13 or Updating Contrail Networking using the Zero Impact Upgrade Process in an
Environment using Red Hat Openstack 16.1.

The procedure in this document also provides a method of upgrading Contrail Networking with minimal
network disruption using the Ansible deployer in environments using Openstack orchestration.

The procedure in this document has been validated to upgrade Contrail Networking from Release 3.2 or
later to Release 5.0 or later. The starting Contrail release for this upgrade can be any Contrail
Networking Release after Release 3.2, including all Contrail Networking 4, 5, 19, 20, and 21 releases.
The target release for this upgrade can be any Contrail Networking Release after Release 5.0, including
all Contrail Networking 5, 19, 20, and 21 releases.

Table 12: Contrail Networking Validated Upgrade Scenarios

Starting Contrail Networking Release Target Upgraded Contrail Networking Release

Release 3.2 or Later

Any Release 4

Any Release 5

Any Release 19

Any Release 20

Any Release 21

Any Release 5

Any Release 19

Any Release 20

Any Release 21

Contrail In-Service Software Upgrade (ISSU) Overview

If your installed version is Contrail Release 3.2 or higher, you can perform an in-service software upgrade
(ISSU) to perform this upgrade using the Ansible deployer. In performing the ISSU, the Contrail controller
cluster is upgraded side-by-side with a parallel setup, and the compute nodes are upgraded in place.

196

https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/installing-contrail-ansible-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail20/topics/task/installation/install-contrail-rhosp-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html
https://www.juniper.net/documentation/en_US/contrail21/topics/task/installation/install-contrail-rhosp16-ziu.html

NOTE: We recommend that you take snapshots of your current system before you
proceed with the upgrade process.

The procedure for performing the ISSU using the Contrail Ansible deployer is similar to previous ISSU
upgrade procedures.

NOTE: This Contrail ansible deployer ISSU procedure does not include steps for
upgrading OpenStack. If an OpenStack version upgrade is required, it should be
performed using applicable OpenStack procedures.

In summary, the ISSU process consists of the following parts, in sequence:

1. Deploy the new cluster.

2. Synchronize the new and old clusters.

3. Upgrade the compute nodes.

4. Finalize the synchronization and complete the upgrades.

Prerequisites

The following prerequisites are required to use the Contrail ansible deployer ISSU procedure:

• A previous version of Contrail installed, no earlier than Release 3.2.

• There are OpenStack controller and compute nodes, and Contrail nodes.

• OpenStack needs to have been installed from packages.

• Contrail and OpenStack should be installed on different nodes.

NOTE: Upgrade for compute nodes with Ubuntu 14.04 is not supported. Compute
nodes need to be upgraded to Ubuntu 16.04 first.

Preparing the Contrail System for the Ansible Deployer ISSU Procedure

In summary, these are the general steps for the system preparation phase of the Contrail ansible
deployer ISSU procedure:

1. Deploy the new version of Contrail using the Contrail ansible deployer, but make sure to include only
the following Contrail controller services:

197

• Config

• Control

• Analytics

• Databases

• Any additional support services like rmq, kafka, and zookeeper. (The vrouter service will be
deployed later on the old compute nodes.)

NOTE: You must provide keystone authorization information for setup.

2. After deployment is finished, you can log into the Contrail web interface to verify that it works.

The detailed steps for deploying the new controller using the ansible deployer are as follows:

1. To deploy the new controller, download contrail-ansible-deployer-release-tag.tgz onto your
provisioning host from Juniper Networks.

2. The new controller file config/instances.yaml appears as follows, with actual values in place of the
variables as shown in the example:

provider_config:
 bms:
 domainsuffix: local
 ssh_user: user
 ssh_pwd: password
instances:
 server1:
 ip: controller 1 ip
 provider: bms
 roles:
 analytics: null
 analytics_database: null
 config: null
 config_database: null
 control: null
 webui: null
contrail_configuration:
 CONTROLLER_NODES: controller ip-s from api/mgmt network
 CONTROL_NODES: controller ip-s from ctrl/data network
 AUTH_MODE: keystone

198

 KEYSTONE_AUTH_ADMIN_TENANT: old controller's admin's tenant
 KEYSTONE_AUTH_ADMIN_USER: old controller's admin's user name
 KEYSTONE_AUTH_ADMIN_PASSWORD: password for admin user
 KEYSTONE_AUTH_HOST: keystone host/ip of old controller
 KEYSTONE_AUTH_URL_VERSION: "/v3"
 KEYSTONE_AUTH_USER_DOMAIN_NAME: user's domain in case of keystone v3
 KEYSTONE_AUTH_PROJECT_DOMAIN_NAME: project's domain in case of keystone v3
 RABBITMQ_NODE_PORT: 5673
 IPFABRIC_SERVICE_HOST: metadata service host/ip of old controller
 AAA_MODE: cloud-admin
 METADATA_PROXY_SECRET: secret phrase that is used in old controller
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: keystone host/ip of old controller
 kolla_external_vip_address: keystone host/ip of old controller

3. Finally, run the ansible playbooks to deploy the new controller.

ansible-playbook -v -e orchestrator=none -i inventory/ playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

After successful completion of these commands, the new controller should be up and alive.

Provisioning Control Nodes and Performing Synchronization Steps

In summary, these are the general steps for the node provisioning and synchronization phase of the
Contrail ansible deployer ISSU procedure:

1. Provision new control nodes in the old cluster and old control nodes in the new cluster.

2. Stop the following containers in the new cluster on all nodes:

• contrail-device-manager

• contrail-schema-transformer

• contrail-svcmonitor

3. Switch the new controller into maintenance mode to prevent provisioning computes in the new
cluster.

4. Prepare the config file for the ISSU.

5. Run the pre-sync script from the ISSU package.

199

6. Run the run-sync script from the ISSU package in background mode.

The detailed steps to provision the control nodes and perform the synchronization are as follows:

1. Pair the old control nodes in the new cluster. It is recommended to run it from any config-api
container.

config_api_image=`docker ps | awk '/config-api/{print $1}' | head`

2. Run the following command for each old control node, substituting actual values where indicated:

docker exec -it $config_api_image /bin/bash -c "LOG_LEVEL=SYS_NOTICE source /common.sh ;
python /opt/contrail/utils/provision_control.py --host_name hostname of old control node
--host_ip IP of old control node --api_server_ip $(hostname -i)
 --api_server_port 8082 --oper add --router_asn 64512 --ibgp_auto_mesh \$AUTH_PARAMS"

3. Pair the new control nodes in the old cluster with similar commands (the specific syntax depends on
the deployment method of the old cluster), again substituting actual values where indicated.

python /opt/contrail/utils/provision_control.py --host_name new controller hostname
 --host_ip new controller IP --api_server_ip old api-server IP/VIP
 --api_server_port 8082 --oper add --admin_user admin --admin_password password
 --admin_tenant_name admin --router_asn 64512 --ibgp_auto_mesh

4. Stop all the containers for contrail-device-manager, contrail-schema-transformer, and contrail-
svcmonitor in the new cluster on all controller nodes.

docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_svcmonitor_1

5. Perform the following steps to delete the contrail-device-manager queue from Contrail rabbitmq
after the contrail-device-manager container is stopped.

NOTE: Run the commands listed in this step from only one new controller.

200

a. Enter the Contrail rabbitmq container.

docker exec -it config_rabbitmq_rabbitmq_1 bash

b. Find the name of the contrail-device-manager queue.

rabbitmqctl list_queues | grep -F device_manager | grep $(hostname) | grep -v ztp

c. Delete the contrail-device-manager queue.

rabbitmqctl delete_queue <device_manager.queue>

These next steps should be performed from any new controller. Then the configuration prepared for
ISSU runs. (For now, only manual preparation is available.)

NOTE: In various deployments, old cassandra may use port 9160 or 9161. You can learn
the configuration details for the old services on any old controller node, in the file /etc/
contrail-contrail-api.conf.

The configuration appears as follows and can be stored locally:

[DEFAULTS]
details about oldrabbit
old_rabbit_user = contrail
old_rabbit_password = ab86245f4f3640a29b700def9e194f72
old_rabbit_q_name = vnc-config.issu-queue
old_rabbit_vhost = contrail
old_rabbit_port = 5672
old_rabbit_address_list = ip-addresses
details about new rabbit
new_rabbit_user = rabbitmq
new_rabbit_password = password
new_rabbit_ha_mode =
new_rabbit_q_name = vnc-config.issu-queue
new_rabbit_vhost = /
new_rabbit_port = 5673
new_rabbit_address_list = ip-addresses
details about other old/new services

201

old_cassandra_user = controller
old_cassandra_password = 04dc0540b796492fad6f7cbdcfb18762
old_cassandra_address_list = ip-address:9161
old_zookeeper_address_list = ip-address:2181
new_cassandra_address_list = ip-address:9161 ip-address:9161 ip-address:9161
new_zookeeper_address_list = ip-address:2181
details about new controller nodes
new_api_info = {"ip-address": [("root"), ("password")], "ip-address": [("root"), ("password")],
"ip-address": [("root"), ("password")]}

1. Detect the config-api image ID.

image_id=`docker images | awk '/config-api/{print $3}' | head -1`

2. Run the pre-synchronization.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh $image_id -c "/usr/bin/contrail-issu-pre-
sync -c /etc/contrail/contrail-issu.conf"

3. Run the run-synchronization.

docker run --rm --detach -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/
contrail-issu.conf
 --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id
 -c "/usr/bin/contrail-issu-run-sync -c /etc/contrail/contrail-issu.conf"

4. Check the logs of the run-sync process. To do this, open the run-sync container.

docker exec -it issu-run-sync /bin/bash
cat /var/log/contrail/issu_contrail_run_sync.log

Transferring the Compute Nodes into the New Cluster

In summary, these are the general steps for the node transfer phase of the Contrail ansible deployer
ISSU procedure:

202

NOTE: Before transferring the Compute Nodes into a new cluster, make sure that docker
was successfully updated.

1. Select the compute node(s) for transferring into the new cluster. This selects the virtual machines of
the compute node(s).

2. Migrate the Virtual Machines (VMs) manually from one compute node to another. The steps are as
follows:

NOTE: This procedure is useful when live migration cannot be done.

a. Identify the VM to migrate and its host. Run the following command to stop VM.

openstack server stop <vm-uuid>

b. Identify the VM disk image location on the source compute node where the VM instance was
launched, Usually, the disk image location is:

/var/lib/docker/volumes/nova_compute/_data/instances/<vm-UUID>

c. Copy this directory to the destination compute node.

d. On the destination compute node, run the following command to change the permission of this
directory:

chown -R 42436:42436 /var/lib/docker/volumes/nova_compute/_data/instances/<vm-UUID>

e. Update the nova database of this instance to new host.

docker exec -it mariadb bash
mysql -u <username> -p <password> nova
update instances set node='new host fqname', host='new hostname' where uuid='<VM-UUID>'

203

Example:

(mariadb)[mysql@nodem1 /]$ mysql -u root -p contrail123 nova
MariaDB [nova]> update instances
 -> set node='nodem2.englab.juniper.net', host='nodem2'
 -> where uuid='b7178be6-d4da-4074-9124-d246fa3a2105'
 -> ;

f. Run the following command to start the VM

openstack server start <vm-uuid>

3. For Contrail Release 3.x, remove Contrail from the node(s) as follows:

• Stop the vrouter-agent service.

• Remove the vhost0 interface.

• Switch the physical interface down, then up.

• Remove the vrouter.ko module from the kernel.

4. For Contrail Release 4.x and later, remove Contrail from the node(s) as follows:

• Stop the agent container.

• Restore the physical interface.

5. Update docker.

docker ps --format '{{.Names}}' > running_containers
for CONTAINER in $(cat running_containers); do sudo docker stop $CONTAINER; done
yum install -y docker-ce-20.10.9 docker-ce-cli-20.10.9 docker-ce-rootless-extras-20.10.9
for CONTAINER in $(cat running_containers); do sudo docker start $CONTAINER; done
rm running_containers

6. Remove vrouter_vrouter-agent_1 and vrouter_nodemgr_1.

docker rm -f vrouter_vrouter-agent_1
docker rm -f vrouter_nodemgr_1

204

7. Stop vhost0.

Ifdown vhost0

8. Add the required node(s) to instances.yml with the roles vrouter and openstack_legacy_compute.

9. Run the Contrail ansible deployer to deploy the new vrouter and to configure the old compute
service.

10. All new compute nodes will have:

• The collector setting pointed to the new Contrail cluster

• The Control/DNS nodes pointed to the new Contrail cluster

• The config-api setting in vnc_api_lib.ini pointed to the new Contrail cluster

11. (Optional) Run a test workload on transferred nodes to ensure the new vrouter-agent works
correctly.

Follow these steps to rollback a compute node, if needed:

1. Move the workload from the compute node.

2. Stop the new Contrail containers.

3. Ensure the network configuration has been successfully reverted.

4. Deploy the previous version of Contrail using the deployment method for that version.

The detailed steps for transferring compute nodes into the new cluster are as follows:

NOTE: After moving workload from the chosen compute nodes, you should remove the
previous version of contrail-agent. For example, for Ubuntu 16.04 and vrouter-agent
installed directly on the host, these would be the steps to remove the previous contrail-
agent:

stop services
systemctl stop contrail-vrouter-nodemgr
systemctl stop contrail-vrouter-agent
remove packages
apt-get purge -y contrail*
restore original interfaces definition
cd /etc/network/interfaces.d/

205

cp 50-cloud-init.cfg.save 50-cloud-init.cfg
rm vrouter.cfg
restart networking
systemctl restart networking.service
remove old kernel module
rmmod vrouter
maybe you need to restore default route
ip route add 0.0.0.0/0 via 10.0.10.1 dev ens3

For other kind of deployments remove the vrouter-agent and vrouter-agent-nodemgr
containers, and disable vhost0 interface.

1. The new instance should be added to instances.yaml with two roles: vrouter and
openstack_compute_legacy. To avoid reprovisioning the compute node, set the maintenance mode to
TRUE. For example:

instances:
 server10:
 ip: compute 10 ip
 provider: bms
 roles:
 vrouter:
 MAINTENANCE_MODE: TRUE
 VROUTER_ENCRYPTION: FALSE
 openstack_compute_legacy: null

Make sure that instances.yaml nodes definition includes only the compute nodes you want to
upgrade. All other nodes should be commented out.

2. Run the ansible playbooks.

ansible-playbook -v -e orchestrator=none -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/install_contrail.yml

206

3. The contrail-status for the compute node appears as follows:

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (No Configuration for self)

4. Restart contrail-control on all new controller nodes after the upgrade is complete:

docker restart control_control_1

5. After upgrading the compute nodes, XMPP goes down due to SSLhandshake issue. Example:

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (XMPP:control-node:10.10.10.1, XMPP:dns-server:10.10.10.1 connection down,
No Configuration for self)

The steps to bring up XMPP are as follows:

a. Copy the following two files from new control node to upgraded compute node:

/etc/contrail/ssl/private/server-privkey.pem
/etc/contrail/ssl/certs/server.pem

b. Restart the VRouter agent of upgraded compute node.

docker restart vrouter_vrouter-agent_1

6. Check status of new compute nodes by running contrail-status on them. All components should be
active now. You can also check the status of the new instance by creating AZ/aggregates with the
new compute nodes and run some test workloads to ensure it operates correctly.

Finalizing the Contrail Ansible Deployer ISSU Process

Finalize the Contrail ansible deployer ISSU as follows:

207

1. Stop the issu-run-sync container.

docker rm -f issu-run-sync

2. Run the post synchronization commands.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-post-sync -c /etc/contrail/contrail-issu.conf"
docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-
issu.conf --entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c
"/usr/bin/contrail-issu-zk-sync -c /etc/contrail/contrail-issu.conf"

3. Run the following commands on all the new controller nodes.

docker-compose -f /etc/contrail/config/docker-compose.yaml restart api
docker-compose -f /etc/contrail/config/docker-compose.yaml up -d

4. Restart the container.

docker-compose -f /etc/contrail/config/docker-compose.yaml restart API
docker-compose -f /etc/contrail/config/docker-compose.yaml up -d

5. Disengage maintenance mode and start all previously stopped containers. To do this, set the entry
MAINTENANCE_MODE in instances.yaml to FALSE, then run the following command from the deployment
node:

ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

During this step, only compute nodes should be included in the instances.yaml, and other nodes
should be commented out.

6. Clean up and remove the old Contrail controllers. Use the provision-issu.py script called from the
config-api container with the config issu.conf. Replace the credential variables and API server IP
with appropriate values as indicated.

[DEFAULTS]
db_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-address

208

or hostname", "ip-address": "node-ip-address or hostname"}
config_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
analytics_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
control_host_info={"ip-address": "node-ip-address or hostname", "ip-address": "node-ip-
address or hostname", "ip-address": "node-ip-address or hostname"}
admin_password = <admin password>
admin_tenant_name = <admin tenant>
admin_user = <admin username>
api_server_ip= <any IP of new config-api controller>
api_server_port=8082

NOTE: Currently, the previous step works only with hostname and not with IP
Address.

7. Run the following commands from any controller node.

NOTE: All *host_info parameters should contain the list of new hosts.

docker cp issu.conf config_api_1:issu.conf
docker exec -it config_api_1 python /opt/contrail/utils/provision_issu.py -c issu.conf

8. Servers can be cleaned up if there are no other services present.

9. Navigate to the following path in old controller:

[root@nodem1 ~]# cd /etc/kolla/neutron-server/
[root@nodem1 neutron-server]# pwd
/etc/kolla/neutron-server
[root@nodem1 neutron-server]# cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <old_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa

209

m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None
[COLLECTOR]
analytics_api_ip = <old_controller_ip>
analytics_api_port = 8081
[keystone_authtoken]
auth_host = <old_controller_ip>
auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin
insecure = True
region_name = RegionOne

10. Modify the api_server_ip and analytics_api_ip addresses with the new controller IP addresses.

[root@nodem1 neutron-server]# pwd
/etc/kolla/neutron-server
[root@nodem1 neutron-server]# cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <new_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa
m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None

[COLLECTOR]
analytics_api_ip = <new_controller_ip>
analytics_api_port = 8081

[keystone_authtoken]
auth_host = <keystone_ip_addr>

210

auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin
insecure = True
region_name = RegionOne

11. Restart the neutron-server container in old controller.

[root@nodem1]# docker restart neutron_server

12. Go to neutron_server container in the old control node. Verify whether the ContrailPlugin.ini file
contains new controller IP's or not. It should contain new controller IP's.

[root@nodem1 ~]# docker exec -it neutron_server bash
(neutron-server)[neutron@nodem1 /]$ cd /etc/neutron/plugins/opencontrail
(neutron-server)[neutron@nodem1 /etc/neutron/plugins/opencontrail]$ cat ContrailPlugin.ini
[APISERVER]
api_server_port = 8082
api_server_ip = <new_controller_ip>
multi_tenancy = True
contrail_extensions =
ipam:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_ipam.NeutronPluginContrail
Ipa
m,policy:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_policy.NeutronPluginCo
ntr
ailPolicy,routetable:neutron_plugin_contrail.plugins.opencontrail.contrail_plugin_vpc.Neutro
nPluginContrailVpc
,contrail:None,service-interface:None,vf-binding:None
[COLLECTOR]
analytics_api_ip = <new_controller_ip>
analytics_api_port = 8081
[keystone_authtoken]
auth_host = <keystone_ip_addr>
auth_port = 5000
auth_protocol = http
admin_user = admin
admin_password = password
admin_tenant_name = admin

211

insecure = True
region_name = RegionOne

13. The heat configuration needs the same changes. Locate the parameter [clients_contrail]/api_server
and change it to point to the list of the new config-api IP addresses.

14. To resync the database:

a. Login to the zookeeper container.

docker exec -it config_database_zookeeper_1 bash

b. Go to the bin directory.

cd bin

c. Connect to zookeeper.

zkCli.sh -server <controller-ip>:2181

d. Delete the lock on zookeeper container.

delete /vnc_api_server_locks/dbe-resync-complete

e. Quit and exit from the zookeeper container.

f. Restart the Config API server container and wait for the Contrail status to be up.

docker restart config_api_1

g. Restart the Control container.

docker restart control_control_1

212

Troubleshooting link-loop in Release 21.4.L2

The ansible deployer of Contrail Networking Release 21.4.L2 introduces link-loop in the /var/log/contrail
directory present in the contrail config nodes. This happens every time the Contrail Networking Release
21.4.L2 ansible deployer is started. Re-running ansible deployer playbooks fails due to mentioned
recursion. This issue is resolved in Contrail Networking Release 21.4.L3. However, for Contrail
Networking Release 21.4.L2, it requires a manual intervention to follow the given workaround.

Workaround: Manually remove the incorrect symlink from all contrail config nodes:

sudo unlink /var/log/contrail/config-database-rabbitmq/config-database-rabbitmq

Contrail In-Service Software Upgrade from Releases 21.4 L2 and 21.4 L3
to 21.4 L4 using Ansible Deployer

IN THIS SECTION

Contrail In-Service Software Upgrade (ISSU) Overview | 213

Prerequisites | 214

Preparing the Contrail System for the Ansible Deployer ISSU Procedure | 214

Provisioning Control Nodes and Performing Synchronization Steps | 216

Transferring the Compute Nodes into the New Cluster | 218

Finalizing the Contrail Ansible Deployer ISSU Process | 221

Contrail In-Service Software Upgrade (ISSU) Overview

If your installed version is Contrail Release 21.4 L2 or L3, you can perform an in-service software
upgrade (ISSU) to upgrade to Contrail Release 21.4 L4 using the Ansible deployer. In performing the
ISSU, the Contrail controller cluster is upgraded side-by-side with a parallel setup, and the compute
nodes are upgraded in place.

NOTE: We recommend that you take snapshots of your current system before you
proceed with the upgrade process.

213

The procedure for performing the ISSU using the Contrail Ansible deployer is similar to previous ISSU
upgrade procedures.

NOTE: This Contrail ansible deployer ISSU procedure does not include steps for
upgrading OpenStack. If an OpenStack version upgrade is required, it should be
performed using applicable OpenStack procedures.

In summary, the ISSU process consists of the following parts, in sequence:

1. Deploy the new cluster.

2. Synchronize the new and old clusters.

3. Upgrade the compute nodes.

4. Finalize the synchronization and complete the upgrades.

Prerequisites

The following prerequisites are required to use the Contrail ansible deployer ISSU procedure:

• A previous version of Contrail installed, no earlier than Release 21.4 L2.

• There are OpenStack controller and compute nodes, and Contrail nodes.

• OpenStack needs to have been installed from packages.

• Contrail and OpenStack should be installed on different nodes.

Note:
Upgrade for compute nodes with Ubuntu 14.04 is not supported. Compute nodes need to be upgraded
to Ubuntu 16.04 first.

Preparing the Contrail System for the Ansible Deployer ISSU Procedure

In summary, these are the general steps for the system preparation phase of the Contrail ansible
deployer ISSU procedure:

1. Deploy Contrail Release 21.4 L4 using the Contrail ansible deployer, but make sure to include only
the following Contrail controller services:

• Config

• Control

• Analytics

214

• Databases

• Any additional support services like rmq, kafka, and zookeeper. (The vrouter service will be
deployed later on the old compute nodes.)

Note:

You must provide keystone authorization information for setup.

2. After deployment is finished, you can log into the Contrail web interface to verify that it works.

The detailed steps for deploying the new cloud using the ansible deployer are as follows:

1. To deploy the new cloud, download contrail-ansible-deployer-release-tag.tgz onto your provisioning
host from Juniper Networks.

2. The new cloud file config/instances.yaml appears as follows, with actual values in place of the
variables as shown in the example:

provider_config:
 bms:
 domainsuffix: local
 ssh_user: user
 ssh_pwd: password
instances:
 server1:
 ip: controller 1 ip
 provider: bms
 roles:
 analytics: null
 analytics_database: null
 config: null
 config_database: null
 control: null
 webui: null
contrail_configuration:
 CONTROLLER_NODES: controller ip-s from api/mgmt network
 CONTROL_NODES: controller ip-s from ctrl/data network
 AUTH_MODE: keystone
 KEYSTONE_AUTH_ADMIN_TENANT: old cloud's admin's tenant
 KEYSTONE_AUTH_ADMIN_USER: old cloud's admin's user name
 KEYSTONE_AUTH_ADMIN_PASSWORD: password for admin user
 KEYSTONE_AUTH_HOST: keystone host/ip of old cloud
 KEYSTONE_AUTH_URL_VERSION: "/v3"
 KEYSTONE_AUTH_USER_DOMAIN_NAME: user's domain in case of keystone v3
 KEYSTONE_AUTH_PROJECT_DOMAIN_NAME: project's domain in case of keystone v3

215

 RABBITMQ_NODE_PORT: 5673
 IPFABRIC_SERVICE_HOST: metadata service host/ip of old cloud
 AAA_MODE: cloud-admin
 METADATA_PROXY_SECRET: secret phrase that is used in old cloud
kolla_config:
 kolla_globals:
 kolla_internal_vip_address: keystone host/ip of old cloud
 kolla_external_vip_address: keystone host/ip of old cloud

3. Finally, run the ansible playbooks to deploy the new cloud.

ansible-playbook -v -e orchestrator=none -i inventory/ playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

After successful completion of these commands, the new cloud should be up and alive.

Provisioning Control Nodes and Performing Synchronization Steps

In summary, these are the general steps for the node provisioning and synchronization phase of the
Contrail ansible deployer ISSU procedure:

1. Provision new control nodes in the old cluster and old control nodes in the new cluster.

2. Stop the following containers in the new cluster on all nodes:

• contrail-device-manager

• contrail-schema-transformer

• contrail-svcmonitor

3. Switch the new cloud into maintenance mode to prevent provisioning computes in the new cluster.

4. Prepare the config file for the ISSU.

5. Run the pre-sync script from the ISSU package.

6. Run the run-sync script from the ISSU package in background mode.

The detailed steps to provision the control nodes and perform the synchronization are as follows:

1. Pair the old control nodes in the new cluster. It is recommended to run it from any config-api
container.

config_api_image=`docker ps | awk '/config-api/{print $1}' | head`

2. Run the following command for each old control node, substituting actual values where indicated:

216

docker exec -it $config_api-image /bin/bash -c "LOG_LEVEL=SYS_NOTICE source /common.sh ;
python /opt/contrail/utils/provision_control.py --host_name hostname of old control node --host_ip IP
of old control node --api_server_ip $(hostname -i) --api_server_port 8082 --oper add --router_asn
64512 --ibgp_auto_mesh \$AUTH_PARAMS"

3. Pair the new control nodes in the old cluster with similar commands (the specific syntax depends on
the deployment method of the old cluster), again substituting actual values where indicated.

python /opt/contrail/utils/provision_control.py --host_name new controller hostname --host_ip new
controller IP --api_server_ip old api-server IP/VIP --api_server_port 8082 --oper add --admin_user
admin --admin_password password --admin_tenant_name admin --router_asn 64512 --ibgp_auto_mesh

4. Stop all the containers for contrail-device-manager, contrail-schema-transformer, and contrail-
svcmonitor in the new cluster on all controller nodes.

docker stop config_devicemgr-1
docker stop config_schema-1
docker stop config_svcmonitor-1

These next steps should be performed from any new controller. Then the configuration prepared for
ISSU runs. (For now, only manual preparation is available.)

Note:
In various deployments, old cassandra may use port 9160 or 9161. You can learn the configuration
details for the old services on any old controller node, in the file /etc/contrail-contrail-api.conf.

The configuration appears as follows and can be stored locally:

[DEFAULTS]
details about oldrabbit
old_rabbit_user = contrail
old_rabbit_password = ab86245f4f3640a29b700def9e194f72
old_rabbit_q_name = vnc-config.issu-queue
old_rabbit_vhost = contrail
old_rabbit_port = 5672
old_rabbit_address_list = ip-addresses
details about new rabbit
new_rabbit_user = rabbitmq
new_rabbit_password = password
new_rabbit_ha_mode =
new_rabbit_q_name = vnc-config.issu-queue
new_rabbit_vhost = /
new_rabbit_port = 5673
new_rabbit_address_list = ip-addresses
details about other old/new services

217

old_alter_table = false
new_alter_table = true
old_cassandra_user = controller
old_cassandra_password = 04dc0540b796492fad6f7cbdcfb18762
old_cassandra_address_list = ip-address:9161
old_zookeeper_address_list = ip-address:2181
new_cassandra_address_list = ip-address:9161 ip-address:9161 ip-address:9161
new_zookeeper_address_list = ip-address:2181
details about new controller nodes
new_api_info = {"ip-address": [("root"), ("password")], "ip-address": [("root"), ("password")], "ip-
address": [("root"), ("password")]}

1. Detect the config-api image ID.

image_id=`docker images | awk '/config-api/{print $3}' | head -1`

2. Run the pre-synchronization.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-issu.conf --
entrypoint /bin/bash -v /root/.ssh:/root/.ssh $image_id -c "/usr/bin/contrail-issu-pre-sync -c /etc/contrail/
contrail-issu.conf"

3. Run the run-synchronization.

docker run --rm --detach -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-issu.conf --
entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c "/usr/bin/contrail-issu-
run-sync -c /etc/contrail/contrail-issu.conf"

4. Check the logs of the run-sync process. To do this, open the run-sync container.

docker exec -it issu-run-sync /bin/bash
cat /var/log/contrail/issu_contrail_run_sync.log

5. Stop and remove the run-sync process after all compute nodes are upgraded.

docker rm -f issu-run-sync

Transferring the Compute Nodes into the New Cluster

In summary, these are the general steps for the node transfer phase of the Contrail ansible deployer
ISSU procedure:

1. Select the compute node(s) for transferring into the new cluster.

218

2. Move all workloads from the node(s) to other compute nodes. You also have the option to terminate
workloads as appropriate.

3. For Contrail Release 3.x, remove Contrail from the node(s) as follows:

• Stop the vrouter-agent service.

• Remove the vhost0 interface.

• Switch the physical interface down, then up.

• Remove the vrouter.ko module from the kernel.

4. For Contrail Release 4.x, remove Contrail from the node(s) as follows:

• Stop the agent container.

• Restore the physical interface.

5. Add the required node(s) to instances.yml with the roles vrouter and
openstack_legacy_compute.

6. Run the Contrail ansible deployer to deploy the new vrouter and to configure the old compute
service.

7. All new compute nodes will have:

• The collector setting pointed to the new Contrail cluster

• The Control/DNS nodes pointed to the new Contrail cluster

• The config-api setting in vnc_api_lib.ini pointed to the new Contrail cluster

8. (Optional) Run a test workload on transferred nodes to ensure the new vrouter-agent works
correctly.

Follow these steps to rollback a compute node, if needed:

1. Move the workload from the compute node.

2. Stop the Contrail Release 21.4 L4 containers.

3. Ensure the network configuration has been successfully reverted.

4. Deploy the previous version of Contrail using the deployment method for that version.

The detailed steps for transferring compute nodes into the new cluster are as follows:

Note:

219

After moving workload from the chosen compute nodes, you should remove the previous version of
contrail-agent. For example, for Ubuntu 16.04 and vrouter-agent installed directly on the host, these
would be the steps to remove the previous contrail-agent:

stop services
systemctl stop contrail-vrouter-nodemgr
systemctl stop contrail-vrouter-agent
remove packages
apt-get purge -y contrail*
restore original interfaces definition
cd /etc/network/interfaces.d/
cp 50-cloud-init.cfg.save 50-cloud-init.cfg
rm vrouter.cfg
restart networking
systemctl restart networking.service
remove old kernel module
rmmod vrouter
maybe you need to restore default route
ip route add 0.0.0.0/0 via 10.0.10.1 dev ens3

1. The new instance should be added to instances.yaml with two roles: vrouter and
openstack_compute_legacy. To avoid reprovisioning the compute node, set the maintenance mode to
TRUE. For example:

instances:
 server10:
 ip: compute 10 ip
 provider: bms
 roles:
 vrouter:
 MAINTENANCE_MODE: TRUE
 VROUTER_ENCRYPTION: FALSE
 openstack_compute_legacy: null

2. Run the ansible playbooks.

ansible-playbook -v -e orchestrator=none -e config_file=/root/contrail-ansible-deployer/instances.yaml
playbooks/configure_instances.yml
ansible-playbook -v -e orchestrator=openstack -e config_file=/root/contrail-ansible-deployer/
instances.yaml playbooks/install_contrail.yml

3. The contrail-status for the compute node appears as follows:

220

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: initializing (No Configuration for self)

4. Restart contrail-control on all new controller nodes after the upgrade is complete:

docker restart control_control_1

5. Check status of new compute nodes by running contrail-status on them. All components
should be active now. You can also check the status of the new instance by creating AZ/aggregates
with the new compute nodes and run some test workloads to ensure it operates correctly.

Finalizing the Contrail Ansible Deployer ISSU Process

Finalize the Contrail ansible deployer ISSU as follows:

1. Stop the issu-run-sync container.

docker rm -f issu-run-sync

2. Run the post synchronization commands.

docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-issu.conf --
entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c "/usr/bin/contrail-issu-
post-sync -c /etc/contrail/contrail-issu.conf"
docker run --rm -it --network host -v $(pwd)/contrail-issu.conf:/etc/contrail/contrail-issu.conf --
entrypoint /bin/bash -v /root/.ssh:/root/.ssh --name issu-run-sync $image_id -c "/usr/bin/contrail-issu-zk-
sync -c /etc/contrail/contrail-issu.conf"

3. Disengage maintenance mode and start all previously stopped containers. To do this, set the entry
MAINTENANCE_MODE in instances.yaml to FALSE, then run the following command from the
deployment node:

ansible-playbook -v -e orchestrator=openstack -i inventory/ playbooks/install_contrail.yml

4. Clean up and remove the old Contrail controllers. Use the provision-issu.py script called from the
config-api container with the config issu.conf. Replace the credential variables and API server IP with
appropriate values as indicated.

[DEFAULTS]
db_host_info={"ip-address": “node-ip-address”, "ip-address": “node-ip-address”, "ip-address": “node-
ip-address”}
config_host_info={"ip-address": “node-ip-address”, "ip-address": “node-ip-address”, "ip-address":

221

“node-ip-address”}
analytics_host_info={"ip-address": “node-ip-address”, "ip-address": “node-ip-address”, "ip-address":
“node-ip-address”}
control_host_info={"ip-address": “node-ip-address”, "ip-address": “node-ip-address”, "ip-address":
“node-ip-address”}
admin_password = admin password
admin_tenant_name = admin tenant
admin_user = admin username
api_server_ip= any IP of new config-api controller
api_server_port=8082

5. Run the following commands from any controller node.

Note:

All *host_info parameters should contain the list of new hosts.

docker cp issu.conf config_api_1:issu.conf
docker exec -it config_api_1 python /opt/contrail/utils/provision_issu.py -c issu.conf

6. Servers can be cleaned up if there are no other services present.

7. All configurations for the neutron-api must be edited to have the parameter api_server_ip point
to the list of new config-api IP addresses. Locate ContrailPlugin.ini (or other file that contains this
parameter) and change the IP addresses to the list of new config-api IP addresses.

8. The heat configuration needs the same changes. Locate the parameter [clients_contrail]/
api_server and change it to point to the list of the new config-api IP addresses.

How to Upgrade Contrail Networking Through Kubernetes and/or Red
Hat OpenShift

Starting in Contrail Networking Release 21.3, you can update Contrail Networking through Kubernetes
and/or Red Hat OpenShift.

You can use this procedure to update Contrail Networking deployed by the Tungsten Fabric (TF)
Operator.

To update Contrail Networking:

222

1. Update manifests with the new container tag.

export CONTRAIL_CONTAINER_TAG=<new tag>
./tf-operator/contrib/render_manifests.sh

NOTE: Only CONTRAIL_CONTAINER_TAG must have a new tag. The render manifest
must be done with all the same exported environment variables used during the initial
deployment.

2. Update the tf-operator deployment.

kubectl apply -k ./tf-operator/deploy/kustomize/operator/templates/

3. Wait and ensure that the tf-operator deployment is updated.

kubectl –n tf get pods -w | grep tf-operator

4. Update Contrail Networking resources.

kubectl apply -k ./tf-operator/deploy/kustomize/contrail/templates/

5. Wait and ensure that the Contrail Control plane pods are updated.

kubectl –n tf get pods -w

6. Use the contrail-status tool to check the Contrail Networking status on all the master nodes.

$ contrail-status
Must show that all services are active:
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active

223

alarm-gen: active

== Contrail kubernetes ==
kube-manager: backup

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail vrouter ==
nodemgr: active
agent: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: backup
nodemgr: active
device-manager: backup
api: active
schema: backup

7. Upgrade the Contrail vRouter components (one-by-one or by groups).

224

• Choose a node to upgrade and obtain the vRouter daemon name for the node.

kubectl describe node <node name>

• Delete the vRouter pod resource by specifying the name of the pod you want to delete.

kubectl –n tf delete pod <vrouter1-vrouter-daemonset-xxxxx>

• Wait until the new daemon set is run by kubernetes on a node.

Use kubectl get pods < > commad.

kubectl get pods -n tf | grep "vrouter1-vrouter-daemonset"
vrouter1-vrouter-daemonset-77cnz 3/3 Running 0 51m
vrouter1-vrouter-daemonset-7rlvf 3/3 Running 0 87m
vrouter1-vrouter-daemonset-jrzfm 3/3 Running 0 82m
vrouter1-vrouter-daemonset-jvhmj 3/3 Running 0 85m
vrouter1-vrouter-daemonset-v4brl 3/3 Running 0 52m

The status is showing Running for all the vRouter daemon sets. The number of daemon set entries
depends on the cluster size (that is number of master nodes and worker nodes).

You can also verify the status of a particular daemon set. Obtain the new vrouter-daemonset from
the kubectl describe node <node name> command. Check the status of that particular daemon set using
the kubectl get pods -n tf | grep "vrouter1-vrouter-daemonset-XXX" command.

8. Verify the vRouter agent status by using the contrail-status command on the node.

Control/Master nodes

$ contrail-status
Must show that all services are active:
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

225

== Contrail kubernetes ==
kube-manager: backup

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail vrouter ==
nodemgr: active
agent: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: backup
nodemgr: active
device-manager: backup
api: active
schema: backup

226

Worker Nodes

vrouter kernel module is PRESENT
== Contrail vrouter ==
nodemgr: active
agent: active

Deploying Red Hat Openstack with Contrail Control Plane Managed by
Tungsten Fabric Operator

This document provides steps needed to use the Operator Framework for Contrail Networking
deployment that is using Red Hat Openstack version 16.1 (RHOSP16.1) as it’s orchestration platform.

Figure 34 on page 227 shows the difference between the classic deployment of RHOSP16.1 and the
Tungsten Fabric (TF) Operator based deployment.

Figure 34: Difference Between RHOSP16.1 Classic Deployment and TF-Operator

• RHOSP does not deploy ContrailController, ContrailAnalytics, and ContrailAnalyticsDatabase
Overcloud roles.

• Compute nodes are deployed and managed by RHOSP.

• Contrail Control plane is deployed separately on top of Kubernetes or OpenShift cluster.

227

• Contrail Control plane nodes require access to RHOSP networks such as Internal API and Tenant.
Administrator must configure the Internal API and Tenant, if Kubernetes or OpenShift cluster is
deployed outside of the RHOSP networks.

To deploy RHOSP based on TF-Operator:

1. Deploy Kubernetes or OpenShift cluster with Contrail Control plane without the keystone options.

a. Generate a self-signed CA certificate and key and provide their content in the environmental
variables.

export SSL_CAKEY=$(cat ca_key.pem)
export SSL_CACERT=$(cat ca.pem)

If Red Hat IdM is used for RHOSP, the RHOSP must bundle its own CA and IPA CA.

export SSL_CACERT=$(cat ca.crt.pem /etc/ipa/ca.crt)

b. To know more about Kubernetes procedure, see here.

c. To know more about OpenShift procedure, see here.

2. Deploy RHOSP16 without the Contrail Control plane roles.

Follow the deployment procedure provided here.

a. Do not create virtual machines (VMs) for Control Plane and skip any related steps.

b. For Transport Layer Security (TLS), use the self-signed certificates. The Kubernetes or OpenShift is
not integrated with Red Hat IdM.

Use the generated CA and SSH key in Step1 to prepare environments/contrail/contrail-tls.yaml.

c. Set the counters to zero for ContrailController, Analytics, and database roles.

For example, ContrailControllerCount: 0.

d. Provide the heat parameters addresses to Contrail Control plane deployed by Kubernetes or
OpenShift.

ExtraHostFileEntries:
'ip1 <FQDN K8S master1> <Short name master1>'

228

https://github.com/tungstenfabric/tf-operator
https://github.com/tungstenfabric/tf-openshift
https://github.com/tungstenfabric/tf-tripleo-heat-templates/tree/stable/train

'ip2 <FQDN K8S master2> <Short name master2>'
'ip3 <FQDN K8S master3> <Short name master3>'

ExternalContrailConfigIPs: <ip1>,<ip2>,<ip3>
ExternalContrailControlIPs: <ip1>,<ip2>,<ip3>
ExternalContrailAnalyticsIPs: <ip1>,<ip2>,<ip3>

ControllerExtraConfig:
 contrail_internal_api_ssl: True
ComputeExtraConfig:
 contrail_internal_api_ssl: True
add contrail_internal_api_ssl for all other roles if any

3. Ensure that Contrail Control plane deployed by Kubernetes or OpenShift has connectivity to RHOSP
InternalAPI and tenant networks.

Assuming that OpenShift network name is 'ocp' with CIDR 192.168.123.0/24,
Allow forwarding from RHOSP network to OpenShift network
sudo iptables -I LIBVIRT_FWI 1 -i prov-20 -d 192.168.123.0/24 -o ocp -j ACCEPT
sudo iptables -I LIBVIRT_FWI 1 -i mgmt-20 -d 192.168.123.0/24 -o ocp -j ACCEPT
Allow forwarding from OpenShift network to RHOSP network
sudo iptables -I LIBVIRT_FWI 1 -i ocp -d 192.168.20.0/24 -o mgmt-20 -j ACCEPT
sudo iptables -I LIBVIRT_FWI 1 -i ocp -d 192.168.21.0/24 -o prov-20 -j ACCEPT

4. Ensure that Contrail Control plane nodes deployed by Kubernetes or OpenShift are able to resolve
RHOSP FQDNs for Internal API and Control Plane networks. For example, add names to /etc/hosts
on Contrail Control plane nodes.

cat << EOF | sudo tee -a /etc/hosts
192.168.21.200 overcloud.ctlplane.dev.localdomain
 192.168.22.200 overcloud.internalapi.dev.localdomain
 192.168.21.200 overcloud.dev.localdomain
 EOF

5. Connect Contrail Control plane to RHOSP keystone.

Adjust options according to overcloudrc
export AUTH_MODE='keystone'

229

export IPFABRIC_SERVICE_HOST='192.168.21.200'
export KEYSTONE_AUTH_HOST='192.168.21.200'
export KEYSTONE_AUTH_PROTO='http'
export KEYSTONE_AUTH_ADMIN_PASSWORD='qwe123QWE'
export KEYSTONE_AUTH_REGION_NAME='regionOne'
./tf-operator/contrib/render_manifests.sh
oc apply -k ./tf-operator/deploy/kustomize/contrail/templates/

6. Wait until contrail-status shows active for Control plane and for RHOSP computes.

230

CHAPTER 5

Backup and Restore Contrail Software

IN THIS CHAPTER

How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using the
Openstack 16.1 Director Deployment | 231

How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using the
Openstack 13 or Ansible Deployers | 243

How to Backup and Restore Contrail Databases in JSON Format in
Openstack Environments Using the Openstack 16.1 Director Deployment

IN THIS SECTION

Before You Begin | 232

Simple Database Backup in JSON Format | 232

Restore Database from the Backup in JSON Format | 237

This document shows how to backup and restore the Contrail databases—Cassandra and Zookeeper—in
JSON format when Contrail Networking is running in Openstack-orchestrated environments that were
deployed using the RedHat Openstack 16.1 director deployment.

If you are deploying Contrail Networking in an Openstack-orchestrated environment that was deployed
using an Openstack 13-based or Ansible deployer, see How to Backup and Restore Contrail Databases
in JSON Format in Openstack Environments Using the Openstack 13 or Ansible Deployer.

Contrail Networking is initially supported in Openstack environments using the Openstack 16.1 director
deployment in Contrail Networking Release 2008. See Contrail Networking Supported Platforms for a
matrix of Contrail Networking release support within orchestration platforms and deployers.

231

https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-50.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-50.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/topics/reference/contrail-supported-platforms.pdf

Before You Begin

The backup and restore procedure must be completed for nodes running the same Contrail Networking
release. The procedure is used to backup the Contrail Networking databases only; it does not include
instructions for backing up orchestration system databases.

CAUTION: Database backups must be consistent across all systems because the state of
the Contrail database is associated with other system databases, such as OpenStack
databases. Database changes associated with northbound APIs must be stopped on all
the systems before performing any backup operation. For example, you might block the
external VIP for northbound APIs at the load balancer level, such as HAproxy.

Simple Database Backup in JSON Format

This procedure provides a simple database backup in JSON format. This procedure is performed using
the db_json_exim.py script located inside the config-api container in /usr/lib/python2.7/site-packages/
cfgm_common on the controller node.

To perform this database backup:

1. From a controller node, ensure the db_json_exim.py script is available:

(overcloud) [user@overcloud-contrailcontroller-0 heat-admin]# podman exec -it
contrail_config_api bash
(config-api)[user@overcloud-contrailcontroller-0 /]$ ls /usr/lib/python2.7/site-packages/
cfgm_common/db_json_exim.py
/usr/lib/python2.7/site-packages/cfgm_common/db_json_exim.py

2. Log into one of the contrail controller nodes. Create the /tmp/db-dump directory on any of the
contrail controller node hosts.

mkdir /tmp/db-dump

NOTE: /tmp/db-dump is a user-defined directory name. You can assign any name to
a directory.

232

3. On the same contrail controller node, copy the contrail-api.conf file from the container to the host.

podman cp contrail_config_api:/etc/contrail/contrail-api-0.conf /tmp/db-dump/contrail-
api.conf

The Cassandra database instance on any contrail controller node includes the complete Cassandra
database for all contrail controller nodes in the cluster. Steps 2 and 3, therefore, only need to be
performed on one contrail controller node.

4. On all Contrail controller nodes, stop the following Contrail configuration services:

systemctl stop tripleo_contrail_config_svc_monitor.service
systemctl stop tripleo_contrail_config_device_manager.service
systemctl stop tripleo_contrail_config_schema.service
systemctl stop tripleo_contrail_config_api.service
systemctl stop tripleo_contrail_config_nodemgr.service
systemctl stop tripleo_contrail_config_database_nodemgr.service

This step must be performed on each individual controller node in the cluster.

5. On all nodes hosting Contrail Analytics containers, stop the following analytics services:

systemctl stop tripleo_contrail_analytics_kafka.service
systemctl stop tripleo_contrail_analytics_snmp_nodemgr.service
systemctl stop tripleo_contrail_analytics_alarmgen.service
systemctl stop tripleo_contrail_analytics_alarm_nodemgr.service
systemctl stop tripleo_contrail_analytics_topology.service
systemctl stop tripleo_contrail_analytics_collector.service
systemctl stop tripleo_contrail_analytics_nodemgr.service
systemctl stop tripleo_contrail_analytics_snmp_collector.service
systemctl stop tripleo_contrail_analytics_api.service

This step must be performed on each individual analytics node in the cluster.

6. Return to the contrail controller node where you performed steps 2 and 3.

Use the podman images command to list the name or ID of the config api image.

podman images | grep config-api

233

Example:

(overcloud) [user@overcloud-contrailcontroller-0 db-dump]# podman images | grep config-api
192.168.24.1:8787/contrail/contrail-controller-config-api
2011.L1.297 2dcd2feaeed5 2 months ago 876 MB

7. From the same contrail controller node, start the config api container by pointing the entrypoint.sh
script to the /bin/bash directory then mapping /tmp/db-dump directory from the host to the /tmp
directory inside the container. You perform this step to ensure that the API services are not started
on the contrail controller node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
the api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL
directory. This mounting ensures that the backup procedure succeeds in environments with
endpoints that require TLS authentication.

The registry_name and container_tag variables must match step "6" on page 233.

podman run --rm -it -v /tmp/db-dump/:/tmp:Z -v /etc/contrail/ssl:/etc/contrail/ssl:ro -
v /etc/ipa:/etc/ipa:ro --network host --entrypoint=/bin/bash registry_name/contrail-
controller-config-api:container_tag

Example:

podman run --rm -it -v /tmp/db-dump/:/tmp:Z -v /etc/contrail/ssl:/etc/contrail/ssl:ro -
v /etc/ipa:/etc/ipa:ro --network host --entrypoint=/bin/bash 192.168.24.1:8787/contrail-
nightly/contrail-controller-config-api:21.4.L3.441

NOTE: The cluster is TLS-enabled if TLS-related files are used during Contrail
Networking deployment. The TLS-related files are part of the deployment script.
These are custom files and can have any name. For example:

 ~/tripleo-heat-templates/environments/contrail/contrail-tls.yaml \
 ~/tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-dns.yaml \
 ~/tripleo-heat-templates/environments/services/haproxy-public-tls-
certmonger.yaml \
 ~/tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \

234

8. From the container created on the contrail controller node in Step "7" on page 234, use the
db_json_exim.py script to backup data in JSON format. The db dump file will be saved in the /tmp/db-
dump/ directory on this contrail controller node. Example:

(config-api)[user@overcloud-contrailcontroller-0 /]$ cd /usr/lib/python2.7/site-packages/
cfgm_common
(config-api)[user@overcloud-contrailcontroller-0 /usr/lib/python2.7/site-packages/
cfgm_common]$ python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-
api.conf
2021-06-30 19:47:27,120 INFO: Cassandra DB dumped
2021-06-30 19:47:28,878 INFO: Zookeeper DB dumped
2021-06-30 19:47:28,895 INFO: DB dump wrote to file /tmp/db-dump.json

The Cassandra database instance on any contrail controller node includes the complete Cassandra
database for all contrail controller nodes in the cluster. You, therefore, only need to perform step 4
through 6 from one of the contrail controller nodes.

9. (Optional. Recommended) From the same contrail controller node, enter the cat /tmp/db-dump.json |
python -m json.tool | less command to view a more readable version of the file transfer.

cat /tmp/db-dump.json | python -m json.tool | less

10. From the same contrail controller node, exit out of the config api container. This will stop the
container.

exit

11. On each contrail controller node, start the following configuration services:

systemctl start tripleo_contrail_config_svc_monitor.service
systemctl start tripleo_contrail_config_device_manager.service
systemctl start tripleo_contrail_config_schema.service
systemctl start tripleo_contrail_config_api.service
systemctl start tripleo_contrail_config_nodemgr.service
systemctl start tripleo_contrail_config_database_nodemgr.service

This step must be performed on each individual contrail controller node.

235

12. On each analytics node, start the following analytics services:

systemctl start tripleo_contrail_analytics_kafka.service
systemctl start tripleo_contrail_analytics_snmp_nodemgr.service
systemctl start tripleo_contrail_analytics_alarmgen.service
systemctl start tripleo_contrail_analytics_alarm_nodemgr.service
systemctl start tripleo_contrail_analytics_topology.service
systemctl start tripleo_contrail_analytics_collector.service
systemctl start tripleo_contrail_analytics_nodemgr.service
systemctl start tripleo_contrail_analytics_snmp_collector.service
systemctl start tripleo_contrail_analytics_api.service

This step must be performed on each individual analytics node.

13. On each contrail controller node, enter the contrail-status command to confirm that services are in
the active or running states.

NOTE: Some command output and output fields are removed for readability. Output
shown is from a single node hosting configuration and analytics services.

contrail-status
Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
<some output removed for readability>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active

236

alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Restore Database from the Backup in JSON Format

This procedure provides the steps to restore a system using the simple database backup JSON file that
was created in "Simple Database Backup in JSON Format" on page 232.

To restore a system from a backup JSON file:

237

1. Copy the contrail-api.conf file from the container to the host on any one of the contrail controller
nodes.

podman cp contrail_config_api:/etc/contrail/contrail-api-0.conf /tmp/db-dump/contrail-
api.conf

2. On all of the Contrail controller nodes, stop these configuration services:

systemctl stop tripleo_contrail_config_svc_monitor.service
systemctl stop tripleo_contrail_config_device_manager.service
systemctl stop tripleo_contrail_config_schema.service
systemctl stop tripleo_contrail_config_api.service
systemctl stop tripleo_contrail_config_nodemgr.service
systemctl stop tripleo_contrail_config_database_nodemgr.service

3. On all nodes hosting Contrail Analytics containers, stop the following services:

systemctl stop tripleo_contrail_analytics_kafka.service
systemctl stop tripleo_contrail_analytics_snmp_nodemgr.service
systemctl stop tripleo_contrail_analytics_alarmgen.service
systemctl stop tripleo_contrail_analytics_alarm_nodemgr.service
systemctl stop tripleo_contrail_analytics_topology.service
systemctl stop tripleo_contrail_analytics_collector.service
systemctl stop tripleo_contrail_analytics_nodemgr.service
systemctl stop tripleo_contrail_analytics_snmp_collector.service
systemctl stop tripleo_contrail_analytics_api.service

4. Stop the Cassandra service on all the config-db controllers.

systemctl stop tripleo_contrail_config_database.service

5. Stop the Zookeeper service on all the contrail controllers.

systemctl stop tripleo_contrail_config_zookeeper.service

238

6. Stop the Zookeeper service on all the contrail-analytics controllers.

systemctl stop tripleo_contrail_analytics_zookeeper.service

7. Backup the Zookeeper data directory on all the controllers.

cd /var/lib/contrail/config_zookeeper
cp -aR version-2/ zookper-bkp.save

8. Delete the Zookeeper data directory contents on all the controllers.

rm -rf version-2

9. Backup the Cassandra data directory on all the controllers.

cd /var/lib/contrail/config_cassandra
cp -aR data/ Cassandra_data-save

10. Delete the Cassandra data directory contents on all controllers.

rm -rf data/

11. Start the Zookeeper service on all the contrail controllers.

systemctl start tripleo_contrail_config_zookeeper.service

12. Start the Zookeeper service on all the contrail-analytics controllers.

systemctl start tripleo_contrail_analytics_zookeeper.service

13. Start the Cassandra service on all of the controllers.

systemctl start tripleo_contrail_config_database.service

239

14. Use the podman images command to list the name or ID of the config api image.

podman image ls | grep config-api

Example:

user@overcloud-contrailcontroller-0 heat-admin]# podman image ls | grep config-a
192.168.24.1:8787/contrail/contrail-controller-config-api
2011.L1.297 2dcd2feaeed5 1 months ago 876 MB

15. Run a new podman container using the name or ID of the config_api image on the same contrail
controller node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL
directory. This mounting ensures that this backup procedure succeeds in environments with
endpoints that require TLS authentication.

Use the registry_name and container_tag from the output of the step "14" on page 240.

podman run --rm -it -v /tmp/db-dump/:/tmp:Z -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash <registry_name>/contrail-controller-config-
api:<container tag>

Example:

podman run --rm -it -v /tmp/db-dump/:/tmp:Z -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash 192.168.24.1:8787/contrail/contrail-controller-config-
api:2011.L1.297

16. Restore the data in the new running container on the same contrail controller node.

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

Example:

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

240

2021-07-06 17:22:17,157 INFO: DB dump file loaded
2021-07-06 17:23:12,227 INFO: Cassandra DB restored
2021-07-06 17:23:14,236 INFO: Zookeeper DB restored

17. Exit out of the config api container. This will stop the container.

exit

18. Start config services on all of the controllers:

systemctl start tripleo_contrail_config_svc_monitor.service
systemctl start tripleo_contrail_config_device_manager.service
systemctl start tripleo_contrail_config_schema.service
systemctl start tripleo_contrail_config_api.service
systemctl start tripleo_contrail_config_nodemgr.service
systemctl start tripleo_contrail_config_database_nodemgr.service

19. Start services on all of the analytics nodes:

systemctl start tripleo_contrail_analytics_kafka.service
systemctl start tripleo_contrail_analytics_snmp_nodemgr.service
systemctl start tripleo_contrail_analytics_alarmgen.service
systemctl start tripleo_contrail_analytics_alarm_nodemgr.service
systemctl start tripleo_contrail_analytics_topology.service
systemctl start tripleo_contrail_analytics_collector.service
systemctl start tripleo_contrail_analytics_nodemgr.service
systemctl start tripleo_contrail_analytics_snmp_collector.service
systemctl start tripleo_contrail_analytics_api.service

20. Enter the contrail-status command on each contrail controller node and, when applicable, on each
analytics node to confirm that services are in the active or running states.

NOTE: Output shown for a contrail controller node. Some command output and
output fields are removed for readability.

contrail-status
Pod Service Original Name State

241

config api contrail-controller-config-api running
config device-manager contrail-controller-config-devicemgr running
config dnsmasq contrail-controller-config-dnsmasq running
config nodemgr contrail-nodemgr running
config provisioner contrail-provisioner running
config schema contrail-controller-config-schema running
config stats contrail-controller-config-stats running
<some output removed for readability>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

242

How to Backup and Restore Contrail Databases in JSON Format in
Openstack Environments Using the Openstack 13 or Ansible Deployers

IN THIS SECTION

Before You Begin | 243

Simple Database Backup in JSON Format | 244

Examples: Simple Database Backups in JSON Format | 248

Restore Database from the Backup in JSON Format | 251

Example: How to Restore a Database Using the JSON Backup (Ansible Deployer Environment) | 257

Example: How to Restore a Database Using the JSON Backup (Red Hat Openstack Deployer
Environment) | 261

This document shows how to backup and restore the Contrail databases—Cassandra and Zookeeper—in
JSON format when Contrail Networking is running in Openstack-orchestrated environments that were
deployed using an Openstack 13-based or Ansible deployer. For a list of Openstack-orchestrated
environments that are deployed using Openstack 13-based or Ansible deployers, see the Contrail
Networking Supported Platforms matrix.

If you are deploying Contrail Networking in an Openstack-orchestrated environment that was deployed
using an Openstack 16-based deployer, see How to Backup and Restore Contrail Databases in JSON
Format in Openstack Environments Using the Openstack 16.1 Deployer.

Before You Begin

The backup and restore procedure must be completed for nodes running the same Contrail Networking
release. The procedure is used to backup the Contrail Networking databases only; it does not include
instructions for backing up orchestration system databases.

CAUTION: Database backups must be consistent across all systems because the state of
the Contrail database is associated with other system databases, such as OpenStack
databases. Database changes associated with northbound APIs must be stopped on all
the systems before performing any backup operation. For example, you might block the
external VIP for northbound APIs at the load balancer level, such as HAproxy.

243

https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html
https://www.juniper.net/documentation/en_US/contrail20/topics/concept/backup-using-json-openstack16.html

Simple Database Backup in JSON Format

This procedure provides a simple database backup in JSON format. This procedure is performed using
the db_json_exim.py script located in the /usr/lib/python2.7/site-packages/cfgm_common on the controller node.

To perform this database backup:

1. Log into one of the contrail controller nodes. Create the /tmp/db-dump directory on any of the
contrail controller node hosts.

mkdir /tmp/db-dump

2. On the same contrail controller node, copy the contrail-api.conf file from the container to the host.

Ansible Deployer:

docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Red Hat Openstack Deployer:

docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/

The Cassandra database instance on any contrail controller node includes the complete Cassandra
database for all contrail controller nodes in the cluster. Steps 1 and 2, therefore, only need to be
performed on one contrail controller node.

3. Stop the following docker configuration services on all of the contrail controller nodes.

Ansible Deployer:

docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

Red Hat Openstack Deployer:

docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager

244

docker stop contrail_config_schema
docker stop contrail_config_api

This step must be performed on each individual contrail controller node in the cluster.

4. Return to the contrail controller node where you performed steps 1 and 2.

List the docker image to find the name or ID of the config api image.

docker image ls | grep config-api

Example:

docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4
months ago 583MB

5. From the same contrail controller node, start the config api container pointing the entrypoint.sh
script to /bin/bash and mapping /tmp/db-dump from the host to the /tmp directory inside the
container. You perform this step to ensure that the API services are not started on the contrail
controller node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL
directory. This mounting ensures that the backup procedure succeeds in environments with
endpoints that require TLS authentication.

The registry_name and container_tag variables must match step "4" on page 245.

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash <registry_name>/contrail-controller-
config_api:<container_tag>

Example:

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

245

6. From the docker container created on the contrail controller node in Step "5" on page 245, use the
db_json_exim.py script to backup data in JSON format.. The db dump file will be saved in
the /tmp/db-dump/ on this contrail controller node.

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

The Cassandra database instance on any contrail controller node includes the complete Cassandra
database for all contrail controller nodes in the cluster. You, therefore, only need to perform step 4
through 6 from one of the contrail controller nodes.

7. (Optional. Recommended) From the same contrail controller node, enter the cat /tmp/db-dump.json |
python -m json.tool | less command to view a more readable version of the file transfer.

cat /tmp/db-dump.json | python -m json.tool | less

8. From the same contrail controller node, exit out of the config api container. This will stop the
container.

exit

9. Start the following configuration services on all of the contrail controller nodes.

Ansible Deployer:

docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1

Red Hat Openstack Deployer:

docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager

This step must be performed on each individual contrail controller node.

246

10. On each contrail controller node, enter the contrail-status command to confirm that services are in
the active or running states.

NOTE: Some command output and output fields are removed for readability. Output
shown is from a node hosting configuration and analytics services.

contrail-status
Pod Service Original Name State
analytics api contrail-analytics-api running
analytics collector contrail-analytics-collector running
analytics nodemgr contrail-nodemgr running
analytics provisioner contrail-provisioner running
analytics redis contrail-external-redis running
analytics-alarm alarm-gen contrail-analytics-alarm-gen running
analytics-alarm kafka contrail-external-kafka running
<some output removed for readability>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active

247

rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Examples: Simple Database Backups in JSON Format

These examples illustrate the process for creating a simple database backup in JSON format in both an
Ansible deployer environment and a Red Hat Openstack deployer environment.

In each example, a cluster with three config nodes—control_config1, control_config2, and
control_config3—is backed up. All tasks that need to be performed on a single config nodes are
performed on control-config1. The tasks must be performed in the shown order.

Ansible Deployer Environment:

control_config1
mkdir /tmp/db-dump
docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/
docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

control_config2
docker stop config_svcmonitor_1
docker stop config_devicemgr_1

248

docker stop config_schema_1
docker stop config_api_1

control_config3
docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1

control_config1
docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --network
host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-api:1909.30-ocata
cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf
cat /tmp/db-dump.json | python -m json.tool | less
exit
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

control_config2
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

control_config3
docker start config_api_1
docker start config_schema_1
docker start config_svcmonitor_1
docker start config_devicemgr_1
contrail-status

Red Hat Openstack Deployer Environment:

control_config1
mkdir /tmp/db-dump
docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/
docker stop contrail_config_svc_monitor

249

docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config2
docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config3
docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

control_config1
docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --network
host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-api:1909.30-ocata
cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --export-to /tmp/db-dump.json --api-conf /tmp/contrail-api.conf
cat /tmp/db-dump.json | python -m json.tool | less
exit
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

control_config2
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

control_config3
docker start contrail_config_api
docker start contrail_config_schema
docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
contrail-status

250

Restore Database from the Backup in JSON Format

This procedure provides the steps to restore a system using the simple database backup JSON file that
was created in "Simple Database Backup in JSON Format" on page 244.

To restore a system from a backup JSON file:

1. Copy the contrail-api.conf file from the container to the host on any one of the config nodes.

Ansible Deployer:

docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Red Hat Openstack Deployer:

docker cp contrail_config_api:/etc/contrail/contrail-api.conf /tmp/db-dump/

2. Stop the configuration services on all of the controllers.

Ansible Deployer:

docker stop config_svcmonitor_1
docker stop config_devicemgr_1
docker stop config_schema_1
docker stop config_api_1
docker stop config_nodemgr_1
docker stop config_database_nodemgr_1
docker stop analytics_snmp_snmp-collector_1
docker stop analytics_snmp_topology_1
docker stop analytics_alarm_alarm-gen_1
docker stop analytics_api_1
docker stop analytics_collector_1
docker stop analytics_alarm_kafka_1

Red Hat Openstack Deployer—Node hosting Contrail Config containers:

docker stop contrail_config_svc_monitor
docker stop contrail_config_device_manager
docker stop contrail_config_schema
docker stop contrail_config_api

251

docker stop contrail_config_nodemgr
docker stop contrail_config_database_nodemgr

Red Hat Openstack Deployer—Node hosting Contrail Analytics containers:

docker stop contrail_analytics_snmp_collector
docker stop contrail_analytics_topology
docker stop contrail_analytics_alarmgen
docker stop contrail_analytics_api
docker stop contrail_analytics_collector
docker stop contrail_analytics_kafka

3. Stop the Cassandra service on all the config-db controllers.

Ansible Deployer:

docker stop config_database_cassandra_1

Red Hat Openstack Deployer:

docker stop contrail_config_database

4. Stop the Zookeeper service on all controllers.

Ansible Deployer:

docker stop config_database_zookeeper_1

Red Hat Openstack Deployer:

docker stop contrail_config_zookeeper

5. Backup the Zookeeper data directory on all the controllers.

Ansible Deployer:

cd /var/lib/docker/volumes/config_database_config_zookeeper/
cp -R _data/version-2/ version-2-save

252

Red Hat Openstack Deployer:

cd /var/lib/docker/volumes/config_zookeeper/
cp -R _data/version-2/ version-2-save

6. Delete the Zookeeper data directory contents on all the controllers.

rm -rf _data/version-2/*

7. Backup the Cassandra data directory on all the controllers.

Ansible Deployer:

cd /var/lib/docker/volumes/config_database_config_cassandra/
cp -R _data/ Cassandra_data-save

Red Hat Openstack Deployer:

cd /var/lib/docker/volumes/config_cassandra/
cp -R _data/ Cassandra_data-save

8. Delete the Cassandra data directory contents on all controllers.

rm -rf _data/*

9. Start the Zookeeper service on all the controllers.

Ansible Deployer:

docker start config_database_zookeeper_1

Red Hat Openstack Deployer:

docker start contrail_config_zookeeper

10. Start the Cassandra service on all the controllers.

253

Ansible Deployer:

docker start config_database_cassandra_1

Red Hat Openstack Deployer:

docker start contrail_config_database

11. List docker image to find the name or ID of the config-api image on the config node.

docker image ls | grep config-api

Example:

docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4
months ago 583MB

12. Run a new docker container using the name or ID of the config_api image on the same config node.

Enter the -v /etc/contrail/ssl:/etc/contrail/ssl:ro command option when cassandra_use_ssl is used as
api-server configuration parameter to ensure TLS certificates are mounted to the Contrail SSL
directory. This mounting ensures that this backup procedure succeeds in environments with
endpoints that require TLS authentication.

Use the registry_name and container_tag from the output of the step "11" on page 254.

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash <registry_name>/contrail-controller-
config_api:<container tag>

Example

docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/ssl:ro --
network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

254

13. Restore the data in new running docker on the same config node.

cd /usr/lib/python2.7/site-packages/cfgm_common
python db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

14. Exit out of the config api container. This will stop the container.

exit

15. Start config services on all the controllers.

Ansible Deployer:

docker start config_svcmonitor_1
docker start config_devicemgr_1
docker start config_schema_1
docker start config_api_1
docker start config_nodemgr_1
docker start config_database_nodemgr_1
docker start analytics_snmp_snmp-collector_1
docker start analytics_snmp_topology_1
docker start analytics_alarm_alarm-gen_1
docker start analytics_api_1
docker start analytics_collector_1
docker start analytics_alarm_kafka_1

Red Hat Openstack Deployer—Node hosting Contrail Config containers:

docker start contrail_config_svc_monitor
docker start contrail_config_device_manager
docker start contrail_config_schema
docker start contrail_config_api
docker start contrail_config_nodemgr
docker start contrail_config_database_nodemgr

Red Hat Openstack Deployer—Node hosting Contrail Analytics containers:

docker start contrail_analytics_snmp_collector
docker start contrail_analytics_topology

255

docker start contrail_analytics_alarmgen
docker start contrail_analytics_api
docker start contrail_analytics_collector
docker start contrail_analytics_kafka

16. Enter the contrail-status command on each configuration node and, when applicable, on each
analytics node to confirm that services are in the active or running states.

NOTE: Output shown for a config node. Some command output and output fields
are removed for readability.

contrail-status
Pod Service Original Name State
config api contrail-controller-config-api running
config device-manager contrail-controller-config-devicemgr running
config dnsmasq contrail-controller-config-dnsmasq running
config nodemgr contrail-nodemgr running
config provisioner contrail-provisioner running
config schema contrail-controller-config-schema running
config stats contrail-controller-config-stats running
<some output removed for readability>

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

256

== Contrail webui ==
web: active
job: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Example: How to Restore a Database Using the JSON Backup (Ansible Deployer
Environment)

This example shows how to restore the databases for three controllers connected to the Contrail
Configuration database (config-db). This example assumes a JSON backup file of the databases was
previously created using the instructions provided in "Simple Database Backup in JSON Format" on page
244.The network was deployed using Ansible and the three controllers—nodec53, nodec54, and
nodec55—have separate IP addresses.

Make db-dump directory. Copy contrail-api.conf to db-dump directory.
root@nodec54 ~]# mkdir /tmp/db-dump
root@nodec54 ~]# docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Stop Configuration Services on All Controllers
[root@nodec53 ~]# docker stop config_schema_1
[root@nodec53 ~]# docker stop config_api_1
[root@nodec53 ~]# docker stop config_svcmonitor_1
[root@nodec53 ~]# docker stop config_devicemgr_1
[root@nodec53 ~]# docker stop config_nodemgr_1
[root@nodec53 ~]# docker stop config_database_nodemgr_1
[root@nodec53 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec53 ~]# docker stop analytics_snmp_topology_1
[root@nodec53 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec53 ~]# docker stop analytics_api_1
[root@nodec53 ~]# docker stop analytics_collector_1
[root@nodec53 ~]# docker stop analytics_alarm_kafka_1

[root@nodec54 ~]# # docker stop config_schema_1
[root@nodec54 ~]# docker stop config_api_1
[root@nodec54 ~]# docker stop config_svcmonitor_1

257

[root@nodec54 ~]# docker stop config_devicemgr_1
[root@nodec54 ~]# docker stop config_nodemgr_1
[root@nodec54 ~]# docker stop config_database_nodemgr_1
[root@nodec54 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec54 ~]# docker stop analytics_snmp_topology_1
[root@nodec54 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec54 ~]# docker stop analytics_api_1
[root@nodec54 ~]# docker stop analytics_collector_1
[root@nodec54 ~]# docker stop analytics_alarm_kafka_1

[root@nodec55 ~]# docker stop config_schema_1
[root@nodec55 ~]# docker stop config_api_1
[root@nodec55 ~]# docker stop config_svcmonitor_1
[root@nodec55 ~]# docker stop config_devicemgr_1
[root@nodec55 ~]# docker stop config_nodemgr_1
[root@nodec55 ~]# docker stop config_database_nodemgr_1
[root@nodec55 ~]# docker stop analytics_snmp_snmp-collector_1
[root@nodec55 ~]# docker stop analytics_snmp_topology_1
[root@nodec55 ~]# docker stop analytics_alarm_alarm-gen_1
[root@nodec55 ~]# docker stop analytics_api_1
[root@nodec55 ~]# docker stop analytics_collector_1
[root@nodec55 ~]# docker stop analytics_alarm_kafka_1

Stop Cassandra
[root@nodec53 ~]# docker stop config_database_cassandra_1
[root@nodec54 ~]# docker stop config_database_cassandra_1
[root@nodec55 ~]# docker stop config_database_cassandra_1

Stop Zookeeper
[root@nodec53 ~]# docker stop config_database_zookeeper_1
[root@nodec54 ~]# docker stop config_database_zookeeper_1
[root@nodec55 ~]# docker stop config_database_zookeeper_1

Backup Zookeeper Directories Before Deleting Zookeeper Data Directory Contents
[root@nodec53 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/
[root@nodec53 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec53 config_database_config_zookeeper]# rm -rf _data/version-2/*

[root@nodec54 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/
[root@nodec54 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec54 config_database_config_zookeeper]# rm -rf _data/version-2/*

[root@nodec55 _data]# cd /var/lib/docker/volumes/config_database_config_zookeeper/

258

[root@nodec55 config_database_config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@nodec55 config_database_config_zookeeper]# rm -rf _data/version-2/*

Backup Cassandra Directory Before Deleting Cassandra Data Directory Contents
[root@nodec53 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec53 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec53 config_database_config_cassandra]# rm -rf _data/*

[root@nodec54 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec54 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec54 config_database_config_cassandra]# rm -rf _data/*

[root@nodec55 ~]# cd /var/lib/docker/volumes/config_database_config_cassandra/
[root@nodec55 config_database_config_cassandra]# cp -R _data/ Cassandra_data-save
[root@nodec55 config_database_config_cassandra]# rm -rf _data/*

Start Zookeeper
[root@nodec53 ~]# docker start config_database_zookeeper_1
[root@nodec54 ~]# docker start config_database_zookeeper_1
[root@nodec55 ~]# docker start config_database_zookeeper_1

Start Cassandra
[root@nodec53 ~]# docker start config_database_cassandra_1
[root@nodec54 ~]# docker start config_database_cassandra_1
[root@nodec55 ~]# docker start config_database_cassandra_1

Run Docker Image & Mount Contrail TLS Certificates to Contrail SSL Directory
[root@nodec54 ~]# docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4 months
ago 583MB
[root@nodec54 ~]# docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/
ssl:ro --network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

Restore Data in New Docker Containers
(config_api_1)[root@nodec54 /root]$ cd /usr/lib/python2.7/site-packages/cfgm_common/
(config_api_1)[root@nodec54 /usr/lib/python2.7/site-packages/cfgm_common]$ python
db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

Start Configuration Services
[root@nodec53 ~]# docker start config_schema_1
[root@nodec53 ~]# docker start config_svcmonitor_1
[root@nodec53 ~]# docker start config_devicemgr_1

259

[root@nodec53 ~]# docker start config_nodemgr_1
[root@nodec53 ~]# docker start config_database_nodemgr_1
[root@nodec53 ~]# docker start config_api_1
[root@nodec53 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec53 ~]# docker start analytics_snmp_topology_1
[root@nodec53 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec53 ~]# docker start analytics_api_1
[root@nodec53 ~]# docker start analytics_collector_1
[root@nodec53 ~]# docker start analytics_alarm_kafka_1

[root@nodec54 ~]# docker start config_schema_1
[root@nodec54 ~]# docker start config_svcmonitor_1
[root@nodec54 ~]# docker start config_devicemgr_1
[root@nodec54 ~]# docker start config_nodemgr_1
[root@nodec54 ~]# docker start config_database_nodemgr_1
[root@nodec54 ~]# docker start config_api_1
[root@nodec54 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec54 ~]# docker start analytics_snmp_topology_1
[root@nodec54 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec54 ~]# docker start analytics_api_1
[root@nodec54 ~]# docker start analytics_collector_1
[root@nodec54 ~]# docker start analytics_alarm_kafka_1

[root@nodec55 ~]# docker start config_schema_1
[root@nodec55 ~]# docker start config_svcmonitor_1
[root@nodec55 ~]# docker start config_devicemgr_1
[root@nodec55 ~]# docker start config_nodemgr_1
[root@nodec55 ~]# docker start config_database_nodemgr_1
[root@nodec55 ~]# docker start config_api_1
[root@nodec55 ~]# docker start analytics_snmp_snmp-collector_1
[root@nodec55 ~]# docker start analytics_snmp_topology_1
[root@nodec55 ~]# docker start analytics_alarm_alarm-gen_1
[root@nodec55 ~]# docker start analytics_api_1
[root@nodec55 ~]# docker start analytics_collector_1
[root@nodec55 ~]# docker start analytics_alarm_kafka_1

Confirm Services are Active
[root@nodec53 ~]# contrail-status
[root@nodec54 ~]# contrail-status
[root@nodec55 ~]# contrail-status

260

Example: How to Restore a Database Using the JSON Backup (Red Hat Openstack
Deployer Environment)

This example shows how to restore the databases from an environment that was deployed using Red
Hat Openstack and includes three config nodes—config1, config2, and config3—connected to the
Contrail Configuration database (config-db). All steps that need to be done from a single config node are
performed from config1.

The environment also contains three analytics nodes—analytics1, analytics2, and analytics3—to provide
analytics services.

This example assumes a JSON backup file of the databases was previously created using the instructions
provided in "Simple Database Backup in JSON Format" on page 244.

Make db-dump directory. Copy contrail-api.conf to db-dump directory.
[root@config1 ~]# mkdir /tmp/db-dump
[root@config1 ~]# docker cp config_api_1:/etc/contrail/contrail-api.conf /tmp/db-dump/

Stop Configuration Services on All Config Nodes
[root@config1 ~]# docker stop contrail_config_svc_monitor
[root@config1 ~]# docker stop contrail_config_device_manager
[root@config1 ~]# docker stop contrail_config_schema
[root@config1 ~]# docker stop contrail_config_api
[root@config1 ~]# docker stop contrail_config_nodemgr
[root@config1 ~]# docker stop contrail_config_database_nodemgr

[root@config2 ~]# docker stop contrail_config_svc_monitor
[root@config2 ~]# docker stop contrail_config_device_manager
[root@config2 ~]# docker stop contrail_config_schema
[root@config2 ~]# docker stop contrail_config_api
[root@config2 ~]# docker stop contrail_config_nodemgr
[root@config2 ~]# docker stop contrail_config_database_nodemgr

[root@config3 ~]# docker stop contrail_config_svc_monitor
[root@config3 ~]# docker stop contrail_config_device_manager
[root@config3 ~]# docker stop contrail_config_schema
[root@config3 ~]# docker stop contrail_config_api
[root@config3 ~]# docker stop contrail_config_nodemgr
[root@config3 ~]# docker stop contrail_config_database_nodemgr

Stop Analytics Services on All Analytics Nodes
[root@analytics1 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics1 ~]# docker stop contrail_analytics_topology

261

[root@analytics1 ~]# docker stop contrail_analytics_alarmgen
[root@analytics1 ~]# docker stop contrail_analytics_api
[root@analytics1 ~]# docker stop contrail_analytics_collector
[root@analytics1 ~]# docker stop contrail_analytics_kafka

[root@analytics2 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics2 ~]# docker stop contrail_analytics_topology
[root@analytics2 ~]# docker stop contrail_analytics_alarmgen
[root@analytics2 ~]# docker stop contrail_analytics_api
[root@analytics2 ~]# docker stop contrail_analytics_collector
[root@analytics2 ~]# docker stop contrail_analytics_kafka

[root@analytics3 ~]# docker stop contrail_analytics_snmp_collector
[root@analytics3 ~]# docker stop contrail_analytics_topology
[root@analytics3 ~]# docker stop contrail_analytics_alarmgen
[root@analytics3 ~]# docker stop contrail_analytics_api
[root@analytics3 ~]# docker stop contrail_analytics_collector
[root@analytics3 ~]# docker stop contrail_analytics_kafka

Stop Cassandra
[root@config1 ~]# docker stop contrail_config_database
[root@config2 ~]# docker stop contrail_config_database
[root@config3 ~]# docker stop contrail_config_database

Stop Zookeeper
[root@config1 ~]# docker stop contrail_config_zookeeper
[root@config2 ~]# docker stop contrail_config_zookeeper
[root@config3 ~]# docker stop contrail_config_zookeeper

Backup Zookeeper Directories Before Deleting Zookeeper Data Directory Contents
[root@config1 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config1 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config1 config_zookeeper]# rm -rf _data/version-2/*
[root@config2 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config2 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config2 config_zookeeper]# rm -rf _data/version-2/*
[root@config3 _data]# cd /var/lib/docker/volumes/config_zookeeper/
[root@config3 config_zookeeper]# cp -R _data/version-2/ version-2-save
[root@config3 config_zookeeper]# rm -rf _data/version-2/*

Backup Cassandra Directory Before Deleting Cassandra Data Directory Contents
[root@config1 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config1 config_cassandra]# cp -R _data/ Cassandra_data-save

262

[root@config1 config_cassandra]# rm -rf _data/*

[root@config2 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config2 config_cassandra]# cp -R _data/ Cassandra_data-save
[root@config2 config_cassandra]# rm -rf _data/*

[root@config3 ~]# cd /var/lib/docker/volumes/config_cassandra/
[root@config3 config_cassandra]# cp -R _data/ Cassandra_data-save
[root@config3 config_cassandra]# rm -rf _data/*

Start Zookeeper
[root@config1 ~]# docker start contrail_config_zookeeper
[root@config2 ~]# docker start contrail_config_zookeeper
[root@config3 ~]# docker start contrail_config_zookeeper

Start Cassandra
[root@config1 ~]# docker start contrail_config_database
[root@config2 ~]# docker start contrail_config_database
[root@config3 ~]# docker start contrail_config_database

Run Docker Image & Mount Contrail TLS Certificates to Contrail SSL Directory
[root@config1 ~]# docker image ls | grep config-api
hub.juniper.net/contrail/contrail-controller-config-api 1909.30-ocata c9d757252a0c 4 months
ago 583MB
[root@config1 ~]# docker run --rm -it -v /tmp/db-dump/:/tmp/ -v /etc/contrail/ssl:/etc/contrail/
ssl:ro --network host --entrypoint=/bin/bash hub.juniper.net/contrail/contrail-controller-config-
api:1909.30-ocata

Restore Data in New Docker Containers
(config_api_1)[root@config1 /root]$ cd /usr/lib/python2.7/site-packages/cfgm_common/
(config_api_1)[root@config1 /usr/lib/python2.7/site-packages/cfgm_common]$ python
db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/contrail-api.conf

Start Configuration Services on All Config Nodes
[root@config1 ~]# docker start contrail_config_svc_monitor
[root@config1 ~]# docker start contrail_config_device_manager
[root@config1 ~]# docker start contrail_config_schema
[root@config1 ~]# docker start contrail_config_api
[root@config1 ~]# docker start contrail_config_nodemgr
[root@config1 ~]# docker start contrail_config_database_nodemgr

[root@config2 ~]# docker start contrail_config_svc_monitor
[root@config2 ~]# docker start contrail_config_device_manager

263

[root@config2 ~]# docker start contrail_config_schema
[root@config2 ~]# docker start contrail_config_api
[root@config2 ~]# docker start contrail_config_nodemgr
[root@config2 ~]# docker start contrail_config_database_nodemgr

[root@config3 ~]# docker start contrail_config_svc_monitor
[root@config3 ~]# docker start contrail_config_device_manager
[root@config3 ~]# docker start contrail_config_schema
[root@config3 ~]# docker start contrail_config_api
[root@config3 ~]# docker start contrail_config_nodemgr
[root@config3 ~]# docker start contrail_config_database_nodemgr

Start Configuration Services on All Analytics Nodes
[root@analytics1 ~]# docker start contrail_analytics_snmp_collector
[root@analytics1 ~]# docker start contrail_analytics_topology
[root@analytics1 ~]# docker start contrail_analytics_alarmgen
[root@analytics1 ~]# docker start contrail_analytics_api
[root@analytics1 ~]# docker start contrail_analytics_collector
[root@analytics1 ~]# docker start contrail_analytics_kafka

[root@analytics2 ~]# docker start contrail_analytics_snmp_collector
[root@analytics2 ~]# docker start contrail_analytics_topology
[root@analytics2 ~]# docker start contrail_analytics_alarmgen
[root@analytics2 ~]# docker start contrail_analytics_api
[root@analytics2 ~]# docker start contrail_analytics_collector
[root@analytics2 ~]# docker start contrail_analytics_kafka

[root@analytics3 ~]# docker start contrail_analytics_snmp_collector
[root@analytics3 ~]# docker start contrail_analytics_topology
[root@analytics3 ~]# docker start contrail_analytics_alarmgen
[root@analytics3 ~]# docker start contrail_analytics_api
[root@analytics3 ~]# docker start contrail_analytics_collector
[root@analytics3 ~]# docker start contrail_analytics_kafka

Confirm Services are Active
[root@config1 ~]# contrail-status
[root@config2 ~]# contrail-status
[root@config3 ~]# contrail-status

[root@analytics1 ~]# contrail-status

264

[root@analytics2 ~]# contrail-status
[root@analytics3 ~]# contrail-status

265

CHAPTER 6

Setting Up Contrail with Red Hat OpenStack 17.1

IN THIS CHAPTER

Understanding Red Hat OpenStack Platform Director 17.1 | 266

Setting Up the Infrastructure (Contrail Networking Release 21.4.L4 or Later) | 272

Setting Up the Undercloud for RHOSP 17.1 | 275

Setting Up the Overcloud for RHOSP 17.1 | 282

Understanding Red Hat OpenStack Platform Director 17.1

IN THIS SECTION

Red Hat OpenStack Platform Director | 266

Contrail Networking Roles | 267

RHVM and KVM Requirements | 268

Undercloud Requirements | 268

Overcloud Requirements | 268

Networking Requirements | 269

Compatibility Matrix | 270

Installation Summary | 271

Red Hat OpenStack Platform Director

Starting with Contrail Networking Release 21.4.L4, Contrail Networking supports using Contrail with
Red Hat OpenStack Platform 17.1. This chapter explains how to integrate a Contrail Networking Release
21.4.L4(.x) installation with Red Hat OpenStack Platform 17.1.

266

Red Hat OpenStack Platform provides an installer called the Red Hat OpenStack Platform director
(RHOSPd or OSPd), which is a toolset based on the OpenStack project TripleO (OOO, OpenStack on
OpenStack). TripleO is an open source project that uses features of OpenStack to deploy a fully
functional, tenant-facing OpenStack environment.

Red Hat OpenStack Platform director can be used to deploy an RHOSP-based OpenStack environment
integrated with Contrail Networking.

OSPd uses the concepts of undercloud and overcloud. OSPd sets up an undercloud, a single server
running an operator-facing deployment that contains the OpenStack components needed to deploy and
manage an overcloud, a tenant-facing deployment that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

OSPd leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
Metalsmith and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Metalsmith is a project that uses keystone and ironic for baremetal provisioning.

• Ceilometer collects metrics about the overcloud.

For more information about OSPd architecture, see OSPd documentation.

Contrail Networking Roles

OSPd supports composable roles, which are groups of services that you define through Heat templates.
Composable roles allow you to integrate Contrail Networking into the overcloud environment.

The following are the Contrail Networking roles used for integrating into the overcloud:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

267

https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html

Figure 35 on page 268 shows the relationship and components of an undercloud and overcloud
architecture for Contrail Networking.

Figure 35: Undercloud and Overcloud with Roles

RHVM and KVM Requirements

Starting in Contrail Networking Release 21.4.L4, Contrail Networking does not support Red Hat based
Virtual Machine (RHVM). You must deploy overcloud components on bare metal hosts.

Undercloud Requirements

The undercloud is a single server that hosts the OpenStack Platform director, which is an OpenStack
installation used to provision OpenStack on the overcloud.

See Updating the Undercloud section for the compute requirements of the undercloud.

Overcloud Requirements

After deploying the overcloud roles to the bare metal servers, deploy the compute nodes to the bare
metal servers. Every overcloud node must support IPMI for booting up from the undercloud using PXE.

Ensure the following requirements are met for the Contrail Networking nodes per role.

• Non-high availability: A minimum of 4 overcloud nodes are needed for control plane roles for a non-
high availability deployment:

268

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/performing_a_minor_update_of_red_hat_openstack_platform/assembly_updating-the-undercloud_keeping-updated

• 1x contrail-config (includes Contrail control)

• 1x contrail-analytics

• 1x contrail-analytics-database

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

See Updating the Overcloud for the compute requirements of the overcloud.

Networking Requirements

As a minimum, the installation requires two networks:

• provisioning network - This is the private network that the undercloud uses to provision the
overcloud.

• external network - This is the externally-routable network you use to access the undercloud and
overcloud nodes.

Ensure the following requirements are met for the provisioning network:

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the
second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs are referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vSwitch bridge will be
created for Neutron, and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

269

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/performing_a_minor_update_of_red_hat_openstack_platform/assembly_updating-the-overcloud_keeping-updated

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

• All of the networks must be available to all of the Contrail Networking roles and computes.

While the provisioning and external networks are sufficient for basic applications, you should create
additional networks in most overcloud environments to provide isolation for the different traffic types
by assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network. If only
some isolated networks are configured, traffic belonging to a network not configured runs on the
provisioning network.

The following networks are typically deployed when using network isolation topology:

• Provisioning - used by the undercloud to provision the overcloud

• Internal API - used by OpenStack services to communicate with each other

• Tenant - used for tenant overlay data plane traffic (one network per tenant)

• Storage - used for storage data traffic

• Storage Management - used for storage control and management traffic

• External - provides external access to the undercloud and overcloud, including external access to the
web UIs and public APIs

• Floating IP - provides floating IP access to the tenant network (can either be merged with external or
can be a separate network)

• Management - provides access for system administration

Compatibility Matrix

The following combinations of Operating System/OpenStack/Deployer/Contrail Networking are
supported:

Table 13: Compatibility Matrix

Operating System OpenStack Deployer Contrail Networking

RHEL 8.2 or 8.4 OSP16.2 RHOSP16 Director Contrail Networking 21.3

270

Table 13: Compatibility Matrix (Continued)

Operating System OpenStack Deployer Contrail Networking

RHEL 8.4 OSP16.2 RHOSP16 Director Contrail Networking 21.4

RHEL 8.4 OSP16.2.3 RHOSP16 Director Contrail Networking 21.4.L1

RHEL 8.4 OSP16.2.4 RHOSP16 Director Contrail Networking 21.4.L2

RHEL 8.4 OSP16.2.5 RHOSP16 Director Contrail Networking 21.4.L3

RHEL 8.4 OSP16.2.6 RHOSP16 Director Contrail Networking 21.4.L4.1

RHEL 9.2 OSP17.1.2 RHOSP17.1 Director Contrail Networking 21.4.L4

RHEL 9.2 OSP17.1.3 RHOSP17.1 Director Contrail Networking 21.4.L4.1

Installation Summary

The general installation procedure is as follows:

• Set up the infrastructure, which is the set of servers that host the undercloud and overcloud,
including the networks that connect them together.

• Set up the undercloud, which is the OSPd application.

• Set up the overcloud, which is the set of services in the tenant-facing network. Contrail Networking
is part of the overcloud.

For more information on installing and using the RHOSPd, see Red Hat documentation.

For information on installing Contrail Networking beyond what's in this documentation, see the
README included in the Contrail Networking software package (contrail-tripleo-heat-templates-
RHOSP-17/README.md).

271

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index

Setting Up the Infrastructure (Contrail Networking Release 21.4.L4 or
Later)

SUMMARY

Follow this topic to set up the infrastructure for
Contrail Networking deployment in a RHOSP 17.1
environment when you are using Contrail
Networking Release 21.4.L4 or later.

IN THIS SECTION

When to Use This Procedure | 272

Set Up the Infrastructure | 274

When to Use This Procedure

Before you can deploy your undercloud and overcloud, set up your node and network infrastructure.

Figure 36 on page 273 shows an example deployment consisting of three OpenStack Controller nodes,
three Contrail Controller nodes, a single Compute node, and the Director where we run our undercloud,
as follows:

• All nodes connect to the management (green) network. We use this network to SSH into the nodes
and to allow the nodes to reach outside networks. The subnet for the management network is
10.102.70.0/24 and the gateway is 10.102.70.1 (not shown).This is an untagged network.

• All nodes connect to the control plane (blue) network. This network contains all the overcloud control
plane networks, including the provisioning network that the director uses to run IPMI and provision
the overcloud. The provisioning network is untagged but all the other control plane networks are
tagged. The subnet for the provisioning network is 192.168.213.0/24.

• The Contrail Controller and Compute nodes connect to the tenant (orange) network. This is the data
network that carries tenant traffic. This is an untagged network. The subnet for the tenant network is
192.168.33.0/24.

• The director has an IP address of 192.168.213.10/24 on the provisioning network and
10.102.70.10/24 on the management network.

We will use this deployment example to show you how to install Contrail.

272

Figure 36: Contrail Deployment Example

Figure 37 on page 274 shows the VLAN and IP subnet configuration for the control plane in our
example.

• The OpenStack Controller nodes connect to the management, provisioning, internal api, external,
storage, and storage management networks.

• The Contrail Controller nodes connect to the management, provisioning, internal api, external, and
tenant networks.

• The Compute node connects to the management, provisioning, internal api, storage, and tenant
networks.

• The Director (not shown) connects to the management and provisioning networks.

273

Figure 37: Control Plane VLANs

Set Up the Infrastructure

1. Set up the eight bare metal servers with interfaces as shown in Figure 36 on page 273.

2. Set up the management, control plane, and tenant networks (including VLANs) as shown in Figure 36
on page 273 and Figure 37 on page 274, including the 10.102.70.1/24 gateway on the management
network.

3. Install a fresh RHEL 9.2 OS on the Director node.

4. Configure the Director for baseline functionality.

• SSH root access

• NTP

• DNS

• Static IP addresses on the enp1s0 interface (10.102.70.10/24) and enp2s0 interface
(192.168.213.10/24)

• Gateway (10.102.70.1) as the default route on the management network

274

Setting Up the Undercloud for RHOSP 17.1

SUMMARY

Follow this topic to set up the undercloud for a
Contrail Networking deployment on RHOSP 17.1.

IN THIS SECTION

Prepare for Director Installation | 275

Install the Director | 278

Obtain and Import the Base Overcloud
Images | 281

Prepare for Director Installation

Use this example procedure to prepare for RHOSP 17.1 director installation on a node running a freshly
installed RHEL 9.2 OS.

NOTE: This procedure tailors the standard RHOSP 17.1 undercloud preparation
procedure to our example. We provide this procedure purely for illustration and
convenience. This procedure in no way supersedes the procedures in
Red Hat documentation
. Where conflicting information exists between this procedure and the documented Red
Hat procedures, the Red Hat documentation prevails.

1. SSH into the undercloud node as root.

2. Create the stack user.

a. Create the user and configure the password.

useradd stack

passwd stack

275

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation

b. Add the user to the sudo user list.

echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack

chmod 0440 /etc/sudoers.d/stack

3. Switch to the new stack user and perform the remaining steps as this new stack user.

su - stack

4. Configure the hostname if you didn't already configure it during OS installation.

For example, to set the hostname to undercloud.contrail.lan:

sudo hostnamectl set-hostname undercloud.contrail.lan
sudo hostnamectl set-hostname --transient undercloud.contrail.lan

5. Add an entry for this hostname to the /etc/hosts file.

For example, add this line to /etc/hosts using sudo:

192.168.213.10 undercloud.contrail.lan undercloud

where 192.168.213.10 is the IP address of the interface connecting the director to the provisioning
network.

6. Set the locale to UTF-8.

export LC_ALL=en_US.UTF-8

echo "export LC_ALL=en_US.UTF-8" >> ~/.bashrc

7. Register the machine and update the packages.

a. Register the machine.

sudo subscription-manager register

Enter your Red Hat user name and password when prompted.

276

b. Set the release to RHEL 9.2.

sudo subscription-manager release --set=9.2

c. Disable all default repositories, and enable the required RHEL 9.2 repositories.

sudo subscription-manager repos --disable='*' --enable=rhel-9-for-x86_64-baseos-eus-rpms
--enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-
highavailability-eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --
enable=openstack-17.1-for-rhel-9-x86_64-rpms --enable=rhceph-6-tools-for-rhel-9-x86_64-
rpms

NOTE: You might need to manually attach a pool before you can run this command
if your license doesn't allow automatic entitlement. See
Red Hat documentation
.

d. Update the packages.

sudo dnf -y update

8. Reboot the machine.

sudo reboot

9. SSH back in as the stack user and install the Tripleo client.

sudo dnf install -y python3-tripleoclient

10. Prepare the containers-prepare-parameter.yaml file.

a. Generate the default containers-prepare-parameter.yaml.

openstack tripleo container image prepare default --local-push-destination --output-env-
file ~/containers-prepare-parameter.yaml

b. Configure the file to suit your deployment.

277

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_registering-the-undercloud-and-attaching-subscriptions_preparing-for-director-installation

For this example, we simply add the registry.redhat.io login credentials to the parameter_defaults
section and leave all other content as is.

parameter_defaults:
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 <my_username>: <my_password>

where <my_username> and <my_password> are your Red Hat login credentials.

SEE ALSO

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/
installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-
director-installation

Install the Director

Use this example procedure to install the director.

NOTE: This procedure tailors the standard RHOSP 17.1 undercloud installation
procedure to our example. We provide this procedure purely for illustration and
convenience. This procedure in no way supersedes the procedures in
Red Hat documentation
. Where conflicting information exists between this procedure and the documented Red
Hat procedures, the Red Hat documentation prevails.

1. SSH into the undercloud node as stack.

2. Configure the undercloud.

a. Copy the undercloud configuration file sample.

 cp /usr/share/python-tripleoclient/undercloud.conf.sample ~/undercloud.conf

b. Modify undercloud.conf to suit your deployment.

Here is the configuration for our example:

[DEFAULT]

local_ip = 192.168.213.10/24

278

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation
https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#assembly_installing-director-on-the-undercloud

generate_service_certificate = false

ipxe_enabled = true

local_interface = enp2s0
subnets = ctlplane-subnet
undercloud_hostname = undercloud.contrail.lan
overcloud_domain_name = contrail.lan
enable_telemetry = false
enable_validations = false
clean_nodes = true
container_images_file = /home/stack/containers-prepare-parameter.yaml
inspection_enable_uefi = true
undercloud_ntp_servers = <my_ntp_server>
undercloud_nameservers = <my_dns_server>
enabled_hardware_types = ipmi,redfish,ilo,idrac,staging-ovirt

[ctlplane-subnet]

gateway = 192.168.213.10
cidr = 192.168.213.0/24
masquerade = true
dhcp_start = 192.168.213.150
dhcp_end = 192.168.213.200
inspection_iprange = 192.168.213.201,192.168.213.230

Table 14 on page 279 describes the main configuration parameters. For more information or for
parameters not described, see Red Hat documentation.
Table 14: Main Undercloud Configuration Parameters

Parameter Description Setting

local_ip IP address of interface attached
to provisioning network.

192.168.213.10/24

local_interface Name of interface attached to
provisioning network.

enp2s0

container_images_file Location of containers-prepare-
parameter.yaml file.

/home/stack/containers-
prepare-parameter.yaml

279

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#ref_undercloud-configuration-parameters_installing-director-on-the-undercloud

Table 14: Main Undercloud Configuration Parameters (Continued)

Parameter Description Setting

undercloud_ntp_servers Name or IP address of your NTP
server(s).

Specific to your deployment.

undercloud_nameservers Name or IP address of your DNS
server(s).

Specific to your deployment.

gateway Gateway for the provisioning
network. We're using the
undercloud VM as the gateway.

192.168.213.10

cidr The subnet mask for the
provisioning network.

192.168.213.0/24

dhcp_start The start of the range of IP
addresses that the undercloud
will assign to devices in the
provisioning network.

192.168.213.150

dhcp_end The end of the range of IP
addresses that the undercloud
will assign to devices in the
provisioning network.

192.168.213.200

inspection_iprange The range of IP addresses that
the undercloud will assign during
inspection. This range must be
outside the regular DHCP
assignment range.

192.168.213.201,192.168.213.2
30

3. Install the director.

openstack undercloud install

4. Confirm that the RHOSP service containers are running.

sudo podman ps -a --format "{{.Names}} {{.Status}}"

280

SEE ALSO

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/
installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-
the-undercloud

Obtain and Import the Base Overcloud Images

After you install the undercloud, obtain and import the base overcloud images to the undercloud. These
are the kernel images that Red Hat provides for introspection and deployment of overcloud nodes.

NOTE: This procedure tailors the standard RHOSP 17.1 overcloud image import
procedure to our example. We provide this procedure purely for illustration and
convenience. This procedure in no way supersedes the procedures in
Red Hat documentation
. Where conflicting information exists between this procedure and the documented Red
Hat procedures, the Red Hat documentation prevails.

1. SSH into the undercloud as the stack user.

2. Source the stackrc file.

source stackrc

3. Obtain the base overcloud images.

sudo dnf install -y rhosp-director-images-x86_64 rhosp-director-images-ipa-x86_64 rhosp-
director-images-uefi-x86_64

This installs the images tarfile into the /usr/share/rhosp-director-images directory.

4. Extract the images to the images directory.

mkdir ~/images
cd ~/images

for i in /usr/share/rhosp-director-images/ironic-python-agent-latest.tar /usr/share/rhosp-
director-images/overcloud-hardened-uefi-full-latest.tar; do tar -xvf $i; done

281

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud
https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes

5. Import the images to the director so that the director can serve these images to the overcloud nodes
as they come up.

openstack overcloud image upload --image-path /home/stack/images/

You can find the overcloud image in /var/lib/ironic/images and the introspection PXE images
in /var/lib/ironic/httpboot.

You've installed the undercloud. You're now ready to create the overcloud.

SEE ALSO

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/
installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-
the-undercloud#assembly_obtaining-images-for-overcloud-nodes

Setting Up the Overcloud for RHOSP 17.1

SUMMARY

Use this procedure to set up the overcloud for a
Contrail Networking deployment on RHOSP 17.1.

IN THIS SECTION

Download Heat Templates | 282

Upload Container Images to the Undercloud
Registry | 283

Provision Overcloud Networks | 285

Provision Bare Metal Overcloud Nodes | 289

Configure Contrail | 294

Create the Overcloud | 305

Advanced Configuration | 306

Download Heat Templates

1. SSH into the undercloud as the stack user.

282

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes
https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes
https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes

2. Source the stackrc undercloud credential file.

source ~/stackrc

3. Put all the heat templates into a new ~/tripleo-heat-templates directory.

a. Copy the Red Hat TripleO heat templates to the ~/tripleo-heat-templates directory.

cp -r /usr/share/openstack-tripleo-heat-templates/ ~/tripleo-heat-templates

b. Download the Contrail Networking RHEL 9 + RHOSP17 OOO Heat Templates release 21.4.L4.1
from the Juniper Networks software download site and copy them to the same ~/tripleo-heat-
templates directory.

wget <contrail-tripleo-heat-templates-RHOSP17-url> -O contrail-tripleo-heat-templates-
RHOSP17-<version>.tgz

tar -xzvf contrail-tripleo-heat-templates-RHOSP17-<version>.tgz

cp -r contrail-tripleo-heat-templates-RHOSP-17/* ~/tripleo-heat-templates

Upload Container Images to the Undercloud Registry

Use this example procedure on the undercloud to upload overcloud container images to the undercloud
registry.

1. SSH into the undercloud as the stack user.

2. Source the stackrc undercloud credential file.

source ~/stackrc

3. Create a ~/tripleo-heat-templates/environments/contrail/rhsm.yaml file with your Red Hat
credentials.

Here is an example of the one we're using.

parameter_defaults:
 RhsmVars:

283

https://support.juniper.net/support/downloads/?p=contrail-networking

 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 rhsm_username: "YOUR_REDHAT_LOGIN"
 rhsm_password: "YOUR_REDHAT_PASSWORD"
 rhsm_org_id: "YOUR_REDHAT_ID"
 rhsm_pool_ids: "YOUR_REDHAT_POOL_ID"
 rhsm_release: "9.2"

4. Pull container images from remote registries and push them to the undercloud registry.

OpenStack container images are available from the Red Hat registry and Contrail container images
are available from the Juniper Networks registry.

a. Pull the Red Hat OpenStack container images from registry.redhat.io and push them to the
undercloud registry.

i. Create the OpenStack container file.

sudo openstack tripleo container image prepare \
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/rhsm.yaml \
 --output-env-file /home/stack/tripleo-heat-templates/environments/contrail/
overcloud_containers.yaml

This produces the ~/tripleo-heat-templates/environments/contrail/overcloud-
containers.yaml file.

ii. Pull the container images and push them to the undercloud registry.

sudo openstack overcloud container image upload \
 --config-file /home/stack/tripleo-heat-templates/environments/contrail/
overcloud_containers.yaml

b. Pull the Contrail container images from enterprise-hub.juniper.net.

284

Edit the ~/tripleo-heat-templates/tools/contrail/import_contrail_container.sh with the
appropriate push destination for your deployment. Look for the push destination line and change
the IP address. For example:

 echo " push_destination: 192.168.213.10:8787" >> ${output_file}

Pull the Contrail containers:

~/tripleo-heat-templates/tools/contrail/import_contrail_container.sh \
 -f /home/stack/tripleo-heat-templates/environments/contrail/contrail-containers.yaml \
 -r enterprise-hub.juniper.net/contrail-container-prod -t 21.4.L4.17.1 \
 -u <username> -p <password>

where <username> and <password> are your login credentials to the enterprise-hub.juniper.net
registry.

c. Push the container images to the undercloud registry.

sudo openstack overcloud container image upload \
 --config-file /home/stack/tripleo-heat-templates/environments/contrail/contrail-
containers.yaml

d. List the uploaded containers.

openstack tripleo container image list

The container images are served from the /var/lib/image-serve directory.

Provision Overcloud Networks

1. SSH into the undercloud as the stack user.

2. Source the stackrc undercloud credential file.

source ~/stackrc

3. Create the network definition file network_data.yaml that describes our networks.

Table 15 on page 286 shows the network configuration that corresponds to Figure 36 on page 273
and Figure 37 on page 274 in our example.

285

Table 15: Network Configuration

Network VLAN Subnet Gateway

internal_api 710 192.168.4.0/24 192.168.4.1

management – 10.102.70.0/24 10.102.70.1

storage 740 192.168.2.0/24 192.168.2.1

storage_mgmt 750 192.168.3.0/24 192.168.3.1

tenant – 192.168.33.0/24 192.168.33.1

external 720 10.204.17.0/24 10.204.17.1

Here is the resulting network_data.yaml.

- name: InternalApi
 name_lower: internal_api
 vip: true
 subnets:
 internal_api_subnet:
 ip_subnet: '192.168.4/24'
 allocation_pools:
 - start: 192.168.4.50
 end: 192.168.4.99
 gateway_ip: '192.168.4.1'
 vlan: 710
- name: Management
 name_lower: management
 vip: false
 subnets:
 management_subnet:
 ip_subnet: '10.102.70.0/24'
 allocation_pools:
 - start: 10.102.70.50
 end: 10.102.70.99
 gateway_ip: '10.102.70.1'
- name: Storage
 name_lower: storage

286

 vip: false
 subnets:
 storage_subnet:
 ip_subnet: '192.168.2.0/24'
 allocation_pools:
 - start: 192.168.2.50
 end: 192.168.2.99
 gateway_ip: '192.168.2.1'
 vlan: 740
- name: StorageMgmt
 name_lower: storage_mgmt
 vip: false
 subnets:
 storage_mgmt_subnet:
 ip_subnet: '192.168.3.0/24'
 allocation_pools:
 - start: 192.168.3.50
 end: 192.168.3.99
 gateway_ip: '192.168.3.1'
 vlan: 750
- name: Tenant
 name_lower: tenant
 vip: false
 subnets:
 tenant_subnet:
 ip_subnet: '192.168.33.0/24'
 allocation_pools:
 - start: 192.168.33.50
 end: 192.168.33.99
 gateway_ip: '192.168.33.1'
- name: External
 name_lower: external
 vip: true
 subnets:
 external_subnet:
 ip_subnet: '10.204.17.0/24'
 allocation_pools:
 - start: 10.204.17.50
 end: 10.204.17.0.99
 gateway_ip: '10.204.17.0.1'
 vlan: 720

287

4. Place the network definition file in ~/tripleo-heat-templates/environments/contrail/
network_data.yaml and apply it.

openstack overcloud network provision \
 --templates /home/stack/tripleo-heat-templates \
 --output /home/stack/tripleo-heat-templates/environments/contrail/overcloud-networks-
deployed.yaml \
 --yes /home/stack/tripleo-heat-templates/environments/contrail/network_data.yaml

This produces the ~/tripleo-heat-templates/environments/contrail/overcloud-networks-
deployed.yaml file.

5. Create the network VIP definition file vip_data.yaml that describes the network VIPs in our network.

Here is the vip_data.yaml for our example.

- network: internal_api
 dns_name: overcloud
 ip_address: 192.168.4.100
- network: external
 dns_name: overcloud
 ip_address: 10.204.17.100
- network: ctlplane
 dns_name: overcloud

6. Place the VIP definition file in ~/tripleo-heat-templates/environments/contrail/vip_data.yaml and
apply it.

openstack overcloud network vip provision \
 --templates /home/stack/tripleo-heat-templates \
 --stack overcloud \
 --output /home/stack/tripleo-heat-templates/environments/contrail/overcloud-vip-
deployed.yaml \
 --yes /home/stack/tripleo-heat-templates/environments/contrail/vip_data.yaml

This produces the ~/tripleo-heat-templates/environments/contrail/overcloud-vip-deployed.yaml
file.

288

7. Check the created networks and subnets.

openstack network list

openstack subnet list

Provision Bare Metal Overcloud Nodes

1. SSH into the undercloud as the stack user.

2. Source the stackrc undercloud credential file.

source ~/stackrc

3. Create the overcloud node definition file ~/nodes.json that describes the nodes in our overcloud
network.

• Three OpenStack controller nodes (controller-0, controller-1, controller-2)

• Three Contrail controller nodes (contrail-controller-0, contrail-controller-1, contrail-controller-2)

• One Compute node (compute-0)

This file is specific to your deployment. See Red Hat documentation for information on how to
create and populate this file.

4. Import the nodes to the director.

openstack overcloud node import ~/nodes.json

List the nodes to make sure they've been imported:

openstack baremetal node list

5. Introspect the nodes.

Introspection collects hardware information from each node.

openstack overcloud node introspect --all-manageable --provide

289

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_registering-nodes-for-the-overcloud_ironic_provisioning

After the introspection completes, all nodes change to an available state.

openstack baremetal node list

6. Create the overcloud-baremetal-deploy.yaml node definition file and set the node count for each
role that you want to provision. Place the file in ~/tripleo-heat-templates/environments/contrail/
overcloud-baremetal-deploy.yaml.

Here is the node definition file for our example:

- name: Controller
 count: 3
 ansible_playbooks:
 - playbook: /home/stack/configure-chrony-client.yml
 # Additional playbooks can be included here, as per following example of disk layout:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=20GB
 /tmp=1GB
 /var/log=15GB
 /var/log/audit=5GB
 /home=5GB
 /var=100GB
 /srv=100%
 defaults:
 networks:
 - network: management
 - network: internal_api
 - network: storage
 - network: storage_mgmt
 - network: external
 network_config:
 template: /home/stack/tripleo-heat-templates/environments/contrail/contrail-nic-
config-Controller.j2
 instances:
 - hostname: overcloud-controller-0
 name: controller-0
 - hostname: overcloud-controller-1
 name: controller-1
 - hostname: overcloud-controller-2

290

 name: controller-2

- name: ContrailController
 count: 3
 ansible_playbooks:
 - playbook: /home/stack/configure-chrony-client.yml
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=20GB
 /tmp=1GB
 /var/log=15GB
 /var/log/audit=5GB
 /home=5GB
 /var=100%
 defaults:
 networks:
 - network: management
 - network: internal_api
 - network: tenant
 - network: external
 network_config:
 template: /home/stack/tripleo-heat-templates/environments/contrail/contrail-nic-
config-ContrailController.j2
 instances:
 - hostname: overcloud-contrailcontroller-0
 name: contrail-controller-0
 networks:
 - network: internal_api
 fixed_ip: 192.168.4.10
 - network: tenant
 fixed_ip: 192.168.33.10
 - hostname: overcloud-contrailcontroller-1
 name: contrail-controller-1
 networks:
 - network: internal_api
 fixed_ip: 192.168.4.11
 - network: tenant
 fixed_ip: 192.168.33.11
 - hostname: overcloud-contrailcontroller-2
 name: contrail-controller-2
 networks:

291

 - network: internal_api
 fixed_ip: 192.168.4.12
 - network: tenant
 fixed_ip: 192.168.33.12

- name: Compute
 count: 1
 ansible_playbooks:
 - playbook: /home/stack/configure-chrony-client.yml
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=20GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=3GB
 /home=5GB
 /var=100%
 defaults:
 networks:
 - network: management
 - network: internal_api
 - network: storage
 - network: tenant
 network_config:
 template: /home/stack/tripleo-heat-templates/environments/contrail/contrail-nic-
config-ComputeKernel.j2
 instances:
 - hostname: overcloud-novacompute-0
 name: compute-0

7. Provision the overcloud nodes.

openstack overcloud node provision \
 --templates /home/stack/tripleo-heat-templates \
 --stack overcloud \
 --output /home/stack/tripleo-heat-templates/environments/contrail/overcloud-baremetal-
deployed.yaml \
 --yes /home/stack/tripleo-heat-templates/environments/contrail/overcloud-baremetal-
deploy.yaml

292

This produces the ~/tripleo-heat-templates/environments/contrail/overcloud-baremetal-
deployed.yaml file.

8. Check that the node state is active.

openstack baremetal node list

9. Find the IP address of every overcloud node.

metalsmith list

10. Register each overcloud node.

a. SSH into an overcloud node from the undercloud.

ssh tripleo-admin@<overcloud-node-ip>

where <overcloud-node-ip> is the IP address of one of the overcloud nodes.

b. Register the node.

sudo subscription-manager register

Enter your Red Hat user name and password when prompted.

c. Set the release to RHEL 9.2.

sudo subscription-manager release --set=9.2

d. Disable all default repositories, and enable the required RHEL 9.2 repositories.

sudo subscription-manager repos --disable='*' --enable=rhel-9-for-x86_64-baseos-eus-rpms
--enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-
highavailability-eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --
enable=openstack-17.1-for-rhel-9-x86_64-rpms --enable=rhceph-6-tools-for-rhel-9-x86_64-
rpms

293

NOTE: You might need to manually attach a pool before you can run this command
if your license doesn't allow automatic entitlement. See
Red Hat documentation
.

e. Repeat on all overcloud nodes.

11. Install the ansible community.general collection on every overcloud node.

a. SSH into an overcloud node from the undercloud.

ssh tripleo-admin@<overcloud-node-ip>

where <overcloud-node-ip> is the IP address of one of the overcloud nodes.

b. Install the ansible community.general collection as a sudo user and a regular user.

sudo ansible-galaxy collection install community.general

ansible-galaxy collection install community.general

c. Repeat on all overcloud nodes.

Configure Contrail

IN THIS SECTION

Roles Configuration (roles_data.yaml) | 295

Network Interface Configuration (*-nic-*.j2) | 298

Network Parameter Configuration (contrail-net.yaml) | 303

Contrail Service with Templates (contrail-services.yaml) | 304

Contrail Plugins (contrail-plugins.yaml) | 305

We provide various configuration files in the Contrail Networking Heat Templates package for you to
customize your overcloud deployment. Table 16 on page 295 describes the files that you need to
configure in our example.

294

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_registering-the-undercloud-and-attaching-subscriptions_preparing-for-director-installation

Table 16: Configuration Files

File Description

roles_data.yaml Description of the different node roles

contrail-nic-config-Controller.j2 Description of the interfaces on the OpenStack
Controllers

contrail-nic-config-ContrailController.j2 Description of the interfaces on the Contrail
Controllers

contrail-nic-config-ComputeKernel.j2 Description of the interfaces on the Compute node
running in kernel mode

contrail-net.yaml Description of various Contrail network settings

contrail-services.yaml Description of the Contrail services

contrail-plugins.yaml Miscellaneous settings

NOTE: You can find samples of the above files under comparable names in the Contrail Networking Heat
Templates package that you downloaded. Our example, however, assumes that you'll be using the filenames as
shown above.

Roles Configuration (roles_data.yaml)

The roles configuration file contains definitions for the various node roles. You can find sample Contrail
roles files in ~/tripleo-heat-templates and in ~/tripleo-heat-templates/roles.

We define three roles in our example. Put all three roles into the roles_data.yaml file and place the file at
~/tripleo-heat-templates/environments/contrail/roles_data.yaml.

OpenStack Controller Role

In our example, we have three nodes for the OpenStack controller. Each of these nodes connects to the
Management, Internal API, Management, Storage, Storage Management, and External networks, as
shown below:

###

295

Role: Controller
###
- name: Controller
 description: |
 Controller role that has all the controler services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 3
 tags:
 - primary
 - controller
 networks:
 Management:
 subnet: management_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet
 External:
 subnet: external_subnet
 default_route_networks: ['External']
 HostnameFormatDefault: '%stackname%-controller-%index%'
 RoleParametersDefault:
 NeutronPublicInterface: nic2
 uses_deprecated_params: True
 deprecated_param_extraconfig: 'controllerExtraConfig'
 deprecated_param_flavor: 'OvercloudControlFlavor'
 deprecated_param_image: 'controllerImage'
 deprecated_nic_config_name: 'controller.yaml'
 update_serial: 1
 ServicesDefault:
 <leave unchanged>

Contrail Controller Role

We also have three nodes for the Contrail controller. Each of these nodes connects to the Management,
Internal API, External, and tenant networks, as shown below:

###

296

Role: ContrailController
###
- name: ContrailController
 description: |
 ContrailController role that has all the Contrail controler services loaded
 and handles config, control and webui functions
 CountDefault: 3
 tags:
 - primary
 - contrailcontroller
 networks:
 Management:
 subnet: management_subnet
 InternalApi:
 subnet: internal_api_subnet
 Tenant:
 subnet: tenant_subnet
 External:
 subnet: external_subnet
 HostnameFormatDefault: '%stackname%-contrailcontroller-%index%'
 RoleParametersDefault:
 NeutronPublicInterface: nic2
 tripleo_podman_tls_verify: false
 ServicesDefault:
 <leave unchanged>

Compute Node Role

We have one Compute node. The compute node connects to the Management, Internal API, Storage,
and tenant networks, as shown below.

###
Role: Compute
###
- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 tags:
 - compute

297

 networks:
 Management:
 subnet: management_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 Tenant:
 subnet: tenant_subnet
 HostnameFormatDefault: '%stackname%-novacompute-%index%'
 RoleParametersDefault:
 NeutronPublicInterface: nic2
 FsAioMaxNumber: 1048576
 TunedProfileName: "virtual-host"
 tripleo_podman_tls_verify: false
 uses_deprecated_params: True
 deprecated_param_image: 'NovaImage'
 deprecated_param_extraconfig: 'NovaComputeExtraConfig'
 deprecated_param_metadata: 'NovaComputeServerMetadata'
 deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
 deprecated_param_ips: 'NovaComputeIPs'
 deprecated_server_resource_name: 'NovaCompute'
 deprecated_nic_config_name: 'compute.yaml'
 update_serial: 25
 ServicesDefault:
 <leave unchanged>

Network Interface Configuration (*-nic-*.j2)

NIC configuration files describe the interfaces for each role. You can find sample NIC configuration files
in ~/tripleo-heat-templates/network/config/contrail and ~/tripleo-heat-templates/network/config/
contrail/examples.

NOTE: NIC configuration files are referred to in
overcloud-baremetal-deploy.yaml
. Be sure to name the configuration files properly and place them in
~/tripleo-heat-templates/environments/contrail
.

We define three NICs (one for each role) in our example as shown in Table 17 on page 299.

298

Table 17: NIC Mapping

Nodes Interfaces Networks

OpenStack Controller enp1s0 management

enp2s0 control plane

• external

• internal_api

• storage_mgmt

• storage

Contrail Controller enp1s0 management

enp2s0 control plane

• external

• internal_api

enp3s0 tenant

Compute enp1s0 management

enp2s0 control plane

• internal_api

• storage

enp3s0 tenant

OpenStack Controller NIC (contrail-nic-config-Controller.j2)

network_config:
- addresses:
 - ip_netmask: {{ management_ip }}/{{ management_subnet_cidr }}
 mtu: 1500

299

 name: enp1s0
 type: interface
 use_dhcp: false
 routes:
 - default: true
 next_hop: {{ management_gateway_ip }}
- addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 mtu: 1500
 name: enp2s0
 type: interface
 use_dhcp: false
- addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ external_vlan_id }}
- addresses:
 - ip_netmask: {{ internal_api_ip }}/{{ internal_api_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ internal_api_vlan_id }}
- addresses:
 - ip_netmask: {{ storage_mgmt_ip }}/{{ storage_mgmt_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ storage_mgmt_vlan_id }}
- addresses:
 - ip_netmask: {{ storage_ip }}/{{ storage_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ storage_vlan_id }}

300

Contrail Controller NIC (contrail-nic-config-ContrailController.j2)

network_config:
- addresses:
 - ip_netmask: {{ management_ip }}/{{ management_subnet_cidr }}
 mtu: 1500
 name: enp1s0
 type: interface
 use_dhcp: false
 routes:
 - default: true
 next_hop: {{ management_gateway_ip }}
- addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 mtu: 1500
 name: enp2s0
 type: interface
 use_dhcp: false
- addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ external_vlan_id }}
- addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 name: enp3s0
 mtu: 1500
 type: interface
 use_dhcp: false
- addresses:
 - ip_netmask: {{ internal_api_ip }}/{{ internal_api_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ internal_api_vlan_id }}

301

Compute Node NIC (contrail-nic-config-Compute.j2)

network_config:
- addresses:
 - ip_netmask: {{ management_ip }}/{{ management_subnet_cidr }}
 mtu: 1500
 name: enp1s0
 type: interface
 use_dhcp: false
 routes:
 - default: true
 next_hop: {{ management_gateway_ip }}
- addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 mtu: 1500
 name: enp2s0
 type: interface
 use_dhcp: false
- addresses:
 - ip_netmask: {{ internal_api_ip }}/{{ internal_api_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ internal_api_vlan_id }}
- addresses:
 - ip_netmask: {{ storage_ip }}/{{ storage_cidr }}
 device: enp2s0
 mtu: 1500
 type: vlan
 vlan_id: {{ storage_vlan_id }}
- addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: enp3s0
 type: interface
 use_dhcp: false
 mtu: 1500
 name: vhost0

302

 type: contrail_vrouter
 use_dhcp: false

Network Parameter Configuration (contrail-net.yaml)

Customize Contrail network parameters by modifying the contrail-net.yaml file. We provide a sample at
~/tripleo-heat-templates/environments/contrail/contrail-net.yaml. Look through that file for
explanations of the parameters.

Here is the contrail-net.yaml for our example.

resource_registry:
 <leave unchanged>
parameter_defaults:
Customize all these values to match the local environment
 TenantNetCidr: 192.168.33.0/24
 InternalApiNetCidr: 192.168.4.0/24
 ExternalNetCidr: 10.204.17.0/24
 StorageNetCidr: 192.168.2.0/24
 StorageMgmtNetCidr: 192.168.3.0/24
 ManagementNetCidr: 10.102.70.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 # Allocation pools
 ManagementAllocationPools: [{'start': '10.102.70.50', 'end': '10.102.70.99'}]
 TenantAllocationPools: [{'start': '192.168.33.50', 'end': '192.168.33.99'}]
 InternalApiAllocationPools: [{'start': '192.168.4.50', 'end': '192.168.4.99'}]
 ExternalAllocationPools: [{'start': '10.204.17.50', 'end': '10.204.17.99'}]
 StorageAllocationPools: [{'start': '192.168.2.50', 'end': '192.168.2.99'}]
 StorageMgmtAllocationPools: [{'start': '192.168.3.50', 'end': '192.168.3.99'}]
 # Routes
 ControlPlaneDefaultRoute: 192.168.213.1
 InternalApiDefaultRoute: 192.168.4.1
 ExternalInterfaceDefaultRoute: 10.204.17.1
 ManagementInterfaceDefaultRoute: 10.102.70.1
 # Vlans
 InternalApiNetworkVlanID: 710
 ExternalNetworkVlanID: 720
 StorageNetworkVlanID: 740
 StorageMgmtNetworkVlanID: 750
 # Services

303

 EC2MetadataIp: 192.168.213.10 # Generally the IP of the Undercloud
 DnsServers: ["YOUR_DNS_SERVER"]
 NtpServer: "YOUR_NTP_SERVER"

Contrail Service with Templates (contrail-services.yaml)

Customize Contrail services for your network by modifying the contrail-services.yaml file. We provide a
sample at ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml. Look through that
file for explanations of the parameters.

Here is the contrail-services.yaml for our example.

parameter_defaults:
 ServiceNetMap:
 <leave unchanged>
 NovaLiveMigrationPermitPostCopy: false
 NeutronMetadataProxySharedSecret: secret
 ContrailRegistry: REGISTRY_FOR_CONTRAIL_CONTAINERS:REGISTRY_PORT
 ContrailImageTag: CONTRAIL_TAG
 ContrailDefaults:
 APPLY_DEFAULTS: "True"
 ContrailSettings:
 VROUTER_ENCRYPTION: false
 VROUTER_GATEWAY: 192.168.33.1
 BGP_ASN: 64512
 BGP_AUTO_MESH: true

NOTE: APPLY_DEFAULTS

When Contrail is deployed for the first time, the default value of APPLY_DEFAULTS
parameter in the ContrailDefaults section needs to be set to 'True'. This enables
provisioning parameters present inside the template to use day0 configuration whenever
a config provisioning container is restarted. Thus, the provisioning parameters are
template driven and any changes to Contrail settings should be done through TripleO
templates.

Contrail Networking allows you to configure some global configuration parameters like
VXLAN network id mode, linklocal configuration, IBGP auto mesh configuration,
enabling 4byte_AS, and changing BGP Global ASN through its web user interface. If you
want to manage your cluster through web user interface, then you need to set

304

APPLY_DEFAULTS=False in ContrailDefaults section and deploy your cluster again by
running openstack overcloud deploy. This additional step is required because when you
have changed Contrail global configuration parameters through web user interface, then
there is a possibility for these global configuration parameters to be overwritten if any
config provisioner container is restarted. In order to avoid these values to be
overwritten, set APPLY_DEFAULTS as 'False' and deploy Contrail again by running
openstack overcloud deploy command. As a result, the global configuration parameters
remain unchanged as provisioning is not executed again.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your
Contrail cluster, set VxLAN Identifier Mode to 'User Configured' from web user interface,
and restart config provisioner container, then VxLAN Identifier Mode remains 'User
Configured' after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container,
VxLAN Identifier Mode will change to its default value, which is Automatic.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your
Contrail cluster, set VxLAN Identifier Mode to 'User Configured' from web user interface,
and restart config provisioner container, then VxLAN Identifier Mode remains 'User
Configured' after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container,
VxLAN Identifier Mode changes to its default value, which is Automatic.

APPLY_DEFAULTS=True/False (default: True)

Contrail Plugins (contrail-plugins.yaml)

The Contrail plugins file contains various settings and refers to many other files used by Contrail. It is
located at ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml.

Don't change this file or change the location of any of the files referenced.

Create the Overcloud

1. Locate the environment files you created in the previous procedures.

2. Deploy the overcloud.

Double check to make sure the referenced files below are at the locations specified.

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --stack overcloud --libvirt-type kvm \
 -n /home/stack/tripleo-heat-templates/environments/contrail/network_data.yaml \

305

 -r /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/rhsm.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/overcloud-baremetal-
deployed.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/overcloud-networks-
deployed.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/overcloud-vip-deployed.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-containers.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e /home/stack/containers-prepare-parameter.yaml

You've now installed Contrail in RHOSP 17.1 in our example deployment.

Advanced Configuration

IN THIS SECTION

Advanced vRouter Kernel Mode Configuration | 306

Advanced vRouter DPDK Mode Configuration | 308

Advanced vRouter SRIOV + Kernel Mode Configuration | 311

Advanced vRouter SRIOV + DPDK Mode Configuration | 314

Contrail Networking provides a rich set of capabilities that go beyond our basic example. The following
sections contain additional example YAML configuration that might apply to your deployment. This
additional configuration is unrelated to our example.

Before using, convert these YAML examples to Jinja2 format. See Red Hat documentation for
information on how to do this.

Advanced vRouter Kernel Mode Configuration

In addition to the standard NIC configuration, the vRouter kernel mode supports VLAN, Bond, and Bond
+ VLAN modes. The configuration snippets below only show the relevant section of the NIC template
configuration for each mode.

306

https://docs.redhat.com/en/documentation/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-RHOSP-environment#proc_automatically-converting-NIC-templates-to-jinja-ansible-format_custom-nic-templates

Table 18: Advanced Interface Types (Kernel Mode)

Interface Types Example Configuration

VLAN
- name: enp2s0
 type: interface
 use_dhcp: false
- type: vlan
 device: enp2s0
 vlan_id: {{ tenant_vlan_id }}
 use_dhcp: false
- name: vhost0
 type: contrail_vrouter
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: vlan{{ tenant_vlan_id }}
 type: interface
 use_dhcp: false
 mtu: 1500
 use_dhcp: false

Bond
- name: bond0
 type: linux_bond
 bonding_options: mode=4 xmit_hash_policy=layer2+3
 use_dhcp: false
 members:
 - type: interface
 name: enp2s0
 - type: interface
 name: enp3s0
- name: vhost0
 type: contrail_vrouter
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: bond0
 type: interface
 use_dhcp: false

307

Table 18: Advanced Interface Types (Kernel Mode) (Continued)

Interface Types Example Configuration

Bond + VLAN
- name: bond0
 type: linux_bond
 bonding_options: mode=4 xmit_hash_policy=layer2+3
 use_dhcp: false
 members:
 - type: interface
 name: enp2s0
 - type: interface
 name: enp3s0
- device: bond0
 type: vlan
 vlan_id: {{ tenant_vlan_id }}
 use_dhcp: false
- name: vhost0
 type: contrail_vrouter
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: vlan{{ tenant_vlan_id }}
 type: interface
 use_dhcp: false

Advanced vRouter DPDK Mode Configuration

In addition to the standard NIC configuration, the vRouter DPDK mode supports Standard, VLAN, Bond,
and Bond + VLAN modes.

Network Environment Configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

 # For Intel CPU
 ContrailDpdkParameters:

308

 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4
 vm.max_map_count:
 value: 128960

See the following NIC template configurations for vRouter DPDK mode. The configuration snippets
below only show the relevant section of the NIC configuration for each mode.

Table 19: Advanced Interface Types (DPDK)

Interface Types Example Configuration

Standard
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: enp2s0
 type: interface
 use_dhcp: false

309

Table 19: Advanced Interface Types (DPDK) (Continued)

Interface Types Example Configuration

VLAN
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: enp2s0
 type: interface
 use_dhcp: false

Bond
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 bond_mode: 4
 bond_policy: layer2+3
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: enp2s0
 type: interface
 use_dhcp: false
 - name: enp3s0
 type: interface
 use_dhcp: false

310

Table 19: Advanced Interface Types (DPDK) (Continued)

Interface Types Example Configuration

Bond + VLAN
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 bond_mode: 4
 bond_policy: layer2+3
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: enp2s0
 type: interface
 use_dhcp: false
 - name: enp3s0
 type: interface
 use_dhcp: false

Advanced vRouter SRIOV + Kernel Mode Configuration

vRouter SRIOV + Kernel mode can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

311

Enable the number of hugepages:

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

SRIOV PF/VF settings:

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter kernel mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Table 20: Interface Types (SR-IOV + Kernel Mode)

Interface Types Example Configuration

312

Table 20: Interface Types (SR-IOV + Kernel Mode) (Continued)

Interface Types Example Configuration

VLAN
- name: ens2f1
 type: interface
 use_dhcp: false
- type: vlan
 device: ens2f1
 vlan_id: {{ tenant_vlan_id }}
 use_dhcp: false
- name: vhost0
 type: contrail_vrouter
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: vlan{{ tenant_vlan_id }}
 type: interface
 use_dhcp: false
 mtu: 1500
 use_dhcp: false

Bond
- name: bond0
 type: linux_bond
 bonding_options: mode=4 xmit_hash_policy=layer2+3
 use_dhcp: false
 members:
 - type: interface
 name: ens2f1
 - type: interface
 name: ens3f1
- name: vhost0
 type: contrail_vrouter
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: bond0
 type: interface
 use_dhcp: false

313

Table 20: Interface Types (SR-IOV + Kernel Mode) (Continued)

Interface Types Example Configuration

Bond + VLAN
- name: bond0
 type: linux_bond
 bonding_options: mode=4 xmit_hash_policy=layer2+3
 use_dhcp: false
 members:
 - type: interface
 name: ens2f1
 - type: interface
 name: ens3f1
- device: bond0
 type: vlan
 vlan_id: {{ tenant_vlan_id }}
 use_dhcp: false
- name: vhost0
 type: contrail_vrouter
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: vlan{{ tenant_vlan_id }}
 type: interface
 use_dhcp: false

Advanced vRouter SRIOV + DPDK Mode Configuration

Use vRouter SRIOV + DPDK in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

314

Enable the number of hugepages

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

SRIOV PF/VF settings

NovaPCIPassthrough:
 - devname: "ens2f1"
physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter DPDK mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Table 21: Interface Types (SR-IOV + DPDK)

Interface Types Example Configuration

Standard
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: ens2f1
 type: interface
 use_dhcp: false

315

Table 21: Interface Types (SR-IOV + DPDK) (Continued)

Interface Types Example Configuration

VLAN
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: ens2f1
 type: interface
 use_dhcp: false

Bond
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 bond_mode: 4
 bond_policy: layer2+3
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: ens2f1
 type: interface
 use_dhcp: false
 - name: ens2f1
 type: interface
 use_dhcp: false

316

Table 21: Interface Types (SR-IOV + DPDK) (Continued)

Interface Types Example Configuration

Bond + VLAN
- name: vhost0
 type: contrail_vrouter_dpdk
 driver: uio_pci_generic
 cpu_list: 0x01
 mtu: 1500
 use_dhcp: false
 bond_mode: 4
 bond_policy: layer2+3
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 members:
 - name: ens2f1
 type: interface
 use_dhcp: false
 - name: ens3f1
 type: interface
 use_dhcp: false

317

CHAPTER 7

Setting Up Contrail with Red Hat OpenStack 16.1

IN THIS CHAPTER

Understanding Red Hat OpenStack Platform Director | 318

Setting Up the Infrastructure (Contrail Networking Release 21.3 or Earlier) | 324

Setting Up the Undercloud | 333

Setting Up the Overcloud | 336

Understanding Red Hat OpenStack Platform Director

IN THIS SECTION

Red Hat OpenStack Platform Director | 318

Contrail Networking Roles | 319

RVM and KVM Requirements | 320

Undercloud Requirements | 320

Overcloud Requirements | 321

Networking Requirements | 321

Compatibility Matrix | 323

Installation Summary | 323

Red Hat OpenStack Platform Director

Starting with Contrail Networking Release 2008, Contrail Networking supports using Contrail with Red
Hat OpenStack Platform Director 16.1.
This chapter explains how to integrate a Contrail Networking Release 2008 (or higher) installation with
Red Hat OpenStack Platform Director 16.1.

318

Red Hat OpenStack Platform provides an installer called the Red Hat OpenStack Platform director
(RHOSPd or OSPd), which is a toolset based on the OpenStack project TripleO (OOO, OpenStack on
OpenStack). TripleO is an open source project that uses features of OpenStack to deploy a fully
functional, tenant-facing OpenStack environment.

TripleO can be used to deploy an RDO-based OpenStack environment integrated with Tungsten Fabric.
Red Hat OpenStack Platform director can be used to deploy an RHOSP-based OpenStack environment
integrated with Contrail Networking.

OSPd uses the concepts of undercloud and overcloud. OSPd sets up an undercloud, a single server
running an operator-facing deployment that contains the OpenStack components needed to deploy and
manage an overcloud, a tenant-facing deployment that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

OSPd leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Ceilometer collects metrics about the overcloud.

For more information about OSPd architecture, see OSPd documentation.

Contrail Networking Roles

OSPd supports composable roles, which are groups of services that you define through Heat templates.
Composable roles allow you to integrate Contrail Networking into the overcloud environment.

The following are the Contrail Networking roles used for integrating into the overcloud:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

319

https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html

Figure 38 on page 320 shows the relationship and components of an undercloud and overcloud
architecture for Contrail Networking.

Figure 38: Undercloud and Overcloud with Roles

RVM and KVM Requirements

Starting in Contrail Networking Release 21.4, Contrail Networking was enhanced to operate with hosts
using Red Hat Virtualization (RHV). You must use RHV-based hosts in place of KVM-based hosts in
RHOSP 16.1 environments starting in Contrail Networking Release 21.4 and in all future Contrail
Networking releases.

In Release 21.3 and earlier Contrail Networking releases, this procedure is performed with hosts using
Kernel-based Virtual Machine (KVM).

Undercloud Requirements

The undercloud is a single server or VM that hosts the OpenStack Platform director, which is an
OpenStack installation used to provision OpenStack on the overcloud.

See Undercloud Requirements for the compute requirements of the undercloud.

320

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/planning-your-undercloud

Overcloud Requirements

The overcloud roles can be deployed to bare metal servers or to virtual machines (VMs), but the
compute nodes must be deployed to bare metal systems. Every overcloud node must support IPMI for
booting up from the undercloud using PXE.

Ensure the following requirements are met for the Contrail Networking nodes per role.

• Non-high availability: A minimum of 4 overcloud nodes are needed for control plane roles for a non-
high availability deployment:

• 1x contrail-config (includes Contrail control)

• 1x contrail-analytics

• 1x contrail-analytics-database

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

If the control plane roles are deployed to VMs, use 3 separate physical servers and deploy one role of
each kind to each physical server.

See Overcloud Requirements for the compute requirements of the overcloud.

Networking Requirements

As a minimum, the installation requires two networks:

• provisioning network - This is the private network that the undercloud uses to provision the
overcloud.

• external network - This is the externally-routable network you use to access the undercloud and
overcloud nodes.

Ensure the following requirements are met for the provisioning network:

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the

321

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/planning-your-overcloud

second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs will be referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vSwitch bridge will be
created for Neutron, and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

• All of the networks must be available to all of the Contrail Networking roles and computes.

While the provisioning and external networks are sufficient for basic applications, you should create
additional networks in most overcloud environments to provide isolation for the different traffic types
by assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network. If only
some isolated networks are configured, traffic belonging to a network not configured runs on the
provisioning network.

The following networks are typically deployed when using network isolation topology:

• Provisioning - used by the undercloud to provision the overcloud

• Internal API - used by OpenStack services to communicate with each other

• Tenant - used for tenant overlay data plane traffic (one network per tenant)

• Storage - used for storage data traffic

• Storage Management - used for storage control and management traffic

• External - provides external access to the undercloud and overcloud, including external access to the
web UIs and public APIs

• Floating IP - provides floating IP access to the tenant network (can either be merged with external or
can be a separate network)

• Management - provides access for system administration

322

Compatibility Matrix

The following combinations of Operating System/OpenStack/Deployer/Contrail Networking are
supported:

Table 22: Compatibility Matrix

Operating System OpenStack Deployer Contrail Networking

RHEL 8.2 OSP16 OSPd16 Contrail Networking 2008 or higher

Installation Summary

The general installation procedure is as follows:

• Set up the infrastructure, which is the set of servers or VMs that host the undercloud and overcloud,
including the provisioning network that connects them together.

• Set up the undercloud, which is the OSPd application.

• Set up the overcloud, which is the set of services in the tenant-facing network. Contrail Networking
is part of the overcloud.

For more information on installing and using the RHOSPd, see Red Hat documentation.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2008 Starting with Contrail Networking Release 2008, Contrail Networking supports using Contrail with Red
Hat OpenStack Platform Director 16.1.

323

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index
https://apps.juniper.net/feature-explorer/

Setting Up the Infrastructure (Contrail Networking Release 21.3 or
Earlier)

SUMMARY

Follow this topic to set up the infrastructure for a
Contrail Networking deployment in a RHOSP 16.1
environment when you are using Contrail
Networking Release 21.3 or earlier.

IN THIS SECTION

When to Use This Procedure | 324

Target Configuration (Example) | 324

Configure the External Physical Switch | 326

Configure KVM Hosts | 327

Create the Overcloud VM Definitions on the
Overcloud KVM Hosts | 329

Create the Undercloud VM Definition on the
Undercloud KVM Host | 331

When to Use This Procedure

You should use this topic to set up the infrastructure for a Contrail Networking deployment in a RHOSP
16.1 environment when you are using Contrail Networking Release 21.3 or earlier.

This procedure shows you how to set up the infrastructure for the installation when the hosts are using
Kernel-based Virtual Machine (KVM).

Starting in Contrail Networking Release 21.4, Contrail Networking was enhanced to operate with hosts
using Red Hat Virtualization (RHV). You must use RHV-based hosts in place of KVM-based hosts in
RHOSP 16.1 environments starting in Contrail Networking Release 21.4 and in all future Contrail
Networking releases. See Setting Up the Infrastructure (Contrail Networking Release 21.4 or Later) .

Target Configuration (Example)

Undercloud and overcloud KVM hosts require virtual switches and virtual machine definitions to be
configured. You can deploy any KVM host operating system version that supports KVM and OVS. The
following example shows a RHEL/CentOS based system. If you are using RHEL, you must subscribe the
system.

The following example illustrates all control plane functions as Virtual Machines hosted on KVM hosts.

There are different ways to create the infrastructure providing the control plane elements. To illustrate
the installation procedure, we will use four host machines for the infrastructure, each running KVM.
KVM1 contains a VM running the undercloud while KVM2 through KVM4 each contains a VM running
an OpenStack controller and a Contrail controller (Table 23 on page 325).

324

https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/setting-up-contrail-rhosp16-infrastructure-214-onward.html

Table 23: Control Plane Infrastructure

KVM Host Virtual Machines

KVM1 undercloud

KVM2 OpenStack Controller 1, Contrail Contoller 1

KVM3 OpenStack Controller 2, Contrail Contoller 2

KVM4 OpenStack Controller 3, Contrail Contoller 3

Figure 39 on page 325 shows the physical connectivity where each KVM host and each compute node
has two interfaces that connect to an external switch. These interfaces attach to separate virtual bridges
within the VM, allowing for two physically separate networks (external and provisioning networks).

Figure 39: Physical View

Figure 40 on page 326 shows the logical view of the connectivity where VLANs are used to provide
further network separation for the different OpenStack network types.

325

Figure 40: Logical View

The following sections describe how to configure the infrastructure, the undercloud, and finally the
overcloud.

Configure the External Physical Switch

Configure the ports and VLANs on the external physical switch according to the following table:

Table 24: External Physical Switch Port and VLAN Configuration

Port Trunked VLAN Native VLAN

ge0 - -

326

Table 24: External Physical Switch Port and VLAN Configuration (Continued)

Port Trunked VLAN Native VLAN

ge1 700, 720 -

ge2 700, 710, 720, 730, 740, 750 -

ge3 - -

ge4 710, 730 700

ge5 - -

Configure KVM Hosts

Use this example procedure to install the required packages and start KVM and Open vSwitch on each
undercloud and overcloud KVM host.

1. Log in to a KVM host.

2. Install the required packages.

yum install -y libguestfs \
 libguestfs-tools \
 openvswitch \
 virt-install \
 kvm libvirt \
 libvirt-python \
 python-virtualbmc \
 python-virtinst

3. Start KVM and Open vSwitch.

systemctl start libvirtd
systemctl start openvswitch

4. Additionally, on the overcloud nodes only, create and start the virtual switches br0 and br1.

327

Table 25: vSwitch Configuration

Bridge Trunked VLAN Native VLAN

br0 710, 720, 730 740, 750 700

br1 - -

Create the virtual switches and bind them to the respective interfaces.
ovs-vsctl add-br br0
ovs-vsctl add-br br1
ovs-vsctl add-port br0 NIC1
ovs-vsctl add-port br1 NIC2

Create the configuration file for br0.
cat << EOF > br0.xml
<network>
 <name>br0</name>
 <forward mode='bridge'/>
 <bridge name='br0'/>
 <virtualport type='openvswitch'/>
 <portgroup name='overcloud'/>
 <vlan trunk='yes'>
 <tag id='700' nativeMode='untagged'/>
 <tag id='710'/>
 <tag id='720'/>
 <tag id='730'/>
 <tag id='740'/>
 <tag id='750'/>
 </vlan>
 </portgroup>
</network>
EOF

Create the configuration file for br1.
cat << EOF > br1.xml
<network>
 <name>br1</name>

328

 <forward mode=’bridge’/>
 <bridge name='br1'/>
 <virtualport type='openvswitch'/>
</network>
EOF

Create the br0 network based on the configuration file.
virsh net-define br0.xml
virsh net-start br0
virsh net-autostart br0

Create the br1 network based on the configuration file.
virsh net-define br1.xml
virsh net-start br1
virsh net-autostart br1

5. Repeat step 1 through step 4 for each KVM host.

Create the Overcloud VM Definitions on the Overcloud KVM Hosts

Use this example procedure on each overcloud KVM host (KVM2 to KVM4) to do the following:

• create the VM definitions for that overcloud KVM host

• create and start a virtual baseboard management controller for that overcloud KVM host so that the
VM can be managed using IPMI

• create an ironic_list file to be used by the undercloud

This example procedure creates a VM definition consisting of 2 compute nodes, 1 Contrail controller
node, and 1 OpenStack controller node on each overcloud KVM host.

1. Log in to an overcloud KVM host.

2. Specify the roles you want to create.

ROLES=compute:2,contrail-controller:1,control:1

3. Create the VM definitions.

Initialize and specify the IPMI user and password you want to use.
num=0
ipmi_user=<user>

329

ipmi_password=<password>
libvirt_path=/var/lib/libvirt/images
port_group=overcloud
prov_switch=br0
/bin/rm ironic_list

For each role and instance specified in the ROLES variable:
- create the VM definition
- create and start a virtual baseboard management controller (vbmc)
- store the VM information into an ironic_list file (for later use in the undercloud)
IFS=',' read -ra role_list <<< "${ROLES}"
for role in ${role_list[@]}; do
 role_name=`echo $role|cut -d ":" -f 1`
 role_count=`echo $role|cut -d ":" -f 2`
 for count in `seq 1 ${role_count}`; do
 echo $role_name $count
 qemu-img create -f qcow2 ${libvirt_path}/${role_name}_${count}.qcow2 99G
 virsh define /dev/stdin <<EOF
 $(virt-install --name ${role_name}_${count} \
 --disk ${libvirt_path}/${role_name}_${count}.qcow2 \
 --vcpus=4 \
 --ram=16348 \
 --network network=br0,model=virtio,portgroup=${port_group} \
 --network network=br1,model=virtio \
 --virt-type kvm \
 --cpu host \
 --import \
 --os-variant rhel8.2 \
 --serial pty \
 --console pty,target_type=virtio \
 --graphics vnc \
 --print-xml)
EOF
 vbmc add ${role_name}_${count} --port 1623${num} --username ${ipmi_user} --password $
{ipmi_password}
 vbmc start ${role_name}_${count}
 prov_mac=`virsh domiflist ${role_name}_${count}|grep ${prov_switch}|awk '{print $5}'`
 vm_name=${role_name}-${count}-`hostname -s`
 kvm_ip=`ip route get 1 |grep src |awk '{print $7}'`
 echo ${prov_mac} ${vm_name} ${kvm_ip} ${role_name} 1623${num}>> ironic_list
 num=$(expr $num + 1)

330

 done
done

4. Repeat step 1 through step 3 on each overcloud KVM host.

CAUTION: This procedure creates one ironic_list file per overcloud KVM host. Combine
the contents of each file into a single ironic_list file on the undercloud.

The following shows the resulting ironic_list file after you combine the contents from
each separate file:

52:54:00:e7:ca:9a compute-1-5b3s31 10.87.64.32 compute 16230 52:54:00:30:6c:3f compute-2-5b3s31
10.87.64.32 compute 16231 52:54:00:9a:0c:d5 contrail-controller-1-5b3s31 10.87.64.32 contrail-
controller 16232 52:54:00:cc:93:d4 control-1-5b3s31 10.87.64.32 control 16233 52:54:00:28:10:d4
compute-1-5b3s30 10.87.64.31 compute 16230 52:54:00:7f:36:e7 compute-2-5b3s30 10.87.64.31 compute
16231 52:54:00:32:e5:3e contrail-controller-1-5b3s30 10.87.64.31 contrail-controller 16232
52:54:00:d4:31:aa control-1-5b3s30 10.87.64.31 control 16233 52:54:00:d1:d2:ab compute-1-5b3s32
10.87.64.33 compute 16230 52:54:00:ad:a7:cc compute-2-5b3s32 10.87.64.33 compute 16231
52:54:00:55:56:50 contrail-controller-1-5b3s32 10.87.64.33 contrail-controller 16232
52:54:00:91:51:35 control-1-5b3s32 10.87.64.33 control 16233

Create the Undercloud VM Definition on the Undercloud KVM Host

Use this example procedure on the undercloud KVM host (KVM1) to create the undercloud VM
definition and to start the undercloud VM.

1. Create the images directory.

mkdir ~/images
cd images

2. Retrieve the image.

RHEL

Download rhel-server-8.2-update-1-x86_64-kvm.qcow2 from RedHat portal to ~/images.

cloud_image=~/images/rhel-server-8.2-update-1-x86_64-kvm.qcow2

3. Customize the undercloud image.

undercloud_name=queensa
undercloud_suffix=local

331

root_password=<password>
stack_password=<password>
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 /var/lib/libvirt/images/${undercloud_name}.qcow2 100G
virt-resize --expand /dev/sda1 ${cloud_image} /var/lib/libvirt/images/$
{undercloud_name}.qcow2
virt-customize -a /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--run-command 'xfs_growfs /' \
--root-password password:${root_password} \
--hostname ${undercloud_name}.${undercloud_suffix} \
--run-command 'useradd stack' \
--password stack:password:${stack_password} \
--run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
--chmod 0440:/etc/sudoers.d/stack \
--run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
--run-command 'systemctl enable sshd' \
--run-command 'yum remove -y cloud-init' \
--selinux-relabel

NOTE: As part of the undercloud definition, a user called stack is created. This user will
be used later to install the undercloud.

4. Define the undercloud virsh template.

vcpus=8
vram=32000
virt-install --name ${undercloud_name} \
--disk /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--vcpus=${vcpus} \
--ram=${vram} \
--network network=default,model=virtio \
--network network=br0,model=virtio,portgroup=overcloud \
--virt-type kvm \
--import \
--os-variant rhel8.2 \
--graphics vnc \
--serial pty \
--noautoconsole \
--console pty,target_type=virtio

332

5. Start the undercloud VM.

virsh start ${undercloud_name}

6. Retrieve the undercloud IP address. It might take several seconds before the IP address is available.

undercloud_ip=`virsh domifaddr ${undercloud_name} |grep ipv4 |awk '{print $4}' |awk -F"/"
'{print $1}'` ssh-copy-id ${undercloud_ip}

Setting Up the Undercloud

SUMMARY

Follow this topic to setup the undercloud for a
Contrail Networking deployment with RHOSP 16.

IN THIS SECTION

Install the Undercloud | 333

Perform Post-Install Configuration | 335

Follow this topic to setup the undercloud for a Contrail Networking deployment with RHOSP 16.

Contrail Networking was enhanced to operate with hosts using Red Hat Virtualization (RHV) in Contrail
Networking Release 21.4. Prior to this enhancement, Contrail Networking was supported in
environments with hosts using Kernel-based Virtual Machine (KVM) only.

These instructions apply to both environments.

Install the Undercloud

Use this example procedure to install the undercloud.

1. Log in to the undercloud VM from the undercloud KVM host.

ssh ${undercloud_ip}

2. Configure the hostname.

undercloud_name=`hostname -s`
undercloud_suffix=`hostname -d`

333

hostnamectl set-hostname ${undercloud_name}.${undercloud_suffix}
hostnamectl set-hostname --transient ${undercloud_name}.${undercloud_suffix}

3. Add the hostname to the /etc/hosts file. The following example assumes the management interface
is eth0.

undercloud_ip=`ip addr sh dev eth0 | grep "inet " | awk '{print $2}' | awk -F"/" '{print $1}'`
echo ${undercloud_ip} ${undercloud_name}.${undercloud_suffix} ${undercloud_name} >> /etc/hosts

4. Set up the repositories.

RHEL

#Register with Satellite (can be done with CDN as well)
satellite_fqdn=device.example.net
act_key=xxx
org=example
yum localinstall -y http://${satellite_fqdn}/pub/katello-ca-consumer-latest.noarch.rpm
subscription-manager register --activationkey=${act_key} --org=${org}

5. Install the Tripleo client.

yum install -y python-tripleoclient tmux

6. Copy the undercloud configuration file sample and modify the configuration as required. See Red Hat
documentation for information on how to modify that file.

su - stack
cp /usr/share/python-tripleoclient/undercloud.conf.sample ~/undercloud.conf
vi ~/undercloud.conf

7. Install the undercloud.

openstack undercloud install
source stackrc

8. If you are using a satellite for deployment, manually update the hostname and satellite IP addresses
in your /etc/hosts/ file.

334

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/installing-the-undercloud#configuring-the-undercloud-with-environment-files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/installing-the-undercloud#configuring-the-undercloud-with-environment-files

To perform this procedure using the VI editor:

(undercloud) [stack@osp16-5c5s36 ~]$ sudo vi /etc/hosts

and manually enter your hostname and satellite IP address in the file while using the editor.

This step ensures that the overcloud deployment is successful later in the procedure.

You should also perform this step if the overcloud deployment fails later in the procedure and a failed
lookup URL message appears on the console as the reason.

A sample failed lookup URL error message when you experience this issue:.

========================
TASK [redhat-subscription : SATELLITE | Run Satellite 6 tasks] *****************
Tuesday 30 March 2021 12:11:25 -0400 (0:00:00.490) 0:13:39.737 *********
included: /usr/share/ansible/roles/redhat-subscription/tasks/satellite-6.yml for overcloud-
controller-0, overcloud-controller-1, overcloud-controller-2
TASK [redhat-subscription : SATELLITE 6 | Set Satellite server CA as a fact] ***Tuesday 30
March 2021 12:11:26 -0400 (0:00:00.730) 0:13:40.467 *********
fatal: [overcloud-controller-0]: FAILED! =) {"msg": "An unhandled exception occurred while
running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>, original
message: Failed lookup url for : <urlopen error [Errno -2] Name or service not
known>"}fatal: [overcloud-controller-1]: FAILED! =) {"msg": "An unhandled exception occurred
while running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>,
original message: Failed lookup url for : <urlopen error [Errno -2] Name or service not
known>"}

fatal: [overcloud-controller-2]: FAILED! =) {"msg": "An unhandled exception occurred while
running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>, original
message: Failed lookup url for : <urlopen error [Errno -2] Name or service not known>"}

Perform Post-Install Configuration

1. Configure a forwarding path between the provisioning network and the external network:

sudo iptables -A FORWARD -i br-ctlplane -o eth0 -j ACCEPT
sudo iptables -A FORWARD -i eth0 -o br-ctlplane -m state --state RELATED,ESTABLISHED -j
ACCEPT
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

335

2. Add the external API interface:

sudo ip link add name vlan720 link br-ctlplane type vlan id 720
sudo ip addr add 10.2.0.254/24 dev vlan720
sudo ip link set dev vlan720 up

3. Add the stack user to the docker group:

newgrp docker
exit
su - stack
source stackrc

4. Manually add the satellite IP address and hostname into the /etc/hosts/ file.

Setting Up the Overcloud

SUMMARY

Follow this topic to setup the overcloud for a
Contrail Networking deployment with RHOSP 16.

IN THIS SECTION

Configuring the Overcloud | 337

Customizing the Contrail Service with
Templates (contrail-services.yaml) | 341

Customizing the Contrail Network with
Templates | 344

Installing Overcloud | 372

Follow this topic to setup the overcloud for a Contrail Networking deployment with RHOSP 16.

Contrail Networking was enhanced to operate with hosts using Red Hat Virtualization (RHV) in Contrail
Networking Release 21.4. Prior to this enhancement, Contrail Networking was supported in
environments with hosts using Kernel-based Virtual Machine (KVM) only.

These instructions apply to both environments unless otherwise noted. In cases where the running
virtualization engine impacts this procedure, the steps to perform in environments using RHV or KVM
are noted.

336

Configuring the Overcloud

Use this example procedure on the undercloud to set up the configuration for the overcloud.

1. Specify the name server to be used:

undercloud_nameserver=8.8.8.8
openstack subnet set `openstack subnet show ctlplane-subnet -c id -f value` --dns-nameserver $
{undercloud_nameserver}

2. Retrieve and upload the overcloud images.

a. Create the image directory:

mkdir images
cd images

b. Retrieve the overcloud images from either the RDO project or from Red Hat.

OSP16

sudo yum install -y rhosp-director-images rhosp-director-images-ipa
for i in /usr/share/rhosp-director-images/overcloud-full-latest-16.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-16.0.tar ; do tar -xvf $i; done

c. Upload the overcloud images:

cd
openstack overcloud image upload --image-path /home/stack/images/

3. Prepare OpenStack’s bare metal provisioning (Ironic).

The Ironic driver installation depends on the virtualization engine running for Red Hat Openstack:

• Red Hat Virtualization (RHV, Contrail Networking Release 21.4 and later): Use staging-ovirt to
download the Ironic driver.

See the Creating virtualized control planes document from Red Hat to enable the control plane
with the staging-ovirt driver.

• Kernel-based Virtual Machine (KVM, Contrail Networking Release 21.3 and earlier releases that
support RHOSP16): Use the IPMI driver to download the Ironic driver.

The IPMI driver download procedure is provided in these steps.

337

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/assembly_creating-virtualized-control-planes

NOTE: Make sure to combine the ironic_list files from the three overcloud KVM hosts.

a. Add the overcloud VMs to Ironic:

ipmi_password=<password>
ipmi_user=<user>
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=profile:$
{profile},boot_option:local \
 -c uuid -f value`
 openstack baremetal port create --node ${uuid} ${mac}
done < <(cat ironic_list)

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node set $i --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
done

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node show $i -c properties -f value
done

338

b. Introspect the overcloud node:

for node in $(openstack baremetal node list -c UUID -f value) ; do
 openstack baremetal node manage $node
done
openstack overcloud node introspect --all-manageable --provide

4. Create Flavor:

for i in compute-dpdk \
compute-sriov \
contrail-controller \
contrail-analytics \
contrail-database \
contrail-analytics-database; do
 openstack flavor create $i --ram 4096 --vcpus 1 --disk 40
 openstack flavor set --property "capabilities:boot_option"="local" \
 --property "capabilities:profile"="${i}" ${i}
 openstack flavor set --property resources:CUSTOM_BAREMETAL=1 --property
resources:DISK_GB='0'
 --property resources:MEMORY_MB='0'
 --property resources:VCPU='0' ${i}
done

5. Copy the TripleO heat templates.

cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates

6. Download and copy the Contrail heat templates from https://support.juniper.net/support/downloads.

tar -xzvf contrail-tripleo-heat-templates-<version>.tgz
cp -r contrail-tripleo-heat-templates/* tripleo-heat-templates/

7. Create rhsm.yaml file with your RedHat credentials

parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - fast-datapath-for-rhel-8-x86_64-rpms
 - openstack-16.1-for-rhel-8-x86_64-rpms

339

https://support.juniper.net/support/downloads

 - satellite-tools-6.5-for-rhel-8-x86_64-rpms
 - ansible-2-for-rhel-8-x86_64-rpms
 - rhel-8-for-x86_64-highavailability-rpms
 - rhel-8-for-x86_64-appstream-rpms
 - rhel-8-for-x86_64-baseos-rpms
 rhsm_username: "YOUR_REDHAT_LOGIN"
 rhsm_password: "YOUR_REDHAT_PASSWORD"
 rhsm_org_id: "YOUR_REDHAT_ID"
 rhsm_pool_ids: "YOUR_REDHAT_POOL_ID"

8. Create and upload the OpenStack containers.

a. Create the OpenStack container file.

NOTE: The container must be created based on the OpenStack program.

OSP16

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml
 -e ~/rhsm.yaml > ~/overcloud_containers.yaml

sudo openstack overcloud container image upload --config-file ~/overcloud_containers.yaml

b. Upload the OpenStack containers:

openstack overcloud container image upload --config-file ~/local_registry_images.yaml

9. Create and upload the Contrail containers.

a. Create the Contrail container file.

NOTE: This step is optional. The Contrail containers can be downloaded from
external registries later.

cd ~/tf-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-
u username] [-p password] [-c certificate path]

Here are few examples of importing Contrail containers from different sources:

340

• Import from password protected public registry:

./import_contrail_container.sh -f /tmp/contrail_container -r hub.juniper.net/contrail -
u USERNAME -p PASSWORD -t 1234

• Import from Dockerhub:

./import_contrail_container.sh -f /tmp/contrail_container -r docker.io/
opencontrailnightly -t 1234

• Import from private secure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -
c http://device.example.net/pub/device.example.net.crt -t 1234

• Import from private insecure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

b. Upload Contrail containers to the undercloud registry:

openstack overcloud container image upload --config-file /tmp/contrail_container

Customizing the Contrail Service with Templates (contrail-services.yaml)

This section contains information to customize Contrail services for your network by modifying the
contrail-services.yaml file.

• APPLY_DEFAULTS Settings customization - When Contrail is deployed for the first time, the default
value of APPLY_DEFAULTS parameter in the ContrailSettings/global ContrailSettings section needs
to be set to 'True'.

APPLY_DEFAULTS=True/False (default: True)

There are multiple ContrailSettings sections referring to global configuration and to specific roles like
e.g. DPDK nodes. This enables provisioning parameters present inside the template to use day0
configuration whenever a config provisioning container is restarted. Thus, the provisioning

341

parameters are template driven and any changes to Contrail settings should be done through TripleO
templates.

Contrail Networking allows you to configure some global configuration parameters like VXLAN
network id mode, linklocal configuration, IBGP auto mesh configuration, enabling 4byte_AS, and
changing BGP Global ASN through its web user interface. If you want to manage your cluster
through web user interface, then you need to set APPLY_DEFAULTS=False in ContrailSettings
section and deploy your cluster again by running openstack overcloud deploy. This additional step is
required because when you have changed Contrail global configuration parameters through web user
interface, then there is a possibility for these global configuration parameters to be overwritten if any
config provisioner container is restarted. In order to avoid these values to be overwritten, set
APPLY_DEFAULTS as ’False’ and deploy Contrail again by running openstack
overcloud deploy command. As a result, the global configuration parameters remain unchanged as
provisioning is not executed again.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your Contrail
cluster, set VxLAN Identifier Mode to ’User Configured’ from web user interface, and
restart config provisioner container, then VxLAN Identifier Mode will remain ’User
Configured’ after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container, VxLAN
Identifier Mode will change to its default value, which is Automatic.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your Contrail
cluster, set VxLAN Identifier Mode to ’User Configured’ from web user interface, and
restart config provisioner container, then VxLAN Identifier Mode will remain ’User
Configured’ after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container, VxLAN
Identifier Mode will change to its default value, which is Automatic.

Example:

parameter_defaults:
 ContrailSettings:
 APPLY_DEFAULTS: true
 VROUTER_GATEWAY: 10.0.0.1
 # KEY1: value1
 # KEY2: value2

 VXLAN_VN_ID_MODE: "configured"
 ENCAP_PRIORITY: "VXLAN,MPLSoUDP,MPLSoGRE"

 ContrailControllerParameters:
 AAAMode: rbac

342

• Contrail Services customization

vi ~/tripleo-heat-templates/environments/contrail-services.yaml
parameter_defaults:
 ContrailSettings:
 VROUTER_GATEWAY: 10.0.0.1
 # KEY1: value1
 # KEY2: value2

 VXLAN_VN_ID_MODE: "configured"
 ENCAP_PRIORITY: "VXLAN,MPLSoUDP,MPLSoGRE"

 ContrailControllerParameters:
 AAAMode: rbac

• Contrail registry settings

vi ~/tripleo-heat-templates/environments/contrail-services.yaml

Here are few examples of default values for various registries:

• Public Juniper registry

parameter_defaults:
 ContrailRegistry: hub.juniper.net/contrail
 ContrailRegistryUser: <USER>
 ContrailRegistryPassword: <PASSWORD>

• Insecure registry

parameter_defaults:
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 10.87.64.32:5000,192.168.24.1:8787
 ContrailRegistry: 10.87.64.32:5000

343

• Private secure registry

parameter_defaults:
 ContrailRegistryCertUrl: http://device.example.net/pub/device.example.net.crt
 ContrailRegistry: device.example.net:5443

• Contrail Container image settings

parameter_defaults:
 ContrailImageTag: queens-5.0-104-rhel-queens

Customizing the Contrail Network with Templates

IN THIS SECTION

Overview | 344

Roles Configuration (roles_data_contrail_aio.yaml) | 345

Network Parameter Configuration (contrail-net.yaml) | 348

Network Interface Configuration (*-NIC-*.yaml) | 349

Advanced vRouter Kernel Mode Configuration | 360

Advanced vRouter DPDK Mode Configuration | 363

Advanced vRouter SRIOV + Kernel Mode Configuration | 366

Advanced vRouter SRIOV + DPDK Mode Configuration | 369

Overview

In order to customize the network, define different networks and configure the overcloud nodes NIC
layout. TripleO supports a flexible way of customizing the network.

The following networking customization example uses network as:

344

Table 26: Network Customization

Network VLAN overcloud Nodes

provisioning - All

internal_api 710 All

external_api 720 OpenStack CTRL

storage 740 OpenStack CTRL, Computes

storage_mgmt 750 OpenStack CTRL

tenant - Contrail CTRL, Computes

Roles Configuration (roles_data_contrail_aio.yaml)

IN THIS SECTION

OpenStack Controller | 346

Compute Node | 346

Contrail Controller | 346

Compute DPDK | 347

Compute SRIOV | 347

Compute CSN | 348

The networks must be activated per role in the roles_data file:

vi ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

345

OpenStack Controller

###
Role: Controller
###
- name: Controller
 description: |
 Controller role that has all the controler services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt

Compute Node

###
Role: Compute
###
- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 networks:
 - InternalApi
 - Tenant
 - Storage

Contrail Controller

###
Role: ContrailController
###
- name: ContrailController

346

 description: |
 ContrailController role that has all the Contrail controler services loaded
 and handles config, control and webui functions
 CountDefault: 1
 tags:
 - primary
 - contrailcontroller
 networks:
 - InternalApi
 - Tenant

Compute DPDK

###
Role: ContrailDpdk
###
- name: ContrailDpdk
 description: |
 Contrail Dpdk Node role
 CountDefault: 0
 tags:
 - contraildpdk
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute SRIOV

###
Role: ContrailSriov
###
- name: ContrailSriov
 description: |
 Contrail Sriov Node role
 CountDefault: 0
 tags:
 - contrailsriov
 networks:
 - InternalApi

347

 - Tenant
 - Storage

Compute CSN

###
Role: ContrailTsn
###
- name: ContrailTsn
 description: |
 Contrail Tsn Node role
 CountDefault: 0
 tags:
 - contrailtsn
 networks:
 - InternalApi
 - Tenant
 - Storage

Network Parameter Configuration (contrail-net.yaml)

cat ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml
resource_registry:
 OS::TripleO::Controller::Net::SoftwareConfig: ../../network/config/contrail/controller-nic-
config.yaml
 OS::TripleO::ContrailController::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::ContrailControlOnly::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: ../../network/config/contrail/compute-nic-
config.yaml
 OS::TripleO::ContrailDpdk::Net::SoftwareConfig: ../../network/config/contrail/contrail-dpdk-
nic-config.yaml
 OS::TripleO::ContrailSriov::Net::SoftwareConfig: ../../network/config/contrail/contrail-sriov-
nic-config.yaml
 OS::TripleO::ContrailTsn::Net::SoftwareConfig: ../../network/config/contrail/contrail-tsn-nic-
config.yaml

parameter_defaults:
 # Customize all these values to match the local environment

348

 TenantNetCidr: 10.0.0.0/24
 InternalApiNetCidr: 10.1.0.0/24
 ExternalNetCidr: 10.2.0.0/24
 StorageNetCidr: 10.3.0.0/24
 StorageMgmtNetCidr: 10.4.0.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 # Allocation pools
 TenantAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 StorageAllocationPools: [{'start': '10.3.0.10', 'end': '10.3.0.200'}]
 StorageMgmtAllocationPools: [{'start': '10.4.0.10', 'end': '10.4.0.200'}]
 # Routes
 ControlPlaneDefaultRoute: 192.168.24.1
 InternalApiDefaultRoute: 10.1.0.1
 ExternalInterfaceDefaultRoute: 10.2.0.1
 # Vlans
 InternalApiNetworkVlanID: 710
 ExternalNetworkVlanID: 720
 StorageNetworkVlanID: 730
 StorageMgmtNetworkVlanID: 740
 TenantNetworkVlanID: 3211
 # Services
 EC2MetadataIp: 192.168.24.1 # Generally the IP of the undercloud
 DnsServers: ["172.x.x.x"]
 NtpServer: 10.0.0.1

Network Interface Configuration (*-NIC-*.yaml)

IN THIS SECTION

OpenStack Controller | 350

Contrail Controller | 353

Compute Node | 357

349

NIC configuration files exist per role in the following directory:

cd ~/tripleo-heat-templates/network/config/contrail

OpenStack Controller

heat_template_version: rocky

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string

350

 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string

351

 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1

352

 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: ExternalNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Contrail Controller

heat_template_version: rocky
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.

parameters:
 ControlPlaneIp:
 default: ''

353

 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:

354

 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh

355

 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

356

Compute Node

heat_template_version: rocky
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10

357

 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults

358

 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1

359

 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Advanced vRouter Kernel Mode Configuration

IN THIS SECTION

VLAN | 360

Bond | 361

Bond + VLAN | 362

In addition to the standard NIC configuration, the vRouter kernel mode supports VLAN, Bond, and Bond
+ VLAN modes. The configuration snippets below only show the relevant section of the NIC template
configuration for each mode.

VLAN

- type: vlan
 vlan_id:

360

 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:

361

 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

362

Advanced vRouter DPDK Mode Configuration

IN THIS SECTION

Standard | 363

VLAN | 364

Bond | 364

Bond + VLAN | 365

In addition to the standard NIC configuration, the vRouter DPDK mode supports Standard, VLAN, Bond,
and Bond + VLAN modes.

Network Environment Configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

 # For Intel CPU
 ContrailDpdkParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4
 vm.max_map_count:
 value: 128960

See the following NIC template configurations for vRouter DPDK mode. The configuration snippets
below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false

363

 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -

364

 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

365

Advanced vRouter SRIOV + Kernel Mode Configuration

IN THIS SECTION

VLAN | 367

Bond | 367

Bond + VLAN | 368

vRouter SRIOV + Kernel mode can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

SRIOV PF/VF settings:

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

366

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter kernel mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter

367

 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:

368

 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + DPDK Mode Configuration

IN THIS SECTION

Standard | 370

VLAN | 370

Bond | 371

Bond + VLAN | 371

vRouter SRIOV + DPDK can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

369

SRIOV PF/VF settings

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter DPDK mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2

370

 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -

371

 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Installing Overcloud

1. Deployment:

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --stack overcloud --libvirt-type kvm \
 --roles-file $role_file \
 -e tripleo-heat-templates/environments/rhsm.yaml \
 -e tripleo-heat-templates/environments/network-isolation.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e containers-prepare-parameter.yaml \
 -e rhsm.yaml

2. Validation Test:

source overcloudrc
curl -O http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
openstack image create --container-format bare --disk-format qcow2 --file cirros-0.3.5-x86_64-
disk.img cirros
openstack flavor create --public cirros --id auto --ram 64 --disk 0 --vcpus 1
openstack network create net1
openstack subnet create --subnet-range 1.0.0.0/24 --network net1 sn1
nova boot --image cirros --flavor cirros --nic net-id=`openstack network show net1 -c id -f
value` --availability-zone nova:overcloud-novacompute-0.localdomain c1
nova list

372

CHAPTER 8

Setting Up Contrail with Red Hat OpenStack 16.2

IN THIS CHAPTER

Understanding Red Hat OpenStack Platform Director 16.2 | 373

Setting Up the Infrastructure (Contrail Networking Release 21.4 or Later) | 379

Setting Up the Undercloud for RHOSP 16.2 | 408

Setting Up the Overcloud for RHOSP 16.2 | 411

Understanding Red Hat OpenStack Platform Director 16.2

IN THIS SECTION

Red Hat OpenStack Platform Director | 373

Contrail Networking Roles | 374

RVM and KVM Requirements | 375

Undercloud Requirements | 375

Overcloud Requirements | 376

Networking Requirements | 376

Compatibility Matrix | 378

Installation Summary | 378

Red Hat OpenStack Platform Director

Starting with Contrail Networking Release 21.3, Contrail Networking supports using Contrail with Red
Hat OpenStack Platform Director 16.2.
This chapter explains how to integrate a Contrail Networking Release 21.3 (or higher) installation with
Red Hat OpenStack Platform Director 16.2.

373

Red Hat OpenStack Platform provides an installer called the Red Hat OpenStack Platform director
(RHOSPd or OSPd), which is a toolset based on the OpenStack project TripleO (OOO, OpenStack on
OpenStack). TripleO is an open source project that uses features of OpenStack to deploy a fully
functional, tenant-facing OpenStack environment.

TripleO can be used to deploy an RDO-based OpenStack environment integrated with Tungsten Fabric.
Red Hat OpenStack Platform director can be used to deploy an RHOSP-based OpenStack environment
integrated with Contrail Networking.

OSPd uses the concepts of undercloud and overcloud. OSPd sets up an undercloud, a single server
running an operator-facing deployment that contains the OpenStack components needed to deploy and
manage an overcloud, a tenant-facing deployment that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

OSPd leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Ceilometer collects metrics about the overcloud.

For more information about OSPd architecture, see OSPd documentation.

Contrail Networking Roles

OSPd supports composable roles, which are groups of services that you define through Heat templates.
Composable roles allow you to integrate Contrail Networking into the overcloud environment.

The following are the Contrail Networking roles used for integrating into the overcloud:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

374

https://docs.openstack.org/tripleo-docs/latest/install/introduction/architecture.html

Figure 41 on page 375 shows the relationship and components of an undercloud and overcloud
architecture for Contrail Networking.

Figure 41: Undercloud and Overcloud with Roles

RVM and KVM Requirements

Starting in Contrail Networking Release 21.4, Contrail Networking was enhanced to operate with hosts
using Red Hat Virtualization (RHV). You must use RHV-based hosts in place of KVM-based hosts in
RHOSP 16.2 environments starting in Contrail Networking Release 21.4 and in all future Contrail
Networking releases.

In Contrail Networking releases prior to Release 21.3, this procedure is performed with hosts using
Kernel-based Virtual Machine (KVM).

Undercloud Requirements

The undercloud is a single server or VM that hosts the OpenStack Platform director, which is an
OpenStack installation used to provision OpenStack on the overcloud.

See Undercloud Requirements for the compute requirements of the undercloud.

375

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/planning-your-undercloud

Overcloud Requirements

The overcloud roles can be deployed to bare metal servers or to virtual machines (VMs), but the
compute nodes must be deployed to bare metal systems. Every overcloud node must support IPMI for
booting up from the undercloud using PXE.

Ensure the following requirements are met for the Contrail Networking nodes per role.

• Non-high availability: A minimum of 4 overcloud nodes are needed for control plane roles for a non-
high availability deployment:

• 1x contrail-config (includes Contrail control)

• 1x contrail-analytics

• 1x contrail-analytics-database

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

If the control plane roles are deployed to VMs, use 3 separate physical servers and deploy one role of
each kind to each physical server.

See Overcloud Requirements for the compute requirements of the overcloud.

Networking Requirements

As a minimum, the installation requires two networks:

• provisioning network - This is the private network that the undercloud uses to provision the
overcloud.

• external network - This is the externally-routable network you use to access the undercloud and
overcloud nodes.

Ensure the following requirements are met for the provisioning network:

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the

376

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/planning-your-overcloud

second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs will be referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vSwitch bridge will be
created for Neutron, and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

• All of the networks must be available to all of the Contrail Networking roles and computes.

While the provisioning and external networks are sufficient for basic applications, you should create
additional networks in most overcloud environments to provide isolation for the different traffic types
by assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network. If only
some isolated networks are configured, traffic belonging to a network not configured runs on the
provisioning network.

The following networks are typically deployed when using network isolation topology:

• Provisioning - used by the undercloud to provision the overcloud

• Internal API - used by OpenStack services to communicate with each other

• Tenant - used for tenant overlay data plane traffic (one network per tenant)

• Storage - used for storage data traffic

• Storage Management - used for storage control and management traffic

• External - provides external access to the undercloud and overcloud, including external access to the
web UIs and public APIs

• Floating IP - provides floating IP access to the tenant network (can either be merged with external or
can be a separate network)

• Management - provides access for system administration

377

Compatibility Matrix

The following combinations of Operating System/OpenStack/Deployer/Contrail Networking are
supported:

Table 27: Compatibility Matrix

Operating System OpenStack Deployer Contrail Networking

RHEL 8.2 or 8.4 OSP16.2 RHOSP16 Director Contrail Networking 21.3

RHEL 8.4 OSP16.2 RHOSP16 Director Contrail Networking 21.4

RHEL 8.4 OSP16.2.3 RHOSP16 Director Contrail Networking 21.4.L1

RHEL 8.4 OSP16.2.4 RHOSP16 Director Contrail Networking 21.4.L2

Installation Summary

The general installation procedure is as follows:

• Set up the infrastructure, which is the set of servers or VMs that host the undercloud and overcloud,
including the provisioning network that connects them together.

• Set up the undercloud, which is the OSPd application.

• Set up the overcloud, which is the set of services in the tenant-facing network. Contrail Networking
is part of the overcloud.

For more information on installing and using the RHOSPd, see Red Hat documentation.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2008 Starting with Contrail Networking Release 21.3, Contrail Networking supports using Contrail with Red
Hat OpenStack Platform Director 16.2.

378

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index
https://apps.juniper.net/feature-explorer/

Setting Up the Infrastructure (Contrail Networking Release 21.4 or Later)

SUMMARY

Follow this topic to set up the infrastructure for a
Contrail Networking deployment in a RHOSP 16
environment when you are using Contrail
Networking Release 21.4 or later.

IN THIS SECTION

When to Use This Procedure | 379

Understanding Red Hat Virtualization | 379

Prepare the Red Hat Virtualization Manager
Hosts | 380

Deploy Hosts with Red Hat Enterprise
Linux | 380

Deploy Red Hat Virtualization Manager on
the First Node | 383

Deploy Nodes and Enable Networking | 386

Prepare images | 392

Create Overcloud VMs | 392

Create Contrail Control Plane VMs for
Kubernetes-based Deployments | 397

Create Undercloud VM | 402

Create FreeIPA VM | 405

When to Use This Procedure

You should use this topic to set up the infrastructure for a Contrail Networking deployment in a RHOSP
16 environment when you are using Contrail Networking Release 21.4 or later.

This procedure shows you how to set up the infrastructure for the installation when the hosts are using
Red Hat Virtualization (RHV). Contrail Networking was enhanced to operate with hosts using Red Hat
Virtualization (RHV) in Release 21.4.

In Release 21.3 and earlier, this procedure is performed with hosts using Kernel-based Virtual Machine
(KVM). See "Setting Up the Infrastructure (Contrail Networking Release 21.3 or Earlier) " on page 324.

Understanding Red Hat Virtualization

This procedure shows an example of how to set up the infrastructure for a Contrail Networking
deployment in a RHOSP 16 environment when the hosts are using Red Hat Virtualization (RHV).

RHV is an enterprise virtualization platform built on Red Hat Enterprise Linux and KVM. RHV is
developed and fully supported by Red Hat.

379

The purpose of this topic is to illustrate one method of deploying Contrail Networking in a RHOSP 16
environment using RHOSP 16. The documentation of related RHV components is beyond the scope of
this topic.

For additional information on RHV, see Product Documentation for Red Hat Virtualization from Red Hat.

For additional information on RHV installation, see the Installing Red Hat Virtualization as a self-hosted
engine using the command line document from Red Hat.

Prepare the Red Hat Virtualization Manager Hosts

Prepare the Red Hat Virtualization Manager hosts using the instructions provided by Red Hat. See the
Installing Red Hat Virtualization Hosts section of the Installing Hosts for Red Hat Virtualization chapter
of the Installing Red Hat Virtualization as a self-hosted engine using the command line guide from Red
Hat.

Deploy Hosts with Red Hat Enterprise Linux

IN THIS SECTION

Install and enable required software | 380

Confirm the Domain Names | 383

Red Hat Enterprise Linux (RHEL) must run to enable RHV.

This section provides an example of how to deploy RHEL8.

Install and enable required software

This example shows how to obtain, install, and enable the software required to operate Red Hat
Enterprise Linux 8.

Register node with RedHat subscription
(for satellite check RedHat instruction)
sudo subscription-manager register \
 --username {username} \
 --password {password}

Attach pools that allow to enable all required repos
e.g.:

380

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/index
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/index
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/installing_hosts_for_rhv_she_cli_deploy#Red_Hat_Enterprise_Linux_hosts_SHE_cli_deploy
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/installing_hosts_for_rhv_she_cli_deploy
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/installing_red_hat_virtualization_as_a_self-hosted_engine_using_the_command_line/index

sudo subscription-manager attach \
 --pool {RHOSP16.2 pool ID} \
 --pool {Red Hat Virtualization Manager pool ID}

Enable repos
sudo subscription-manager repos \
 --disable='*' \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms \
 --enable=rhv-4-mgmt-agent-for-rhel-8-x86_64-rpms \
 --enable=fast-datapath-for-rhel-8-x86_64-rpms \
 --enable=advanced-virt-for-rhel-8-x86_64-rpms \
 --enable=openstack-16.2-cinderlib-for-rhel-8-x86_64-rpms \
 --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms

Remove cloud-init (in case if it virt test setup and cloud image used for deploy)
sudo dnf remove -y cloud-init || true

Enable dnf modules and update system
For Red Hat Virtualization Manager 4.4 use virt:av
(for previous versions check RedHat documentation)
sudo dnf module reset -y virt
sudo dnf module enable -y virt:av
sudo dnf distro-sync -y --nobest
sudo dnf upgrade -y --nobest

Enable firewall
sudo dnf install -y firewalld
sudo systemctl enable --now firewalld

Check current active zone
sudo firewall-cmd --get-active-zones
exmaple of zones:
public
interfaces: eth0

Add virbr0 interface into the active zone for ovirtmgmt, e.g.
sudo firewall-cmd --zone=public --change-zone=virbr0 --permanent
sudo firewall-cmd --zone=public --add-forward --permanent
Ensure used interfaces in one zone
sudo firewall-cmd --get-active-zones
exmaple of zones:
[stack@node-10-0-10-147 ~]$ sudo firewall-cmd --get-active-zones

381

public
interfaces: eth0 virbr0

Enable https and cockpit for RHVM web access and monitoring
sudo firewall-cmd --permanent \
 --add-service=https \
 --add-service=cockpit \
 --add-service nfs

sudo firewall-cmd --permanent \
 --add-port 2223/tcp \
 --add-port 5900-6923/tcp \
 --add-port 2223/tcp \
 --add-port 5900-6923/tcp \
 --add-port 111/tcp --add-port 111/udp \
 --add-port 2049/tcp --add-port 2049/udp \
 --add-port 4045/tcp --add-port 4045/udp \
 --add-port 1110/tcp --add-port 1110/udp

Prepare NFS Storage
adjust sysctl settings
cat {{ EOF | sudo tee /etc/sysctl.d/99-nfs-tf-rhv.conf
net.ipv4.tcp_mem=4096 65536 4194304
net.ipv4.tcp_rmem=4096 65536 4194304
net.ipv4.tcp_wmem=4096 65536 4194304
net.core.rmem_max=8388608
net.core.wmem_max=8388608
EOF
sudo sysctl --system
install and enable NFS services
sudo dnf install -y nfs-utils
sudo systemctl enable --now nfs-server
sudo systemctl enable --now rpcbind
prepare special user required by Red Hat Virtualization
getent group kvm || sudo groupadd kvm -g 36
sudo useradd vdsm -u 36 -g kvm
exports="/storage *(rw,all_squash,anonuid=36,anongid=36)\n"
for s in vmengine undercloud ipa overcloud ; do
 sudo mkdir -p /storage/$s
 exports+="/storage/$s *(rw,all_squash,anonuid=36,anongid=36)\n"
done
sudo chown -R 36:36 /storage
sudo chmod -R 0755 /storage

382

add storage directory to exports
echo -e "$exports" | sudo tee /etc/exports
restart NFS services
sudo systemctl restart rpcbind
sudo systemctl restart nfs-server
check exports
sudo exportfs

Rebbot system In case if newer kernel availalbe in /lib/modules
latest_kv=$(ls -1 /lib/modules | sort -V | tail -n 1)
active_kv=$(uname -r)
if [["$latest_kv" != "$active_kv"]] ; then
 echo "INFO: newer kernel version $latest_kv is available, active one is $active_kv"
 echo "Perform reboot..."
 sudo reboot
fi

Confirm the Domain Names

Before proceeding, ensure that the fully qualified domain names (FQDNs) can be resolved by DNS or by
the /etc/hosts on all nodes.

[stack@node-10-0-10-147 ~]$ cat /etc/hosts
Red Hat Virtualization Manager VM
10.0.10.200 vmengine.dev.clouddomain vmengine.dev vmengine
Red Hat Virtualization Hosts
10.0.10.147 node-10-0-10-147.dev.clouddomain node-10-0-10-147.dev node-10-0-10-147
10.0.10.148 node-10-0-10-148.dev.clouddomain node-10-0-10-148.dev node-10-0-10-148
10.0.10.149 node-10-0-10-149.dev.clouddomain node-10-0-10-149.dev node-10-0-10-149
10.0.10.150 node-10-0-10-150.dev.clouddomain node-10-0-10-150.dev node-10-0-10-150

Deploy Red Hat Virtualization Manager on the First Node

IN THIS SECTION

Enable the Red Hat Virtualization Manager Appliance | 384

Deploy the Self-Hosted Engine | 384

Enable virh CLI to Use oVirt Authentication | 385

383

Enabling the Red Hat Virtualization Manager Repositories | 385

This section shows how to deploy Red Hat Virtual Manager (RHVM).

Enable the Red Hat Virtualization Manager Appliance

To enable the Red Hat Virtualization Manager Appliance:

sudo dnf install -y \
 tmux \
 rhvm-appliance \
 ovirt-hosted-engine-setup

Deploy the Self-Hosted Engine

To deploy the self-hosted engine:

!!! During deploy you need answer questions
sudo hosted-engine --deploy

example of adding ansible vars into deploy command
sudo hosted-engine --deploy --ansible-extra-vars=he_ipv4_subnet_prefix=10.0.10
example of an answer:
...
Please specify the storage you would like to use (glusterfs, iscsi, fc, nfs)[nfs]:
Please specify the nfs version you would like to use (auto, v3, v4, v4_0, v4_1, v4_2)[auto]:
Please specify the full shared storage connection path to use (example: host:/path):
10.0.10.147:/storage/vmengine
...

NOTE: Ensure all required interfaces are in one zone for IP Forwarding before
proceeding with the NFS task during deployment.

sudo firewall-cmd --get-active-zones
exmaple of zones:

384

[stack@node-10-0-10-147 ~]$ sudo firewall-cmd --get-active-zones
public
interfaces: ovirtmgmt eth0 virbr0

Enable virh CLI to Use oVirt Authentication

To enable virh cli to use oVirt authentication:

sudo ln -s /etc/ovirt-hosted-engine/virsh_auth.conf /etc/libvirt/auth.conf

Enabling the Red Hat Virtualization Manager Repositories

To enable the RHVM repositories:

1. Login into RHVM

ssh root@vmengine

2. Associate the Red Hat Virtualization Manager subscription and enable repositories:

sudo subscription-manager register --username {username} --password {password}
Attach pools that allow to enable all required repos
e.g.:
sudo subscription-manager attach \
 --pool {RHOSP16.2 pool ID} \
 --pool {Red Hat Virtualization Manager pool ID}
Enable repos
sudo subscription-manager repos \
 --disable='*' \
 --enable=rhel-8-for-x86_64-baseos-rpms \
 --enable=rhel-8-for-x86_64-appstream-rpms \
 --enable=rhv-4.4-manager-for-rhel-8-x86_64-rpms \
 --enable=fast-datapath-for-rhel-8-x86_64-rpms \
 --enable=advanced-virt-for-rhel-8-x86_64-rpms \
 --enable=openstack-16.2-cinderlib-for-rhel-8-x86_64-rpms \
 --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms
Enable modules and sync
sudo dnf module -y enable pki-deps

385

sudo dnf module -y enable postgresql:12
sudo dnf distro-sync -y --nobest

Deploy Nodes and Enable Networking

IN THIS SECTION

Prepare the Ansible env Files | 386

Deploy Nodes and Networking | 392

Check Hosts | 392

Follow the tasks in this section to deploy nodes and enable networking:

Prepare the Ansible env Files

To prepare the Ansible env files:

Common variables
!!! Adjust to your setup - especially undercloud_mgmt_ip and
ipa_mgmt_ip to allow SSH to this machines (e.g. choose IPs from ovirtmgmt network)
cat << EOF > common-env.yaml

ovirt_hostname: vmengine.dev.clouddomain
ovirt_user: "admin@internal"
ovirt_password: "qwe123QWE"

datacenter_name: Default

to access hypervisors
ssh_public_key: false
ssh_root_password: "qwe123QWE"

gateway for VMs (undercloud and ipa)
mgmt_gateway: "10.0.10.1"
dns to be set in ipa and initial dns for UC
k8s nodes uses ipa as dns
dns_server: "10.0.10.1"

386

undercloud_name: "undercloud"
undercloud_mgmt_ip: "10.0.10.201"
undercloud_ctlplane_ip: "192.168.24.1"

ipa_name: "ipa"
ipa_mgmt_ip: "10.0.10.205"
ipa_ctlplane_ip: "192.168.24.5"

overcloud_domain: "dev.clouddomain"
EOF

Hypervisor nodes
!! Adjust to your setup
Important: ensure you use correct node name for already registered first hypervisor
(it is registed at the RHVM deploy command hosted-engine --deploy)
cat << EOF > nodes.yaml

nodes:
 # !!! Adjust networks and power management options for your needs
 - name: node-10-0-10-147.dev.clouddomain
 ip: 10.0.10.147
 cluster: Default
 comment: 10.0.10.147
 networks:
 - name: ctlplane
 phy_dev: eth1
 - name: tenant
 phy_dev: eth2
 # provide power management if needed (for all nodes)
 # pm:
 # address: 192.168.122.1
 # port: 6230
 # user: ipmi
 # password: qwe123QWE
 # type: ipmilan
 # options:
 # ipmilanplus: true
 - name: node-10-0-10-148.dev.clouddomain
 ip: 10.0.10.148
 cluster: node-10-0-10-148
 comment: 10.0.10.148
 networks:
 - name: ctlplane

387

 phy_dev: eth1
 - name: tenant
 phy_dev: eth2
 - name: node-10-0-10-149.dev.clouddomain
 ip: 10.0.10.149
 cluster: node-10-0-10-149
 comment: 10.0.10.149
 networks:
 - name: ctlplane
 phy_dev: eth1
 - name: tenant
 phy_dev: eth2
 - name: node-10-0-10-150.dev.clouddomain
 ip: 10.0.10.150
 cluster: node-10-0-10-150
 comment: 10.0.10.150
 networks:
 - name: ctlplane
 phy_dev: eth1
 - name: tenant
 phy_dev: eth2
!!! Adjust storages according to your setup architecture
storage:
 - name: undercloud
 mountpoint: "/storage/undercloud"
 host: node-10-0-10-147.dev.clouddomain
 address: node-10-0-10-147.dev.clouddomain
 - name: ipa
 mountpoint: "/storage/ipa"
 host: node-10-0-10-147.dev.clouddomain
 address: node-10-0-10-147.dev.clouddomain
 - name: node-10-0-10-148-overcloud
 mountpoint: "/storage/overcloud"
 host: node-10-0-10-148.dev.clouddomain
 address: node-10-0-10-148.dev.clouddomain
 - name: node-10-0-10-149-overcloud
 mountpoint: "/storage/overcloud"
 host: node-10-0-10-149.dev.clouddomain
 address: node-10-0-10-149.dev.clouddomain
 - name: node-10-0-10-150-overcloud
 mountpoint: "/storage/overcloud"
 host: node-10-0-10-150.dev.clouddomain
 address: node-10-0-10-150.dev.clouddomain

388

EOF

Playbook to register hypervisor nodes in RHVM, create storage pools and networks
Adjust values to your setup!!!
cat << EOF > infra.yaml
- hosts: localhost
 tasks:
 - name: Get RHVM token
 ovirt_auth:
 url: "https://{{ ovirt_hostname }}/ovirt-engine/api"
 username: "{{ ovirt_user }}"
 password: "{{ ovirt_password }}"
 insecure: true
 - name: Create datacenter
 ovirt_datacenter:
 state: present
 auth: "{{ ovirt_auth }}"
 name: "{{ datacenter_name }}"
 local: false
 - name: Create clusters {{ item.name }}
 ovirt_cluster:
 state: present
 auth: "{{ ovirt_auth }}"
 name: "{{ item.cluster }}"
 data_center: "{{ datacenter_name }}"
 ksm: true
 ballooning: true
 memory_policy: server
 with_items:
 - "{{ nodes }}"
 - name: List host in datacenter
 ovirt_host_info:
 auth: "{{ ovirt_auth }}"
 pattern: "datacenter={{ datacenter_name }}"
 register: host_list
 - set_fact:
 hostnames: []
 - name: List hostname
 set_fact:
 hostnames: "{{ hostnames + [item.name] }}"
 with_items:
 - "{{ host_list['ovirt_hosts'] }}"
 - name: Register in RHVM

389

 ovirt_host:
 state: present
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}"
 cluster: "{{ item.cluster }}"
 address: "{{ item.ip }}"
 comment: "{{ item.comment | default(item.ip) }}"
 power_management_enabled: "{{ item.power_management_enabled | default(false) }}"
 # unsupported in rhel yet - to avoid reboot create node via web
 # reboot_after_installation: "{{ item.reboot_after_installation | default(false) }}"
 reboot_after_upgrade: "{{ item.reboot_after_upgrade | default(false) }}"
 public_key: "{{ ssh_public_key }}"
 password: "{{ ssh_root_password }}"
 register: task_result
 until: not task_result.failed
 retries: 5
 delay: 10
 when: item.name not in hostnames
 with_items:
 - "{{ nodes }}"
 - name: Register Power Management for host
 ovirt_host_pm:
 state: present
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}"
 address: "{{ item.pm.address }}"
 username: "{{ item.pm.user }}"
 password: "{{ item.pm.password }}"
 type: "{{ item.pm.type }}"
 options: "{{ item.pm.pm_options | default(omit) }}"
 when: item.pm is defined
 with_items:
 - "{{ nodes }}"
 - name: Create storage domains
 ovirt_storage_domain:
 state: present
 auth: "{{ ovirt_auth }}"
 data_center: "{{ datacenter_name }}"
 name: "{{ item.name }}"
 domain_function: "data"
 host: "{{ item.host }}"
 nfs:
 address: "{{ item.address | default(item.host) }}"

390

 path: "{{ item.mountpoint }}"
 version: "auto"
 register: task_result
 until: not task_result.failed
 retries: 5
 delay: 10
 with_items:
 - "{{ storage }}"
 - name: Create logical networks
 ovirt_network:
 state: present
 auth: "{{ ovirt_auth }}"
 data_center: "{{ datacenter_name }}"
 name: "{{ datacenter_name }}-{{ item.1.name }}"
 clusters:
 - name: "{{ item.0.cluster }}"
 vlan_tag: "{{ item.1.vlan | default(omit)}}"
 vm_network: true
 with_subelements:
 - "{{ nodes }}"
 - networks
 - name: Create host networks
 ovirt_host_network:
 state: present
 auth: "{{ ovirt_auth }}"
 networks:
 - name: "{{ datacenter_name }}-{{ item.1.name }}"
 boot_protocol: none
 name: "{{ item.0.name }}"
 interface: "{{ item.1.phy_dev }}"
 with_subelements:
 - "{{ nodes }}"
 - networks
 - name: Remove vNICs network_filter
 ovirt.ovirt.ovirt_vnic_profile:
 state: present
 auth: "{{ ovirt_auth }}"
 name: "{{ datacenter_name }}-{{ item.1.name }}"
 network: "{{ datacenter_name }}-{{ item.1.name }}"
 data_center: "{{ datacenter_name }}"
 network_filter: ""
 with_subelements:
 - "{{ nodes }}"

391

 - networks
 - name: Revoke SSO Token
 ovirt_auth:
 state: absent
 ovirt_auth: "{{ ovirt_auth }}"
EOF

Deploy Nodes and Networking

To deploy the nodes and enable networking:

ansible-playbook \
 --extra-vars="@common-env.yaml" \
 --extra-vars="@nodes.yaml" \
 infra.yaml

Check Hosts

If a host is in Reboot status, go to the extended menu and select 'Confirm Host has been rebooted"'

Prepare images

To prepare the images:

1. Make a folder for the images:

mkdir ~/images

2. Download the RHEL8.4 base image from RedHat downloads (Red Hat account required). Move the
files into the ~/images directory that you created in the previous step.

Create Overcloud VMs

IN THIS SECTION

Prepare Images for the Kubernetes Cluster | 393

Prepare Overcloud VM Definitions | 393

392

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-software

Follow the instructions in this section to create the overcloud VMs:

Prepare Images for the Kubernetes Cluster

If you are deploying the Contrail Control plane in a Kubernetes cluster, follow this example to prepare
the images for the Contrail Controllers:

cd
cloud_image=images/rhel-8.4-x86_64-kvm.qcow2
root_password=contrail123
stack_password=contrail123
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 images/overcloud.qcow2 100G
virt-resize --expand /dev/sda3 ${cloud_image} images/overcloud.qcow2
virt-customize -a images/overcloud.qcow2 \
 --run-command 'xfs_growfs /' \
 --root-password password:${root_password} \
 --run-command 'useradd stack' \
 --password stack:password:${stack_password} \
 --run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
 --chmod 0440:/etc/sudoers.d/stack \
 --run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
 --run-command 'systemctl enable sshd' \
 --selinux-relabel

Note that Kubernetes has to be deployed separately on the nodes. This can be done a variety of ways.
For information on performing this task using Kubespray, see this Kubespray page on Github.

Contrail Controllers can be deployed using the TF operator on top of Kubernetes. See the TF Operator
Github page.

Prepare Overcloud VM Definitions

To prepare the overcloud VM definitions:

Overcloud VMs definitions
Adjust values to your setup!!!
For deploying Contrail Control plane in a Kuberentes cluster
remove contrail controller nodes as they are not managed by RHOSP. They to be created at next
steps.
cat << EOF > vms.yaml

393

https://github.com/kubernetes-sigs/kubespray.git
https://github.com/tungstenfabric/tf-operator

vms:
 - name: controller-0
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:16:54:d8"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 cluster: node-10-0-10-148
 storage: node-10-0-10-148-overcloud
 - name: contrail-controller-0
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:d6:2b:03"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 cluster: node-10-0-10-148
 storage: node-10-0-10-148-overcloud
 - name: contrail-controller-1
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:d6:2b:13"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 cluster: node-10-0-10-149

394

 storage: node-10-0-10-149-overcloud
 - name: contrail-controller-2
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:d6:2b:23"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 cluster: node-10-0-10-150
 storage: node-10-0-10-150-overcloud
EOF

Playbook for overcloud VMs
!!! Adjustto your setup
cat << EOF > overcloud.yaml
- hosts: localhost
 tasks:
 - name: Get RHVM token
 ovirt_auth:
 url: "https://{{ ovirt_hostname }}/ovirt-engine/api"
 username: "{{ ovirt_user }}"
 password: "{{ ovirt_password }}"
 insecure: true
 - name: Create disks
 ovirt_disk:
 auth: "{{ ovirt_auth }}"
 name: "{{ item.name }}"
 interface: virtio
 size: "{{ item.disk_size_gb }}GiB"
 format: cow
 image_path: "{{ item.image | default(omit) }}"
 storage_domain: "{{ item.storage }}"
 register: task_result
 ignore_errors: yes
 until: not task_result.failed
 retries: 5
 delay: 10
 with_items:

395

 - "{{ vms }}"
 - name: Deploy VMs
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 state: "{{ item.state | default('present') }}"
 cluster: "{{ item.cluster }}"
 name: "{{ item.name }}"
 memory: "{{ item.memory_gb }}GiB"
 cpu_cores: "{{ item.cpu_cores }}"
 type: server
 high_availability: yes
 placement_policy: pinned
 operating_system: rhel_8x64
 disk_format: cow
 graphical_console:
 protocol:
 - spice
 - vnc
 serial_console: yes
 nics: "{{ item.nics | default(omit) }}"
 disks:
 - name: "{{ item.name }}"
 bootable: True
 storage_domain: "{{ item.storage }}"
 cloud_init: "{{ item.cloud_init | default(omit) }}"
 cloud_init_nics: "{{ item.cloud_init_nics | default(omit) }}"
 retries: 5
 delay: 2
 with_items:
 - "{{ vms }}"
 - name: Revoke SSO Token
 ovirt_auth:
 state: absent
 ovirt_auth: "{{ ovirt_auth }}"
EOF

ansible-playbook \
 --extra-vars="@common-env.yaml" \
 --extra-vars="@vms.yaml" \
 overcloud.yaml

396

Create Contrail Control Plane VMs for Kubernetes-based Deployments

IN THIS SECTION

Customize VM image for Kubernetes VMs | 397

Define the Kubernetes VMs | 398

Configure VLANs for RHOSP Internal API networks | 401

Follow the instructions in this section in side-by-side deployments where the Contrail Control plane is
deployed as a separate Kubernetes-based cluster.

Customize VM image for Kubernetes VMs

To customize the VM image for Kubernetes VMs:

cd
cloud_image=images/rhel-8.4-x86_64-kvm.qcow2
root_password=contrail123
stack_password=contrail123
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 images/k8s.qcow2 100G
virt-resize --expand /dev/sda3 ${cloud_image} images/k8s.qcow2
virt-customize -a images/k8s.qcow2 \
 --run-command 'xfs_growfs /' \
 --root-password password:${root_password} \
 --password stack:password:${stack_password} \
 --run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
 --chmod 0440:/etc/sudoers.d/stack \
 --run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
 --run-command 'systemctl enable sshd' \
 --selinux-relabel

397

Define the Kubernetes VMs

To define the Kubernetes VMs:

!!! Adjust to your setup (addresses in ctlplane, tenant and mgmt networks)
cat << EOF > k8s-vms.yaml

vms:
 - name: contrail-controller-0
 state: running
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:16:54:d8"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 - name: eth2
 interface: virtio
 profile_name: "ovirtmgmt"
 cluster: node-10-0-10-148
 storage: node-10-0-10-148-overcloud
 image: "images/k8s.qcow2"
 cloud_init:
 # ctlplane network
 host_name: "contrail-controller-0.{{ overcloud_domain }}"
 dns_search: "{{ overcloud_domain }}"
 dns_servers: "{{ ipa_ctlplane_ip }}"
 nic_name: "eth0"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "192.168.24.7"
 nic_gateway: "{{ undercloud_ctlplane_ip }}"
 nic_netmask: "255.255.255.0"
 cloud_init_nics:
 # tenant network
 - nic_name: "eth1"
 nic_boot_protocol_v6: none

398

 nic_boot_protocol: static
 nic_ip_address: "10.0.0.201"
 nic_netmask: "255.255.255.0"
 # mgmt network
 - nic_name: "eth2"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "10.0.10.210"
 nic_netmask: "255.255.255.0"
 - name: contrail-controller-1
 state: running
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:d6:2b:03"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 - name: eth2
 interface: virtio
 profile_name: "ovirtmgmt"
 cluster: node-10-0-10-149
 storage: node-10-0-10-149-overcloud
 image: "images/k8s.qcow2"
 cloud_init:
 host_name: "contrail-controller-1.{{ overcloud_domain }}"
 dns_search: "{{ overcloud_domain }}"
 dns_servers: "{{ ipa_ctlplane_ip }}"
 nic_name: "eth0"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "192.168.24.8"
 nic_gateway: "{{ undercloud_ctlplane_ip }}"
 nic_netmask: "255.255.255.0"
 cloud_init_nics:
 - nic_name: "eth1"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "10.0.0.202"

399

 nic_netmask: "255.255.255.0"
 # mgmt network
 - nic_name: "eth2"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "10.0.10.211"
 nic_netmask: "255.255.255.0"
 - name: contrail-controller-2
 state: running
 disk_size_gb: 100
 memory_gb: 16
 cpu_cores: 4
 nics:
 - name: eth0
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 mac_address: "52:54:00:d6:2b:23"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-tenant"
 - name: eth2
 interface: virtio
 profile_name: "ovirtmgmt"
 cluster: node-10-0-10-150
 storage: node-10-0-10-150-overcloud
 image: "images/k8s.qcow2"
 cloud_init:
 host_name: "contrail-controller-1.{{ overcloud_domain }}"
 dns_search: "{{ overcloud_domain }}"
 dns_servers: "{{ ipa_ctlplane_ip }}"
 nic_name: "eth0"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "192.168.24.9"
 nic_gateway: "{{ undercloud_ctlplane_ip }}"
 nic_netmask: "255.255.255.0"
 cloud_init_nics:
 - nic_name: "eth1"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "10.0.0.203"
 nic_netmask: "255.255.255.0"EOF
 # mgmt network

400

 - nic_name: "eth2"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "10.0.10.212"
 nic_netmask: "255.255.255.0"
EOF

ansible-playbook \
 --extra-vars="@common-env.yaml" \
 --extra-vars="@k8s-vms.yaml" \
 overcloud.yaml

Configure VLANs for RHOSP Internal API networks

To SSH to Kubernetes nodes and configure VLANS for RHOSP Internal API Networks:

Example

ssh to a node
ssh stack@192.168.24.7

!!!Adjust to your setup and repeate for all Contrail Controller nodes
cat {{EOF | sudo tee /etc/sysconfig/network-scripts/ifcfg-vlan710
ONBOOT=yes
BOOTPROTO=static
HOTPLUG=no
NM_CONTROLLED=no
PEERDNS=no
USERCTL=yes
VLAN=yes
DEVICE=vlan710
PHYSDEV=eth0
IPADDR=10.1.0.7
NETMASK=255.255.255.0
EOF
sudo ifup vlan710

Do same for external vlan if needed

401

Create Undercloud VM

IN THIS SECTION

Customize the image for Undercloud VM | 402

Define Undercloud VM | 403

Follow the instructions in this section to the create the undercloud VM:

Customize the image for Undercloud VM

To customer the image for the undercloud VM:

cd
cloud_image=images/rhel-8.4-x86_64-kvm.qcow2
undercloud_name=undercloud
domain_name=dev.clouddomain
root_password=contrail123
stack_password=contrail123
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 images/${undercloud_name}.qcow2 100G
virt-resize --expand /dev/sda3 ${cloud_image} images/${undercloud_name}.qcow2
virt-customize -a images/${undercloud_name}.qcow2 \
 --run-command 'xfs_growfs /' \
 --root-password password:${root_password} \
 --hostname ${undercloud_name}.${domain_name} \
 --run-command 'useradd stack' \
 --password stack:password:${stack_password} \
 --run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
 --chmod 0440:/etc/sudoers.d/stack \
 --run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
 --run-command 'systemctl enable sshd' \
 --selinux-relabel

402

Define Undercloud VM

To define the undercloud VM:

cat << EOF > undercloud.yaml
- hosts: localhost
 tasks:
 - set_fact:
 cluster: "Default"
 storage: "undercloud"
 - name: get RHVM token
 ovirt_auth:
 url: "https://{{ ovirt_hostname }}/ovirt-engine/api"
 username: "{{ ovirt_user }}"
 password: "{{ ovirt_password }}"
 insecure: true
 - name: create disks
 ovirt_disk:
 auth: "{{ ovirt_auth }}"
 name: "{{ undercloud_name }}"
 interface: virtio
 format: cow
 size: 100GiB
 image_path: "images/{{ undercloud_name }}.qcow2"
 storage_domain: "{{ storage }}"
 register: task_result
 ignore_errors: yes
 until: not task_result.failed
 retries: 5
 delay: 10
 - name: deploy vms
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 state: running
 cluster: "{{ cluster }}"
 name: "{{ undercloud_name }}"
 memory: 32GiB
 cpu_cores: 8
 type: server
 high_availability: yes
 placement_policy: pinned
 operating_system: rhel_8x64

403

 cloud_init:
 host_name: "{{ undercloud_name }}.{{ overcloud_domain }}"
 dns_search: "{{ overcloud_domain }}"
 dns_servers: "{{ dns_server | default(mgmt_gateway) }}"
 nic_name: "eth0"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "{{ undercloud_mgmt_ip }}"
 nic_gateway: "{{ mgmt_gateway }}"
 nic_netmask: "255.255.255.0"
 cloud_init_nics:
 - nic_name: "eth1"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "{{ undercloud_ctlplane_ip }}"
 nic_netmask: "255.255.255.0"
 disk_format: cow
 graphical_console:
 protocol:
 - spice
 - vnc
 serial_console: yes
 nics:
 - name: eth0
 interface: virtio
 profile_name: "ovirtmgmt"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 disks:
 - name: "{{ undercloud_name }}"
 bootable: true
 storage_domain: "{{ storage }}"
 - name: revoke SSO token
 ovirt_auth:
 state: absent
 ovirt_auth: "{{ ovirt_auth }}"
EOF

ansible-playbook --extra-vars="@common-env.yaml" undercloud.yaml

404

Create FreeIPA VM

IN THIS SECTION

Customize VM image for RedHat IDM (FreeIPA) VM | 405

Enable the RedHat IDM (FreeIPA) VM | 406

Access to RHVM via a web browser | 408

Access to VMs via serial console | 408

To create the FreeIPA VM:

Customize VM image for RedHat IDM (FreeIPA) VM

Follow this example to customer the VM image for the RedHat IDM image.

This example is setup for a TLS everywhere deployment.

cd
cloud_image=images/rhel-8.4-x86_64-kvm.qcow2
ipa_name=ipa
domain_name=dev.clouddomain
qemu-img create -f qcow2 images/${ipa_name}.qcow2 100G
virt-resize --expand /dev/sda3 ${cloud_image} images/${ipa_name}.qcow2
virt-customize -a images/${ipa_name}.qcow2 \
 --run-command 'xfs_growfs /' \
 --root-password password:${root_password} \
 --hostname ${ipa_name}.${domain_name} \
 --run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
 --run-command 'systemctl enable sshd' \
 --selinux-relabel

405

Enable the RedHat IDM (FreeIPA) VM

To enable the RedHat IDM VM:

cat << EOF > ipa.yaml
- hosts: localhost
 tasks:
 - set_fact:
 cluster: "Default"
 storage: "ipa"
 - name: get RHVM token
 ovirt_auth:
 url: "https://{{ ovirt_hostname }}/ovirt-engine/api"
 username: "{{ ovirt_user }}"
 password: "{{ ovirt_password }}"
 insecure: true
 - name: create disks
 ovirt_disk:
 auth: "{{ ovirt_auth }}"
 name: "{{ ipa_name }}"
 interface: virtio
 format: cow
 size: 100GiB
 image_path: "images/{{ ipa_name }}.qcow2"
 storage_domain: "{{ storage }}"
 register: task_result
 ignore_errors: yes
 until: not task_result.failed
 retries: 5
 delay: 10
 - name: deploy vms
 ovirt.ovirt.ovirt_vm:
 auth: "{{ ovirt_auth }}"
 state: running
 cluster: "{{ cluster }}"
 name: "{{ ipa_name }}"
 memory: 4GiB
 cpu_cores: 2
 type: server
 high_availability: yes
 placement_policy: pinned
 operating_system: rhel_8x64

406

 cloud_init:
 host_name: "{{ ipa_name }}.{{ overcloud_domain }}"
 dns_search: "{{ overcloud_domain }}"
 dns_servers: "{{ dns_server | default(mgmt_gateway) }}"
 nic_name: "eth0"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "{{ ipa_mgmt_ip }}"
 nic_gateway: "{{ mgmt_gateway }}"
 nic_netmask: "255.255.255.0"
 cloud_init_nics:
 - nic_name: "eth1"
 nic_boot_protocol_v6: none
 nic_boot_protocol: static
 nic_ip_address: "{{ ipa_ctlplane_ip }}"
 nic_netmask: "255.255.255.0"
 disk_format: cow
 graphical_console:
 protocol:
 - spice
 - vnc
 serial_console: yes
 nics:
 - name: eth0
 interface: virtio
 profile_name: "ovirtmgmt"
 - name: eth1
 interface: virtio
 profile_name: "{{ datacenter_name }}-ctlplane"
 disks:
 - name: "{{ ipa_name }}"
 bootable: true
 storage_domain: "{{ storage }}"
 - name: revoke SSO token
 ovirt_auth:
 state: absent
 ovirt_auth: "{{ ovirt_auth }}"
EOF

ansible-playbook --extra-vars="@common-env.yaml" ipa.yaml

407

Access to RHVM via a web browser

RHVM can be accessed only using the engine FQDN or one of the engine alternate FQDNs. For
example, https://vmengine.dev.clouddomain. Please ensure that the FQDN can be resolved.

Access to VMs via serial console

To access the VMs via serial console, see the RedHat documentation or the oVirt documentation.

Setting Up the Undercloud for RHOSP 16.2

SUMMARY

Follow this topic to setup the undercloud for a
Contrail Networking deployment with RHOSP 16.2.

IN THIS SECTION

Install the Undercloud | 408

Perform Post-Install Configuration | 410

Follow this topic to setup the undercloud for a Contrail Networking deployment with RHOSP 16.2.

Contrail Networking was enhanced to operate with hosts using Red Hat Virtualization (RHV) in Contrail
Networking Release 21.4.L2 or later. Prior to this enhancement, Contrail Networking was supported in
environments with hosts using Kernel-based Virtual Machine (KVM) only.

These instructions apply to both environments.

Install the Undercloud

Use this example procedure to install the undercloud.

1. Log in to the undercloud VM from the undercloud KVM host.

ssh ${undercloud_ip}

2. Configure the hostname.

undercloud_name=`hostname -s`
undercloud_suffix=`hostname -d`

408

https://www.ovirt.org/documentation/virtual_machine_management_guide/

hostnamectl set-hostname ${undercloud_name}.${undercloud_suffix}
hostnamectl set-hostname --transient ${undercloud_name}.${undercloud_suffix}

3. Add the hostname to the /etc/hosts file. The following example assumes the management interface
is eth0.

undercloud_ip=`ip addr sh dev eth0 | grep "inet " | awk '{print $2}' | awk -F"/" '{print $1}'`
echo ${undercloud_ip} ${undercloud_name}.${undercloud_suffix} ${undercloud_name} >> /etc/hosts

4. Set up the repositories.

RHEL

#Register with Satellite (can be done with CDN as well)
satellite_fqdn=device.example.net
act_key=xxx
org=example
yum localinstall -y http://${satellite_fqdn}/pub/katello-ca-consumer-latest.noarch.rpm
subscription-manager register --activationkey=${act_key} --org=${org}

5. Install the Tripleo client.

yum install -y python-tripleoclient tmux

6. Copy the undercloud configuration file sample and modify the configuration as required. See Red Hat
documentation for information on how to modify that file.

su - stack
cp /usr/share/python-tripleoclient/undercloud.conf.sample ~/undercloud.conf
vi ~/undercloud.conf

7. Install the undercloud.

openstack undercloud install
source stackrc

8. If you are using a satellite for deployment, manually update the hostname and satellite IP addresses
in your /etc/hosts/ file.

409

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/installing-the-undercloud#configuring-the-undercloud-with-environment-files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/installing-the-undercloud#configuring-the-undercloud-with-environment-files

To perform this procedure using the VI editor:

(undercloud) [stack@osp16-5c5s36 ~]$ sudo vi /etc/hosts

and manually enter your hostname and satellite IP address in the file while using the editor.

This step ensures that the overcloud deployment is successful later in the procedure.

You should also perform this step if the overcloud deployment fails later in the procedure and a failed
lookup URL message appears on the console as the reason.

A sample failed lookup URL error message when you experience this issue:.

========================
TASK [redhat-subscription : SATELLITE | Run Satellite 6 tasks] *****************
Tuesday 30 March 2021 12:11:25 -0400 (0:00:00.490) 0:13:39.737 *********
included: /usr/share/ansible/roles/redhat-subscription/tasks/satellite-6.yml for overcloud-
controller-0, overcloud-controller-1, overcloud-controller-2
TASK [redhat-subscription : SATELLITE 6 | Set Satellite server CA as a fact] ***Tuesday 30
March 2021 12:11:26 -0400 (0:00:00.730) 0:13:40.467 *********
fatal: [overcloud-controller-0]: FAILED! =) {"msg": "An unhandled exception occurred while
running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>, original
message: Failed lookup url for : <urlopen error [Errno -2] Name or service not
known>"}fatal: [overcloud-controller-1]: FAILED! =) {"msg": "An unhandled exception occurred
while running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>,
original message: Failed lookup url for : <urlopen error [Errno -2] Name or service not
known>"}

fatal: [overcloud-controller-2]: FAILED! =) {"msg": "An unhandled exception occurred while
running the lookup plugin 'url'. Error was a <class 'ansible.errors.AnsibleError'>, original
message: Failed lookup url for : <urlopen error [Errno -2] Name or service not known>"}

Perform Post-Install Configuration

After installing the undercloud,

1. Configure a forwarding path between the provisioning network and the external network:

sudo iptables -A FORWARD -i br-ctlplane -o eth0 -j ACCEPT
sudo iptables -A FORWARD -i eth0 -o br-ctlplane -m state --state RELATED,ESTABLISHED -j

410

ACCEPT
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

2. Add the external API interface:

sudo ip link add name vlan720 link br-ctlplane type vlan id 720
sudo ip addr add 10.2.0.254/24 dev vlan720
sudo ip link set dev vlan720 up

3. Add the stack user to the docker group:

newgrp docker
exit
su - stack
source stackrc

4. Manually add the satellite IP address and hostname into the /etc/hosts/ file.

Setting Up the Overcloud for RHOSP 16.2

SUMMARY

Follow this topic to setup the overcloud for a
Contrail Networking deployment with RHOSP 16.2.

IN THIS SECTION

Configuring the Overcloud | 412

Customizing the Contrail Service with
Templates (contrail-services.yaml) | 416

Customizing the Contrail Network with
Templates | 419

Installing Overcloud | 446

Follow this topic to setup the overcloud for a Contrail Networking deployment with RHOSP 16.2.

Contrail Networking was enhanced to operate with hosts using Red Hat Virtualization (RHV) in Contrail
Networking Release 21.4.L2 or later. Prior to this enhancement, Contrail Networking was supported in
environments with hosts using Kernel-based Virtual Machine (KVM) only.

411

These instructions apply to both environments unless otherwise noted. In cases where the running
virtualization engine impacts this procedure, the steps to perform in environments using RHV or KVM
are noted.

Configuring the Overcloud

Use this example procedure on the undercloud to set up the configuration for the overcloud.

1. Specify the name server to be used:

undercloud_nameserver=8.8.8.8
openstack subnet set `openstack subnet show ctlplane-subnet -c id -f value` --dns-nameserver $
{undercloud_nameserver}

2. Retrieve and upload the overcloud images.

a. Create the image directory:

mkdir images
cd images

b. Retrieve the overcloud images from either the RDO project or from RHOSO 16.2.

sudo yum install -y rhosp-director-images rhosp-director-images-ipa
for i in /usr/share/rhosp-director-images/overcloud-full-latest-16.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-16.0.tar ; do tar -xvf $i; done

c. Upload the overcloud images:

cd
openstack overcloud image upload --image-path /home/stack/images/

3. Prepare OpenStack’s bare metal provisioning (Ironic).

The Ironic driver installation depends on the virtualization engine running for Red Hat Openstack:

• Red Hat Virtualization (RHV, Contrail Networking Release 21.4.L2 and later): Use staging-ovirt to
download the Ironic driver.

See the Creating virtualized control planes document from Red Hat to enable the control plane
with the staging-ovirt driver.

412

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/assembly_creating-virtualized-control-planes

• Kernel-based Virtual Machine (KVM, Contrail Networking Release 21.3 and earlier releases that
support RHOSP16): Use the IPMI driver to download the Ironic driver.

The IPMI driver download procedure is provided in these steps.

NOTE: Make sure to combine the ironic_list files from the three overcloud KVM hosts.

a. Add the overcloud VMs to Ironic:

ipmi_password=<password>
ipmi_user=<user>
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=profile:$
{profile},boot_option:local \
 -c uuid -f value`
 openstack baremetal port create --node ${uuid} ${mac}
done < <(cat ironic_list)

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node set $i --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
done

413

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node show $i -c properties -f value
done

b. Introspect the overcloud node:

for node in $(openstack baremetal node list -c UUID -f value) ; do
 openstack baremetal node manage $node
done
openstack overcloud node introspect --all-manageable --provide

4. Create Flavor:

for i in compute-dpdk \
compute-sriov \
contrail-controller \
contrail-analytics \
contrail-database \
contrail-analytics-database; do
 openstack flavor create $i --ram 4096 --vcpus 1 --disk 40
 openstack flavor set --property "capabilities:boot_option"="local" \
 --property "capabilities:profile"="${i}" ${i}
 openstack flavor set --property resources:CUSTOM_BAREMETAL=1 --property
resources:DISK_GB='0'
 --property resources:MEMORY_MB='0'
 --property resources:VCPU='0' ${i}
done

5. Copy the TripleO heat templates.

cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates

6. Download and copy the Contrail heat templates from https://support.juniper.net/support/downloads.

tar -xzvf contrail-tripleo-heat-templates-<version>.tgz
cp -r contrail-tripleo-heat-templates/* tripleo-heat-templates/

414

https://support.juniper.net/support/downloads

7. Create rhsm.yaml file with your RedHat credentials

parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - fast-datapath-for-rhel-8-x86_64-rpms
 - openstack-16.1-for-rhel-8-x86_64-rpms
 - satellite-tools-6.5-for-rhel-8-x86_64-rpms
 - ansible-2-for-rhel-8-x86_64-rpms
 - rhel-8-for-x86_64-highavailability-rpms
 - rhel-8-for-x86_64-appstream-rpms
 - rhel-8-for-x86_64-baseos-rpms
 rhsm_username: "YOUR_REDHAT_LOGIN"
 rhsm_password: "YOUR_REDHAT_PASSWORD"
 rhsm_org_id: "YOUR_REDHAT_ID"
 rhsm_pool_ids: "YOUR_REDHAT_POOL_ID"

8. Create and upload the OpenStack containers.

a. Create the OpenStack container file.

NOTE: The container must be created based on the OpenStack program.

OSP16.2

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml
 -e ~/rhsm.yaml > ~/overcloud_containers.yaml

sudo openstack overcloud container image upload --config-file ~/overcloud_containers.yaml

b. Upload the OpenStack containers:

openstack overcloud container image upload --config-file ~/local_registry_images.yaml

9. Create and upload the Contrail containers.

a. Create the Contrail container file.

415

NOTE: This step is optional. The Contrail containers can be downloaded from
external registries later.

cd ~/tf-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-
u username] [-p password] [-c certificate path]

Here are few examples of importing Contrail containers from different sources:

• Import from password protected public registry:

./import_contrail_container.sh -f /tmp/contrail_container -r hub.juniper.net/contrail -
u USERNAME -p PASSWORD -t 1234

• Import from Dockerhub:

./import_contrail_container.sh -f /tmp/contrail_container -r docker.io/
opencontrailnightly -t 1234

• Import from private secure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -
c http://device.example.net/pub/device.example.net.crt -t 1234

• Import from private insecure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

b. Upload Contrail containers to the undercloud registry:

openstack overcloud container image upload --config-file /tmp/contrail_container

Customizing the Contrail Service with Templates (contrail-services.yaml)

This section contains information to customize Contrail services for your network by modifying the
contrail-services.yaml file.

416

• APPLY_DEFAULTS Settings customization - When Contrail is deployed for the first time, the default
value of APPLY_DEFAULTS parameter in the ContrailDefaults section needs to be set to
’True’. This enables provisioning parameters present inside the template to use day0
configuration whenever a config provisioning container is restarted. Thus, the provisioning
parameters are template driven and any changes to Contrail settings should be done through TripleO
templates.

Contrail Networking allows you to configure some global configuration parameters like VXLAN
network id mode, linklocal configuration, IBGP auto mesh configuration, enabling 4byte_AS, and
changing BGP Global ASN through its web user interface. If you want to manage your cluster
through web user interface, then you need to set APPLY_DEFAULTS=False in ContrailDefaults
section and deploy your cluster again by running openstack overcloud deploy. This additional step is
required because when you have changed Contrail global configuration parameters through web user
interface, then there is a possibility for these global configuration parameters to be overwritten if any
config provisioner container is restarted. In order to avoid these values to be overwritten, set
APPLY_DEFAULTS as ’False’ and deploy Contrail again by running openstack
overcloud deploy command. As a result, the global configuration parameters remain unchanged as
provisioning is not executed again.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your Contrail
cluster, set VxLAN Identifier Mode to ’User Configured’ from web user interface, and
restart config provisioner container, then VxLAN Identifier Mode will remain ’User
Configured’ after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container, VxLAN
Identifier Mode will change to its default value, which is Automatic.

For example, if you set APPLY_DEFAULTS=False through TripleO template, deploy your Contrail
cluster, set VxLAN Identifier Mode to ’User Configured’ from web user interface, and
restart config provisioner container, then VxLAN Identifier Mode will remain ’User
Configured’ after the restart of config provisioner container. On the contrary, if
APPLY_DEFAULTS is set to True, then after the restart of config provisioner container, VxLAN
Identifier Mode will change to its default value, which is Automatic.

APPLY_DEFAULTS=True/False (default: True)

• Contrail Services customization

vi ~/tripleo-heat-templates/environments/contrail-services.yaml
parameter_defaults:
 ContrailSettings:
 VROUTER_GATEWAY: 10.0.0.1
 # KEY1: value1

417

 # KEY2: value2

 VXLAN_VN_ID_MODE: "configured"
 ENCAP_PRIORITY: "VXLAN,MPLSoUDP,MPLSoGRE"

 ContrailControllerParameters:
 AAAMode: rbac

• Contrail registry settings

vi ~/tripleo-heat-templates/environments/contrail-services.yaml

Here are few examples of default values for various registries:

• Public Juniper registry

parameter_defaults:
 ContrailRegistry: hub.juniper.net/contrail
 ContrailRegistryUser: <USER>
 ContrailRegistryPassword: <PASSWORD>

• Insecure registry

parameter_defaults:
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 10.87.64.32:5000,192.168.24.1:8787
 ContrailRegistry: 10.87.64.32:5000

• Private secure registry

parameter_defaults:
 ContrailRegistryCertUrl: http://device.example.net/pub/device.example.net.crt
 ContrailRegistry: device.example.net:5443

• Contrail Container image settings

parameter_defaults:
 ContrailImageTag: queens-5.0-104-rhel-queens

418

Customizing the Contrail Network with Templates

IN THIS SECTION

Overview | 419

Roles Configuration (roles_data_contrail_aio.yaml) | 420

Network Parameter Configuration (contrail-net.yaml) | 423

Network Interface Configuration (*-NIC-*.yaml) | 424

Advanced vRouter Kernel Mode Configuration | 435

Advanced vRouter DPDK Mode Configuration | 437

Advanced vRouter SRIOV + Kernel Mode Configuration | 440

Advanced vRouter SRIOV + DPDK Mode Configuration | 443

Overview

In order to customize the network, define different networks and configure the overcloud nodes NIC
layout. TripleO supports a flexible way of customizing the network.

The following networking customization example uses network as:

Table 28: Network Customization

Network VLAN overcloud Nodes

provisioning - All

internal_api 710 All

external_api 720 OpenStack CTRL

storage 740 OpenStack CTRL, Computes

storage_mgmt 750 OpenStack CTRL

tenant - Contrail CTRL, Computes

419

Roles Configuration (roles_data_contrail_aio.yaml)

IN THIS SECTION

OpenStack Controller | 420

Compute Node | 421

Contrail Controller | 421

Compute DPDK | 421

Compute SRIOV | 422

Compute CSN | 422

The networks must be activated per role in the roles_data file:

vi ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

OpenStack Controller

###
Role: Controller
###
- name: Controller
 description: |
 Controller role that has all the controler services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt

420

Compute Node

###
Role: Compute
###
- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 networks:
 - InternalApi
 - Tenant
 - Storage

Contrail Controller

###
Role: ContrailController
###
- name: ContrailController
 description: |
 ContrailController role that has all the Contrail controler services loaded
 and handles config, control and webui functions
 CountDefault: 1
 tags:
 - primary
 - contrailcontroller
 networks:
 - InternalApi
 - Tenant

Compute DPDK

###
Role: ContrailDpdk
###
- name: ContrailDpdk
 description: |
 Contrail Dpdk Node role

421

 CountDefault: 0
 tags:
 - contraildpdk
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute SRIOV

###
Role: ContrailSriov
###
- name: ContrailSriov
 description: |
 Contrail Sriov Node role
 CountDefault: 0
 tags:
 - contrailsriov
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute CSN

###
Role: ContrailTsn
###
- name: ContrailTsn
 description: |
 Contrail Tsn Node role
 CountDefault: 0
 tags:
 - contrailtsn
 networks:
 - InternalApi
 - Tenant
 - Storage

422

Network Parameter Configuration (contrail-net.yaml)

cat ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml
resource_registry:
 OS::TripleO::Controller::Net::SoftwareConfig: ../../network/config/contrail/controller-nic-
config.yaml
 OS::TripleO::ContrailController::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::ContrailControlOnly::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: ../../network/config/contrail/compute-nic-
config.yaml
 OS::TripleO::ContrailDpdk::Net::SoftwareConfig: ../../network/config/contrail/contrail-dpdk-
nic-config.yaml
 OS::TripleO::ContrailSriov::Net::SoftwareConfig: ../../network/config/contrail/contrail-sriov-
nic-config.yaml
 OS::TripleO::ContrailTsn::Net::SoftwareConfig: ../../network/config/contrail/contrail-tsn-nic-
config.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 TenantNetCidr: 10.0.0.0/24
 InternalApiNetCidr: 10.1.0.0/24
 ExternalNetCidr: 10.2.0.0/24
 StorageNetCidr: 10.3.0.0/24
 StorageMgmtNetCidr: 10.4.0.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 # Allocation pools
 TenantAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 StorageAllocationPools: [{'start': '10.3.0.10', 'end': '10.3.0.200'}]
 StorageMgmtAllocationPools: [{'start': '10.4.0.10', 'end': '10.4.0.200'}]
 # Routes
 ControlPlaneDefaultRoute: 192.168.24.1
 InternalApiDefaultRoute: 10.1.0.1
 ExternalInterfaceDefaultRoute: 10.2.0.1
 # Vlans
 InternalApiNetworkVlanID: 710
 ExternalNetworkVlanID: 720
 StorageNetworkVlanID: 730

423

 StorageMgmtNetworkVlanID: 740
 TenantNetworkVlanID: 3211
 # Services
 EC2MetadataIp: 192.168.24.1 # Generally the IP of the undercloud
 DnsServers: ["172.x.x.x"]
 NtpServer: 10.0.0.1

Network Interface Configuration (*-NIC-*.yaml)

IN THIS SECTION

OpenStack Controller | 424

Contrail Controller | 428

Compute Node | 431

NIC configuration files exist per role in the following directory:

cd ~/tripleo-heat-templates/network/config/contrail

OpenStack Controller

heat_template_version: rocky

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string

424

 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.

425

 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1

426

 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: ExternalNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:

427

 get_param: StorageMgmtIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Contrail Controller

heat_template_version: rocky
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:

428

 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template

429

 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:

430

 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Compute Node

heat_template_version: rocky
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string

431

 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.

432

 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr

433

 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

434

Advanced vRouter Kernel Mode Configuration

IN THIS SECTION

VLAN | 435

Bond | 436

Bond + VLAN | 436

In addition to the standard NIC configuration, the vRouter kernel mode supports VLAN, Bond, and Bond
+ VLAN modes. The configuration snippets below only show the relevant section of the NIC template
configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

435

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID

436

 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter DPDK Mode Configuration

IN THIS SECTION

Standard | 438

VLAN | 438

Bond | 439

Bond + VLAN | 439

In addition to the standard NIC configuration, the vRouter DPDK mode supports Standard, VLAN, Bond,
and Bond + VLAN modes.

Network Environment Configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

 # For Intel CPU
 ContrailDpdkParameters:

437

 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4
 vm.max_map_count:
 value: 128960

See the following NIC template configurations for vRouter DPDK mode. The configuration snippets
below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface

438

 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:

439

 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + Kernel Mode Configuration

IN THIS SECTION

VLAN | 441

Bond | 442

Bond + VLAN | 442

vRouter SRIOV + Kernel mode can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4

440

hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

SRIOV PF/VF settings:

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter kernel mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

441

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID

442

 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + DPDK Mode Configuration

IN THIS SECTION

Standard | 444

VLAN | 445

Bond | 445

Bond + VLAN | 446

vRouter SRIOV + DPDK can be used in the following combinations:

• Standard

• VLAN

• Bond

• Bond + VLAN

443

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages

ContrailSriovParameters:
 KernelArgs: "intel_iommu=on iommu=pt default_hugepagesz=1GB hugepagesz=1G hugepages=4
hugepagesz=2M hugepages=1024"
 ExtraSysctlSettings:
 # must be equal to value from 1G kernel args: hugepages=4
 vm.nr_hugepages:
 value: 4

SRIOV PF/VF settings

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter DPDK mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:

444

 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:

445

 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Installing Overcloud

Perform the following procedure to install Overcloud.

1. Deployment:

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --stack overcloud --libvirt-type kvm \
 --roles-file $role_file \
 -e tripleo-heat-templates/environments/rhsm.yaml \
 -e tripleo-heat-templates/environments/network-isolation.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \

446

 -e containers-prepare-parameter.yaml \
 -e rhsm.yaml

2. Validation Test:

source overcloudrc
curl -O http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
openstack image create --container-format bare --disk-format qcow2 --file cirros-0.3.5-x86_64-
disk.img cirros
openstack flavor create --public cirros --id auto --ram 64 --disk 0 --vcpus 1
openstack network create net1
openstack subnet create --subnet-range 1.0.0.0/24 --network net1 sn1
nova boot --image cirros --flavor cirros --nic net-id=`openstack network show net1 -c id -f
value` --availability-zone nova:overcloud-novacompute-0.localdomain c1
nova list

447

CHAPTER 9

Setting Up Contrail with Red Hat OpenStack 13

IN THIS CHAPTER

Understanding Red Hat OpenStack Platform Director | 448

Setting Up the Infrastructure | 453

Setting Up the Undercloud | 463

Setting Up the Overcloud | 466

Using Netronome SmartNIC vRouter with Contrail Networking | 510

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Understanding Red Hat OpenStack Platform Director

IN THIS SECTION

Red Hat OpenStack Platform Director | 448

Contrail Roles | 449

Undercloud Requirements | 450

Overcloud Requirements | 450

Networking Requirements | 451

Compatibility Matrix | 452

Installation Summary | 453

Red Hat OpenStack Platform Director

This chapter explains how to integrate a Contrail 5.1.x installation (or higher) with Red Hat OpenStack
Platform Director 13.

448

Red Hat OpenStack Platform provides an installer called the Red Hat OpenStack Platform director
(RHOSPd or OSPd), which is a toolset based on the OpenStack project TripleO (OOO, OpenStack on
OpenStack). TripleO is an open source project that uses features of OpenStack to deploy a fully
functional, tenant-facing OpenStack environment.

TripleO can be used to deploy an RDO-based OpenStack environment integrated with Tungsten Fabric.
Red Hat OpenStack Platform director can be used to deploy an RHOSP-based OpenStack environment
integrated with Contrail.

OSPd uses the concepts of undercloud and overcloud. OSPd sets up an undercloud, a single server
running an operator-facing deployment that contains the OpenStack components needed to deploy and
manage an overcloud, a tenant-facing deployment that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

OSPd leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Ceilometer collects metrics about the overcloud.

For more information about OSPd architecture, see OSPd documentation.

Contrail Roles

OSPd supports composable roles, which are groups of services that you define through Heat templates.
Composable roles allow you to integrate Contrail into the overcloud environment.

The following are the Contrail roles used for integrating into the overcloud:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

449

https://docs.openstack.org/developer/tripleo-docs/introduction/architecture.html

Figure 42 on page 450 shows the relationship and components of an undercloud and overcloud
architecture for Contrail.

Figure 42: Undercloud and Overcloud with Roles

Undercloud Requirements

The undercloud is a single server or VM that hosts the OpenStack Platform director, which is an
OpenStack installation used to provision OpenStack on the overcloud.

See Undercloud Requirements for the compute requirements of the undercloud.

Overcloud Requirements

The overcloud roles can be deployed to bare metal servers or to virtual machines (VMs), but the
compute nodes must be deployed to bare metal systems. Every overcloud node must support IPMI for
booting up from the undercloud using PXE.

Ensure the following requirements are met for the Contrail nodes per role.

• Non-high availability: A minimum of 4 overcloud nodes are needed for control plane roles for a non-
high availability deployment:

• 1x contrail-config (includes Contrail control)

450

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/chap-requirements#sect-Undercloud_Requirements

• 1x contrail-analytics

• 1x contrail-analytics-database

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

If the control plane roles are deployed to VMs, use 3 separate physical servers and deploy one role of
each kind to each physical server.

See Overcloud Requirements for the compute requirements of the overcloud.

Networking Requirements

As a minimum, the installation requires two networks:

• provisioning network - This is the private network that the undercloud uses to provision the
overcloud.

• external network - This is the externally-routable network you use to access the undercloud and
overcloud nodes.

Ensure the following requirements are met for the provisioning network:

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the
second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs will be referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vSwitch bridge will be
created for Neutron, and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

451

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/director_installation_and_usage/chap-requirements#sect-Overcloud_Requirements

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

• All of the networks must be available to all of the Contrail roles and computes.

While the provisioning and external networks are sufficient for basic applications, you should create
additional networks in most overcloud environments to provide isolation for the different traffic types
by assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network. If only
some isolated networks are configured, traffic belonging to a network not configured runs on the
provisioning network.

The following networks are typically deployed when using network isolation topology:

• Provisioning - used by the undercloud to provision the overcloud

• Internal API - used by OpenStack services to communicate with each other

• Tenant - used for tenant overlay data plane traffic (one network per tenant)

• Storage - used for storage data traffic

• Storage Management - used for storage control and management traffic

• External - provides external access to the undercloud and overcloud, including external access to the
web UIs and public APIs

• Floating IP - provides floating IP access to the tenant network (can either be merged with external or
can be a separate network)

• Management - provides access for system administration

For more information on the different network types, see Planning Networks.

For more information on networking requirements, see Networking Requirements.

Compatibility Matrix

The following combinations of Operating System/OpenStack/Deployer/Contrail are supported:

452

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#sect-Planning_Networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/#sect-Networking_Requirements

Table 29: Compatibility Matrix

Operating System OpenStack Deployer Contrail

RHEL 7.5 OSP13 OSPd13 Contrail 5.1.x or higher

CentOS 7.5 RDO queens/stable tripleo queens/stable Tungsten Fabric (latest)

Installation Summary

The general installation procedure is as follows:

• Set up the infrastructure, which is the set of servers or VMs that host the undercloud and overcloud,
including the provisioning network that connects them together.

• Set up the undercloud, which is the OSPd application.

• Set up the overcloud, which is the set of services in the tenant-facing network. Contrail is part of the
overcloud.

For more information on installing and using the RHOSPd, see Red Hat documentation.

Setting Up the Infrastructure

IN THIS SECTION

Target Configuration (Example) | 453

Configure the External Physical Switch | 456

Configure KVM Hosts | 457

Create the Overcloud VM Definitions on the Overcloud KVM Hosts | 459

Create the Undercloud VM Definition on the Undercloud KVM Host | 461

Target Configuration (Example)

Undercloud and overcloud KVM hosts require virtual switches and virtual machine definitions to be
configured. You can deploy any KVM host operating system version that supports KVM and OVS. The

453

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/

following example shows a RHEL/CentOS based system. If you are using RHEL, you must subscribe the
system.

The following example illustrates all control plane functions as Virtual Machines hosted on KVM hosts.

There are different ways to create the infrastructure providing the control plane elements. To illustrate
the installation procedure, we will use four host machines for the infrastructure, each running KVM.
KVM1 contains a VM running the undercloud while KVM2 through KVM4 each contains a VM running
an OpenStack controller and a Contrail controller (Table 30 on page 454).

Table 30: Control Plane Infrastructure

KVM Host Virtual Machines

KVM1 undercloud

KVM2 OpenStack Controller 1, Contrail Contoller 1

KVM3 OpenStack Controller 2, Contrail Contoller 2

KVM4 OpenStack Controller 3, Contrail Contoller 3

Figure 43 on page 455 shows the physical connectivity where each KVM host and each compute node
has two interfaces that connect to an external switch. These interfaces attach to separate virtual bridges
within the VM, allowing for two physically separate networks (external and provisioning networks).

454

Figure 43: Physical View

Figure 44 on page 456 shows the logical view of the connectivity where VLANs are used to provide
further network separation for the different OpenStack network types.

455

Figure 44: Logical View

The following sections describe how to configure the infrastructure, the undercloud, and finally the
overcloud.

Configure the External Physical Switch

Configure the ports and VLANs on the external physical switch according to the following table:

Table 31: External Physical Switch Port and VLAN Configuration

Port Trunked VLAN Native VLAN

ge0 - -

456

Table 31: External Physical Switch Port and VLAN Configuration (Continued)

Port Trunked VLAN Native VLAN

ge1 700, 720 -

ge2 700, 710, 720, 730, 740, 750 -

ge3 - -

ge4 710, 730 700

ge5 - -

Configure KVM Hosts

Use this example procedure to install the required packages and start KVM and Open vSwitch on each
undercloud and overcloud KVM host.

1. Log in to a KVM host.

2. Install the required packages.

yum install -y libguestfs \
 libguestfs-tools \
 openvswitch \
 virt-install \
 kvm libvirt \
 libvirt-python \
 python-virtualbmc \
 python-virtinst

3. Start KVM and Open vSwitch.

systemctl start libvirtd
systemctl start openvswitch

4. Additionally, on the overcloud nodes only, create and start the virtual switches br0 and br1.

457

Table 32: vSwitch Configuration

Bridge Trunked VLAN Native VLAN

br0 710, 720, 730 740, 750 700

br1 - -

Create the virtual switches and bind them to the respective interfaces.
ovs-vsctl add-br br0
ovs-vsctl add-br br1
ovs-vsctl add-port br0 NIC1
ovs-vsctl add-port br1 NIC2

Create the configuration file for br0.
cat << EOF > br0.xml
<network>
 <name>br0</name>
 <forward mode='bridge'/>
 <bridge name='br0'/>
 <virtualport type='openvswitch'/>
 <portgroup name='overcloud'/>
 <vlan trunk='yes'>
 <tag id='700' nativeMode='untagged'/>
 <tag id='710'/>
 <tag id='720'/>
 <tag id='730'/>
 <tag id='740'/>
 <tag id='750'/>
 </vlan>
 </portgroup>
</network>
EOF

Create the configuration file for br1.
cat << EOF > br1.xml
<network>
 <name>br1</name>

458

 <forward mode=’bridge’/>
 <bridge name='br1'/>
 <virtualport type='openvswitch'/>
</network>
EOF

Create the br0 network based on the configuration file.
virsh net-define br0.xml
virsh net-start br0
virsh net-autostart br0

Create the br1 network based on the configuration file.
virsh net-define br1.xml
virsh net-start br1
virsh net-autostart br1

5. Repeat step 1 through step 4 for each KVM host.

Create the Overcloud VM Definitions on the Overcloud KVM Hosts

Use this example procedure on each overcloud KVM host (KVM2 to KVM4) to do the following:

• create the VM definitions for that overcloud KVM host

• create and start a virtual baseboard management controller for that overcloud KVM host so that the
VM can be managed using IPMI

• create an ironic_list file to be used by the undercloud

This example procedure creates a VM definition consisting of 2 compute nodes, 1 Contrail controller
node, and 1 OpenStack controller node on each overcloud KVM host.

1. Log in to an overcloud KVM host.

2. Specify the roles you want to create.

ROLES=compute:2,contrail-controller:1,control:1

3. Create the VM definitions.

Initialize and specify the IPMI user and password you want to use.
num=0
ipmi_user=<user>

459

ipmi_password=<password>
libvirt_path=/var/lib/libvirt/images
port_group=overcloud
prov_switch=br0
/bin/rm ironic_list

For each role and instance specified in the ROLES variable:
- create the VM definition
- create and start a virtual baseboard management controller (vbmc)
- store the VM information into an ironic_list file (for later use in the undercloud)
IFS=',' read -ra role_list <<< "${ROLES}"
for role in ${role_list[@]}; do
 role_name=`echo $role|cut -d ":" -f 1`
 role_count=`echo $role|cut -d ":" -f 2`
 for count in `seq 1 ${role_count}`; do
 echo $role_name $count
 qemu-img create -f qcow2 ${libvirt_path}/${role_name}_${count}.qcow2 99G
 virsh define /dev/stdin <<EOF
 $(virt-install --name ${role_name}_${count} \
 --disk ${libvirt_path}/${role_name}_${count}.qcow2 \
 --vcpus=4 \
 --ram=16348 \
 --network network=br0,model=virtio,portgroup=${port_group} \
 --network network=br1,model=virtio \
 --virt-type kvm \
 --cpu host \
 --import \
 --os-variant rhel7 \
 --serial pty \
 --console pty,target_type=virtio \
 --graphics vnc \
 --print-xml)
EOF
 vbmc add ${role_name}_${count} --port 1623${num} --username ${ipmi_user} --password $
{ipmi_password}
 vbmc start ${role_name}_${count}
 prov_mac=`virsh domiflist ${role_name}_${count}|grep ${prov_switch}|awk '{print $5}'`
 vm_name=${role_name}-${count}-`hostname -s`
 kvm_ip=`ip route get 1 |grep src |awk '{print $7}'`
 echo ${prov_mac} ${vm_name} ${kvm_ip} ${role_name} 1623${num}>> ironic_list
 num=$(expr $num + 1)

460

 done
done

4. Repeat step 1 through step 3 on each overcloud KVM host.

CAUTION: This procedure creates one ironic_list file per overcloud KVM host. Combine
the contents of each file into a single ironic_list file on the undercloud.

The following shows the resulting ironic_list file after you combine the contents from
each separate file:

52:54:00:e7:ca:9a compute-1-5b3s31 10.87.64.32 compute 16230 52:54:00:30:6c:3f compute-2-5b3s31
10.87.64.32 compute 16231 52:54:00:9a:0c:d5 contrail-controller-1-5b3s31 10.87.64.32 contrail-
controller 16232 52:54:00:cc:93:d4 control-1-5b3s31 10.87.64.32 control 16233 52:54:00:28:10:d4
compute-1-5b3s30 10.87.64.31 compute 16230 52:54:00:7f:36:e7 compute-2-5b3s30 10.87.64.31 compute
16231 52:54:00:32:e5:3e contrail-controller-1-5b3s30 10.87.64.31 contrail-controller 16232
52:54:00:d4:31:aa control-1-5b3s30 10.87.64.31 control 16233 52:54:00:d1:d2:ab compute-1-5b3s32
10.87.64.33 compute 16230 52:54:00:ad:a7:cc compute-2-5b3s32 10.87.64.33 compute 16231
52:54:00:55:56:50 contrail-controller-1-5b3s32 10.87.64.33 contrail-controller 16232
52:54:00:91:51:35 control-1-5b3s32 10.87.64.33 control 16233

Create the Undercloud VM Definition on the Undercloud KVM Host

Use this example procedure on the undercloud KVM host (KVM1) to create the undercloud VM
definition and to start the undercloud VM.

1. Create the images directory.

mkdir ~/images
cd images

2. Retrieve the image.

• CentOS

curl https://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1802.qcow2.xz -
o CentOS-7-x86_64-GenericCloud-1802.qcow2.xz
unxz -d images/CentOS-7-x86_64-GenericCloud-1802.qcow2.xz
cloud_image=~/images/CentOS-7-x86_64-GenericCloud-1802.qcow2

461

• RHEL

Download rhel-server-7.5-update-1-x86_64-kvm.qcow2 from the Red Hat portal to ~/images.
cloud_image=~/images/rhel-server-7.5-update-1-x86_64-kvm.qcow2

3. Customize the undercloud image.

undercloud_name=queensa
undercloud_suffix=local
root_password=<password>
stack_password=<password>
export LIBGUESTFS_BACKEND=direct
qemu-img create -f qcow2 /var/lib/libvirt/images/${undercloud_name}.qcow2 100G
virt-resize --expand /dev/sda1 ${cloud_image} /var/lib/libvirt/images/$
{undercloud_name}.qcow2
virt-customize -a /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--run-command 'xfs_growfs /' \
--root-password password:${root_password} \
--hostname ${undercloud_name}.${undercloud_suffix} \
--run-command 'useradd stack' \
--password stack:password:${stack_password} \
--run-command 'echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack' \
--chmod 0440:/etc/sudoers.d/stack \
--run-command 'sed -i "s/PasswordAuthentication no/PasswordAuthentication yes/g" /etc/ssh/
sshd_config' \
--run-command 'systemctl enable sshd' \
--run-command 'yum remove -y cloud-init' \
--selinux-relabel

NOTE: As part of the undercloud definition, a user called stack is created. This user will
be used later to install the undercloud.

4. Define the undercloud virsh template.

vcpus=8
vram=32000
virt-install --name ${undercloud_name} \
--disk /var/lib/libvirt/images/${undercloud_name}.qcow2 \
--vcpus=${vcpus} \
--ram=${vram} \

462

--network network=default,model=virtio \
--network network=br0,model=virtio,portgroup=overcloud \
--virt-type kvm \
--import \
--os-variant rhel7 \
--graphics vnc \
--serial pty \
--noautoconsole \
--console pty,target_type=virtio

5. Start the undercloud VM.

virsh start ${undercloud_name}

6. Retrieve the undercloud IP address. It might take several seconds before the IP address is available.

undercloud_ip=`virsh domifaddr ${undercloud_name} |grep ipv4 |awk '{print $4}' |awk -F"/"
'{print $1}'` ssh-copy-id ${undercloud_ip}

Setting Up the Undercloud

IN THIS SECTION

Install the Undercloud | 463

Perform Post-Install Configuration | 465

Install the Undercloud

Use this example procedure to install the undercloud.

1. Log in to the undercloud VM from the undercloud KVM host.

ssh ${undercloud_ip}

463

2. Configure the hostname.

undercloud_name=`hostname -s`
undercloud_suffix=`hostname -d`
hostnamectl set-hostname ${undercloud_name}.${undercloud_suffix}
hostnamectl set-hostname --transient ${undercloud_name}.${undercloud_suffix}

3. Add the hostname to the /etc/hosts file. The following example assumes the management interface
is eth0.

undercloud_ip=`ip addr sh dev eth0 | grep "inet " | awk '{print $2}' | awk -F"/" '{print $1}'`
echo ${undercloud_ip} ${undercloud_name}.${undercloud_suffix} ${undercloud_name} >> /etc/hosts

4. Set up the repositories.

• CentOS

tripleo_repos=`python -c 'import requests;r = requests.get("https://trunk.rdoproject.org/
centos7-queens/current"); print r.text ' | grep python2-tripleo-repos|awk -F"href=\""
'{print $2}' | awk -F"\"" '{print $1}'`
yum install -y https://trunk.rdoproject.org/centos7-queens/current/${tripleo_repos}
tripleo-repos -b queens current

• RHEL

#Register with Satellite (can be done with CDN as well)
satellite_fqdn=device.example.net
act_key=xxx
org=example
yum localinstall -y http://${satellite_fqdn}/pub/katello-ca-consumer-latest.noarch.rpm
subscription-manager register --activationkey=${act_key} --org=${org}

5. Install the Tripleo client.

yum install -y python-tripleoclient tmux

464

6. Copy the undercloud configuration file sample and modify the configuration as required. See Red Hat
documentation for information on how to modify that file.

su - stack
cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf
vi ~/undercloud.conf

7. Install the undercloud.

openstack undercloud install
source stackrc

Perform Post-Install Configuration

1. Configure a forwarding path between the provisioning network and the external network:

sudo iptables -A FORWARD -i br-ctlplane -o eth0 -j ACCEPT
sudo iptables -A FORWARD -i eth0 -o br-ctlplane -m state --state RELATED,ESTABLISHED -j
ACCEPT
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

2. Add the external API interface:

sudo ip link add name vlan720 link br-ctlplane type vlan id 720
sudo ip addr add 10.2.0.254/24 dev vlan720
sudo ip link set dev vlan720 up

3. Add the stack user to the docker group:

newgrp docker
exit
su - stack
source stackrc

465

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/

Setting Up the Overcloud

IN THIS SECTION

Configuring the Overcloud | 466

Customizing the Contrail Service with Templates (contrail-services.yaml) | 472

Customizing the Contrail Network with Templates | 473

Installing Overcloud | 509

Configuring the Overcloud

Use this example procedure on the undercloud to set up the configuration for the overcloud.

1. Specify the name server to be used:

undercloud_nameserver=8.8.8.8
openstack subnet set `openstack subnet show ctlplane-subnet -c id -f value` --dns-nameserver $
{undercloud_nameserver}

2. Retrieve and upload the overcloud images.

a. Create the image directory:

mkdir images
cd images

b. Retrieve the overcloud images from either the RDO project or from Red Hat.

• TripleO

curl -O https://images.rdoproject.org/queens/rdo_trunk/current-tripleo-rdo/ironic-
python-agent.tar
curl -O https://images.rdoproject.org/queens/rdo_trunk/current-tripleo-rdo/overcloud-
full.tar
tar xvf ironic-python-agent.tar
tar xvf overcloud-full.tar

466

• OSP13

sudo yum install -y rhosp-director-images rhosp-director-images-ipa
for i in /usr/share/rhosp-director-images/overcloud-full-latest-13.0.tar /usr/share/
rhosp-director-images/ironic-python-agent-latest-13.0.tar ; do tar -xvf $i; done

c. Upload the overcloud images:

cd
openstack overcloud image upload --image-path /home/stack/images/

3. Prepare OpenStack’s bare metal provisioning (Ironic).

Ironic is an integrated OpenStack program that provisions bare metal machines instead of virtual
machines. It is best thought of as a bare metal hypervisor API and a set of plugins that interact with
the bare metal hypervisors.

NOTE: Make sure to combine the ironic_list files from the three overcloud KVM hosts.

a. Add the overcloud VMs to Ironic:

ipmi_password=<password>
ipmi_user=<user>
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=profile:$

467

{profile},boot_option:local \
 -c uuid -f value`
 openstack baremetal port create --node ${uuid} ${mac}
done < <(cat ironic_list)

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node set $i --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
done

for i in `openstack baremetal node list -c UUID -f value`; do
 openstack baremetal node show $i -c properties -f value
done

b. Introspect the overcloud node:

for node in $(openstack baremetal node list -c UUID -f value) ; do
 openstack baremetal node manage $node
done
openstack overcloud node introspect --all-manageable --provide

c. Add Baremetal Server (BMS) to Ironic.

• Create rules for automated profiling.

Evaluate the attributes of the physical server. The server will automatically be profiled based
on the rules.

The following example shows how to create a rule for system manufacturer as “Supermicro”
and memory greater or equal to 128 GB.

cat << EOF > ~/rule_compute.json
[
 {
 "description": "set physical compute",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Supermicro"},

468

 {"op": "ge", "field": "memory_mb", "value": 128000}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "<user>"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "<password>"},
 {"action": "set-capability", "name": "profile", "value": "compute"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address","value":
"{data[inventory][bmc_address]}"}
]
 }
]
EOF

You can import the rule by:

openstack baremetal introspection rule import ~/rule_compute.json

• Scan the BMC IP range and automatically add new servers matching the above rule by:

ipmi_range=10.87.122.25/32
ipmi_password=<password>
ipmi_user=<user>
openstack overcloud node discover --range ${ipmi_range} \
 --credentials ${ipmi_user}:${ipmi_password} \
 --introspect --provide

4. Create Flavor:

for i in compute-dpdk \
compute-sriov \
contrail-controller \
contrail-analytics \
contrail-database \
contrail-analytics-database; do
 openstack flavor create $i --ram 4096 --vcpus 1 --disk 40
 openstack flavor set --property "capabilities:boot_option"="local" \
 --property "capabilities:profile"="${i}" ${i}
done

469

5. Copy the TripleO heat templates.

cp -r /usr/share/openstack-tripleo-heat-templates/ tripleo-heat-templates

6. Download and copy the Contrail heat templates from https://support.juniper.net/support/downloads.

tar -xzvf contrail-tripleo-heat-templates-<version>.tgz
cp -r contrail-tripleo-heat-templates/* tripleo-heat-templates/

7. Create and upload the OpenStack containers.

a. Create the OpenStack container file.

NOTE: The container must be created based on the OpenStack program.

• TripleO

openstack overcloud container image prepare \
 --namespace docker.io/tripleoqueens \
 --tag current-tripleo \
 --tag-from-label rdo_version \
 --output-env-file=~/overcloud_images.yaml

tag=`grep "docker.io/tripleoqueens" docker_registry.yaml |tail -1 |awk -F":" '{print
$3}'`

openstack overcloud container image prepare \
 --namespace docker.io/tripleoqueens \
 --tag ${tag} \
 --push-destination 192.168.24.1:8787 \
 --output-env-file=~/overcloud_images.yaml \
 --output-images-file=~/local_registry_images.yaml

• OSP13

openstack overcloud container image prepare \
 --push-destination=192.168.24.1:8787 \
 --tag-from-label {version}-{release} \
 --output-images-file ~/local_registry_images.yaml \
 --namespace=registry.access.Red Hat.com/rhosp13 \

470

https://support.juniper.net/support/downloads

 --prefix=openstack- \
 --tag-from-label {version}-{release} \
 --output-env-file ~/overcloud_images.yaml

b. Upload the OpenStack containers:

openstack overcloud container image upload --config-file ~/local_registry_images.yaml

8. Create and upload the Contrail containers.

a. Create the Contrail container file.

NOTE: This step is optional. The Contrail containers can be downloaded from
external registries later.

cd ~/tripleo-heat-templates/tools/contrail
./import_contrail_container.sh -f container_outputfile -r registry -t tag [-i insecure] [-
u username] [-p password] [-c certificate pat

Here are few examples of importing Contrail containers from different sources:

• Import from password protected public registry:

./import_contrail_container.sh -f /tmp/contrail_container -r hub.juniper.net/contrail -
u USERNAME -p PASSWORD -t 1234

• Import from Dockerhub:

./import_contrail_container.sh -f /tmp/contrail_container -r docker.io/
opencontrailnightly -t 1234

• Import from private secure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r device.example.net:5443 -
c http://device.example.net/pub/device.example.net.crt -t 1234

471

• Import from private insecure registry:

./import_contrail_container.sh -f /tmp/contrail_container -r 10.0.0.1:5443 -i 1 -t 1234

b. Upload Contrail containers to the undercloud registry:

openstack overcloud container image upload --config-file /tmp/contrail_container

Customizing the Contrail Service with Templates (contrail-services.yaml)

This section contains information to customize Contrail services for your network by modifying the
contrail-services.yaml file.

• Contrail Services customization

vi ~/tripleo-heat-templates/environments/contrail-services.yaml
parameter_defaults:
 ContrailSettings:
 VROUTER_GATEWAY: 10.0.0.1
 # KEY1: value1
 # KEY2: value2

 VXLAN_VN_ID_MODE: "configured"
 ENCAP_PRIORITY: "VXLAN,MPLSoUDP,MPLSoGRE"

 ContrailControllerParameters:
 AAAMode: rbac

• Contrail registry settings

vi ~/tripleo-heat-templates/environments/contrail-services.yaml

Here are few examples of default values for various registries:

• Public Juniper registry

parameter_defaults:
 ContrailRegistry: hub.juniper.net/contrail

472

 ContrailRegistryUser: <USER>
 ContrailRegistryPassword: <PASSWORD>

• Insecure registry

parameter_defaults:
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 10.87.64.32:5000,192.168.24.1:8787
 ContrailRegistry: 10.87.64.32:5000

• Private secure registry

parameter_defaults:
 ContrailRegistryCertUrl: http://device.example.net/pub/device.example.net.crt
 ContrailRegistry: device.example.net:5443

• Contrail Container image settings

parameter_defaults:
 ContrailImageTag: queens-5.0-104-rhel-queens

Customizing the Contrail Network with Templates

IN THIS SECTION

Overview | 474

Roles Configuration (roles_data_contrail_aio.yaml) | 474

Network Parameter Configuration (contrail-net.yaml) | 477

Network Interface Configuration (*-NIC-*.yaml) | 478

Advanced vRouter Kernel Mode Configuration | 489

Advanced vRouter DPDK Mode Configuration | 492

Advanced vRouter SRIOV + Kernel Mode Configuration | 494

Advanced vRouter SRIOV + DPDK Mode Configuration | 497

Advanced Scenarios | 500

473

Overview

In order to customize the network, define different networks and configure the overcloud nodes NIC
layout. TripleO supports a flexible way of customizing the network.

The following networking customization example uses network as:

Table 33: Network Customization

Network VLAN overcloud Nodes

provisioning - All

internal_api 710 All

external_api 720 OpenStack CTRL

storage 740 OpenStack CTRL, Computes

storage_mgmt 750 OpenStack CTRL

tenant - Contrail CTRL, Computes

Roles Configuration (roles_data_contrail_aio.yaml)

IN THIS SECTION

OpenStack Controller | 475

Compute Node | 475

Contrail Controller | 476

Compute DPDK | 476

Compute SRIOV | 476

Compute CSN | 477

474

The networks must be activated per role in the roles_data file:

vi ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

OpenStack Controller

###
Role: Controller
###
- name: Controller
 description: |
 Controller role that has all the controler services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt

Compute Node

###
Role: Compute
###
- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 networks:
 - InternalApi
 - Tenant
 - Storage

475

Contrail Controller

###
Role: ContrailController
###
- name: ContrailController
 description: |
 ContrailController role that has all the Contrail controler services loaded
 and handles config, control and webui functions
 CountDefault: 1
 tags:
 - primary
 - contrailcontroller
 networks:
 - InternalApi
 - Tenant

Compute DPDK

###
Role: ContrailDpdk
###
- name: ContrailDpdk
 description: |
 Contrail Dpdk Node role
 CountDefault: 0
 tags:
 - contraildpdk
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute SRIOV

###
Role: ContrailSriov
###
- name: ContrailSriov

476

 description: |
 Contrail Sriov Node role
 CountDefault: 0
 tags:
 - contrailsriov
 networks:
 - InternalApi
 - Tenant
 - Storage

Compute CSN

###
Role: ContrailTsn
###
- name: ContrailTsn
 description: |
 Contrail Tsn Node role
 CountDefault: 0
 tags:
 - contrailtsn
 networks:
 - InternalApi
 - Tenant
 - Storage

Network Parameter Configuration (contrail-net.yaml)

cat ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml
resource_registry:
 OS::TripleO::Controller::Net::SoftwareConfig: ../../network/config/contrail/controller-nic-
config.yaml
 OS::TripleO::ContrailController::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::ContrailControlOnly::Net::SoftwareConfig: ../../network/config/contrail/contrail-
controller-nic-config.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: ../../network/config/contrail/compute-nic-
config.yaml
 OS::TripleO::ContrailDpdk::Net::SoftwareConfig: ../../network/config/contrail/contrail-dpdk-
nic-config.yaml

477

 OS::TripleO::ContrailSriov::Net::SoftwareConfig: ../../network/config/contrail/contrail-sriov-
nic-config.yaml
 OS::TripleO::ContrailTsn::Net::SoftwareConfig: ../../network/config/contrail/contrail-tsn-nic-
config.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 TenantNetCidr: 10.0.0.0/24
 InternalApiNetCidr: 10.1.0.0/24
 ExternalNetCidr: 10.2.0.0/24
 StorageNetCidr: 10.3.0.0/24
 StorageMgmtNetCidr: 10.4.0.0/24
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 # Allocation pools
 TenantAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 StorageAllocationPools: [{'start': '10.3.0.10', 'end': '10.3.0.200'}]
 StorageMgmtAllocationPools: [{'start': '10.4.0.10', 'end': '10.4.0.200'}]
 # Routes
 ControlPlaneDefaultRoute: 192.168.24.1
 InternalApiDefaultRoute: 10.1.0.1
 ExternalInterfaceDefaultRoute: 10.2.0.1
 # Vlans
 InternalApiNetworkVlanID: 710
 ExternalNetworkVlanID: 720
 StorageNetworkVlanID: 730
 StorageMgmtNetworkVlanID: 740
 TenantNetworkVlanID: 3211
 # Services
 EC2MetadataIp: 192.168.24.1 # Generally the IP of the undercloud
 DnsServers: ["172.x.x.x"]
 NtpServer: 10.0.0.1

Network Interface Configuration (*-NIC-*.yaml)

IN THIS SECTION

OpenStack Controller | 479

478

Contrail Controller | 482

Compute Node | 486

NIC configuration files exist per role in the following directory:

cd ~/tripleo-heat-templates/network/config/contrail

OpenStack Controller

heat_template_version: queens

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:

479

 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template

480

 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp

481

 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: ExternalNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Contrail Controller

heat_template_version: queens
description: >

482

 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20

483

 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:

484

 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 - type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
outputs:
 OS::stack_id:

485

 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Compute Node

heat_template_version: queens
description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role. This is an example for a Nova compute node using
 Contrail vrouter and the vhost0 interface.
parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal_api network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage_mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml

486

 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults

487

 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: ../../scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 list_join:
 - '/'
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 - ip_netmask: 169.x.x.x/32
 next_hop:
 get_param: EC2MetadataIp
 - default: true
 next_hop:
 get_param: ControlPlaneDefaultRoute
 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:

488

 get_param: InternalApiIpSubnet
 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: nic1
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 - type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value:
 get_resource: OsNetConfigImpl

Advanced vRouter Kernel Mode Configuration

IN THIS SECTION

VLAN | 490

Bond | 490

Bond + VLAN | 491

In addition to the standard NIC configuration, the vRouter kernel mode supports VLAN, Bond, and Bond
+ VLAN modes. The configuration snippets below only show the relevant section of the NIC template
configuration for each mode.

489

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface

490

 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

491

Advanced vRouter DPDK Mode Configuration

IN THIS SECTION

Standard | 492

VLAN | 493

Bond | 493

Bond + VLAN | 494

In addition to the standard NIC configuration, the vRouter DPDK mode supports Standard, VLAN, Bond,
and Bond + VLAN modes.

Network Environment Configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

parameter_defaults:
 ContrailDpdkHugepages1GB: 10

See the following NIC template configurations for vRouter DPDK mode. The configuration snippets
below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:

492

 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:

493

 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + Kernel Mode Configuration

IN THIS SECTION

VLAN | 495

Bond | 496

Bond + VLAN | 496

vRouter SRIOV + Kernel mode can be used in the following combinations:

494

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages:

parameter_defaults:
 ContrailSriovHugepages1GB: 10

SRIOV PF/VF settings:

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter kernel mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

VLAN

- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: nic2
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:

495

 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name: bond0
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

- type: linux_bond
 name: bond0
 bonding_options: "mode=4 xmit_hash_policy=layer2+3"
 use_dhcp: false

496

 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond0
- type: contrail_vrouter
 name: vhost0
 use_dhcp: false
 members:
 -
 type: interface
 name:
 str_replace:
 template: vlanVLANID
 params:
 VLANID: {get_param: TenantNetworkVlanID}
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced vRouter SRIOV + DPDK Mode Configuration

IN THIS SECTION

Standard | 498

VLAN | 499

Bond | 499

Bond + VLAN | 500

vRouter SRIOV + DPDK can be used in the following combinations:

497

• Standard

• VLAN

• Bond

• Bond + VLAN

Network environment configuration:

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

Enable the number of hugepages

parameter_defaults:
 ContrailSriovMode: dpdk
 ContrailDpdkHugepages1GB: 10
 ContrailSriovHugepages1GB: 10

SRIOV PF/VF settings

NovaPCIPassthrough:
- devname: "ens2f1"
 physical_network: "sriov1"
ContrailSriovNumVFs: ["ens2f1:7"]

The SRIOV NICs are not configured in the NIC templates. However, vRouter NICs must still be
configured. See the following NIC template configurations for vRouter DPDK mode. The configuration
snippets below only show the relevant section of the NIC configuration for each mode.

Standard

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 members:
 -
 type: interface
 name: nic2

498

 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond

- type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3

499

 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Bond + VLAN

 - type: contrail_vrouter_dpdk
 name: vhost0
 use_dhcp: false
 driver: uio_pci_generic
 cpu_list: 0x01
 vlan_id:
 get_param: TenantNetworkVlanID
 bond_mode: 4
 bond_policy: layer2+3
 members:
 -
 type: interface
 name: nic2
 use_dhcp: false
 -
 type: interface
 name: nic3
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Advanced Scenarios

Remote Compute

Remote Compute extends the data plane to remote locations (POP) whilest keeping the control plane
central. Each POP will have its own set of Contrail control services, which are running in the central
location. The difficulty is to ensure that the compute nodes of a given POP connect to the Control nodes
assigned to that POC. The Control nodes must have predictable IP addresses and the compute nodes
have to know these IP addresses. In order to achieve that the following methods are used:

• Custom Roles

• Static IP assignment

500

• Precise Node placement

• Per Node hieradata

Each overcloud node has a unique DMI UUID. This UUID is known on the undercloud node as well as on
the overcloud node. Hence, this UUID can be used for mapping node specific information. For each POP,
a Control role and a Compute role has to be created.

Overview

Mapping Table

501

Table 34: Mapping Table

Nova Name Ironic Name UUID KVM IP
Address

POP

overcloud
-contrailcontrolonly
-0

control-only-1-
5b3s30

Ironic UUID:
7d758dce-2784-
45fd-be09-5a41eb53e764

DMI UUID: 73F8D030-
E896-
4A95-A9F5-E1A4FEBE322D

5b3s30 10.0.0.11 POP1

overcloud
-contrailcontrolonly
-1

control-only-2-
5b3s30

Ironic UUID: d26abdeb-
d514-
4a37-a7fb-2cd2511c351f

DMI UUID: 14639A66-
D62C-
4408-82EE-FDDC4E509687

5b3s30 10.0.0.14 POP2

overcloud
-contrailcontrolonly
-2

control-only-1-
5b3s31

Ironic UUID: 91dd9fa9-e8eb-
4b51-8b5e-bbaffb6640e4

DMI UUID: 28AB0B57-
D612-
431E-B177-1C578AE0FEA4

5b3s31 10.0.0.12 POP1

overcloud
-contrailcontrolonly
-3

control-only-2-
5b3s31

Ironic UUID: 09fa57b8-580f-
42ec-bf10-a19573521ed4

DMI UUID:
09BEC8CB-77E9-
42A6-
AFF4-6D4880FD87D0

5b3s31 10.0.0.15 POP2

overcloud
-contrailcontrolonly
-4

control-only-1-
5b3s32

Ironic UUID: 4766799-24c8-
4e3b-af54-353f2b796ca4

DMI UUID: 3993957A-
ECBF-
4520-9F49-0AF6EE1667A7

5b3s32 10.0.0.13 POP1

502

Table 34: Mapping Table (Continued)

Nova Name Ironic Name UUID KVM IP
Address

POP

overcloud
-contrailcontrolonly
-5

control-only-2-
5b3s32

Ironic UUID: 58a803ae-
a785-
470e-9789-139abbfa74fb

DMI UUID: AF92F485-
C30C-
4D0A-BDC4-
C6AE97D06A66

5b3s32 10.0.0.16 POP2

ControlOnly preparation

Add ControlOnly overcloud VMs to overcloud KVM host

NOTE: This has to be done on the overcloud KVM hosts

Two ControlOnly overcloud VM definitions will be created on each of the overcloud KVM hosts.

ROLES=control-only:2
num=4
ipmi_user=<user>
ipmi_password=<password>
libvirt_path=/var/lib/libvirt/images
port_group=overcloud
prov_switch=br0

/bin/rm ironic_list
IFS=',' read -ra role_list <<< "${ROLES}"
for role in ${role_list[@]}; do
 role_name=`echo $role|cut -d ":" -f 1`
 role_count=`echo $role|cut -d ":" -f 2`
 for count in `seq 1 ${role_count}`; do
 echo $role_name $count
 qemu-img create -f qcow2 ${libvirt_path}/${role_name}_${count}.qcow2 99G
 virsh define /dev/stdin <<EOF
 $(virt-install --name ${role_name}_${count} \
--disk ${libvirt_path}/${role_name}_${count}.qcow2 \
--vcpus=4 \

503

--ram=16348 \
--network network=br0,model=virtio,portgroup=${port_group} \
--network network=br1,model=virtio \
--virt-type kvm \
--cpu host \
--import \
--os-variant rhel7 \
--serial pty \
--console pty,target_type=virtio \
--graphics vnc \
--print-xml)
EOF
 vbmc add ${role_name}_${count} --port 1623${num} --username ${ipmi_user} --password $
{ipmi_password}
 vbmc start ${role_name}_${count}
 prov_mac=`virsh domiflist ${role_name}_${count}|grep ${prov_switch}|awk '{print $5}'`
 vm_name=${role_name}-${count}-`hostname -s`
 kvm_ip=`ip route get 1 |grep src |awk '{print $7}'`
 echo ${prov_mac} ${vm_name} ${kvm_ip} ${role_name} 1623${num}>> ironic_list
 num=$(expr $num + 1)
 done
done

NOTE: The generated ironic_list will be needed on the undercloud to import the nodes
to Ironic.

Get the ironic_lists from the overcloud KVM hosts and combine them.

cat ironic_list_control_only
52:54:00:3a:2f:ca control-only-1-5b3s30 10.87.64.31 control-only 16234
52:54:00:31:4f:63 control-only-2-5b3s30 10.87.64.31 control-only 16235
52:54:00:0c:11:74 control-only-1-5b3s31 10.87.64.32 control-only 16234
52:54:00:56:ab:55 control-only-2-5b3s31 10.87.64.32 control-only 16235
52:54:00:c1:f0:9a control-only-1-5b3s32 10.87.64.33 control-only 16234
52:54:00:f3:ce:13 control-only-2-5b3s32 10.87.64.33 control-only 16235

Import:

ipmi_password=<password>
ipmi_user=<user>

504

DEPLOY_KERNEL=$(openstack image show bm-deploy-kernel -f value -c id)
DEPLOY_RAMDISK=$(openstack image show bm-deploy-ramdisk -f value -c id)

num=0
while IFS= read -r line; do
 mac=`echo $line|awk '{print $1}'`
 name=`echo $line|awk '{print $2}'`
 kvm_ip=`echo $line|awk '{print $3}'`
 profile=`echo $line|awk '{print $4}'`
 ipmi_port=`echo $line|awk '{print $5}'`
 uuid=`openstack baremetal node create --driver ipmi \
 --property cpus=4 \
 --property memory_mb=16348 \
 --property local_gb=100 \
 --property cpu_arch=x86_64 \
 --driver-info ipmi_username=${ipmi_user} \
 --driver-info ipmi_address=${kvm_ip} \
 --driver-info ipmi_password=${ipmi_password} \
 --driver-info ipmi_port=${ipmi_port} \
 --name=${name} \
 --property capabilities=boot_option:local \
 -c uuid -f value`
 openstack baremetal node set ${uuid} --driver-info deploy_kernel=$DEPLOY_KERNEL --driver-info
deploy_ramdisk=$DEPLOY_RAMDISK
 openstack baremetal port create --node ${uuid} ${mac}
 openstack baremetal node manage ${uuid}
 num=$(expr $num + 1)
done < <(cat ironic_list_control_only)

ControlOnly node introspection

openstack overcloud node introspect --all-manageable --provide

Get the ironic UUID of the ControlOnly nodes

openstack baremetal node list |grep control-only
| 7d758dce-2784-45fd-be09-5a41eb53e764 | control-only-1-5b3s30 | None | power off | available |
False |
| d26abdeb-d514-4a37-a7fb-2cd2511c351f | control-only-2-5b3s30 | None | power off | available |
False |

505

| 91dd9fa9-e8eb-4b51-8b5e-bbaffb6640e4 | control-only-1-5b3s31 | None | power off | available |
False |
| 09fa57b8-580f-42ec-bf10-a19573521ed4 | control-only-2-5b3s31 | None | power off | available |
False |
| f4766799-24c8-4e3b-af54-353f2b796ca4 | control-only-1-5b3s32 | None | power off | available |
False |
| 58a803ae-a785-470e-9789-139abbfa74fb | control-only-2-5b3s32 | None | power off | available |
False |

The first ControlOnly node on each of the overcloud KVM hosts will be used for POP1, the second for
POP2, and so and so forth.

Get the ironic UUID of the POP compute nodes:

openstack baremetal node list |grep compute
| 91d6026c-b9db-49cb-a685-99a63da5d81e | compute-3-5b3s30 | None | power off | available | False
|
| 8028eb8c-e1e6-4357-8fcf-0796778bd2f7 | compute-4-5b3s30 | None | power off | available | False
|
| b795b3b9-c4e3-4a76-90af-258d9336d9fb | compute-3-5b3s31 | None | power off | available | False
|
| 2d4be83e-6fcc-4761-86f2-c2615dd15074 | compute-4-5b3s31 | None | power off | available | False
|

The first two compute nodes belong to POP1 the second two compute nodes belong to POP2.

Create an input YAML using the ironic UUIDs:

 ~/subcluster_input.yaml

- subcluster: subcluster1
 asn: "65413"
 control_nodes:
 - uuid: 7d758dce-2784-45fd-be09-5a41eb53e764
 ipaddress: 10.0.0.11
 - uuid: 91dd9fa9-e8eb-4b51-8b5e-bbaffb6640e4
 ipaddress: 10.0.0.12
 - uuid: f4766799-24c8-4e3b-af54-353f2b796ca4
 ipaddress: 10.0.0.13
 compute_nodes:
 - uuid: 91d6026c-b9db-49cb-a685-99a63da5d81e
 vrouter_gateway: 10.0.0.1

506

 - uuid: 8028eb8c-e1e6-4357-8fcf-0796778bd2f7
 vrouter_gateway: 10.0.0.1
- subcluster: subcluster2
 asn: "65414"
 control_nodes:
 - uuid: d26abdeb-d514-4a37-a7fb-2cd2511c351f
 ipaddress: 10.0.0.14
 - uuid: 09fa57b8-580f-42ec-bf10-a19573521ed4
 ipaddress: 10.0.0.15
 - uuid: 58a803ae-a785-470e-9789-139abbfa74fb
 ipaddress: 10.0.0.16
 compute_nodes:
 - uuid: b795b3b9-c4e3-4a76-90af-258d9336d9fb
 vrouter_gateway: 10.0.0.1
 - uuid: 2d4be83e-6fcc-4761-86f2-c2615dd15074
 vrouter_gateway: 10.0.0.1

NOTE: Only control_nodes, compute_nodes, dpdk_nodes and sriov_nodes are
supported.

Generate subcluster environment:

~/tripleo-heat-templates/tools/contrail/create_subcluster_environment.py -i ~/
subcluster_input.yaml \
 -o ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml

Check subcluster environment file:

cat ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml
parameter_defaults:
 NodeDataLookup:
 041D7B75-6581-41B3-886E-C06847B9C87E:
 contrail_settings:
 CONTROL_NODES: 10.0.0.14,10.0.0.15,10.0.0.16
 SUBCLUSTER: subcluster2
 VROUTER_GATEWAY: 10.0.0.1
 09BEC8CB-77E9-42A6-AFF4-6D4880FD87D0:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2

507

 14639A66-D62C-4408-82EE-FDDC4E509687:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2
 28AB0B57-D612-431E-B177-1C578AE0FEA4:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 3993957A-ECBF-4520-9F49-0AF6EE1667A7:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 73F8D030-E896-4A95-A9F5-E1A4FEBE322D:
 contrail_settings:
 BGP_ASN: '65413'
 SUBCLUSTER: subcluster1
 7933C2D8-E61E-4752-854E-B7B18A424971:
 contrail_settings:
 CONTROL_NODES: 10.0.0.14,10.0.0.15,10.0.0.16
 SUBCLUSTER: subcluster2
 VROUTER_GATEWAY: 10.0.0.1
 AF92F485-C30C-4D0A-BDC4-C6AE97D06A66:
 contrail_settings:
 BGP_ASN: '65414'
 SUBCLUSTER: subcluster2
 BB9E9D00-57D1-410B-8B19-17A0DA581044:
 contrail_settings:
 CONTROL_NODES: 10.0.0.11,10.0.0.12,10.0.0.13
 SUBCLUSTER: subcluster1
 VROUTER_GATEWAY: 10.0.0.1
 E1A809DE-FDB2-4EB2-A91F-1B3F75B99510:
 contrail_settings:
 CONTROL_NODES: 10.0.0.11,10.0.0.12,10.0.0.13
 SUBCLUSTER: subcluster1
 VROUTER_GATEWAY: 10.0.0.1

Deployment

508

Add contrail-subcluster.yaml, contrail-ips-from-pool-all.yaml and contrail-scheduler-hints.yaml to the
OpenStack deploy command:

openstack overcloud deploy --templates ~/tripleo-heat-templates \
 -e ~/overcloud_images.yaml \
 -e ~/tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-subcluster.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-ips-from-pool-all.yaml \
 -e ~/tripleo-heat-templates/environments/contrail/contrail-scheduler-hints.yaml \
 --roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

Installing Overcloud

1. Deployment:

openstack overcloud deploy --templates ~/tripleo-heat-templates \
-e ~/overcloud_images.yaml \
-e ~/tripleo-heat-templates/environments/network-isolation.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
--roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

2. Validation Test:

source overcloudrc
curl -O http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
openstack image create --container-format bare --disk-format qcow2 --file cirros-0.3.5-x86_64-
disk.img cirros
openstack flavor create --public cirros --id auto --ram 64 --disk 0 --vcpus 1
openstack network create net1
openstack subnet create --subnet-range 1.0.0.0/24 --network net1 sn1
nova boot --image cirros --flavor cirros --nic net-id=`openstack network show net1 -c id -f
value` --availability-zone nova:overcloud-novacompute-0.localdomain c1
nova list

509

RELATED DOCUMENTATION

Installing a Nested Red Hat OpenShift Container Platform 3.11 Cluster Using Contrail Ansible
Deployer

Using Netronome SmartNIC vRouter with Contrail Networking

NOTE: The Netronome SmartNIC vRouter technology covered in this document is
available for evaluation purposes only. It is not intended for deployment in production
networks.

Contrail supports Netronome Agilio CX SmartNICs for Contrail Networking deployment with Red Hat
OpenStack Platform Director (RHOSPd) 13 environment.

This feature will enable service providers to improve the forwarding performance which includes packets
per second (PPS) of vRouter. This will optimize server CPU usage and you can deploy more Virtual
network functions (VNFs) per server.

Benefits:

• Increased PPS capacity of Contrail vRouter datapath allowing applications to reach their full
processing capacity.

• Reclaimed CPU cores from Contrail vRouter off-loading allowing more VMs and VNFs to be deployed
per server.

The goal of this topic is to provide a procedure for deploying accelerated vRouter compute nodes.

Before you begin:

• Equip compute nodes with Netronome Agilio CX SmartNIC.

For details, refer to Agilio CX SmartNICs.

• Retrieve Agilio heat-template plugin.

Register on Netronome support site at https://help.netronome.com and provide Docker Hub
credentials.

Netronome will provide the TripleO templates for SmartNIC vRouter deployment on compute nodes.
Also, Netronome will authorize Docker Hub registry access.

For details, refer to Netronome Agilio vRouter 19xx deployment guide.

• Note the following version tags:

510

https://www.netronome.com/products/agilio-cx/
https://help.netronome.com
https://github.com/netronome-support/Agilio-vRouter-19xx/wiki/Agilio-vRouter-19xx-deployment-guide-%5BRHEL-7.6%5D%5BRHOSP-13%5D

AGILIO_TAG="2.38-rhel-queens FORWARDER_TAG="2.38-rhel-queens

Procedure:

NOTE: If you have multiple undercloud nodes deployed, you must perform the following
procedure on the same node.

1. Configure Agilio plugin.

For details, refer to Netronome agilio-ovs-openstack-plugin GitHub Repository.

a. Extract the Agilio plugin archive and copy the agilio-plugin folder into the tripleo-heat-templates
directory.

[stack@queensa ~]$ tar -xzvf rhosp-contrail-agilio-heat-plugin-5-34.tgz agilio-plugin/ agilio-plugin/
agilio-vrouter.yaml agilio-plugin/agilio_upgrade.sh agilio-plugin/deploy_rhosp.sh agilio-plugin/nfp_udev.sh
agilio-plugin/agilio-env.yaml agilio-plugin/version agilio-plugin/README.md [stack@queensa ~]$ cp -r
agilio-plugin/ tripleo-heat-templates/

b. Navigate to the agilio-plugin directory on the undercloud node.

[tripleo-heat-templates]$ cd agilio-plugin/

c. Modify agilio-env.yaml file as per your environment.

NOTE: Reserve at least 1375*2 MB hugepages for virtio-forwarder.

Sample agilio-env.yaml file:

resource_registry:
 OS::TripleO::NodeExtraConfigPost: agilio-vrouter.yaml

parameter_defaults:
 # Hugepages
 ContrailVrouterHugepages2MB: "8192"
 # IOMMU
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt isolcpus=1,2 "

 ComputeCount: 3

 # Aditional config
 ControlPlaneDefaultRoute: 10.0.x.1
 EC2MetadataIp: 10.0.x.1 # Generally the IP of the Undercloud

511

https://github.com/Netronome/agilio-ovs-openstack-plugin

 DnsServers: ["8.8.8.8","192.168.3.3"]
 NtpServer: ntp.is.co.za
 ContrailRegistryInsecure: true
 DockerInsecureRegistryAddress: 172.x.x.150:6666,10.0.x.1:8787
 ContrailRegistry: 172.x.x.150:6666
 ContrailImageTag: <container_tag>-rhel-queens

Fix DB Diskspace too low issue
 ContrailAnalyticsDBMinDiskGB: 40

d. Add Docker Hub credentials to tripleo-heat-templates/agilio-plugin/agililo_upgrade.sh file to
retrieve containers from AGILIO_REPO="docker.io/netronomesystems/" repository.

#GENERAL DOCKER CONFIG DOCKER_USR=****** #ENTER_DOCKER_USERNAME_HERE DOCKER_PASS=******
#ENTER_DOCKER_PASSWORD_HERE

[root@overcloud-novacompute-2 heat-admin]# docker ps -a | grep virtio_for 7d5af8a2591d docker.io/
netronomesystems/virtio-forwarder:2.38-rhel-queens "./entrypoint.sh" 30 seconds ago Up 15 seconds
virtio_forwarder

[root@overcloud-novacompute-2 heat-admin]# docker ps -a | grep agilio c7c611b5168b docker.io/
netronomesystems/agilio-vrouter:2.38-rhel-queens "./entrypoint.sh" 46 seconds ago Up 38 seconds
agilio_vrouter

2. Prepare the Contrail Networking cluster for deployment.

Refer to the following topics for deployment:

• "Understanding Red Hat OpenStack Platform Director" on page 448

• "Setting Up the Infrastructure" on page 453

• "Setting Up the Undercloud" on page 463

• "Setting Up the Overcloud" on page 466

NOTE: Do not perform steps for "Installing Overcloud" on page 509.

3. Deploy the cluster by one of the following ways:

• Add agilio-env.yaml to installing overcloud step as mentioned in "Installing Overcloud" on page 509
topic.

openstack overcloud deploy --templates ~/tripleo-heat-templates -e ~/overcloud_images.yaml -e ~/tripleo-
heat-templates/environments/network-isolation.yaml -e ~/tripleo-heat-templates/environments/contrail/
contrail-plugins.yaml -e ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml -e ~/

512

tripleo-heat-templates/environments/contrail/contrail-net.yaml -e ~/tripleo-heat-templates/agilio-plugin/
agilio-env.yaml --roles-file ~/tripleo-heat-templates/roles_data_contrail_aio.yaml

Or

• Run the following command:

deploy_rhosp.sh

-e ~/tripleo-heat-templates/agilio-plugin/agilio-env.yaml

On completing above steps successfully, refer to Netronome agilio-ovs-openstack-plugin GitHub
Repository on how to spin up the accelerated VMs.

RELATED DOCUMENTATION

Understanding Red Hat OpenStack Platform Director | 448

Setting Up the Infrastructure | 453

Setting Up the Undercloud | 463

Setting Up the Overcloud | 466

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking

Contrail Networking Release 2005 supports Octavia as LBaaS. The deployment supports RHOSP and
Juju platforms.

With Octavia as LBaaS, Contrail Networking is only maintaining network connectivity and is not
involved in any load balancing functions.

For each OpenStack load balancer creation, Octavia launches a VM known as amphora VM. The VM
starts the HAPROXY when listener is created for the load balancer in OpenStack. Whenever the load
balancer gets updated in OpenStack, amphora VM updates the running HAPROXY configuration. The
amphora VM is deleted on deleting the load balancer.

Contrail Networking provides connectivity to amphora VM interfaces. Amphora VM has two interfaces;
one for management and the other for data. The management interface is used by the Octavia services
for the management communication. Since, Octavia services are running in the underlay network and
amphora VM is running in the overlay network, SDN gateway is needed to reach the overlay network.
The data interface is used for load balancing.

Follow the procedure to install OpenStack Octavia LBaaS with Contrail Networking:

513

https://github.com/Netronome/agilio-ovs-openstack-plugin
https://github.com/Netronome/agilio-ovs-openstack-plugin

1. Deploy RHOSP13 with Contrail Networking without Octavia.

openstack overcloud deploy --templates tripleo-heat-templates/ \
--roles-file tripleo-heat-templates/roles_data_contrail_aio.yaml \
-e environment-rhel-registration.yaml \
-e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-registration-resource-
registry.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-net-single.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
-e misc_opts.yaml \
-e contrail-parameters.yaml \
-e docker_registry.yaml

2. Make a copy of tripleo-heat-templates/docker/services/octavia/octavia-deployment-config.yaml
file.

cp tripleo-heat-templates/docker/services/octavia/octavia-deployment-config.yaml tripleo-heat-
templates/docker/services/octavia/octavia-deployment-config.bak

3. Make the following changes in generate_certs section of the tripleo-heat-templates/docker/
services/octavia/octavia-deployment-config.yaml file.

conditions:

 generate_certs:
 and:
 - get_param: OctaviaGenerateCerts
 - or:
 - equals:
 - get_param: StackAction
 - CREATE
 - equals:
 - get_param: StackAction
 - UPDATE

4. Deploy RHOSP13 with Octavia services.

openstack overcloud deploy --templates tripleo-heat-templates/ \ --roles-file tripleo-heat-
templates/roles_data_contrail_aio.yaml \

514

-e environment-rhel-registration.yaml \
-e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-registration-resource-
registry.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-net-single.yaml \
-e tripleo-heat-templates/environments/contrail/contrail-plugins.yaml \
-e tripleo-heat-templates/environments/services/octavia.yaml \
-e misc_opts.yaml \
-e contrail-parameters.yaml \
-e docker_registry.yaml

5. Rollback changes in tripleo-heat-templates/docker/services/octavia/octavia-deployment-
config.yaml file.

cp tripleo-heat-templates/docker/services/octavia/octavia-deployment-config.bak tripleo-heat-
templates/docker/services/octavia/octavia-deployment-config.yaml

Here is an example for creating and testing load balancer:

Prerequisites:

• You must have connectivity between Octavia controller and amphora instances,

• You must have OpenStack services into LXD containers.

• You must have separate interfaces for control plane and data plane.

1. Create private network.

openstack network create private
openstack subnet create private --network private --subnet-range 10.10.10.0/24 --allocation-
pool
start=10.10.10.50,end=10.10.10.70 --gateway none

2. Create security group.

openstack security group create allow_all
openstack security group rule create --ingress --protocol any --prefix '0.0.0.0/0' allow_all

515

3. Check available flavors and images. You can create them, if needed.

openstack flavor list
openstack image list

4. Create two servers for load balancer.

openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros1
openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros2

5. Create additional server to test load balancer.

openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros-test

6. Check status and IP addresses.

openstack server list --long

7. Create simple HTTP server on every cirros. Login on both the cirros instances and run following
commands:

MYIP=$(ifconfig eth0|grep 'inet addr'|awk -F: '{print $2}'| awk '{print $1}') while true;
do echo -e "HTTP/1.0 200 OK\r\n\r\nWelcome to $MYIP" | sudo nc -l -p 80 ; done&

8. Create load balancer

openstack loadbalancer create --name lb1 --vip-subnet-id private

Make sure provisioning_status is Active.

openstack loadbalancer show lb1

516

9. Setup load balancer

openstack loadbalancer listener create --protocol HTTP --protocol-port 80 --name listener1
lb1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be ACTIVE.
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --listener listener1 --
protocol HTTP --name pool1
openstack loadbalancer healthmonitor create --delay 5 --timeout 2 --max-retries 1 --type
HTTP pool1
openstack loadbalancer member create --subnet-id private --address 10.10.10.50 --protocol-
port 80 pool1
openstack loadbalancer member create --subnet-id private --address 10.10.10.51 --protocol-
port 80 pool1

IP addresses 10.10.10.50 and 10.10.10.51 belong to VMs created with test http server in step "7"
on page 516.

10. Check the status of load balancer.

openstack loadbalancer show lb1 # Wait for the provisioning_status to be ACTIVE.
openstack loadbalancer pool list
openstack loadbalancer pool show pool1
openstack loadbalancer member list pool1
openstack loadbalancer listener list

11. Login to load balancer client and verify if round robin works.

cirros@169.x.0.9's password:
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50
Welcome to 10.10.10.53
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50
Welcome to 10.10.10.53
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50
Welcome to 10.10.10.53

517

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2005 Contrail Networking Release 2005 supports Octavia as LBaaS.

RELATED DOCUMENTATION

Support for OpenStack LBaaS | 564

Using Load Balancers in Contrail | 550

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

518

https://apps.juniper.net/feature-explorer/

CHAPTER 10

Configuring Virtual Networks

IN THIS CHAPTER

Creating Projects in OpenStack for Configuring Tenants in Contrail | 519

Creating a Virtual Network with OpenStack Contrail | 521

Creating an Image for a Project in OpenStack Contrail | 525

Using Security Groups with Virtual Machines (Instances) | 528

Creating Projects in OpenStack for Configuring Tenants in Contrail

In Contrail, a tenant configuration is called a project. A project is created for each set of virtual machines
(VMs) and virtual networks (VNs) that are configured as a discrete entity for the tenant.

Projects are created, managed, and edited at the OpenStack Projects page.

1. Click the Admin tab on the OpenStack dashboard, then click the Projects link to access the Projects
page; see Figure 45 on page 520.

519

Figure 45: OpenStack Projects

2. In the upper right, click the Create Project button to access the Add Project window; see Figure 46
on page 520.

Figure 46: Add Project

3. In the Add Project window, on the Project Info tab, enter a Name and a Description for the new
project, and select the Enabled check box to activate this project.

520

4. In the Add Project window, select the Project Members tab, and assign users to this project.
Designate each user as admin or as Member.

As a general rule, one person should be a super user in the admin role for all projects and a user with
a Member role should be used for general configuration purposes.

5. Click Finish to create the project.

Refer to OpenStack documentation for more information about creating and managing projects.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail | 521

OpenStack documentation

Creating a Virtual Network with OpenStack Contrail

You can create virtual networks in Contrail Networking from the OpenStack. The following procedure
shows how to create a virtual network when using OpenStack.

1. To create a virtual network when using OpenStack Contrail, select Project > Network > Networks.
The Networks page is displayed. See Figure 47 on page 522.

521

http://docs.openstack.org/

Figure 47: Networks Page

2. Click Create Network. The Create Network window is displayed. See Figure 48 on page 522 and
Figure 49 on page 523.

Figure 48: Create Networks

522

Figure 49: Subnet and Gateway Details

3. Click the Network and Subnet tabs to complete the fields in the Create Network window. See field
descriptions in Table 35 on page 523.

Table 35: Create Network Fields

Field Description

Network Name Enter a name for the network.

Subnet Name Enter a name for the subnetwork.

Network Address Enter the network address in CIDR format.

IP Version* Select IPv4 or IPv6.

523

Table 35: Create Network Fields (Continued)

Field Description

Gateway IP Optionally, enter an explicit gateway IP address for the IP address block. Check the
Disable Gateway box if no gateway is to be used.

4. Click the Subnet Details tab to specify the Allocation Pool, DNS Name Servers, and Host Routes.

Figure 50: Additional Subnet Attributes

5. To save your network, click Create , or click Cancel to discard your work and start over.

524

Creating an Image for a Project in OpenStack Contrail

To specify an image to upload to the Image Service for a project in your system by using the OpenStack
dashboard:

1. In OpenStack, select Project > Compute > Images. The Images window is displayed. See Figure 51 on
page 525.

Figure 51: OpenStack Images Window

2. Make sure you have selected the correct project to which you are associating an image.

3. Click Create Image.

The Create An Image window is displayed. See Figure 52 on page 526.

525

Figure 52: OpenStack Create An Image Window

526

4. Complete the fields to specify your image. Table 36 on page 527 describes each of the fields on the
window.

NOTE: Only images available through an HTTP URL are supported, and the image
location must be accessible to the Image Service. Compressed image binaries are
supported (*.zip and *.tar.gz).

Table 36: Create an Image Fields

Field Description

Name Enter a name for this image.

Description Enter a description for the image.

Image Source Select Image File or Image Location.

If you select Image File, you are prompted to browse to the local
location of the file.

Image Location Enter an external HTTP URL from which to load the image. The
URL must be a valid and direct URL to the image binary. URLs that
redirect or serve error pages result in unusable images.

Format Required field. Select the format of the image from a list:
AKI– Amazon Kernel Image
AMI– Amazon Machine Image
ARI– Amazon Ramdisk Image
ISO– Optical Disk Image
QCOW2– QEMU Emulator
Raw– An unstructured image format
VDI– Virtual Disk Imade
VHD– Virtual Hard Disk
VMDK– Virtual Machine Disk

Architecture Enter the architecture.

Minimum Disk (GB) Enter the minimum disk size required to boot the image. If you do
not specify a size, the default is 0 (no minimum).

527

Table 36: Create an Image Fields (Continued)

Field Description

Minimum Ram (MB) Enter the minimum RAM required to boot the image. If you do not
specify a size, the default is 0 (no minimum).

Public Select this check box if this is a public image. Leave unselected for
a private image.

Protected Select this check box for a protected image.

5. When you are finished, click Create Image.

Using Security Groups with Virtual Machines (Instances)

IN THIS SECTION

Security Groups Overview | 528

Creating Security Groups and Adding Rules | 528

Security Groups Overview

A security group is a container for security group rules. Security groups and security group rules allow
administrators to specify the type of traffic that is allowed to pass through a port. When a virtual
machine (VM) is created in a virtual network (VN), a security group can be associated with the VM when
it is launched. If a security group is not specified, a port is associated with a default security group. The
default security group allows both ingress and egress traffic. Security rules can be added to the default
security group to change the traffic behavior.

Creating Security Groups and Adding Rules

A default security group is created for each project. You can add security rules to the default security
group and you can create additional security groups and add rules to them. The security groups are then
associated with a VM, when the VM is launched or at a later date.

528

To add rules to a security group:

1. From the OpenStack interface, click the Project tab, select Access & Security, and click the Security
Groups tab.

Any existing security groups are listed under the Security Groups tab, including the default security
group; see Figure 53 on page 529.

Figure 53: Security Groups

2. Select the default-security-group and click Edit Rules in the Actions column.

The Edit Security Group Rules window is displayed; see Figure 54 on page 530. Any rules already
associated with the security group are listed.

529

Figure 54: Edit Security Group Rules

3. Click Add Rule to add a new rule; see Figure 55 on page 531.

530

Figure 55: Add Rule

Table 37: Add Rule Fields

Column Description

IP Protocol Select the IP protocol to apply for this rule: TCP, UDP, ICMP.

From Port Select the port from which traffic originates to apply this rule. For TCP and UDP, enter a single
port or a range of ports. For ICMP rules, enter an ICMP type code.

To Port The port to which traffic is destined that applies to this rule, using the same options as in the
From Port field.

531

Table 37: Add Rule Fields (Continued)

Column Description

Source Select the source of traffic to be allowed by this rule. Specify subnet—the CIDR IP address or
address block of the inter-domain source of the traffic that applies to this rule, or you can
choose security group as source. Selecting security group as source allows any other instance in
that security group access to any other instance via this rule.

4. Click Create Security Group to create additional security groups.

The Create Security Group window is displayed; see Figure 56 on page 532.

Each new security group has a unique 32-bit security group ID and an ACL is associated with the
configured rules.

Figure 56: Create Security Group

5. When an instance is launched, there is an opportunity to associate a security group; see Figure 57 on
page 533.

In the Security Groups list, select the security group name to associate with the instance.

532

Figure 57: Associate Security Group at Launch Instance

6. You can verify that security groups are attached by viewing the SgListReq and IntfReq associated with
the agent.xml.

533

CHAPTER 11

Using Contrail Resources in Heat Templates

IN THIS CHAPTER

Using the Contrail Heat Template | 534

Using the Contrail Heat Template

IN THIS SECTION

Introduction to Heat | 534

Heat Architecture | 535

Support for Heat Version 2 Resources | 535

Heat Version 2 with Service Templates and Port Tuple Sample Workflow | 536

Example: Creating a Service Template Using Heat | 536

Heat is the orchestration engine of the OpenStack program. Heat enables launching multiple cloud
applications based on templates that are comprised of text files.

Introduction to Heat

A Heat template describes the infrastructure for a cloud application, such as networks, servers, floating
IP addresses, and the like, and can be used to manage the entire life cycle of that application.

When the application infrastructure changes, the Heat templates can be modified to automatically
reflect those changes. Heat can also delete all application resources if the system is finished with an
application.

Heat templates can record the relationships between resources, for example, which networks are
connected by means of policy enforcements, and consequently call OpenStack REST APIs that create

534

the necessary infrastructure, in the correct order, needed to launch the application managed by the Heat
template.

Heat Architecture

Heat is implemented by means of Python applications, including the following:

• heat-client—The CLI tool that communicates with the heat-api application to run Heat APIs.

• heat-api—Provides an OpenStack native REST API that processes API requests by sending them to the
Heat engine over remote procedure calls (RPCs).

• heat-engine—Responsible for orchestrating the launch of templates and providing events back to the
API consumer.

Support for Heat Version 2 Resources

Starting with Contrail Release 3.0.2, Contrail Heat resources and templates are autogenerated from the
Contrail schema, using Heat Version 2 resources. Contrail Release 3.0.2 is the minimum required version
for using Heat with Contrail in 3.x releases. The Contrail Heat Version 2 resources are of the following
hierarchy: OS::ContrailV2::<ResourceName>.

The generated resources and templates are part of the Contrail Python package, and are located in the
following directory in the target installation:

/usr/lib/python2.7/dist-packages/vnc_api/gen/heat/

The heat/ directory has the following subdirectories:

• resources/—Contains all the resources for the contrail-heat plugin, which runs in the context of the
Heat engine service.

• templates/—Contains sample templates for each resource. Each sample template presents every
possible parameter in the schema. Use the sample templates as a reference when you build up more
complex templates for your network design.

• env/—Contains the environment for input to each template.

The following contains a list of all the generated plug-in resources that are supported by contrail-heat :

https://github.com/tungstenfabric/tf-heat-plugin/tree/master/contrail_heat/new_templates

Deprecation of Heat Version 1 Resources

Heat Version 1 resources within the hierarchy OS::Contrail::<ResourceName> are being deprecated, and you
should not create new service templates using the Heat Version 1 templates.

535

https://github.com/tungstenfabric/tf-heat-plugin/tree/master/contrail_heat/new_templates

Heat Version 2 with Service Templates and Port Tuple Sample Workflow

With Contrail service templates Version 2, the user can create ports and bind them to a virtual machine
(VM)-based service instance, by means of a port-tuple object. All objects created with the Version 2
service template are directly visible to the Contrail Heat engine, and are directly managed by Heat.

The following shows the basic workflow steps for creating a port tuple and service instance that will be
managed by Heat:

1. Create a service template. Select 2 in the Version field.

2. Create a service instance for the service template just created.

3. Create a port-tuple object.

4. Create ports, using Nova VM launch or without a VM launch.

5. Label each port as left, right, mgmt, and so on, and add the ports to the port-tuple object.

Use a unique label for each of the ports in a single port tuple. The labels named left and right are
used for forwarding.

6. Link the port tuple to a service instance.

7. Launch the service instance.

Example: Creating a Service Template Using Heat

The following is an example of how to create a service template using Heat.

1. Define a template to create the service template.

service_template.yaml
heat_template_version: 2013-‐05-‐23
description: >
 HOT template to create a service template
parameters:
 name:
 type: string
 description: Name of service template
 mode:
 type: string
 description: service mode
 type:
 type: string

536

 description: service type
 image:
 type: string
 description: Name of the image
 flavor:
 type: string
 description: Flavor
 service_interface_type_list:
 type: string
 description: List of interface types
 shared_ip_list:
 type: string
 description: List of shared ip enabled-‐disabled
 static_routes_list:
 type: string
 description: List of static routes enabled-‐disabled

resources:
 service_template:
 type: OS::ContrailV2::ServiceTemplate
 properties:
 name: { get_param: name }
 service_mode: { get_param: mode }
 service_type: { get_param: type }
 image_name: { get_param: image }
 flavor: { get_param: flavor }
 service_interface_type_list: { "Fn::Split" : [",", Ref:
service_interface_type_list] }
 shared_ip_list: { "Fn::Split" : [",", Ref: shared_ip_list] }
 static_routes_list: { "Fn::Split" : [",", Ref: static_routes_list] }
 outputs:
 service_template_fq_name:
 description: FQ name of the service template
 value: { get_attr: [service_template, fq_name] }

}

2. Create an environment file to define the values to put in the variables in the template file.

service_template.env

parameters:

537

 name: contrail_svc_temp

 mode: transparent

 type: firewall

 image: cirros

 flavor: m1.tiny

 service_interface_type_list: management,left,right,other

 shared_ip_list: True,True,False,False

 static_routes_list: False,True,False,False

3. Create the Heat stack by launching the template and the environment file, using the following
command:

heat stack create stack1 –f service_template.yaml –e service_template.env

OR use this command for recent versions of OpenStack

openstack stack create -e <env-file-name> -t <template-file-name> <stack-name>

RELATED DOCUMENTATION

Service Chain Version 2 with Port Tuple

538

CHAPTER 12

QoS Support in Contrail Networking

IN THIS CHAPTER

Quality of Service in Contrail | 539

Configuring Network QoS Parameters | 547

Quality of Service in Contrail

IN THIS SECTION

Overview: Quality of Service | 539

Contrail QoS Model | 540

Features of Fabric Interfaces | 540

QoS Configuration Parameters for Provisioning | 540

Configuring QoS in Contrail Networking Release 5.0 and Later | 540

Queuing Implementation | 541

Contrail QoS Configuration Objects | 542

Example: Mapping Traffic to Forwarding Classes | 543

QoS Configuration Object Marking on the Packet | 544

Queuing | 545

Overview: Quality of Service

Quality of service (QoS) in networking provides the ability to control reliability, bandwidth, latency, and
other traffic management features. Network traffic can be marked with QoS bits (DSCP, 802.1p, and
MPLS EXP) that intermediate network switches and routers can use to provide service guarantees.

539

Contrail QoS Model

The QoS model in Contrail Networking has the following features:

• All packet forwarding devices, such as vRouter and the gateway, combine to form a system.

• Interfaces to the system are the ports from which the system sends and receives packets, such as tap
interfaces and physical ports.

• Fabric interfaces are where the overlay traffic is tunneled.

• QoS is applied at the ingress to the system, for example, upon traffic from the interfaces to the fabric.

• At egress, packets are stripped of their tunnel headers and sent to interface queues, based on the
forwarding class. No marking from the outer packet to the inner packet is considered at this time.

Features of Fabric Interfaces

Fabric interfaces, unlike other interfaces, are always shared. Therefore, fabric interfaces are common
property. Consequently, traffic classes and QoS marking on the fabric must be controlled by the system
administrator. The administrator might choose to provision different classes of service on the fabric.

In Contrail, classes of service are determined by both of the following:

• Queueing on the fabric interface, including queues, scheduling of queues, and drop policies, and

• forwarding class, a method of marking that controls how packets are sent to the fabric, including
marking and identifying which queue to use.

Tenants can define which forwarding class their traffic can use, deciding which packets use which
forwarding class. The Contrail QoS configuration object has a mapping table, mapping the incoming
DSCP or 802.1p value to the forwarding class mapping.

The QoS configuration can also be applied to a virtual network, an interface, or a network policy.

QoS Configuration Parameters for Provisioning

Configuring QoS in Contrail Networking Release 5.0 and Later

This section describes how to provision QoS in Contrail Networking release 5.0 and later.

540

1. Define the hardware queues and priority group in the instances.yaml file under the vrouter role as
shown below.

nodeh5:
 ip: 10.xxx.xxx.109
 provider: bms
 roles:
 vrouter:
 VROUTER_GATEWAY: 192.168.1.45
 PRIORITY_ID: 0,1,2,3,4,5,6,7
 PRIORITY_BANDWIDTH: 0,10,0,20,0,30,0,40
 PRIORITY_SCHEDULING: strict,rr,strict,rr,strict,rr,strict,rr
 QOS_QUEUE_ID: 3,11,18,28,36,43,61,53
 QOS_LOGICAL_QUEUES: "[1, 6-10, 12-15];[40-46];[70-74, 75, 80-95];[115];[140-143,
145];[175];[245];[215]"
 QOS_DEF_HW_QUEUE: True
 openstack_compute:

2. In the already provisioned setup, define the QoS configuration in the /etc/contrail/
common_vrouter.env file as shown in the following sample.

PRIORITY_ID=0,1,2,3,4,5,6,7
PRIORITY_BANDWIDTH=0,10,0,20,0,30,0,40
PRIORITY_SCHEDULING=strict,rr,strict,rr,strict,rr,strict,rr
QOS_QUEUE_ID=3,11,18,28,36,43,61,53
QOS_LOGICAL_QUEUES="[1, 6-10, 12-15];[40-46];[70-74, 75, 80-95];[115];[140-143, 145];[175];
[245];[215]"
QOS_DEF_HW_QUEUE=True

3. Execute the execute docker-compose up -d under /etc/contrail/vrouter/ command.

Queuing Implementation

The vRouter provides the infrastructure to use queues supplied by the network interface, a method that
is also called hardware queueing. Network interface cards (NICs) that implement hardware queueing
have their own set of scheduling algorithms associated with the queues. The Contrail implementation is
designed to work with most NICs, however, the method is tested only on an Intel-based 10G NIC, also
called Niantic.

541

Contrail QoS Configuration Objects

Contrail QoS configuration objects include the:

• forwarding class

• QoS configuration object (qos-config)

The forwarding class object specifies parameters for marking and queuing, including:

• The DSCP, 802.1p, and MPLS EXP values to be written on packets.

• The queue index to be used for the packet.

The QoS configuration object specifies a mapping from DSCP, 802.1p, and MPLS EXP values to the
corresponding forwarding class.

The QoS configuration has an option to specify the default forwarding class ID to use to select the
forwarding class for all unspecified DSCP, 802.1p, and MPLS EXP values.

If the default forwarding class ID is not specified by the user, it defaults to the forwarding class with ID
0.

Processing of QoS marked packets to look up the corresponding forwarding class to be applied works as
follows:

• For an IP packet, the DSCP map is used .

• For a Layer 2 packet, the 802.1p map is used.

• For an MPLS-tunneled packet with MPLS EXP values specified, the EXP bit value is used with the
MPLS EXP map.

• If the QoS configuration is untrusted, only the default forwarding class is specified, and all incoming
values of the DSCP, 802.1p, and EXP bits in the packet are mapped to the same default forwarding
class.

Figure 58 on page 543 shows the processing of QoS packets.

542

Figure 58: Processing of QoS Packets

A virtual machine interface, virtual network, and network policy can refer to the QoS configuration
object. The QoS configuration object can be specified on the vhost so that underlay traffic can also be
subjected to marking and queuing. See Figure 59 on page 543.

Figure 59: Referring to the QoS Object

Example: Mapping Traffic to Forwarding Classes

This example shows how traffic forwarding classes are defined and how the QoS configuration object is
defined to map the QoS bits to forwarding classes.

Table 38 on page 544 shows two forwarding class objects defined. FC1 marks the traffic with high
priority values and queues it to Queue 0. FC2 marks the traffic as best effort and queues the traffic to
Queue 1.

543

Table 38: Forwarding Class Mapping

Name ID DSCP 802.1p MPLS EXP Queue

FC1 1 10 7 7 0

FC2 2 38 0 0 1

In Table 39 on page 544, the QoS configuration object DSCP values of 10, 18, and 26 are mapped to a
forwarding class with ID 1, which is forwarding class FC1. All other IP packets are mapped to the
forwarding class with ID 2, which is FC2. All traffic with an 802.1p value of 6 or 7 are mapped to
forwarding class FC1, and the remaining traffic is mapped to FC2.

Table 39: QoS Configuration Object Mapping

DSCP Forwarding Class ID 802.1p Forwarding Class ID MPLS EXP Forwarding Class ID

10 1 6 1 5 1

18 1 7 1 7 1

26 1 * 2 * 1

* 2

QoS Configuration Object Marking on the Packet

The following sections describes how QoS configuration object marking is handled in various
circumstances.

Traffic Originated by a Virtual Machine Interface

• If a VM interface sends an IP packet to another VM in a remote compute node, the DSCP value in
the IP header is used to look into the qos-config table, and the tunnel header is marked with DSCP,
802.1p, and MPLS EXP bits as specified by the forwarding class.

544

• If a VM sends a Layer 2 non-IP packet with an 802.1p value, the 802.1p value is used to look into the
qos-config table, and the corresponding forwarding class DSCP, 802.1p, and MPLS EXP value is
written to the tunnel header.

• If a VM sends an IP packet to a VM in same compute node, the packet headers are not changed while
forwarding. The original packet remains unchanged.

Traffic Destined to a Virtual Machine Interface

For traffic destined to a VMI, if a tunneled packet is received, the tunnel headers are stripped off and the
packet is sent to the interface. No marking is done from the outer packet to inner packet.

Traffic from a vhost Interface

The QoS configuration can be applied on IP traffic coming from a vhost interface. The DSCP value in the
packet is used to look into the qos-config object specified on the vhost, and the corresponding
forwarding class DSCP and 802.1p values are overwritten on the packet.

Traffic from fabric interface

The QoS configuration can be applied while receiving the packet on an Ethernet interface of a compute
node, and the corresponding forwarding class DSCP and 802.1p values are overwritten on the packet.

QoS Configuration Priority by Level

The QoS configuration can be specified at different levels.

The levels that can be configured with QoS and their order of priority:

1. in policy

2. on virtual-network

3. on virtual-machine-interface

Queuing

Contrail Networking supports QoS. These sections provide an overview of the queuing features
available in Contrail Networking.

The queue to which a packet is sent is specified by the forwarding class.

545

Queue Selection in Datapath

In vRouter, in the data path, the forwarding class number specifies the actual physical hardware queue
to which the packet needs to be sent, not to a logical selection as in other parts of Contrail. There is a
mapping table in the vRouter configuration file, to translate the physical queue number from the logical
queue number.

Hardware Queueing in Linux kernel based vRouter

If Xmit-Packet-Steering (XPS) is enabled, the kernel chooses the queue, from those available in a list of
queues. If the kernel selects the queue, packets will not be sent to the vRouter-specified queue.

To disable this mapping:

• have a kernel without CONFIG_XPS option

• write zeros to the mapping file in /sys/class/net//queues/tx-X/xps_cpus .

When this mapping is disabled, the kernel will send packets to the specific hardware queue.

To verify:

See individual queue statistics in the output of 'ethtool -S ' command.

Parameters for QoS Scheduling Configuration

The following shows sample scheduling configuration for hardware queues on the compute node.

The priority group ID and the corresponding scheduling algorithm and bandwidth to be used by the
priority group can be configured.

Possible values for the scheduling algorithm include:

• strict

• rr (round-robin)

When round-robin scheduling is used, the percentage of total hardware queue bandwidth that can be
used by the priority group is specified in the bandwidth parameter.

The following configuration and provisioning is applicable only for compute nodes running Niantic NICs
and running kernel based vrouter.

qos_niantic = {
 ‘compute1': [
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},

546

 { 'priority_id': '2', 'scheduling': 'rr', 'bandwidth': '20'},
 { 'priority_id': '3', 'scheduling': 'rr', 'bandwidth': '10’}
],
 ‘compute2' :[
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},
 { 'priority_id': '1', 'scheduling': 'rr', 'bandwidth': '30’}
]
}

RELATED DOCUMENTATION

Configuring Network QoS Parameters | 547

https://github.com/Juniper/contrail-controller/wiki/QoS

Configuring Network QoS Parameters

IN THIS SECTION

Overview | 547

QoS Configuration Examples | 548

Limitations | 549

Overview

You can use the OpenStack Nova command-line interface (CLI) to specify a quality of service (QoS)
setting for a virtual machine’s network interface, by setting the quota of a Nova flavor. Any virtual
machine created with that Nova flavor will inherit all of the specified QoS settings. Additionally, if the
virtual machine that was created with the QoS settings has multiple interfaces in different virtual
networks, the same QoS settings will be applied to all of the network interfaces associated with the
virtual machine. The QoS settings can be specified in unidirectional or bidirectional mode.

The quota driver in Neutron converts QoS parameters into libvirt network settings of the virtual
machine.

The QoS parameters available in the quota driver only cover rate limiting the network interface. There
are no specifications available for policy-based QoS at this time.

547

https://github.com/Juniper/contrail-controller/wiki/QoS

QoS Configuration Examples

Although the QoS setting can be specified in quota by using either Horizon or CLI, quota creation using
CLI is more robust and stable, therefore, creating by CLI is the recommended method.

Example

CLI for Nova flavor has the following format:

nova flavor-key <flavor_name> set quota:vif_<direction> _<param_name> = value

where:

<flavor_name> is the name of an existing Nova flavor.

vif_<direction>_<param_name> is the inbound or outbound QoS data name.

QoS vif types include the following:

• vif_inbound_average lets you specify the average rate of inbound (receive) traffic, in kilobytes/sec.

• vif_outbound_average lets you specify the average rate of outbound (transmit) traffic, in kilobytes/sec.

• Optional: vif_inbound_peak and vif_outbound_peak specify the maximum rate of inbound and outbound
traffic, respectively, in kilobytes/sec.

• Optional: vif_inbound_burst and vif_outbound_peak specify the amount of kilobytes that can be received
or transmitted, respectively, in a single burst at the peak rate.

Details for various QoS parameters for libvirt can be found at http://libvirt.org/formatnetwork.html.

The following example shows an inbound average of 800 kilobytes/sec, a peak of 1000 kilobytes/sec,
and a burst amount of 30 kilobytes.

nova flavor-key m1.small set quota:vif_inbound_average=800
nova flavor-key m1.small set quota:vif_inbound_peak=1000
nova flavor-key m1.small set quota:vif_inbound_burst=30

The following is an example of specified outbound parameters:

nova flavor-key m1.small set quota:vif_outbound_average=800
nova flavor-key m1.small set quota:vif_outbound_peak=1000
nova flavor-key m1.small set quota:vif_outbound_burst=30

548

http://libvirt.org/formatnetwork.html

After the Nova flavor is configured for QoS, a virtual machine instance can be created, using either
Horizon or CLI. The instance will have network settings corresponding to the nova flavor-key, as in the
following:

<interface type="ethernet">
 <mac address="02:a3:a0:87:7f:61"/>
 <model type="virtio"/>
 <script path=""/>
 <target dev="tapa3a0877f-61"/>
 <bandwidth>
 <inbound average="800" peak="1000" burst="30"/>
 <outbound average="800" peak="1000" burst="30"/>
 </bandwidth>
 </interface>

Limitations

• The stock libvirt does not support rate limiting of ethernet interface types. Consequently, settings like
those in the example for the guest interface will not result in any tc qdisc settings for the
corresponding tap device in the host.

• The nova flavor-key rxtx_factor takes a float as an input and acts as a scaling factor for receive
(inbound) and transmit (outbound) throughputs. This key is only available to Neutron extensions
(private extensions). The Contrail Neutron plugin doesn’t implement this private extension.
Consequently, setting the nova flavor-key rxtx_factor will not have any effect on the QoS setting of the
network interface(s) of any virtual machine created with that nova flavor.

• The outbound rate limits of a virtual machine interface are not strictly achieved. The outbound
throughput of a virtual machine network interface is always less than the average outbound limit
specified in the virtual machine's libvirt configuration file. The same behavior is also seen when using
a Linux bridge.

549

CHAPTER 13

Load Balancers

IN THIS CHAPTER

Using Load Balancers in Contrail | 550

Support for OpenStack LBaaS | 564

Configuring Load Balancing as a Service in Contrail | 568

Using Load Balancers in Contrail

IN THIS SECTION

Invoking LBaaS Drivers | 550

Benefits of Creating Configuration Objects | 551

Using a Service Appliance Set as the LBaaS Provider | 552

Understanding the Load Balancer Agent | 554

F5 Networks Load Balancer Integration in Contrail | 554

Example: Creating a Load Balancer | 557

Using the Avi Networks Load Balancer for Contrail | 558

As of Contrail Release 3.0, load balancer LBaaS features are available. This topic includes:

Invoking LBaaS Drivers

The provider field specified in the pool configuration determines which load balancer drivers are
selected. The load balancer driver selected is responsible for configuring the external hardware or virtual
machine load balancer.

Supported load balancer drivers include:

550

• HAProxy

• A10 Networks

• F5 Networks

• Avi Networks

Benefits of Creating Configuration Objects

Starting with Contrail 3.0, the Neutron LBaaS plugin creates required configuration objects (such as pool,
VIP, members, and monitor) in the Contrail API server, instead of within the Neutron plugin context, as in
previous releases.

This method of configuration has the following benefits:

• Configuration objects can be created in multiple ways: from Neutron, from virtual controller APIs, or
from the Contrail UI.

• The load balancer driver can make inline calls, such as REST or SUDS, to configure the external load
balancer device.

• The load balancer driver can use Contrail service monitor infrastructure, such as database, logging,
and API server.

NOTE: The Neutron LBaaS plugin is not supported in OpenStack Train release.

Figure 60 on page 552 provides an overview of the Contrail LBaaS components.

551

Figure 60: Contrail LBaaS components with neutron-lbaas

Using a Service Appliance Set as the LBaaS Provider

In OpenStack Neutron, the load balancer provider is statically configured in neutron.conf, which requires
restart of the Neutron server when configuring a new provider. The following is an example of the
service provider configuration in neutron.conf.

[service_providers]
service_provider = LOADBALANCER:Opencontrail:neutron_plugin_contrail.plugins.opencontrail.
loadbalancer.driver.OpencontrailLoadbalancerDriver:default

In Contrail Release 3.0 and greater, the Neutron LBaaS provider is configured by using the object service-
appliance-set. All of the configuration parameters of the LBaaS driver are populated to the service-
appliance-set object and passed to the driver.

During initialization, the service monitor creates a default service appliance set with a default LBaaS
provider, which uses an HAProxy-based load balancer. The service appliance set consists of individual

552

service appliances for load balancing the traffic. The service appliances can be physical devices or virtual
machines.

Sample Configuration: Service Appliance Set

The following is a sample configuration of the service appliance set for the LBaaS provider:

{
 "service-appliance-set": {
 "fq_name": [
 "default-global-system-config",
 "f5"
],
 "service_appliance_driver":
"svc_monitor.services.loadbalancer.drivers.f5.f5_driver.OpencontrailF5LoadbalancerDriver",
 "parent_type": "global-system-config",
 "service_appliance_set_properties": {
 "key_value_pair": [
 {
 "key": "sync_mode",
 "value": "replication"
 },
 {
 "key": "global_routed_mode",
 "value": "True"
 }
]
 },
 "name": "f5"
 }
}

Sample Configuration: Single Service Appliance

The following is a sample configuration of a single service appliance:

{
 "service-appliance": {
 "fq_name": [
 "default-global-system-config",
 "f5",
 "bigip"
],

553

 "parent_type": "service-appliance-set",
 "service_appliance_ip_address": "<ip address>",
 "service_appliance_user_credentials": {
 "username": "admin",
 "password": "<password>"
 },
 "name": "bigip"
 }
}

Understanding the Load Balancer Agent

The load balancer agent is a module in the service monitor. The service monitor listens on the RabbitMQ
configuration messaging queue (vnc_config.object-update) to get configuration objects. The dependency
tracker triggers changes to all related objects, based on configuration updates.

The dependency tracker is informed to notify the pool object whenever the VIP, member, or health
monitor object is modified.

Whenever there is an update to the pool object, either directly due to a pool update or due to a
dependency update, the load balancer agent in the service monitor is notified.

The load balancer agent module handles the following:

• Loading and unloading LBaaS driver-based service appliance set configuration.

• Providing the abstract driver class for the load balancer driver.

• Invoking the LBaaS driver.

• Load balancer-related configuration.

F5 Networks Load Balancer Integration in Contrail

This section details use of the F5 load balancer driver with Contrail.

Contrail Release 3.0 implements an LBaaS driver that supports a physical or virtual F5 Networks load
balancer, using the abstract load balancer driver class, ContrailLoadBalancerAbstractDriver.

This driver is invoked from the load balancer agent of the contrail-svc-monitor. The driver makes a BIG-IP
interface call to configure the F5 Networks device. All of the configuration parameters used to tune the
driver are configured in the service-appliance-set object and passed to the driver by the load balancer
agent while loading the driver.

554

The F5 load balancer driver uses the BIG-IP interface version V1.0.6, which is a Python package
extracted from the load balancer plugin provided by F5 Networks. The driver uses either a SOAP API or
a REST API.

F5 Load Balancer Global Routed Mode

The F5 load balancer driver is programmed in global routed mode using a property of the service-appliance-
set.

This section describes the features and requirements of the F5 load balancer driver configured in global
routed mode.

The following are features of the global routed mode.

• All virtual IP addresses (VIPs) are assumed to be routable from clients and all members are routable
from the F5 device.

• All access to and from the F5 device is assumed to be globally routed, with no segregation between
tenant services on the F5 device. Consequently, do NOT configure overlapping addresses across
tenants and networks.

• The F5 device can be attached to the corporate network or to the IP fabric.

The following are requirements to support global routed mode of an F5 device used with LBaaS:

• The entire configuration of the F5 device for Layer 2 and Layer 3 is preprovisioned.

• All tenant networks and all IP fabrics are in the same namespace as the corporate network.

• All VIPs are in the same namespace as the tenant and corporate networks.

Traffic Flow in Global Routed Mode

This section describes and illustrates the behavior of traffic flow in global routed mode.

The information in this section is based on a model that includes the following network topology:

Corporate Network --- DC Gateway (MX device) --- IP Fabric --- Compute nodes

The Corporate Network, the IP Fabric and all tenant networks use IP addresses from a single
namespace, there is no overlap of the addresses in the networks. The F5 devices can be attached to the
Corporate Network or to the IP Fabric, and are configured to use the global routed mode.

The role of the MX Series device is to route post-proxy traffic, coming from the F5 device in the
underlay, to the pool members in the overlay. In the reverse direction, the MX device takes traffic
coming from the pool members in the overlay and routes it back to the F5 device in the underlay.

The MX device is preprovisioned with the following:

555

• VRF connected to pool network 2

• ability to route traffic from inet.0 to the pool network

The MX routes the traffic from inet.0 to public VRF and sends traffic to the compute node where the
pool member is instantiated.

The F5 device is preprovisioned with the following:

• publish route to attract VIP traffic

• pool network subnet route that points to the MX device

The F5 device is responsible for attracting traffic destined to all the VIPs, by advertising a subnet route
that covers all VIPs using IGP.

The F5 device load balances among different pool members and sends traffic to the chosen member.

The following figure shows the traffic flow in global routed mode.

Figure 61: Global Routed Traffic Flow

A similar result can also be achieved on the switch to which the F5 is attached, by publishing the VIP
subnet in IGP and using a static route to point the VIP traffic to the F5 device.

The MX should attract the reverse traffic from the pool members going back to the F5.

556

Routing Traffic to Pool Members

For post load balancing traffic going from the F5 device to the pool members, the MX Series device
needs to attract traffic for all the tenant networks.

Routing Reverse Traffic from Pool Members to the F5 Device

The MX should attract the reverse traffic from the pool members going back to the F5.

Initial Configuration on an F5 Device

• The operator is responsible for ensuring that the F5 device attracts traffic to all VIP subnets by
injecting the route for the VIP subnet into IGP. Alternately, the switch to which F5 is connected can
advertise the VIP subnet route and use the static route to send VIP traffic to the F5 device.

• In the global routed mode, the F5 uses AutoMap SNAT for all VIP traffic.

Initial Configuration on an MX Series Device Used as DC Gateway

• The operator must identify a super-net that contains all tenant network subnets (pool members
across multiple pools) and advertise its route into corporate and fabric networks, using IGP
(preferred) or static routes.

• The operator must add a static route for the super-net into inet.0 with a next-hop of public.inet.0.

• The operator must create a public VRF and get its default route imported into the VRF. This is to
attract the return traffic from pool members to the F5 device (VIP destination).

Configuration on MX Device for Each Pool Member

• For each member virtual network, the operator adds a policy to connect the member pool virtual
network to the public virtual network.

• As new member virtual networks are connected to the public virtual network by policy,
corresponding targets are imported by the public VRF on MX. The Contrail Device Manager
generates the configuration of import, export targets for public VRF on the MX device.

• The operator must ensure that security group rules for the member virtual network ports allow traffic
coming from the F5 device.

Example: Creating a Load Balancer

Use the following steps to create a load balancer in Contrail Release 3.0 and greater.

557

1. To configure a service appliance set, use the script in /opt/contrail/utils to create a load balancer
provider. With the script, you specify the driver and name of the selected provider. Additional
configuration can be performed using the key-value pair property configuration.

/opt/contrail/utils/service_appliance_set.py --api_server_ip <ip address>--api_server_port 8082 --oper add --
admin_user admin --admin_password <password> --admin_tenant_name admin --name f5 --driver
"svc_monitor.services.loadbalancer.drivers.f5.f5_driver.OpencontrailF5LoadbalancerDriver" --properties
'{"use_snat": "True", "num_snat": "1", "global_routed_mode":"True", "sync_mode": "replication", "vip_vlan":
"trial2"}'

2. Add the actual device information of the load balancer.

/opt/contrail/utils/service_appliance.py --api_server_ip <ip address>--api_server_port 8082 --oper add --
admin_user admin --admin_password <password> --admin_tenant_name admin --name bigip --service_appliance_set f5
--device_ip 10.204.216.113 --user_credential '{"user": "admin", "password": "<password>"}'

3. Refer to the load balancer provider while configuring the pool.

neutron lb-pool-create --lb-method ROUND_ROBIN --name web_service --protocol HTTP --provider "f5" --subnet-id
<subnet id>

4. Add members to the load balancer pool. Both bare metal webserver and overlay webserver are
allowed as pool members. The F5 device can load balance the traffic among all pool members.

neutron lb-member-create --address <ip address>--protocol-port 8080 --weight 3 web_service

neutron lb-member-create --address <ip address> --protocol-port 8080 --weight 2 web_service

5. Create a VIP for the load balancer pool.

neutron lb-vip-create --name httpserver --protocol-port 80 --protocol HTTP web_service --subnet-id <subnet id>

6. Create the health monitor and associate it with the load balancer pool.

neutron lb-healthmonitor-create --delay 3 --type HTTP --max-retries 3 --timeout 3

neutron lb-healthmonitor-associate <nnnnn-nnnnn-nnnn-> web_service

Using the Avi Networks Load Balancer for Contrail

If you are using the Avi LBaaS driver in an OpenStack Contrail environment, there are two possible
modes that are mutually-exclusive. The Avi Vantage cloud configuration is exactly the same in both
modes:

• Neutron-based Avi LBaaS driver - In this mode, the Avi LBaaS driver derives from Neutron and
resides in the Neutron server process. This mode enables coexistence of multiple Neutron LBaaS
providers.

558

• Contrail-based Avi LBaaS driver - In this mode, the Avi LBaaS driver derives from Contrail and resides
in the service-monitor process. This mode enables coexistence of multiple Contrail LBaaS providers.

NOTE: In a Contrail environment, you cannot have a mix of Contrail LBaaS and Neutron
LBaaS. You must select a mode that is compatible with the current environment.

Installing the Avi LBaaS Neutron Driver

Use the following procedure to install the Avi Networks LBaaS load balancer driver for the Neutron
server for Contrail.

The following steps are performed on the Neutron server host.

1. Determine the installed version of the Contrail Neutron plugin.

$ contrail-version neutron-plugin-contrail
Package Version
------------------------- ------------
neutron-plugin-contrail 3.0.2.0-51

2. Adjust the neutron.conf database connection URL.

$ vi /etc/neutron/neutron.conf
if using mysql
connection = mysql+pymysql://neutron:c0ntrail123@127.0.0.1/neutron

3. Populate and upgrade the Neutron database schema.

to upgrade to head
$ neutron-db-manage upgrade head
to upgrade to a specific version
$ neutron-db-manage --config-file /etc/neutron/neutron.conf upgrade liberty

4. Drop foreign key constraints.

obtain current mysql token
$ cat /etc/contrail/mysql.token
fabe17d9dd5ae798f7ea

559

$ mysql -u root -p
Enter password: fabe17d9dd5ae798f7ea

mysql> use neutron;

mysql> show create table vips;
CONSTRAINT `vips_ibfk_1` FOREIGN KEY (`port_id`) REFERENCES `ports` (`id`) - ports table is
not used by Contrail
mysql> alter table vips drop FOREIGN KEY vips_ibfk_1;

mysql> show create table lbaas_loadbalancers;
CONSTRAINT `fk_lbaas_loadbalancers_ports_id` FOREIGN KEY (`vip_port_id`) REFERENCES `ports`
(`id`)
mysql> alter table lbaas_loadbalancers drop FOREIGN KEY fk_lbaas_loadbalancers_ports_id;

5. To install the Avi LBaaS plugin, continue with steps from the readme file that downloads with the Avi
LBaaS software. You can perform either a local installation or a manual installation. The following are
sample installation steps.

• For a local installation:

LBaaS v1 driver
$./install.sh --aname avi_adc --aip

 <controller_ip|controller_vip>
 --auser

 --apass

LBaaS v2 driver
$./install.sh --aname avi_adc_v2 --aip
 <controller_ip|controller_vip>
 --auser

 --apass

 --v2

560

• For a manual installation:

LBaaS v1 driver
$ vi /etc/neutron/neutron.conf
#service_plugins =
neutron_plugin_contrail.plugins.opencontrail.loadbalancer.plugin.LoadBalancerPlugin
service_plugins = neutron_lbaas.services.loadbalancer.plugin.LoadBalancerPlugin
[service_providers]
service_provider =
LOADBALANCER:Avi_ADC:neutron_lbaas.services.loadbalancer.drivers.avi.avi_driver.AviLbaaSDri
ver

[avi_adc]
address=10.1.11.4
user=admin
password=avi123
cloud=jcos

LBaaS v2 driver
$ vi /etc/neutron/neutron.conf
#service_plugins =
neutron_plugin_contrail.plugins.opencontrail.loadbalancer.plugin.LoadBalancerPlugin
service_plugins = neutron_lbaas.services.loadbalancer.plugin.LoadBalancerPluginv2
[service_providers]
service_provider = LOADBALANCERV2:avi_adc_v2:neutron_lbaas.drivers.avi.driver.AviDriver

[avi_adc_v2]
controller_ip=10.1.11.3
username=admin
password=avi123

$ service neutron-server restart
$ neutron service-provider-list

Installing the Avi LBaaS Contrail Driver

Use the following procedure to install the Avi Networks LBaaS load balancer driver for Contrail.

The following steps are performed on the Contrail api-server host.

561

1. Determine the installed version of the Contrail Neutron plugin.

$ contrail-version neutron-plugin-contrail
Package Version
------------------------- ------------
neutron-plugin-contrail 3.0.2.0-51

2. Install the Avi driver.

LBaaS v2 driver
$./install.sh --aname ocavi_adc_v2 --aip

 <controller_ip|controller_vip>
 --auser

 --apass

 --v2 --no-restart --no-confmodify

3. Set up the service appliance set.

NOTE: If neutron_lbaas doesn’t exist on the api-server node, adjust the driver path to the
correct path location for neutron_lbaas.

$ /opt/contrail/utils/service_appliance_set.py --api_server_ip 10.xx.xx.100 --api_server_port 8082 --oper add
--admin_user admin --admin_password <password> --admin_tenant_name admin --name ocavi_adc_v2 --driver
"neutron_lbaas.drivers.avi.avi_ocdriver.OpencontrailAviLoadbalancerDriver" --properties '{"address":
"10.1.xx.3", "user": "admin", "password": "avi123", "cloud": "Default-Cloud"}'

4. To delete the service appliance set.

$ /opt/contrail/utils/service_appliance_set.py --api_server_ip 10.xx.xx.100 --api_server_port 8082 --oper del
--admin_user admin --admin_password <password> --admin_tenant_name admin --name ocavi_adc_v2

Configuring the Avi Controller

1. If OpenStack endpoints are private IPs and Contrail provides a public front-end IP to those endpoints,
use iptables to DNAT. On the AviController only, perform iptable NAT to reach the private IPs.

$ iptables -t nat -I OUTPUT --dest 17x.xx.xx.50 -j DNAT --to-dest 10.xx.xx.100

562

2. To configure the Avi controller during cloud configuration, select the “Integration with Contrail”
checkbox and provide the endpoint URL of the Contrail VNC api-server. Use the Keystone
credentials from the OpenStack configuration to authenticate with the api-server service.

Example Configuration Settings

: > show cloud jcos
 +---------------------------+--+
 | Field | Value |
 +---------------------------+--+
 | uuid | cloud-104bb7e6-a9d2-4b34-a4c5-d94be659bb91 |
 | name | jcos |
 | vtype | CLOUD_OPENSTACK |
 | openstack_configuration | |
 | username | admin |
 | admin_tenant | demo |
 | keystone_host | 17x.xx.xx.50 |
 | mgmt_network_name | mgmtnw |
 | privilege | WRITE_ACCESS |
 | use_keystone_auth | True |
 | region | RegionOne |
 | hypervisor | KVM |
 | tenant_se | True |
 | import_keystone_tenants | True |
 | anti_affinity | True |
 | port_security | False |
 | security_groups | True |
 | allowed_address_pairs | True |
 | free_floatingips | True |
 | img_format | OS_IMG_FMT_AUTO |
 | use_admin_url | True |
 | use_internal_endpoints | False |
 | config_drive | True |
 | insecure | True |
 | intf_sec_ips | False |
 | external_networks | False |
 | neutron_rbac | True |
 | nuage_port | 8443 |
 | contrail_endpoint | http://10.10.10.100:8082 |
 | apic_mode | False |
 | dhcp_enabled | True |
 | mtu | 1500 bytes |

563

 | prefer_static_routes | False |
 | enable_vip_static_routes | False |
 | license_type | LIC_CORES |
 | tenant_ref | admin |
 +---------------------------+--+

RELATED DOCUMENTATION

Configuring Load Balancing as a Service in Contrail | 568

Support for OpenStack LBaaS | 564

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

Support for OpenStack LBaaS

IN THIS SECTION

OpenStack Neutron LBaaS Version 2.0 | 564

OpenStack Octavia LBaaS | 567

OpenStack Neutron LBaaS Version 2.0

Starting with Contrail Networking Release 3.1, Contrail provides support for the OpenStack Load
Balancer as a Service (LBaaS) Version 2.0 APIs in the Liberty release of OpenStack.

Platform Support

Table 40 on page 565 shows which Contrail with OpenStack release combinations support which
version of OpenStack LBaaS APIs.

564

Table 40: Contrail OpenStack Platform Support for LBaaS Versions

Contrail OpenStack Platform LBaaS Support

Contrail-3.1-Liberty (and subsequent OS releases) Only LBaaS v2 is supported.

Contrail-3.0-Liberty (and subsequent OS releases) LBaaS v1 is default. LBaaS v2 is Beta.

<Contrail-any-release>-Kilo (and previous OS releases) Only LBaaS v1 is supported.

Using OpenStack LBaaS Version 2.0

The OpenStack LBaaS Version 2.0 extension enables tenants to manage load balancers for VMs, for
example, load-balancing client traffic from a network to application services, such as VMs, on the same
network. The LBaaS Version 2.0 extension is used to create and manage load balancers, listeners, pools,
members of a pool, and health monitors, and to view the status of a resource.

For LBaaS v2.0, the Contrail controller aggregates the configuration by provider. For example, if haproxy is
the provider, the controller generates the configuration for haproxy and eliminates the need to send all of
the load-balancer resources to the vrouter-agent; only the generated configuration is sent, as part of the
service instance.

For more information about OpenStack v2.0 APIs, refer to the section LBaaS 2.0 (STABLE) (lbaas,
loadbalancers, listeners, health_monitors, pools, members), at http://developer.openstack.org/api-ref-
networking-v2-ext.html.

LBaaS v2.0 also allows users to listen to multiple ports for the same virtual IP, by decoupling the virtual
IP address from the port.

The object model has the following resources:

• Load balancer—Holds the virtual IP address

• Listeners—One or many listeners with different ports, protocols, and so on

• Pools

• Members

• Health monitors

565

http://developer.openstack.org/api-ref-networking-v2-ext.html
http://developer.openstack.org/api-ref-networking-v2-ext.html

Support for Multiple Certificates per Listener

Multiple certificates per listener are supported, with OpenStack Barbican as the storage for certificates.
OpenStack Barbican is a REST API designed for the secure storage, provisioning, and management of
secrets such as passwords, encryption keys, and X.509 certificates.

The following is an example CLI to store certificates in Barbican:

- barbican --os-identity-api-version 2.0 secret store --payload-content-type='text/plain' --name='certificate' --
payload="$(cat server.crt)"

For more information about OpenStack Barbican, see: https://wiki.openstack.org/wiki/Barbican.

Neutron Load-Balancer Creation

NOTE: This procedure is written using the Neutron LBaaS plugin v1.0. Starting with the
OpenStack Train release, neutron-lbaas is replaced by Octavia Some commands are
different due to the plugin change. See the Red Hat Octavia documentation for the
equivalent procedure: https://access.redhat.com/documentation/en-us/
red_hat_openstack_platform/15/html/networking_guide/sec-octavia

The following is an example of Neutron load-balancer creation:

- neutron net-create private-net

- neutron subnet-create --name private-subnet private-net 10.30.30.0/24

- neutron lbaas-loadbalancer-create $(neutron subnet-list | awk '/ private-subnet / {print $2}')
--name lb1

- neutron lbaas-listener-create --loadbalancer lb1 --protocol-port 443 --protocol
TERMINATED_HTTPS --name listener1 --default-tls-container=$(barbican --os-identity-api-version
2.0 container list | awk '/ tls_container / {print $2}')

- neutron lbaas-pool-create --name pool1 --protocol HTTP --listener listener1 --lb-algorithm
ROUND_ROBIN

- neutron lbaas-member-create --subnet private-subnet --address 30.30.30.10 --protocol-port 80
mypool

566

https://wiki.openstack.org/wiki/Barbican
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia

- neutron lbaas-member-create --subnet private-subnet --address 30.30.30.11 --protocol-port 80
mypool

OpenStack Octavia LBaaS

Using Octavia Load-Balancer

Contrail Networking Release 2005 supports Octavia as LBaaS. The deployment supports RHOSP and
Juju platforms.

With Octavia as LBaaS, Contrail Networking is only maintaining network connectivity and is not
involved in any load balancing functions.

For each OpenStack load balancer creation, Octavia launches a VM known as amphora VM. The VM
starts the HAPROXY when listener is created for the load balancer in OpenStack. Whenever the load
balancer gets updated in OpenStack, amphora VM updates the running HAPROXY configuration. The
amphora VM is deleted on deleting the load balancer.

Contrail Networking provides connectivity to amphora VM interfaces. Amphora VM has two interfaces;
one for management and the other for data. The management interface is used by the Octavia services
for the management communication. Since, Octavia services are running in the underlay network and
amphora VM is running in the overlay network, SDN gateway is needed to reach the overlay network.
The data interface is used for load balancing the traffic.

If the load balancer service is exposed to public, you must create the load balancer VIP in the public
subnet. The load balancer members can be in the public or private subnet.

You must create network policy between public network and private network if the load balancer
members are in the private network.

Octavia Load-Balancer Creation

The following is an example of Octavia load-balancer creation:

openstack loadbalancer listener create --protocol HTTP --protocol-port 80 --name listener1 lb1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be ACTIVE.
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --listener listener1 --protocol
HTTP --name pool1
openstack loadbalancer healthmonitor create --delay 5 --timeout 2 --max-retries 1 --type HTTP
pool1
openstack loadbalancer member create --subnet-id private --address 10.10.10.50 --protocol-port
80 pool1

567

openstack loadbalancer member create --subnet-id private --address 10.10.10.51 --protocol-port
80 pool1

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2005 Contrail Networking Release 2005 supports Octavia as LBaaS.

RELATED DOCUMENTATION

https://wiki.openstack.org/wiki/Barbican

http://developer.openstack.org/api-ref-networking-v2-ext.html

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/
networking_guide/sec-octavia

https://docs.openstack.org/octavia/queens/user/guides/basic-cookbook.html

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

Using Load Balancers in Contrail | 550

Configuring Load Balancing as a Service in Contrail | 568

Configuring Load Balancing as a Service in Contrail

IN THIS SECTION

Overview: Load Balancing as a Service | 569

Contrail LBaaS Implementation | 570

Configuring LBaaS Using CLI | 571

Configuring LBaaS using the Contrail Command UI | 573

568

https://apps.juniper.net/feature-explorer/
https://wiki.openstack.org/wiki/Barbican
http://developer.openstack.org/api-ref-networking-v2-ext.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia
https://docs.openstack.org/octavia/queens/user/guides/basic-cookbook.html

Overview: Load Balancing as a Service

Load Balancing as a Service (LBaaS) is a feature available through OpenStack Neutron. Contrail Release
1.20 and greater allows the use of the Neutron API for LBaaS to apply open source load balancing
technologies to provision a load balancer in the Contrail system.

The LBaaS load balancer enables the creation of a pool of virtual machines serving applications, all front-
ended by a virtual-ip. The LBaaS implementation has the following features:

• Load balancing of traffic from clients to a pool of backend servers. The load balancer proxies all
connections to its virtual IP.

• Provides load balancing for HTTP, TCP, and HTTPS.

• Provides health monitoring capabilities for applications, including HTTP, TCP, and ping.

• Enables floating IP association to virtual-ip for public access to the backend pool.

In Figure 62 on page 569, the load balancer is launched with the virtual IP address 198.51.100.2. The
backend pool of virtual machine applications (App Pool) is on the subnet 203.0.113.0/24. Each of the
application virtual machines gets an IP address (virtual-ip) from the pool subnet. When a client connects
to the virtual-ip for accessing the application, the load balancer proxies the TCP connection on its
virtual-ip, then creates a new TCP connection to one of the virtual machines in the pool.

The pool member is selected using one of following methods:

• weighted round robin (WRR), based on the weight assignment

• least connection, selects the member with the fewest connections

• source IP selects based on the source-ip of the packet

Figure 62: Load Balancing as a Service in Contrail

Additionally, the load balancer monitors the health of each pool member using the following methods:

• Monitors TCP by creating a TCP connection at intervals.

569

• Monitors HTTP by creating a TCP connection and issuing an HTTP request at intervals.

• Monitors ping by checking if a member can be reached by pinging.

Contrail LBaaS Implementation

Contrail supports the OpenStack LBaaS Neutron APIs and creates relevant objects for LBaaS, including
virtual-ip, loadbalancer-pool, loadbalancer-member, and loadbalancer-healthmonitor. Contrail creates a service
instance when a loadbalancer-pool is associated with a virtual-ip object. The service scheduler then
launches a namespace on a randomly selected virtual router and spawns HAProxy into that namespace.
The configuration for HAProxy is picked up from the load balancer objects. Contrail supports high
availability of namespaces and HAProxy by spawning active and standby on two different vrouters.

A Note on Installation

To use the LBaaS feature, HAProxy, version 1.5 or greater and iproute2, version 3.10.0 or greater must
both be installed on the Contrail compute nodes.

If you are using fabic commands for installation, the haproxy and iproute2 packages will be installed
automatically with LBaaS if you set the following:

env.enable_lbaas=True

Use the following to check the version of the iproute2 package on your system and verify the installation:

root@nodeh5:/var/log# ip -V
ip utility, iproute2-ss130716
root@nodeh5:/var/log#

You can also view the server yml file to verify the env.enable_lbaas=True.

Limitations

LBaaS currently has these limitations:

• A pool should not be deleted before deleting the VIP.

• Multiple VIPs cannot be associated with the same pool. If pool needs to be reused, create another
pool with the same members and bind it to the second VIP.

• Members cannot be moved from one pool to another. If needed, first delete the members from one
pool, then add to a different pool.

• In case of active-standby failover, namespaces might not get cleaned up when the agent restarts.

570

• The floating-ip association needs to select the VIP port and not the service ports.

Configuring LBaaS Using CLI

The LBaaS feature is enabled on Contrail through Neutron API calls. The following procedure shows how
to create a pool network and a VIP network using CLI. The VIP network is created in the public network
and members are added in the pool network.

NOTE: The following procedures are written using the Neutron LBaaS plugin v1.0.
Starting with the OpenStack Train release, neutron-lbaas is replaced by Octavia. Some
commands are different due to the plugin change. See the Red Hat Octavia
documentation for the equivalent procedure: https://access.redhat.com/
documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-
octavia

Creating a Load Balancer

Use the following steps to create a load balancer in Contrail.

1. Create a VIP network.

neutron net-create vipnet

neutron subnet-create –-name vipsubnet vipnet 198.51.100.2

2. Create a pool network.

neutron net-create poolnet

neutron subnet-create --name poolsubnet poolnet 203.0.113.0/24

3. Create a pool for HTTP.

neutron lb-pool-create --lb-method ROUND_ROBIN --name mypool --protocol HTTP --subnet-id poolsubnet

4. Add members to the pool.

neutron lb-member-create --address 203.0.113.3 --protocol-port 80 mypool

neutron lb-member-create --address 203.0.113.4 --protocol-port 80 mypool

5. Create a VIP for HTTP and associate it to the pool.

571

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/networking_guide/sec-octavia

neutron lb-vip-create --name myvip --protocol-port 80 --protocol HTTP--subnet-id vipsubnet mypool

Deleting a Load Balancer

Use the following steps to delete a load balancer in Contrail.

1. Delete the VIP.

neutron lb-vip-delete <vip-uuid>

2. Delete members from the pool.

neutron lb-member-delete <member-uuid>

3. Delete the pool.

neutron lb-pool-delete <pool-uuid>

Managing Healthmonitor for Load Balancer

Use the following commands to create a healthmonitor, associate a healthmonitor to a pool, disassociate
a healthmonitor, and delete a healthmonitor.

1. Create a healthmonitor.

neutron lb-healthmonitor-create --delay 20 --timeout 10 --max-retries 3 --type HTTP

2. Associate a healthmonitor to a pool.

neutron lb-healthmonitor-associate <healthmonitor-uuid> mypool

3. Disassociate a healthmonitor from a pool.

neutron lb-healthmonitor-disassociate <healthmonitor-uuid> mypool

Configuring an SSL VIP with an HTTP Backend Pool

Use the following steps to configure an SSL VIP with an HTTP backend pool.

1. Copy an SSL certificate to all compute nodes.

scp ssl_certificate.pem <compute-node-ip> <certificate-path>

2. Update the information in /etc/contrail/contrail-vrouter-agent.conf.

572

SSL certificate path haproxy

haproxy_ssl_cert_path=<certificate-path>

3. Restart contrail-vrouter-agent.

service contrail-vrouter-agent restart

4. Create a VIP for port 443 (SSL).

neutron lb-vip-create --name myvip --protocol-port 443 --protocol HTTP --subnet-id vipsubnet mypool

Configuring LBaaS using the Contrail Command UI

Create, edit, or delete load balancers using the Contrail Command UI. Use the following guidelines when
creating load balancers:

• Each load balancer consists of one or more listeners, pools, pool members, and health monitors.

• Listener: Port that listens for traffic from a particular load balancer. Multiple listeners can be
associated with a single load balancer.

• Pool: Group of hosts that serves traffic from the load balancer.

• Pool Member: Server that is specified by the IP address and port for which it uses to serve the
traffic it receives from the load balancer.

• Health Monitor: Health monitors are associated with pools and help divert traffic away from pool
members that are temporarily offline.

• Each load balancer can have multiple pools with one or more listeners for each pool.

• The native load balancer has a single pool that is shared among multiple listeners.

Creating a Load Balancer

Use the following steps to create a load balancer with the load balancer wizard.

1. Go to Services > Load Balancers.

573

Figure 63: Create Load Balancers

2. To create a load balancer, click Create.

Figure 64: Load Balancer Information

Add the load balancer information:

• Name: Name of the load balancer.

• Description: (Optional) Description of the load balancer.

• Subnet: Drop-down menu displays all subnets from list of all available networks. The subnet is the
network on which to allocate the IP address of the load balancer.

• Loadbalancer Provider: Drop-down menu includes available options. Default is opencontrail.

574

• Fixed IPs: (Optional) IPv4 or IPv6 address.

• Floating IP: (Optional) IPv4 or IPv6 address.

• Admin State: Check the checkbox for UP or uncheck the checkbox for DOWN. Default is UP.

3. Click Next. The Listener fields are displayed.

Figure 65: Listener Information

Add the listener information:

• Name: Name of the listener.

• Description: (Optional) Description of the listener.

• Protocol: Dropdown menu includes HTTP and TCP.

• Port: Must be an integer in the range of 1 to 65535.

• Connection Limit: (Optional). -1indicates an infinite limit.

• Admin State: Check the checkbox for UP or uncheck the checkbox for DOWN. Default is UP.

4. Click Next. The Pool fields are displayed.

575

Figure 66: Pool Information

Add the pool information:

• Name: Name of the pool.

• Description: (Optional) Description of the pool.

• Method: Load balancing method used to distribute incoming requests. Dropdown menu includes
LEAST_CONNECTIONS, ROUND_ROBIN, and SOURCE_IP.

• Protocol: The protocol used by the pool and its members for the load balancer traffic. Dropdown
menu includes TCP and HTTP.

• Session Persistence: (Optional) Default value is an empty dictionary.

• Admin State: Check the checkbox for UP or uncheck the checkbox for DOWN. Default is UP.

5. Click Next. The list of available pool member instances are displayed. To add an external member,
click the

Add icon. Each pool member must have a unique IP address and port combination.

576

Figure 67: Pool Member Information

The pool member information includes:

• Name: Name of the pool member.

• Subnet: The subnet in which to access the member.

• IP Address: The IP address of the member that is used to receive traffic from the load balancer.

• Port: The port to which the member listens to receive traffic from the load balancer.

• Weight: The default value is 1.

• Admin State: Check the checkbox for UP or uncheck the checkbox for DOWN. Default is UP.

6. Click Next. The Monitor fields are displayed.

577

Figure 68: Health Monitor Information

Add the health monitor information:

• Monitor Type: Dropdown menu includes HTTP, PING, and TCP.

• HTTP Method: Required if monitor type is HTTP. Dropdown menu includes GET and HEAD. The
default value is GET.

• Expected HTTP Status Code: Required if monitor type is HTTP. The default value is 200.

• URL Path: Required if monitor type is HTTP. The default value is “/.”

• Health check interval (sec): The time interval, in seconds, between each health check. The default
value is 5.

• Retry count before markdown: The maximum number of failed health checks before the state of a
member is changed to OFFLINE. The default value is 3.

• Timeout (sec): The maximum number of seconds allowed for any given health check to complete.
The timeout value should always be less than the health check interval. The default value is 5.

• Admin State: Check the checkbox for UP or uncheck the checkbox for DOWN. Default is UP.

Click Finish.

Viewing or Editing Load Balancers

Use the following steps to view or edit existing load balancers.

578

1. Go to Services > Load Balancers. A summary screen of the Load Balancers is displayed.

Figure 69: Summary Screen of Load Balancers

2. To view summary of a load balancer, click the drop down arrow next to a load balancer listed in the
summary screen. The Load Balancer Info window is displayed.

Figure 70: Load Balancer Info Window

Deleting a Load Balancer

579

To delete the load balancer, click the trash can icon.

RELATED DOCUMENTATION

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

Using Load Balancers in Contrail | 550

Support for OpenStack LBaaS | 564

580

CHAPTER 14

Optimizing Contrail Networking

IN THIS CHAPTER

Multiqueue Virtio Interfaces in Virtual Machines | 581

Multiqueue Virtio Interfaces in Virtual Machines

IN THIS SECTION

Multiqueue Virtio Overview | 581

Requirements and Setup for Multiqueue Virtio Interfaces | 581

Contrail 3.2 adds support for multiqueue for the DPDK-based vrouter.

Contrail 3.1 supports multiqueue virtio interfaces for Ubuntu kernel-based router, only.

Multiqueue Virtio Overview

OpenStack Liberty supports the ability to create VMs with multiple queues on their virtio interfaces.
Virtio is a Linux platform for I/O virtualization, providing a common set of I/O virtualization drivers.
Multiqueue virtio is an approach that enables the processing of packet sending and receiving to be
scaled to the number of available virtual CPUs (vCPUs) of a guest, through the use of multiple queues.

Requirements and Setup for Multiqueue Virtio Interfaces

To use multiqueue virtio interfaces, ensure your system meets the following requirements:

• The OpenStack version must be Liberty or greater.

581

• The maximum number of queues in the VM interface is set to the same value as the number of
vCPUs in the guest.

• The VM image metadata property is set to enable multiple queues inside the VM.

Setting Virtual Machine Metadata for Multiple Queues

Use the following command on the OpenStack node to enable multiple queues on a VM:

source /etc/contrail/openstackrc
nova image-meta <image_name> set hw_vif_multiqueue_enabled="true"

After the VM is spawned, use the following command on the virtio interface in the guest to enable
multiple queues inside the VM:

ethtool –L <interface_name> combined <#queues>

Packets will now be forwarded on all queues in the VM to and from the vRouter running on the host.

NOTE: Multiple queues in the VM are only supported with the kernel mode vRouter in
Contrail 3.1.

Contrail 3.2 adds support for multiple queues with the DPDK-based vrouter, using
OpenStack Mitaka. The DPDK vrouter has the same setup requirements as the kernel
mode vrouter. However, in the ethtool –L setup command, the number of queues cannot
be higher than the number of CPU cores assigned to vrouter in the testbed file.

582

CHAPTER 15

Contrail Networking OpenStack Analytics

IN THIS CHAPTER

Ceilometer Support in Contrail | 583

Ceilometer Support in Contrail

IN THIS SECTION

Overview | 583

Ceilometer Details | 584

Verification of Ceilometer Operation | 584

Contrail Ceilometer Plugin | 587

Ceilometer Installation and Provisioning | 590

Ceilometer is an OpenStack feature that provides an infrastructure for collecting SDN metrics from
OpenStack projects. The metrics can be used by various rating engines to transform events into billable
items. The Ceilometer collection process is sometimes referred to as “metering”. The Ceilometer service
provides data that can be used by platforms that provide metering, tracking, billing, and similar services.
This topic describes how to configure the Ceilometer service for Contrail.

Overview

Contrail Release 2.20 and later supports the OpenStack Ceilometer service, on the OpenStack Juno
release on Ubuntu 14.04.1 LTS.

The prerequisites for installing Ceilometer are:

• Contrail Cloud installation

583

• Provisioned using enable_ceilometer = True in the provisioning file.

NOTE: Ceilometer services are only installed on the first OpenStack controller node and
do not support high availability in Contrail Release 2.20.

Ceilometer Details

Ceilometer is used to reliably collect measurements of the utilization of the physical and virtual
resources comprising deployed clouds, persist these data for subsequent retrieval and analysis, and
trigger actions when defined criteria are met.

The Ceilometer architecture consists of:

Polling agent Agent designed to poll OpenStack services and build meters. The polling agents are
also run on the compute nodes in addition to the OpenStack controller.

Notification
agent

Agent designed to listen to notifications on message queue and convert them to
events and samples.

Collector Gathers and records event and metering data created by the notification and polling
agents.

API server Provides a REST API to query and view data recorded by the collector service.

Alarms Daemons to evaluate and notify based on defined alarming rules.

Database Stores the metering data, notifications, and alarms. The supported databases are
MongoDB, SQL-based databases compatible with SQLAlchemy, and HBase. The
recommended database is MongoDB, which has been thoroughly tested with
Contrail and deployed on a production scale.

Verification of Ceilometer Operation

The Ceilometer services are named slightly differently on the Ubuntu and RHEL Server 7.0.

On Ubuntu, the service names are:

Polling agent ceilometer-agent-central and ceilometer-agent-compute

Notification agent ceilometer-agent-notification

Collector ceilometer-collector

API Server ceilometer-api

584

Alarms ceilometer-alarm-evaluator and ceilometer-alarm-notifier

On RHEL Server 7.0, the service names are:

Polling agent openstack-ceilometer-central and openstack-ceilometer-compute

Notification agent openstack-ceilometer-notification

Collector openstack-ceilometer-collector

API server openstack-ceilometer-api

Alarms openstack-ceilometer-alarm-evaluator and openstack-ceilometer-alarm-notifier

To verify the Ceilometer installation, users can verify that the Ceilometer services are up and running by
using the openstack-status command.

For example, using the openstack-status command on an all-in-one node running Ubuntu 14.04.1 LTS
with release 2.2 of Contrail installed shows the following Ceilometer services as active:

== Ceilometer services ==
ceilometer-api: active
ceilometer-agent-central: active
ceilometer-agent-compute: active
ceilometer-collector: active
ceilometer-alarm-notifier: active
ceilometer-alarm-evaluator: active
ceilometer-agent-notification:active

You can issue the ceilometer meter-list command on the OpenStack controller node to verify that meters
are being collected, stored, and reported via the REST API. The following is an example of the output:

user@host:~# (source /etc/contrail/openstackrc; ceilometer meter-list)
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+
| Name | Type | Unit | Resource ID |
User ID | Project ID |
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+
| ip.floating.receive.bytes | cumulative | B | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| ip.floating.receive.packets | cumulative | packet | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |

585

| ip.floating.transmit.bytes | cumulative | B | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| ip.floating.transmit.packets | cumulative | packet | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| network | gauge | network | 7fa6796b-756e-4320-9e73-87d4c52ecc83 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | 9408e287-d3e7-41e2-89f0-5c691c9ca450 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | b3b72b98-f61e-4e1f-9a9b-84f4f3ddec0b |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | cb829abd-e6a3-42e9-a82f-0742db55d329 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | 7fa6796b-756e-4320-9e73-87d4c52ecc83 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | 9408e287-d3e7-41e2-89f0-5c691c9ca450 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | b3b72b98-f61e-4e1f-9a9b-84f4f3ddec0b |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | cb829abd-e6a3-42e9-a82f-0742db55d329 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| port | gauge | port | 0d401d96-c2bf-4672-abf2-880eecf25ceb |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port | gauge | port | 211b94a4-581d-45d0-8710-c6c69df15709 |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port | gauge | port | 2287ce25-4eef-4212-b77f-3cf590943d36 |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.create | delta | port | f62f3732-222e-4c40-8783-5bcbc1fd6a1c |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.create | delta | port | f8c89218-3cad-48e2-8bd8-46c1bc33e752 |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.update | delta | port | 43ed422d-b073-489f-877f-515a3cc0b8c4 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet | gauge | subnet | 09105ed1-1654-4b5f-8c12-f0f2666fa304 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet | gauge | subnet | 4bf00aac-407c-4266-a048-6ff52721ad82 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet.create | delta | subnet | 09105ed1-1654-4b5f-8c12-f0f2666fa304 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet.create | delta | subnet | 4bf00aac-407c-4266-a048-6ff52721ad82 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+

586

NOTE: The ceilometer meter-list command lists the meters only if images have been
created, or instances have been launched, or if subnet, port, floating IP addresses have
been created, otherwise the meter list is empty. You also need to source the /etc/
contrail/openstackrc file when executing the command.

Contrail Ceilometer Plugin

The Contrail Ceilometer plugin adds the capability to meter the traffic statistics of floating IP addresses
in Ceilometer. The following meters for each floating IP resource are added by the plugin in Ceilometer.

ip.floating.receive.bytes
ip.floating.receive.packets
ip.floating.transmit.bytes
ip.floating.transmit.packets

The Contrail Ceilometer plugin configuration is done in the /etc/ceilometer/pipeline.yaml file when
Contrail is installed by the Fabric provisioning scripts.

The following example shows the configuration that is added to the file:

sources:
 - name: contrail_source
 interval: 600
 meters:
 - "ip.floating.receive.packets"
 - "ip.floating.transmit.packets"
 - "ip.floating.receive.bytes"
 - "ip.floating.transmit.bytes"
 resources:
 - contrail://<IP-address-of-Contrail-Analytics-Node>:8081
 sinks:
 - contrail_sink
sinks:
 - name: contrail_sink
 publishers:
 - rpc://
 transformers:

587

The following example shows the Ceilometer meter list output for the floating IP meters:

+-------------------------------+------------+-----------
+---
+----------------------------------+----------------------------------+
| Name | Type | Unit | Resource
ID | User ID
| Project ID |
+-------------------------------+------------+-----------
+---
+----------------------------------+----------------------------------+
| ip.floating.receive.bytes | cumulative | B | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.receive.bytes | cumulative | B | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.receive.packets | cumulative | packet | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.receive.packets | cumulative | packet | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.transmit.bytes | cumulative | B | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.transmit.bytes | cumulative | B | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.transmit.packets | cumulative | packet | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.transmit.packets | cumulative | packet | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |

In the meter -list output, the Resource ID refers to the floating IP.

588

The following example shows the output from the ceilometer resource-show -r 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 command:

+-------------+---+
| Property | Value |
+-------------+---+
metadata	{u'router_id': u'None', u'status': u'ACTIVE', u'tenant_id':
	u'ceed483222f9453ab1d7bcdd353971bc', u'floating_network_id':
	u'6d0cca50-4be4-4b49-856a-6848133eb970', u'fixed_ip_address':
	u'2.2.2.4', u'floating_ip_address': u'3.3.3.4', u'port_id': u'c6ce2abf-
	ad98-4e56-ae65-ab7c62a67355', u'id':
	u'451c93eb-e728-4ba1-8665-6e7c7a8b49e2', u'device_id':
	u'00953f62-df11-4b05-97ca-30c3f6735ffd'}
project_id	None
resource_id	451c93eb-e728-4ba1-8665-6e7c7a8b49e2
source	openstack
user_id	None
+-------------+---+

The following example shows the output from the ceilometer statistics command and the ceilometer
sample-list command for the ip.floating.receive.packets meter:

+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+
| Period | Period Start | Period End | Count | Min | Max |
Sum | Avg | Duration | Duration Start | Duration End |
+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+
| 0 | 2015-02-13T19:50:40.795000 | 2015-02-13T19:50:40.795000 | 2892 | 0.0 | 325.0 |
1066.0 | 0.368603042877 | 439069.674 | 2015-02-13T19:50:40.795000 | 2015-02-18T21:48:30.469000 |
+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+

+--------------------------------------+-----------------------------+------------+--------
+--------+----------------------------+
| Resource ID | Name | Type | Volume |
Unit | Timestamp |
+--------------------------------------+-----------------------------+------------+--------

589

+--------+----------------------------+
| 9cf76844-8f09-4518-a09e-e2b8832bf894 | ip.floating.receive.packets | cumulative | 208.0 |
packet | 2015-02-18T21:48:30.469000 |
| 451c93eb-e728-4ba1-8665-6e7c7a8b49e2 | ip.floating.receive.packets | cumulative | 325.0 |
packet | 2015-02-18T21:48:28.354000 |
| 9cf76844-8f09-4518-a09e-e2b8832bf894 | ip.floating.receive.packets | cumulative | 0.0 |
packet | 2015-02-18T21:38:30.350000 |

Ceilometer Installation and Provisioning

There are two scenarios possible for Contrail Ceilometer plugin installation.

1. If you install your own OpenStack distribution, you can install the Contrail Ceilometer plugin on the
OpenStack controller node.

2. When using Contrail Cloud services, the Ceilometer controller services are installed and provisioned
as part of the OpenStack controller node and the compute agent service is installed as part of the
compute node when enable_ceilometer is set as True in the cluster config or testbed files.

590

CHAPTER 16

Contrail OpenStack APIs

IN THIS CHAPTER

Working with Neutron | 591

Working with Neutron

IN THIS SECTION

Data Structure | 591

Network Sharing in Neutron | 592

Commands for Neutron Network Sharing | 593

Support for Neutron APIs | 593

Contrail Neutron Plugin | 594

DHCP Options | 594

Incompatibilities | 595

OpenStack’s networking solution, Neutron, has representative elements for Contrail elements for
Network (VirtualNetwork), Port (VirtualMachineInterface), Subnet (IpamSubnets), and Security-Group.
The Neutron plugin translates the elements from one representation to another.

Data Structure

Although the actual data between Neutron and Contrail is similar, the listings of the elements differs
significantly. In the Contrail API, the networking elements list is a summary, containing only the UUID,
FQ name, and an href, however, in Neutron, all details of each resource are included in the list.

The Neutron plugin has an inefficient list retrieval operation, especially at scale, because it:

• reads a list of resources (for example. GET /virtual-networks), then

591

• iterates and reads in the details of the resource (GET /virtual-network/<uuid>).

As a result, the API server spends most of the time in this type of GET operation just waiting for results
from the Cassandra database.

The following features in Contrail improve performance with Neutron:

• An optional detail query parameter is added in the GET of collections so that the API server returns
details of all the resources in the list, instead of just a summary. This is accompanied by changes in
the Contrail API library so that a caller gets returned a list of the objects.

• The existing Contrail list API takes in an optional parent_id query parameter to return information
about the resource anchored by the parent.

• The Contrail API server reads objects from Cassandra in a multiget format into obj_uuid_cf, where
object contents are stored, instead of reading in an xget/get format. This reduces the number of
round-trips to and from the Cassandra database.

Network Sharing in Neutron

Using Neutron, a deployer can make a network accessible to other tenants or projects by using one of
two attributes on a network:

• Set the shared attribute to allow sharing.

• Set the router:external attribute, when the plugin supports an external_net extension.

Using the Shared Attribute

When a network has the shared attribute set, users in other tenants or projects, including non-admin
users, can access that network, using:

neutron net-list --shared

Users can also launch a virtual machine directly on that network, using:

nova boot <other-parameters> –nic net-id=<shared-net-id>

Using the Router:External Attribute

When a network has the router:external attribute set, users in other tenants or projects, including non-
admin users, can use that network for allocating floating IPs, using:

neutron floatingip-create <router-external-net-id>

then associating the IP address pool with their instances.

592

NOTE: The VN hosting the FIP pool should be marked shared and external.

Commands for Neutron Network Sharing

The following table summarizes the most common Neutron commands used with Contrail.

Table 41: Neutron commands

Action Command

List all shared networks. neutron net-list --shared

Create a network that has the shared attribute. neutron net-create <net-name> –shared

Set the shared attribute on an existing network. neutron net-update <net-name> -shared

List all router:external networks. neutron net-list --router:external

Create a network that has the router:externalattribute. neutron net-create <net-name> -router:external

Set the router:external attribute on an existing network. neutron net-update <net-name> -router:external

Support for Neutron APIs

The OpenStack Neutron project provides virtual networking services among devices that are managed
by the OpenStack compute service. Software developers create applications by using the OpenStack
Networking API v2.0 (Neutron).

Contrail provides the following features to increase support for OpenStack Neutron:

• Create a port independently of a virtual machine.

• Support for more than one subnet on a virtual network.

• Support for allocation pools on a subnet.

• Per tenant quotas.

• Enabling DHCP on a subnet.

593

• External router can be used for floating IPs.

For more information about using OpenStack Networking API v2.0 (Neutron), refer to: http://
docs.openstack.org/api/openstack-network/2.0/content/ and the OpenStack Neutron Wiki at: http://
wiki.openstack.org/wiki/Neutron.

Contrail Neutron Plugin

The Contrail Neutron plugin provides an implementation for the following core resources:

• Network

• Subnet

• Port

It also implements the following standard and upstreamed Neutron extensions:

• Security group

• Router IP and floating IP

• Per-tenant quota

• Allowed address pair

The following Contrail-specific extensions are implemented:

• Network IPAM

• Network policy

• VPC table and route table

• Floating IP pools

The plugin does not implement native bulk, pagination, or sort operations and relies on emulation
provided by the Neutron common code.

DHCP Options

In Neutron commands, DHCP options can be configured using extra-dhcp-options in port-create.

Example

neutron port-create net1 --extra-dhcp-opt opt_name=<dhcp_option_name>,opt_value=<value>

The opt_name and opt_value pairs that can be used are maintained in GitHub: https://github.com/
Juniper/contrail-controller/wiki/Extra-DHCP-Options .

594

http://docs.openstack.org/api/openstack-network/2.0/content/​
http://docs.openstack.org/api/openstack-network/2.0/content/​
http://wiki.openstack.org/wiki/Neutron
http://wiki.openstack.org/wiki/Neutron
https://github.com/Juniper/contrail-controller/wiki/Extra-DHCP-Options
https://github.com/Juniper/contrail-controller/wiki/Extra-DHCP-Options

Incompatibilities

In the Contrail architecture, the following are known incompatibilities with the Neutron API.

• Filtering based on any arbitrary key in the resource is not supported. The only supported filtering is
by id, name, and tenant_id.

• To use a floating IP, it is not necessary to connect the public subnet and the private subnet to a
Neutron router. Marking a public network with router:external is sufficient for a floating IP to be
created and associated, and packet forwarding to it will work.

• The default values for quotas are sourced from /etc/contrail/contrail-api.conf and not from /etc/
neutron/neutron.conf.

595

CHAPTER 17

Using Contrail with Juju Charms

IN THIS CHAPTER

Installing Contrail with OpenStack by Using Juju Charms | 596

Installing Contrail with Kubernetes by Using Juju Charms | 653

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms | 666

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking | 670

Using Netronome SmartNIC vRouter with Contrail Networking and Juju Charms | 679

Installing Contrail with OpenStack by Using Juju Charms

IN THIS SECTION

Preparing to Deploy Contrail by Using Juju Charms | 597

Deploying Contrail Charms | 599

Options for Juju Charms | 612

Ironic Support with Juju | 622

You can deploy Contrail by using Juju Charms. Juju helps you deploy, configure, and efficiently manage
applications on private clouds and public clouds. Juju accesses the cloud with the help of a Juju
controller. A Charm is a module containing a collection of scripts and metadata and is used with Juju to
deploy Contrail.

Starting in Contrail Networking Release 2011, Contrail Networking supports OpenStack Ussuri with
Ubuntu version 18.04 (Bionic Beaver) and Ubuntu version 20.04 (Focal Fossa).

Contrail supports the following charms:

• contrail-agent

596

• contrail-analytics

• contrail-analyticsdb

• contrail-controller

• contrail-keystone-auth

• contrail-openstack

These topics describe how to deploy Contrail by using Juju Charms.

Preparing to Deploy Contrail by Using Juju Charms

Follow these steps to prepare for deployment:

1. Install Juju.

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install juju

2. Configure Juju.

You can add a cloud to Juju, identify clouds supported by Juju, and also manage clouds already added
to Juju.

• Adding a cloud—Juju recognizes a wide range of cloud types. You can use any one of the following
methods to add a cloud to Juju:

• Adding a Cloud by Using Interactive Command

Example: Adding an MAAS cloud to Juju

juju add-cloud
Cloud Types
 maas
 manual
 openstack
 oracle
 vsphere

Select cloud type: maas

Enter a name for your maas cloud: maas-cloud

597

Enter the API endpoint url: http://<ip-address>:<node>/MAAS

Cloud "maas-cloud" successfully added
You may bootstrap with 'juju bootstrap maas-cloud'

NOTE: Juju 2.x is compatible with MAAS series 1.x and 2.x.

• Adding a Cloud Manually

You use a YAML configuration file to add a cloud manually. Enter the following command:

juju add-cloud <cloud-name>
juju add-credential <cloud name>

For an example, to add the cloud junmaas, assuming that the name of the configuration file in
the directory is maas-clouds.yaml, you run the following command:

juju add-cloud junmaas maas-clouds.yaml

The following is the format of the YAML configuration file:

clouds:
 <cloud_name>:
 type: <type_of_cloud>
 auth-types: [<authenticaton_types>]
 regions:
 <region-name>:
 endpoint: <http://<ip-address>:<node>/MAAS>

NOTE: The auth-types for a MAAS cloud type is oauth1.

• Identifying a supported cloud

598

Juju recognizes the cloud types given below. You use the juju clouds command to list cloud types
that are supported by Juju.

$ juju clouds
Cloud Regions Default Type Description
aws 15 us-east-1 ec2 Amazon Web Services
aws-china 1 cn-north-1 ec2 Amazon China
aws-gov 1 us-gov-west-1 ec2 Amazon (USA Government)
azure 26 centralus azure Microsoft Azure
azure-china 2 chinaeast azure Microsoft Azure China
cloudsigma 5 hnl cloudsigma CloudSigma Cloud
google 13 us-east1 gce Google Cloud Platform
joyent 6 eu-ams-1 joyent Joyent Cloud
oracle 5 uscom-central-1 oracle Oracle Cloud
rackspace 6 dfw rackspace Rackspace Cloud
localhost 1 localhost lxd LXD Container Hypervisor

3. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

NOTE: A Juju controller manages and keeps track of applications in the Juju cloud
environment.

Deploying Contrail Charms

IN THIS SECTION

Deploy Contrail Charms in a Bundle | 599

Deploying Juju Charms with OpenStack Manually | 607

You can deploy Contrail Charms in a bundle or manually.

Deploy Contrail Charms in a Bundle

Follow these steps to deploy Contrail Charms in a bundle.

599

1. Deploy Contrail Charms.

To deploy Contrail Charms in a bundle, use the juju deploy <bundle_yaml_file> command.

The following example shows you how to use bundle_yaml_file to deploy Contrail on Amazon Web
Services (AWS) Cloud.

series: bionic

variables:
 openstack-origin: &openstack-origin distro
 #vhost-gateway: &vhost-gateway "192.x.40.254"
 data-network: &data-network "192.x.40.0/24"
 control-network: &control-network "192.x.30.0/24"
 virtioforwarder-coremask: &virtioforwarder-coremask "1,2"
 agilio-registry: &agilio-registry "netronomesystems"
 agilio-image-tag: &agilio-image-tag "latest-ubuntu-queens"
 agilio-user: &agilio-user "<agilio-username>"
 agilio-password: &agilio-password "<agilio-password>"
 agilio-insecure: &agilio-insecure false
 agilio-phy: &agilio-phy "nfp_p0"
 docker-registry: &docker-registry "<registry-directory>"
 #docker-user: &docker-user "<docker_username>"
 #docker-password: &docker-password "<docker_password>"
 image-tag: &image-tag "2008.121"
 docker-registry-insecure: &docker-registry-insecure "true"
 dockerhub-registry: &dockerhub-registry "https://index.docker.io/v1/"

machines:
 "1":
 constraints: tags=controller
 series: bionic
 "2":
 constraints: tags=compute
 series: bionic
 "3":
 constraints: tags=neutron
 series: bionic
services:
 ubuntu:
 charm: cs:ubuntu
 num_units: 1
 to: ["1"]

600

 ntp:
 charm: cs:ntp
 num_units: 0
 options:
 #source: ntp.ubuntu.com
 source: 10.204.217.158
mysql:
 charm: cs:percona-cluster
 num_units: 1
 options:
 dataset-size: 15%
 max-connections: 10000
 root-password: <password>
 sst-password: <password>
 min-cluster-size: 1
 to: ["lxd:1"]
 rabbitmq-server:
num_units: 1
 options:
 min-cluster-size: 1
 to: ["lxd:1"]
 heat:
 charm: cs:heat
 num_units: 1
 expose: true
 options:
 debug: true
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
keystone:
 charm: cs:keystone
 expose: true
 num_units: 1
 options:
 admin-password: <password>
 admin-role: admin
 openstack-origin: *openstack-origin
 preferred-api-version: 3
nova-cloud-controller:
 charm: cs:nova-cloud-controller
 num_units: 1
 expose: true
 options:

601

 network-manager: Neutron
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
neutron-api:
 charm: cs:neutron-api
 expose: true
 num_units: 1
 series: bionic
 options:
 manage-neutron-plugin-legacy-mode: false
 openstack-origin: *openstack-origin
 to: ["3"]
glance:
 charm: cs:glance
 expose: true
 num_units: 1
 options:
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 openstack-dashboard:
 charm: cs:openstack-dashboard
 expose: true
 num_units: 1
 options:
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 nova-compute:
 charm: cs:nova-compute
 num_units: 0
 expose: true
 options:
 openstack-origin: *openstack-origin
 nova-compute-dpdk:
 charm: cs:nova-compute
 num_units: 0
 expose: true
 options:
 openstack-origin: *openstack-origin
 nova-compute-accel:
 charm: cs:nova-compute
 num_units: 2
 expose: true
 options:

602

 openstack-origin: *openstack-origin
 to: ["2"]
 contrail-openstack:
 charm: ./tf-charms/contrail-openstack
 series: bionic
 expose: true
 num_units: 0
 options:
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 contrail-agent:
 charm: ./tf-charms/contrail-agent
 num_units: 0
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 #vhost-gateway: *vhost-gateway
 physical-interface: *agilio-phy
 contrail-agent-dpdk:
 charm: ./tf-charms/contrail-agent
 num_units: 0
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 dpdk: true
 dpdk-main-mempool-size: "65536"
 dpdk-pmd-txd-size: "2048"
 dpdk-pmd-rxd-size: "2048"

603

 dpdk-driver: ""
 dpdk-coremask: "1-4"
 #vhost-gateway: *vhost-gateway
 physical-interface: "nfp_p0"
 contrail-analytics:
 charm: ./tf-charms/contrail-analytics
 num_units: 1
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 control-network: *control-network
 docker-registry-insecure: *docker-registry-insecure
 to: ["1"]
 contrail-analyticsdb:
 charm: ./tf-charms/contrail-analyticsdb
 num_units: 1
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms8g -Xmx8g"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 control-network: *control-network
 docker-registry-insecure: *docker-registry-insecure
 to: ["1"]
 contrail-controller:
 charm: ./tf-charms/contrail-controller
 series: bionic
 expose: true
 num_units: 1
 options:
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms8g -Xmx8g"

604

 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 control-network: *control-network
 data-network: *data-network
 auth-mode: no-auth
 to: ["1"]
 contrail-keystone-auth:
 charm: ./tf-charms/contrail-keystone-auth
 series: bionic
 expose: true
 num_units: 1
 to: ["lxd:1"]
 agilio-vrouter5:
 charm: ./charm-agilio-vrt-5-37
 expose: true
 options:
 virtioforwarder-coremask: *virtioforwarder-coremask
 agilio-registry: *agilio-registry
 agilio-insecure: *agilio-insecure
 agilio-image-tag: *agilio-image-tag
 agilio-user: *agilio-user
 agilio-password: *agilio-password
relations:
 - ["ubuntu", "ntp"]
 - ["neutron-api", "ntp"]
 - ["keystone", "mysql"]
 - ["glance", "mysql"]
 - ["glance", "keystone"]
 - ["nova-cloud-controller:shared-db", "mysql:shared-db"]
 - ["nova-cloud-controller:amqp", "rabbitmq-server:amqp"]
 - ["nova-cloud-controller", "keystone"]
 - ["nova-cloud-controller", "glance"]
 - ["neutron-api", "mysql"]
 - ["neutron-api", "rabbitmq-server"]
 - ["neutron-api", "nova-cloud-controller"]
 - ["neutron-api", "keystone"]
 - ["nova-compute:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute", "glance"]
 - ["nova-compute", "nova-cloud-controller"]
 - ["nova-compute", "ntp"]

605

 - ["openstack-dashboard:identity-service", "keystone"]
 - ["contrail-keystone-auth", "keystone"]
 - ["contrail-controller", "contrail-keystone-auth"]
 - ["contrail-analytics", "contrail-analyticsdb"]
 - ["contrail-controller", "contrail-analytics"]
 - ["contrail-controller", "contrail-analyticsdb"]
 - ["contrail-openstack", "nova-compute"]
 - ["contrail-openstack", "neutron-api"]
 - ["contrail-openstack", "contrail-controller"]
 - ["contrail-agent:juju-info", "nova-compute:juju-info"]
 - ["contrail-agent", "contrail-controller"]
 - ["contrail-agent-dpdk:juju-info", "nova-compute-dpdk:juju-info"]
 - ["contrail-agent-dpdk", "contrail-controller"]
 - ["nova-compute-dpdk:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute-dpdk", "glance"]
 - ["nova-compute-dpdk", "nova-cloud-controller"]
 - ["nova-compute-dpdk", "ntp"]
 - ["contrail-openstack", "nova-compute-dpdk"]
 - ["contrail-agent:juju-info", "nova-compute-accel:juju-info"]
 - ["nova-compute-accel:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute-accel", "glance"]
 - ["nova-compute-accel", "nova-cloud-controller"]
 - ["nova-compute-accel", "ntp"]
 - ["contrail-openstack", "nova-compute-accel"]
 - ["agilio-vrouter5:juju-info", "nova-compute-accel:juju-info"]

You can create or modify the Contrail Charm deployment bundle YAML file to:

• Point to machines or instances where the Contrail Charms must be deployed.

• Include the options you need.

Each Contrail Charm has a specific set of options. The options you choose depend on the charms
you select. For more information on the options that are available, see "Options for Juju Charms"
on page 612.

2. (Optional) Check the status of deployment.

You can check the status of the deployment by using the juju status command.

3. Enable configuration statements.

Based on your deployment requirements, you can enable the following configuration statements:

• contrail-agent

For more information, see https://jaas.ai/u/juniper-os-software/contrail-agent/.

606

https://jaas.ai/u/juniper-os-software/contrail-agent/

• contrail-analytics

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analytics.

• contrail-analyticsdb

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analyticsdb.

• contrail-controller

For more information, see https://jaas.ai/u/juniper-os-software/contrail-controller.

• contrail-keystone-auth

For more information, see https://jaas.ai/u/juniper-os-software/contrail-keystone-auth.

• contrail-openstack

For more information see, https://jaas.ai/u/juniper-os-software/contrail-openstack.

Deploying Juju Charms with OpenStack Manually

Before you begin deployment, ensure that you have:

• Installed and configured Juju

• Created a Juju controller

• Ubuntu 16.04 or Ubuntu 18.04 installed

Follow these steps to deploy Juju Charms manually:

1. Create machine instances for OpenStack, compute, and Contrail.

juju add-machine --constraints mem=8G cores=2 root-disk=40G --series=xenial #for openstack
machine(s) 0
juju add-machine --constraints mem=7G cores=4 root-disk=40G --series=xenial #for compute
machine(s) 1,(3)
juju add-machine --constraints mem=15G cores=2 root-disk=300G --series=xenial #for contrail
machine 2

2. Deploy OpenStack services.

You can deploy OpenStack services by using any one of the following methods:

• By specifying the OpenStack parameters in a YAML file

607

https://jaas.ai/u/juniper-os-software/contrail-analytics
https://jaas.ai/u/juniper-os-software/contrail-analyticsdb
https://jaas.ai/u/juniper-os-software/contrail-controller
https://jaas.ai/u/juniper-os-software/contrail-keystone-auth
https://jaas.ai/u/juniper-os-software/contrail-openstack

The following is an example of a YAML-formatted (nova-compute-config.yaml) file.

nova-compute:
 openstack-origin: cloud:xenial-ocata
 virt-type: qemu
 enable-resize: True
 enable-live-migration: True
 migration-auth-type: ssh

Use this command to deploy OpenStack services by using a YAML-formatted file:

juju deploy cs:xenial/nova-compute --config ./nova-compute-config.yaml

• By using CLI

To deploy OpenStack services through the CLI:

juju deploy cs:xenial/nova-cloud-controller --config console-access-protocol=novnc --
config openstack-origin=cloud:xenial-ocata

• By using a combination of YAML-formatted file and CLI

To deploy OpenStack services by using a combination of YAML-formatted file and CLI:

NOTE: Use the --to <machine number> command to point to a machine or container
where you want the application to be deployed.

juju deploy cs:xenial/ntp
juju deploy cs:xenial/rabbitmq-server --to lxd:0
juju deploy cs:xenial/percona-cluster mysql --config root-password=<root-password> --
config max-connections=1500 --to lxd:0
juju deploy cs:xenial/openstack-dashboard --config openstack-origin=cloud:xenial-ocata --
to lxd:0
juju deploy cs:xenial/nova-cloud-controller --config console-access-protocol=novnc --
config openstack-origin=cloud:xenial-ocata --config network-manager=Neutron --to lxd:0
juju deploy cs:xenial/neutron-api --config manage-neutron-plugin-legacy-mode=false --
config openstack-origin=cloud:xenial-ocata --config neutron-security-groups=true --to lxd:0
juju deploy cs:xenial/glance --config openstack-origin=cloud:xenial-ocata --to lxd:0

608

juju deploy cs:xenial/keystone --config admin-password=<admin-password> --config admin-
role=admin --config openstack-origin=cloud:xenial-ocata --to lxd:0

NOTE: You set OpenStack services on different machines or on different containers
to prevent HAProxy conflicts from applications.

3. Deploy and configure nova-compute.

juju deploy cs:xenial/nova-compute --config ./nova-compute-config.yaml --to 1

NOTE: You can deploy nova-compute to more than one compute machine.

(Optional) To add additional computes:

juju add-unit nova-compute --to 3 # Add one more unit

4. Deploy and configure Contrail services.

juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-keystone-auth --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-controller --config
auth-mode=rbac --config cassandra-minimum-diskgb=4 --config cassandra-jvm-extra-opts="-Xms1g -
Xmx2g" --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-analyticsdb cassandra-
minimum-diskgb=4 --config cassandra-jvm-extra-opts="-Xms1g -Xmx2g" --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-analytics --to 2
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-openstack
juju deploy --series=xenial $CHARMS_DIRECTORY/contrail-charms/contrail-agent

5. Enable applications to be available to external traffic:

juju expose openstack-dashboard
juju expose nova-cloud-controller
juju expose neutron-api
juju expose glance
juju expose keystone

609

6. Enable contrail-controller and contrail-analytics services to be available to external traffic if you do
not use HAProxy.

juju expose contrail-controller
juju expose contrail-analytics

7. Apply SSL.

You can apply SSL if needed. To use SSL with Contrail services, deploy easy-rsa service and add-
relation command to create relations to contrail-controller service and contrail-agent services.

juju deploy cs:~containers/xenial/easyrsa --to 0
juju add-relation easyrsa contrail-controller
juju add-relation easyrsa contrail-agent

8. (Optional) HA configuration.

If you use more than one controller, follow the HA solution given below:

a. Deploy HAProxy and Keepalived services.

HAProxy charm is deployed on machines with Contrail controllers. HAProxy charm must have
peering_mode set to active-active. If peering_mode is set to active-passive, HAProxy creates additional
listeners on the same ports as other Contrail services. This leads to port conflicts.

Keepalived charm does not require to option.

juju deploy cs:xenial/haproxy --to <first contrail-controller machine> --config
peering_mode=active-active
juju add-unit haproxy --to <another contrail-controller machine>
juju deploy cs:~boucherv29/keepalived-19 --config virtual_ip=<vip>

b. Enable HAProxy to be available to external traffic.

juju expose haproxy

NOTE: If you enable HAProxy to be available to external traffic, do not follow step 6.

610

c. Add HAProxy and Keepalived relations.

juju add-relation haproxy:juju-info keepalived:juju-info
juju add-relation contrail-analytics:http-services haproxy
juju add-relation contrail-controller:http-services haproxy
juju add-relation contrail-controller:https-services haproxy

d. Configure contrail-controller service with VIP.

juju set contrail-controller vip=<vip>

9. Add other necessary relations.

juju add-relation keystone:shared-db mysql:shared-db
juju add-relation glance:shared-db mysql:shared-db
juju add-relation keystone:identity-service glance:identity-service
juju add-relation nova-cloud-controller:image-service glance:image-service
juju add-relation nova-cloud-controller:identity-service keystone:identity-service
juju add-relation nova-cloud-controller:cloud-compute nova-compute:cloud-compute
juju add-relation nova-compute:image-service glance:image-service
juju add-relation nova-compute:amqp rabbitmq-server:amqp
juju add-relation nova-cloud-controller:shared-db mysql:shared-db
juju add-relation nova-cloud-controller:amqp rabbitmq-server:amqp
juju add-relation openstack-dashboard:identity-service keystone

juju add-relation neutron-api:shared-db mysql:shared-db
juju add-relation neutron-api:neutron-api nova-cloud-controller:neutron-api
juju add-relation neutron-api:identity-service keystone:identity-service
juju add-relation neutron-api:amqp rabbitmq-server:amqp

juju add-relation contrail-controller ntp
juju add-relation nova-compute:juju info ntp:juju info

juju add-relation contrail-controller contrail-keystone-auth
juju add-relation contrail-keystone-auth keystone
juju add-relation contrail-controller contrail-analytics
juju add-relation contrail-controller contrail-analyticsdb
juju add-relation contrail-analytics contrail-analyticsdb

juju add-relation contrail-openstack neutron-api
juju add-relation contrail-openstack nova-compute

611

juju add-relation contrail-openstack contrail-controller

juju add-relation contrail-agent:juju info nova-compute:juju info
juju add-relation contrail-agent contrail-controller

Options for Juju Charms

Each Contrail Charm has a specific set of options. The options you choose depend on the charms you
select. The following tables list the various options you can choose:

• Options for contrail-agent Charms.

Table 42: Options for contrail-agent

Option Default option Description

physical-interface Specify the interface where you want to install
vhost0 on. If you do not specify an interface, vhost0
is installed on the default gateway interface.

vhost-gateway auto Specify the gateway for vhost0. You can enter either
an IP address or the keyword (auto) to automatically
set a gateway based on the existing vhost routes.

remove-juju-bridge true To install vhost0 directly on the interface, enable
this option to remove any bridge created to deploy
LXD/LXC and KVM workloads.

dpdk false Specify DPDK vRouter.

dpdk-driver uio_pci_generic Specify DPDK driver for the physical interface.

dpdk-hugepages 70% Specify the percentage of huge pages reserved for
DPDK vRouter and OpenStack instances.

dpdk-coremask 1 Specify the vRouter CPU affinity mask to determine
on which CPU the DPDK vRouter will run.

612

Table 42: Options for contrail-agent (Continued)

Option Default option Description

dpdk-main-mempool-size Specify the main packet pool size.

dpdk-pmd-txd-size Specify the DPDK PMD Tx Descriptor size.

dpdk-pmd-rxd-size Specify the DPDK PMD Rx Descriptor size.

docker-registry opencontrailnightly Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag latest Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

613

Table 42: Options for contrail-agent (Continued)

Option Default option Description

kernel-hugepages-1g Parameter not enabled by
default.

NOTE: 2MB huge pages
for kernel-mode
vRouters are enabled by
default.

Specify the number of 1G huge pages for use with
vRouters in kernel mode.

You can enable huge pages to avoid compute node
reboots during software upgrades.

This parameter must be specified at initial
deployment. It cannot be modified in an active
deployment. If you need to migrate to huge page
usage in an active deployment, use 2MB huge pages
if suitable for your environment.

We recommend allotting 2GB of memory—either
using the default 1024x2MB huge page size setting
or the 2x1GB size setting—for huge pages. Other
huge page size settings should only be set by expert
users in specialized circumstances.

1GB and 2MB huge pages cannot be enabled
simultaneously in environments using Juju. If you are
using this command parameter to enable 1GB huge
pages, you must also disable 2MB huge pages. 2MB
huge pages can be disabled by entering the juju
config contrail-agent kernel-
hugepages-2m=““ command with an empty value.

A compute node reboot is required to enable a huge
page setting configuration change. After this initial
reboot, compute nodes can complete software
upgrades without a reboot.

Huge pages are disabled for kernel-mode vRouters if
the kernel-hugepages-1g and the kernel-hugepages-2m
options are not set.

This parameter was introduced in Contrail
Networking Release 2005.

614

Table 42: Options for contrail-agent (Continued)

Option Default option Description

kernel-hugepages-2m 1024 Specify the number of 2MB huge pages for use with
vRouters in kernel mode. Huge pages in Contrail
Networking are used primarily to allocate flow and
bridge table memory within the vRouter. Huge
pages for kernel-mode vRouters provide enough
flow and bridge table memory to avoid compute
node reboots to complete future Contrail
Networking software upgrades.

1024x2MB huge pages are configured by default
starting in Contrail Networking Release 2005. A
compute node reboot is required to enable a kernel-
mode vRouter huge page setting configuration
change, however, so this huge page setting is not
enabled on a compute node until the compute node
is rebooted.

After a compute node is rebooted to enable a
vRouter huge page setting, compute nodes can
complete software upgrades without a reboot.

We recommend allotting 2GB of memory—either
using the default 1024x2MB huge page size setting
or the 2x1GB size setting—for kernel-mode vRouter
huge pages. Other huge page size settings should
only be set by expert users in specialized
circumstances.

1GB and 2MB huge pages cannot be enabled
simultaneously in environments using Juju. If you are
using this command parameter to enable 2MB huge
pages, you must also disable 1GB huge pages. 1GB
huge pages are disabled by default and can also be
disabled by entering the juju config contrail-agent
kernel-hugepages-1g=““ command with an empty
value. 1GB huge pages can only be enabled at initial
deployment; you cannot initially enable 1GB huge
pages in an active deployment.

Huge pages are disabled for kernel-mode vRouters if
the kernel-hugepages-1g and the kernel-hugepages-2m
options are not set.

615

Table 42: Options for contrail-agent (Continued)

Option Default option Description

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-analytics Charms.

Table 43: Options for contrail-analytics

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

616

Table 43: Options for contrail-analytics (Continued)

Option Default option Description

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-analyticsdb Charms.

Table 44: Options for contrail-analyticsdb

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

cassandra-minimum-diskgb 256 Specify the minimum disk requirement.

cassandra-jvm-extra-opts Specify the memory limit.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

617

Table 44: Options for contrail-analyticsdb (Continued)

Option Default option Description

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-controller Charms.

Table 45: Options for contrail-controller

Option Default option Description

control-network Specify the IP address and network mask of the
control network.

auth-mode rbac Specify the authentication mode.

Options: rbsc, cloud-admin, no-auth.

For more information, see https://github.com/
Juniper/contrail-controller/wiki/RBAC.

cassandra-minimum-diskgb 20 Specify the minimum disk requirement.

cassandra-jvm-extra-opts Specify the memory limit.

618

https://github.com/Juniper/contrail-controller/wiki/RBAC
https://github.com/Juniper/contrail-controller/wiki/RBAC

Table 45: Options for contrail-controller (Continued)

Option Default option Description

cloud-admin-role admin Specify the role name in keystone for users who
have admin-level access.

In environments using Canonical orchestration with
Contrail Networking, you should change the cloud-
admin-role to Admin with a capital A in most
scenarios. The default cloud admin role in Contrail
Networking is admin and the default cloud admin
role in Canonical is Admin. These cloud admin role
names must match to grant users admin-level
access. You can ensure this matching by setting this
field to Admin in environments using the default
settings.

global-read-only-role Specify the role name in keystone for users who
have read-only access.

vip Specify if the Contrail API VIP is used for configuring
client-side software. If not specified, private IP of
the first Contrail API VIP unit will be used.

use-external-rabbitmq false To enable the Charm to use the internal RabbitMQ
server, set use-external-rabbitmq to false.

To use an external AMQP server, setuse-external-
rabbitmq to true.

NOTE: Do not change the flag after deployment.

flow-export-rate 0 Specify how many flow records are exported by
vRouter agent to the Contrail Collector when a flow
is created or deleted.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

619

Table 45: Options for contrail-controller (Continued)

Option Default option Description

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

no_proxy Specify the list of destinations that must be directly
accessed.

• Options for contrail-keystone-auth Charms.

Table 46: Options for contrail-keystone-auth

Option Default option Description

ssl_ca Specify if the base64-encoded SSL CA certificate is
provided to Contrail keystone clients.

NOTE: This certificate is required if you use a
privately signed ssl_cert and ssl_key.

• Options for contrail-openstack Charms.

620

Table 47: Options for contrail-controller

Option Default option Description

enable-metadata-server true Set enable-metadata-server to true to configure
metadata and enable nova to run a local instance of
nova-api-metadata for virtual machines

use-internal-endpoints false Set use-internal-endpoints to true for OpenStack to
configure services to use internal endpoints.

heat-plugin-dirs /usr/lib64/heat,/usr /lib/
heat/usr/lib/ python2.7/
dist-packages/
vnc_api/gen/heat/
resources

Specify the heat plugin directories.

docker-registry Specify the URL of the docker-registry.

docker-registry-insecure false Specify if the docker-registry should be configured.

docker-user Log in to the docker registry.

docker-password Specify the docker-registry password.

image-tag Specify the docker image tag.

log-level SYS_NOTICE Specify the log level for Contrail services.

Options: SYS_EMERG, SYS_ALERT, SYS_CRIT, SYS_ERR,
SYS_WARN, SYS_NOTICE, SYS_INFO, SYS_DEBUG

http_proxy Specify URL.

https_proxy Specify URL.

621

Table 47: Options for contrail-controller (Continued)

Option Default option Description

no_proxy Specify the list of destinations that must be directly
accessed.

Ironic Support with Juju

Contrail Networking Release 2011.L1 supports new charms for Ironic from OpenStack Train version
15.x.x. Ironic is an OpenStack project that manages Bare Metal Servers (BMS) as if they are virtual
machines (VM)s. For more information about Contrail and BMS, see Bare Metal Server Management.

Contrail Networking Release 2011.L2 supports OpenStack Ussuri with Ironic deployed on Ubuntu
version 20.04 (Focal Fossa).

The updated options are shown in the example bundle_yaml_file. Before deploying the updated yaml file,
you should have Ceph installed. If not, see Installing Ceph.

For information about deploying the bundle_yaml_file, see "Deploying Contrail Charms" on page 599.

Following is an example bundle_yaml_file with the additional options highlighted. ceph-radosgw and its
related options are required to support the new Ironic charms.

series: bionic
applications:
 barbican:
 charm: cs:barbican-31
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 openstack-origin: cloud:bionic-train
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.76.133 192.168.2.11
 worker-multiplier: 0.25
 bindings:
 "": oam-space
 admin: oam-space

622

https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/bms-management.html
https://discourse.charmhub.io/t/appendix-installing-ceph/1077

 amqp: oam-space
 certificates: oam-space
 cluster: oam-space
 ha: oam-space
 hsm: oam-space
 identity-service: oam-space
 internal: oam-space
 public: public-space
 secrets: oam-space
 shared-db: oam-space
 barbican-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 barbican-vault:
 charm: cs:barbican-vault-12
 bindings:
 "": oam-space
 certificates: oam-space
 juju-info: oam-space
 secrets: oam-space
 secrets-storage: oam-space
 ceph-mon:
 charm: cs:ceph-mon-51
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 constraints: spaces=oam-space
 bindings:
 "": alpha
 admin: alpha
 bootstrap-source: alpha
 client: alpha

623

 cluster: oam-space
 mds: alpha
 mon: alpha
 nrpe-external-master: alpha
 osd: alpha
 prometheus: alpha
 public: oam-space
 radosgw: alpha
 rbd-mirror: alpha
 ceph-osd:
 charm: cs:ceph-osd-306
 num_units: 3
 to:
 - "17"
 - "21"
 - "19"
 options:
 osd-devices: /dev/sdb
 bindings:
 "": alpha
 cluster: oam-space
 mon: alpha
 nrpe-external-master: alpha
 public: oam-space
 secrets-storage: alpha
 ceph-radosgw:
 charm: cs:ceph-radosgw-292
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 admin-roles: admin
 loglevel: 10
 namespace-tenants: true
 operator-roles: member
 source: cloud:bionic-train/proposed
 vip: 10.92.76.127 192.168.2.190
 constraints: spaces=oam-space,public-space
 bindings:
 "": alpha
 admin: alpha

624

 certificates: alpha
 cluster: alpha
 gateway: alpha
 ha: alpha
 identity-service: alpha
 internal: oam-space
 master: alpha
 mon: alpha
 nrpe-external-master: alpha
 object-store: alpha
 public: public-space
 slave: alpha
 contrail-agent:
 charm: local:bionic/contrail-agent-1
 options:
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 image-tag: "2008.121"
 log-level: SYS_INFO
 physical-interface: bond0.4010
 vhost-gateway: auto
 bindings:
 "": alpha
 agent-cluster: alpha
 contrail-controller: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 tls-certificates: alpha
 vrouter-plugin: alpha
 contrail-agent-csn:
 charm: local:bionic/contrail-agent-3
 options:
 csn-mode: tsn-no-forwarding
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 image-tag: "2008.121"
 physical-interface: bond0.4010
 vhost-gateway: auto
 bindings:
 "": alpha
 agent-cluster: alpha

625

 contrail-controller: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 tls-certificates: alpha
 vrouter-plugin: alpha
 contrail-analytics:
 charm: local:bionic/contrail-analytics-1
 num_units: 4
 to:
 - kvm:0
 - kvm:1
 - kvm:2
 - kvm:13
 options:
 control-network: 192.168.2.0/24
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 haproxy-http-mode: https
 image-tag: "2008.121"
 log-level: SYS_DEBUG
 min-cluster-size: 3
 vip: 10.92.77.18
 constraints: cpu-cores=16 mem=32768 root-disk=102400 spaces=oam-space,overlay-space
 bindings:
 "": oam-space
 analytics-cluster: oam-space
 contrail-analytics: oam-space
 contrail-analyticsdb: oam-space
 http-services: oam-space
 nrpe-external-master: oam-space
 tls-certificates: oam-space
 contrail-analyticsdb:
 charm: local:bionic/contrail-analyticsdb-1
 num_units: 4
 to:
 - kvm:0
 - kvm:1
 - kvm:2
 - kvm:13
 options:
 cassandra-jvm-extra-opts: -Xms16g -Xmx24g
 cassandra-minimum-diskgb: "4"

626

 control-network: 192.168.2.0/24
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 image-tag: "2008.121"
 log-level: SYS_DEBUG
 min-cluster-size: 3
 constraints: cpu-cores=16 mem=65536 root-disk=512000 spaces=oam-space,overlay-space
 bindings:
 "": oam-space
 analyticsdb-cluster: oam-space
 contrail-analyticsdb: oam-space
 nrpe-external-master: oam-space
 tls-certificates: oam-space
 contrail-command:
 charm: local:bionic/contrail-command-0
 num_units: 1
 to:
 - "9"
 options:
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-registry-insecure: true
 docker-user: JNPR-FieldUser367
 image-tag: "2008.121"
 constraints: tags=command
 bindings:
 "": alpha
 contrail-controller: alpha
 contrail-controller:
 charm: local:bionic/contrail-controller-1
 num_units: 4
 to:
 - kvm:0
 - kvm:2
 - kvm:1
 - kvm:13
 options:
 auth-mode: rbac
 cassandra-jvm-extra-opts: -Xms16g -Xmx24g
 cassandra-minimum-diskgb: "4"
 control-network: 192.168.2.0/24
 data-network: 172.30.0.0/16

627

 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 haproxy-http-mode: https
 haproxy-https-mode: http
 image-tag: "2008.121"
 local-rabbitmq-hostname-resolution: true
 log-level: SYS_DEBUG
 min-cluster-size: 3
 vip: 10.92.77.18
 constraints: cpu-cores=16 mem=65536 root-disk=102400 spaces=oam-space,overlay-space,public-
space
 bindings:
 "": oam-space
 contrail-analytics: oam-space
 contrail-analyticsdb: oam-space
 contrail-auth: oam-space
 contrail-controller: oam-space
 contrail-issu: oam-space
 controller-cluster: oam-space
 http-services: oam-space
 https-services: oam-space
 nrpe-external-master: oam-space
 tls-certificates: oam-space
 contrail-haproxy:
 charm: cs:haproxy-55
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 default_timeouts: queue 60000, connect 5000, client 120000, server 120000
 enable_monitoring: true
 peering_mode: active-active
 services: ""
 source: backports
 ssl_cert: SELFSIGNED
 sysctl: '{fs.file-max: 10240}'
 bindings:
 "": oam-space
 local-monitors: oam-space

628

 munin: oam-space
 nrpe-external-master: oam-space
 peer: oam-space
 public: public-space
 reverseproxy: oam-space
 statistics: oam-space
 website: public-space
 contrail-keepalived:
 charm: cs:~containers/keepalived-28
 options:
 network_interface: eth0
 port: 8143
 virtual_ip: 10.92.77.18
 bindings:
 "": alpha
 juju-info: alpha
 lb-sink: alpha
 loadbalancer: alpha
 website: alpha
 contrail-keystone-auth:
 charm: local:bionic/contrail-keystone-auth-1
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 constraints: spaces=oam-space,overlay-space
 bindings:
 "": oam-space
 contrail-auth: oam-space
 identity-admin: oam-space
 nrpe-external-master: oam-space
 contrail-openstack:
 charm: local:bionic/contrail-openstack-3
 options:
 docker-password: <docker password>
 docker-registry: hub.juniper.net/contrail
 docker-user: JNPR-FieldUser367
 image-tag: "2008.121"
 use-internal-endpoints: true
 bindings:
 "": alpha

629

 cluster: alpha
 contrail-controller: alpha
 heat-plugin: alpha
 juju-info: alpha
 neutron-api: alpha
 nova-compute: alpha
 dashboard-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 easyrsa:
 charm: cs:~containers/easyrsa-303
 num_units: 1
 to:
 - lxd:0
 bindings:
 "": oam-space
 client: oam-space
 etcd:
 charm: cs:etcd-521
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 channel: 3.1/stable
 bindings:
 "": oam-space
 certificates: oam-space
 cluster: oam-space
 db: oam-space
 nrpe-external-master: oam-space
 proxy: oam-space
 external-policy-routing:

630

 charm: cs:~canonical-bootstack/policy-routing-3
 options:
 cidr: 10.92.76.0/23
 gateway: 10.92.77.254
 bindings:
 "": alpha
 juju-info: alpha
 glance:
 charm: cs:~openstack-charmers-next/glance-442
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 openstack-origin: cloud:bionic-train
 region: RegionOne
 restrict-ceph-pools: false
 use-internal-endpoints: true
 vip: 10.92.77.12 192.168.2.12
 worker-multiplier: 0.25
 bindings:
 "": oam-space
 admin: oam-space
 amqp: oam-space
 ceph: oam-space
 certificates: oam-space
 cinder-volume-service: oam-space
 cluster: oam-space
 ha: oam-space
 identity-service: oam-space
 image-service: oam-space
 internal: oam-space
 nrpe-external-master: oam-space
 object-store: oam-space
 public: public-space
 shared-db: oam-space
 storage-backend: oam-space
 glance-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3

631

 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 glance-simplestreams-sync:
 charm: cs:glance-simplestreams-sync-33
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 source: ppa:simplestreams-dev/trunk
 use_swift: false
 bindings:
 "": oam-space
 amqp: oam-space
 certificates: oam-space
 identity-service: oam-space
 image-modifier: oam-space
 nrpe-external-master: oam-space
 simplestreams-image-service: oam-space
 heat:
 charm: cs:heat-271
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 openstack-origin: cloud:bionic-train
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.77.13 192.168.2.13
 worker-multiplier: 0.25
 constraints: cpu-cores=6 mem=32768 root-disk=65536 spaces=oam-space,public-space,overlay-
space
 bindings:

632

 "": oam-space
 admin: oam-space
 amqp: oam-space
 certificates: oam-space
 cluster: oam-space
 ha: oam-space
 heat-plugin-subordinate: overlay-space
 identity-service: oam-space
 internal: oam-space
 public: public-space
 shared-db: oam-space
 heat-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 ironic-api:
 charm: cs:~openstack-charmers-next/ironic-api-8
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 openstack-origin: cloud:bionic-train/proposed
 vip: 10.92.76.130 192.168.2.189
 constraints: spaces=oam-space,public-space
 bindings:
 "": alpha
 admin: alpha
 amqp: alpha
 certificates: alpha
 cluster: alpha
 ha: alpha
 identity-service: alpha
 internal: alpha

633

 ironic-api: alpha
 public: alpha
 shared-db: oam-space
 ironic-api-hacluster:
 charm: cs:hacluster-72
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 ironic-conductor:
 charm: cs:~openstack-charmers-next/ironic-conductor-5
 num_units: 1
 to:
 - "14"
 options:
 cleaning-network: ironic
 default-deploy-interface: direct
 default-network-interface: neutron
 disable-secure-erase: true
 enabled-deploy-interfaces: direct
 enabled-network-interfaces: noop,flat,neutron
 max-tftp-block-size: 1418
 openstack-origin: cloud:bionic-train/proposed
 provisioning-network: ironic
 use-ipxe: false
 bindings:
 "": alpha
 amqp: alpha
 certificates: alpha
 cleaning: alpha
 deployment: alpha
 identity-credentials: alpha
 internal: alpha
 ironic-api: alpha
 shared-db: alpha
 keystone:
 charm: cs:keystone-309

634

 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 admin-password: c0ntrail123
 admin-role: admin
 openstack-origin: cloud:bionic-train
 preferred-api-version: 3
 region: RegionOne
 token-provider: fernet
 vip: 10.92.77.14 192.168.2.14
 worker-multiplier: 0.25
 bindings:
 "": oam-space
 admin: oam-space
 certificates: oam-space
 cluster: oam-space
 domain-backend: oam-space
 ha: oam-space
 identity-admin: oam-space
 identity-credentials: oam-space
 identity-notifications: oam-space
 identity-service: oam-space
 internal: oam-space
 keystone-fid-service-provider: oam-space
 keystone-middleware: oam-space
 nrpe-external-master: oam-space
 public: public-space
 shared-db: oam-space
 websso-trusted-dashboard: oam-space
 keystone-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha

635

 pacemaker-remote: alpha
 peer-availability: alpha
 memcached:
 charm: cs:memcached-26
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 allow-ufw-ip6-softfail: true
 constraints: spaces=oam-space
 bindings:
 "": oam-space
 cache: oam-space
 cluster: oam-space
 local-monitors: oam-space
 monitors: oam-space
 munin: oam-space
 nrpe-external-master: oam-space
 mysql:
 charm: cs:percona-cluster-281
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 enable-binlogs: true
 innodb-buffer-pool-size: 512M
 max-connections: 2000
 min-cluster-size: 3
 performance-schema: true
 source: cloud:bionic-train
 tuning-level: safest
 vip: 192.168.2.17
 wait-timeout: 3600
 wsrep-slave-threads: 48
 bindings:
 "": oam-space
 access: oam-space

636

 cluster: oam-space
 db: oam-space
 db-admin: oam-space
 ha: oam-space
 master: oam-space
 nrpe-external-master: oam-space
 shared-db: oam-space
 slave: oam-space
 mysql-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 ncc-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 neutron-api:
 charm: cs:neutron-api-281
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 default-tenant-network-type: vlan
 dhcp-agents-per-network: 2

637

 enable-l3ha: true
 enable-ml2-port-security: true
 global-physnet-mtu: 9000
 l2-population: true
 manage-neutron-plugin-legacy-mode: false
 neutron-security-groups: true
 openstack-origin: cloud:bionic-train
 overlay-network-type: ""
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.77.15 192.168.2.15
 worker-multiplier: 0.25
 constraints: cpu-cores=8 mem=32768 root-disk=262144 spaces=oam-space,public-space,overlay-
space
 bindings:
 "": oam-space
 admin: oam-space
 amqp: oam-space
 certificates: oam-space
 cluster: oam-space
 etcd-proxy: oam-space
 external-dns: oam-space
 ha: oam-space
 identity-service: oam-space
 infoblox-neutron: oam-space
 internal: oam-space
 midonet: oam-space
 neutron-api: oam-space
 neutron-load-balancer: oam-space
 neutron-plugin-api: oam-space
 neutron-plugin-api-subordinate: overlay-space
 nrpe-external-master: oam-space
 public: public-space
 shared-db: oam-space
 vsd-rest-api: oam-space
 neutron-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha

638

 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 nova-cloud-controller:
 charm: cs:nova-cloud-controller-339
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 console-access-protocol: novnc
 console-proxy-ip: local
 cpu-allocation-ratio: 4
 network-manager: Neutron
 openstack-origin: cloud:bionic-train
 ram-allocation-ratio: 0.999999
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.77.16 192.168.2.16
 worker-multiplier: 0.25
 bindings:
 "": oam-space
 admin: oam-space
 amqp: oam-space
 amqp-cell: oam-space
 certificates: oam-space
 cinder-volume-service: oam-space
 cloud-compute: oam-space
 cloud-controller: oam-space
 cluster: oam-space
 ha: oam-space
 identity-service: oam-space
 image-service: oam-space
 internal: oam-space
 memcache: oam-space
 neutron-api: oam-space
 nova-cell-api: oam-space
 nova-vmware: oam-space
 nrpe-external-master: oam-space
 placement: oam-space

639

 public: public-space
 quantum-network-service: oam-space
 shared-db: oam-space
 shared-db-cell: oam-space
 nova-compute:
 charm: cs:nova-compute-309
 num_units: 5
 to:
 - "3"
 - "4"
 - "5"
 - "6"
 - "15"
 options:
 openstack-origin: cloud:bionic-train
 os-internal-network: 192.168.2.0/24
 bindings:
 "": alpha
 amqp: alpha
 ceph: alpha
 ceph-access: alpha
 cloud-compute: alpha
 cloud-credentials: alpha
 compute-peer: alpha
 ephemeral-backend: alpha
 image-service: alpha
 internal: alpha
 lxd: alpha
 neutron-plugin: alpha
 nova-ceilometer: alpha
 nrpe-external-master: alpha
 secrets-storage: alpha
 nova-ironic:
 charm: cs:~openstack-charmers-next/nova-compute-524
 num_units: 1
 to:
 - "22"
 options:
 enable-live-migration: false
 enable-resize: false
 openstack-origin: cloud:bionic-train/proposed
 virt-type: ironic
 bindings:

640

 "": alpha
 amqp: alpha
 ceph: alpha
 ceph-access: alpha
 cloud-compute: alpha
 cloud-credentials: alpha
 compute-peer: alpha
 ephemeral-backend: alpha
 image-service: alpha
 internal: alpha
 ironic-api: alpha
 lxd: alpha
 migration: alpha
 neutron-plugin: alpha
 nova-ceilometer: alpha
 nrpe-external-master: alpha
 secrets-storage: alpha
 ntp:
 charm: cs:ntp-36
 options:
 source: ntp.juniper.net
 bindings:
 "": alpha
 juju-info: alpha
 master: alpha
 nrpe-external-master: alpha
 ntp-peers: alpha
 ntpmaster: alpha
 octavia:
 charm: cs:~apavlov-e/octavia-3
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 amp-ssh-key-name: octavia
 amp-ssh-pub-key:
c3NoLXJzYSBBQUFBQjNOemFDMXljMkVBQUFBREFRQUJBQUFCQVFDa0N0SzJCWk01TC90VGdoM3J3L2FpR2ZEQzlzOEI4alFiS
2VzQzJqTHRWcFNYbGlFellqQTNGNjEyalpwdERjOXdhOEF3eStxbEl0L1Frak5TVjhPMVpvNXZlc2RMREhvQjJrMzV5ZEFvMX
hQRkFmV3lsSjh6VnJrd0U5aU1tWEVYZTd1VjdDdkgyZmdmSnlGeXJKaFR2ZjBWdTZGK1M5RHl1MnkxMUdXWEsrSDAyR3ZneHV
zamZ3QlhoZ3IxNU1kZCt4RkJsbkpYRGtkQjVYVit4azZhYkJsRVJUc0N6c09EdXVOQTg4aVhqeHkvZzJpb2NtNWhtcVhUeDRM
T2gzam9NbEFHUW5RQ2FXdFNSenpWM3dKT3JLeW5zU1pObVRmUnluRDdaaGl1WlZLNUZURWhQaXZUaVAwaHdLeTRMZGZUM0NsS

641

kJSWmdMVVJZYUtSYlFwYkQgdWJ1bnR1QGp1bXBob3N0Cg==
 create-mgmt-network: false
 lb-mgmt-controller-cacert: |-
 <certificate>
 lb-mgmt-controller-cert: |-
 <certificate>
 lb-mgmt-issuing-ca-key-passphrase: <passphrase>
 lb-mgmt-issuing-ca-private-key: |-
 <private key>
 lb-mgmt-issuing-cacert: |-
 <certificate>
 loadbalancer-topology: ACTIVE_STANDBY
 openstack-origin: cloud:bionic-train
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.76.135 192.168.2.18
 worker-multiplier: 0.25
 bindings:
 "": oam-space
 admin: oam-space
 amqp: oam-space
 certificates: oam-space
 cluster: oam-space
 ha: oam-space
 identity-service: oam-space
 internal: oam-space
 neutron-api: oam-space
 neutron-openvswitch: oam-space
 ovsdb-cms: oam-space
 ovsdb-subordinate: oam-space
 public: public-space
 shared-db: oam-space
 octavia-dashboard:
 charm: cs:octavia-dashboard-17
 bindings:
 "": alpha
 certificates: alpha
 dashboard: alpha
 octavia-diskimage-retrofit:
 charm: cs:octavia-diskimage-retrofit-12
 options:
 amp-image-tag: octavia-amphora
 retrofit-uca-pocket: train

642

 bindings:
 "": oam-space
 certificates: oam-space
 identity-credentials: oam-space
 juju-info: oam-space
 octavia-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 openstack-dashboard:
 charm: cs:openstack-dashboard-295
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 cinder-backup: false
 endpoint-type: publicURL
 neutron-network-firewall: false
 neutron-network-l3ha: true
 neutron-network-lb: true
 openstack-origin: cloud:bionic-train
 password-retrieve: true
 secret: encryptcookieswithme
 vip: 10.92.77.11
 webroot: /
 constraints: spaces=oam-space
 bindings:
 "": public-space
 certificates: public-space
 cluster: public-space
 dashboard-plugin: public-space
 ha: public-space

643

 identity-service: public-space
 nrpe-external-master: public-space
 public: public-space
 shared-db: oam-space
 website: public-space
 websso-fid-service-provider: public-space
 websso-trusted-dashboard: public-space
 placement:
 charm: cs:placement-11
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 openstack-origin: cloud:bionic-train
 region: RegionOne
 use-internal-endpoints: true
 vip: 10.92.77.19 192.168.2.19
 bindings:
 "": oam-space
 admin: oam-space
 amqp: oam-space
 certificates: oam-space
 cluster: oam-space
 ha: oam-space
 identity-service: oam-space
 internal: oam-space
 placement: oam-space
 public: public-space
 shared-db: oam-space
 placement-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha

644

 peer-availability: alpha
 rabbitmq-server:
 charm: cs:rabbitmq-server-97
 num_units: 4
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 - lxd:13
 options:
 min-cluster-size: 3
 source: cloud:bionic-train
 bindings:
 "": oam-space
 amqp: oam-space
 ceph: oam-space
 certificates: oam-space
 cluster: oam-space
 ha: oam-space
 nrpe-external-master: oam-space
 radosgw-hacluster:
 charm: cs:hacluster-72
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
 ubuntu:
 charm: cs:ubuntu-15
 num_units: 4
 to:
 - "0"
 - "1"
 - "2"
 - "13"
 bindings:
 "": alpha
 vault:

645

 charm: cs:vault-39
 num_units: 3
 to:
 - lxd:0
 - lxd:1
 - lxd:2
 options:
 vip: 192.168.2.20
 bindings:
 "": oam-space
 access: oam-space
 certificates: oam-space
 cluster: oam-space
 db: oam-space
 etcd: oam-space
 external: oam-space
 ha: oam-space
 nrpe-external-master: oam-space
 secrets: oam-space
 shared-db: oam-space
 vault-hacluster:
 charm: cs:hacluster-62
 options:
 cluster_count: 3
 bindings:
 "": alpha
 ha: alpha
 hanode: alpha
 juju-info: alpha
 nrpe-external-master: alpha
 pacemaker-remote: alpha
 peer-availability: alpha
machines:
 "0":
 constraints: tags=controller1
 "1":
 constraints: tags=controller2
 "2":
 constraints: tags=controller3
 "3":
 constraints: tags=compute1
 "4":
 constraints: tags=compute2

646

 "5":
 constraints: tags=compute3
 "6":
 constraints: tags=compute4
 "9":
 constraints: tags=command
 "13":
 constraints: tags=controller4
 "14":
 constraints: tags=controller5
 "15":
 constraints: tags=compute5
 "17":
 constraints: tags=CEPH
 "19":
 constraints: tags=CEPH
 "21":
 constraints: tags=CEPH
 "22":
 constraints: tags=CSN
relations:
- - ubuntu:juju-info
 - ntp:juju-info
- - mysql:ha
 - mysql-hacluster:ha
- - keystone:shared-db
 - mysql:shared-db
- - keystone:ha
 - keystone-hacluster:ha
- - glance:shared-db
 - mysql:shared-db
- - glance:identity-service
 - keystone:identity-service
- - nova-cloud-controller:shared-db
 - mysql:shared-db
- - nova-cloud-controller:identity-service
 - keystone:identity-service
- - nova-cloud-controller:image-service
 - glance:image-service
- - nova-cloud-controller:ha
 - ncc-hacluster:ha
- - neutron-api:shared-db
 - mysql:shared-db

647

- - neutron-api:neutron-api
 - nova-cloud-controller:neutron-api
- - neutron-api:identity-service
 - keystone:identity-service
- - neutron-api:ha
 - neutron-hacluster:ha
- - nova-compute:image-service
 - glance:image-service
- - nova-compute:cloud-compute
 - nova-cloud-controller:cloud-compute
- - nova-compute:juju-info
 - ntp:juju-info
- - openstack-dashboard:identity-service
 - keystone:identity-service
- - openstack-dashboard:ha
 - dashboard-hacluster:ha
- - heat:shared-db
 - mysql:shared-db
- - heat:identity-service
 - keystone:identity-service
- - heat:ha
 - heat-hacluster:ha
- - placement:shared-db
 - mysql:shared-db
- - placement:identity-service
 - keystone:identity-service
- - placement:placement
 - nova-cloud-controller:placement
- - contrail-controller:contrail-controller
 - contrail-agent:contrail-controller
- - contrail-agent:juju-info
 - nova-compute:juju-info
- - contrail-analytics:contrail-analyticsdb
 - contrail-analyticsdb:contrail-analyticsdb
- - contrail-analytics:contrail-analytics
 - contrail-controller:contrail-analytics
- - contrail-analytics:http-services
 - contrail-haproxy:reverseproxy
- - contrail-analyticsdb:contrail-analyticsdb
 - contrail-controller:contrail-analyticsdb
- - contrail-controller:contrail-auth
 - contrail-keystone-auth:contrail-auth
- - contrail-controller:http-services

648

 - contrail-haproxy:reverseproxy
- - contrail-controller:https-services
 - contrail-haproxy:reverseproxy
- - contrail-keystone-auth:identity-admin
 - keystone:identity-admin
- - contrail-openstack:nova-compute
 - nova-compute:neutron-plugin
- - contrail-openstack:neutron-api
 - neutron-api:neutron-plugin-api-subordinate
- - contrail-openstack:heat-plugin
 - heat:heat-plugin-subordinate
- - contrail-openstack:contrail-controller
 - contrail-controller:contrail-controller
- - contrail-haproxy:juju-info
 - contrail-keepalived:juju-info
- - nova-cloud-controller:memcache
 - memcached:cache
- - external-policy-routing:juju-info
 - openstack-dashboard:juju-info
- - external-policy-routing:juju-info
 - glance:juju-info
- - external-policy-routing:juju-info
 - heat:juju-info
- - external-policy-routing:juju-info
 - keystone:juju-info
- - external-policy-routing:juju-info
 - neutron-api:juju-info
- - external-policy-routing:juju-info
 - nova-cloud-controller:juju-info
- - external-policy-routing:juju-info
 - contrail-haproxy:juju-info
- - ntp:juju-info
 - contrail-controller:juju-info
- - ntp:juju-info
 - contrail-analytics:juju-info
- - ntp:juju-info
 - contrail-analyticsdb:juju-info
- - ntp:juju-info
 - neutron-api:juju-info
- - ntp:juju-info
 - heat:juju-info
- - contrail-command:contrail-controller
 - contrail-controller:contrail-controller

649

- - glance:ha
 - glance-hacluster:ha
- - placement:ha
 - placement-hacluster:ha
- - mysql:shared-db
 - octavia:shared-db
- - mysql:shared-db
 - barbican:shared-db
- - mysql:shared-db
 - vault:shared-db
- - keystone:identity-service
 - octavia:identity-service
- - keystone:identity-service
 - barbican:identity-service
- - neutron-api:neutron-load-balancer
 - octavia:neutron-api
- - openstack-dashboard:dashboard-plugin
 - octavia-dashboard:dashboard
- - barbican-vault:secrets
 - barbican:secrets
- - vault:secrets
 - barbican-vault:secrets-storage
- - glance-simplestreams-sync:juju-info
 - octavia-diskimage-retrofit:juju-info
- - keystone:identity-service
 - glance-simplestreams-sync:identity-service
- - keystone:identity-credentials
 - octavia-diskimage-retrofit:identity-credentials
- - contrail-openstack:nova-compute
 - octavia:neutron-openvswitch
- - vault:ha
 - vault-hacluster:ha
- - etcd:certificates
 - easyrsa:client
- - etcd:db
 - vault:etcd
- - barbican:ha
 - barbican-hacluster:ha
- - octavia:ha
 - octavia-hacluster:ha
- - rabbitmq-server:amqp
 - barbican:amqp
- - rabbitmq-server:amqp

650

 - glance-simplestreams-sync:amqp
- - rabbitmq-server:amqp
 - heat:amqp
- - rabbitmq-server:amqp
 - neutron-api:amqp
- - rabbitmq-server:amqp
 - nova-cloud-controller:amqp
- - rabbitmq-server:amqp
 - nova-compute:amqp
- - rabbitmq-server:amqp
 - octavia:amqp
- - ceph-mon:osd
 - ceph-osd:mon
- - ceph-radosgw:juju-info
 - external-policy-routing:juju-info
- - ceph-radosgw:ha
 - radosgw-hacluster:ha
- - ceph-radosgw:mon
 - ceph-mon:radosgw
- - ceph-radosgw:identity-service
 - keystone:identity-service
- - vault:certificates
 - ceph-radosgw:certificates
- - ceph-radosgw:object-store
 - glance:object-store
- - ceph-mon:client
 - glance:ceph
- - ironic-conductor:amqp
 - rabbitmq-server:amqp
- - ironic-conductor:identity-credentials
 - keystone:identity-credentials
- - ironic-conductor:shared-db
 - mysql:shared-db
- - vault:certificates
 - ironic-conductor:certificates
- - nova-ironic:amqp
 - rabbitmq-server:amqp
- - nova-ironic:image-service
 - glance:image-service
- - nova-ironic:cloud-credentials
 - keystone:identity-credentials
- - nova-ironic:cloud-compute
 - nova-cloud-controller:cloud-compute

651

- - ceph-mon:client
 - nova-ironic:ceph
- - nova-ironic:juju-info
 - ntp:juju-info
- - contrail-agent-csn:juju-info
 - nova-ironic:juju-info
- - contrail-agent-csn:contrail-controller
 - contrail-controller:contrail-controller
- - ironic-api:ha
 - ironic-api-hacluster:ha
- - ironic-conductor:ironic-api
 - ironic-api:ironic-api
- - ironic-api:amqp
 - rabbitmq-server:amqp
- - ironic-api:identity-service
 - keystone:identity-service
- - ironic-api:shared-db
 - mysql:shared-db
- - vault:certificates
 - ironic-api:certificates
- - nova-ironic:ironic-api
 - ironic-api:ironic-api

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011.L2 Contrail Networking Release 2011.L2 supports OpenStack Ussuri with Ironic deployed on Ubuntu
version 20.04 (Focal Fossa).

2011.L1 Contrail Networking Release 2011.L1 supports new charms for Ironic from OpenStack Train version
15.x.x.

2011 Starting in Contrail Networking Release 2011, Contrail Networking supports OpenStack Ussuri with
Ubuntu version 18.04 (Bionic Beaver) and Ubuntu version 20.04 (Focal Fossa).

RELATED DOCUMENTATION

Bundle Reference File

652

https://apps.juniper.net/feature-explorer/
https://github.com/tungstenfabric/tf-charms/blob/master/examples/contrail-openstack-focal/bundle.yaml

Installing Contrail with OpenStack by Using Juju Charms | 596

Bare Metal Server Management

Installing Contrail with Kubernetes by Using Juju Charms

IN THIS SECTION

Understanding Juju Charms with Kubernetes | 653

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms | 653

Deploying Contrail Charms with Kubernetes | 656

You can deploy Contrail Networking using Juju Charms. Juju helps you deploy, configure, and efficiently
manage applications on private clouds and public clouds. Juju accesses the cloud with the help of a Juju
controller. A Charm is a module containing a collection of scripts and metadata and is used with Juju to
deploy Contrail.

A Juju Charm helps you deploy Docker containers to the cloud. For more information on containerized
Contrail, see "Understanding Contrail Containers" on page 5. Juju Charms simplifies Contrail deployment
by providing a simple way to deploy, configure, scale, and manage Contrail operations.

Understanding Juju Charms with Kubernetes

Contrail supports the following charms:

• contrail-agent

• contrail-analytics

• contrail-analyticsdb

• contrail-controller

• contrail-kubernetes-master

• contrail-kubernetes-node

Preparing to Deploy Contrail with Kubernetes by Using Juju Charms

You can deploy Contrail Networking by using Juju bundle.

653

https://www.juniper.net/documentation/en_US/contrail/topics/topic-map/bms-management.html

Follow these steps to prepare for deployment:

1. Install Juju.

apt install bridge-utils -y
apt install snapd -y
snap install juju --classic

2. Configure Juju.

You can add a cloud to Juju, identify clouds supported by Juju, and manage clouds already added to
Juju.

Adding a cloud

Juju already has knowledge of the AWS cloud, which means adding your AWS account to Juju is
quick and easy.

juju show-cloud --local aws

NOTE: In versions prior to Juju v.2.6.0 the show-cloud command only operates locally.
There is no --local option.

You must ensure that Juju’s information is up to date (e.g. new region support). Run the following
command to update Juju’s public cloud data:

juju update-public-clouds

Juju recognizes a wide range of cloud types. You can use any one of the following methods to add a
cloud credentials to Juju:

• Adding a Cloud Credentials by Using Interactive Command

Example: Adding AWS cloud credentials to Juju

juju add-credential aws

Enter credential name: jlaurin

Using auth-type "access-key".

654

Enter access-key: AKIAIFII5EH5FOCYZJMA

Enter secret-key: ******************************

Credential "jlaurin" added locally for cloud "aws".

• Adding a Cloud Credentials Manually

You can use a YAML configuration file to add AWS cloud credentials. Run the following command:

juju add-credential aws -f <mycreds.yaml>

For details, refer to Juju Adding Credentials from a File.

Identifying a supported cloud

Use the juju clouds command to list cloud types that are supported by Juju.

$ juju clouds
Cloud Regions Default Type Description
aws 15 us-east-1 ec2 Amazon Web Services
aws-china 1 cn-north-1 ec2 Amazon China
aws-gov 1 us-gov-west-1 ec2 Amazon (USA Government)
azure 26 centralus azure Microsoft Azure
azure-china 2 chinaeast azure Microsoft Azure China
cloudsigma 5 hnl cloudsigma CloudSigma Cloud
google 13 us-east1 gce Google Cloud Platform
joyent 6 eu-ams-1 joyent Joyent Cloud
oracle 5 uscom-central-1 oracle Oracle Cloud
rackspace 6 dfw rackspace Rackspace Cloud
localhost 1 localhost lxd LXD Container Hypervisor

3. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

A Juju controller manages and keeps track of applications in the Juju cloud environment.

4. Download the Contrail bundle from JAAS - Contrail Kubernetes.

655

https://discourse.jujucharms.com/t/credentials/1112#heading--adding-credentials-from-a-file
https://jaas.ai/u/juniper-os-software/contrail-k8s

Deploying Contrail Charms with Kubernetes

IN THIS SECTION

Deploying Contrail Charms in a Bundle | 656

Deploying Juju Charms with Kubernetes Manually | 662

Juju Charms simplifies Contrail deployment by providing a simple way to deploy, configure, scale, and
manage Contrail operations.

You can deploy Contrail Charms in a bundle or manually.

Deploying Contrail Charms in a Bundle

Follow these steps to deploy Contrail Charms in a bundle.

1. Deploy Contrail Charms.

To deploy Contrail Charms in a bundle, use the juju deploy <bundle_yaml_file> command.

The following example shows you how to use a bundle YAML file to deploy Contrail on Amazon Web
Services (AWS) Cloud.

series: "bionic"

machines:

 # kubernetes pods
 0:
 series: "bionic"
 constraints: mem=8G cores=2 root-disk=60G

 # kubernetes master
 2:
 series: "bionic"
 constraints: mem=8G cores=2 root-disk=60G

 # contrail components
 5:
 series: "bionic"

656

 constraints: mem=16G cores=4 root-disk=60G

services:

 # kubernetes

 easyrsa:
 series: "bionic"
 charm: cs:~containers/easyrsa
 num_units: 1
 annotations:
 gui-x: '1168.1039428710938'
 gui-y: '-59.11077045466004'
 to:
 - lxd:2

 etcd:
 series: "bionic"
 charm: cs:~containers/etcd
 annotations:
 gui-x: '1157.2041015625'
 gui-y: '719.1614406201691'
 num_units: 1
 options:
 channel: 3.2/stable
 to: [2]

 kubernetes-master:
 series: "bionic"
 charm: cs:~containers/kubernetes-master-696
 annotations:
 gui-x: '877.1133422851562'
 gui-y: '325.6035540382413'
 expose: true
 num_units: 1
 options:
 channel: '1.14/stable'
 service-cidr: '10.96.0.0/12'
 docker_runtime: 'custom'
 docker_runtime_repo: 'deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable'
 docker_runtime_key_url: 'https://download.docker.com/linux/ubuntu/gpg'
 docker_runtime_package: 'docker-ce'

657

 to: [2]

 kubernetes-worker:
 series: "bionic"
 charm: cs:~containers/kubernetes-worker-550
 annotations:
 gui-x: '745.8510131835938'
 gui-y: '-57.369691124215706'
 num_units: 1
 options:
 channel: '1.14/stable'
 docker_runtime: 'custom'
 docker_runtime_repo: 'deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable'
 docker_runtime_key_url: 'https://download.docker.com/linux/ubuntu/gpg'
 docker_runtime_package: 'docker-ce'
 to: [0]

 # contrail-kubernetes

 contrail-kubernetes-master:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-kubernetes-master
 annotations:
 gui-x: '586.8027801513672'
 gui-y: '753.914497641757'
 options:
 log-level: 'SYS_DEBUG'
 service_subnets: '10.96.0.0/12'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

 contrail-kubernetes-node:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-kubernetes-node
 annotations:
 gui-x: '429.1971130371094'
 gui-y: '216.05209087397168'
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

658

 # contrail

 contrail-agent:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-agent
 annotations:
 gui-x: '307.5467224121094'
 gui-y: '-24.150856522753656'
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"

 contrail-analytics:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-analytics
 annotations:
 gui-x: '15.948270797729492'
 gui-y: '705.2326686475128'
 expose: true
 num_units: 1
 options:
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 contrail-analyticsdb:
 series: "bionic"
 charm: cs:~juniper-os-software/contrail-analyticsdb
 annotations:
 gui-x: '24.427139282226562'
 gui-y: '283.9550754931123'
 num_units: 1
 options:
 cassandra-minimum-diskgb: '4'
 cassandra-jvm-extra-opts: '-Xms1g -Xmx2g'
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 contrail-controller:

659

 series: "bionic"
 charm: cs:~juniper-os-software/contrail-controller
 annotations:
 gui-x: '212.01282501220703'
 gui-y: '480.69961284662793'
 expose: true
 num_units: 1
 options:
 auth-mode: 'no-auth'
 cassandra-minimum-diskgb: '4'
 cassandra-jvm-extra-opts: '-Xms1g -Xmx2g'
 log-level: 'SYS_DEBUG'
 docker-registry: "opencontrailnightly"
 image-tag: "master-latest"
 to: [5]

 # misc

 ntp:
 charm: "cs:bionic/ntp"
 annotations:
 gui-x: '678.6017761230469'
 gui-y: '415.27124759750086'

relations:

- [kubernetes-master:kube-api-endpoint, kubernetes-worker:kube-api-endpoint]
- [kubernetes-master:kube-control, kubernetes-worker:kube-control]
- [kubernetes-master:certificates, easyrsa:client]
- [kubernetes-master:etcd, etcd:db]
- [kubernetes-worker:certificates, easyrsa:client]
- [etcd:certificates, easyrsa:client]

contrail
- [kubernetes-master, ntp]
- [kubernetes-worker, ntp]
- [contrail-controller, ntp]

- [contrail-controller, contrail-analytics]
- [contrail-controller, contrail-analyticsdb]
- [contrail-analytics, contrail-analyticsdb]
- [contrail-agent, contrail-controller]

660

contrail-kubernetes
- [contrail-kubernetes-node:cni, kubernetes-master:cni]
- [contrail-kubernetes-node:cni, kubernetes-worker:cni]
- [contrail-kubernetes-master:contrail-controller, contrail-controller:contrail-controller]
- [contrail-kubernetes-master:kube-api-endpoint, kubernetes-master:kube-api-endpoint]
- [contrail-agent:juju-info, kubernetes-worker:juju-info]
- [contrail-agent:juju-info, kubernetes-master:juju-info]
- [contrail-kubernetes-master:contrail-kubernetes-config, contrail-kubernetes-node:contrail-
kubernetes-config]

You can create or modify the Contrail Charm deployment bundle YAML file to:

• Point to machines or instances where the Contrail Charms must be deployed.

• Include the options you need.

Each Contrail Charm has a specific set of options. The options you choose depend on the charms
you select. For more information on the options that are available, see config.yaml file for each
charm located at Contrail Charms.

2. (Optional) Check the status of deployment.

You can check the status of the deployment by using the juju status command.

3. Enable configuration statements.

Based on your deployment requirements, you can enable the following configuration statements:

• contrail-agent

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
agent/README.md.

• contrail-analytics

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
analytics/README.md.

• contrail-analyticsdb

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
analyticsdb/README.md.

• contrail-controller

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
controller/README.md.

• contrail-kubernetes-master

661

https://github.com/tungstenfabric/tf-charms
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-agent/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-agent/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-analytics/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-analytics/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-analyticsdb/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-analyticsdb/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-controller/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-controller/README.md

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
kubernetes-master/README.md.

• contrail-kubernetes-node

For more information, see https://github.com/tungstenfabric/tf-charms/blob/master/contrail-
kubernetes-node/README.md.

Deploying Juju Charms with Kubernetes Manually

Before you begin deployment, ensure that you have:

• Installed and configured Juju

• Created a Juju controller

• Installed Ubuntu 16.04 or Ubuntu 18.04

Follow these steps to deploy Juju Charms with Kubernetes manually:

1. Create machine instances for Kubernetes master, Kubernetes workers, and Contrail.

juju add-machine ssh:<sshusername>@<IP> --constraints mem=8G cores=2 root-disk=32G --
series=xenial #for Kubernetes worker machine

juju add-machine ssh:<sshusername>@<IP> --constraints mem=18G cores=2 root-disk=32G --
series=xenial #for Kubernetes master machine
juju add-machine ssh:<sshusername>@<IP> --constraints mem=16G cores=4 root-disk=32G --
series=xenial #for Contrail machine

2. Deploy the Kubernetes services.

Some of the applications may need an additional configuration.

You can deploy Kubernetes services using any one of the following methods:

• By specifying the Kubernetes parameters in a YAML file

• By using CLI

• By using a combination of YAML-formatted file and CLI

NOTE: You must use the same docker version for Contrail and Kubernetes.

For more details, refer to Juju Application Configuration.

662

https://github.com/tungstenfabric/tf-charms/blob/master/contrail-kubernetes-master/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-kubernetes-master/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-kubernetes-node/README.md
https://github.com/tungstenfabric/tf-charms/blob/master/contrail-kubernetes-node/README.md
https://old-docs.jujucharms.com/2.4/en/charms-config

3. Deploy and configure ntp, easyrsa, etcd, kubernetes-master, kubernetes-worker.

juju deploy cs:xenial/ntp ntp

juju deploy cs:~containers/easyrsa easyrsa --to lxd:0

juju deploy cs:~containers/etcd etcd \
 --resource etcd=3 \
 --resource snapshot=0
juju set etcd channel="3.2/stable"

juju deploy cs:~containers/kubernetes-master kubernetes-master \
 --resource cdk-addons=0 \
 --resource kube-apiserver=0 \
 --resource kube-controller-manager=0 \
 --resource kube-proxy=0 \
 --resource kube-scheduler=0 \
 --resource kubectl=0
juju set kubernetes-master channel="1.14/stable" \
 enable-dashboard-addons="false" \
 enable-metrics="false" \
 dns-provider="none" \
 docker_runtime="custom" \
 docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable" \
 docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 docker_runtime_package="docker-ce"

juju deploy cs:~containers/kubernetes-worker kubernetes-worker \
 --resource kube-proxy="0" \
 --resource kubectl="0" \
 --resource kubelet="0"
juju set kubernetes-worker channel="1.14/stable" \
 ingress="false" \
 docker_runtime="custom" \
 docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu {CODE}
stable" \
 docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 docker_runtime_package="docker-ce"

4. Deploy and configure Contrail services.

663

Deploy contrail-analyticsdb, contrail-analytics, contrail-controller, contrail-kubernetes-master, contrail-
kubernetes-node, contrail-agent from the directory where you have downloaded the charms.

NOTE: You must set the auth-mode parameter of the contrail-controller charm to no-
auth if Contrail is deployed without a keystone.

juju deploy contrail-analytics contrail-analytics

juju deploy contrail-analyticsdb contrail-analyticsdb
juju set contrail-analyticsdb cassandra-minimum-diskgb="4" cassandra-jvm-extra-opts="-Xms1g -
Xmx2g"

juju deploy contrail-controller contrail-controller
juju set contrail-controller cassandra-minimum-diskgb="4" cassandra-jvm-extra-opts="-Xms1g -
Xmx2g" auth-mode="no-auth"

juju deploy contrail-kubernetes-master contrail-kubernetes-master

juju deploy contrail-kubernetes-node contrail-kubernetes-node

juju deploy contrail-agent contrail-agent

5. Enable applications to be available to external traffic:

juju expose kubernetes-master
juju expose kubernetes-worker

6. Enable contrail-controller and contrail-analytics services to be available to external traffic if you do
not use HAProxy.

juju expose contrail-controller
juju expose contrail-analytics

7. Apply SSL.

You can apply SSL if needed. To use SSL with Contrail services, deploy easy-rsa service and add-
relation command to create relations to contrail-controller service and contrail-agent services.

juju add-relation easyrsa contrail-controller
juju add-relation easyrsa contrail-analytics

664

juju add-relation easyrsa contrail-analyticsdb
juju add-relation easyrsa contrail-kubernetes-master
juju add-relation easyrsa contrail-agent

8. Add other necessary relations.

juju add-relation "contrail-controller" "contrail-analytics"
juju add-relation "contrail-controller" "contrail-analyticsdb"
juju add-relation "contrail-analytics" "contrail-analyticsdb"
juju add-relation "contrail-agent" "contrail-controller"
juju add-relation "contrail-controller" "ntp"
juju add-relation “kubernetes-worker”, “ntp”
juju add-relation “kubernetes-master”, “ntp”

juju add-relation "kubernetes-master:kube-api-endpoint" "kubernetes-worker:kube-api-endpoint"
juju add-relation "kubernetes-master:kube-control" "kubernetes-worker:kube-control"
juju add-relation "kubernetes-master:certificates" "easyrsa:client"
juju add-relation "kubernetes-master:etcd" "etcd:db"
juju add-relation "kubernetes-worker:certificates" "easyrsa:client"
juju add-relation "etcd:certificates" "easyrsa:client"

juju add-relation contrail-agent:juju-info, kubernetes-master:juju-info

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-master:cni"
juju add-relation "contrail-kubernetes-node:cni" "kubernetes-worker:cni"
juju add-relation "contrail-kubernetes-master:contrail-controller" "contrail-
controller:contrail-controller"
juju add-relation "contrail-kubernetes-master:kube-api-endpoint" "kubernetes-master:kube-api-
endpoint"
juju add-relation "contrail-agent:juju-info" "kubernetes-worker:juju-info"
juju add-relation "contrail-agent:juju-info" "kubernetes-master:juju-info"
juju add-relation "contrail-kubernetes-master:contrail-kubernetes-config" "contrail-
kubernetes-node:contrail-kubernetes-config"

RELATED DOCUMENTATION

https://juju.is/docs/installing

665

https://juju.is/docs/installing

Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms

Contrail Networking Release 1909 and later support provisioning of a Kubernetes cluster inside an
OpenStack cluster. Contrail Networking offers a nested control and data plane where a single Contrail
control plane and a single network stack can manage and service both the OpenStack and Kubernetes
clusters.

In nested mode, a Kubernetes cluster is provisioned in virtual machines of an OpenStack cluster. The
CNI plugin and the Contrail-Kubernetes manager of the Kubernetes cluster interface directly with
Contrail components that manage the OpenStack cluster.

All Kubernetes features, functions and specifications are supported when used in nested mode.

NOTE: Nested mode deployment is only supported for Contrail with OpenStack cluster.

Before you begin:

• Deploy Contrail with OpenStack either on bare metal server or virtual machines.

BEST PRACTICE: Public cloud deployment is not recommended because of slow nested
virtualization.

• The VMs must have internet connectivity.

• Contrail in underlay network must be configured to support nested mode.

You must select an unused IP in the cluster to configure link-local.

For example:

10.10.10.5 is the selected service IP.

LL Service Name Service IP Service Port Fabric IP Fabric Port

K8s-cni-to-agent 10.10.10.5 9091 127.0.0.1 9091

Follow these steps to deploy Juju Charms with Kubernetes in nested mode using bundle deployment:

Use this method if you want to use the existing machines.

1. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

666

You can use OpenStack Cloud provider or manually spun-up VMs. For details, refer to Preparing to
Deploy Contrail with Kubernetes by Using Juju Charms.

2. Deploy bundle.

juju deploy --series xenial cs:~containers/kubernetes-worker-550 --to:0 \ --config channel="1.14/stable" \ --
config docker_runtime="custom" \

If the machines for the setup are already provisioned, run the following command to deploy bundle:

juju deploy --map-machines=existing,0=0,5=1 ./bundle.yaml
where bundle-id=existing-id

For details, refer to https://jaas.ai/u/juniper-os-software/contrail-k8s-nested/bundle.

or

Follow these steps to deploy Juju Charms with Kubernetes in nested mode manually:

1. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

You can use OpenStack Cloud provider or manually spun-up VMs. For details, refer to Preparing to
Deploy Contrail with Kubernetes by Using Juju Charms.

2. Create machine instances for Contrail components, Kubernetes master and Kubernetes workers.

Sample constraints for minimal deployment:

All-In-One deployment:

juju add-machine --constraints mem=32G cores=8 root-disk=150G --series=xenial # for all-in-one machine

or

Multinode deployment:

juju add-machine --constraints mem=8G cores=2 root-disk=50G --series=xenial # kubernetes workers juju add-
machine --constraints mem=8G cores=2 root-disk=50G --series=xenial # kubernetes masters juju add-machine --
constraints mem=4G cores=4 root-disk=50G --series=xenial # contrail components

You can use any series—xenial or bionic.

3. Add machines to the cloud.

For details, refer to Using Constraints-Juju.

4. Deploy the Kubernetes services.

Some of the applications may need additional configuration.

667

https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://jaas.ai/u/juniper-os-software/contrail-k8s-nested/bundle
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://www.juniper.net/documentation/en_US/contrail19/topics/topic-map/deploying-contrail-using-juju-charms-kubernetes.html#PreparingToDeployContrailk8s
https://jaas.ai/docs/constraints

You can deploy Kubernetes services using any one of the following methods:

• By specifying the Kubernetes parameters in a YAML file.

• By passing options/values directly on the command line.

NOTE: You must use the same docker version for Contrail and Kubernetes.

For more details, refer to Juju Application Configuration.

5. Deploy and configure ntp, easyrsa, etcd, kubernetes-master, kubernetes-worker.

juju deploy --series xenial cs:ntp ntp

juju deploy --series xenial cs:~containers/easyrsa --to lxd:0

juju deploy --series xenial cs:~containers/etcd --to:0 --config channel="3.2/stable"

juju deploy --series xenial cs:~containers/kubernetes-master-696 --to:0 \
 --config channel="1.14/stable" \
 --config docker_runtime="custom" \
 --config docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu
{CODE} stable" \
 --config docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 --config docker_runtime_package="docker-ce"

juju deploy --series xenial cs:~containers/kubernetes-worker-550 --to:0 \
 --config channel="1.14/stable" \
 --config ingress="false" \
 --config docker_runtime="custom" \
 --config docker_runtime_repo="deb [arch={ARCH}] https://download.docker.com/linux/ubuntu
{CODE} stable" \
 --config docker_runtime_key_url="https://download.docker.com/linux/ubuntu/gpg" \
 --config docker_runtime_package="docker-ce"

6. Deploy and configure Contrail services.

668

https://old-docs.jujucharms.com/2.4/en/charms-config

Deploy contrail-kubernetes-master, contrail-kubernetes-node, contrail-agent from the directory where you
have downloaded the charms.

contrail-kubernetes-master:
 nested_mode: true
 cluster_project: "{'domain':'default-domain','project':'admin'}"
 cluster_network: "{'domain':'default-domain','project':'admin','name':'juju-net'}"
 service_subnets: '10.96.0.0/12'
 nested_mode_config: |
 {
 "CONTROLLER_NODES": "10.0.12.20",
 "AUTH_MODE": "keystone",
 "KEYSTONE_AUTH_ADMIN_TENANT": "admin",
 "KEYSTONE_AUTH_ADMIN_USER": "admin",
 "KEYSTONE_AUTH_ADMIN_PASSWORD": "password",
 "KEYSTONE_AUTH_URL_VERSION": "/v2.0",
 "KEYSTONE_AUTH_HOST": "10.0.12.122",
 "KEYSTONE_AUTH_PROTO": "http",
 "KEYSTONE_AUTH_PUBLIC_PORT":"5000",
 "KEYSTONE_AUTH_REGION_NAME": "RegionOne",
 "KEYSTONE_AUTH_INSECURE": "True",
 "KUBERNESTES_NESTED_VROUTER_VIP": "10.10.10.5"
 }
juju deploy --series xenial cs:~juniper-os-software/contrail-kubernetes-master \
 --config ./path-to-config.yaml

juju deploy --series xenial cs:~juniper-os-software/contrail-kubernetes-node

7. Add the necessary relations.

juju add-relation "kubernetes-master:juju-info" "ntp:juju-info"
juju add-relation "kubernetes-worker:juju-info" "ntp:juju-info"

juju add-relation "kubernetes-master:kube-api-endpoint" "kubernetes-worker:kube-api-endpoint"
juju add-relation "kubernetes-master:kube-control" "kubernetes-worker:kube-control"
juju add-relation "kubernetes-master:certificates" "easyrsa:client"
juju add-relation "kubernetes-master:etcd" "etcd:db"
juju add-relation "kubernetes-worker:certificates" "easyrsa:client"
juju add-relation "etcd:certificates" "easyrsa:client"

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-master:cni"

669

juju add-relation "contrail-kubernetes-node:cni" "kubernetes-worker:cni"
juju add-relation "contrail-kubernetes-master:kube-api-endpoint" "kubernetes-master:kube-api-
endpoint"
juju add-relation "contrail-kubernetes-master:contrail-kubernetes-config" "contrail-
kubernetes-node:contrail-kubernetes-config"

8. Apply SSL, if needed.

You must provide the same certificates to the contrail-kubernetes-master node if Contrail in underlay
cluster has SSL enabled.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

1909 Contrail Networking Release 1909 and later support provisioning of a Kubernetes cluster inside an
OpenStack cluster. Contrail Networking offers a nested control and data plane where a single Contrail
control plane and a single network stack can manage and service both the OpenStack and Kubernetes
clusters.

RELATED DOCUMENTATION

Installing Contrail with Kubernetes by Using Juju Charms | 653

Installing Contrail with OpenStack by Using Juju Charms | 596

Installing OpenStack Octavia LBaaS with Juju Charms in Contrail
Networking

Contrail Networking Release 2005 supports Octavia as LBaaS. The deployment supports RHOSP and
Juju platforms.

With Octavia as LBaaS, Contrail Networking is only maintaining network connectivity and is not
involved in any load balancing functions.

For each OpenStack load balancer creation, Octavia launches a VM known as amphora VM. The VM
starts the HAPROXY when listener is created for the load balancer in OpenStack. Whenever the load
balancer gets updated in OpenStack, amphora VM updates the running HAPROXY configuration. The
amphora VM is deleted on deleting the load balancer.

670

https://apps.juniper.net/feature-explorer/

Contrail Networking provides connectivity to amphora VM interfaces. Amphora VM has two interfaces;
one for management and the other for data. The management interface is used by the Octavia services
for the management communication. Since, Octavia services are running in the underlay network and
amphora VM is running in the overlay network, SDN gateway is needed to reach the overlay network.
The data interface is used for load balancing.

Follow the procedure to install OpenStack Octavia LBaaS in Canonical deployment:

1. Prepare Juju setup with OpenStack Train version and Octavia overlay bundle.

Refer to "No Link Title" on page 677 output.

juju deploy --overlay=./octavia-bundle.yaml ./contrail-bundle.yaml

or

Add Octavia service after deploying the main bundle on the existing cluster.

juju deploy --overlay=./octavia-bundle.yaml --map-machines=existing ./contrail-bundle.yaml

2. Prepare ssh key for amphora VM. Add the options in the octavia-bundle.yaml file.

ssh-keygen -f octavia # generate the key base64 octavia.pub # print public key data

Add the following options to Octavia options.

amp-ssh-pub-key: # paste public key data here amp-ssh-key-name: octavia

3. Generate certificates.

rm -rf demoCA/
mkdir -p demoCA/newcerts
touch demoCA/index.txt
touch demoCA/index.txt.attr
openssl genrsa -passout pass:foobar -des3 -out issuing_ca_key.pem 2048
openssl req -x509 -passin pass:foobar -new -nodes -key issuing_ca_key.pem \
 -config /etc/ssl/openssl.cnf \
 -subj "/C=US/ST=Somestate/O=Org/CN=www.example.com" \
 -days 30 \
 -out issuing_ca.pem
openssl genrsa -passout pass:foobar -des3 -out controller_ca_key.pem 2048
openssl req -x509 -passin pass:foobar -new -nodes \

671

 -key controller_ca_key.pem \
 -config /etc/ssl/openssl.cnf \
 -subj "/C=US/ST=Somestate/O=Org/CN=www.example.com" \
 -days 30 \
 -out controller_ca.pem
openssl req \
 -newkey rsa:2048 -nodes -keyout controller_key.pem \
 -subj "/C=US/ST=Somestate/O=Org/CN=www.example.com" \
 -out controller.csr
openssl ca -passin pass:foobar -config /etc/ssl/openssl.cnf \
 -cert controller_ca.pem -keyfile controller_ca_key.pem \
 -create_serial -batch \
 -in controller.csr -days 30 -out controller_cert.pem
cat controller_cert.pem controller_key.pem > controller_cert_bundle.pem
juju config octavia \
 lb-mgmt-issuing-cacert="$(base64 controller_ca.pem)" \
 lb-mgmt-issuing-ca-private-key="$(base64 controller_ca_key.pem)" \
 lb-mgmt-issuing-ca-key-passphrase=foobar \
 lb-mgmt-controller-cacert="$(base64 controller_ca.pem)" \
 lb-mgmt-controller-cert="$(base64 controller_cert_bundle.pem)"

Make sure all the units are in active or blocked state.

4. Configure vault service.

a. SSH into the machine where vault service is installed.

juju ssh vault/0

b. Export vault address and run init.

export VAULT_ADDR='http://localhost:8200'
/snap/bin/vault operator init -key-shares=5 -key-threshold=3

It will print 5 unseal keys and initial root token.

c. Call unseal command by using any three of the five printed unseal keys.

/snap/bin/vault operator unseal Key1
/snap/bin/vault operator unseal Key2
/snap/bin/vault operator unseal Key3

672

d. Export initial root token.

export VAULT_TOKEN="..."

e. Create user token.

/snap/bin/vault token create -ttl=10m

f. Exit from vault’s machine and initialize vault’s charm with the user token.

juju run-action --wait vault/leader authorize-charm token=”...”

5. Create amphora image.

juju run-action --wait octavia-diskimage-retrofit/leader retrofit-image

For more details, refer to https://docs.openstack.org/project-deploy-guide/charm-deployment-guide/
latest/app-octavia.html#amphora-image.

6. Install python-openstackclient and python-octaviaclient and create management network for
Octavia.

You must create these objects in services project.

project=$(openstack project list --domain service_domain | awk '/services/{print $2}')
openstack network create octavia --tag charm-octavia --project $project
openstack subnet create --subnet-range 172.x.0.0/24 --network octavia --tag charm-octavia
octavia
security group for octavia
openstack security group create octavia --tag charm-octavia --project $project
openstack security group rule create --ingress --ethertype IPv4 --protocol icmp octavia
openstack security group rule create --ingress --ethertype IPv6 --protocol icmp octavia
openstack security group rule create --ingress --ethertype IPv4 --protocol tcp --dst-port
22:22 octavia
openstack security group rule create --ingress --ethertype IPv6 --protocol tcp --dst-port
22:22 octavia
openstack security group rule create --ingress --ethertype IPv6 --protocol tcp --dst-port
9443:9443 octavia
openstack security group rule create --ingress --ethertype IPv4 --protocol tcp --dst-port
9443:9443 octavia

673

https://docs.openstack.org/project-deploy-guide/charm-deployment-guide/latest/app-octavia.html#amphora-image
https://docs.openstack.org/project-deploy-guide/charm-deployment-guide/latest/app-octavia.html#amphora-image

security group for octavia-health
openstack security group create octavia-health --tag charm-octavia-health --project $project
openstack security group rule create --ingress --ethertype IPv4 --protocol icmp octavia-health
openstack security group rule create --ingress --ethertype IPv6 --protocol icmp octavia-health
openstack security group rule create --ingress --ethertype IPv4 --protocol udp --dst-port
5555:5555 octavia-health
openstack security group rule create --ingress --ethertype IPv6 --protocol udp --dst-port
5555:5555 octavia-health

7. The management network created in step 6 is in overlay network and Octavia services are running in
the underlay network. Verify network connectivity between overlay and underlay network via SDN
gateway.

8. Configure Octavia with the created network.

juju run-action --wait octavia/leader configure-resources

Make sure the juju cluster is functional and all units have active status.

If you want to run amphora instances on DPDK computes, you have to create your own flavor with the
required options and set the ID to configuration of Octavia charm via custom-amp-flavor-id option
before call configure-resources.
Or
Set the required options to created flavor with name charm-octavia by charm

openstack flavor set charm-octavia --property hw:mem_page_size=any

Here is an example for creating and testing load balancer:

Prerequisites:

• You must have connectivity between Octavia controller and amphora instances,

• You must have OpenStack services into LXD containers.

• You must have separate interfaces for control plane and data plane.

1. Create private network.

openstack network create private
openstack subnet create private --network private --subnet-range 10.10.10.0/24 --allocation-
pool
start=10.10.10.50,end=10.10.10.70 --gateway none

674

2. Create security group.

openstack security group create allow_all
openstack security group rule create --ingress --protocol any --prefix '0.0.0.0/0' allow_all

3. Check available flavors and images. You can create them, if needed.

openstack flavor list
openstack image list

4. Create two servers for load balancer.

openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros1
openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros2

5. Create additional server to test load balancer.

openstack server create --flavor test_flavor --image cirros --security-group allow_all --
network private cirros-test

6. Check status and IP addresses.

openstack server list --long

7. Create simple HTTP server on every cirros. Login on both the cirros instances and run following
commands:

MYIP=$(ifconfig eth0|grep 'inet addr'|awk -F: '{print $2}'| awk '{print $1}') while true;
do echo -e "HTTP/1.0 200 OK\r\n\r\nWelcome to $MYIP" | sudo nc -l -p 80 ; done&

8. Create load balancer

openstack loadbalancer create --name lb1 --vip-subnet-id private

675

Make sure provisioning_status is Active.

openstack loadbalancer show lb1

9. Setup load balancer

openstack loadbalancer listener create --protocol HTTP --protocol-port 80 --name listener1
lb1
openstack loadbalancer show lb1 # Wait for the provisioning_status to be ACTIVE.
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --listener listener1 --
protocol HTTP --name pool1
openstack loadbalancer healthmonitor create --delay 5 --timeout 2 --max-retries 1 --type
HTTP pool1
openstack loadbalancer member create --subnet-id private --address 10.10.10.50 --protocol-
port 80 pool1
openstack loadbalancer member create --subnet-id private --address 10.10.10.51 --protocol-
port 80 pool1

IP addresses 10.10.10.50 and 10.10.10.51 belong to VMs created with test http server in step "7"
on page 675.

10. Check the status of load balancer.

openstack loadbalancer show lb1 # Wait for the provisioning_status to be ACTIVE.
openstack loadbalancer pool list
openstack loadbalancer pool show pool1
openstack loadbalancer member list pool1
openstack loadbalancer listener list

11. Login to load balancer client and verify if round robin works.

ubuntu@comp-1:~$ ssh cirros@169.x.0.9
The authenticity of host '169.x.0.9 (169.x.0.9)' can't be established.
RSA key fingerprint is SHA256:jv0qgZkorxxxxxxxmykOSVQV3fFl0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '169.x.0.9' (RSA) to the list of known hosts.
cirros@169.x.0.9's password:
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50

676

Welcome to 10.10.10.53
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50
Welcome to 10.10.10.53
$ curl 10.10.10.50
Welcome to 10.10.10.52
$ curl 10.10.10.50
Welcome to 10.10.10.53

Sample octavia-bundle.yaml file

Loadbalancer (LBAASv2) with Octavia - requires Rocky or later

applications:
 barbican:
 charm: cs:barbican
 num_units: 1
 options:
 openstack-origin: cloud:bionic-train
 to:
 - lxd:4
 barbican-vault:
 charm: cs:barbican-vault-12
 octavia:
 series: bionic
 charm: cs:~apavlov-e/octavia
 num_units: 1
 options:
 openstack-origin: cloud:bionic-train
 create-mgmt-network: false
 to:
 - lxd:4
 octavia-dashboard:
 charm: cs:octavia-dashboard
 vault:
 charm: cs:vault
 num_units: 1
 to:
 - lxd:4
 glance-simplestreams-sync:
 charm: cs:glance-simplestreams-sync

677

 num_units: 1
 options:
 source: ppa:simplestreams-dev/trunk
 use_swift: false
 to:
 - lxd:4
 octavia-diskimage-retrofit:
 charm: cs:octavia-diskimage-retrofit
 options:
 amp-image-tag: 'octavia-amphora'
 retrofit-uca-pocket: train
relations:
- - mysql:shared-db
 - octavia:shared-db
- - mysql:shared-db
 - barbican:shared-db
- - mysql:shared-db
 - vault:shared-db
- - keystone:identity-service
 - octavia:identity-service
- - keystone:identity-service
 - barbican:identity-service
- - rabbitmq-server:amqp
 - octavia:amqp
- - rabbitmq-server:amqp
 - barbican:amqp
- - neutron-api:neutron-load-balancer
 - octavia:neutron-api
- - openstack-dashboard:dashboard-plugin
 - octavia-dashboard:dashboard
- - barbican-vault:secrets
 - barbican:secrets
- - vault:secrets
 - barbican-vault:secrets-storage
- - glance-simplestreams-sync:juju-info
 - octavia-diskimage-retrofit:juju-info
- - keystone:identity-service
 - glance-simplestreams-sync:identity-service
- - rabbitmq-server:amqp
 - glance-simplestreams-sync:amqp
- - keystone:identity-credentials
 - octavia-diskimage-retrofit:identity-credentials

678

- - contrail-openstack
 - octavia

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2005 Contrail Networking Release 2005 supports Octavia as LBaaS.

RELATED DOCUMENTATION

Support for OpenStack LBaaS | 564

Using Load Balancers in Contrail | 550

Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking | 513

Using Netronome SmartNIC vRouter with Contrail Networking and Juju
Charms

IN THIS SECTION

Prepare to Install Contrail Networking by Using Juju Charms | 680

Deploy Contrail Charms in a Bundle | 682

NOTE: The Netronome SmartNIC vRouter technology covered in this document is
available for evaluation purposes only. It is not intended for deployment in production
networks.

You can deploy Contrail Networking by using Juju charms. Juju helps you deploy, configure, and
efficiently manage applications on private clouds and public clouds. Juju accesses the cloud with the
help of a Juju controller. A charm is a module containing a collection of scripts and metadata and is used
with Juju to deploy Contrail.

679

https://apps.juniper.net/feature-explorer/

Starting in Contrail Networking Release 2011, Contrail Networking supports Netronome Agilio CX
SmartNICs for Contrail Networking deployment with Juju charms. This feature enables service providers
to improve the forwarding performance which includes packets per second (PPS) of vRouter. This
optimizes server CPU usage and you can deploy more Virtual Network Functions (VNFs) per server.

Before you begin:

• Equip compute nodes with Netronome Agilio CX SmartNIC. For details, see Agilio CX SmartNICs
documentation.

• Retrieve Agilio charm.

Register on Netronome support site at https://help.netronome.com and provide Docker Hub
credentials.

Netronome will provide the Agilio charm for SmartNIC vRouter deployment on compute nodes. Add
the charm version as charm variable in the "No Link Title" on page 682. Also, Netronome will
authorize Docker Hub registry access.

• Note the Container Tags for your Contrail image to customize the image-tag variable in the "No Link
Title" on page 682. See README Access to Contrail Registry 21XX.

• Note the following version tags:

agilio-image-tag: 2.48-ubuntu-queens

maas version: 2.6.2

Linux kernel: bionic (ga-18.04)

Contrail supports the following charms:

• contrail-agent

• contrail-analytics

• contrail-analyticsdb

• contrail-controller

• contrail-keystone-auth

• contrail-openstack

The following topics describe how to use Netronome SmartNIC vRouter with Contrail Networking and
Juju charms.

Prepare to Install Contrail Networking by Using Juju Charms

Follow these steps to prepare for deployment:

680

https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://help.netronome.com
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

1. Install Juju.

sudo apt-get update
sudo apt-get upgrade
apt install snapd -y
snap install juju --classic

2. Configure Juju.

You can add a cloud to Juju, and manage clouds already added to Juju. Juju recognizes a wide range
of cloud types for adding a cloud.

This is an example for adding a cloud by using interactive command.

Example: Adding an MAAS cloud to Juju

juju add-cloud
Cloud Types
 maas
 manual
 openstack
 oracle
 vsphere

Select cloud type: maas

Enter a name for your maas cloud: maas-cloud

Enter the API endpoint url: http://<ip-address>:<node>/MAAS

Cloud "maas-cloud" successfully added
You may bootstrap with 'juju bootstrap maas-cloud'

NOTE: Juju 2.x is compatible with MAAS series 1.x and 2.x.

3. Create a Juju controller.

juju bootstrap --bootstrap-series=xenial <cloud name> <controller name>

681

NOTE: A Juju controller manages and keeps track of applications in the Juju cloud
environment.

Deploy Contrail Charms in a Bundle

Follow these steps to deploy Contrail charms in a bundle.

1. Deploy Contrail charms.

To deploy Contrail charms in a bundle, use the juju deploy <bundle_yaml_file> command.

The following example shows you how to use bundle_yaml_file to deploy Contrail Networking with
Netronome SmartNIC vRouter on MAAS based deployment.

Bundle yaml file

series: bionic
variables:
 openstack-origin: &openstack-origin distro
 #vhost-gateway: &vhost-gateway "192.x.40.254"
 data-network: &data-network "192.x.40.0/24"
 control-network: &control-network "192.x.30.0/24"
 virtioforwarder-coremask: &virtioforwarder-coremask "1,2"
 agilio-registry: &agilio-registry "netronomesystems"
 agilio-image-tag: &agilio-image-tag "2.48-ubuntu-queens"
 agilio-user: &agilio-user "<agilio-username>"
 agilio-password: &agilio-password "<agilio-password>"
 agilio-insecure: &agilio-insecure false
 agilio-phy: &agilio-phy "nfp_p0"
 docker-registry: &docker-registry "<registry-directory>"
 #docker-user: &docker-user "<docker_username>"
 #docker-password: &docker-password "<docker_password>"
 image-tag: &image-tag "2011.61"
 docker-registry-insecure: &docker-registry-insecure "true"
 dockerhub-registry: &dockerhub-registry "https://index.docker.io/
v1/"
machines:
 "1":
 constraints: tags=controller
 series: bionic
 "2":
 constraints: tags=compute
 series: bionic

682

 "3":
 constraints: tags=neutron
 series: bionic
services:
 ubuntu:
 charm: cs:ubuntu
 num_units: 1
 to: ["1"]
 ntp:
 charm: cs:ntp
 num_units: 0
 options:
 #source: ntp.ubuntu.com
 source: 10.204.217.158
 mysql:
 charm: cs:percona-cluster
 num_units: 1
 options:
 dataset-size: 15%
 max-connections: 10000
 root-password: <password>
 sst-password: <password>
 min-cluster-size: 1
 to: ["lxd:1"]
 rabbitmq-server:
 charm: cs:rabbitmq-server
 num_units: 1
 options:
 min-cluster-size: 1
 to: ["lxd:1"]
 heat:
 charm: cs:heat
 num_units: 1
 expose: true
 options:
 debug: true
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 keystone:
 charm: cs:keystone
 expose: true
 num_units: 1
 options:

683

 admin-password: <password>
 admin-role: admin
 openstack-origin: *openstack-origin
 preferred-api-version: 3
 nova-cloud-controller:
 charm: cs:nova-cloud-controller
 num_units: 1
 expose: true
 options:
 network-manager: Neutron
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 neutron-api:
 charm: cs:neutron-api
 expose: true
 num_units: 1
 series: bionic
 options:
 manage-neutron-plugin-legacy-mode: false
 openstack-origin: *openstack-origin
 to: ["3"]
 glance:
 charm: cs:glance
 expose: true
 num_units: 1
 options:
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 openstack-dashboard:
 charm: cs:openstack-dashboard
 expose: true
 num_units: 1
 options:
 openstack-origin: *openstack-origin
 to: ["lxd:1"]
 nova-compute:
 charm: cs:nova-compute
 num_units: 0
 expose: true
 options:
 openstack-origin: *openstack-origin
 nova-compute-dpdk:
 charm: cs:nova-compute

684

 num_units: 0
 expose: true
 options:
 openstack-origin: *openstack-origin
 nova-compute-accel:
 charm: cs:nova-compute
 num_units: 2
 expose: true
 options:
 openstack-origin: *openstack-origin
 to: ["2"]
 contrail-openstack:
 charm: ./tf-charms/contrail-openstack
 series: bionic
 expose: true
 num_units: 0
 options:
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 contrail-agent:
 charm: ./tf-charms/contrail-agent
 num_units: 0
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 #vhost-gateway: *vhost-gateway
 physical-interface: *agilio-phy
 contrail-agent-dpdk:
 charm: ./tf-charms/contrail-agent
 num_units: 0
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"

685

 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 dpdk: true
 dpdk-main-mempool-size: "65536"
 dpdk-pmd-txd-size: "2048"
 dpdk-pmd-rxd-size: "2048"
 dpdk-driver: ""
 dpdk-coremask: "1-4"
 #vhost-gateway: *vhost-gateway
 physical-interface: "nfp_p0"
 contrail-analytics:
 charm: ./tf-charms/contrail-analytics
 num_units: 1
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 control-network: *control-network
 docker-registry-insecure: *docker-registry-insecure
 to: ["1"]
 contrail-analyticsdb:
 charm: ./tf-charms/contrail-analyticsdb
 num_units: 1
 series: bionic
 expose: true
 options:
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms8g -Xmx8g"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 control-network: *control-network
 docker-registry-insecure: *docker-registry-insecure
 to: ["1"]

686

 contrail-controller:
 charm: ./tf-charms/contrail-controller
 series: bionic
 expose: true
 num_units: 1
 options:
 log-level: "SYS_DEBUG"
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms8g -Xmx8g"
 docker-registry: *docker-registry
 #docker-user: *docker-user
 #docker-password: *docker-password
 image-tag: *image-tag
 docker-registry-insecure: *docker-registry-insecure
 control-network: *control-network
 data-network: *data-network
 auth-mode: no-auth
 to: ["1"]
 contrail-keystone-auth:
 charm: ./tf-charms/contrail-keystone-auth
 series: bionic
 expose: true
 num_units: 1
 to: ["lxd:1"]
 agilio-vrouter5:
 charm: ./charm-agilio-vrt-5-37
 expose: true
 options:
 virtioforwarder-coremask: *virtioforwarder-coremask
 agilio-registry: *agilio-registry
 agilio-insecure: *agilio-insecure
 agilio-image-tag: *agilio-image-tag
 agilio-user: *agilio-user
 agilio-password: *agilio-password
relations:
 - ["ubuntu", "ntp"]
 - ["neutron-api", "ntp"]
 - ["keystone", "mysql"]
 - ["glance", "mysql"]
 - ["glance", "keystone"]
 - ["nova-cloud-controller:shared-db", "mysql:shared-db"]
 - ["nova-cloud-controller:amqp", "rabbitmq-server:amqp"]
 - ["nova-cloud-controller", "keystone"]

687

 - ["nova-cloud-controller", "glance"]
 - ["neutron-api", "mysql"]
 - ["neutron-api", "rabbitmq-server"]
 - ["neutron-api", "nova-cloud-controller"]
 - ["neutron-api", "keystone"]
 - ["nova-compute:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute", "glance"]
 - ["nova-compute", "nova-cloud-controller"]
 - ["nova-compute", "ntp"]
 - ["openstack-dashboard:identity-service", "keystone"]
 - ["contrail-keystone-auth", "keystone"]
 - ["contrail-controller", "contrail-keystone-auth"]
 - ["contrail-analytics", "contrail-analyticsdb"]
 - ["contrail-controller", "contrail-analytics"]
 - ["contrail-controller", "contrail-analyticsdb"]
 - ["contrail-openstack", "nova-compute"]
 - ["contrail-openstack", "neutron-api"]
 - ["contrail-openstack", "contrail-controller"]
 - ["contrail-agent:juju-info", "nova-compute:juju-info"]
 - ["contrail-agent", "contrail-controller"]
 - ["contrail-agent-dpdk:juju-info", "nova-compute-dpdk:juju-info"]
 - ["contrail-agent-dpdk", "contrail-controller"]
 - ["nova-compute-dpdk:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute-dpdk", "glance"]
 - ["nova-compute-dpdk", "nova-cloud-controller"]
 - ["nova-compute-dpdk", "ntp"]
 - ["contrail-openstack", "nova-compute-dpdk"]
 - ["contrail-agent:juju-info", "nova-compute-accel:juju-info"]
 - ["nova-compute-accel:amqp", "rabbitmq-server:amqp"]
 - ["nova-compute-accel", "glance"]
 - ["nova-compute-accel", "nova-cloud-controller"]
 - ["nova-compute-accel", "ntp"]
 - ["contrail-openstack", "nova-compute-accel"]
 - ["agilio-vrouter5:juju-info", "nova-compute-accel:juju-info"]
 - ["heat:shared-db" , "mysql:shared-db"]
 - ["heat:amqp" , "rabbitmq-server:amqp"]
 - ["heat:identity-service" , "keystone:identity-service"]
 - ["contrail-openstack:heat-plugin" , "heat:heat-plugin-subordinate"]

You can create or modify the Contrail charm deployment bundle YAML file to:

• Point to machines or instances where the Contrail charms must be deployed.

688

• Include the options you need.

Each Contrail charm has a specific set of options. The options you choose depend on the charms
you select. For more information on the options that are available, see "Options for Juju Charms"
on page 612.

2. (Optional) Check the status of deployment.

You can check the status of the deployment by using the juju status command.

3. Enable configuration statements.

Based on your deployment requirements, you can enable the following configuration statements:

• contrail-agent

For more information, see https://jaas.ai/u/juniper-os-software/contrail-agent/.

• contrail-analytics

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analytics.

• contrail-analyticsdb

For more information, see https://jaas.ai/u/juniper-os-software/contrail-analyticsdb.

• contrail-controller

For more information, see https://jaas.ai/u/juniper-os-software/contrail-controller.

• contrail-keystone-auth

For more information, see https://jaas.ai/u/juniper-os-software/contrail-keystone-auth.

• contrail-openstack

For more information see, https://jaas.ai/u/juniper-os-software/contrail-openstack.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Starting in Contrail Networking Release 2011, Contrail Networking supports Netronome Agilio CX
SmartNICs for Contrail Networking deployment with Juju charms.

RELATED DOCUMENTATION

Installing Contrail with OpenStack by Using Juju Charms | 596

689

https://jaas.ai/u/juniper-os-software/contrail-agent/
https://jaas.ai/u/juniper-os-software/contrail-analytics
https://jaas.ai/u/juniper-os-software/contrail-analyticsdb
https://jaas.ai/u/juniper-os-software/contrail-controller
https://jaas.ai/u/juniper-os-software/contrail-keystone-auth
https://jaas.ai/u/juniper-os-software/contrail-openstack
https://apps.juniper.net/feature-explorer/

MAAS Installation Documents

690

https://maas.io/docs/snap/2.8/ui/installation

CHAPTER 18

Using Contrail and Contrail Insights with Kolla/
Ocata OpenStack

IN THIS CHAPTER

Contrail, Contrail Insights, and OpenStack Kolla/Ocata Deployment Requirements | 691

Preparing for the Installation | 692

Run the Playbooks | 696

Accessing Contrail in Contrail Insights Management Infrastructure in UI | 697

Notes and Caveats | 697

Example Instances.yml for Contrail and Contrail Insights OpenStack Deployment | 698

Contrail Insights Installation and Configuration for OpenStack | 702

Contrail Insights Installation for OpenStack in HA | 716

Contrail, Contrail Insights, and OpenStack Kolla/Ocata Deployment
Requirements

IN THIS SECTION

Software Requirements | 692

Hardware Requirements | 692

Starting with Contrail Release 5.0.1, the combined installation of Contrail and Contrail Insights allows
Contrail monitoring by Contrail Insights. The following topics are referenced for the deployment.

• "Contrail Insights Installation and Configuration for OpenStack" on page 702

• "Contrail Insights Installation for OpenStack in HA" on page 716

691

The following software and hardware requirements apply to the combined Contrail, Contrail Insights,
and Kolla/Ocata deployment.

Software Requirements

• Contrail Release 5.0.x Targets: Centos 7.5 with kernel 3.10.0-862.3.2.el7.x86_64.

• Contrail Insights Targets: Refer to “Software Requirements” in Contrail Insights General
Requirements .

• Targets running both Contrail and Contrail Insights: CentOS 7.5 Ansible 2.4.2 for the installer.

• Contrail Insights 2.18.x and later.

Hardware Requirements

• It is strongly recommended that the Contrail Insights controller and Contrail services be installed on
separate targets.

• See "Installing a Contrail Cluster using Contrail Command and instances.yml" on page 78 and
"Contrail Insights Installation and Configuration for OpenStack" on page 702 for specifics about
requirements for installation.

Preparing for the Installation

IN THIS SECTION

Preparing the Targets | 693

Preparing the Base Host using Ansible Installer | 693

TCP/IP Port Conflicts Between Contrail and Contrail Insights | 693

Plugins to Enable for Contrail and Contrail Insights Deployment | 694

Configuring Contrail Monitoring in Contrail Insights | 694

Compute Monitoring: Listing IP Addresses to Monitor | 695

Configuring Openstack_Controller Hosts for Contrail Insights | 695

Other Contrail Insights group_vars That Must be Enabled in instances.yaml | 695

Contrail Insights License | 695

692

https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-general-requirements.html
https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-general-requirements.html

In Contrail Release 5.1, nodes on which Contrail, Contrail Insights (formerly AppFormix), or both are
installed are referred to as targets. The host from which Ansible is run is referred to as the base host. A
base host can also be a target, meaning you can install either Contrail, Contrail Insights, or both on a
base host.

Preparing the Targets

Workflow for preparing the targets consists of the following steps:

1. Image all the Contrail targets with CentOS 7.5 kernel 3.10.0-862.3.2.el7.x86_64.

2. Install the necessary platform software on the targets on which Contrail Insights Controller or
Contrail Insights Agent is going to be installed. See the instructions in Contrail Insights Installation
and Configuration for OpenStack.

Preparing the Base Host using Ansible Installer

Workflow for preparing the base host consists of the following steps:

1. Install Ansible 2.4.2 on the base host. See “Set Up the Bare Host” in Installing Contrail with
OpenStack and Kolla Ansible .

2. Set-up the base host. See “Set Up the Base Host” in Installing Contrail with OpenStack and Kolla
Ansible . This section includes information about creating the Ansible instances.yaml file.

3. On the base host, create a single Ansible instances.yaml file that lists inventory for both Contrail and
Contrail Insights deployments. An example of the single instances.yaml file is provided later in this
section.

• The Contrail inventory section of the instances.yaml file is configured according to guidelines in the
section “Set Up the Base Host” in Installing Contrail with OpenStack and Kolla Ansible .

• The Contrail Insights inventory section of the instances.yaml file is configured according to
guidelines in Contrail Insights Installation and Configuration for OpenStack.

TCP/IP Port Conflicts Between Contrail and Contrail Insights

It is strongly recommended that Contrail Insights Controller and Contrail services be installed on
separate target nodes. However, if Contrail Insights Controller and Contrail services are installed on the
same target, the following configuration is required to resolve port conflicts.

The following Contrail Insights ports must be reconfigured in the Contrail Insights group-vars section of
the instances.yaml file.

• appformix_datamanager_port_http

693

https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html

• appformix_datamanager_port_https

• appformix_haproxy_datamanager_port_http

• appformix_haproxy_datamanager_port_https

• appformix_datamanager_port_http:8200

Plugins to Enable for Contrail and Contrail Insights Deployment

Enable the following plugins by including them in the Contrail Insights group-vars section of the
instances.yaml file.

appformix_plugins: '{{ appformix_contrail_factory_plugins }}'
appformix_openstack_log_plugins: '{{ appformix_openstack_log_factory_plugins }}'

Configuring Contrail Monitoring in Contrail Insights

Connections to Contrail are configured by providing complete URLs by which to access the analytics and
configuration API services.

• contrail_cluster_name: Contrail_Clusterxxx

A name by which the Contrail instance will be displayed in the Dashboard. If not specified, this
variable has a default value of default_contrail_cluster.

• contrail_analytics_url: http://analytics-api-node-ip-address:8081

URL for the Contrail analytics API. The URL should only specify the protocol, address, and optionally
port.

• contrail_config_url: http://contrail-config-api-server-api-address:8082

URL for the Contrail configuration API. The URL should only specify the protocol, address, and
optionally port.

NOTE: The IP address specified for contrail monitoring corresponds to one of the IPs
listed in the Contrail roles for config and analytics. Typically, the first active IP address is
selected.

694

Compute Monitoring: Listing IP Addresses to Monitor

The IP addresses to monitor can be added in the compute section of Contrail Insights in the instances.yaml
file. A list of IP addresses with a vrouter role in the instances.yaml file.

Configuring Openstack_Controller Hosts for Contrail Insights

The Openstack_controller hosts section must be configured with at least one host. An example section
is shown.

openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <root user>
 ansible_sudo_pass: <contrail password>

Other Contrail Insights group_vars That Must be Enabled in instances.yaml

The following group_vars must be enabled in instances.yaml:

• openstack_platform_enabled: true

• appformix_remote_host_monitoring_enabled: true

Contrail Insights License

(Required for Contrail Insights and Contrail Insights Flows installations in Release 2003 and earlier.) You
must have an appropriate license that supports the combined deployment of Contrail with Contrail
Insights for OpenStack. To obtain a license, send an email to mailto:APPFORMIX-KEY-
REQUEST@juniper.net. Also, the following group_varsContrail Insights in the instances.yaml file must point
to this license.

• appformix_license: /path/appformix-contrail-license-file.sig

This is the path where the license is placed on the bare host so that the license can be deployed on
the target.

RELATED DOCUMENTATION

Installing Contrail with OpenStack and Kolla Ansible

695

mailto:APPFORMIX-KEY-REQUEST@juniper.net
mailto:APPFORMIX-KEY-REQUEST@juniper.net
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Contrail Insights Installation and Configuration for OpenStack

Example Instances.yml for Contrail and Contrail Insights OpenStack Deployment | 698

Run the Playbooks

Refer to section “Install Contrail and Kolla requirements” and section “Deploying contrail and Kolla
containers” in Installing Contrail with OpenStack and Kolla Ansible and execute the ansible-playbook.

Following are examples listing the Contrail play-book invocation from the contrail-ansible-deployer
directory:

• Configure Contrail OpenStack instances:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml -e
 orchestrator=openstack playbooks/configure_instances.yml (-vvv for debug)

• Install OpenStack:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml
 playbooks/install_openstack.yml

• Install Contrail:

ansible-playbook -i inventory/ -e config_file=/path/instances.yaml -e
 orchestrator=openstack playbooks/install_contrail.yml

Source the /etc/kolla/kolla-toolbox/admin-openrc.sh file from the OpenStack controller node (/etc/kolla/
kolla-toolbox/ admin-openrc.sh) to the Contrail Insights Controller to authenticate the OpenStack adapter to
access admin privileges over controller services. If the OpenStack control node is different from the base
host, either Secure Copy Protocol (SCP) the file over and source it (for example, execute source /path/admin-
openrc.sh) or manually export the environment enumerated in /etc/kolla/kolla-toolbox/ admin-openrc.sh by
invoking export OS_USERNAME=admin etc. and the remainder as listed in admin-openrc.sh

Also at this point, obtain a list of IP addresses to include in the compute section of Contrail Insights in the
instances.yaml file. Refer to Compute monitoring: Listing IP addresses to monitor in the computesection of
Contrail Insights in the instances.yaml file.

696

https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html

Refer to Installing AppFormix for OpenStack and validate target configuration requirements and
inventory parameters for Contrail Insights Controller and Agent. In place of -i inventory/use -i /absolute-
file-path/instances.yaml.

Following is an example listing the Contrail Insights playbook invocation from the appformix-2.18.x
directory where appformix_openstack.yml is located:

• Install Contrail Insights:

ansible-playbook -i /path/instances.yaml appformix_openstack.yml (-vvv for debug)

RELATED DOCUMENTATION

Installing Contrail with OpenStack and Kolla Ansible

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Contrail Insights Installation and Configuration for OpenStack

Accessing Contrail in Contrail Insights Management Infrastructure in UI

Contrail Insights service monitoring Dashboard for a Contrail cluster displays the overall state of the
cluster and its components. For more information, see “Dashboard” in “Contrail Monitoring” in the
Contrail Insights User Guide.

Open the Dashboard in a Web browser and log in.

http://<controller-IP-address>:9000

RELATED DOCUMENTATION

Contrail Insights User Guide

Notes and Caveats

• Versions of Contrail Insights-2.17 and earlier are not supported with Ansible-2.4.2. The combined
Contrail and Contrail Insights installation is not validated on these earlier releases.

697

https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-afx-openstack.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html
https://www.juniper.net/documentation/en_US/contrail-insights/topics/topic-map/appformix-service-monitoring.html#id-contrail-monitoring
https://www.juniper.net/documentation/en_US/contrail-insights/information-products/pathway-pages/contrail-insights-user-guide.html

• The installation was validated with Contrail Insights-2.18 Agent.

• To view and monitor Contrail in the Contrail Insights Management Infrastructure dashboard, the
license used in the deployment must include support for Contrail.

• Verify the datamanager port (re)definitions in the inventory file.

• For Contrail Insights OpenStack HA installation steps, see Contrail Insights Installation for OpenStack
in HA.

RELATED DOCUMENTATION

Contrail Insights Installation for OpenStack in HA

Example Instances.yml for Contrail and Contrail Insights OpenStack
Deployment

See Installing Contrail with OpenStack and Kolla Ansible and "Contrail Insights Installation and
Configuration for OpenStack" on page 702 for specific inventory file details:

The following items are part of the all section in the instances.yaml file for Contrail Insights:

all:
 children:
 openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>

The following items are part of the vars section in the instances.yaml file for Contrail Insights:

openstack_platform_enabled: true
##License must support Contrail and Openstack
appformix_license: /path/license-file.sig
contrail_cluster_name: 'Contrail_Cluster'
contrail_analytics_url: 'http://<contrail-analytics-api-server-ip-address>:8081'
contrail_config_url: 'http://<contrail-config-api-server-ip-address>:8082'

698

https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-contrail-ocata-kolla-50.html

Defaults from roles/appformix_defaults/defaults/main.yml are overwritten below
appformix_datamanager_port_http: "{{ (appformix_scale_setup_flag|bool) | ternary(28200, 8200) }}"
appformix_datamanager_port_https: "{{ (appformix_scale_setup_flag|bool) | ternary(28201,
8201) }}"
appformix_haproxy_datamanager_port_http: 8200
appformix_haproxy_datamanager_port_https: 8201
appformix_plugins: '{{ appformix_contrail_factory_plugins }} +
{{ appformix_network_device_factory_plugins }}’

Following is an example listing of the instances.yaml:

There is one instances.yaml file for the Contrail and Contrail Insights combined installation.

#Contrail inventory section
provider_config:
 bms:
 ssh_pwd: <ssh-password>
 ssh_user: <ssh-user>
 ntpserver: <ntp-server-ip-address>
 domainsuffix: local
instances:
 bms1:
 provider: bms
 ip: <ip-address>
 roles:
 config_database:
 config:
 control:
 analytics_database:
 analytics:
 webui:
 vrouter:
 openstack:
 openstack_compute:
global_configuration:
 CONTAINER_REGISTRY: <ci-repository-URL>:5000
 REGISTRY_PRIVATE_INSECURE: True
contrail_configuration:
 #UPGRADE_KERNEL: true
 CONTRAIL_VERSION: <contrail-version>
 #CONTRAIL_VERSION: latest
 CLOUD_ORCHESTRATOR: openstack

699

 VROUTER_GATEWAY: <gateway-ip-address>
 RABBITMQ_NODE_PORT: 5673
 PHYSICAL_INTERFACE: <interface-name>
 AUTH_MODE: keystone
 KEYSTONE_AUTH_HOST: <keystone-ip-address>
 KEYSTONE_AUTH_URL_VERSION: /v3
 CONFIG_NODEMGR__DEFAULTS__minimum_diskGB: 2
 DATABASE_NODEMGR__DEFAULTS__minimum_diskGB: 2
kolla_config:
 kolla_globals:
 network_interface: <interface-name>
 kolla_internal_vip_address: <ip-address>
 contrail_api_interface_address: <ip-address>
 enable_haproxy: no
 enable_swift: no
 kolla_passwords:
 keystone_admin_password: <password>

Contrail Insights inventory section
all:
 children:
 appformix_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 openstack_controller:
 hosts:
 <ip-address>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 compute:
 hosts:
 #List IP addresses of Contrail roles to be monitored here
 <<IP-addresses>>:
 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 bare_host:
 hosts:
 <ip-address>:

700

 ansible_connection: ssh
 ansible_ssh_user: <ssh-user>
 ansible_sudo_pass: <sudo-password>
 #If host is local
 <ip-address>:
 ansible_connection: local
 vars:
 appformix_docker_images:
 - /opt/software/appformix/contrail-insights-platform-images-<version>.tar.gz
 - /opt/software/appformix/contrail-insights-dependencies-images-<version>.tar.gz
 - /opt/software/appformix/contrail-insights-network_device-images-<version>.tar.gz
 - /opt/software/appformix/contrail-insights-openstack-images-<version>.tar.gz
 openstack_platform_enabled: true
 # appformix_license: /opt/software/openstack_appformix/<appformix-contrail-license-file>.sig
 appformix_license: /opt/software/configs/contrail.sig
 appformix_docker_registry: registry.appformix.com/
 appformix_version: <version> #Must be 2.18.x or above
 appformix_plugins: '{{ appformix_contrail_factory_plugins }} +
{{ appformix_network_device_factory_plugins }} + {{ appformix_openstack_factory_plugins }}'
 appformix_kvm_instance_discovery: true
 # For enabling pre-requisites for package installation
 appformix_network_device_monitoring_enabled: true
 # For running the appformix-network-device-adapter
 network_device_discovery_enabled: true
 appformix_remote_host_monitoring_enabled: true
 appformix_jti_network_device_monitoring_enabled: true
 contrail_cluster_name: 'Contrail_Cluster'
 contrail_analytics_url: 'http://<contrail-analytics-api-server-IP-address>:8081'
 contrail_config_url: 'http://<contrail-config-api-server-IP-address>:8082'
 # Defaults overwritten below were defined in roles/appformix_defaults/defaults/main.yml
 appformix_datamanager_port_http: "{{ (appformix_scale_setup_flag|bool) | ternary(28200,
8200) }}"
 appformix_datamanager_port_https: "{{ (appformix_scale_setup_flag|bool) | ternary(28201,
8201) }}"
 appformix_haproxy_datamanager_port_http: 8200
 appformix_haproxy_datamanager_port_https: 8201

NOTE: Replace <contrail_version> with the correct contrail_container_tag value for your
Contrail release. The respective contrail_container_tag values are listed in README Access
to Contrail Registry 21XX.

701

https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf
https://www.juniper.net/documentation/en_US/contrail21/information-products/topic-collections/release-notes/readme-contrail-21.pdf

RELATED DOCUMENTATION

Installing a Contrail Cluster using Contrail Command and instances.yml | 78

Contrail Insights Installation and Configuration for OpenStack | 702

Contrail Insights Installation and Configuration for OpenStack

IN THIS SECTION

Getting Started with OpenStack | 702

Requirements | 703

Workflow in Three Steps | 704

Configure OpenStack | 704

Create Ansible Inventory | 705

Install Contrail Insights | 706

Additional Ansible Configuration | 710

Upgrade Notices | 713

Remove a Node from Contrail Insights | 715

Upgrade Contrail Insights for an OpenStack Cluster | 715

Uninstall Contrail Insights from an OpenStack Cluster | 715

Getting Started with OpenStack

Contrail Insights provides resource control and visibility for hosts and virtual machines in an OpenStack
cluster. This topic explains how to install Contrail Insights for an OpenStack cluster. Contrail Insights
Agent runs on a host to monitor resource consumption of the host itself and the virtual machines
executing on that host. Figure 71 on page 703 shows the Contrail Insights architecture with
OpenStack.

702

http://www.openstack.org/

Figure 71: Contrail Insights Architecture with OpenStack

• Contrail Insights Agent monitors resource usage on the compute nodes.

• Contrail Insights Platform offers REST APIs to configure the system.

• Contrail Insights DataManager stores data from multiple Agents.

• Contrail Insights Dashboard provides a Web-based user interface.

• An adapter discovers platform-specific resources and configures the Contrail Insights Platform.

• Adapters exist for OpenStack and Kubernetes.

Requirements

The following are the requirements for installing Contrail Insights for OpenStack.

• Supported OpenStack versions: Icehouse, Juno, Kilo, Liberty, Mitaka, Newton, Ocata.

• See Contrail Insights General Requirements for software and hardware requirements.

• An administrator account for OpenStack.

703

https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-general-requirements.html

• API access to OpenStack services: Cinder, Glance, Heat, Keystone, Neutron, Nova, and Swift. Contrail
Insights reads information from these services. The administrator account must provide sufficient
permission for read-only API calls. Further, Contrail Insights Platform must be able to open
connections to the host and port on which these services listen. Contrail Insights can be configured
to use the admin, internal, or public service endpoints. See OS_ENDPOINT_TYPE in OpenStack environment
variables in the section Installing Contrail Insights.

•
NOTE: Upgrade notice: Starting with Contrail Insights 3.2.6, the requirement for a
license file is removed. If you are installing a version earlier than 3.2.6, a license is
required prior to installation.

You can obtain a license key from mailto:APPFORMIX-KEY-REQUEST@juniper.net. Provide the
following information in your request:

Group name:
Target customers or use:
Cluster type: OpenStack
Number of hosts:
Number of instances:

Workflow in Three Steps

Installation consists of the following steps:

1. Configure OpenStack.

2. Create Ansible inventory.

3. Install Contrail Insights.

Configure OpenStack

To create an administrator account for Contrail Insights, perform the following steps in the OpenStack
Horizon dashboard:

1. Create a user account and name it appformix.

2. Select a new project for the user account.

3. Select role as admin.

704

mailto:APPFORMIX-KEY-REQUEST@juniper.net

Create Ansible Inventory

Ansible is used to deploy the software to the compute node(s) and the Platform Host. An Ansible
inventory file describes groups of hosts in your cluster. Define the inventory in a separate location than
the release files, so that the inventory may be reused for an upgrade.

Contrail Insights requires two groups compute and appformix_controller. Each group lists the hosts in
that group. Only the agent is installed on the compute hosts. The agent and the Contrail Insights
Platform services are installed on the appformix_controller host.

Optionally, an openstack_controller group can be defined. The agent is installed on hosts in this group to
monitor the hosts that execute OpenStack controller services. (New in v2.3.0)

Create a directory inventory (or name of your choice) that contains a hosts file and a group_vars/all file. For
example:

inventory/
 hosts # inventory file
 group_vars/
 all # configuration variables

The inventory/hosts file contains the list of hosts in each group. For example:

[appformix_controller]
appformix01

[compute]
compute01
compute02
compute03

[openstack_controller]
openstack_infra01
openstack_infra02

See Ansible inventory documentation.

705

http://docs.ansible.com/ansible/intro_inventory.html#splitting-out-host-and-group-specific-data

Ansible Configuration Variables

The Contrail Insights software includes a number of Ansible roles to perform the configuration of
Contrail Insights settings. Define the values of variables in the inventory/group_vars/all file, in order to be
able to use the settings and inventory for future upgrades.

In the inventory/group_vars/all file, configure the following variables for installation of Contrail Insights for
OpenStack.

appformix_docker_images:
 - /path/to/contrail-insights-platform-images-<version>.tar.gz
 - /path/to/contrail-insights-dependencies-images<version>.tar.gz
 - /path/to/contrail-insights-openstack-images-<version>.tar.gz

Refer to Platform Dependencies for steps to install dependencies on a Platform Host that cannot fetch
files from the Internet.

Configure an HTTP Proxy for Fetching Prerequisites

The Ansible playbook will fetch files from the Internet to install prerequisites on the Platform Host. If the
Platform Host requires an HTTP proxy to access the Internet, configure the following variables in
inventory/group_vars/all:

http_proxy_url: 'http://proxy.example.com:1234'

prerequisites_env:

 http_proxy: '{{ http_proxy_url }}'
 https_proxy: '{{ http_proxy_url }}'

The prerequisites_env is a dictionary that defines environment variables that will be used when invoking
commands to install prerequisites. In the above example, the same proxy URL (http://
proxy.example.com:1234) is used for both the http_proxy and https_proxy environment variables because
the single proxy can be used to access HTTP and HTTPS URLs. As a convenience, the proxy URL is
defined once in the http_proxy_url variable. Adjust prerequisites_env as necessary for the proxy
requirements of your network.

Install Contrail Insights

To install Contrail Insights:

706

https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-platform-dependencies.html

1. Install Ansible on the Contrail Insights Platform node. Ansible will install docker and docker-py on
the platform.

#Ubuntu
 apt-get install python-pip python-dev #Installs Pip
 pip install ansible==2.3.0 #Installs Ansible 2.3
 sudo apt-get install build-essential libssl-dev libffi-dev #Dependencies
 pip install markupsafe httplib2 requests #Dependencies

#RHEL/CentOS
 yum install epel-release #Enable EPEL repository
 In case the above command does not work, manually download and install the epel-release
 package with one of the below commands, depending on your system’s version.
 yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
 yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

 yum groupinstall 'Development Tools' #Install development tools
 yum install openssl-devel libffi libffi-devel #Dependencies
 yum install python-pip python-devel #Install Pip
 pip install ansible==2.3.0 #Install Ansible 2.3
 pip install markupsafe httplib2 requests #Dependencies

NOTE: For RHEL, the following IPtables rule is needed to access port 9000.

iptables -t filter -A IN_public_allow -p tcp --dport 9000 -j ACCEPT

2. Install libvirt on the compute nodes using the following command:

yum -y install libvirt

This installs the KVM (Kernel-based Virtual Machine) and associated packages for collecting data
from virtual machines running on the compute nodes.

3. On the compute nodes where Contrail Insights Agent runs, verify that python virtualenv is installed.

#Ubuntu
 apt-get install -y python-pip
 pip install virtualenv

707

#RHEL/CentOS
 yum install -y python-pip
 pip install virtualenv

4. Enable passwordless login to facilitate Contrail Insights Platform node with Ansible to install agents
on the nodes. Create a SSH public key on the node where Ansible playbooks are run, and then copy
the key to the appformix_controller node.

ssh-keygen -t rsa #Creates Keys

ssh-copy-id -i ~/.ssh/id_rsa.pub <target_host> #Copies key from the node to other hosts

5. Use the Sample_Inventory file as a template to create a host file.

Example naming schemes are as below:
hostname ansible_ssh_user='username' ansible_sudo_pass='password'

List all Compute Nodes
[compute]
172.16.70.5
172.16.70.17

appformix_controller host
#
Host variables can be defined to control Contrail Insights configuration parameters
for particular host. For example, to specify the directory in which MongoDB
data is stored on hostname1 (the default is /opt/appformix/mongo/data):
#
hostname1 appformix_mongo_data_dir=/var/lib/appformix/mongo
#
For variables with same value for all appformix_controller hosts, set group
variables below.
#
[appformix_controller]
172.16.70.119

[openstack_controller]
172.16.70.120

708

6. Verify that all the hosts listed in the inventory file are reachable from the Contrail Insights Platform.

 export ANSIBLE_HOST_KEY_CHECKING=False # Eliminates interactive experience prompting for
Known_Hosts

 ansible -i inventory -m ping all # Pings all the hosts in the inventory file

7. At the top-level of the distribution, create a directory named group_vars.

mkdir group_vars

8. Download the Contrail Insights installation packages from software downloads to the Contrail
Insights Platform node. Get the following files:

contrail-insights-<version>.tar.gz
contrail-insights-dependencies-images-<version>.tar.gz
contrail-insights-openstack-images-<version>.tar.gz
contrail-insights-platform-images-<version>.tar.gz
contrail-insights-network_device-images-<version>.tar.gz

If you are installing a version earlier than 3.2.6, copy the Contrail Insights license file to the Contrail
Insights Platform node.

9. In group_vars directory, create a file named all. Add the following:

openstack_platform_enabled: true

appformix_manager_version: <version>
appformix_docker_images:
 - /path/to/contrail-insights-platform-images-<version>.tar.gz
 - /path/to/contrail-insights-dependencies-images-<version>.tar.gz
 - /path/to/contrail-insights-openstack-images-<version>.tar.gz

If you are installing a version earlier than 3.2.6, include the path to the Contrail Insights license file
in group_vars/all:

appformix_license: path/to/<contrail-insights-license-file>.sig

709

https://support.juniper.net/support/downloads/

10. Contrail Insights must be configured to communicate with the OpenStack cluster. The Ansible
playbooks use OpenStack environment variables to configure Contrail Insights with details of the
OpenStack environment.

OS_AUTH_URL Keystone URL (e.g., https://host:5000/)
OS_ENDPOINT_TYPE endpoint type to communicate with service (default: publicURL)
OS_USERNAME admin account to be used by Contrail Insights
OS_PASSWORD password for admin account
OS_PROJECT_NAME admin project created for Contrail Insights account
OS_PROJECT_DOMAIN_NAME domain for admin project
OS_USER_DOMAIN_NAME domain for admin user
OS_DOMAIN_NAME (optional) use domain-scoped token for admin account

11. Source the openrc file that contains the (step 10) environment variables and ensure the variables are
in the environment of the shell from which the Ansible-playbooks are going to be executed. Then,
install Contrail Insights by executing the appformix_openstack.yml playbook. Specify the path to the
inventory directory that you created earlier.

12. Open the Contrail Insights Dashboard in a Web browser. For example:

http://<contrail-insights-platform-node-ip>:9000

Select Skip Installation because the initial configuration was performed by Ansible using the
OpenStack environment variables in step 10. Log in to Contrail Insights Dashboard using OpenStack
Keystone credentials.

Additional Ansible Configuration

To set up additional Ansible configurations:

1. To install in a Keystone SSL-enabled cluster, include the following variables in the group_vars/all file:

appformix_keystone_ssl_ca: '/path/to/keystone_ca.crt'

Contrail Insights Ansible will distribute this Keystone CA to all of the Contrail Insights Platform nodes
and ask Contrail Insights components to talk to Keystone using this CA file with SSL enabled.

NOTE: Deprecation Notice: The appformix_mongo_cache_size_gb parameter previously
available starting in Contrail Insights 2.19.5 is now deprecated and no longer supported

710

from Contrail Insights 3.2.0 and going forward. Starting with Contrail Insights version
3.2.0, Mongo will be configured to use a maximum of 40 percent of the available
memory on the Contrail Insights Platform nodes.

2. To enable network device monitoring in the cluster, include the following in the group_vars/all file:

 # For enabling pre-requisites for packdge installation.
 appformix_install_snmp_dependencies: true
 appformix_install_jti_dependencies: true
 # For running the appformix-network-device-adapter
 network_device_discovery_enabled: true
 appformix_plugins: '{{ appformix_network_device_factory_plugins }}'
 # After 3.1, SNMP Traps can be enabled also so appformix_plugins can be specified as below:
 # appformix_plugins: '{{ appformix_network_device_factory_plugins }} +
{{ appformix_snmp_trap_factory_plugins }}'

3. To install Contrail Insights certified plug-ins on the cluster, include the following variables in the
group_vars/all file:

appformix_plugins: <list of certified plugins to be installed>
appformix_openstack_log_plugins: <list of OpenStack log plugins to be installed>

For example:

appformix_plugins:
 - { plugin_info: 'certified_plugins/cassandra_node_usage.json' }
 - { plugin_info: 'certified_plugins/contrail_vrouter.json' }
 - { plugin_info: 'certified_plugins/zookeeper_usage.json' }
 - { plugin_info: 'certified_plugins/heavy_hitters.json' }

appformix_openstack_log_plugins:
 - { plugin_info: 'certified_plugins/cinder_api_logparser.json',
 log_file_path: '/var/log/cinder/cinder-api.log' }
 - { plugin_info: 'certified_plugins/glance_logparser.json',
 log_file_path: '/var/log/glance/glance-api.log' }
 - { plugin_info: 'certified_plugins/keystone_logparser.json',
 log_file_path: '/var/log/apache2/keystone_access.log,/var/log/httpd/
keystone_wsgi_admin_access.log,/var/log/keystone/keystone.log' }

711

For a list of all Contrail Insights certified plug-ins that can be installed, look for the entries starting
with plugin_info in the file roles/appformix_defaults/defaults/main.yml.

The OpenStack log parser plug-ins parse the API log files of each OpenStack service to collect
metrics about API calls and response status codes. To install these plug-ins, add them to the variable
appformix_openstack_log_plugins in group_vars/all, as shown above. Each plug-in entry in this list requires a
parameter called log_file_path to be specified. This parameter should be set to the complete path to
the service's API log file on the OpenStack Controller node(s). Multiple comma-separated paths may
be specified.

To identify the right log file to be specified in log_file_path, look for entries like the following,
containing a client IP address, REST call type, and response status code:

2019-04-02 06:50:13.103 3465 INFO nova.osapi_compute.wsgi.server [req-d07e953a-6921-4224-a056-
afb6ff69adde 953ea56a96b944b3b170a299af9e87bd 10c9e8809feb4bd1b55955d9c2ed5aba - - -]
172.18.0.6 "GET /v2/10c9e8809feb4bd1b55955d9c2ed5aba/os-hypervisors/detail HTTP/1.1" status:
200 len: 1427 time: 0.0208740
2019-04-02 06:50:13.183 3465 INFO nova.osapi_compute.wsgi.server [req-34b2f686-9eb5-4112-b3fc-
e0b37798a302 953ea56a96b944b3b170a299af9e87bd 10c9e8809feb4bd1b55955d9c2ed5aba - - -]
172.18.0.6 "GET /v2/10c9e8809feb4bd1b55955d9c2ed5aba/servers/detail?
all_tenants=1&status=SHELVED_OFFLOADED HTTP/1.1" status: 200 len: 211 time: 0.0754580

Default locations for these files are listed in the variable appformix_openstack_log_factory_plugins in roles/
appformix_defaults/defaults/main.yml.

4. In Contrail Insights version 2.19.8, a timeout value can be configured for connecting to OpenStack
services. The default value of this timeout is 10 seconds and can be changed to a value between 5 and
20 seconds (both inclusive). To change the value, add the following variable to group_vars/all:

appformix_openstack_session_timeout: <number of seconds>

To modify the timeout value after the Contrail Insights Platform has been installed, add the variable
to the group_vars/all file as described above and re-run the Contrail Insights installation playbook.
Restart the appformix-openstack-adapter Docker container after the playbook has completed:

docker restart appformix-openstack-adapter

712

Upgrade Notices

NOTE: In Contrail Insights version 3.2.0, support for discovering OpenStack Octavia
Load Balancer services is added. Contrail Insights only collects load balancer state
information, such as provisioning_status and operating_status, as well as flavor information.
To enable this service discovery, provide Octavia service's endpoint as variable
appformix_octavia_endpoint_url in the group_vars/all file. For example:

appformix_octavia_endpoint_url: http://10.1.1.1:9876

Chargeback costs can also be configured for the Octavia Load Balancer services. See
Configure Load Balancer Costs.

Run Ansible with the created inventory file.

ansible-playbook -i inventory appformix_openstack.yml

NOTE: In Contrail Insights version 3.0, the variable appformix_openstack_factory_plugins is
deprecated. All OpenStack log parser plug-ins have to be specified in the variable
appformix_openstack_log_plugins. When upgrading from an older version to version 3.0, make
sure to move all OpenStack log parser plug-ins defined in
appformix_openstack_factory_plugins or appformix_plugins to appformix_openstack_log_plugins. Also,
in Contrail Insights version 3.0, all entries in this list have to be specified with a
log_file_path value, as described in step 3 above.

When upgrading from version 2.18.x to version 3.0, make the following changes in the group_vars/all file:

In version 2.18.x:

appformix_openstack_factory_plugins:
 - { plugin_info: 'certified_plugins/cinder_api_logparser.json', log_file_path: '/var/log/
cinder/cinder-api.log'}
 - { plugin_info: 'certified_plugins/glance_logparser.json',log_file_path: '/var/log/glance/
api.log'}
 - { plugin_info: 'certified_plugins/heavy_hitters.json' }
 - { plugin_info: 'certified_plugins/keystone_logparser.json', log_file_path: '/var/log/
keystone/keystone.log'}
 - { plugin_info: 'certified_plugins/neutron_logparser.json', log_file_path: '/var/log/neutron/
server.log'}
 - { plugin_info: 'certified_plugins/nova_logparser.json', log_file_path: '/var/log/nova/nova-

713

https://www.juniper.net/documentation/en_US/contrail-insights/topics/concept/appformix-chargeback.html#jd0e356

api.log'}

appformix_plugins: {{ appformix_openstack_factory_plugins }} + ...

In version 3.0.x:

appformix_plugins:
 - { plugin_info: 'certified_plugins/heavy_hitters.json' }

appformix_openstack_log_plugins:
 - { plugin_info: 'certified_plugins/cinder_api_logparser.json', log_file_path: '/var/log/
cinder/cinder-api.log'}
 - { plugin_info: 'certified_plugins/glance_logparser.json',log_file_path: '/var/log/glance/
api.log'}
 - { plugin_info: 'certified_plugins/keystone_logparser.json', log_file_path: '/var/log/
keystone/keystone.log'}
 - { plugin_info: 'certified_plugins/neutron_logparser.json', log_file_path: '/var/log/neutron/
server.log'}
 - { plugin_info: 'certified_plugins/nova_logparser.json', log_file_path: '/var/log/nova/nova-
api.log'}

Source the openrc file from the OpenStack controller node (/etc/contrail/openstackrc) to the Contrail
Insights Platform node to authenticate the adapter to access administrator privileges over the controller
services. The file should look like the following:

export OS_USERNAME=admin
export OS_PASSWORD=<admin-password>
export OS_AUTH_URL=http://172.16.80.2:5000/v2.0/
export OS_NO_CACHE=1
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Run Ansible with the created inventory file.

ansible-playbook -i inventory appformix_openstack.yml

714

Remove a Node from Contrail Insights

To remove a node from Contrail Insights:

1. Edit the inventory file and add appformix_state=absent to each node that you want to remove from
Contrail Insights.

Example naming schemes are as below:
hostname ansible_ssh_user='username' ansible_sudo_pass='password'

List all Compute Nodes
[compute]
172.16.70.5 appformix_state=absent
172.16.70.17

2. Run Ansible with the edited inventory file. This will remove the node and all its resources from
Contrail Insights.

ansible-playbook -i inventory appformix_openstack.yml

Upgrade Contrail Insights for an OpenStack Cluster

Contrail Insights can be easily upgraded by running the appformix_openstack.yml playbook of the new
release. Follow the same procedure as the installation.

Uninstall Contrail Insights from an OpenStack Cluster

To uninstall Contrail Insights and destroy all data, execute the following command:

ansible-playbook -i <inventory_file> clean_appformix_openstack.yml

RELATED DOCUMENTATION

Contrail Insights Agent Requirements

715

https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-agent-requirement.html

Contrail Insights Installation for OpenStack in HA

IN THIS SECTION

HA Design Overview | 716

Requirements | 716

Install Contrail Insights for High Availability | 717

HA Design Overview

Contrail Insights Platform can be deployed to multiple hosts for high availability (HA). Platform services
continue to communicate using an API proxy that listens on a virtual IP address. Only one host will have
the virtual IP at a time, and so only one API proxy will be the “active” API proxy at a time.

The API proxy is implemented by HAProxy. HAProxy is configured to use services in active-standby or
load-balanced active-active mode, depending on the service.

At most, one host will be assigned the virtual IP at any given time. This host is considered the “active”
HAproxy. The virtual IP address is assigned to a host by keepalived, which uses VRRP protocol for
election.

Services are replicated in different modes of operation. In the “active-passive” mode, HAProxy sends all
requests to a single “active” instance of a service. If the service fails, then HAProxy will select a new
“active” from the other hosts, and begin to send requests to the new “active” service.In the “active-
active” mode, HAProxy load balances requests across hosts on which a service is operational.

Contrail Insights Platform can be deployed in a 3-node, 5-node, or 7-node configuration for high
availability.

Requirements

• For each host, on which Contrail Insights Platform is installed, see Contrail Insights General
Requirements for hardware and software requirements. For a list of Contrail Insights Agent supported
platforms, see Contrail Insights Agent Requirements.

716

https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-general-requirements.html
https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-general-requirements.html
https://www.juniper.net/documentation/us/en/software/contrail-insights/contrail-insights-installation-guide/topics/concept/appformix-agent-requirement.html

•
NOTE: Upgrade notice: Starting with Contrail Insights 3.2.6, the requirement for a
license file is removed. If you are installing a version earlier than 3.2.6, a license is
required prior to installation.

You can obtain a license key from mailto:APPFORMIX-KEY-REQUEST@juniper.net. Provide the
following information in your request:

Group name:
Target customers or use:
Cluster type: OpenStack
Number of hosts:
Number of instances:

Connectivity

• One virtual IP address to be shared among all the Platform Hosts. This IP address should not be used
by any host before installation. It should have reachability from all the Platform Hosts after
installation.

• Dashboard client (in browser) must have IP connectivity to the virtual IP.

• IP addresses for each Platform Host for installation and for services running on these hosts to
communicate.

• keepalived_vrrp_interface for each Platform Host which would be used for assigning virtual IP
address. Details on how to configure this interface is described in the sample_inventory section.

Install Contrail Insights for High Availability

To install Contrail Insights to multiple hosts for high availability:

1. Download the Contrail Insights installation packages from software downloads to the Contrail
Insights Platform node. Get the following files:

contrail-insights-<version>.tar.gz
contrail-insights-dependencies-images-<version>.tar.gz
contrail-insights-openstack-images-<version>.tar.gz
contrail-insights-platform-images-<version>.tar.gz
contrail-insights-network_device-images-<version>.tar.gz

717

mailto:APPFORMIX-KEY-REQUEST@juniper.net
https://support.juniper.net/support/downloads/

If you are installing a version earlier than 3.2.6, copy the Contrail Insights license file to the Contrail
Insights Platform node.

2. Install Ansible on the installer node. Ansible will install docker and the docker Python package on
the appformix_controller.

sudo apt-get install python-pip python-dev build-essential libssl-dev libffi-dev
sudo pip install ansible==2.7.6 markupsafe httplib2

For Ansible 2.3:

sudo pip install ansible==2.3 markupsafe httplib2 cryptography==1.5

3. Install Python and python-pip on all the Platform hosts so that Ansible can run between the installer
node and the appformix_controller node.

sudo apt-get install -y python python-pip

4. Install python pip package on the hosts where Contrail Insights Agents run.

apt-get install -y python-pip

5. To enable passwordless login to all Platform hosts by Ansible, create an SSH public key on the node
where Ansible playbooks are run and then copy the key to all the Platform hosts.

ssh-keygen -t rsa #Creates Keys
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_1>.........#Copies key from the node to
all platform hosts
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_2>.........#Copies key from the node to
all platform hosts
ssh-copy-id -i ~/.ssh/id_rsa.pub <platform_host_3>.........#Copies key from the node to
all platform hosts

6. Use the sample_inventory file as a template to create a host file. Add all the Platform hosts and
compute hosts details.

List all compute hosts which needs to be monitored by Contrail Insights
[compute]

718

203.0.113.5
203.0.113.17
Contrail Insights controller hosts
[appformix_controller]
203.0.113.119 keepalived_vrrp_interface=eth0
203.0.113.120 keepalived_vrrp_interface=eth0
203.0.113.121 keepalived_vrrp_interface=eth0

NOTE: Note: In the case of 5-node or 7-node deployment, list all the nodes under
appformix_controller.

7. At top-level of the distribution, create a directory named group_vars and then create a file named all
inside this directory.

mkdir group_vars
touch group_vars/all

Add the following entries to the newly created all file:

appformix_vip: <ip-address>
appformix_docker_images:
- /path/to/contrail-insights-platform-images-<version>.tar.gz
- /path/to/contrail-insights-dependencies-images-<version>.tar.gz
- /path/to/contrail-insights-openstack-images-<version>.tar.gz

If you are installing a version earlier than 3.2.6, include the path to the Contrail Insights license file
in group_vars/all:

appformix_license: path/to/<contrail-insights-license-file>.sig

8. Copy and source the openrc file from the OpenStack controller node (/etc/contrail/openrc) to the
appformix_controller to authenticate the adapter to access admin privileges over the controller
services.

root@installer_node:~# cat /etc/contrail/openrc
export OS_USERNAME=<admin user>
export OS_PASSWORD=<password>
export OS_TENANT_NAME=admin

719

export OS_AUTH_URL=http://<openstack-auth-URL>/v2.0/
export OS_NO_CACHE=1
root@installer_node:~# source /etc/contrail/openrc

NOTE: In Contrail Insights version 3.2.0, support for discovering OpenStack Octavia
Load Balancer services is added. Contrail Insights only collects load balancer state
information, such as provisioning_status and operating_status, as well as flavor
information. To enable this service discovery, provide Octavia service's endpoint as
variable appformix_octavia_endpoint_url in the group_vars/all file. For example:

appformix_octavia_endpoint_url: http://10.1.1.1:9876

Chargeback costs can also be configured for the Octavia Load Balancer services. See
Configure Load Balancer Costs.

9. Run Ansible with the created inventory file.

ansible-playbook -i inventory appformix_openstack_ha.yml

10. If running the playbooks as root user then this step can be skipped. As a non-root user (for
example. “ubuntu”), the user “ubuntu” needs access to the docker user group. The following
command adds the user to the docker group.

sudo usermod -aG docker ubuntu

720

https://www.juniper.net/documentation/en_US/contrail-insights/topics/concept/appformix-chargeback.html

CHAPTER 19

Post Installation Tasks

IN THIS CHAPTER

Configuring Role and Resource-Based Access Control | 721

Configuring Role-Based Access Control for Analytics | 730

Configuring the Control Node with BGP | 731

Configuring MD5 Authentication for BGP Sessions | 741

Configuring Transport Layer Security-Based XMPP in Contrail | 742

Configuring Graceful Restart and Long-lived Graceful Restart | 745

Scaling Up Contrail Networking Configuration API Server Instances | 755

Scaling Up Contrail Networking Configuration API | 758

Configuring Role and Resource-Based Access Control

IN THIS SECTION

Contrail Role and Resource-Based Access (RBAC) Overview | 722

API-Level Access Control | 722

Object Level Access Control | 723

Configuration | 724

Upgrading from Previous Releases | 726

Configuring RBAC Using the Contrail User Interface | 727

RBAC Resources | 730

721

Contrail Role and Resource-Based Access (RBAC) Overview

Contrail Networking supports role and resource-based access control (RBAC) with API operation-level
access control.

The RBAC implementation relies on user credentials obtained from Keystone from a token present in an
API request. Credentials include user, role, tenant, and domain information.

API-level access is controlled by a list of rules. The attachment points for the rules include global-system-
config, domain, and project. Resource-level access is controlled by permissions embedded in the object.

API-Level Access Control

If the RBAC feature is enabled, the API server requires a valid token to be present in the X-Auth-Token of
any incoming request. The API server trades the token for user credentials (role, domain, project, and so
on) from Keystone.

If a token is missing or is invalid, an HTTP error 401 is returned.

The api-access-list object holds access rules of the following form:

<object, field> => list of <role:CRUD>

Where:

object An API resource such as network or subnet.

field Any property or reference within the resource. The field option can be multilevel, for example,
network.ipam.host-routes can be used to identify multiple levels. The field is optional, so in its
absence, the create, read, update, and delete (CRUD) operation refers to the entire resource.

role The Keystone role name.

Each rule also specifies the list of roles and their corresponding permissions as a subset of the CRUD
operations.

Example: ACL RBAC Object

The following is an example access control list (ACL) object for a project in which the admin and any
users with the Development role can perform CRUD operations on the network in a project. However, only
the admin role can perform CRUD operations for policy and IP address management (IPAM) inside a
network.

<virtual-network, network-policy> => admin:CRUD

722

 <virtual-network, network-ipam> => admin:CRUD

 <virtual-network, *> => admin:CRUD, Development:CRUD

Rule Sets and ACL Objects

The following are the features of rule sets for access control objects in Contrail.

• The rule set for validation is the union of rules from the ACL attached to:

• User project

• User domain

• Default domain

It is possible for the project or domain access object to be empty.

• Access is only granted if a rule in the combined rule set allows access.

• There is no explicit deny rule.

• An ACL object can be shared within a domain. Therefore, multiple projects can point to the same
ACL object. You can make an ACL object the default.

Object Level Access Control

The perms2 permission property of an object allows fine-grained access control per resource.

The perms2 property has the following fields:

owner This field is populated at the time of creation with the tenant UUID value extracted from the
token.

share list The share list gets built when the object is selected for sharing with other users. It is a list of
tuples with which the object is shared.

The permission field has the following options:

• R—Read object

• W—Create or update object

• X—Link (refer to) object

Access is allowed as follows:

723

• If the user is the owner and permissions allow (rwx)

• Or if the user tenant is in a shared list and permissions allow

• Or if world access is allowed

Configuration

This section describes the parameters used in Contrail RBAC.

Parameter: aaa-mode

RBAC is controlled by a parameter named aaa-mode. This parameter is used in place of the multi-tenancy
parameter of previous releases.

The aaa-mode can be set to the following values:

• no-auth—No authentication is performed and full access is granted to all.

• cloud-admin—Authentication is performed and only the admin role has access.

• rbac—Authentication is performed and access is granted based on role.

If you are using Contrail Ansible Deployer to provision Contrail Networking, set the value for AAA_MODE
to rbac to enable RBAC by default.

contrail_configuration:
 .
 .
 .
 AAA_MODE: rbac

If you are installing Contrail Networking from Contrail Command, specify the key and value as
AAA_MODE and rbac, respectively, under the section Contrail Configuration on the Step 2 Provisioning
Options page.

After enabling RBAC, you must restart the neutron server by running the service neutron-server restart
command for the changes to take effect.

NOTE: The multi_tenancy parameter is deprecated, starting with Contrail 3.0. The
parameter should be removed from the configuration. Instead, use the aaa_mode parameter
for RBAC to take effect.

724

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

Parameter: cloud_admin_role

A user who is assigned the cloud_admin_role has full access to everything.

This role name is configured with the cloud_admin_role parameter in the API server. The default setting for
the parameter is admin. This role must be configured in Keystone to change the default value.

If a user has the cloud_admin_role in one tenant, and the user has a role in other tenants, then the
cloud_admin_role role must be included in the other tenants. A user with the cloud_admin_role doesn't need
to have a role in all tenants, however, if that user has any role in another tenant, that tenant must
include the cloud_admin_role.

Configuration Files with Cloud Admin Credentials

The following configuration files contain cloud_admin_role credentials:

• /etc/contrail/contrail-keystone-auth.conf

• /etc/neutron/plugins/opencontrail/ContrailPlugin.ini

• /etc/contrail/contrail-webui-userauth.js

Changing Cloud Admin Configuration Files

Modify the cloud admin credential files if the cloud_admin_role role is changed.

1. Change the configuration files with the new information.

2. Restart the following:

• API server

service supervisor-config restart

• Neutron server

service neutron-server restart

• WebUI

service supervisor-webui restart

725

Global Read-Only Role

You can configure a global read-only role (global_read_only_role).

A global_read_only_role allows read-only access to all Contrail resources. The global_read_only_role must be
configured in Keystone. The default global_read_only_role is not set to any value.

A global_read_only_role user can use the Contrail Web Ui to view the global configuration of Contrail
default settings.

Setting the Global Read-Only Role

To set the global read-only role:

1. The cloud_admin user sets the global_read_only_role in the Contrail API:

/etc/contrail/contrail-api.conf

global_read_only_role = <new-admin-read-role>

2. Restart the contrail-api service:

service contrail-api restart

Parameter Changes in /etc/neutron/api-paste.ini

Contrail RBAC operation is based upon a user token received in the X-Auth-Token header in API requests.
The following change must be made in /etc/neutron/api-paste.ini to force Neutron to pass the user
token in requests to the Contrail API server:

keystone = user_token request_id catch_errors
...
...
[filter:user_token]
paste.filter_factory =
neutron_plugin_contrail.plugins.opencontrail.neutron_middleware:token_factory

Upgrading from Previous Releases

The multi_tenancy parameter is deprecated.. The parameter should be removed from the configuration.
Instead, use the aaa_mode parameter for RBAC to take effect.

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

726

Configuring RBAC Using the Contrail User Interface

To use the Contrail UI with RBAC:

1. Set the aaa_mode to no_auth.

/etc/contrail/contrail-analytics-api.conf

aaa_mode = no-auth

2. Restart the analytics-api service.

service contrail-analytics-api restart

3. Restart services by restarting the container.

You can use the Contrail UI to configure RBAC at both the API level and the object level. API level
access control can be configured at the global, domain, and project levels. Object level access is available
from most of the create or edit screens in the Contrail UI.

Configuring RBAC at the Global Level

To configure RBAC at the global level, navigate to Configure > Infrastructure > Global Config > RBAC,
see Figure 72 on page 727.

Figure 72: RBAC Global Level

Configuring RBAC at the Domain Level

To configure RBAC at the domain level, navigate to Configure > RBAC > Domain, see Figure 73 on page
728.

727

Figure 73: RBAC Domain Level

Configuring RBAC at the Project Level

To configure RBAC at the project level, navigate to Configure > RBAC > Project, see Figure 74 on page
728.

Figure 74: RBAC Project Level

Configuring RBAC Details

Configuring RBAC is similar at all of the levels. To add or edit an API access list, navigate to the global,
domain, or project page, then click the plus (+) icon to add a list, or click the gear icon to select from Edit,
Insert After, or Delete, see Figure 75 on page 729.

728

Figure 75: RBAC Details API Access

Creating or Editing API Level Access

Clicking create, edit, or insert after activates the Edit API Access popup window, where you enter the
details for the API Access Rules. Enter the user type in the Role field, and use the + icon in the Access
filed to enter the types of access allowed for the role, including, Create, Read, Update, Delete, and so on,
see Figure 76 on page 729.

Figure 76: Edit API Access

Creating or Editing Object Level Access

You can configure fine-grained access control by resource. A Permissions tab is available on all create or
edit popups for resources. Use the Permissions popup to configure owner permissions and global share
permissions. You can also share the resource to other tenants by configuring it in the Share List, see
Figure 77 on page 730.

729

Figure 77: Edit Object Level Access

RBAC Resources

Refer to the OpenStack Administrator Guide for additional information about RBAC:

• Identity API protection with role-based access control (RBAC)

Configuring Role-Based Access Control for Analytics

The analytics API uses role-based access control (RBAC) to provide the ability to access UVE and query
information based on the permissions of the user for the UVE or queried object.

Contrail Networking extends authenticated access so that tenants can view network monitoring
information about the networks for which they have read permissions.

The analytics API can map query and UVE objects to configuration objects on which RBAC rules are
applied, so that read permissions can be verified using the VNC API.

RBAC is applied to analytics in the following ways:

• For statistics queries, annotations are added to the Sandesh file so that indices and tags on statistics
queries can be associated with objects and UVEs. These are used by the contrail-analytics-api to
determine the object level read permissions.

• For flow and log queries, the object read permissions are evaluated for each AND term in the where
query.

730

http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-protection-with-role-based-access-control.html

• For UVEs list queries (e.g. analytics/uve/virtual-networks/), the contrail-analytics-api gets a list of
UVEs that have read permissions for a given token. For a UVE query for a specific resource (e.g.
analytics/uves/virtual-network/vn1), contrail-analytics-api checks the object level read permissions
using VNC API.

Tenants cannot view system logs and flow logs, those logs are displayed for cloud-admin roles only.

A non-admin user can see only non-global UVEs, including:

• virtual_network

• virtual_machine

• virtual_machine_interface

• service_instance

• service_chain

• tag

• firewall_policy

• firewall_rule

• address_group

• service_group

• aaplication_policy_set

In /etc/contrail/contrail-analytics-api.conf, in the section DEFAULTS, the parameter aaa_mode now supports rbac
as one of the values.

Configuring the Control Node with BGP

IN THIS SECTION

Configuring the Control Node from Contrail Web UI | 732

Configuring the Control Node with BGP from Contrail Command | 737

731

An important task after a successful installation is to configure the control node with BGP. This
procedure shows how to configure basic BGP peering between one or more virtual network controller
control nodes and any external BGP speakers. External BGP speakers, such as Juniper Networks MX80
routers, are needed for connectivity to instances on the virtual network from an external infrastructure
or a public network.

Before you begin, ensure that the following tasks are completed:

• The Contrail Controller base system image has been installed on all servers.

• The role-based services have been assigned and provisioned.

• IP connectivity has been verified between all nodes of the Contrail Controller.

• You have access to Contrail Web User Interface (UI) or Contrail Command User Interface (UI). You
can access the user interface at http://nn.nn.nn.nn:8143, where nn.nn.nn.nn is the IP address of the
configuration node server that is running the contrail service.

These topics provide instructions to configure the Control Node with BGP.

Configuring the Control Node from Contrail Web UI

To configure BGP peering in the control node:

1. From the Contrail Controller module control node (http://nn.nn.nn.nn:8143), select Configure >
Infrastructure > BGP Routers; see Figure 78 on page 733.

732

Figure 78: Configure> Infrastructure > BGP Routers

A summary screen of the control nodes and BGP routers is displayed; see Figure 79 on page 733.

Figure 79: BGP Routers Summary

733

2. (Optional) The global AS number is 64512 by default. To change the AS number, on the BGP Router
summary screen click the gear wheel and select Edit. In the Edit BGP Router window enter the new
number.

3. To create control nodes and BGP routers, on the BGP Routers summary screen, click the

icon. The Create BGP Router window is displayed; see Figure 80 on page 734.

Figure 80: Create BGP Router

4. In the Create BGP Router window, click BGP Router to add a new BGP router or click Control Node
to add control nodes.

For each node you want to add, populate the fields with values for your system. See Table 48 on
page 735.

734

Table 48: Create BGP Router Fields

Field Description

Hostname Enter a name for the node being added.

Vendor ID Required for external peers. Populate with a text identifier, for
example, “MX-0”. (BGP peer only)

IP Address The IP address of the node.

Router ID Enter the router ID.

Autonomous System Enter the AS number in the range 1-65535 for the node. (BGP peer
only)

Address Families Enter the address family, for example, inet-vpn

Hold Time BGP session hold time. The default is 90 seconds; change if needed.

BGP Port The default is 179; change if needed.

Authentication Mode Enable MD5 authentication if desired.

Authentication key Enter the Authentication Key value.

Physical Router The type of the physical router.

Available Peers Displays peers currently available.

Configured Peers Displays peers currently configured.

5. Click Save to add each node that you create.

6. To configure an existing node as a peer, select it from the list in the Available Peers box, then click >>
to move it into the Configured Peers box.

Click << to remove a node from the Configured Peers box.

735

7. You can check for peers by selecting Monitor > Infrastructure > Control Nodes; see Figure 81 on
page 736.

Figure 81: Control Nodes

In the Control Nodes window, click any hostname in the memory map to view its details; see Figure
82 on page 736.

Figure 82: Control Node Details

736

8. Click the Peers tab to view the peers of a control node; see Figure 83 on page 737.

Figure 83: Control Node Peers Tab

Configuring the Control Node with BGP from Contrail Command

To configure BGP peering in the control node:

1. From Contrail Command UI select Infrastructure > Cluster > Advanced page.

Click the BGP Routers tab. A list of control nodes and BGP routers is displayed. See Figure 84 on
page 737.

Figure 84: Infrastructure > Cluster > Advanced > BGP Routers

737

2. (Optional) The global AS number is 64512 by default. You can change the AS number according to
your requirement on the BGP Router tab, by clicking the Edit icon. In the Edit BGP Router tab enter
AS number in the range of 1-65,535. You can also enter the AS number in the range of
1-4,294,967,295, when 4 Byte ASN is enabled in Global Config.

3. Click the Create button on the BGP Routers tab. The Create BGP Router window is displayed. See
Figure 85 on page 738.

Figure 85: Create BGP Router

4. In the Create BGP Router page, populate the fields with values to create your system. See Table 49
on page 738.

Table 49: Create BGP Router

Fields Description

Router Type Select the type of router you want create

Hostname Enter a name for the node being added.

Vendor ID Required for external peers. Populate with a text identifier,
for example, “MX-0”. (BGP peer only)

738

Table 49: Create BGP Router (Continued)

Fields Description

IP Address The IP address of the node.

Router ID Enter the router ID.

Autonomous System (AS) Enter autonomous system (AS) number in the range of
1-65,535.

If you enable 4 Byte ASN in Global Config, you can enter 4-
byte AS number in the range of 1-4,294,967,295.

BGP Router ASN Enter the Local-AS number, specific to the associated
peers.

Address Families Select the Internet Address Family from the list, for
example, inet-vpn, inet6-vpn, and so on.

Cluster ID Enter the cluster ID, for example, 0.0.0.100.

Associate Peers

Peer Select the configured peers from the list.

Hold Time Enter the maximum time a BGP session remains active if no
Keepalives are received.

Loop Count Enter the number of times the same ASN can be seen in a
route-update. The route is discarded when the loop count
is exceeded.

MD5 Auth Key Enter the MD5 authentication key value.

State Select the state box when you are associating BGP peers.

739

Table 49: Create BGP Router (Continued)

Fields Description

Passive Select the passive box to disable the BGP router from
advertising any routes. The BGP router can only receive
updates from other peers in this state.

Advanced Options

BGP Port Enter BGP Port number. The default is 179; change if
needed.

Source Port Enter source port number for client side connection.

Hold Time (seconds) BGP session hold time. The default is 90 seconds; change if
needed.

Admin State Select the Admin state box to enable the state as UP and
deselect the box to disable the state to DOWN.

Authentication Mode Select MD5 from list if required.

Authentication key Enter the Authentication Key value.

Control Node Zone Select the required control node zone from the list.

Physical Router Select the the physical router from the list.

5. Click Create to complete add each node.

6. You can check for peers and details about the control nodes by selecting Infrastructure > Cluster >
Control Nodes. Click the desired node to check the details on Summary and Detailed Stats page.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail | 521

740

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/creating-virtual-network-juniper-vnc.html

Configuring MD5 Authentication for BGP Sessions

Contrail supports MD5 authentication for BGP peering based on RFC 2385.

This option allows BGP to protect itself against the introduction of spoofed TCP segments into the
connection stream. Both of the BGP peers must be configured with the same MD5 key. Once
configured, each BGP peer adds a 16-byte MD5 digest to the TCP header of every segment that it
sends. This digest is produced by applying the MD5 algorithm on various parts of the TCP segment.
Upon receiving a signed segment, the receiver validates it by calculating its own digest from the same
data (using its own key) and compares the two digests. For valid segments, the comparison is successful
since both sides know the key.

The following are ways to enable BGP MD5 authentication and set the keys on the Contrail node.

1. If the md5 key is not included in the provisioning, and the node is already provisioned, you can run the
following script with an argument for md5:

contrail-controller/src/config/utils/provision_control.py

host@<your_node>:/opt/contrail/utils# python provision_control.py --host_name <host_name> --
host_ip <host_ip> --router_asn <asn> --api_server_ip <api_ip> --api_server_port <api_port> --
oper add --md5 “juniper” --admin_user admin --admin_password <password> --admin_tenant_name
admin

2. You can also use the web user interface to configure MD5.

• Connect to the node’s IP address at port 8080 (<node_ip>:8080) and select Configure-
>Infrastructure->BGP Routers. As shown in Figure 86 on page 742, a list of BGP peers is
displayed.

741

Figure 86: Edit BGP Router Window

• For a BGP peer, click on the gear icon on the right hand side of the peer entry. Then click Edit.
This displays the Edit BGP Router dialog box.

• Scroll down the window and select Advanced Options.

• Configure the MD5 authentication by selecting Authentication Mode>MD5 and entering the
Authentication Key value.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail | 521

Configuring Transport Layer Security-Based XMPP in Contrail

IN THIS SECTION

Overview: TLS-Based XMPP | 743

Configuring XMPP Client and Server in Contrail | 743

742

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/creating-virtual-network-juniper-vnc.html

Overview: TLS-Based XMPP

Transport Layer Security (TLS)-based XMPP can be used to secure all Extensible Messaging and
Presence Protocol (XMPP)-based communication that occurs in the Contrail environment.

Secure XMPP is based on RFC 6120, Extensible Messaging and Presence Protocol (XMPP): Core.

TLS XMPP in Contrail

In the Contrail environment, the Transport Layer Security (TLS) protocol is used for certificate exchange,
mutual authentication, and negotiating ciphers to secure the stream from potential tampering and
eavesdropping.

The RFC 6120 highlights a basic stream message exchange format for TLS negotiation between an
XMPP server and an XMPP client.

NOTE: Simple Authentication and Security Layer (SASL) authentication is not supported
in the Contrail environment.

Configuring XMPP Client and Server in Contrail

In the Contrail environment, XMPP based communications are used in client and server exchanges,
between the compute node (as the XMPP client), and:

• the control node (as the XMPP server)

• the DNS server (as the XMPP server)

Configuring Control Node for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP server.

On the control node, enable the parameters in the configuration file:
/etc/contrail/contrail-control.conf.

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

743

(Continued)

Parameter Description Default

xmpp_server_key Path to server's or node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case
sensitive.

Configuring DNS Server for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP DNS server.

On the DNS server control node, enable the parameters in the configuration file:
/etc/contrail/contrail-control.conf

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/certs/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_dns_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case
sensitive.

Configuring Control Node for XMPP Client

To enable secure XMPP, the following parameters are configured at the XMPP client.

744

On the compute node, enable the parameters in the configuration file:
/etc/contrail/contrail-vrouter-agent.conf

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_auth_enable=true
xmpp_dns_auth_enable=tru
e

Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case
sensitive.

Configuring Graceful Restart and Long-lived Graceful Restart

IN THIS SECTION

Application of Graceful Restart and Long-lived Graceful Restart | 746

BGP Graceful Restart Helper Mode | 746

Feature Highlights | 746

XMPP Helper Mode | 747

Configuration Parameters | 748

Cautions for Graceful Restart | 750

Configuring Graceful Restart | 751

Graceful Restart or Long-Lived Graceful Restart Support for a EVPN Type 2 Route | 754

Graceful restart and long-lived graceful restart BGP helper modes are supported for the Contrail control
node and XMPP helper mode.

745

Application of Graceful Restart and Long-lived Graceful Restart

Whenever a BGP peer session is detected as down, all routes learned from the peer are deleted and
immediately withdrawn from advertised peers. This causes instantaneous disruption to traffic flowing
end-to-end, even when routes kept in the vrouter kernel in the data plane remain intact.

Graceful restart and long-lived graceful restart features can be used to alleviate traffic disruption caused
by downs.

When configured, graceful restart features enable existing network traffic to be unaffected if Contrail
controller processes go down. The Contrail implementation ensures that if a Contrail control module
restarts, it can use graceful restart functionality provided by its BGP peers. Or when the BGP peers
restart, Contrail provides a graceful restart helper mode to minimize the impact to the network. The
graceful restart features can be used to ensure that traffic is not affected by temporary outage of
processes.

Graceful restart is not enabled by default.

With graceful restart features enabled, learned routes are not deleted when sessions go down, and the
routes are not withdrawn from the advertised peers. Instead, the routes are kept and marked as 'stale'.
Consequently, if sessions come back up and routes are relearned, the overall impact to the network is
minimized.

After a certain duration, if a downed session does not come back up, all remaining stale routes are
deleted and withdrawn from advertised peers.

BGP Graceful Restart Helper Mode

The BGP helper mode can be used to minimize routing churn whenever a BGP session flaps. This is
especially helpful if the SDN gateway router goes down gracefully, as in an rpd crash or restart on an
MX Series Junos device. In that case, the contrail-control can act as a graceful restart helper to the
gateway, by retaining the routes learned from the gateway and advertising them to the rest of the
network as applicable. In order for this to work, the restarting router (the SDN gateway in this case)
must support and be configured with graceful restart for all of the address families used.

The graceful restart helper mode is also supported for BGP-as-a-Service (BGPaaS) clients. When
configured, contrail-control can provide a graceful restart or long-lived graceful restart helper mode to a
restarting BGPaaS client.

Feature Highlights

The following are highlights of the graceful restart and long-lived graceful restart features.

• Configuring a non-zero restart time enables the ability to advertise graceful restart and long-lived
graceful restart capabilities in BGP.

746

• Configuring helper mode enables the ability for graceful restart and long-lived graceful restart helper
modes to retain routes even after sessions go down.

• With graceful restart configured, whenever a session down event is detected and a closing process is
triggered, all routes, across all address families, are marked stale. The stale routes are eligible for
best-path election for the configured graceful restart time duration.

• When long-lived graceful restart is in effect, stale routes can be retained for a much longer time than
that allowed by graceful restart alone. With long-lived graceful restart, route preference is retained
and best paths are recomputed. The community marked LLGR_STALE is tagged for stale paths and
re-advertised. However, if no long-lived graceful restart community is associated with any received
stale route, those routes are not kept, instead, they are deleted.

• After a certain time, if a session comes back up, any remaining stale routes are deleted. If the session
does not come back up, all retained stale routes are permanently deleted and withdrawn from the
advertised peer.

XMPP Helper Mode

Contrail Networking updated support for long-lived graceful restart (LLGR) with XMPP helper mode in
Contrail Networking Release 2011.L2. Starting in Release 2011.L2, the Contrail vRouter datapath agent
supports route retention with its controller peer when LLGR with XMPP helper mode is enabled. This
route retention allows the datapath agent to retain the last Route Path from the Contrail controller when
an XMPP-based connection is lost. The Route Paths are held by the agent until a new XMPP-based
connection is established to one of the Contrail controllers. Once the XMPP connection is up and is
stable for a predefined duration, the Route Paths from the old XMPP connection are flushed. This
support for route retention allows a controller to go down gracefully but with some forwarding
interruption when connectivity to a controller is restored.

The following notable behaviors are present when LLGR is used with XMPP helper mode:

• When a local vRouter is isolated from a Contrail controller, the Intra-VN EVPN routes on the remote
vRouter are removed.

• During a Contrail vRouter datapath agent restart, forwarding states are not always preserved.

Contrail Networking has limited support for graceful restart and long-lived graceful restart (LLGR) with
XMPP helper mode in all Contrail Release 4, 5, and 19 software as well as all Contrail Release 20
software through Contrail Networking Release 2011.L1. Graceful restart and LLGR with XMPP should
not be used in most environments and should only be used by expert users in specialized circumstances
when running these Contrail Networking releases for reasons described later in this section.

Graceful restart and LLGR can be enabled with XMPP helper mode using Contrail Command, the
Contrail Web UI, or by using the provision_control script. The helper modes can also be enabled via

747

schema, and can be disabled selectively in a contrail-control node for BGP or XMPP sessions by
configuring gr_helper_disable in the /etc/contrail/contrail-control.conf configuration file.

You should be aware of the following dependencies when enabling graceful restart and LLGR with
XMPP helper mode:

• You can enable graceful restart and LLGR with XMPP helper mode without enabling the BGP helper.
You still have to enable graceful restart, XMPP, and all appropriate timers when graceful restart and
LLGR are enabled with XMPP helper mode without the BGP helper.

• LLGR and XMPP sub second timers for fast convergences should not be used simultaneously.

• If a control node fails when LLGR with XMPP helper mode is enabled, vrouters will hold routes for
the length of the GR and LLGR timeout values and continue to pass traffic. Routes are removed from
the vRouter when the timeout interval elapses and traffic is no longer forwarded at that point.

If the control node returns to the up state before the timeout interval elapses, a small amount of
traffic will be lost during the reconnection.

Graceful restart and LLGR with XMPP should only be used by expert users in specialized circumstances
when running Contrail Networking Release 4, 5, and 19 software as well as all Contrail Release 20
software through Contrail Networking Release 2011.L1 due to the following issues:

• Graceful restart is not yet fully supported for the contrail-vrouter-agent.

Because graceful restart is not yet supported for the contrail-vrouter-agent, the parameter should
not be set for graceful_restart_xmpp_helper_enable. If the vrouter agent restarts, the data plane is reset
and the routes and flows are reprogrammed anew. This reprogramming typically results in traffic loss
for several seconds for new and existing flows and can result in even longer traffic loss periods.

• The vRouter agent restart caused by enabling graceful restart can cause stale route to be added to
the routing table used by the contrail-vrouter-agent.

This issue occurs after a contrail-vrouter-agent reset. After the reset, previous XMPP control nodes
continue to send stale routes to other control nodes. The stale routes sent by the previous XMPP
control nodes can eventually get passed to the contrail-vrouter-agent and installed into its routing
table as NH1/drop routes, leading to traffic drops. The stale routes are removed from the routing
table only after graceful restart is enabled globally or when the timer—which is user configurable but
can be set to long intervals—expires.

Configuration Parameters

Graceful restart parameters are configured in the global-system-config of the schema. They can be
configured by means of a provisioning script or by using the Contrail Web UI.

Configure a non-zero restart time to advertise for graceful restart and long-lived graceful restart
capabilities from peers.

748

Configure helper mode for graceful restart and long-lived graceful restart to retain routes even after
sessions go down.

Configuration parameters include:

• enable or disable for all graceful restart parameters:

• restart-time

• long-lived-restart-time

• end-of-rib-timeout

• bgp-helper-enable to enable graceful restart helper mode for BGP peers in contrail-control

• xmpp-helper-enable to enable graceful restart helper mode for XMPP peers (agents) in contrail-control

The following shows configuration by a provision script.

/opt/contrail/utils/provision_control.py
 --api_server_ip 10.xx.xx.20
 --api_server_port 8082
 --router_asn 64512
 --admin_user admin
 --admin_password <password>
 --admin_tenant_name admin
 --set_graceful_restart_parameters
 --graceful_restart_time 60
 --long_lived_graceful_restart_time 300
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

The following are sample parameters:

-set_graceful_restart_parameters
 --graceful_restart_time 300
 --long_lived_graceful_restart_time 60000
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

749

When BGP peering with Juniper Networks devices, Junos must also be explicitly configured for graceful
restart/long-lived graceful restart, as shown in the following example:

set routing-options graceful-restart
set protocols bgp group <a1234> type internal
set protocols bgp group <a1234> local-address 10.xx.xxx.181
set protocols bgp group <a1234> keep all
set protocols bgp group <a1234> family inet-vpn unicast graceful-restart long-lived restarter
stale-time 20
set protocols bgp group <a1234> family route-target graceful-restart long-lived restarter stale-
time 20
set protocols bgp group <a1234> graceful-restart restart-time 600
set protocols bgp group <a1234> neighbor 10.xx.xx.20 peer-as 64512

The graceful restart helper modes can be enabled in the schema. The helper modes can be disabled
selectively in the contrail-control.conf for BGP sessions by configuring gr_helper_disable in the /etc/
contrail/contrail-control.conf file.

The following are examples:

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_bgp_disable 1

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_xmpp_disable 1

service contrail-control restart

For more details about graceful restart configuration, see https://github.com/Juniper/contrail-controller/
wiki/Graceful-Restart .

Cautions for Graceful Restart

Be aware of the following caveats when configuring and using graceful restart.

• Using the graceful restart/long-lived graceful restart feature with a peer is effective either to all
negotiated address families or to none. If a peer signals support for graceful restart/long-lived
graceful restart for only a subset of the negotiated address families, the graceful restart helper mode
does not come into effect for any family in the set of negotiated address families.

• Because graceful restart is not yet supported for contrail-vrouter-agent, the parameter should not be
set for graceful_restart_xmpp_helper_enable. If the vrouter agent restarts, the data plane is reset and the
routes and flows are reprogrammed anew. This reprogramming typically results in traffic loss for
several seconds for new and existing flows and can result in even longer traffic loss periods.

Additionally, previous XMPP control nodes might continue to send stale routes to other control
nodes and these stale routers can be passed to the contrail-vrouter-agent. The contrail-vrouter-agent

750

https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart
https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart

can install these stale routes into it’s routing table as NH1/ drop routes, causing traffic loss. The stale
routes are removed only after graceful restart is enabled globally or when the timer—which is user
configurable but can be set to multiple days—expires.

• Graceful restart/long-lived graceful restart is not supported for multicast routes.

• Graceful restart/long-lived graceful restart helper mode may not work correctly for EVPN routes, if
the restarting node does not preserve forwarding state for EVPN routes.

Configuring Graceful Restart

We recommend configuring Graceful Restart using Contrail Command. You can, however, also configure
Graceful Restart using the Contrail User Interface in environments not using Contrail Command.

Configuring Graceful Restart using Contrail Command

To configure graceful restart in Contrail Command, navigate to Infrastructure > Cluster > Advanced
Options and select the Edit icon near the top right corner of the screen.

Figure 87: Global Config System Configuration Screen

The Edit System Configuration window opens. Click the box for Graceful Restart to enable graceful
restart, and enter a non-zero number to define the Restart Time in seconds. You can also specify the
times for the long-lived graceful restart (LLGR) and the end of RIB timers from this window.

751

Figure 88: Edit System Configuration Window

Configuring Graceful Restart with the Contrail User Interface

To configure graceful restart in the Contrail UI, go to Configure > Infrastructure > Global Config, then
select the BGP Options tab. The Edit BGP Options window opens. Click the box for Graceful Restart to
enable graceful restart, and enter a non-zero value for the Restart Time. Click the helper boxes as
needed for BGP Helper and XMPP Helper. You can also enter values for the long-lived graceful restart
time in seconds, and for the end of RIB in seconds. See Figure 89 on page 753.

752

Figure 89: Configuring Graceful Restart

Understanding the Graceful Restart Timers

Table 50 on page 753 provides a summary of the graceful restart timers and their associated behaviors.

Table 50: Graceful Restart Timers

Timer Description

Restart Time BGP helper mode—Routes advertised by the BGP peer are kept for the
duration of the restart time.

XMPP helper mode—Routes advertised by XMPP peer are kept for the
duration of the restart time.

LLGR Time BGP helper mode—Routes advertised by BGP peers are kept for the
duration of the LLGR timer when BGP helper mode is enabled.

XMPP helper mode—Routes advertised by XMPP peers are kept for the
duration of the LLGP timer if XMPP helper mode is enabled.

When Graceful Restart (GR) and Long-lived Graceful Restart (LLGR) are
both configured, the duration of the LLGR timer is the sum of both timers.

753

Table 50: Graceful Restart Timers (Continued)

Timer Description

End of RIB timer The End of RIB (EOR) timer specifies the amount of time a control node
waits to remove stale routes from a vRouter agent’s RIB.

When a vRouter agent to Control Node connection is restored, the vRouter
agent downloads it’s configuration from the control node. An End of Config
message is sent from the control node to vRouter agent when this
configuration procedure is complete.

The EOR timer starts when this End of Config message is received by the
vRouter agent. When the EOR timer expires, an EOR message is sent from
the vRouter agent to the control node. The control node receives this EOR
message then removes the stale routes which were previously advertised
by the vRouter agent from it’s RIB.

Graceful Restart or Long-Lived Graceful Restart Support for a EVPN Type 2 Route

Today, when a BGP/XXMP peer session restarts or goes down, even if you have configured graceful
restart or long-lived graceful restart timers in the Contrail Web UI, the learnt EVPN Type 2 routes are
not marked as stale and are deleted (control-node explicitly deletes EVPN routes) from the route
database. This results in traffic loss for the EVPN family of routes.

Starting in Contrail Networking Release 21.4, the graceful restart or long-lived graceful restart features
support the EVPN Type 2 routes and helps in the following ways:

• When a session fails, the learnt EVPN Type 2 routes are not deleted or removed.

• Retains the learnt EVPN Type 2 routes and marks them as stale until the configured graceful restart
or long-lived graceful restart timers expire.

• Results in resuming the sessions and relearning the routes, reducing overall network impact.

If a downed session remains down after the graceful restart or long-lived graceful restart timer has
expired, the stale routes are deleted and removed from the advertised peers.

Change History Table

754

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

R21.4 Starting in Contrail Networking Release 21.4, the graceful restart or long-lived graceful restart features
support the EVPN Type 2 routes

Scaling Up Contrail Networking Configuration API Server Instances

Certain deployment scenarios may need running of multiple API configuration server instances for
improved performance. One of the methods to achieve this is by increasing the number of API
configuration server instances on a node after deploying Contrail Networking. This is done by modifying
the docker-compose.yaml file to allow multiple configuration API containers on the same host.

The steps described in this topic are valid for Contrail Networking Releases 5.0 through 2008. For
release 2011 and later, refer the topic "Scaling Up Contrail Networking Configuration API" on page
758.

CAUTION: Any change to the Contrail networking Configuration API must be made only
with the help of Juniper Networks Professional Services. We strongly recommend that
you contact Juniper Networks Professional Services before you make any change to the
Configuration API.

1. Edit the /etc/contrail/config/docker-compose.yaml file on each Contrail Configuration node. At the
end of the API section, at line 56, append the following chunk of code:

api-2:
 image: "hub.juniper.net/contrail/contrail-controller-config-api:1912.32-rhel"
 env_file: /etc/contrail/common_config.env
 environment:
 - CONFIG_API_PORT=18082
 - CONFIG_API_INTROSPECT_PORT=17084
 container_name: config_api_2
 command: ["/usr/bin/contrail-api", "--conf_file", "/etc/contrail/contrail-api.conf", "--
conf_file", "/etc/contrail/contrail-keystone-auth.conf", "--worker_id", "2"]
 network_mode: "host"
 volumes_from:
 - node-init
 depends_on:

755

https://apps.juniper.net/feature-explorer/

 - node-init
 restart: always
 stdin_open: True
 tty: True
 logging:
 driver: "json-file"
 options:
 max-size: "50m"
 max-file: "10"

Make sure that the API port, Introspect port, Worker ID and container_name are unique within the
node. The default API section should not be changed to allow other Contrail services (for example,
Schema-transformer, SVC-Monitor or contrail-status command) to run without configuration
changes. The default API runs with port 8082, introspect port 8084, worker_id 0 and container name
config_api_1.

2. Run the following commands on each configuration node to apply the changes:

cd /etc/contrail/config
docker-compose down
docker-compose up -d

3. Run the following commands on each configuration node to verify the configuration:

pgrep -al contrail-api
ss -nlpt | grep contrail-api

Sample Output

pgrep -al contrail-api
16922 /usr/bin/python /usr/bin/contrail-api --conf_file /etc/contrail/contrail-api.conf --
conf_file /etc/contrail/contrail-keystone-auth.conf --worker_id 2
17139 /usr/bin/python /usr/bin/contrail-api --conf_file /etc/contrail/contrail-api.conf --
conf_file /etc/contrail/contrail-keystone-auth.conf --worker_id 0
ss -nlpt | grep contrail-api
LISTEN 0 128 *:17084 *:* users:
(("contrail-api",pid=16922,fd=7))
LISTEN 0 128 10.0.0.16:18082 *:* users:
(("contrail-api",pid=16922,fd=28))
LISTEN 0 128 10.0.0.16:8082 *:* users:
(("contrail-api",pid=17139,fd=28))

756

LISTEN 0 128 *:8084 *:* users:
(("contrail-api",pid=17139,fd=7))

4. Add new server instances to load-balancer.

Sample HAProxy Configuration

listen contrail_config_internal
 bind 192.168.3.90:8082 transparent
 mode http
 balance leastconn
 option httpchk GET /
 option httplog
 option forwardfor
 timeout client 360s
 timeout server 360s
 server 0contrail-ctl0.local 192.168.3.114:8082 check fall 5 inter 2000 rise 2
 server 1contrail-ctl0.local 192.168.3.114:18081 check fall 5 inter 2000 rise 2
 server 2contrail-ctl0.local 192.168.3.114:18082 check fall 5 inter 2000 rise 2
 server 3contrail-ctl0.local 192.168.3.114:18083 check fall 5 inter 2000 rise 2
 server 0contrail-ctl1.local 192.168.3.139:8082 check fall 5 inter 2000 rise 2
 server 1contrail-ctl1.local 192.168.3.139:18081 check fall 5 inter 2000 rise 2
 server 2contrail-ctl1.local 192.168.3.139:18082 check fall 5 inter 2000 rise 2
 server 3contrail-ctl1.local 192.168.3.139:18083 check fall 5 inter 2000 rise 2
 server 0contrail-ctl2.local 192.168.3.100:8082 check fall 5 inter 2000 rise 2
 server 1contrail-ctl2.local 192.168.3.100:18081 check fall 5 inter 2000 rise 2
 server 2contrail-ctl2.local 192.168.3.100:18082 check fall 5 inter 2000 rise 2
 server 3contrail-ctl2.local 192.168.3.100:18083 check fall 5 inter 2000 rise 2

5. Run the following commands to set load-balancer timeouts and balancing method

You cannot configure timeout for the Neutron plugin. Neutron relies on load-balancer to terminate
connections. Therefore, it is important that you increase the default timeout value of 30 seconds. This
enables Neutron to respond without error even if the Contrail API responds longer than 30 seconds.

Sample timeout options for HAProxy

 timeout client 360s
 timeout server 360s

757

NOTE: It is recommended that you use load balancing methods that distributes the load
evenly across the configuration API server instances. The preferred lod balancing
methods are leastconn and round-robin.

CAUTION: Increasing the number of configuration API server instances might result in
higher load on RabbitMQ and Schema-transformer.

Scaling Up Contrail Networking Configuration API

IN THIS SECTION

From Contrail Ansible Deployer | 758

From Contrail Command UI | 759

From RHOSP Deployer | 759

From JUJU Deployer | 760

Starting from Contrail Networking Release 2011, config-api can be scaled vertically, to run up to 10
workers in a single container by using uWSGI. However, the recommended maximum number of
workers in each config_api container is 5.

The steps described in this topic are valid for Contrail Networking Releases 2011 and later releases. To
see these procedures for earlier releases, see"Scaling Up Contrail Networking Configuration API Server
Instances" on page 755.

From Contrail Ansible Deployer

If you are deploying Contrail Networking using Ansible Deployer , you should specify
CONFIG_API_WORKER_COUNT parameter in the contrail_configuration section of the instances.yml file as shown
below.

contrail_configuration:
 CONFIG_API_WORKER_COUNT: 5

758

From Contrail Command UI

If you are deploying Contrail Networking from Contrail Command UI, you should specify a new key /
value pair (CONFIG_API_WORKER_COUNT / value) in the Contrail Configuration section as shown in
Figure 90 on page 759.

Figure 90: Scaling API Configuration from Contrail Command

From RHOSP Deployer

If you are deploying Contrail Networking using RHOSP deployer, you should specify the desired value
for the parameter CONFIG_API_WORKER_COUNT in the ContrailSettings section of the contrail-services.yaml file as
shown below.

ContrailSettings:
 CONFIG_API_WORKER_COUNT: 3

759

From JUJU Deployer

If you are deploying Contrail Networking using JUJU deployer, you must specify the desired value for
config-api-worker-count in the config.yaml file.

 config-api-worker-count:
 default: 1
 type: int
 description: |
 Number of workers spawned inside config-api container.

760

	Table of Contents
	About This Guide
	Installing and Upgrading Contrail
	Understanding Contrail
	Understanding Contrail Networking
	Understanding Contrail Networking Components
	Understanding Contrail Containers
	Understanding Contrail Microservices Architecture
	Understanding contrail-ansible-deployer used in Contrail Command

	Supported Platforms and Server Requirements
	Server Requirements and Supported Platforms
	Hardware and Server Requirements
	Hardware Requirements for Contrail Networking Release 2011
	Hardware Requirements for Contrail Networking Release 2008

	Contrail Command
	How to Install Contrail Command and Provision Your Contrail Cluster
	When to Use This Document
	Server Requirements
	Software Requirements
	How to Obtain Contrail Images
	How to Install Contrail Command
	Before You Begin
	Preparing Your Contrail Command Server for the Installation
	Installing Contrail Command

	How to Provision Servers into the Contrail Cluster
	Before You Begin
	How to Provision the Contrail Cluster

	Sample command_servers.yml Files for Installing Contrail Command
	Minimal command_servers.yml file
	Complete command_servers.yml File
	Disaster Recovery and Troubleshooting

	How to Login to Contrail Command
	Navigating the Contrail Command UI
	Using the Get Started with Contrail Enterprise Multicloud Panel
	Navigating to pages using the side panel
	Hiding the side panel
	Search functionality
	Pinning favorite pages
	Opening external applications
	Using the What’s New Panel
	Supported Browsers for Installing Contrail Command

	Installing a Contrail Cluster using Contrail Command and instances.yml
	Importing Contrail Cluster Data using RedHat Director
	Importing Contrail Cluster Data using Contrail Command
	Adding a New Compute Node to Existing Contrail Cluster Using Contrail Command
	How to Deploy Contrail Command and Import a Cluster Using Juju
	Overview: Deploying Contrail Command with a Contrail Cluster Using Juju
	Preparing the SSL Certificate Authority (CA) for the Deployment
	Deploy Contrail Command and Import a Contrail Cluster Using Juju
	Example: Config.YML File for Deploying Contrail Command with a Cluster Using Juju
	Prerequisites for Contrail Insights and Contrail Insights Flow
	Contrail Insights Installation for Ubuntu Focal
	Install Contrail Insights on the Juju Cluster after Contrail Command is Installed
	Install Contrail Insights Flows on the Juju Cluster after Contrail Insights is Installed

	Importing a Canonical Openstack Deployment Into Contrail Command
	Overview: Canonical Openstack Deployment into Contrail Command
	Importing Canonical Openstack Into Contrail Command

	Upgrading Contrail Software
	Upgrading Contrail Networking using Contrail Command
	Upgrading Contrail Command using Backup Restore Procedure
	Fast Forward Upgrade: Updating Contrail Networking 1912.L4 and Red Hat OpenStack 13 to Contrail Networking 21.4.L2 and Red Hat Openstack 16.2
	When to Use This Procedure
	Preparing for the Upgrade and Upgrading the Undercloud
	Upgrading the Overcloud

	How to Perform a Zero Impact Contrail Networking Upgrade using the Ansible Deployer
	Updating Contrail Networking Release 21.4 with Openstack 16.2 to Contrail Networking Release 21.4.L1 with Openstack 16.2.3 using Zero Impact Upgrade Process
	When to Use This Procedure
	Prerequisites
	Before You Begin
	Updating Contrail Networking in an Environment using Red Hat Openstack 16.2

	Updating Contrail Networking Containers Without Updating OpenStack
	When to Use This Procedure
	Prerequisites
	Before You Begin
	Updating Contrail Networking

	Updating Contrail Networking using the Zero Impact Upgrade Process in an Environment using Red Hat Openstack 16.1
	When to Use This Procedure
	Prerequisites
	Before You Begin
	Updating Contrail Networking in an Environment using Red Hat Openstack 16.1

	Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack Multi-model Deployment with Juju Charms
	Prerequisites
	When to Use This Procedure
	Recommendations
	Updating Contrail Networking in a Canonical Openstack Multi-model Deployment Using Juju Charms

	Updating Contrail Networking using Zero Impact Upgrade Procedure in a Canonical Openstack Deployment with Juju Charms
	Prerequisites
	When to Use This Procedure
	Recommendations
	Updating Contrail Networking in a Canonical Openstack Deployment Using Juju Charms

	Upgrading Contrail Networking Release 1912.L2 with RHOSP13 to Contrail Networking Release 2011.L3 with RHOSP16.1
	Upgrading Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to Contrail Networking Release 21.4 with RHOSP 16.2
	When to Use This Procedure
	Prerequisites
	Before You Begin
	Upgrade Contrail Networking Release 1912.L4 or 2011.L3 with RHOSP 13 or RHOSP 16.1 to Contrail Networking Release 21.4 with RHOSP 16.2

	Upgrading Contrail Networking until 21.4.L2 using the Ansible Deployer In-Service Software Upgrade Procedure in OpenStack Environments
	Upgrading Contrail Networking to Release 21.4.L3 using Ansible Deployer in Service Software Upgrade Procedure in OpenStack Environment
	Contrail In-Service Software Upgrade from Releases 21.4 L2 and 21.4 L3 to 21.4 L4 using Ansible Deployer
	How to Upgrade Contrail Networking Through Kubernetes and/or Red Hat OpenShift
	Deploying Red Hat Openstack with Contrail Control Plane Managed by Tungsten Fabric Operator

	Backup and Restore Contrail Software
	How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using the Openstack 16.1 Director Deployment
	How to Backup and Restore Contrail Databases in JSON Format in Openstack Environments Using the Openstack 13 or Ansible Deployers

	Setting Up Contrail with Red Hat OpenStack 17.1
	Understanding Red Hat OpenStack Platform Director 17.1
	Red Hat OpenStack Platform Director
	Contrail Networking Roles
	RHVM and KVM Requirements
	Undercloud Requirements
	Overcloud Requirements
	Networking Requirements
	Compatibility Matrix
	Installation Summary

	Setting Up the Infrastructure (Contrail Networking Release 21.4.L4 or Later)
	When to Use This Procedure
	Set Up the Infrastructure

	Setting Up the Undercloud for RHOSP 17.1
	Prepare for Director Installation
	Install the Director
	Obtain and Import the Base Overcloud Images

	Setting Up the Overcloud for RHOSP 17.1
	Download Heat Templates
	Upload Container Images to the Undercloud Registry
	Provision Overcloud Networks
	Provision Bare Metal Overcloud Nodes
	Configure Contrail
	Create the Overcloud
	Advanced Configuration

	Setting Up Contrail with Red Hat OpenStack 16.1
	Understanding Red Hat OpenStack Platform Director
	Red Hat OpenStack Platform Director
	Contrail Networking Roles
	RVM and KVM Requirements
	Undercloud Requirements
	Overcloud Requirements
	Networking Requirements
	Compatibility Matrix
	Installation Summary

	Setting Up the Infrastructure (Contrail Networking Release 21.3 or Earlier)
	When to Use This Procedure
	Target Configuration (Example)
	Configure the External Physical Switch
	Configure KVM Hosts
	Create the Overcloud VM Definitions on the Overcloud KVM Hosts
	Create the Undercloud VM Definition on the Undercloud KVM Host

	Setting Up the Undercloud
	Install the Undercloud
	Perform Post-Install Configuration

	Setting Up the Overcloud
	Configuring the Overcloud
	Customizing the Contrail Service with Templates (contrail-services.yaml)
	Customizing the Contrail Network with Templates
	Overview
	Roles Configuration (roles_data_contrail_aio.yaml)
	Network Parameter Configuration (contrail-net.yaml)
	Network Interface Configuration (*-NIC-*.yaml)
	Advanced vRouter Kernel Mode Configuration
	Advanced vRouter DPDK Mode Configuration
	Advanced vRouter SRIOV + Kernel Mode Configuration
	Advanced vRouter SRIOV + DPDK Mode Configuration

	Installing Overcloud

	Setting Up Contrail with Red Hat OpenStack 16.2
	Understanding Red Hat OpenStack Platform Director 16.2
	Red Hat OpenStack Platform Director
	Contrail Networking Roles
	RVM and KVM Requirements
	Undercloud Requirements
	Overcloud Requirements
	Networking Requirements
	Compatibility Matrix
	Installation Summary

	Setting Up the Infrastructure (Contrail Networking Release 21.4 or Later)
	When to Use This Procedure
	Understanding Red Hat Virtualization
	Prepare the Red Hat Virtualization Manager Hosts
	Deploy Hosts with Red Hat Enterprise Linux
	Install and enable required software
	Confirm the Domain Names

	Deploy Red Hat Virtualization Manager on the First Node
	Enable the Red Hat Virtualization Manager Appliance
	Deploy the Self-Hosted Engine
	Enable virh CLI to Use oVirt Authentication
	Enabling the Red Hat Virtualization Manager Repositories

	Deploy Nodes and Enable Networking
	Prepare the Ansible env Files
	Deploy Nodes and Networking
	Check Hosts

	Prepare images
	Create Overcloud VMs
	Prepare Images for the Kubernetes Cluster
	Prepare Overcloud VM Definitions

	Create Contrail Control Plane VMs for Kubernetes-based Deployments
	Customize VM image for Kubernetes VMs
	Define the Kubernetes VMs
	Configure VLANs for RHOSP Internal API networks

	Create Undercloud VM
	Customize the image for Undercloud VM
	Define Undercloud VM

	Create FreeIPA VM
	Customize VM image for RedHat IDM (FreeIPA) VM
	Enable the RedHat IDM (FreeIPA) VM
	Access to RHVM via a web browser
	Access to VMs via serial console

	Setting Up the Undercloud for RHOSP 16.2
	Install the Undercloud
	Perform Post-Install Configuration

	Setting Up the Overcloud for RHOSP 16.2
	Configuring the Overcloud
	Customizing the Contrail Service with Templates (contrail-services.yaml)
	Customizing the Contrail Network with Templates
	Overview
	Roles Configuration (roles_data_contrail_aio.yaml)
	Network Parameter Configuration (contrail-net.yaml)
	Network Interface Configuration (*-NIC-*.yaml)
	Advanced vRouter Kernel Mode Configuration
	Advanced vRouter DPDK Mode Configuration
	Advanced vRouter SRIOV + Kernel Mode Configuration
	Advanced vRouter SRIOV + DPDK Mode Configuration

	Installing Overcloud

	Setting Up Contrail with Red Hat OpenStack 13
	Understanding Red Hat OpenStack Platform Director
	Red Hat OpenStack Platform Director
	Contrail Roles
	Undercloud Requirements
	Overcloud Requirements
	Networking Requirements
	Compatibility Matrix
	Installation Summary

	Setting Up the Infrastructure
	Target Configuration (Example)
	Configure the External Physical Switch
	Configure KVM Hosts
	Create the Overcloud VM Definitions on the Overcloud KVM Hosts
	Create the Undercloud VM Definition on the Undercloud KVM Host

	Setting Up the Undercloud
	Install the Undercloud
	Perform Post-Install Configuration

	Setting Up the Overcloud
	Configuring the Overcloud
	Customizing the Contrail Service with Templates (contrail-services.yaml)
	Customizing the Contrail Network with Templates
	Overview
	Roles Configuration (roles_data_contrail_aio.yaml)
	Network Parameter Configuration (contrail-net.yaml)
	Network Interface Configuration (*-NIC-*.yaml)
	Advanced vRouter Kernel Mode Configuration
	Advanced vRouter DPDK Mode Configuration
	Advanced vRouter SRIOV + Kernel Mode Configuration
	Advanced vRouter SRIOV + DPDK Mode Configuration
	Advanced Scenarios

	Installing Overcloud

	Using Netronome SmartNIC vRouter with Contrail Networking
	Installing OpenStack Octavia LBaaS with RHOSP in Contrail Networking

	Configuring Virtual Networks
	Creating Projects in OpenStack for Configuring Tenants in Contrail
	Creating a Virtual Network with OpenStack Contrail
	Creating an Image for a Project in OpenStack Contrail
	Using Security Groups with Virtual Machines (Instances)
	Security Groups Overview
	Creating Security Groups and Adding Rules

	Using Contrail Resources in Heat Templates
	Using the Contrail Heat Template

	QoS Support in Contrail Networking
	Quality of Service in Contrail
	Configuring Network QoS Parameters
	Overview
	QoS Configuration Examples
	Limitations

	Load Balancers
	Using Load Balancers in Contrail
	Support for OpenStack LBaaS
	Configuring Load Balancing as a Service in Contrail
	Overview: Load Balancing as a Service
	Contrail LBaaS Implementation
	Configuring LBaaS Using CLI
	Configuring LBaaS using the Contrail Command UI

	Optimizing Contrail Networking
	Multiqueue Virtio Interfaces in Virtual Machines

	Contrail Networking OpenStack Analytics
	Ceilometer Support in Contrail
	Overview
	Ceilometer Details
	Verification of Ceilometer Operation
	Contrail Ceilometer Plugin
	Ceilometer Installation and Provisioning

	Contrail OpenStack APIs
	Working with Neutron
	Data Structure
	Network Sharing in Neutron
	Commands for Neutron Network Sharing
	Support for Neutron APIs
	Contrail Neutron Plugin
	DHCP Options
	Incompatibilities

	Using Contrail with Juju Charms
	Installing Contrail with OpenStack by Using Juju Charms
	Preparing to Deploy Contrail by Using Juju Charms
	Deploying Contrail Charms
	Deploy Contrail Charms in a Bundle
	Deploying Juju Charms with OpenStack Manually

	Options for Juju Charms
	Ironic Support with Juju

	Installing Contrail with Kubernetes by Using Juju Charms
	Understanding Juju Charms with Kubernetes
	Preparing to Deploy Contrail with Kubernetes by Using Juju Charms
	Deploying Contrail Charms with Kubernetes
	Deploying Contrail Charms in a Bundle
	Deploying Juju Charms with Kubernetes Manually

	Installing Contrail with Kubernetes in Nested Mode by Using Juju Charms
	Installing OpenStack Octavia LBaaS with Juju Charms in Contrail Networking
	Using Netronome SmartNIC vRouter with Contrail Networking and Juju Charms
	Prepare to Install Contrail Networking by Using Juju Charms
	Deploy Contrail Charms in a Bundle

	Using Contrail and Contrail Insights with Kolla/Ocata OpenStack
	Contrail, Contrail Insights, and OpenStack Kolla/Ocata Deployment Requirements
	Preparing for the Installation
	Run the Playbooks
	Accessing Contrail in Contrail Insights Management Infrastructure in UI
	Notes and Caveats
	Example Instances.yml for Contrail and Contrail Insights OpenStack Deployment
	Contrail Insights Installation and Configuration for OpenStack
	Contrail Insights Installation for OpenStack in HA

	Post Installation Tasks
	Configuring Role and Resource-Based Access Control
	Configuring Role-Based Access Control for Analytics
	Configuring the Control Node with BGP
	Configuring the Control Node from Contrail Web UI
	Configuring the Control Node with BGP from Contrail Command

	Configuring MD5 Authentication for BGP Sessions
	Configuring Transport Layer Security-Based XMPP in Contrail
	Configuring Graceful Restart and Long-lived Graceful Restart
	Scaling Up Contrail Networking Configuration API Server Instances
	Scaling Up Contrail Networking Configuration API

