
Contrail™

Contrail Feature Guide

Published

2023-11-02

RELEASE

4.1

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail™ Contrail Feature Guide
4.1
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

1 Overview

Understanding Contrail Controller | 2

Contrail Overview | 2

Contrail Description | 3

Contrail Installation Overview | 4

2 Installing and Upgrading Contrail

Supported Platforms and Server Requirements | 8

Supported Platforms Contrail 4.1 | 8

Server Requirements | 12

Contrail Node Roles, Processes, and Ports | 13

Installing Contrail and Provisioning Roles | 22

Introduction to Containerized Contrail Modules | 22

Downloading Installation Software | 26

Installing the Operating System and Contrail Packages | 26

Installing Containerized Contrail Clusters Using Server Manager | 28

Installing Containerized Contrail Using Server Manager Lite (SM-Lite) | 32

Supporting Multiple Interfaces on Servers and Nodes | 35

Configuring the Control Node with BGP | 39

Adding a New Node to an Existing Containerized Contrail Cluster | 44

Using contrailctl to Configure Services Within Containers | 47

Contrail Global Controller | 50

Role and Resource-Based Access Control | 52

Installation and Configuration Scenarios | 63

Setting Up and Using a Simple Virtual Gateway with Contrail 4.0 | 63

iii

Introduction to the Simple Gateway | 64

How the Simple Gateway Works | 64

Setup Without Simple Gateway | 64

Setup With a Simple Gateway | 65

Simple Gateway Configuration Features | 66

Packet Flows with the Simple Gateway | 67

Packet Flow Process From the Virtual Network to the Public Network | 68

Packet Flow Process From the Public Network to the Virtual Network | 68

Methods for Configuring the Simple Gateway | 69

Using the vRouter Configuration File to Configure the Simple Gateway | 69

Using Thrift Messages to Dynamically Configure the Simple Gateway | 69

How to Dynamically Create a Virtual Gateway | 70

How to Dynamically Delete a Virtual Gateway | 71

Using Devstack to Configure the Simple Gateway | 72

Common Issues with Simple Gateway Configuration | 72

Simple Underlay Connectivity without Gateway | 73

Configuring MD5 Authentication for BGP Sessions | 76

Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter | 78

Configuring Single Root I/O Virtualization (SR-IOV) | 81

Provisioning DPDK SRIOV with Server Manager | 86

Configuring Virtual Networks for Hub-and-Spoke Topology | 89

Route Targets for Virtual Networks in Hub-and-Spoke Topology | 90

Example: Configuring Hub-and-Spoke Virtual Networks | 90

Troubleshooting Hub-and-Spoke Topology | 91

Configuring Transport Layer Security-Based XMPP in Contrail | 96

Configuring Graceful Restart and Long-lived Graceful Restart | 99

Using Contrail with Kubernetes | 105

Contrail Integration with Kubernetes | 105

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Viewing Configuration for CNI for Kubernetes | 123

View Pod Name and IP Address | 124

iv

Verify Reachability of Pods | 124

Verify If Isolated Namespace-Pods Are Not Reachable | 124

Verify If Non-Isolated Namespace-Pods Are Reachable | 125

Verify If a Namespace is Isolated | 126

Provisioning Contrail CNI for Kubernetes | 126

Requirements | 127

Overview | 130

Configuration | 130

Troubleshooting | 132

Using Kubernetes Helm to Provision Contrail | 134

Requirements | 134

Overview | 137

Configuration | 137

Troubleshooting | 139

Using VMware vCenter with Containerized Contrail, Release 4.0.1 and Greater | 142

Installing and Provisioning VMware vCenter with Containerized Contrail | 142

Overview: Integrating Contrail 4.0.1 and Greater with vCenter Server | 143

Different Modes of vCenter Integration with Contrail | 143

vCenter-Only Mode | 143

vCenter-as-Compute Mode | 144

Preparing the Installation Environment | 145

Installation for vCenter-Only Mode | 145

Installing the vCenter-Only Components | 146

Installation of vCenter-as-Compute Mode | 147

Installing the vCenter-as-Compute Components | 148

Verification | 148

Adding Hosts or Nodes | 148

Adding an ESXi Host to an Existing vCenter Cluster | 148

Adding a vCenter Cluster to vCenter-as-Compute | 148

Underlay Network Configuration for Containerized ContrailVM | 149

Standard Switch Setup | 149

Distributed Switch Setup | 151

PCI Pass-Through Setup | 152

v

SR-IOV Setup | 155

Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater | 159

Sample Image JSON for vCenter-Only Mode | 160

Sample Cluster JSON for vCenter-Only Mode | 160

Sample Server JSON for vCenter-Only Mode | 162

Sample JSON for vCenter-only with High Availability | 164

Sample Image JSON for vCenter-as-Compute Mode | 169

Sample Cluster JSON for vCenter-as-Compute Mode | 170

Sample Server JSON for vCenter-as-Compute Mode | 171

Using the Contrail and VMWare vCenter User Interfaces to Manage the Network | 175

Using Contrail with Red Hat | 196

Deploying Contrail with Red Hat OpenStack Platform Director 10 | 196

Installing Red Hat OpenShift Container Platform with Contrail Networking | 247

Launch Instances (Azure, AWS, or Baremetal) | 247

Host Registration | 248

Install Base Packages | 248

Install OpenShift with Contrail Networking | 250

Installing a Contrail System on an Existing OpenShift Setup | 252

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1 | 254

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2 | 268

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3 | 279

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4 | 292

Restoring Contrail Nodes in a RHOSP-based Environment | 308

Prerequisites | 308

Verify the Controller Node Status and Rebuild the Node | 308

Finish Rebuilding One or Two Contrail Controller Nodes | 310

Finish the Rebuilding of all Contrail Controller Nodes | 311

Rebuilding Contrail Analytics And Analytics Database Nodes | 312

Finish Rebuilding the Analytics Nodes | 314

Using Server Manager to Automate Provisioning | 316

Installing Server Manager | 316

vi

Using Server Manager to Automate Provisioning | 323

Overview of Server Manager | 323

Server Manager Requirements and Assumptions | 324

Server Manager Component Interactions | 325

Configuring Server Manager | 326

Configuring the Cobbler DHCP Template | 328

User-Defined Tags for Server Manager | 329

Server Manager Client Configuration File | 329

Restart Services | 330

Accessing Server Manager | 330

Communicating with the Server Manager Client | 331

Server Manager Commands for Configuring Servers | 332

Server Manager Commands Common Options | 332

Add New Servers or Update Existing Servers | 333

Delete Servers | 334

Display Server Configuration | 335

Server Manager Commands for Managing Clusters | 336

Server Manager Commands for Managing Tags | 338

Server Manager Commands for Managing Images | 340

Server Manager Operational Commands for Managing Servers | 344

Reimaging Server(s) | 344

Provisioning and Configuring Roles on Servers | 346

Restarting Server(s) | 347

Show Status of Server(s) | 348

Show Status of Provision | 349

Server Manager REST API Calls | 349

REST APIs for Server Manager Configuration Database Entries | 350

API: Add a Server | 350

API: Delete Servers | 350

API: Retrieve Server Configuration | 351

API: Add an Image | 351

API: Upload an Image | 352

API: Get Image Information | 352

API: Delete an Image | 352

API: Add or Modify a Cluster | 353

API: Delete a Cluster | 353

vii

API: Get Cluster Configuration | 353

API: Get All Server Manager Configurations | 354

API: Reimage Servers | 354

API: Provision Servers | 354

API: Restart Servers | 355

Example: Reimaging and Provisioning a Server | 355

Using the Server Manager Web User Interface | 357

Log In to Server Manager | 357

Create a Cluster for Server Manager | 358

Edit a Cluster through Edit JSON | 369

Working with Servers in the Server Manager User Interface | 369

Add a Server | 370

Edit Tags for Servers | 373

Using the Edit Config Option for Multiple Servers | 373

Edit a Server through Server Manager, Edit JSON | 374

Filter Servers by Tag | 375

Viewing Server Details | 375

Configuring Images and Packages | 378

Add New Image or Package | 379

Selecting Server Manager Actions for Clusters | 379

Reimage a Cluster | 380

Provision a Cluster | 380

Installing and Using Server Manager Lite | 381

Extending Contrail to Physical Routers, Bare Metal Servers, Switches, and Interfaces | 384

Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other Instances | 384

Configuring High Availability for the Contrail OVSDB ToR Agent | 397

Using Device Manager to Manage Physical Routers | 404

SR-IOV VF as the Physical Interface of vRouter | 436

Using Gateway Mode to Support Remote Instances | 438

REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical
Interfaces | 440

Installing and Using Contrail Storage | 447

viii

Installing and Using Contrail Storage | 447

Overview of the Contrail Storage Solution | 447

Basic Storage Functionality with Contrail | 448

Ceph Block and Object Storage Functionality | 448

Using the Contrail Storage User Interface | 449

Hardware Specifications | 450

Contrail Storage Provisioning | 450

Upgrading Contrail Software | 453

Upgrading Contrail 4.0 to 4.1 | 453

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3 | 455

Upgrade Procedure for Ubuntu-based Contrail 4.1.3 to Contrail 4.1.4 Using Juju with Netronome
SmartNIC | 468

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4 | 477

Dynamic Kernel Module Support (DKMS) for vRouter | 492

Backup and Restore Contrail Configuration Database | 493

Backup config database | 494

Restore config database | 497

3 Configuring Contrail

Configuring Virtual Networks | 508

Creating Projects in OpenStack for Configuring Tenants in Contrail | 508

Creating a Virtual Network with Juniper Networks Contrail | 510

Creating a Virtual Network with OpenStack Contrail | 514

Creating an Image for a Project in OpenStack Contrail | 516

Creating a Floating IP Address Pool | 520

Using Security Groups with Virtual Machines (Instances) | 522

Security Groups Overview | 522

Creating Security Groups and Adding Rules | 522

Security Policy Enhancements | 526

Support for IPv6 Networks in Contrail | 545

ix

Configuring EVPN and VXLAN | 549

Configuring the VXLAN Identifier Mode | 551

Configuring Forwarding | 553

Configuring the VXLAN Identifier | 554

Configuring Encapsulation Methods | 555

Example of Deploying a Multi-Tier Web Application Using Contrail | 559

Example: Deploying a Multi-Tier Web Application | 559

Multi-Tier Web Application Overview | 559

Example: Setting Up Virtual Networks for a Simple Tiered Web Application | 560

Verifying the Multi-Tier Web Application | 563

Sample Addressing Scheme for Simple Tiered Web Application | 563

Sample Physical Topology for Simple Tiered Web Application | 564

Sample Physical Topology Addressing | 565

Sample Network Configuration for Devices for Simple Tiered Web Application | 567

Configuring Services | 574

Configuring DNS Servers | 574

DNS Overview | 574

Defining Multiple Virtual Domain Name Servers | 575

IPAM and Virtual DNS | 576

DNS Record Types | 576

Configuring DNS Using the Interface | 577

Configuring DNS Using Scripts | 585

Distributed Service Resource Allocation with Containerized Contrail | 586

Support for Multicast | 597

Subnet Broadcast | 598

All-Broadcast/Limited-Broadcast and Link-Local Multicast | 598

Host Broadcast | 599

Using Static Routes with Services | 600

Static Routes for Service Instances | 600

Configuring Static Routes on a Service Instance | 601

Configuring Static Routes on Service Instance Interfaces | 602

Configuring Static Routes as Host Routes | 603

x

Configuring Metadata Service | 604

Configuring Service Chaining | 606

Service Chaining | 606

Service Chaining Basics | 606

Service Chaining Configuration Elements | 608

Service Chaining MX Series Configuration | 611

ECMP Load Balancing in the Service Chain | 613

Customized Hash Field Selection for ECMP Load Balancing | 614

Service Chain Version 2 with Port Tuple | 619

Using the Contrail Heat Template | 623

Service Chain Route Reorigination | 628

Service Instance Health Checks | 650

Health Check Object | 650

Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces | 655

Bidirectional Forwarding and Detection Health Check for BGPaaS | 655

Health Check of Transparent Service Chain | 656

Service Instance Fate Sharing | 656

Examples: Configuring Service Chaining | 658

Example: Creating an In-Network Service Chain | 658

Hardware and Software Requirements | 658

Overview | 659

Configuration | 659

Example: Creating an In-Network-NAT Service Chain | 672

Hardware and Software Requirements | 672

Overview | 672

Configuration | 673

Example: Creating a Transparent Service Chain | 686

Hardware and Software Requirements | 686

Overview | 686

Configuration | 686

xi

Adding Physical Network Functions in Service Chains | 701

Using Physical Network Functions in Contrail Service Chains | 701

PNF Service Chaining Objects | 701

Prerequisites and Assumptions | 702

Example: Adding a Physical Network Function Device to a Service Chain | 703

Configuring High Availability | 711

Juniper OpenStack High Availability | 711

Introduction | 712

Contrail High Availability | 712

OpenStack High Availability | 712

Supported Platforms | 712

Juniper OpenStack High Availability Architecture | 713

Juniper OpenStack Objectives | 713

Limitations | 714

Solution Components | 714

Virtual IP with Load Balancing | 714

Failure Handling | 715

Deployment | 716

Minimum Hardware Requirement | 716

Compute | 716

Network | 716

Installation | 717

High Availability Support Options | 719

High Availability for Containerized Contrail | 723

QoS Support in Contrail | 726

Quality of Service in Contrail | 726

Configuring Network QoS Parameters | 735

Overview | 735

QoS Configuration Examples | 735

Limitations | 737

BGP as a Service | 737

xii

Load Balancers | 743

Using Load Balancers in Contrail | 743

Support for OpenStack LBaaS Version 2.0 APIs | 758

Configuring Load Balancing as a Service in Contrail | 760

Overview: Load Balancing as a Service | 761

Contrail LBaaS Implementation | 762

Configuring LBaaS Using CLI | 763

Optimizing Contrail | 766

Route Target Filtering | 766

Introduction | 766

Debugging and Troubleshooting Route Target Filtering | 767

RTF Limitations in Contrail 1.10 | 768

Source Network Address Translation (SNAT) | 769

Overview | 769

Neutron APIs for Routers | 770

Network Namespace | 770

Using the Web UI to Configure Routers with SNAT | 771

Multiqueue Virtio Interfaces in Virtual Machines | 772

vRouter Command Line Utilities | 774

Overview | 774

vif Command | 775

flow Command | 779

vrfstats Command | 781

rt Command | 782

dropstats Command | 783

mpls Command | 787

mirror Command | 789

vxlan Command | 791

nh Command | 793

4 Monitoring and Troubleshooting Contrail

Configuring Traffic Mirroring to Monitor Network Traffic | 798

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

xiii

Traffic Analyzer Images | 799

Configuring Traffic Analyzers | 799

Setting Up Traffic Mirroring Using Monitor > Debug > Packet Capture | 799

Setting Up Traffic Mirroring Using Configure > Networking > Services | 804

Configuring Interface Monitoring and Mirroring | 811

Analyzer Service Virtual Machine | 812

Mirroring Enhancements | 816

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

Understanding Contrail Analytics | 819

Understanding Contrail Analytics | 819

Contrail Alerts | 820

Underlay Overlay Mapping in Contrail | 824

Overview: Underlay Overlay Mapping using Contrail Analytics | 825

Underlay Overlay Analytics Available in Contrail | 825

Architecture and Data Collection | 826

New Processes/Services for Underlay Overlay Mapping | 826

External Interfaces Configuration for Underlay Overlay Mapping | 827

Physical Topology | 827

SNMP Configuration | 828

Link Layer Discovery Protocol (LLDP) Configuration | 828

IPFIX and sFlow Configuration | 828

Sending pRouter Information to the SNMP Collector in Contrail | 831

pRouter UVEs | 831

Contrail User Interface for Underlay Overlay Analytics | 833

Enabling Physical Topology on the Web UI | 834

Viewing Topology to the Virtual Machine Level | 834

Viewing the Traffic of any Link | 834

Trace Flows | 835

Search Flows and Map Flows | 836

Overlay to Underlay Flow Map Schemas | 837

Module Operations for Overlay Underlay Mapping | 840

SNMP Collector Operation | 840

Topology Module Operation | 842

xiv

IPFIX and sFlow Collector Operation | 843

Troubleshooting Underlay Overlay Mapping | 844

Script to add pRouter Objects | 844

Configuring Contrail Analytics | 847

Analytics Scalability | 847

High Availability for Analytics | 849

Role-Based Access Control for Analytics | 849

System Log Receiver in Contrail Analytics | 851

Overview | 851

Redirecting System Logs to Contrail Collector | 851

Exporting Logs from Contrail Analytics | 851

Sending Flow Messages to the Contrail System Log | 852

More Efficient Flow Queries | 853

Ceilometer Support in a Contrail Cloud | 853

Overview | 854

Ceilometer Details | 854

Verification of Ceilometer Operation | 855

Contrail Ceilometer Plugin | 857

Ceilometer Installation and Provisioning | 860

User Configuration for Analytics Alarms and Log Statistics | 860

Configuring Alarms Based on User-Visible Entities Data | 861

Examples: Detecting Anomalies | 863

Configuring the User-Defined Log Statistic | 864

Implementing the User-Defined Log Statistic | 867

Alarms History | 870

Node Memory and CPU Information | 872

Role- and Resource-Based Access Control for the Contrail Analytics API | 873

Configuring Analytics as a Standalone Solution | 874

Configuring Secure Sandesh and Introspect for Contrail Analytics | 877

Using Contrail Analytics to Monitor and Troubleshoot the Network | 880

xv

Monitoring the System | 880

Debugging Processes Using the Contrail Introspect Feature | 884

Monitor > Infrastructure > Dashboard | 889

Monitor Dashboard | 890

Monitor Individual Details from the Dashboard | 890

Using Bubble Charts | 891

Color-Coding of Bubble Charts | 892

Monitor > Infrastructure > Control Nodes | 893

Monitor Control Nodes Summary | 893

Monitor Individual Control Node Details | 894

Monitor Individual Control Node Console | 896

Monitor Individual Control Node Peers | 899

Monitor Individual Control Node Routes | 901

Monitor > Infrastructure > Virtual Routers | 904

Monitor vRouters Summary | 904

Monitor Individual vRouters Tabs | 906

Monitor Individual vRouter Details Tab | 906

Monitor Individual vRouters Interfaces Tab | 908

Monitor Individual vRouters Networks Tab | 910

Monitor Individual vRouters ACL Tab | 911

Monitor Individual vRouters Flows Tab | 913

Monitor Individual vRouters Routes Tab | 914

Monitor Individual vRouter Console Tab | 915

Monitor > Infrastructure > Analytics Nodes | 918

Monitor Analytics Nodes | 918

Monitor Analytics Individual Node Details Tab | 920

Monitor Analytics Individual Node Generators Tab | 921

Monitor Analytics Individual Node QE Queries Tab | 922

Monitor Analytics Individual Node Console Tab | 923

Monitor > Infrastructure > Config Nodes | 926

Monitor Config Nodes | 926

Monitor Individual Config Node Details | 927

Monitor Individual Config Node Console | 928

xvi

Monitor > Networking | 930

Monitor > Networking Menu Options | 930

Monitor -> Networking -> Dashboard | 931

Monitor > Networking > Projects | 933

Monitor Projects Detail | 934

Monitor > Networking > Networks | 937

Query > Flows | 942

Query > Flows > Flow Series | 943

Example: Query Flow Series | 946

Query > Flow Records | 948

Query > Flows > Query Queue | 951

Query > Logs | 952

Query > Logs Menu Options | 953

Query > Logs > System Logs | 953

Sample Query for System Logs | 955

Query > Logs > Object Logs | 957

Understanding Flow Sampling | 959

Example: Debugging Connectivity Using Monitoring for Troubleshooting | 962

Using Monitoring to Debug Connectivity | 963

Common Support Answers | 970

Debugging Ping Failures for Policy-Connected Networks | 970

Debugging BGP Peering and Route Exchange in Contrail | 978

Example Cluster | 978

Verifying the BGP Routers | 978

Verifying the Route Exchange | 982

Debugging Route Exchange with Policies | 984

Debugging Peering with an MX Series Router | 986

Debugging a BGP Peer Down Error with Incorrect Family | 988

Configuring MX Peering (iBGP) | 990

Checking Route Exchange with an MX Series Peer | 992

Checking the Route in the MX Series Router | 994

Troubleshooting the Floating IP Address Pool in Contrail | 996

xvii

Example Cluster | 997

Example | 998

Example: MX80 Configuration for the Gateway | 999

Ping the Floating IP from the Public Network | 1002

Troubleshooting Details | 1003

Get the UUID of the Virtual Network | 1003

View the Floating IP Object in the API Server | 1004

View floating-ips in floating-ip-pools in the API Server | 1008

Check Floating IP Objects in the Virtual Machine Interface | 1011

View the BGP Peer Status on the Control Node | 1015

Querying Routes in the Public Virtual Network | 1016

Verification from the MX80 Gateway | 1018

Viewing the Compute Node Vnsw Agent | 1020

Advanced Troubleshooting | 1022

Removing Stale Virtual Machines and Virtual Machine Interfaces | 1025

Problem Example | 1025

Show Virtual Machines | 1027

Show Virtual Machines Using Python API | 1028

Delete Methods | 1030

Troubleshooting Link-Local Services in Contrail | 1030

Overview of Link-Local Services | 1030

Troubleshooting Procedure for Link-Local Services | 1031

Metadata Service | 1032

Troubleshooting Procedure for Link-Local Metadata Service | 1032

5 Contrail Commands and APIs

Contrail Commands | 1036

Getting Contrail Node Status | 1036

Overview | 1036

UVE for NodeStatus | 1037

Node Status Features | 1037

Using Introspect to Get Process Status | 1044

contrail-status script | 1046

contrail-logs (Accessing Log File Messages) | 1048

xviii

contrail-status (Viewing Node Status) | 1051

contrail-version (Viewing Version Information | 1053

service (Managing Services) | 1056

Backing Up Contrail Databases Using JSON Format | 1058

Contrail Application Programming Interfaces (APIs) | 1066

Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs) | 1066

User-Visible Entities | 1067

Common UVEs in Contrail | 1068

Virtual Network UVE | 1068

Virtual Machine UVE | 1069

vRouter UVE | 1069

UVEs for Contrail Nodes | 1070

Wild Card Query of UVEs | 1070

Filtering UVE Information | 1070

Log and Flow Information APIs | 1080

HTTP GET APIs | 1080

HTTP POST API | 1081

POST Data Format Example | 1081

Query Types | 1083

Examining Query Status | 1083

Examining Query Chunks | 1084

Example Queries for Log and Flow Data | 1084

Working with Neutron | 1088

Data Structure | 1088

Network Sharing in Neutron | 1089

Commands for Neutron Network Sharing | 1090

Support for Neutron APIs | 1090

Contrail Neutron Plugin | 1091

DHCP Options | 1091

Incompatibilities | 1092

Support for Amazon VPC APIs on Contrail OpenStack | 1092

Overview of Amazon Virtual Private Cloud | 1093

xix

Mapping Amazon VPC Features to OpenStack Contrail Features | 1093

VPC and Subnets Example | 1094

Euca2ools CLI for VPC and Subnets | 1095

Security in VPC: Network ACLs Example | 1095

Euca2ools CLI for Network ACLs | 1097

Security in VPC: Security Groups Example | 1097

Euca2ools CLI for Security Groups | 1098

Elastic IPs in VPC | 1099

Euca2ools CLI for Elastic IPs | 1099

Euca2ools CLI for Route Tables | 1100

Supported Next Hops | 1100

Internet Gateway Next Hop Euca2ools CLI | 1101

NAT Instance Next Hop Euca2ools CLI | 1101

Example: Creating a NAT Instance with Euca2ools CLI | 1101

xx

1
PART

Overview

Understanding Contrail Controller | 2

CHAPTER 1

Understanding Contrail Controller

IN THIS CHAPTER

Contrail Overview | 2

Contrail Description | 3

Contrail Installation Overview | 4

Contrail Overview

Juniper Networks Contrail is an open, standards-based software solution that delivers network
virtualization and service automation for federated cloud networks. It provides self-service provisioning,
improves network troubleshooting and diagnostics, and enables service chaining for dynamic application
environments across enterprise virtual private cloud (VPC), managed Infrastructure as a Service (IaaS),
and Networks Functions Virtualization use cases.

Contrail simplifies the creation and management of virtual networks to enable policy-based automation,
greatly reducing the need for physical and operational infrastructure typically required to support
network management. In addition, it uses mature technologies to address key challenges of large-scale
managed environments, including multitenancy, network segmentation, network access control, and IP
service enablement. These challenges are particularly difficult in evolving dynamic application
environments such as the Web, gaming, big data, cloud, and the like.

Contrail allows a tenant or a cloud service provider to abstract virtual networks at a higher layer to
eliminate device-level configuration and easily control and manage policies for tenant virtual networks.
A browser-based user interface enables users to define virtual network and network service policies,
then configure and interconnect networks simply by attaching policies. Contrail also extends native IP
capabilities to the hosts (compute nodes) in the data center to address the scale, resiliency, and service
enablement challenges of traditional orchestration platforms.

Using Contrail, a tenant can define, manage, and control the connectivity, services, and security policies
of the virtual network. The tenant or other users can use the self-service graphical user interface to
easily create virtual network nodes, add and remove IP services (such as firewall, load balancing, DNS,
and the like) to their virtual networks, then connect the networks using traffic policies that are simple to

2

create and apply. Once created, policies can be applied across multiple network nodes, changed, added,
and deleted, all from a simple browser-based interface.

Contrail can be used with open cloud orchestration systems such as OpenStack. It can also interact with
other systems and applications based on Operations Support System (OSS) and Business Support
Systems (BSS), using northbound APIs. Contrail allows customers to build elastic architectures that
leverage the benefits of cloud computing — agility, self-service, efficiency, and flexibility — while
providing an interoperable, scale-out control plane for network services within and across network
domains.

RELATED DOCUMENTATION

Contrail Description

Contrail Description

IN THIS SECTION

Contrail Major Components | 3

Contrail Solution | 4

Contrail Major Components

The following are the major components of Contrail.

Contrail Control Nodes

• Responsible for the routing control plane, configuration management, analytics, and the user
interface.

• Provide APIs to integrate with an orchestration system or a custom user interface.

• Horizontally scalable, can run on multiple servers.

Contrail Compute Nodes – XMPP Agent and vRouter

• Responsible for managing the data plane.

3

• Functionality can reside on a host OS.

Contrail Solution

Contrail architecture takes advantage of the economics of cloud computing and simplifies the physical
network (IP fabric) with a software virtual network overlay that delivers service orchestration,
automation, and intercloud federation for public and hybrid clouds.

Similar to the native Layer 3 designs of web-scale players in the market and public cloud providers, the
Contrail solution leverages IP as the abstraction between dynamic applications and networks, ensuring
smooth migration from existing technologies, as well as support of emerging dynamic applications.

The Contrail solution is software running on x86 Linux servers, focused on enabling multitenancy for
enterprise Information Technology as a Service (ITaaS). Multitenancy is enabled by the creation of
multiple distinct Layer 3-enabled virtual networks with traffic isolation, routing between tenant groups,
and network-based access control for each user group. To extend the IP network edge to the hosts and
accommodate virtual machine workload mobility while simplifying and automating network
(re)configuration, Contrail maintains a real-time state across dynamic virtual networks, exposes the
network-as-a-service to cloud users, and enables deep network diagnostics and analytics down to the
host.

In this paradigm, users of cloud-based services can take advantage of services and applications and
assume that pooled, elastic resources are orchestrated, automated, and optimized across compute,
storage, and network nodes in a converged architecture that is application-aware and independent of
underlying hardware and software technologies.

RELATED DOCUMENTATION

Contrail Overview

Contrail Roles Overview

Contrail Installation Overview

IN THIS SECTION

Installing Contrail on Different Operating Systems | 5

4

https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/roles-overview-vnc-40.html

Contrail is validated on several operating systems and orchestration systems. Installation procedures
vary, depending on your environment. Additionally, API tools are available to customize your system.

This section provides links to the installation procedures for different validated environments.

Installing Contrail on Different Operating Systems

To get anticipated results, be sure to check the validated supported operating system for your version of
Contrail and make sure you have the correct kernel version:

Supported Platforms Contrail 4.1

or refer to the Release Notes for your version of Contrail.

You should start your validated installation by referring to the documentation section that corresponds
to your operating environment, including:

Juniper OpenStack Ubuntu Installation

Refer to the following topics when you are installing Juniper OpenStack Contrail on Ubuntu.

• Introduction to Containerized Contrail Modules

• Downloading Installation Software

• Installing the Operating System and Contrail Packages

• Installing Containerized Contrail Clusters Using Server Manager

• Installing Containerized Contrail Using Server Manager Lite (SM-Lite)

Using VMware vCenter with Containerized Contrail, Release 4.0.1 and Greater

Refer to the following topics when you are installing containerized Contrail, Release 4.0.1 and greater,
on VMware vCenter.

• Installing and Provisioning VMware vCenter with Containerized Contrail

• Underlay Network Configuration for Containerized ContrailVM

• Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater

Using VMware vCenter with Contrail, through Release 4.0

Refer to the following topics when you are installing Contrail through Release 4.0 on VMware vCenter.

5

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vcenter-integration-vnc-401.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/vcenter-as-compute-deployment-scenarios-401.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vmware-sample-json-vcenter-401.html

• Installing and Provisioning VMware vCenter with Contrail

• Underlay Network Configuration for ContrailVM

• Sample Testbed.py Files for Contrail vCenter

Using Red Hat with Contrail

Refer to the following topics when you are installing Contrail with Red Hat.

• Installing Red Hat OpenShift Container Platform with Contrail Networking

Using Contrail with Kubernetes Automation Platform

Refer to the following topics when you are installing containerized Contrail integrated with the
Kubernetes automation platform.

• "Contrail Integration with Kubernetes" on page 105

• Installing and Provisioning Containerized Contrail Controller for Kubernetes

• "Verifying Configuration for CNI for Kubernetes " on page 123

• Using Kubernetes Helm to Provision Contrail

Using APIs with Contrail

Additionally, Contrail can interact with other systems and applications using northbound APIs, enabling
customization of your system. An index to current APIs is available in your installed version of Contrail
at: http://<your-server-IP>:8082/documentation/index.html, or you can refer to:

Juniper Contrail Configuration API Reference

6

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vcenter-integration-vnc.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/vcenter-as-compute-deployment-scenarios.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vmware-sample-testbed-vnc.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/install-redhat-openshift.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/K8s-provision-cluster.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/helm-contrail-for-k8s-provisioning.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/information-products/pathway-pages/api-server/tutorial_with_rest.html

2
PART

Installing and Upgrading Contrail

Supported Platforms and Server Requirements | 8

Installing Contrail and Provisioning Roles | 22

Installation and Configuration Scenarios | 63

Using Contrail with Kubernetes | 105

Using VMware vCenter with Containerized Contrail, Release 4.0.1 and Greater |
 142

Using Contrail with Red Hat | 196

Using Server Manager to Automate Provisioning | 316

Extending Contrail to Physical Routers, Bare Metal Servers, Switches, and
Interfaces | 384

Installing and Using Contrail Storage | 447

Upgrading Contrail Software | 453

CHAPTER 2

Supported Platforms and Server Requirements

IN THIS CHAPTER

Supported Platforms Contrail 4.1 | 8

Server Requirements | 12

Contrail Node Roles, Processes, and Ports | 13

Supported Platforms Contrail 4.1

Table 1 on page 8 lists the operating system versions and the corresponding Linux or Ubuntu kernel
versions supported by Contrail Release 4.1.

Table 1: Supported Platforms

Contrail Release Orchestrator Release Operating System and Kernel Versions

Contrail Release 4.1.5 OpenStack Newton • RHEL7.5—Linux Kernel Version 3.10.0-862.14.4
(RHOSP 10.0)

[Satellite content synced on Oct 29, 2018]

• RHEL7.7—Linux Kernel Version 3.10.0-1062.12.1
(RHOSP 10.0.14)

[Satellite content synced on May 20. 2020]

OpenStack Ocata • Ubuntu 16.04.6 - Linux Kernel Version 4.15.0-112-
generic

8

Table 1: Supported Platforms (Continued)

Contrail Release Orchestrator Release Operating System and Kernel Versions

Contrail Release
4.1.4.1

OpenStack Newton • RHEL7.5—Linux Kernel Version 3.10.0-862.14.4
(RHOSP 10.0)

• RHEL7.7—Linux Kernel Version 3.10.0-1062.9.1
(RHOSP 10.0.14)

Contrail Release 4.1.4 OpenStack Ocata • Ubuntu 16.04.2—Linux kernel version 4.4.0-165-
generic

• VMware vCenter 6.0, 6.5—Ubuntu 16.04.2 kernel
version 4.4.0-62-generic

OpenStack Newton • RHEL7.7—Linux Kernel Version 3.10.0-1062.1.2
(RHOSP 10.0.12)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-165-
generic

OpenStack Mitaka • Ubuntu 14.04.5—Linux kernel versions 3.13.0-171-
generic

Contrail Release 4.1.3 OpenStack Ocata • RHEL 7.5—Linux kernel version 3.10.0-862.11.6
and Linux kernel version 3.10.0-957 (RHOSP11)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

• VMware vCenter 6.0, 6.5—Ubuntu 16.04.2 kernel
version 4.4.0-62-generic

OpenStack Newton • RHEL 7.5—Linux kernel version 3.10.0-862.11.6

• RHEL 7.6—Linux kernel version 3.10.0-957
(RHOSP10)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

9

Table 1: Supported Platforms (Continued)

Contrail Release Orchestrator Release Operating System and Kernel Versions

OpenStack Mitaka • Ubuntu 14.04.5—Linux kernel versions 3.13.0-142-
generic and 4.4.0-116-generic

Contrail Release 4.1.2 Kubernetes 1.7.5 • Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

OpenStack Ocata • RHEL 7.5—Linux kernel version 3.10.0-862.11.6
and Linux kernel version 3.10.0-957 (RHOSP11)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

• VMware vCenter 6.0, 6.5—Ubuntu 16.04.2 kernel
version 4.4.0-62-generic

OpenStack Newton • RHEL 7.5—Linux kernel version 3.10.0-862.11.6

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

OpenStack Mitaka • Ubuntu 14.04.5—Linux kernel versions 3.13.0-142-
generic and 4.4.0-116-generic

Contrail Release 4.1.1 Kubernetes 1.7.5 • Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

Openshift 3.6 • RHEL 7.5—Linux kernel version 3.10.0-862.3.2

10

Table 1: Supported Platforms (Continued)

Contrail Release Orchestrator Release Operating System and Kernel Versions

OpenStack Ocata • RHEL 7.5—Linux kernel version 3.10.0-862.3.2
(RHOSP11)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

• VMware vCenter 6.0, 6.5—Ubuntu 16.04.2 kernel
version 4.4.0-62-generic

OpenStack Newton • RHEL 7.5—Linux kernel version 3.10.0-862.3.2
(RHOSP10)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-116-
generic

OpenStack Mitaka • Ubuntu 14.04.5—Linux kernel versions 3.13.0-142-
generic and 4.4.0-116-generic

Contrail Release 4.1 Kubernetes 1.7.5 • Ubuntu 16.04.2—Linux kernel version 4.4.0-62-
generic

Openshift 3.6 • RHEL 7.4—Linux kernel version 3.10.0-693

OpenStack Ocata • RHEL 7.4—Linux kernel version 3.10.0-693
(RHOSP11)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-62-
generic

• VMware vCenter 6.0, 6.5—Ubuntu 16.04.2 kernel
version 4.4.0-62-generic

11

Table 1: Supported Platforms (Continued)

Contrail Release Orchestrator Release Operating System and Kernel Versions

OpenStack Newton • RHEL 7.4—Linux kernel version 3.10.0-693
(RHOSP10)

• Ubuntu 16.04.2—Linux kernel version 4.4.0-62-
generic

OpenStack Mitaka • Ubuntu 14.04.5—Linux kernel versions 3.13.0-110-
generic and 4.4.0-34-generic

NOTE: In Contrail Release 4.0 and later, if the stock kernel version of your Ubuntu system is
other than the required version, you can upgrade the kernel for all nodes in the cluster by using
the following parameter in cluster.json for Server Manager or SM-Lite provisioning or testbed.py.

{
 "cluster" : [{
 "parameters" : {
 "provisioning" : {
 "contrail" : {
 "kernel_upgrade" : true
 }
 }
 }
 }]
}

Server Requirements

The minimum requirement for a proof-of-concept (POC) system is 3 servers, either physical or virtual
machines. All non-compute roles can be configured in each controller node. For scalability and
availability reasons, it is highly recommended to use physical servers.

Each server must have a minimum of:

12

• 64 GB memory

• 300 GB hard drive

• 4 CPU cores

• At least one Ethernet port

RELATED DOCUMENTATION

Contrail Roles Overview

Downloading Installation Software

Contrail Node Roles, Processes, and Ports

IN THIS SECTION

Processes in Logical Roles and Nodes | 13

Roles and Ports | 15

This section describes processes that run on various Contrail nodes and the ports used by those
processes.

Processes in Logical Roles and Nodes

The following are the processes in each of the logical roles or nodes in Contrail.

Node Processes

OpenStack node This node runs non-Neutron OpenStack services, such as nova-api, nova-scheduler, nova-
conductor, glance-api, and the like.

13

https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/roles-overview-vnc-40.html

(Continued)

Node Processes

Database node Every instance of a database node runs the following processes:

• Cassandra

• Zookeeper

Config node Every instance of a config node runs the following processes:

• neutron-server

• contrail-api

• ifmap

• contrail-schema

• contrail-svc-monitor

• rabbitmq-server (optionally, this can be located on an external sever)

• contrail-vcenter-plugin (optional)

Control node Every instance of a control node runs the following processes:

• control-node

• contrail-dns

• contrail-named

Compute node Every instance of a compute node runs the following processes:

• nova-compute

• contrail-vrouter-agent

• contrail-tor-agent instances are run on a need basis, one instance per ToR, to manage
TORs via OVS.

14

(Continued)

Node Processes

Analytics node Every instance of an analytics node runs the following processes:

• contrail-collector

• contrail-analytics-api

• contrail-query-engine .

• contrail-snmp-collector

• contrail-topology

Web UI node Every instance of a Web UI node runs the following processes:

• contrail-webui

• contrail-webui-middleware

Roles and Ports

This section presents notes about processes and ports by roles and nodes.

OpenStack Role

Nova

API

• Ports

• 8773 - EC2 API

• 8774 - OpenStack API

• 8775 - Metadata port

nova-novncproxy

• Ports

• 5999

15

Cinder

• Ports

• 8776 - Cinder API

Glance

• API

• Ports

• 9292 Glance API

• Registry

• Ports

• 9191 - Glance API

Keystone

• Ports

• 5000 - tenant port

• 35357 - administrative port

RabbitMQ

• Ports

• 5672

MySQL

• Ports

• 3306

16

Configuration Node

Neutron Server

The neutron-server process serves the Openstack Networking (Neutron) API. It connects to contrail-api
server and uses that as the backend for serving neutron API. In works in Active/Active mode in multi-
node deployments.

• Service Name - neutron-server

• Ports

• 9696 - public port (HAproxy front end port)

• 9697 - HAproxy back end port

API Server

The contrail-api process exposes a REST-based interface for Contrail API, and:

• connects to Cassandra on database node(s) for persistence.

• publishes to IFMAP server for consumption of config information by other nodes.

• uses AMQP/rabbitmq to communicate with other API servers in multi-node deployment.

• Service Name - contrail-api

Ports

• 8082 - public port, accessible with credentials in auth mode

• 8095 - debug port, accessible only on localhost in auth mode

• 8084 - HAproxy front end port

• 9100 - HAporoxy back end port

IFMAP Server

The IFMAP server process acts as a bulletin board for pubsub (publish-subscribe) purposes. The contrail-
control, contrail-schema, and contrail-svc-monitor connect to IFMAP server and act upon configuration
change published from the API server.

• Ports

• 8443 - basic authentication port

17

Schema Transformer

The contrail-schema process listens to configuration changes done by user at higher-level constructs
such as VirtualNetwork, and generates appropriate system configuration objects, lower-level construct
such as RoutingInstance. The contrail-schema uses the REST interface of the API server to manipulate
the system objects, and in multi-node deployments it works in Active/Backup mode.

• Service Name - contrail-schema

• Ports

• 8087 - Introspect port

Service Monitor

The contrail-service-monitor process listens to configuration changes in service-template and service-
instance, and in response, spawns and monitors virtual machines for services such as firewall, analyzer,
and the like, using Nova API to spawn the virtual machines. In multi-node deployments it works in
Active/Backup mode. The contrail-service-monitor process also syncs the Keystone tenants to Contrail,
and the tenants appear in http://<controller-ip>:8082/projects.

• Service Name - contrail-svc-monitor

• Ports

• 8088 - Introspect port

vCenter Plugin

The contrail-vcenter-plugin process integrates the Contrail controller with VMware vCenter as the
orchestrator.

• Service Name - contrail-vcenter-plugin

• Ports

• 8234 - HTTP Introspect port

Analytics Node

Analytics REST API Server

• Service name - contrail-analytics-api

• Ports

18

• 8081 - public port

Collector

• Service name - contrail-collector

• Ports

• 8086 - public port

Query Engine

• Service name - contrail-query-engine

Contrail SNMP Collector

• Service name - contrail-snmp-collector

Contrail Topology

• Service name - contrail-topology

Redis Server

• Service name - redis

Web UI Role

webui

• Service name - contrail-webui

• Ports

• 8080 - http port redirects to https

• 8143 - https port

webui middleware

• Service name - contrail-webui-middleware

19

Redis Server

• Service name - redis

Database Role

Cassandra

• Service name - contrail-database

• Ports

• 9160 - thrift port

• 9042 - Cassandra Query Language (CQL) native port

Zookeeper

• Service name - zookeeper

• Ports

• 2181 - listen port

Control Role

control-node

• Service name - contrail-control

• Ports

• 8083 - Introspect

• 5269 - XMPP port

• 5222 - TLS-based XMPP port

• Service name - contrail-dns

• Ports

• 8092 - Introspect for DNS

• 8093 - XMPP for DNS

20

vRouter Role

vRouter Agent

• Service name - contrail-vrouter

• Ports

• 8085

• 9090 - port for communication between vRouter agent and nova-compute

Contrail ToR Agent

The contrail-tor-agent process runs the OVSDB protocol between a ToR and Contrail. Each contrail-tor-
agent manages a single ToR, and multiple contrail-tor-agents can run on a single node. Each contrail-tor-
agent service name is suffixed by a unique instance-id.

By default, the introspect service for the contrail-tor-agent is run on port 9009 + instance-id. The
default port can be overridden in the fab file.

• Service name - contrail-tor-agent

• Ports

• 9009 + <instance id>

21

CHAPTER 3

Installing Contrail and Provisioning Roles

IN THIS CHAPTER

Introduction to Containerized Contrail Modules | 22

Downloading Installation Software | 26

Installing the Operating System and Contrail Packages | 26

Installing Containerized Contrail Clusters Using Server Manager | 28

Installing Containerized Contrail Using Server Manager Lite (SM-Lite) | 32

Supporting Multiple Interfaces on Servers and Nodes | 35

Configuring the Control Node with BGP | 39

Adding a New Node to an Existing Containerized Contrail Cluster | 44

Using contrailctl to Configure Services Within Containers | 47

Contrail Global Controller | 50

Role and Resource-Based Access Control | 52

Introduction to Containerized Contrail Modules

IN THIS SECTION

Why Use Containers? | 23

Overview of Contrail Containers | 23

Contrail 4.0 Containers | 24

Summary of Container Design, Configuration Management, and Orchestration | 25

Starting with Contrail 4.0, some subsystems of Contrail are delivered as Docker containers.

22

Why Use Containers?

Contrail software releases are distributed as sets of packages for each of the subsystem modules of a
Contrail system. The Contrail modules depend on numerous open source packages and provisioning
tools and are validated on specific Linux distributions. Each module has its own dependency chains and
its own configuration parameters.

These dependencies lead to complexities of deployment, including:

• The Linux version of the target system must match exactly to the version upon which Contrail is
qualified, or the installation might fail.

• A deployment that succeeds despite an operating system mismatch could pull dependent packages
from a customer mirror site that don’t match the dependencies with which the Contrail system was
qualified, creating potential for failure.

• Change in any package on the target system creates a risk of failure of dependencies in the Contrail
software, creating a need for requalification upon any system change.

• Currently, provisioning tools such as Fuel, Juju, Puppet, and the like interact directly with Contrail
services. Over time, these tools become more complex, requiring interaction with the lowest level of
details of Contrail service parameters.

Containerizing some Contrail subsystems reduces the complexity of deploying Contrail and provides a
straightforward, simple way to deploy and operate Contrail.

Overview of Contrail Containers

Starting with Contrail 4.0, some of the Contrail subsystems are delivered as Docker containers that
group together related functional components. Each container file includes an INI-based configuration
file for configuring the services within the container. The purpose of the INI is to provide enough high-
level configuration entries to configure all services within the container, while masking the complexity of
the internal service configuration. The container configuration files are available on the host system and
mounted within specific containers.

In Contrail 4.0, the containerized components include Contrail controller, analytics, and load-balancer
applications. Contrail OpenStack components are not containerized at this time.

In Contrail 4.0.1, the containerized components include OpenStack Ocata services. Only OpenStack
Ocata services are containerized. Mitaka and Newton SKUs of OpenStack are still provisioned as non-
containerized host services.

All Contrail containers run with the host network, without using a Docker bridge, however, all services
within the container listen on the host network interface. Some services, such as RabbitMQ, require
extra parameters, such as a host-based PID namespace.

23

The intention is to build a composable Contrail core system of containers that can be used with differing
cloud and container orchestration systems, such as OpenStack, Kubernetes, Mesos, and the like.

Figure 1: Sample Configuration Containerized Contrail

Contrail 4.0 Containers

This section describes the containers in Contrail 4.0 and their contents.

contrail-controller

The contrail-controller container includes all Contrail applications that make up a Contrail controller,
including:

• All configuration services, such as contrail api, config-nodemgr, device-manager, schema, svc-monitor, and
CONFIGDB.

• All control services, such as contrail-control, control-nodemgr, contrail-dns, and contrail-named.

• All Web UI services, such as contrail-webui and contrail-webui-middleware.

24

• Configuration database (Cassandra)

• Zookeeper

• RabbitMQ

• Redis for Web Ui

contrail-analytics

The contrail-analytics container includes all Contrail analytics services, including:

• alarm-gen

• analytics-api

• analytics-nodemgr

• contrail-collector

• query-engine

• snmp-collector

• contrail-topology

contrail-analyticsdb

The contrail-analyticsdb container has Cassandra for the analytics database and Kafka for streaming data.

contrail-lb

The contrail-lb loadbalancer container includes all components that provide load-balancing and high
availability to the system, such as HAproxy, keepalive, and the like.

In previous releases of Contrail, HAproxy and keepalive were included in most services to load-balance
Contrail service endpoints. Starting with Contrail 4.0, the load-balancers are taken out of the individual
services and held instead in a dedicated loadbalancer container. An exception is HAproxy as part of the
vrouter agent, which can be used to implement Load-Balancing as a Service (LBaaS).

The loadbalancer container is an optional container, and customers can choose to use their own load-
balancing system.

Summary of Container Design, Configuration Management, and Orchestration

The following are key features of the new architecture of Contrail containers.

25

• All of the Contrail containers are multiprocess Docker containers.

• Each container has an INI-based configuration file that has the configurations for all of the
applications running in that container.

• The user toolset contrailctl is used to manage the container configuration files.

• Each container is self-contained, with minimal external orchestration needs.

• A single tool, Ansible, is used for all levels of building, deploying, and provisioning the containers. The
Ansible code for the Contrail system is named contrail-ansible and kept in a separate repository. The
Contrail Ansible code is responsible for all aspects of Contrail container build, deployment, and basic
container orchestration.

RELATED DOCUMENTATION

Using contrailctl to Configure Services Within Containers

Downloading Installation Software

All components necessary for installing the Contrail Controller are available for each Contrail release, for
the supported Linux operating systems and versions, and for the supported versions of OpenStack.

All installation images can be downloaded from https://www.juniper.net/support/downloads/?
p=contrail#sw.

The Contrail image includes the following software:

• All dependent software packages needed to support installation and operation of OpenStack and
Contrail

• Contrail Controller software – all components

• OpenStack release currently in use for Contrail

Installing the Operating System and Contrail Packages

Install the stock CentOS or Ubuntu operating system image appropriate for your version of Contrail onto
the server. See Supported Platforms Contrail 4.0.x or Supported Platforms Contrail 4.1. Then install
Contrail packages separately.

26

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/documentation/en_US/contrail4.0/topics/reference/supported-platforms-40-vnc.html
https://www.juniper.net/documentation/en_US/contrail4.1/topics/reference/supported-platforms-41-vnc.html

The following are general guidelines for installing the operating system and preparing to install Contrail.

1. Install a CentOS or Ubuntu minimal distribution as desired on all servers. Typically, for CentOS this is
a basic ISO install; for Ubuntu, use a core server install, with only OpenSSH and no other packages.
Follow the published operating system installation procedure for the selected operating system; refer
to the website for the operating system.

2. Install Contrail Server Manager, see Installing Server Manager.

3. Create an image.json with the Ubuntu or CentOS image to be used to reimage the target server.

Sample JSON Snippet

{
 "image": [
 {
 "category": "image",
 "id": "ubuntu-14.04.04",
 "parameters": {
 "kickseed": "/etc/contrail_smgr/kickstarts/contrail-
ubuntu_trusty.seed",
 "kickstart": "/etc/contrail_smgr/kickstarts/contrail-
ubuntu_trusty.ks"
 },
 "path": "/path/to/ubuntu-image.iso",
 "type": "ubuntu",
 "version": "14.04.04"
 }
]
 }

4. Use Server Manager to add the image.json, to be used for reimaging.

server-manager add image –f image.json

For full installation information, see Installing Containerized Contrail Clusters Using Server Manager and
Installing Containerized Contrail for Single- and Multi-Node Systems Using Server Manager Lite

RELATED DOCUMENTATION

Introduction to Containerized Contrail Modules

Contrail Roles Overview

Installing Containerized Contrail Clusters Using Server Manager

Installing Containerized Contrail Using Server Manager Lite (SM-Lite)

27

https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/install-containers-single-multi-node.html#jd0e20
https://www.juniper.net/documentation/en_US/contrail/topics/concept/install-containers-single-multi-node-SMLite.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/roles-overview-vnc-40.html

Upgrading Contrail 3.2 to 4.0

Download Software

Installing Containerized Contrail Clusters Using Server Manager

IN THIS SECTION

Installing Server Manager | 28

Creating Objects with Server Manager and JSONs | 29

Preparing the Target System for Provisioning | 30

Provisioning the System | 31

This topic presents the steps needed to install containerized Contrail Release 4.0 in a single- or multi-
node configuration.

You can use Contrail Server Manager or Server Manager Lite (SM-Lite) to provision containerized
Contrail.

This is the procedure for using Server Manager. SM-Lite is typically used for Contrail networking, only.

The installation is completed using the following major activities:

Installing Server Manager

Before installing Contrail Release 4.0, you must install Contrail Server Manager on a server running
Ubuntu.

1. Install the Server Manager wrapper package:

dpkg -i contrail-server-manager-installer_[version~sku].deb

2. Install Server Manager and its dependent packages, including docker-engine and Cobbler:

cd /opt/contrail/contrail_server_manager/; ./setup.sh --all --hostip=[IP address of SM]

28

https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-32-to-40.html
https://www.juniper.net/support/downloads/?p=contrail#sw

NOTE: The setup.sh script could fail to start the Docker registry if you are installing over an
existing version of Server Manager.

If you encounter the Docker registry failure to start error, use the following workaround:

a. In the setup.sh script, comment out the line containing the docker run command.

b. dpkg --purge contrail-server-manager

c. setup.sh --all --hostip=[IP address of SM]

3. When the Server Manager install completes with no errors, modify the DHCP template at /etc/
cobbler/dhcp.template to include the details of the subnet being reimaged or provisioned. Be sure to
include DNS details.

NOTE: Container hosts require Internet connectivity at this point to launch the containers.

4. Start the Server Manager process:

service contrail-server-manager start

For more details about the Server Manager installation process, refer to Installing Server Manager.

Creating Objects with Server Manager and JSONs

Once Server Manager is installed, use Server Manager commands with a JSON file to create Contrail
objects.

Configure an appropriate JSON file with the IP addresses, interface names, and password strings specific
to your system.

Select a sample JSON from the following and update it to match your system:

• Sample JSONs for an All-In-One-Node Cluster:
Sample JSONs for an all-in-one, single node with roles

• Sample JSONs for a Multinode Cluster with Two Nodes:
Sample JSONs for a Multinode Cluster

• Sample JSONs for a Multinode Cluster with 7 Nodes and High Availability
Sample JSONs for a Multinode Cluster with High Availability:

The following procedure helps you create a target system that includes the components for OpenStack,
Contrail controller, analytics, analytics database, and agent. The controller, analytics, and analytics

29

https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONS-for-single-node-with-roles:-controller,-analytics,-analyticsdb,-bare-metal-compute-and-openstack
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Two)-Node-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Seven)-Node-Contrail-HA-Cluster

database services are provisioned using Contrail containers, however, the agent service is configured on
the bare-metal target host.

1. Configure the images needed for reimaging and provisioning.

a. Add the Ubuntu image from JSON (used for reimaging)

server-manager add image –f image-ubuntu-14.04.04.json

b. Add the Contrail Debian image and containers from JSON (used for provisioning)

server-manager add image –f contrail_image.json

NOTE: Wait for this command to complete, it operates in the background and can take as
long as 5 minutes to complete.

Before proceeding, check for a log message: Image add/Modify success, in /var/log/contrail-server-
manager/debug.log.

2. Configure the cluster(s).

For an all-in-one, single-node demo system:

server-manager add cluster -f <all_ins_one_cluster>.json

For a multi-node system:

server-manager add cluster -f <multi_node_cluster>.json

If a Keystone admin password is generated, be sure to write it down.

NOTE: During installation, if a password is provided, no other passwords are generated. If a
password is NOT provided, all needed passwords are generated.

3. Configure the server.

server-manager add server -f contrail_server.json

Repeat this step for every server in the system, using the correct server.json file, based on the number
of servers or type of your system.

Preparing the Target System for Provisioning

To prepare the target system for provisioning, reimage the target system(s), including the Contrail server
and the OpenStack server.

30

• For an all-in-one, single-node demo system:

server-manager reimage --server_id <server_id> <ubuntu_image>

• For a multi-node system:

server-manager reimage --cluster_id <multi_node> <ubuntu_image>

Provisioning the System

Launch the system provisioning.

• For an all-in-one, single-node demo system:

server-manager provision —cluster_id <all_in_one_cluster> combined_image_mainline

• For a multi-node system:

server-manager provision —-cluster_id <multi_node> combined_image_mainline

The server-manager provision command first provisions the OpenStack role, which includes using Puppet
manifests. Next, the command provisions Contrail Docker containers and compute nodes.

You can monitor progress of the provisioning by observing log entries:

/var/log/contrail-server-manager/debug.log

When provisioning is complete, confirm successful installation by creating a virtual network and
launching virtual machines from the OpenStack node.

RELATED DOCUMENTATION

Sample JSONs for an all-in-one, single node with roles

Sample JSONs for a Multinode Cluster

Sample JSONs for a Multinode Cluster with High Availability

Introduction to Containerized Contrail Modules

Contrail Roles Overview

Installing the Operating System and Contrail Packages

Installing Containerized Contrail Using Server Manager Lite (SM-Lite)

Upgrading Contrail 3.2 to 4.0

31

https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONS-for-single-node-with-roles:-controller,-analytics,-analyticsdb,-bare-metal-compute-and-openstack
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Two)-Node-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Seven)-Node-Contrail-HA-Cluster
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/roles-overview-vnc-40.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-32-to-40.html

Installing Containerized Contrail Using Server Manager Lite (SM-Lite)

IN THIS SECTION

Preparing for SM-Lite Installation | 32

Installing SM-Lite | 33

Provisioning Contrail Using SM-Lite | 34

Sample JSONs and Testbed.py | 34

Server Manager Lite (SM-Lite) is a streamlined version of Server Manager. SM-Lite has functionality
similar to Server Manager, except it does not perform reimaging. SM-Lite is typically used for Contrail
networking only.

You can use Contrail Server Manager or Server Manager Lite (SM-Lite) to provision containerized
Contrail. To use SM-Lite for provisioning, you install regular Server Manager, then use SM-Lite
commands for provisioning.

This topic is the procedure for installing and provisioning Contrail 4.0 and later using SM-Lite.

The SM-Lite installation of containerized Contrail is completed using the following major activities:

Preparing for SM-Lite Installation

For Contrail 4.0, SM-Lite install is only supported on Ubuntu 14.04.5. Contrail 4.1 adds support for
Ubuntu 16.04.2.

Before installing containerized Contrail, you must install Server Manager SM-Lite on a server running a
supported version of Ubuntu.

You can install SM-Lite on any server or node, and you can run it using multiple options:

• Provision a single node or VM for Contrail, then install SM-Lite on the same node and use it to
perform Contrail provisioning.

• Use a separate node or VM to install SM-Lite, and provision Contrail with the rest of the nodes.

• Use a node or VM that has Contrail roles (typically a config node) to install SM-Lite.

To specify servers and associated Contrail roles and cluster details, you can use either a testbed.py or
JSONs based on the sample JSONs used with regular Server Manager. The image details come from the
image JSON.

32

Prerequisites

Before installing the SM-Lite package, ensure the following cautions have been met:

• Ensure that the sources.list is present and empty.

• Ensure that /etc/apt/sources.list.d/ is not pointing to any external or local repositories.

If you are installing SM-Lite on a VM spawned from OpenStack Horizon or from an Ubuntu cloud image:

• Verify that the VM is set up correctly with hostname and domain details:

• The hostname and domain name are present in /etc/hosts as follows:

<Host non mgmt IP> <server hostname>.<domain_name> <server hostname>

• The domain name is present in /etc/resolv.conf as follows:

search <domain_name>

• When correctly set up, the command "hostname -f" will return < hostname >.< domain_name >

Installing SM-Lite

1. Install the regular Server Manager wrapper package (Debian).(An example package is: contrail-server-
manager-installer_2.22~juno_all.deb.)

dpkg –i </github-build/mainline/<build_number> /ubuntu-14-04/mitaka/artifacts/ contrail-server-manager-
installer_4.0.0.0-<build-number>~mitaka_all.deb>

2. Now you can use the SM-Lite provision_containers command to provision Contrail.

The full syntax and available options of the provision_containers.sh script:

Help:
`/opt/contrail/contrail_server_manager/provision_containers.sh -h`
`-h --help`
`-cj <cluster json path>`
`-sj <server json path>`
`-ij <image json path>`
`-t|--testbed <testbed.py path>`
`-c <contrail cloud docker package path>`
`-cid|--cluster-id <cluster-id>`
`-ni|--no-install-sm-lite`

33

The -ni option is used to reprovision an existing cluster, create a new cluster, or upgrade an existing
cluster with a different version.

For more details about SM-Lite, refer to Installing and Using Server Manager Lite.

Provisioning Contrail Using SM-Lite

To activate SM-Lite and provision the target systems, use provision_containers.sh along with system-
specific configuration information.

Provision Contrail with system-specific configuration information using one of the following options:

• Using JSONs

/opt/contrail/contrail_server_manager/provision_containers.sh -cj <cluster json path> -sj <server json path> -
ij <image json path> --cluster-id <Cluster ID>

• Using testbed.py and contrail-docker-cloud.tgz

/opt/contrail/contrail_server_manager/provision_containers.sh -t <testbed.py path> -c <contrail-cloud-docker
tgz path> --cluster-id <Cluster ID>

The SM-Lite provisioning logs can be viewed at /var/log/contrail-server-manager/debug.log.

Running the provision_containers.sh script does the following:

1. Installs SM-Lite components: sm client, sm webui, sm monitoring/inventory, and the like.

2. Prepares the targets for provisioning by running the preconfig.py script.

3. Adds Server Manager objects for cluster, server, and image from the JSONs or the testbed.py as
provided.

4. Loads Docker containers and pushes them to the registry in the background.

5. Launches the Contrail provisioning, using the Server Manager client CLI.

Sample JSONs and Testbed.py

Use the SM-Lite command provision_containers.sh with a JSON file or a testbed.py to provision Contrail
objects.

Configure an appropriate JSON file or testbed.py with the IP addresses, interface names, and password
strings specific to your system, then identify its path when you use the SM-Lite provision_containers.sh
command.

Select a sample JSON or testbed.py from the following and update it to match your system:

34

https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/server-manager-lite-installing-40.html

• Sample testbed.py for Provisioning Containers with SM-Lite

• Sample combined JSON for provisioning Contrail 4.1 and Openstack Ocata with SM Lite (all in one
node & single interface)

• Sample JSONs for a Multinode Cluster with Two Nodes

• Sample JSONs for a Multinode Cluster with 7 Nodes and High Availability

RELATED DOCUMENTATION

Sample JSONs for an All-In-One-Node Cluster (for demo)

Sample JSONs for a Multinode Cluster with Two Nodes

Sample JSONs for a Multinode Cluster with 7 Nodes and High Availability

Sample testbed.py for Provisioning Containers with SM-Lite

Introduction to Containerized Contrail Modules

Contrail Roles Overview

Installing the Operating System and Contrail Packages

Installing Containerized Contrail Clusters Using Server Manager

Upgrading Contrail 3.2 to 4.0

Supporting Multiple Interfaces on Servers and Nodes

IN THIS SECTION

Support for Multiple Interfaces | 36

Server Interface Examples | 38

Interface Naming and Configuration Management | 38

This section describes how to set up and manage multiple interfaces.

35

https://github.com/Juniper/contrail-server-manager/wiki/Sample-All-In-One-Testbed.py-file-for-Provisioning-Containers-with-SM-Lite
https://github.com/Juniper/contrail-server-manager/wiki/Sample-combined-JSON-for-provisioning-Contrail-4.1-and-Openstack-Ocata-with-SM-Lite-(all-in-one-node-&-single-interface)
https://github.com/Juniper/contrail-server-manager/wiki/Sample-combined-JSON-for-provisioning-Contrail-4.1-and-Openstack-Ocata-with-SM-Lite-(all-in-one-node-&-single-interface)
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Two)-Node-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Seven)-Node-Contrail-HA-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONS-for-single-node-with-roles:-controller,-analytics,-analyticsdb,-bare-metal-compute-and-openstack
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Two)-Node-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-JSONs-for-a-Multi-(Seven)-Node-Contrail-HA-Cluster
https://github.com/Juniper/contrail-server-manager/wiki/Sample-All-In-One-Testbed.py-file-for-Provisioning-Containers-with-SM-Lite
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/roles-overview-vnc-40.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-32-to-40.html

Support for Multiple Interfaces

Servers and nodes with multiple interfaces should be deployed with exclusive management and control
and data networks. In the case of multiple interfaces per server, the expectation is that the management
network provides only management connectivity to the cluster, and the control and data network carries
the control plane information and the guest traffic data.

Examples of control traffic include the following:

• XMPP traffic between the control nodes and the compute nodes.

• BGP protocol messages across the control nodes.

• Statistics, monitoring, and health check data collected by the analytics engine from different parts of
the system.

In Contrail , control and data must share the same interface, configured in the testbed.py file in a section
named control_data.

Number of cfgm Nodes Supported

The Contrail system can have any number of cfgm nodes.

Uneven Number of Database Nodes Required

In Contrail, Apache ZooKeeper resides on the database node. Because a ZooKeeper ensemble operates
most effectively with an odd number of nodes, it is required to have an odd number (3, 5, 7, and so on)
of database nodes in a Contrail system.

Support for VLAN Interfaces

A VLAN ID can also be specified in the server.json file under the network, interfaces section, similar to the
following example:

“network”: {
 “interfaces”: [
 {
 “name”: “vlan2003”,
 “type” : “vlan”,
 “vlan”: “2003”,
 “parent_interface”: “bond0”,
 “ip_address": “10.224.11.10/24”,
 “default_gateway”: “10.224.12.1”

36

 }
]
 }

Support for Bonding Options

Contrail provides support for bond interface options.

The default bond interface options are:

miimon=100, mode=802.3ad(lacp), xmit_hash_policy=layer3+4

For Contrail 4.0 and later, in the provisioning file bond section, anything other than name and member
are treated as a bond interface option, and provisioned as such. The following is an example:

“network”: {
 “interfaces”: [
 name”: “bond0”,
 “type” : “bond”,
 “bond_options” : {“miimon”: “100”, “mode”: “802.3ad”, “xmit_hash_policy”:
“layer3+4”},
 “member_interfaces”: [“p20p1”, “p20p2”]
 },
],

Support for Static Route Options

Contrail provides support for adding static routes on target systems. This option is ideal for use cases in
which a system has servers with multiple interfaces and has control data or management connections
that span multiple networks.

The following shows static routes added in the server.json under the ‘network’ section.

 “network”: {
 "routes": [
 {
 "gateway": "3.3.2.254",
 "interface": "enp129s0f0",
 "netmask": "255.255.255.0",
 "network": "3.3.4.0"
 },

37

 {
 "gateway": "3.3.3.254",
 "interface": "enp129s0f1",
 "netmask": "255.255.255.0",
 "network": "3.3.5.0"
 }
]
 }

Server Interface Examples

In Contrail Release 1.10 and later, control and data are required to share the same interface. A set of
servers can be deployed in any of the following combinations for management, control, and data:

• mgmt=control=data -- Single interface use case

• mgmt, control=data -- Exclusive management access, with control and data sharing a single network.

In Contrail, the following server interface combinations are not allowed:

• mgmt=control, data--Dual interfaces in Layer 3 mode, management and control shared on a single
network

• mgmt, control, data–Complete exclusivity across management, control, and data traffic.

Interface Naming and Configuration Management

On a standard Linux installation there is no guarantee that a physical interface will come up with the
same name after a system reboot. Linux NetworkManager tries to accommodate this behavior by linking
the interface configurations to the hardware addresses of the physical ports. However, Contrail avoids
using hardware-based configuration files because this type of solution cannot scale when using remote
provisioning and management techniques.

The Contrail alternative is a threefold interface-naming scheme based on <bus, device, port (or
function)>. As an example, on a server operating system that typically assigns interface names such as
p4p0 and p4p1 for onboard interfaces, the Contrail system assigns p4p0p0 and p4p0p1, when using the
optional contrail-interface-name package.

When the contrail-interface-name package is installed, it uses the threefold naming scheme to provide
consistent interface naming after reboots. The contrail-interface-name package is installed by default
when a Contrail ISO image is installed. If you are using an RPM-based installation, you should install the
contrail-interface-name package before doing any network configuration.

38

If your system already has another mechanism for getting consistent interface names after a reboot, it is
not necessary to install the contrail-interface-name package.

Configuring the Control Node with BGP

An important task after a successful installation is to configure the control node with BGP. This
procedure shows how to configure basic BGP peering between one or more virtual network controller
control nodes and any external BGP speakers. External BGP speakers, such as Juniper Networks MX80
routers, are needed for connectivity to instances on the virtual network from an external infrastructure
or a public network.

Before you begin, ensure that the following tasks are completed:

• The Contrail Controller base system image has been installed on all servers.

• The role-based services have been assigned and provisioned.

• IP connectivity has been verified between all nodes of the Contrail Controller.

• You can access the Contrail user interface at http://nn.nn.nn.nn:8080, where nn.nn.nn.nn is the IP
address of the configuration node server that is running the contrail-webui service.

To configure BGP peering in the control node:

1. From the Contrail Controller module control node (http://nn.nn.nn.nn:8080), select Configure >
Infrastructure > BGP Routers; see Figure 2 on page 40.

39

Figure 2: Configure> Infrastructure > BGP Routers

A summary screen of the control nodes and BGP routers is displayed; see Figure 3 on page 40.

Figure 3: BGP Routers Summary

40

2. (Optional) The global AS number is 64512 by default. To change the AS number, on the BGP Router
summary screen click the gear wheel and select Edit. In the Edit BGP Router window enter the new
number.

3. To create control nodes and BGP routers, on the BGP Routers summary screen, click the

icon. The Create BGP Router window is displayed; see Figure 4 on page 41.

Figure 4: Create BGP Router

4. In the Create BGP Router window, click BGP Router to add a new BGP router or click Control Node
to add control nodes.

For each node you want to add, populate the fields with values for your system. See Table 2 on page
42.

41

Table 2: Create BGP Router Fields

Field Description

Hostname Enter a name for the node being added.

Vendor ID Required for external peers. Populate with a text identifier, for
example, “MX-0”. (BGP peer only)

IP Address The IP address of the node.

Router ID Enter the router ID.

Autonomous System Enter the AS number for the node. (BGP peer only)

Address Families Enter the address family, for example, inet-vpn

Hold Time BGP session hold time. The default is 90 seconds; change if needed.

BGP Port The default is 179; change if needed.

Authentication Mode Enable MD5 authentication if desired.

Authentication key Enter the Authentication Key value.

Physical Router The type of the physical router.

Available Peers Displays peers currently available.

Configured Peers Displays peers currently configured.

5. Click Save to add each node that you create.

6. To configure an existing node as a peer, select it from the list in the Available Peers box, then click >>
to move it into the Configured Peers box.

Click << to remove a node from the Configured Peers box.

42

7. You can check for peers by selecting Monitor > Infrastructure > Control Nodes; see Figure 5 on page
43.

Figure 5: Control Nodes

In the Control Nodes window, click any hostname in the memory map to view its details; see Figure 6
on page 43.

Figure 6: Control Node Details

43

8. Click the Peers tab to view the peers of a control node; see Figure 7 on page 44.

Figure 7: Control Node Peers Tab

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail

Adding a New Node to an Existing Containerized Contrail Cluster

IN THIS SECTION

Controller Configuration | 45

This is the initial process for adding a new node to an existing cluster in containerized Contrail.

44

Controller Configuration

1. Create contrailctl configuration and start a controller container on a new node.

• Configure contrailctl configurations in /etc/contrailctl/controller.conf .

See examples on github at:

contrail-docker/tools/python-contrailctl/examples/configs/controller.conf

• Start the controller container. For more information, see How to run Contrail Docker containers.

• Wait for the new containers to come up completely.

2. Configure the existing cluster nodes with new nodes.

The purpose of this step is to reconfigure the existing cluster application configurations to include
newly added servers, then restart to accommodate the configuration changes.

You can do this by using one of two methods described below:

Using contrailctl to add node configuration on existing containers

You can use contrailctl to add the node configuration on existing containers by running the following
steps on all existing containers on all cluster nodes.

NOTE: Run this step first on all zookeeper follower nodes, then run on the leader node.

1. Determine which node is the leader node.

To determine which node is the leader and which are followers in a zookeeper cluster, run the
following commands against your zookeeper cluster nodes.

$ echo stat | nc 192.168.0.102 2181 | grep Mode Mode: leader

$ echo stat | nc 192.168.0.100 2181 | grep Mode Mode: follower

2. Run contrailctl on all the existing containers in all cluster nodes, follower nodes first and leader node
last.

$ contrailctl config node add -h
usage: contrailctl config node add [-h] -t {controller,analyticsdb,analytics}
 -n NODE_ADDRESSES [-s SEED_LIST]
 [-f CONFIG_FILE] -c

45

https://github.com/Juniper/contrail-docker/blob/master/tools/python-contrailctl/examples/configs/controller.conf
https://github.com/Juniper/contrail-docker/wiki/How-to-run-contrail-docker-containers

{controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}
 [--config-list CONFIG_LIST]

optional arguments:
 -h, --help show this help message and exit
 -t {controller,analyticsdb,analytics}, --type {controller,analyticsdb,analytics}
 Type of node
 -n NODE_ADDRESSES, --node-addresses NODE_ADDRESSES
 Comma separated list of node addresses
 -s SEED_LIST, --seed-list SEED_LIST
 Comma separated list of seed nodes to be used
 -f CONFIG_FILE, --config-file CONFIG_FILE
 Master config file path
 -c {controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}, --component
{controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}
 contrail role to be configured
 --config-list CONFIG_LIST
 comma separated list of config nodes. Optional it is
 needed only when the new controller nodes added are
 config service disabled

Add new controllers in analytics container
$ contrailctl config node add -t controller -n 192.168.0.10,192.168.0.11 -s
192.168.0.102,192.168.0.99 -c analytics

Add new controllers in analyticsdb container
$ contrailctl config node add -t controller -n 192.168.0.10,192.168.0.11 -s
192.168.0.102,192.168.0.99 -c analyticsdb

Add new controllers in other controller containers
$ contrailctl config node add -t controller -n 192.168.0.10,192.168.0.11 -s
192.168.0.102,192.168.0.99 -c controller

Manually configure contrailctl on all containers and sync the configs

1. Determine which node is the leader node.

To determine which node is the leader and which are followers in a zookeeper cluster, run the
following commands against your zookeeper cluster nodes.

$ echo stat | nc 192.168.0.102 2181 | grep Mode Mode: leader

$ echo stat | nc 192.168.0.100 2181 | grep Mode Mode: follower

46

2. Manually configure /etc/contrailctl/controller.conf with new nodes for various *._list configurations
and config_seed_list. See examples at: https://github.com/Juniper/contrail-docker/blob/master/tools/
python-contrailctl/examples/configs/controller.conf

3. Run contrailctl within the containers.

$ docker exec <container name> contrailctl config sync -c <component name>

$ docker exec controller contrailctl config sync -c controller

Removing Nodes in an Existing Containerized Cluster

For the first version of containerized Contrail, there is no script available for removing a node from an
existing cluster. If it is necessary to remove a node from an existing containerized Contrail cluster, please
contact Juniper Networks JTAC for assistance.

Using contrailctl to Configure Services Within Containers

IN THIS SECTION

What is contrailctl? | 47

Command Operations | 48

Starting with Contrail 4.0, some subsystems of Contrail are delivered as Docker containers. The
contrailctl tool is a set of commands that enable a user to make some changes to the configuration file
within a Contrail container.

What is contrailctl?

Starting with Contrail 4.0, some modules of the Contrail architecture have been grouped by function
into Docker containers. Each container has an INI-based configuration file to maintain the specific
configuration for that container. The contrailctl is a tool within the container that provides the user a
simple command structure for provisioning and operating the Contrail services packaged in the
container.

Because it is complex to provision and manage the various services within Contrail containers, the
contrailctl tool helps configure the services in the container to be in sync with the container-specific
configuration files.

47

https://github.com/Juniper/contrail-docker/blob/master/tools/python-contrailctl/examples/configs/controller.conf
https://github.com/Juniper/contrail-docker/blob/master/tools/python-contrailctl/examples/configs/controller.conf

The contrailctl tool is driven by the single INI-based configuration file per container, for example,
the /etc/contrailctl/controller.conf for the controller container. Any state changes of the services within
the container must be made according to the configuration in the contrailctl configuration file for that
container. The contrailctl configuration files are available on each node at a default location of /etc/
contrailctl/*.conf.

Any changes made to the configuration files in the node are available within the container.

Each Contrail container has a separate contrailctl configuration file, currently:

• contrail-controller—/etc/contrailctl/controller.conf

• contrail-analytics—/etc/contrailctl/analytics.conf

• contrail-analyticsdb—/etc/contrailctl/analyticsdb.conf

Sample container configuration files can be seen at

https://github.com/Juniper/contrail-docker/tree/master/tools/python-contrailctl/examples/configs

Command Operations

The contrailctl is used within the node that holds a container. It is used at startup to configure and start
the services within the container. The user must connect to the container to run contrailctl, or use the
following command syntax to run contrailctl:

docker exec <container name or id> contrailctl <arguments>

Example:

docker exec controller contrailctl config sync -c controller -Fv

The main function of the contrailctl is to ensure that the desired configurations for the services within a
container are in sync with the contrailctl master configuration file within the container.

Command Syntax and Options

$ contrailctl config sync -h
usage: contrailctl config sync [-h] [-f CONFIG_FILE] -c

{controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}
 [-F] [-t TAGS]

optional arguments:
 -h, --help show this help message and exit
 -f CONFIG_FILE, --config-file CONFIG_FILE

48

https://github.com/Juniper/contrail-docker/tree/master/tools/python-contrailctl/examples/configs

 Master config file path
 -c {controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}, --component
{controller,analyticsdb,analytics,agent,lb,kubemanager,mesosmanager}
 Component[s] to be configured
 -F, --force Whether to apply config forcibly
 -t TAGS, --tags TAGS comma separated list of tags to runspecific set of
 ansible code

Updating and Syncing Service Configurations Within the Container

You can update service configurations by editing the appropriate container configuration file and then
syncing.

While starting the container, the contrailctl configurations are provided under /etc/contrailctl. During
startup, contrailctl config sync runs to synchronize the configurations to the internal services.

If a user wants to add or change configurations, the user can edit the appropriate configuration file
in /etc/contrailctl/ and then manually run contrailctl config sync on that specific container.

Using contrailctl config sync synchronizes the entire configuration from the master configuration file
in /etc/contrailctl to the service configurations within the container.

Syntax and Usage: config sync

contrailctl config sync [section] [param] [-f|--force]

• Use the options section and parameter to restrict the data to be synced to a specific section and
parameter.

• Use the optional force to perform an Ansible run, even if there is no configuration change to be
synced.

Example: config sync

In this example, the user wants to add a configuration "foo=bar" to the controller container after the
container is started.

The following example shows the procedure to sync a configuration change within the controller
container.

1. The user edits the /etc/contrailctl/controller.conf to add the desired configuration changes within the
node that holds the container.

2. The user syncs the change to the services running within the container.

49

$ docker exec <my controller> config sync -c controller -v

RELATED DOCUMENTATION

Introduction to Containerized Contrail Modules

Contrail Global Controller

IN THIS SECTION

Resource Identifier Management | 50

Multiple Location Resource Provisioning | 51

Starting with Release 3.1, Contrail provides support for a global controller. The global controller feature
provides a seamless controller experience across multiple regions in a cloud environment by helping
manage multiple OpenStack installations, each having its own Keystone, Neutron, Nova and so on. High
availability is provided by using separate failure domains by region.

To handle the resource burdens when connecting and configuring servers and virtual machines over
multiple, different regions, the global controller has the following main responsibilities:

Resource Identifier Management

The global controller uses centralized resource ID management to manage multiple types of identifiers
(IDs), identifying such things as route targets, virtual networks, security groups, and so on.

The Contrail global controller can interconnect virtual networks (VNs) residing in different data centers
using BGP VPN technology. BGP VPN recognizes virtual private networks (VPNs) by using route target
identifiers. A virtual network ID is used to identify the same virtual networks in different data centers, to
prevent looping in service chains. Security group IDs identify the same security group over multiple data
centers, so that the same security group policies can be used. It is important to use the same security
group over multiple regions to allow traffic from all routes in the same virtual networks.

The global controller needs to manage all of the identifiers when interconnecting multiple data centers.

50

Multiple Location Resource Provisioning

There are many cases in which the same resource, such as policy or services, needs to exist in multiple
data centers. For example, there might be a security policy to apply a firewall for any traffic for an
application server network that exists in multiple locations. Each location needs to have the same virtual
network, network policy, and firewalls. The Contrail global controller automates this process.

Requirements, Assumptions, and Constraints

The following are requirements, assumptions, and constraints for implementing the Contrail global
controller:

• Each data center has different regions with OpenStack with Contrail.

• Each region that is managed under the same OpenStack Keystone or Keystone data must be
replicated with multiple data centers.

• The global controller has a secure API connection for each OpenStack with Contrail region.

• Each Contrail controller needs peering by eBGP or iBGP; eBGP is recommended.

• Each OpenStack Keystone has an administrator account for the global controller. The account must
be authorized to manage resources in each region.

Platform Support

The following are the platform requirements for the Contrail global controller:

• OpenStack Liberty

• Ubuntu 14.04.4

• Contrail Release 3.1 or greater

Installation

The global controller is a new feature starting with Contrail Release 3.1. The installation instructions can
be found in the following location:

https://nati.gitbooks.io/contrail-global-controller/content/doc/installation.html

51

https://nati.gitbooks.io/contrail-global-controller/content/doc/installation.html

Role and Resource-Based Access Control

IN THIS SECTION

Contrail Role and Resource-Based Access (RBAC) Overview | 52

API-Level Access Control | 52

Object Level Access Control | 54

Configuration | 54

Utilities | 56

Upgrading from Previous Releases | 58

Configuring RBAC Using the Contrail User Interface | 58

RBAC Resources | 61

Contrail Role and Resource-Based Access (RBAC) Overview

Contrail Release 3.0 and later provides role and resource-based access control (RBAC) with API
operation-level access control.

The RBAC implementation relies on user credentials obtained from Keystone from a token present in an
API request. Credentials include user, role, tenant, and domain information.

API-level access is controlled by a list of rules. The attachment points for the rules include global-system-
config, domain, and project. Resource-level access is controlled by permissions embedded in the object.

API-Level Access Control

If the RBAC feature is enabled, the API server requires a valid token to be present in the X-Auth-Token of
any incoming request. The API server trades the token for user credentials (role, domain, project, and so
on) from Keystone.

If a token is missing or is invalid, an HTTP error 401 is returned.

The api-access-list object holds access rules of the following form:

<object, field> => list of <role:CRUD>

Where:

52

object An API resource such as network or subnet.

field Any property or reference within the resource. The field option can be multilevel, for example,
network.ipam.host-routes can be used to identify multiple levels. The field is optional, so in its
absence, the create, read, update, and delete (CRUD) operation refers to the entire resource.

role The Keystone role name.

Each rule also specifies the list of roles and their corresponding permissions as a subset of the CRUD
operations.

Example: ACL RBAC Object

The following is an example access control list (ACL) object for a project in which the admin and any
users with the Development role can perform CRUD operations on the network in a project. However, only
the admin role can perform CRUD operations for policy and IP address management (IPAM) inside a
network.

<virtual-network, network-policy> => admin:CRUD

 <virtual-network, network-ipam> => admin:CRUD

 <virtual-network, *> => admin:CRUD, Development:CRUD

Rule Sets and ACL Objects

The following are the features of rule sets for access control objects in Contrail.

• The rule set for validation is the union of rules from the ACL attached to:

• User project

• User domain

• Default domain

It is possible for the project or domain access object to be empty.

• Access is only granted if a rule in the combined rule set allows access.

• There is no explicit deny rule.

• An ACL object can be shared within a domain. Therefore, multiple projects can point to the same
ACL object. You can make an ACL object the default.

53

Object Level Access Control

The perms2 permission property of an object allows fine-grained access control per resource.

The perms2 property has the following fields:

owner This field is populated at the time of creation with the tenant UUID value extracted from the
token.

share list The share list gets built when the object is selected for sharing with other users. It is a list of
tuples with which the object is shared.

The permission field has the following options:

• R—Read object

• W—Create or update object

• X—Link (refer to) object

Access is allowed as follows:

• If the user is the owner and permissions allow (rwx)

• Or if the user tenant is in a shared list and permissions allow

• Or if world access is allowed

Configuration

This section describes the parameters used in Contrail RBAC.

Parameter: aaa-mode

RBAC is controlled by a parameter named aaa-mode. This parameter is used in place of the multi-tenancy
parameter of previous releases.

The aaa-mode can be set to the following values:

• no-auth—No authentication is performed and full access is granted to all.

• cloud-admin—Authentication is performed and only the admin role has access.

• rbac—Authentication is performed and access is granted based on role.

54

NOTE: The multi_tenancy parameter is deprecated, starting with Contrail 3.0. The parameter
should be removed from the configuration. Instead, use the aaa_mode parameter for RBAC to take
effect.

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

Parameter: cloud_admin_role

A user who is assigned the cloud_admin_role has full access to everything.

This role name is configured with the cloud_admin_role parameter in the API server. The default setting for
the parameter is admin. This role must be configured in Keystone to change the default value.

If a user has the cloud_admin_role in one tenant, and the user has a role in other tenants, then the
cloud_admin_role role must be included in the other tenants. A user with the cloud_admin_role doesn't need
to have a role in all tenants, however, if that user has any role in another tenant, that tenant must
include the cloud_admin_role.

Configuration Files with Cloud Admin Credentials

The following configuration files contain cloud_admin_role credentials:

• /etc/contrail/contrail-keystone-auth.conf

• /etc/neutron/plugins/opencontrail/ContrailPlugin.ini

• /etc/contrail/contrail-webui-userauth.js

Changing Cloud Admin Configuration Files

Modify the cloud admin credential files if the cloud_admin_role role is changed.

1. Change the configuration files with the new information.

2. Restart the following:

• API server

service supervisor-config restart

• Neutron server

service neutron-server restart

• WebUI

55

service supervisor-webui restart

Global Read-Only Role

You can configure a global read-only role (global_read_only_role).

A global_read_only_role allows read-only access to all Contrail resources. The global_read_only_role must be
configured in Keystone. The default global_read_only_role is not set to any value.

A global_read_only_role user can use the Contrail Web Ui to view the global configuration of Contrail
default settings.

Setting the Global Read-Only Role

To set the global read-only role:

1. The cloud_admin user sets the global_read_only_role in the Contrail API:

/etc/contrail/contrail-api.conf

global_read_only_role = <new-admin-read-role>

2. Restart the contrail-api service:

service contrail-api restart

Parameter Changes in /etc/neutron/api-paste.ini

Contrail RBAC operation is based upon a user token received in the X-Auth-Token header in API requests.
The following change must be made in /etc/neutron/api-paste.ini to force Neutron to pass the user
token in requests to the Contrail API server:

keystone = user_token request_id catch_errors
...
...
[filter:user_token]
paste.filter_factory =
neutron_plugin_contrail.plugins.opencontrail.neutron_middleware:token_factory

Utilities

This section describes the utilities available for Contrail RBAC.

56

Utility: rbacutil.py

Use rbacutil.py to manage api-access-list rules. It allows adding, removing, and viewing of rules.

Read RBAC rule-set using UUID or FQN

To read an RBAC rule-set using FQN domain/project:

python /opt/contrail/utils/rbacutil.py --uuid '$ABC123' --op read
python /opt/contrail/utils/rbacutil.py --name 'default-domain:default-api-access-list' --op read

Create RBAC rule-set using FQN domain/project

To create the RBAC rule-set, using UUID or FQN:

python /opt/contrail/utils/rbacutil.py --fq_name 'default-domain:api-access-list' --op create

Delete RBAC group using FQN or UUID

To delete an RBAC group using FQN or UUID:

python /opt/contrail/utils/rbacutil.py --name 'default-domain:api-access-list' --op delete
python /opt/contrail/utils/rbacutil.py --uuid $ABC123 --op delete

Add rule to existing RBAC group

To add a rule to an existing RBAC group:

python /opt/contrail/utils/rbacutil.py --uuid <uuid> --rule "* Member:R" --op add-rule
python /opt/contrail/utils/rbacutil.py --uuid <uuid> --rule "useragent-kv *:CRUD" --op add-rule

57

Delete rule from RBAC group - specify rule number or exact rule

To delete a rule from an RBAC group, and specify a rule number or exact rule:

python /opt/contrail/utils/rbacutil.py --uuid <uuid> --rule 2 --op del-rule
python /opt/contrail/utils/rbacutil.py --uuid <uuid> --rule "useragent-kv *:CRUD" --op del-rule

Utility: chmod2.py

The utility chmod2.py enables updating object permissions, including:

• Ownership—Specify a new owner tenant UUID.

• Enable/disable sharing with other tenants—Specify the tenants.

• Enable/disable sharing with world—Specify permissions.

Upgrading from Previous Releases

The multi_tenancy parameter is deprecated, starting with Contrail 3.1. The parameter should be removed
from the configuration. Instead, use the aaa_mode parameter for RBAC to take effect.

If the multi_tenancy parameter is not removed, the aaa-mode setting is ignored.

Configuring RBAC Using the Contrail User Interface

To use the Contrail UI with RBAC:

1. Set the aaa_mode to no_auth.

/etc/contrail/contrail-analytics-api.conf

aaa_mode = no-auth

2. Restart the analytics-api service.

service contrail-analytics-api restart

You can use the Contrail UI to configure RBAC at both the API level and the object level. API level
access control can be configured at the global, domain, and project levels. Object level access is available
from most of the create or edit screens in the Contrail UI.

58

Configuring RBAC at the Global Level

To configure RBAC at the global level, navigate to Configure > Infrastructure > Global Config > RBAC,
see Figure 8 on page 59.

Figure 8: RBAC Global Level

Configuring RBAC at the Domain Level

To configure RBAC at the domain level, navigate to Configure > RBAC > Domain, see Figure 9 on page
59.

Figure 9: RBAC Domain Level

Configuring RBAC at the Project Level

To configure RBAC at the project level, navigate to Configure > RBAC > Project, see Figure 10 on page
60.

59

Figure 10: RBAC Project Level

Configuring RBAC Details

Configuring RBAC is similar at all of the levels. To add or edit an API access list, navigate to the global,
domain, or project page, then click the plus (+) icon to add a list, or click the gear icon to select from Edit,
Insert After, or Delete, see Figure 11 on page 60.

Figure 11: RBAC Details API Access

Creating or Editing API Level Access

Clicking create, edit, or insert after activates the Edit API Access popup window, where you enter the
details for the API Access Rules. Enter the user type in the Role field, and use the + icon in the Access
filed to enter the types of access allowed for the role, including, Create, Read, Update, Delete, and so on,
see Figure 12 on page 61.

60

Figure 12: Edit API Access

Creating or Editing Object Level Access

You can configure fine-grained access control by resource. A Permissions tab is available on all create or
edit popups for resources. Use the Permissions popup to configure owner permissions and global share
permissions. You can also share the resource to other tenants by configuring it in the Share List, see
Figure 13 on page 61.

Figure 13: Edit Object Level Access

RBAC Resources

Refer to the OpenStack Administrator Guide for additional information about RBAC:

61

• Identity API protection with role-based access control (RBAC)

62

http://docs.openstack.org/admin-guide-cloud/content/identity-service-api-protection-with-role-based-access-control.html

CHAPTER 4

Installation and Configuration Scenarios

IN THIS CHAPTER

Setting Up and Using a Simple Virtual Gateway with Contrail 4.0 | 63

Simple Underlay Connectivity without Gateway | 73

Configuring MD5 Authentication for BGP Sessions | 76

Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter | 78

Configuring Single Root I/O Virtualization (SR-IOV) | 81

Provisioning DPDK SRIOV with Server Manager | 86

Configuring Virtual Networks for Hub-and-Spoke Topology | 89

Configuring Transport Layer Security-Based XMPP in Contrail | 96

Configuring Graceful Restart and Long-lived Graceful Restart | 99

Setting Up and Using a Simple Virtual Gateway with Contrail 4.0

IN THIS SECTION

Introduction to the Simple Gateway | 64

How the Simple Gateway Works | 64

Setup Without Simple Gateway | 64

Setup With a Simple Gateway | 65

Simple Gateway Configuration Features | 66

Packet Flows with the Simple Gateway | 67

Packet Flow Process From the Virtual Network to the Public Network | 68

Packet Flow Process From the Public Network to the Virtual Network | 68

Methods for Configuring the Simple Gateway | 69

Using the vRouter Configuration File to Configure the Simple Gateway | 69

63

Using Thrift Messages to Dynamically Configure the Simple Gateway | 69

Common Issues with Simple Gateway Configuration | 72

Introduction to the Simple Gateway

Every virtual network has a routing instance associated with it. The routing instance defines the network
connectivity for the virtual machines in the virtual network. By default, the routing instance contains
routes only for virtual machines spawned within the virtual network. Connectivity between virtual
networks is controlled by defining network policies.

The public network is the IP fabric or the external networks across the IP fabric. The virtual networks do
not have access to the public network, and a gateway is used to provide connectivity to the public
network from a virtual network. In traditional deployments, a routing device such as a Juniper Networks
MX Series router can act as a gateway.

The simple virtual gateway for Contrail is a restricted implementation of a gateway that can be used for
experimental purposes, only. The simple gateway provides the Contrail virtual networks with access to
the public network, and is represented as vgw.

The simple gateway is valid ONLY for a kernel vrouter, and cannot be used with any other flavor of
vrouter, such as DPDK, SR-IOV, or the like. The simple gateway cannot be used in a production
environment, it is for experimental uses only.

How the Simple Gateway Works

The following sections illustrate how the simple gateway works, first, by showing a virtual network
setup with no simple gateway, then illustrating the same setup with a simple gateway configured.

Setup Without Simple Gateway

The following shows a virtual network setup when the simple gateway is not configured.

• A virtual network, default-domain:admin:net1, is configured with the subnet 192.168.1.0/24.

• The routing instance default-domain:admin:net1:net1 is associated with the default-domain:admin:net1 virtual
network .

• A virtual machine with the 192.168.1.253 IP address is spawned in net1.

• A virtual machine is spawned on compute server 1.

• An interface, vhost0, is in the host OS of server 1 and is assigned the 10.1.1.1/24 IP address.

• The vhost0 interface is added to the vRouter in the routing instance fabric.

64

• The simple gateway is not configured.

Setup With a Simple Gateway

Figure 14 on page 66 shows a virtual network setup with the simple gateway configured for the
default-domain:admin:net1 virtual network.

The simple gateway configuration uses a gateway interface (vgw) to provide connectivity between the
fabric routing instance and the default-domain:admin:net1 virtual network.

Figure 14 on page 66 shows the packet flows between the fabric VRF and the default-domain:admin:net1
virtual network.

In the diagram, routes marked with (*) are added by the simple gateway feature.

65

Figure 14: Virtual Network Setup With a Simple Gateway

Simple Gateway Configuration Features

The simple gateway configuration has the following features.

• The simple gateway is configured for the default-domain:admin:net1 virtual network.

• The vgw gateway interface provides connectivity between the routing instance default-
domain:admin:net1:net1 and the fabric.

• An IP address is not configured for the vgw gateway interface.

• The host OS is configured with the following:

• Two INET interfaces are added to the host OS: vgw and vhost0

66

• The host OS is not aware of the routing instances, so the vgw and vhost0 interfaces are part of the
same routing instance in the host OS.

• The simple gateway adds the 192.168.1.0/24 route, pointing to the vgw interface, and that setup is
added to the host OS. This route ensures that any packet destined to the virtual machine is sent
to the vRouter on the vgw interface.

• The vRouter is configured with the following:

• The routing instance named Fabric is created for the fabric network.

• The interface vhost0 is added to the routing instance Fabric.

• The interface eth0, which is connected to the fabric network, is added to the routing instance
named Fabric.

• The simple gateway adds the 192.168.1.0/24 route to the vhost0 interface. Consequently, packets
destined to the default-domain:admin:net1 virtual network are sent to the host OS.

• The default-domain:admin:net1:net1 routing instance is created for the default-domain:admin:net1 virtual
network.

• The vgw interface is added to the default-domain:admin:net1:net1 routing instance.

• The simple gateway adds a default route (0.0.0.0/0) that points to the vgw interface. Packets in the
default-domain:admin:net1:net routing instance that match this route are sent to the host OS on the
vgw interface. The host OS routes the packets to the fabric network over the vhost0 interface.

Simple Gateway Restrictions

The following are restrictions of the simple gateway:

• A single compute node can have the simple gateway configured for multiple virtual networks,
however, there cannot be overlapping subnets. The host OS does not support routing instances.
Therefore, all gateway interfaces in the host OS are in the same routing instance and the subnets in
the virtual networks must not overlap.

• Each virtual network can have a single simple gateway interface. ECMP is not supported.

Packet Flows with the Simple Gateway

The following sections describe the packet flow process when the simple gateway is configured on a
Contrail system.

First, the packet flow process from the virtual network to the public network is described. Next, the
packet flow process from the public network to the virtual network is described.

67

Packet Flow Process From the Virtual Network to the Public Network

The following describes the procedure used to move a packet from the virtual network (net1) to the
public network.

1. A packet with a source IP address of 192.168.1.253 and a destination IP address of 10.1.1.253 comes
from a virtual machine and is received by the vRouter on the tap0 interface.

2. The tap0 interface is in the default-domain:admin:net1:net1 routing instance.

3. The route lookup for 10.1.1.253 in the default-domain:admin:net1:net1 routing instance finds the
default route pointing to the tap interface named vgw.

4. The vRouter transmits the packet toward the vgw interface and it is received by the networking stack
of the host OS.

5. The host OS performs forwarding based on its routing table and forwards the packet on the vhost0
interface.

6. Packets transmitted on the vhost0 interface are received by the vRouter.

7. The vhost0 interface is added to the Fabric routing instance.

8. The routing table for 10.1.1.253 in the Fabric routing instance indicates that the packet is to be
transmitted on the eth0 interface.

9. The vRouter transmits the packet on the eth0 interface.

10. The 10.1.1.253 host on the Fabric routing instance receives the packet.

Packet Flow Process From the Public Network to the Virtual Network

The following describes the procedure used to move a packet from the public network to the virtual
network (net1).

1. A packet with a source IP address of 10.1.1.253 and a destination IP address of 192.168.1.253 coming
from the public network is received on the eth0 interface.

2. The tap0 interface is in the default-domain:admin:net1:net1 routing instance.

3. The vRouter receives the packet from the eth0 interface in the Fabric routing instance.

4. The route lookup for 192.168.1.253 in the Fabric routing instance points to the interface vhost0.

5. The vRouter transmits the packet on the vhost0 interface and it is received by the networking stack
of the host OS.

6. The host OS performs forwarding according to its routing table and forwards the packet on the vgw
interface.

7. The vRouter receives the packet on the vgw interface into the routing instance default-
domain:admin:net1:net1.

8. The route lookup for 192.168.1.253 in the default-domain:admin:net1:net1 routing instance points to
the tap0 interface.

68

9. The vRouter transmits the packet on the tap0 interface.

10. The virtual machine receives the packet destined to 192.168.1.253.

Methods for Configuring the Simple Gateway

There are different methods that can be used to configure the simple gateway. Each of the methods is
described in the following sections.

Using the vRouter Configuration File to Configure the Simple Gateway

Another way to enable a simple gateway is to configure one or more vgw interfaces within the contrail-
vrouter-agent.conf file.

Any changes made in this file for simple gateway configuration are implemented upon the next restart of
the vRouter agent. To configure the simple gateway in the contrail-vrouter-agent.conf file, each simple
gateway interface uses the following parameters:

• interface=vgwxx— Simple gateway interface name.

• routing_instance=default-domain:admin:public xx:public xx— Name of the routing instance for which the
simple gateway is being configured.

• ip_block=1.1.1.0/24— List of the subnet addresses allocated for the virtual network. Routes within this
subnet are added to both the host OS and routing instance for the fabric instance. Represent
multiple subnets in the list by separating each with a space.

• routes=10.10.10.1/24 11.11.11.1/24— List of subnets in the public network that are reachable from the
virtual network. Routes within this subnet are added to the routing instance configured for the vgw
interface. Represent multiple subnets in the list by separating each with a space.

Using Thrift Messages to Dynamically Configure the Simple Gateway

IN THIS SECTION

How to Dynamically Create a Virtual Gateway | 70

How to Dynamically Delete a Virtual Gateway | 71

Using Devstack to Configure the Simple Gateway | 72

Another way to configure the simple gateway is to dynamically send create and delete thrift messages to
the vrouter agent.

69

Starting with Contrail Release 1.10 and greater, the following thrift messages are available:

• AddVirtualGateway—add a virtual gateway

• DeleteVirtualGateway —delete a virtual gateway

• ConnectForVirtualGateway —allows audit of the virtual gateway configuration by stateful clients. Upon a
new ConnectForVirtualGateway request, one minute is allowed for the configuration to be redone. Any
older virtual gateway configuration remaining after this time is deleted.

How to Dynamically Create a Virtual Gateway

To dynamically create a simple virtual gateway, you run a script on the compute node where the virtual
gateway is being created.

When run, the script does the following:

1. Enables forwarding on the node.

2. Creates the required interface.

3. Adds the interface to the vRouter.

4. Adds required routes to the host OS.

5. Sends the AddVirtualGateway thrift message to the vRouter agent telling it to create the virtual gateway.

Example: Dynamically Create a Virtual Gateway

The following procedure dynamically creates the vgw1 interface, with 20.30.40.0/24 and 30.40.50.0/24
subnets in the default-domain:admin:vn1:vn1 VRF.

1. Set the PYTHONPATH variable to the location of the InstanceService.py and types.pyfiles, for example:

export PYTHONPATH=/usr/lib/python2.7/dist-packages/nova_contrail_vif/gen_py/instance_service

export PYTHONPATH=/usr/lib/python2.6/site-packages/contrail_vrouter_api/gen_py/instance_service

2. Run the virtual gateway provision command with the oper create option.

Use the subnets option to specify the subnets defined for virtual network vn1.

Use the routes option to specify the routes in the public network that are injected into vn1.

In the following example, the virtual machines in vn1 can access subnets 8.8.8.0/24 and 9.9.9.0/24 in the
public network:

70

python /opt/contrail/utils/provision_vgw_interface.py --oper create --interface vgw1 --subnets 20.30.40.0/24
30.40.50.0/24 --routes 8.8.8.0/24 9.9.9.0/24 --vrf default-domain:admin:vn1:vn1

How to Dynamically Delete a Virtual Gateway

To dynamically delete a virtual gateway, run a script on the compute node where the virtual gateway is.

When run, the script does the following:

1. Sends the DeleteVirtualGateway thrift message to the vRouter agent. Tell it to delete the virtual gateway.

2. Deletes the virtual gateway interface from the vRouter.

3. Deletes the virtual gateway routes that were added in the host OS when the virtual gateway was
created.

Example: Dynamically Create a Virtual Gateway

The following procedure dynamically deletes the vgw1 interface. It also deletes the 20.30.40.0/24 and
30.40.50.0/24 subnets in the default-domain:admin:vn1:vn1 VRF .

1. Set the PYTHONPATH variable to the location of the InstanceService.py and types.py files, for example:

export PYTHONPATH=/usr/lib/python2.7/dist-packages/nova_contrail_vif/gen_py/instance_service

export PYTHONPATH=/usr/lib/python2.6/site-packages/contrail_vrouter_api/gen_py/instance_service

2. Run the virtual gateway provision command with the oper delete option.

python /opt/contrail/utils/provision_vgw_interface.py --oper delete --interface vgw1 --subnets 20.30.40.0/24
30.40.50.0/24 --routes 8.8.8.0/24 9.9.9.0/24

3. (optional) If you are using a stateful client, send the ConnectForVirtualGateway thrift message to the
vRouter agent when the client starts.

NOTE: If the vRouter agent restarts or if the compute node reboots, it is expected that the client
reconfigures again.

71

Using Devstack to Configure the Simple Gateway

Another way to configure the simple gateway is to set configuration parameters in the devstack localrc
file.

The following parameters are available:

• CONTRAIL_VGW_PUBLIC_NETWORK — The name of the routing instance for which the simple gateway is being
configured.

• CONTRAIL_VGW_PUBLIC_SUBNET — A list of subnet addresses allocated for the virtual network. Routes
containing these addresses are added to both the host OS and the routing instance for the fabric. List
multiple subnets by separating each with a space.

• CONTRAIL_VGW_INTERFACE — A list of subnets in the public network that are reachable from the virtual
network. Routes containing these subnets are added to the routing instance configured for the
simple gateway. List multiple subnets by separating each with a space.

This method can only add the default route 0.0.0.0/0 into the routing instance specified in the
CONTRAIL_VGW_PUBLIC_NETWORK option.

Example: Devstack Configuration for Simple Gateway

Add the following lines in the localrc file for stack.sh:

CONTRAIL_VGW_INTERFACE=vgw1

CONTRAIL_VGW_PUBLIC_SUBNET=192.168.1.0/24

CONTRAIL_VGW_PUBLIC_NETWORK=default-domain:admin:net1:net1

NOTE: This method can only add the 0.0.0.0/0 default route into the routing instance specified in
the CONTRAIL_VGW_PUBLIC_NETWORK option.

Common Issues with Simple Gateway Configuration

The following are common problems you might encounter when configuring a simple gateway.

• Packets from the external network are not reaching the compute node.

The devices in the fabric network must be configured with static routes for the IP addresses defined
in the public subnet (192.168.1.0/24 in the example) to reach the compute node that is running as a
simple gateway.

72

• Packets are reaching the compute node, but are not routed from the host OS to the virtual machine.

Check to see if the firewall_driver in the /etc/nova/nova.conf file is set to
nova.virt.libvirt.firewall.IptablesFirewallDriver, which enables IPTables. IPTables can discard packets.

Resolutions include disabling IPTables during runtime or setting the firewall_driver in the localrc
file:LIBVIRT_FIREWALL_DRIVER=nova.virt.firewall.NoopFirewallDriver

Simple Underlay Connectivity without Gateway

IN THIS SECTION

Simple Routing of Packets Without a Gateway | 73

Supported Use Cases | 74

Implementation: Routing Instances | 74

Implementation | 76

Simple Routing of Packets Without a Gateway

For simple enterprise use cases and public cloud environments, it is possible to directly route packets
using the IP fabric network without using an SDN gateway.

The primary use for Contrail in this mode is to manage distributed security policy for workloads or bare
metal servers.

The following features can be enabled when using this method:

• Network policy support for IP fabric

• Security groups for VMs and containers on IP fabric

• Security groups for vhost0 interface, to protect compute node or bare metal server applications

• Support for service chaining, if policy dictates that traffic goes through a service chain.

73

Supported Use Cases

Starting with Contrail 4.1, the IP fabric network present in the default project can be marked for IP
fabric based forwarding without tunneling. When two virtual networks with this type of configuration
communicate, traffic will be forwarded directly using the underlay.

The following use cases for no SDN gateway are supported.

• Virtual networks with an IP subnet that is a subset of the IP fabric network or another subnet, and
are using the IP fabric network as the provider network.

VMs and containers from this type of VNs communicate within their VNs, with IP fabric VN, and with
other VNs that also have IP fabric as their provider network based on configured policy, using only
the underlay, with no tunneling.

• Virtual networks with IP fabric VN as their provider network, communicating with other VNs that do
not have any provider network based on policy configured, using overlay with tunneling.

• Vhost communication , with other compute vhosts and with VMs and containers in the IP fabric
network or other VNs with IP fabric network as the provider network based on policy configured,
using underlay and no tunneling.

• Vhost communication with VMs in any virtual network based on policy configuration, using overlay
with tunneling.

Implementation: Routing Instances

To implement the simple underlay connectivity with no SDN gateway, the IP fabric network has two
routing instance associations:

• A default routing instance, ip-fabric:default, which is used for all forwarding decisions by the data
path.

• A new routing instance, ip-fabric:ip-fabric, to carry L3VPN routes for endpoints in IP fabric. Network
policy and security groups are applied based on these entries.

The IP fabric network can be associated with an IPAM and have its subnets. The IPAM for IP fabric will
always use a flat subnet mode, whereby the same subnet can be shared with multiple virtual networks.
The IP fabric IPAM has the overall subnet, with other virtual networks using blocks from this subnet.

IPAM Addressing Schemes

Two IPAM addressing schemes are supported for IP fabric:

• Common subnet mode with a set of subnet prefixes.

74

• Prefix per vrouter mode. To scale up underlay routing, block allocation per vrouter is supported,
whereby address blocks are advertised instead of individual addresses. Every vrouter and compute
node gets its own prefix. IP address-to-VMI allocation occurs after the scheduling decision is made
for the VM or container. This scheme is supported for K8S and Mesos without restrictions. However,
OpenStack requires the address before the scheduling decision, so in this scheme, the user must
assign an address and dictate the scheduling decision to use OpenStack.

Operation

When a VMI is created in the IP fabric network, the vrouter exports an L3VPN route for the VMI in the
ip-fabric:ip-fabric routing instance, with the vrouter as the next hop (along with the MPLS label, policy
tags, security group tags, and so on). An Inet route is exported in the ip-fabric:default routing instance,
with the vrouter as next hop.

Vrouters use the ip-fabric routing instance to apply policy and the default routing instance is used to
forward traffic. The control node peers with ToRs and publishes the routes of the vrouter nexthops of
the TOR.

It is expected that the ToR propagates these routes to the rest of the underlay network. When using the
prefix per vrouter mode, the ToR might also be configured with static routes pointing to the compute
nodes, instead of peering with the control node.

Vhost interface is also added in the default routing instance. Policy and security groups can be applied
on this interface as well, so that traffic from the applications and services running on the host can be
subjected to all policy decisions possible in Contrail.

The IP fabric network is a Layer 3-only network and the vrouter only looks at the routing table for all
forwarding decisions.

ARP Handling

ARP requests in the IP fabric network and in VNs with the IP fabric network as the provider network are
handled in the following ways:

• VM-to-VM communication, on the same compute or on different compute nodes— Respective
vrouters respond to ARP requests from the VMs with the vrouter's MAC. Agent resolves the ARP for
other compute nodes to fill the next hop corresponding to remote VMs.

• Vhost connectivity to VM on the same compute node—Vrouter responds with vhost MAC (its own
MAC) for ARP requests from vhost. ARP requests from the VM will be responded with vrouter's
MAC.

Each subnet in the networks, IP fabric network or other VNs using IP fabric as the provider network, has
a subnet route in the compute host pointing to the vhost interface. There is a Layer 3 route in the fabric

75

default VRF for each VM, with the next hop pointing to its VMI. Traffic is forwarded to the VM based on
this route. The next hop is a Layer 3 interface next hop with the source MAC being the vrouter’s MAC.

When the vhost and the VN are using different subnets, an ARP request from the vhost has the VM's IP
as the destination IP and the vhost’s IP as the source IP. Vrouter responds to an ARP request with the
vhost’s MAC.

• Vhost connectivity to VM on a different compute node—ARP requests for VMs on a different
compute node are flooded on the fabric interface. The compute node hosting the VM has a Layer 3
route for the VM, with the next hop pointing to its VMI. The vrouter on that node responds to the
ARP request with its vhost MAC address. The VM’s ARP request is always responded to by with
vrouter’s MAC.

• Vhost connectivity to another compute node—As in the previous example, the ARP request is
transmitted on the fabric interface. Other vrouters cross connect the ARP request to their vhost
interface because there is not any Layer 3 route pointing to the VMI. The host responds to the ARP
request.

Broadcast and Multicast Traffic

In Contrail 4.1, broadcast or multicast traffic from VMs in the IP fabric network and from VNs having IP
fabric network as the provider network is handled in the normal way, using the native routing instance
of the interface from which it originates.. DHCP requests from these VMs are served by the vrouter
agent.

Implementation

A virtual network can have a provider network configured using a link from the VN to the IP fabric VN.

A vrouter-specific IP allocation pool can be created. If an instance IP is created with a link to a vrouter
and the vrouter is linked with a flat subnet IPAM, then the instance IP is allocated an address from the
vrouter-specific allocation pool.

Provisioning will create VMI for vhost interface. Creation of virtual networks with IP fabric forwarding,
policy / security group configurations for vhost interface can now be done.

Configuring MD5 Authentication for BGP Sessions

Contrail supports MD5 authentication for BGP peering based on RFC 2385.

This option allows BGP to protect itself against the introduction of spoofed TCP segments into the
connection stream. Both of the BGP peers must be configured with the same MD5 key. Once

76

configured, each BGP peer adds a 16-byte MD5 digest to the TCP header of every segment that it
sends. This digest is produced by applying the MD5 algorithm on various parts of the TCP segment.
Upon receiving a signed segment, the receiver validates it by calculating its own digest from the same
data (using its own key) and compares the two digests. For valid segments, the comparison is successful
since both sides know the key.

The following are ways to enable BGP MD5 authentication and set the keys on the Contrail node.

1. If the md5 key is not included in the provisioning, and the node is already provisioned, you can run the
following script with an argument for md5:

contrail-controller/src/config/utils/provision_control.py

host@<your_node>:/opt/contrail/utils# python provision_control.py --host_name <host_name> --
host_ip <host_ip> --router_asn <asn> --api_server_ip <api_ip> --api_server_port <api_port> --
oper add --md5 “juniper” --admin_user admin --admin_password <password> --admin_tenant_name
admin

2. You can also use the web user interface to configure MD5.

• Connect to the node’s IP address at port 8080 (<node_ip>:8080) and select Configure-
>Infrastructure->BGP Routers. As shown in Figure 15 on page 77, a list of BGP peers is
displayed.

Figure 15: Edit BGP Router Wndow

77

• For a BGP peer, click on the gear icon on the right hand side of the peer entry. Then click Edit.
This displays the Edit BGP Router dialog box.

• Scroll down the window and select Advanced Options.

• Configure the MD5 authentication by selecting Authentication Mode>MD5 and entering the
Authentication Key value.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail

Configuring the Data Plane Development Kit (DPDK) Integrated with
Contrail vRouter

IN THIS SECTION

DPDK Support in Contrail | 78

Preparing the Environment File for Provisioning a Cluster Node with DPDK | 79

Creating a Flavor for DPDK in OpenStack Kilo | 80

DPDK Support in Contrail

Contrail 3.0 and later supports the Data Plane Development Kit (DPDK).

DPDK is an open source set of libraries and drivers for fast packet processing. DPDK enables fast packet
processing by allowing network interface cards (NICs) to send direct memory access (DMA) packets
directly into an application’s address space, allowing the application to poll for packets, and thereby
avoiding the overhead of interrupts from the NIC.

Integrating with DPDK allows a Contrail vRouter to process more packets per second than is possible
when running as a kernel module.

When using DPDK with Contrail 4.0, one or more Contrail compute nodes are provisioned with DPDK
during installation. An entry in the server configuration file specifies which nodes are to be configured to

78

use the DPDK vRouter mode instead of the regular kernel mode. This allows for a mixed setup, where
different nodes use different modes of the vRouter.

Upon installation, when a Contrail compute node is provisioned with DPDK, the server configuration file
specifies which physical interface(s) to use, how many CPU cores to use for forwarding packets, and the
number of huge pages to allocate for DPDK.

Preparing the Environment File for Provisioning a Cluster Node with DPDK

The environment file is used at provsioning to specify all of the options necessary for the installation of
a Contrail cluster, including whether any node should be configured to use DPDK.

Each node to be configured with the DPDK vRouter must be listed in the provisioning file with a
dictionary entry, along with the percentage of memory for DPDK huge pages and the CPUs to be used.

The following are descriptions of the required entries for the server configuration. :

• huge_pages—Specify the percentage of host memory to be reserved for the DPDK huge pages. The
reserved memory will be used by the vRouter and the Quick Emulator (QEMU) for allocating memory
resources for the virtual machines (VMs) spawned on that host.

NOTE: The percentage allocated to huge_pages should not be too high, because the host Linux
kernel also requires memory.

• coremask—Specify a CPU affinity mask with which vRouter will run. vRouter will use only the CPUs
specified for its threads of execution. These CPU cores will be constantly polling for packets, and
they will be displayed as 100% busy in the output of “top”.

Supported formats include:

• Hexadecimal (for example, 0xf)

• Comma-separated list of CPUs (1,2,4...)

• Dash-separated range of CPUs (for example, 1-4)

The server configuration file is configured prior to the installation of Contrail.

Use the standard Contrail installation procedure, and upon completion, your cluster with specified nodes
using the DPDK vRouter implementation is ready to use.

Support for Multiple UIO Drivers

Support is available for optionally specifying the userspace IO (UIO) driver to use in a DPDK-enabled
compute node.

79

Specify UIO in the dpdk section of the server configuration file, by using the optional attribute uio_driver:

{
 "server" : [{
 "parameters" : {
 "provision": {
 "contrail_4": {
 "core_mask": "0x3f",
 "huge_pages": "50",
 "uio_driver" : "igb_uio"
 }
 }
 }
 }]
}

The supported values for uio_driver include:

• igb_uio—specify that the igb_uio module from the DPDK library should be used.

• vfio-pci—specify that the vfio module in the Linux kernel should be used instead of uio, which
protects memory accesses using the IOMMU when a SR-IOV virtual function is used as the physical
interface of vrouter.

• uio_pci_generic—specify that the UIO driver that is built into the Linux kernel should be used. This
option does not support the use of SR-IOV VFs.

If the uio_driver is not specified in the server configuration file, igb_uio is used by default.

Creating a Flavor for DPDK in OpenStack Kilo

OpenStack Kilo has a feature called flavors, which are virtual hardware templates that define sizes for
RAM, disk, and so on. Contrail 3.0 and later supports the OpenStack Kilo flavor that specifies that a VM
should use huge pages. The use of huge pages is a requirement for using a DPDK vRouter.

Use the following command to add the flavor, where m1.large is the name of the flavor. When a VM is
created using this flavor, OpenStack ensures that the VM will only be spawned on a compute node that
has huge pages enabled.

$nova flavor-key m1.large set hw:mem_page_size=large

Huge pages are enabled for compute nodes where vRouter is provisioned with DPDK.

80

If a VM is spawned with a flavor that does not have huge pages enabled, the VM should not be created
on a compute node on which vRouter is provisioned with DPDK.

You can use OpenStack availability zones or host aggregates to exclude the hosts where vRouter is
provisioned with DPDK.

RELATED DOCUMENTATION

Configuring Single Root I/O Virtualization (SR-IOV) | 81

http://www.dpdk.org

Configuring Single Root I/O Virtualization (SR-IOV)

IN THIS SECTION

Overview: Configuring SR-IOV | 81

Configuring SR-IOV Using JSON | 82

Preparing the testbed.py File for Provisioning a Contrail Cluster with SR-IOV | 82

Enabling ASPM in BIOS | 83

Configuring SR-IOV Features Without env.sriov in testbed.py | 83

Launching SR-IOV Virtual Machines | 84

Overview: Configuring SR-IOV

Contrail 3.0 and later supports single root I/O virtualization (SR-IOV) on Ubuntu systems only.

SR-IOV is an interface extension of the PCI Express (PCIe) specification. SR-IOV allows a device, such as
a network adapter, to have separate access to its resources among various hardware functions.

As an example, the Data Plane Development Kit (DPDK) library has drivers that run in user space for
several network interface cards (NICs). However, if the application runs inside a virtual machine (VM), it
does not see the physical NIC unless SR-IOV is enabled on the NIC.

This topic shows how to configure SR-IOV with your Contrail system.

81

http://www.dpdk.org

Configuring SR-IOV Using JSON

If you are provisioning your system by using JSON, you can configure SR-IOV within the server.json file.

 "parameters" : {
 "provision": {
 "contrail_4": {
 "sriov": {
 "p5p1": {
 "VF": 7,
 "physnets": [
 "physnet1"
]
 }
 },
 }

Preparing the testbed.py File for Provisioning a Contrail Cluster with SR-IOV

The testbed.py file is a Python file that is configured to specify all of the options necessary for the
installation of a Contrail cluster. The testbed.py file can only be used with Contrail releases through
3.x.x, or with SM-Lite provisioning with Contrail 4.0.

An env.sriov entry in the testbed.py file is used to specify which NIC interface will be used to launch SR-
IOV virtual machines (VMs).

Each VM to be configured as SR-IOV must be listed in the env.sriov entry, along with the number of
virtual functions to be used and the physical network details, as in the following example:

env.sriov = {
 b7s36 :[{'interface' : 'p6p1', 'VF' : 7, 'physnets' : ['physnet1', 'physnet2']}],
 b7s37 :[{'interface' : 'p6p1', 'VF' : 7, 'physnets' : ['physnet1', 'physnet3']}],
}

The following are required entries for each VM specified in the env.sriov:

• interface—Specify the server NIC where SR-IOV VMs will be launched.

• VF—Specify the number of virtual functions to be configured.

• physnets—Specify the name of the physical networks to be used by each VM.

82

The testbed.py file is configured prior to the installation of Contrail.

Use the standard Contrail installation procedure with fab tools, and upon completion, your cluster is
ready to be enabled to launch SR-IOV VMs with specified NICs.

Enabling ASPM in BIOS

To use SR-IOV, it must have Active State Power Management (ASPM) enabled for PCI Express (PCIe)
devices. Enable ASPM in the system BIOS.

NOTE: The BIOS of your system might need to be upgraded to a version that can enable ASPM.

Configuring SR-IOV Features Without env.sriov in testbed.py

If you are enabling SR-IOV on a system where testbed.py with env.sriov was NOT used to install, you must
also complete the following:

1. Enable the Intel Input-Output Memory Management Unit (IOMMU) on Linux, by doing the following:

a. Make sure the IOMMU is turned on, using the following option line in /etc/default/grub:
GRUB_CMDLINE_LINUX_DEFAULT="nomdmonddf nomdmonisw intel_iommu=on"

b. Enter the command update-grub/sys .

c. Reboot the compute node.

2. Enable the required number of VFs on the selected NIC.
The following example enables seven VFs on the eth0 interface. Check the configuration by using the
command lspci -nn or ip link.

echo '7' > /sys/class/net/eth0/device/sriov_numvfs

3. In the Nova config file on the controller, configure the names of the physical networks whose VMs
can use interface VFs. The following example enables the VMs attached to "physnet1" to use the VFs
of “eth0”:

/etc/nova/nova.conf
 [default]
 pci_passthrough_whitelist = { "devname": "eth0", "physical_network": "physnet1"}

4. Reboot Nova compute.

service nova-compute restart

83

5. In the Nova config file, configure a Nova Scheduler filter based on the new PCI configuration, as in
the following example:

/etc/nova/nova.conf
 [default]
 scheduler_default_filters = PciPassthroughFilter
 scheduler_available_filters = nova.scheduler.filters.all_filters
 scheduler_available_filters =
nova.scheduler.filters.pci_passthrough_filter.PciPassthroughFilter

6. Restart Nova scheduler.

service nova-scheduler restart

Launching SR-IOV Virtual Machines

After ensuring that SR-IOV features are enabled on your system, use one of the following procedures to
create a virtual network from which to launch an SR-IOV VM, either by using the Contrail UI or the CLI.
Both methods are included.

Using the Contrail UI to Enable and Launch an SR-IOV Virtual Machine

To use the Contrail UI to enable and launch an SR-IOV VM:

1. At Configure > Networking > Networks, create a virtual network with SR-IOV enabled. Ensure the
virtual network is created with a subnet attached. In the Advanced section, select the Provider
Network check box, and specify the physical network already enabled for SR-IOV (in testbed.py or
nova.conf) and its VLAN ID. See Figure 16 on page 84.

Figure 16: Edit Network

2. On the virtual network, create a Neutron port (Configure > Networking > Ports), and in the Port
Binding section, define a Key value of SR-IOV and a Value of direct. See Figure 17 on page 85.

84

Figure 17: Create Port

3. Using the UUID of the Neutron port you created, use the nova boot command to launch the VM from
that port.

nova boot --flavor m1.large --image <image name> --nic port-id=<uuid of above port> <vm name>

Using the CLI to Enable and Launch SR-IOV Virtual Machines

To use CLI to enable and launch an SR-IOV VM:

1. Create a virtual network with SR-IOV enabled. Specify the physical network already enabled for SR-
IOV (in testbed.py or nova.conf) and its VLAN ID.

The following example creates vn1 with a VLAN ID of 100 and is part of physnet1:

neutron net-create --provider:physical_network=physnet1 --provider:segmentation_id=100 vn1

2. Create a subnet in vn1.

neutron subnet-create vn1 a.b.c.0/24

3. On the virtual network, create a Neutron port on the subnet, with a binding type of direct.

85

neutron port-create --fixed-ip subnet_id=<subnet uuid>,ip_address=<IP address from above subnet> --name <name
of port> <vn uuid> --binding:vnic_type direct

4. Using the UUID of the Neutron port created, use the nova boot command to launch the VM from that
port.

nova boot --flavor m1.large --image <image name> --nic port-id=<uuid of above port> <vm name>

5. Log in to the VM and verify that the Ethernet controller is VF by using the lspci command to list the
PCI buses.

The VF that gets configured with the VLAN can be observed using the ip link command.

RELATED DOCUMENTATION

Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter | 78

Provisioning DPDK SRIOV with Server Manager

If you are using Server Manager to provision or reimage target servers, you can also use it to provision
and enable DPDK and SRIOV.

The following is an example JSON for bringing up the DPDK vrouter as a virtual function.

In the example, p3p1 and p3p2 are the physical interfaces on the host. The server JSON has these
defined with the proper MAC. The p3p1_0 and p3p2_0 are the virtual functions given to vrouter.

"parameters": {
 "provision": {
 "contrail": {

 },
 "contrail_4": {
 "ctrl_data_gw": "192.xxx.2.1",
 "coremask": "0xf",
 "huge_pages": "70",
 "sriov": {
 "p3p1": {
 "VF": "31",
 "physnets": [
 "physnet1"

86

]
 },
 "p3p2": {
 "VF": "31",
 "physnets": [
 "physnet2"
]
 }
 }
 }
 }
 },

The following is the entire JSON as used in the example.

 {
 "domain": "contrail.juniper.net",
 "id": "dpdk-onsriov-compute",
 "cluster_id": "dpdk_on_sroiv_cluster",
 "contrail": {
 "control_data_interface": "vlan300"
 },
 "ipmi_address": "10.xx.xx.104",
 "ipmi_username": "contrail",
 "ipmi_password": "<password>",
 "ipmi_interface": "lanplus",
 "ipmi_type": "lanplus",
 "network": {
 "interfaces": [{
 "mac_address": "00:11:0a:68:8f:c8",
 "name": "p3p1"
 },
 {
 "mac_address": "00:11:0a:68:8f:c9",
 "name": "p3p2"
 },
 {
 "mac_address": "14:02:ec:33:1f:c8",
 "name": "em1",
 "dhcp": "true",
 "ip_address": "10.xx.xx.107/24",
 "default_gateway": "10.xx.xx.1"

87

 },
 {
 "name": "p3p1_0"
 },
 {
 "name": "p3p2_0"
 },
 {
 "bond_options": {
 "mode": "balance-rr",
 "miimon": "100",
 "xmit_hash_policy": "layer3+4"
 },
 "member_interfaces": [
 "p3p1_0",
 "p3p2_0"
],
 "name": "bond0",
 "type": "bond"
 },
 {
 "name": "vlan300",
 "dhcp": false,
 "ip_address": "192.xxx.2.17/27",
 "parent_interface": "bond0",
 "type": "vlan",
 "vlan": "300"
 }
],
 "management_interface": "em1",
 "provisioning": "kickstart"
 },
 "routes": [{
 "gateway": "192.xxx.2.1",
 "interface": "vlan300",
 "netmask": "255.255.255.224",
 "network": "192.xxx.2.32"
 }],
 "parameters": {
 "provision": {
 "contrail": {

 },

88

 "contrail_4": {
 "ctrl_data_gw": "192.xxx.2.1",
 "coremask": "0xf",
 "huge_pages": "70",
 "sriov": {
 "p3p1": {
 "VF": "31",
 "physnets": [
 "physnet1"
]
 },
 "p3p2": {
 "VF": "31",
 "physnets": [
 "physnet2"
]
 }
 }
 }
 }
 },
 "password": "<password>",
 "roles": [
 "contrail-compute"
]
 }

Configuring Virtual Networks for Hub-and-Spoke Topology

IN THIS SECTION

Route Targets for Virtual Networks in Hub-and-Spoke Topology | 90

Example: Configuring Hub-and-Spoke Virtual Networks | 90

Troubleshooting Hub-and-Spoke Topology | 91

89

As of Contrail Release 3.0, hub-and-spoke topology can be used to ensure that virtual machines (VMs)
don’t communicate with each other directly; their communication is only allowed indirectly by means of
a designated hub virtual network.

Route Targets for Virtual Networks in Hub-and-Spoke Topology

Hub-and-spoke topology can be used to ensure that virtual machines (VMs) don’t communicate with
each other directly; their communication is only allowed indirectly by means of a designated hub virtual
network (VN). The VMs are configured in spoke VNs.

This is useful for enabling VMs in a spoke VN to communicate by means of a policy or firewall, where
the firewall exists in a hub site.

hub-and-spoke topology is implemented using two route targets (hub-rt and spoke-rt), as follows:

• Hub route target (hub-rt):

• The hub VN exports all routes tagged with hub-rt.

• The spoke VN imports routes tagged with hub-rt, ensuring that the spoke VN has only routes
exported by the hub VN.

• To attract spoke traffic, the hub VN readvertises the spoke routes or advertises the default route.

• Spoke route target (spoke-rt):

• All spoke VNs export routes with route target spoke-rt.

• The hub VN imports all spoke routes, ensuring that hub VN has all spoke routes.

NOTE: The hub VN or VRF can reside in an external gateway, such as an MX Series router, while
the spoke VN resides in the Contrail controller.

Example: Configuring Hub-and-Spoke Virtual Networks

The following example uses a script to configure the hub-and-spoke virtual networks.

In the example, the “hub-vn” is configured as a hub virtual network, with the import route target of
“target:1:1” and the export route target of “target:1:2”. The “spoke-vn*” is configured as a spoke virtual
network, with the import route target of “target:1:2” and the export route target of “target:1:1”.

The spoke-rt is “target:1:1” and the hub-rt is “target:1:2”, consequently, the “hub-vn” imports “spoke-rt” and
exports “hub-rt”, and the spoke-vn imports “hub-rt” and exports “spoke-rt”.

90

Using vnc-api to Configure Hub-and-Spoke Topology Example

from vnc_api.vnc_api import *
lib = VncApi("admin", "<password>", "admin", "<ip address>", "8082")
vn=lib.virtual_network_read(fq_name=["default-domain", "admin", "hub-vn"])
vn.set_import_route_target_list(RouteTargetList(["target:1:1"]))
vn.set_export_route_target_list(RouteTargetList(["target:1:2"]))
lib.virtual_network_update(vn)

vn=lib.virtual_network_read(fq_name=["default-domain", "admin", "spoke-vn1"])
vn.set_import_route_target_list(RouteTargetList(["target:1:2"]))
vn.set_export_route_target_list(RouteTargetList(["target:1:1"]))
lib.virtual_network_update(vn)

vn=lib.virtual_network_read(fq_name=["default-domain", "admin", "spoke-vn2"])
vn.set_import_route_target_list(RouteTargetList(["target:1:2"]))
vn.set_export_route_target_list(RouteTargetList(["target:1:1"]))
lib.virtual_network_update(vn)

vn=lib.virtual_network_read(fq_name=["default-domain", "admin", "spoke-vn3"])
vn.set_import_route_target_list(RouteTargetList(["target:1:2"]))
vn.set_export_route_target_list(RouteTargetList(["target:1:1"]))
lib.virtual_network_update(vn)

vn=lib.virtual_network_read(fq_name=["default-domain", "admin", "spoke-vn4"])
vn.set_import_route_target_list(RouteTargetList(["target:1:2"]))
vn.set_export_route_target_list(RouteTargetList(["target:1:1"]))
lib.virtual_network_update(vn)

Troubleshooting Hub-and-Spoke Topology

The following examples provide methods to help you troubleshoot hub-and-spoke configurations.

Example: Validating the Configuration on the Virtual Network

The following example uses the api-server HTTP get request to validate the configuration on the virtual
network.

Hub VN configuration:

91

curl -u admin:<password> http://<host ip>/virtual-network/<hub-vn-uuid>| python -m json.tool

{
 "virtual-network": {
 "display_name": "hub-vn",
 "fq_name": [
 "default-domain",
 "admin",
 "hub-vn"
],
 "export_route_target_list": {
 "route_target": [
 "target:1:2"
]
 },
 "import_route_target_list": {
 "route_target": [
 "target:1:1"
]
 },
 }
}

Spoke VN configuration:

curl -u admin:<password> http://<host ip>:8095/virtual-network/<spoke-vn-uuid> | python -m json.tool

{
{
 "virtual-network": {
 "display_name": "spoke-vn1",
 "fq_name": [
 "default-domain",
 "admin",
 "spoke-vn1"
],
 "export_route_target_list": {
 "route_target": [
 "target:1:1"
]
 },

92

 "import_route_target_list": {
 "route_target": [
 "target:1:2"
]
 },
 }
}

Example: Validate the Configuration on the Routing Instance

The following example uses api-server HTTP get request to validate the configuration on the routing
instance.

Spoke VRF configuration (with a system-created VRF by schema transformer):

user@node:/opt/contrail/utils# curl -u admin:<password> http://<host ip>:8095/routing-instance/<spoke-vrf-uuid>|
python -m json.tool

{
 "routing-instance": {
 "display_name": "spoke-vn1",
 "fq_name": [
 "default-domain",
 "admin",
 "spoke-vn1",
 "spoke-vn1"
],
 "route_target_refs": [
 {
 "attr": {
 "import_export": "export"
 },
 "href": "http://<host ip>:8095/route-target/446a3bbe-f263-4b58-
a537-8333878dd7c3",
 "to": [
 "target:1:1"
],
 "uuid": "446a3bbe-f263-4b58-a537-8333878dd7c3"
 },
 {
 "attr": {
 "import_export": null

93

 },
 "href": "http://<host ip>:8095/route-target/7668088d-
e403-414f-8f5d-649ed80e0689",
 "to": [
 "target:64512:8000012"
],
 "uuid": "7668088d-e403-414f-8f5d-649ed80e0689"
 },
 {
 "attr": {
 "import_export": "import"
 },
 "href": "http://<host ip>:8095/route-target/8f216064-8488-4486-8fce-
b4afb87266bb",
 "to": [
 "target:1:2"
],
 "uuid": "8f216064-8488-4486-8fce-b4afb87266bb"
 }
],
 "routing_instance_is_default": true,
 }
}

Hub VRF configuration:

curl -u admin:<password> http://<host ip>:8095/routing-instance/<hub-vrf-uuid> | python -m json.tool

{
 "routing-instance": {
 "display_name": "hub-vn",
 "fq_name": [
 "default-domain",
 "admin",
 "hub-vn",
 "hub-vn"
],
 "route_target_refs": [
 {
 "attr": {
 "import_export": "import"

94

 },
 "href": "http://<host ip>:8095/route-target/446a3bbe-f263-4b58-
a537-8333878dd7c3",
 "to": [
 "target:1:1"
],
 "uuid": "446a3bbe-f263-4b58-a537-8333878dd7c3"
 },
 {
 "attr": {
 "import_export": "export"
 },
 "href": "http://<host ip>:8095/route-target/8f216064-8488-4486-8fce-
b4afb87266bb",
 "to": [
 "target:1:2"
],
 "uuid": "8f216064-8488-4486-8fce-b4afb87266bb"
 },
 {
 "attr": {
 "import_export": null
 },
 "href": "http://<host ip>:8095/route-target/a85fec19-eed2-430c-
af23-9919aca1dd12",
 "to": [
 "target:64512:8000016"
],
 "uuid": "a85fec19-eed2-430c-af23-9919aca1dd12"
 }
],
 "routing_instance_is_default": true,
 }
}

Example: Using Contrail Control Introspect

Figure 18 on page 96 shows the import and export targets for hub-vn and spoke-vns, by invoking contrail-
control-introspect.

95

Figure 18: Contrail Introspect

Configuring Transport Layer Security-Based XMPP in Contrail

IN THIS SECTION

Overview: TLS-Based XMPP | 96

Configuring XMPP Client and Server in Contrail | 97

Overview: TLS-Based XMPP

Starting with Contrail 3.0, Transport Layer Security (TLS)-based XMPP can be used to secure all
Extensible Messaging and Presence Protocol (XMPP)-based communication that occurs in the Contrail
environment.

Secure XMPP is based on RFC 6120, Extensible Messaging and Presence Protocol (XMPP): Core.

96

TLS XMPP in Contrail

In the Contrail environment, the Transport Layer Security (TLS) protocol is used for certificate exchange,
mutual authentication, and negotiating ciphers to secure the stream from potential tampering and
eavesdropping.

The RFC 6120 highlights a basic stream message exchange format for TLS negotiation between an
XMPP server and an XMPP client.

NOTE: Simple Authentication and Security Layer (SASL) authentication is not supported in the
Contrail environment.

Configuring XMPP Client and Server in Contrail

In the Contrail environment, XMPP based communications are used in client and server exchanges,
between the compute node (as the XMPP client), and:

• the control node (as the XMPP server)

• the DNS server (as the XMPP server)

Configuring Control Node for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP server.

On the control node, enable the parameters in the configuration file:
/etc/contrail/contrail-control.conf.

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's or node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

97

(Continued)

Parameter Description Default

xmpp_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case sensitive.

Configuring DNS Server for XMPP Server

To enable secure XMPP, the following parameters are configured at the XMPP DNS server.

On the DNS server control node, enable the parameters in the configuration file:
/etc/contrail/contrail-control.conf

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/certs/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_dns_auth_enable=true Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case
sensitive.

Configuring Control Node for XMPP Client

To enable secure XMPP, the following parameters are configured at the XMPP client.

On the compute node, enable the parameters in the configuration file:
/etc/contrail/contrail-vrouter-agent.conf

98

Parameter Description Default

xmpp_server_cert Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

xmpp_server_key Path to server's/node's private key /etc/contrail/ssl/private/server-
privkey.pem

xmpp_ca_cert Path to CA certificate /etc/contrail/ssl/certs/ca-cert.pem

xmpp_auth_enable=true
xmpp_dns_auth_enable=tru
e

Enables SSL based XMPP Default is set to false, XMPP is disabled.

NOTE: The keyword true is case sensitive.

Configuring Graceful Restart and Long-lived Graceful Restart

IN THIS SECTION

Application of Graceful Restart and Long-lived Graceful Restart | 100

BGP Graceful Restart Helper Mode | 100

Feature Highlights | 100

XMPP Helper Mode | 101

Configuration Parameters | 101

Cautions for Graceful Restart | 103

Configuring Graceful Restart with the Contrail User Interface | 103

Starting with Contrail Release 3.2, graceful restart and long-lived graceful restart BGP helper modes are
supported for the Contrail control node. Release 4.1 introduces support for the XMPP helper mode as
well.

99

Application of Graceful Restart and Long-lived Graceful Restart

Whenever a BGP peer session is detected as down, all routes learned from the peer are deleted and
immediately withdrawn from advertised peers. This causes instantaneous disruption to traffic flowing
end-to-end, even when routes kept in the vrouter kernel in the data plane remain intact.

Graceful restart and long-lived graceful restart features can be used to alleviate traffic disruption caused
by downs.

When configured, graceful restart features enable existing network traffic to be unaffected if Contrail
controller processes go down. The Contrail implementation ensures that if a Contrail control module
restarts, it can use graceful restart functionality provided by its BGP peers. Or when the BGP peers
restart, Contrail provides a graceful restart helper mode to minimize the impact to the network. The
graceful restart features can be used to ensure that traffic is not affected by temporary outage of
processes.

Graceful restart is not enabled by default.

With graceful restart features enabled, learned routes are not deleted when sessions go down, and the
routes are not withdrawn from the advertised peers. Instead, the routes are kept and marked as 'stale'.
Consequently, if sessions come back up and routes are relearned, the overall impact to the network is
minimized.

After a certain duration, if a downed session does not come back up, all remaining stale routes are
deleted and withdrawn from advertised peers.

The graceful restart and long-lived graceful restart features can be enabled only for BGP peers in
Contrail 3.2. Future releases will provide support for XMPP-based peering sessions (agents).

BGP Graceful Restart Helper Mode

The BGP helper mode can be used to minimize routing churn whenever a BGP session flaps. This is
especially helpful if the SDN gateway router goes down gracefully, as in an rpd crash or restart on an
MX Series Junos device. In that case, the contrail-control can act as a graceful restart helper to the
gateway, by retaining the routes learned from the gateway and advertising them to the rest of the
network as applicable. In order for this to work, the restarting router (the SDN gateway in this case)
must support and be configured with graceful restart for all of the address families used.

The graceful restart helper mode is also supported for BGP-as-a-Service (BGPaaS) clients. When
configured, contrail-control can provide a graceful restart or long-lived graceful restart helper mode to a
restarting BGPaaS client.

Feature Highlights

The following are highlights of the graceful restart and long-lived graceful restart features.

100

• Configuring a non-zero restart time enables the ability to advertise graceful restart and long-lived
graceful restart capabilities in BGP.

• Configuring helper mode enables the ability for graceful restart and long-lived graceful restart helper
modes to retain routes even after sessions go down.

• With graceful restart configured, whenever a session down event is detected and a closing process is
triggered, all routes, across all address families, are marked stale. The stale routes are eligible for
best-path election for the configured graceful restart time duration.

• When long-lived graceful restart is in effect, stale routes can be retained for a much longer time than
that allowed by graceful restart alone. With long-lived graceful restart, route preference is retained
and best paths are recomputed. The community marked LLGR_STALE is tagged for stale paths and
re-advertised. However, if no long-lived graceful restart community is associated with any received
stale route, those routes are not kept, instead, they are deleted.

• After a certain time, if a session comes back up, any remaining stale routes are deleted. If the session
does not come back up, all retained stale routes are permanently deleted and withdrawn from the
advertised peer.

XMPP Helper Mode

Contrail release 4.1 introduces support for long-lived graceful restart (LLGR) with XMPP helper mode.
Graceful restart and long lived graceful restart can be enabled using the Contrail web UI or by using the
provision_control script.

The helper modes can also be enabled via schema, and can be disabled selectively in a contrail-control
node for BGP or XMPP sessions by configuring gr_helper_disable in the /etc/contrail/contrail-control.conf
configuration file.

Configuration Parameters

Graceful restart parameters are configured in the global-system-config of the schema. They can be
configured by means of a provisioning script or by using the Contrail Web UI.

Configure a non-zero restart time to advertise for graceful restart and long-lived graceful restart
capabilities from peers.

Configure helper mode for graceful restart and long-lived graceful restart to retain routes even after
sessions go down.

Configuration parameters include:

• enable or disable for all graceful restart parameters:

• restart-time

101

• long-lived-restart-time

• end-of-rib-timeout

• bgp-helper-enable to enable graceful restart helper mode for BGP peers in contrail-control

• xmpp-helper-enable to enable graceful restart helper mode for XMPP peers (agents) in contrail-control

The following shows configuration by a provision script.

/opt/contrail/utils/provision_control.py
 --api_server_ip 10.xx.xx.20
 --api_server_port 8082
 --router_asn 64512
 --admin_user admin
 --admin_password <password>
 --admin_tenant_name admin
 --set_graceful_restart_parameters
 --graceful_restart_time 60
 --long_lived_graceful_restart_time 300
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

The following are sample parameters:

-set_graceful_restart_parameters
 --graceful_restart_time 300
 --long_lived_graceful_restart_time 60000
 --end_of_rib_timeout 30
 --graceful_restart_enable
 --graceful_restart_bgp_helper_enable

When BGP peering with Juniper Networks devices, Junos must also be explicitly configured for graceful
restart/long-lived graceful restart, as shown in the following example:

set routing-options graceful-restart
set protocols bgp group <a1234> type internal
set protocols bgp group <a1234> local-address 10.xx.xxx.181
set protocols bgp group <a1234> keep all
set protocols bgp group <a1234> family inet-vpn unicast graceful-restart long-lived restarter
stale-time 20

102

set protocols bgp group <a1234> family route-target graceful-restart long-lived restarter stale-
time 20
set protocols bgp group <a1234> graceful-restart restart-time 600
set protocols bgp group <a1234> neighbor 10.xx.xx.20 peer-as 64512

The graceful restart helper modes can be enabled in the schema. The helper modes can be disabled
selectively in the contrail-control.conf for BGP sessions by configuring gr_helper_disable in the /etc/
contrail/contrail-control.conf file.

The following are examples:

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_bgp_disable 1

/usr/bin/openstack-config /etc/contrail/contrail-control.conf DEFAULT gr_helper_xmpp_disable 1

service contrail-control restart

For more details about graceful restart configuration, see https://github.com/Juniper/contrail-controller/
wiki/Graceful-Restart .

Cautions for Graceful Restart

Be aware of the following caveats when configuring and using graceful restart.

• Using the graceful restart/long-lived graceful restart feature with a peer is effective either to all
negotiated address families or to none. If a peer signals support for graceful restart/long-lived
graceful restart for only a subset of the negotiated address families, the graceful restart helper mode
does not come into effect for any family in the set of negotiated address families.

• Because graceful restart is not yet supported for contrail-vrouter-agent, the parameter should not be
set for graceful_restart_xmpp_helper_enable. If the vrouter agent restarts, the data plane is reset and the
routes and flows are reprogrammed anew, which typically results in traffic loss for several seconds
for new and /existing flows.

• Graceful restart/long-lived graceful restart is not supported for multicast routes.

• Graceful restart/long-lived graceful restart helper mode may not work correctly for EVPN routes, if
the restarting node does not preserve forwarding state for EVPN routes.

Configuring Graceful Restart with the Contrail User Interface

To configure graceful restart in the Contrail UI, go to Configure > Infrastructure > Global Config, then
select the BGP Options tab. The Edit BGP Options window opens. Click the box for Graceful Restart to
enable graceful restart, and enter a non-zero value for the Restart Time. Click the helper boxes as

103

https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart
https://github.com/Juniper/contrail-controller/wiki/Graceful-Restart

needed for BGP Helper and XMPP Helper. You can also enter values for the long-lived graceful restart
time in seconds, and for the end of RIB in seconds. See Figure 19 on page 104.

Figure 19: Configuring Graceful Restart

104

CHAPTER 5

Using Contrail with Kubernetes

IN THIS CHAPTER

Contrail Integration with Kubernetes | 105

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Viewing Configuration for CNI for Kubernetes | 123

Provisioning Contrail CNI for Kubernetes | 126

Using Kubernetes Helm to Provision Contrail | 134

Contrail Integration with Kubernetes

IN THIS SECTION

What is Kubernetes? | 105

Configuration Modes for Contrail Integrated with Kubernetes | 106

Kubernetes Services | 109

Ingress | 110

Contrail Kubernetes Solution | 110

Contrail Release 4.0 supports the Container Network Interface (CNI) for integrating Contrail with the
Kubernetes automation platform.

What is Kubernetes?

Kubernetes, also called K8s, is an open source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts, providing container-centric infrastructure.
It provides a portable platform across public and private clouds. Kubernetes supports deployment,
scaling, and auto-healing of applications.

105

Kubernetes supports a pluggable framework called Container Network Interface (CNI) for most of the
basic network connectivity, including container pod addressing, network isolation, policy-based security,
a gateway, SNAT, load-balancer, and service chaining capability for Kubernetes orchestration. Contrail
Release 4.0 provides support for CNI for Kubernetes.

Kubernetes provides a flat networking model in which all container pods can talk to each other. Network
policy is added to provide security between the pods. Contrail integrated with Kubernetes adds
additional networking functionality, including multi-tenancy, network isolation, micro-segmentation with
network policies, load-balancing, and more.

Table 3 on page 106 lists the mapping between Kubernetes concepts and OpenContrail resources.

Table 3: Kubernetes to OpenContrail Mapping

Kubernetes OpenContrail Resources

Namespace Shared or single project

Pod Virtual-machine, Interface, Instance-ip

Service ECMP-based native Loadbalancer

Ingress HAProxy-based L7 Loadbalancer for URL routing

Network policy Security group based on namespace and pod selectors

What is a Kubernetes Pod?

A Kubernetes pod is a group of one or more containers (such as Docker containers), the shared storage
for those containers, and options on how to run the containers. Pods are always co-located and co-
scheduled, and run in a shared context. The shared context of a pod is a set of Linux namespaces,
cgroups, and other facets of isolation. Within the context of a pod, individual applications might have
further sub-isolations applied.

You can find more information about Kubernetes at: http://kubernetes.io/docs/whatisk8s/.

Configuration Modes for Contrail Integrated with Kubernetes

Contrail can be configured in several different modes in Kubernetes. This section describes the various
configuration modes.

106

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Default Mode

In Kubernetes, all pods can communicate with all other pods without using network address translation
(NAT). This is the default mode of Contrail Kubernetes cluster. In the deafult mode, Contrail creates a
virtual-network that is shared by all namespaces, from which service and pod IP addresses are allocated.

All pods in all namespaces that are spawned in the Kubernetes cluster are able to communicate with one
another. The IP addresses for all of the pods are allocated from a pod subnet that is configured in the
Contrail Kubernetes manager.

NOTE: System pods that are spawned in the kube-system namespace are not run in the
Kubernetes cluster; they run in the underlay, and networking for these pods is not handled by
Contrail.

Namespace Isolation Mode

In addition to the default networking model mandated by Kubernetes, Contrail supports additional
custom networking models that make available the many rich features of Contrail to the users of the
Kubernetes cluster. One such feature is network isolation for Kubernetes namespaces.

For namespace isolation mode, the cluster administrator can configure a namespace annotation to turn
on isolation. As a result, services in that namespace are not accessible from other namespaces, unless
security groups or network policies are explicitly defined to allow access.

A Kubernetes namespace can be configured as isolated by annotating the Kubernetes namespace
metadata:

opencontrail.org/isolation : true

Namespace isolation provides network isolation to pods, because the pods in isolated namespaces are
not reachable to pods in other namespaces in the cluster.

Namespace isolation also provides service isolation to pods. If any Kubernetes service is implemented by
pods in an isolated namespace, those pods are reachable only to pods in the same namespace through
the Kubernetes service-ip.

To make services remain reachable to other namespaces, service isolation can be disabled by the
following additional annotation on the namespace:

opencontrail.org/isolation.service : false

Disabling service isolation makes the services reachable to pods in other namespaces, however pods in
isolated namespaces still remain unreachable to pods in other namespaces.

107

A namespace annotated as “isolated” for both pod and service isolation has the following network
behavior:

• All pods created in an isolated namespace have network reachability with each other.

• Pods in other namespaces in the Kubernetes cluster cannot reach pods in the isolated namespace.

• Pods created in isolated namespaces can reach pods in non-isolated namespaces.

• Pods in isolated namespaces can reach non-isolated services in any namespace in the Kubernetes
cluster.

• Pods from other namespaces cannot reach services in isolated namespaces.

A namespace annotated as “isolated”, with service-isolation disabled and only pod isolation enabled, has
the following network behavior:

• All pods created in an isolated namespace have network reachability with each other.

• Pods in other namespaces in the Kubernetes cluster cannot reach pods in the isolated namespace.

• Pods created in isolated namespaces can reach pods in other namespaces.

• Pods in isolated namespaces can reach non-isolated services in any namespace in the Kubernetes
cluster.

• Pods from other namespaces can reach services in isolated namespaces.

Custom Isolation Mode

Administrators and application developers can add annotations to specify the virtual network in which a
pod or all pods in a namespace are to be provisioned. The annotation to specify this custom virtual
network is:

"opencontrail.org/network: <fq_network_name>"

If this annotation is configured on a pod spec then the pod is launched in that network. If the annotation
is configured in the namespace spec then all the pods in the namespace are launched in the provided
network.

NOTE: The virtual network must be created using Contrail VNC APIs or Contrail-UI prior to
configuring it in the pod or namespace spec.

108

Nested Mode

Contrail supports the provisioning of Kubernetes cluster inside an OpenStack cluster. While this nesting
of clusters by itself is not unique, Contrail provides a collapsed control and data plane in which a single
Contrail control plane and a single network stack manage and service both the OpenStack and
Kubernetes clusters. With unified control and data planes, interworking and configuring these clusters is
seamless, and the lack of replication and duplicity makes this a very efficient option.

In nested mode, a Kubernetes cluster is provisioned in the virtual machine of an OpenStack cluster. The
CNI-plugin and the Contrail-kubernetes manager of the Kubernetes cluster interface directly with
Contrail components that manage the OpenStack cluster.

In a nested-mode deployment, all Kubernetes features, functions, and specifications are supported as is.
Nested deployment stretches the boundaries and limits of Kubernetes by allowing it to operate on the
same plane as underlying OpenStack cluster.

Kubernetes Services

A Kubernetes service is an abstraction that defines a logical set of pods and the policy used to access
the pods. The set of pods implementing a service are selected based on the LabelSelector field in the
service definition. In Contrail, a Kubernetes service is implemented as an ECMP-native load-balancer.

The Contrail Kubernetes integration supports the following ServiceTypes:

• `clusterIP`: This is the default mode. Choosing this ServiceType makes the service reachable through
the cluster network.

• `LoadBalancer`: Designating a ServiceType as `LoadBalancer` enables the service to be accessed
externally. The `LoadBalancer` _Service_ is assigned both CluserIP and ExternalIP addresses. This
ServiceType assumes that the user has configured the public network with a floating-ip pool.

Contrail Kubernetes Service-integration supports TCP and UDP for protocols. Also, Service can expose
more than one port where port and targetPort are different. For example:

kind: Service
apiVersion: v1
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - name: http
 protocol: TCP

109

 port: 80
 targetPort: 9376
 - name: https
 protocol: TCP
 port: 443
 targetPort: 9377

Kubernetes users can specify spec.clusterIP and spec.externalIPs for both LoadBalancer and clusterIP
ServiceTypes.

If ServiceType is LoadBalancer and no spec.externalIP is specified by the user, then contrail-kube-
manager allocates a floating-ip from the public pool and associates it to the ExternalIP address.

Ingress

Kubernetes services can be exposed externally or exposed outside of the cluster in many ways. See
https://kubernetes.io/docs/concepts/services-networking/ingress/#alternatives for a list of all methods
of exposing Kubernetes services externally. Ingress is one such method. Ingress provides Layer 7 load-
balancing whereas the other methods provide Layer 4 load-balancing. Contrail supports http-based
single-service ingress, simple-fanout ingress, and name-based virtual hosting ingress.

Contrail Kubernetes Solution

Contrail Kubernetes solution includes the following elements.

Contrail Kubernetes Manager

The Contrail Kubernetes implementation requires listening to the Kubernetes API messages and creating
corresponding resources in the Contrail API database.

A new module, contrail-kube-manager, runs in a Docker container to listen to the messages from the
Kubernetes API server.

ECMP Load-Balancers for Kubernetes Services

Each service in Kubernetes is represented by a load-balancer object. The service IP allocated by
Kubernetes is used as the VIP for the load-balancer. Listeners are created for the port on which the
service is listening. Each pod is added as a member of the listener pool. The contrail-kube-manager
listens for any changes based on service labels or pod labels, and updates the member pool list with any
added, updated, or deleted pods.

110

https://kubernetes.io/docs/concepts/services-networking/ingress/#alternatives

Load-balancing for services is Layer 4 native, non-proxy load-balancing based on ECMP. The instance-ip
(service-ip) is linked to the ports of each of the pods in the service. This creates an ECMP next-hop in
Contrail and traffic is load-balanced directly from the source pod.

HAProxy Loadbalancer for Kubernetes Ingress

Kubernetes Ingress is implemented through the HAProxy load-balancer feature in Contrail. Whenever
ingress is configured in Kubernetes, contrail-kube-manager creates the load-balancer object in contrail-
controller. The Contrail service monitor listens for the load-balancer objects and launches the HAProxy
with appropriate configuration, based on the ingress specification rules in active-standby mode.

See "Using Load Balancers in Contrail " on page 743 for more information on load balancers.

Security Groups for Kubernetes Network Policy

Kubernetes network policy is a specification of how groups of pods are allowed to communicate with
each other and other network endpoints. NetworkPolicy resources use labels to select pods and define
white list rules which allow traffic to the selected pods in addition to what is allowed by the isolation
policy for a given namespace.

For more information about Kubernetes network policies, see https://kubernetes.io/docs/concepts/
services-networking/networkpolicies/.

The contrail-kube-manager listens to the Kubernetes network policy events for create, update, and
delete, and translates the Kubernetes network policy to Contrail security group objects applied to virtual
machine interfaces (VMIs). The VMIs are dynamically updated as pods and labels are added and deleted.

Domain Name Server (DNS)

Kubernetes implements DNS using SkyDNS, a small DNS application that responds to DNS requests for
service name resolution from pods. SkyDNS runs as a pod in Kubernetes.

RELATED DOCUMENTATION

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Viewing Configuration for CNI for Kubernetes | 123

111

https://kubernetes.io/docs/concepts/services-networking/networkpolicies/
https://kubernetes.io/docs/concepts/services-networking/networkpolicies/

Installing and Provisioning Containerized Contrail Controller for
Kubernetes

IN THIS SECTION

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 114

inventory/my-inventory/hosts Inventory File | 115

inventory/my-inventory/group_vars/all.yml Inventory File | 118

Example: inventory/my-inventory/group_vars/all.yml File in a Stand-alone Contrail Kubernetes Cluster | 120

Example: inventory/my-inventory/group_vars/all.yml File in a Nested Contrail Kubernetes Cluster | 121

This section describes the steps required to install and provision containerized Contrail Controller for
Kubernetes.

Ensure the following prerequisites are met for successful provisioning of a Contrail Kubernetes cluster.

• An installed and running Kubernetes cluster is available.

You can choose the installation method for Kubernetes.

• Kubernetes cluster must have at least one worker node.

The Kubernetes cluster consists of one master node and at least one worker node. Kubernetes
“tainted” master, a mode in which worker pods are scheduled on Kubernetes master node, is not
supported.

• Ensure that Kubelet running on the Kubernetes master node does not have network plugin options.

If Kubelet is configured with a network plugin option:

1. Disable or comment out the KUBELET_NETWORK_ARGS option in the configuration file.

/etc/systemd/system/kubelet.service.d/10-kubeadm.conf

2. Restart the Kubelet service.

systemctl daemon-reload; systemctl restart kubelet.service

• Get a service account token that has a cluster-admin cluster role.

You can configure this token in contrail-ansible during provisioning of the Contrail Kubernetes cluster.

For more information, refer to the kubernetes_access_token variable in the all.yml in contrail-ansible.

112

1. Create a service account and bind it to the cluster-admin cluster role.

kubectl create clusterrolebinding <role-binding-name> --clusterrole=cluster-admin --
serviceaccount=<service-account-name>

Alternatively, you can bind the cluster-admin role to an existing service account.

Example: Bind a cluster-admin role to a service account named default.

kubectl create clusterrolebinding contrail-kube-manager --clusterrole=cluster-admin --
serviceaccount=default:default

2. Get the secret associated with the service account.

kubectl describe sa <service-account-name>

Example:

 > kubectl describe sa default
 Name: default
 Namespace: default
 Labels: <none>
 Annotations: <none>
 Tokens: default-token-r353k <-----
 Image pull secrets: <none>
 Mountable secrets: default-token-r353k

3. Get the token associated with the secret.

kubectl describe secret <name>

Example:

> kubectl describe secret default-token-r353k
 Name: default-token-r353k
 Namespace: default
 Labels: <none>
 Annotations: kubernetes.io/service-account.name=default
 kubernetes.io/service-account.uid=4fbcc5cf-3fed-11e7-acf4-0271c93f63d6
 Type: kubernetes.io/service-account-token
 Data
 ====
 ca.crt: 1025 bytes

113

 namespace: 7 bytes
 token: $123ABC

Installing and Provisioning Containerized Contrail Controller for Kubernetes

Perform the following steps to install containerized Contrail controller for Kubernetes:

1. Set up password-free access to all hosts from Ansible host.

ssh-keygen -t rsa
ssh <user>@<host-ip> mkdir -p .ssh
ssh <user>@<host-ip> chmod 700 .ssh
cat .ssh/id_rsa.pub | ssh <user>@<host-ip> 'cat >> .ssh/authorized_keys'

Ensure ssh <user>@<host-ip> works fine.

2. Install Ansible on your Mac OS X or any other machine. Version must be = 2.2.0.

sudo easy_install pip
sudo pip install ansible==2.2.0

3. Download contrail-kubernetes-docker_<release>_<os-name>.tgz package and extract it. The
extracted package contains contrail-networking-tools_<release>.tgz and contrail-kubernetes-
docker-images_<release>.tgz packages.

The contrail-networking-tools_<release>.tgz contains the contrail-ansible package while the contrail-
kubernetes-docker-images_<release>.tgz contains Contrail container images.

4. Extract the contrail-ansible package from the contrail-networking-tools_<release>.tgz package.

contrail-ansible is used to provision a Contrail Kubernetes cluster. The contrail-ansible repo contains a
site.yml playbook that has the requisite roles and tasks to provision a fully-functional Contrail
Kubernetes cluster. The inventory files in the repo expose all the parameters required by the
playbook to provision the cluster. The contrail-ansible directory-based inventory file mechanism is
recommended for provisioning.

114

NOTE: The scope of contrail-ansible is to provision only the Contrail part of the Kubernetes
solution. The Kubernetes cluster should be provisioned independently using recommended
Kubernetes guidelines.

Contrail Kubernetes clusters can be provisioned in the following modes:

• Stand-alone Contrail Kubernetes cluster

In this mode, Contrail provides networking to a stand-alone Kubernetes cluster. Contrail
components are provisioned and dedicated to the management of this cluster.

• Nested Contrail Kubernetes cluster

In this mode, Contrail provides networking for a Kubernetes cluster that is provisioned on a
Contrail OpenStack cluster. Contrail components are shared between the two clusters. Ansible
provisions only the Contrail components that directly interface with the Kubernetes API server.
All other Contrail components are shared between OpenStack and Kubernetes clusters.

5. Create a folder called container_images inside contrail-ansible/playbook. Copy container images to
this folder by extracting contrail-kubernetes-docker-images_<release>.tgz.

6. Update the inventory file.

The inventory files in directory-based provisioning are as following:

• inventory/my-inventory/hosts. See "inventory/my-inventory/hosts Inventory File" on page 115
for more information.

• inventory/my-inventory/group_vars/all.yml. See "inventory/my-inventory/group_vars/all.yml
Inventory File" on page 118 for more information.

7. Run the Ansible playbook from contrail-ansible/playbook.

ansible-playbook -i inventory/my-inventory site.yml

inventory/my-inventory/hosts Inventory File

This section describes the parameters and provides examples of the inventory/my-inventory/hosts
inventory file in stand-alone and nested Contrail Kubernetes clusters.

Table 4 on page 116 lists the parameters used in the inventory/my-inventory/hosts inventory file.

In Table 4 on page 116, Cluster Mode is one of the following:

115

• Stand-alone —Applicable only to a stand-alone cluster.

• Nested —Applicable only to nested cluster.

• Both—Applicable to both stand-alone and nested clusters.

Table 4: Parameters in inventory/my-inventory/hosts

Parameter Cluster Mode Description

contrail-repo Nested List of hosts where contrail apt or yum repo container will be
started. This repo will be used by other nodes on installing any
packages in the node. Setting up contrail-cni needs this repo
enabled

contrail-controllers Stand-alone List of hosts where contrail-controller container or processes are
to be provisioned. .

contrail-analyticsdb Stand-alone List of hosts where contrail-analyticsdb container or process is to
be provisioned.

contrail-analytics Stand-alone List of hosts where contrail-analytics container or process is to be
provisioned.

contrail-kubernetes Both Node where contrail-kube-manager container or process is to be
run.

contrail-compute Both List of hosts which are to be provisioned as kubernetes compute/
minion nodes. Contrail vRouter or vrouter-agent or CNI will be
provisioned on these nodes.

kubernetes-contrail-
controllers

Nested List of nodes with pre-existing contrail-controller container or
processes to which contrail-kube-manager should connect to.

kubernetes-contrail-
analytics

Nested List of nodes with pre-existing contrail-analytics container or
processes to which contrail-kube-manager should connect to.

116

Example: inventory/my-inventory/hosts File in a Stand-alone Contrail Kubernetes Cluster

The following is an example of the inventory/my-inventory/hosts file in a stand-alone Contrail
Kubernetes cluster:

[contrail-controllers]
10.xx.27.16

[contrail-analyticsdb]
10.xx.27.16

[contrail-analytics]
10.xx.27.16

[contrail-kubernetes]
10.xx.27.16

[contrail-compute]
10.xx.23.37

Example: Nested inventory/my-inventory/hosts File in a Nested Contrail Kubernetes Cluster

The following is an example of the inventory/my-inventory/hosts file in a nested Contrail Kubernetes
cluster:

[contrail-repo]
10.xx.31.71

[contrail-kubernetes]
10.xx.31.71

[contrail-compute]
10.xx.31.72

[kubernetes-contrail-controllers]
10.xx.29.27

[kubernetes-contrail-analytics]
10.xx.29.27

117

inventory/my-inventory/group_vars/all.yml Inventory File

This section describes the parameters and provides examples of the inventory/my-inventory/
group_vars/all.yml inventory file in stand-alone and nested Contrail Kubernetes clusters.

Table 5 on page 118 describes the configuration parameters used in the inventory/my-inventory/
group_vars/all.yml inventory file.

In Table 5 on page 118, Cluster Mode is one of the following:

• Stand-alone —Applicable only to a stand-alone cluster.

• Nested —Applicable only to nested cluster.

• Both—Applicable to both stand-alone and nested clusters.

Table 5: Parameters in inventory/my-inventory/group_vars/all.yml

Parameter Value Default Cluster
Mode

Description

cloud_orchestrator Kubernetes None Both Specifies orchestrator type.

contrail_compute_mo
de

container bare_meta
l

Both Specifies if the Contrail components
must be run as containers or as
processes on a stand-alone server.

keystone_config {ip: <ip>,
admin_password:
<passwd>,
admin_user:
<username>,
admin_tenant:
<tenant-name>}

None Nested Keystone authentication information.

nested_cluster_privat
e_network

"<cluster-private-
CIDR>"

None Nested The IP subnet reserved for use by
Kubernetes for internal cluster
management and housekeeping. The
Ansible user is responsible to make
sure this CIDR does not collide with
existing CIDRs in the virtual-network.

118

Table 5: Parameters in inventory/my-inventory/group_vars/all.yml (Continued)

Parameter Value Default Cluster
Mode

Description

kubernetes_cluster_n
ame

<cluster-name> k8s-
default

Both Name of the Kubernetes cluster being
provisioned.

nested_cluster_netwo
rk

{domain: <name>,
project: <name>,
name: <name>}

None Nested Virtual Network in which the
Kubernetes cluster must be
provisioned. This network must be
the same network to which the virtual
machines that host the Kubernetes
cluster belong.

kubernetes_access_to
ken

< token > None Both RBAC token to connect to
Kubernetes API server.

nested_mode true None Nested Parameter to enable nested
provisioning of a Kubernetes cluster.

kubernetes_public_fip
_pool

{domain: <id>,
project: <id>,
network: <id>,
name: <id>}

None Both Kubernetes FloatingIpPool to be used
for service or ingress.

kubernetes_cluster_p
roject

{domain: <id>,
project: <id>}

{domain:
default-
domain,
project:
default}

Both Fq-name of Contrail project within
which Kubernetes cluster must be
provisioned.

kubernetes_pod_subn
et

<CIDR> 10.32.0.0/
12

Both Pod subnet used by Kubernetes
cluster.

kubernetes_service_s
ubnet

<CIDR> 10.96.0.0/
12

Both Service subnet used by Kubernetes
cluster.

119

Table 5: Parameters in inventory/my-inventory/group_vars/all.yml (Continued)

Parameter Value Default Cluster
Mode

Description

kubernetes_api_serve
r

<IP> Contrail
Control
Node IP

Both Node on which kubernetes-api server
is running.

Example: inventory/my-inventory/group_vars/all.yml File in a Stand-alone Contrail
Kubernetes Cluster

The following is an example of the inventory/my-inventory/group_vars/all.yml file in a stand-alone
Contrail Kubernetes cluster:

docker_install_method: package
docker_py_pkg_install_method: pip

ansible connection details
ansible_user: root
ansible_become: true
ansible_ssh_private_key_file: ~/.ssh/id_rsa

contrail_compute_mode: container

os_release: ubuntu14.04

contrail version
contrail_version: 4.0.0.0-16

cloud_orchestrator: kubernetes

vrouter physical interface
vrouter_physical_interface: enp6s0f0

global_config:

analytics_api_config: {aaa_mode: no-auth}

To configure custom webui http port
webui_config: {http_listen_port: 8085}

120

Name of the kubernetes cluster being provisioned.
kubernetes_cluster_name: k8s5

Access token to connect to Kuberenetes API server.
kubernetes_access_token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc
3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9
zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImRlZmF1bHQtdG
9rZW4tcTUzYmYiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3Nlcn
ZpY2UtYWNjb3VudC5uYW1lIjoiZGVmYXVsdCIsImt1YmVybmV0ZXMuaW8vc
2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImVhNzE1YjJkLT
JhYWUtMTFlNy1iZmJmLTAyMWQwOTNhMzRkMSIsInN1YiI6InN5c3RlbTpzZ
XJ2aWNlYWNjb3VudDpkZWZhdWx0OmRlZmF1bHQifQ.Kj0-NYBopRc8rMsX
4NnKpJa570k2iamPOgCTdj3d93MW20girt4IgdAmR4v4kifQO-h5eYGVlfA3
ftkPuWb5GbHDz9x7BoYc7b759i2cuX3AmtbCl5kNcbGY7_7JPIDkMHwwRj
7FK7Y57eEFTstCxcpR4itqxzsRi7jc0nrrcbDkvlOkDhA93ID4ChPwE2PcsAf_
LV9ds-gSzuyPIQt0qdxnQvI262AjgeNowbQhkYguoqZWJIE--AwpgSE0NiNpjc
xiUx1HC2uaRSP3g9mMr2g4YQHRjxJwuz3fUkaSRNZyQEpyE5G5WKXTefc
7h52R5Kphn2nT9gg6x175mrrnNQ

Kubernetes API server IP.
kubernetes_api_server: 10.14.27.16

Example: inventory/my-inventory/group_vars/all.yml File in a Nested Contrail
Kubernetes Cluster

The following is an example of the inventory/my-inventory/group_vars/all.yml file in a nested Contrail
Kubernetes cluster

docker_install_method: package
docker_py_pkg_install_method: pip

ansible connection details
ansible_user: root
ansible_become: true
ansible_ssh_private_key_file: ~/.ssh/id_rsa

contrail_compute_mode: container

os_release: ubuntu14.04

121

contrail version
contrail_version: 4.0.0.0-16

cloud_orchestrator: kubernetes

vrouter physical interface
vrouter_physical_interface: enp6s0f0

global_config:

To configure custom webui http port
webui_config: {http_listen_port: 8085}

keystone_config: {ip: 10.14.29.27, admin_password: c0ntrail123, admin_user: admin, admin_tenant:
admin}

###
Kubernetes cluster configuration
##

The IP subnet reserved for use by kubernetes for internal cluster management
and housekeeping.
nested_cluster_private_network: "10.10.10.0/24"

Name of the kubernetes cluster being provisioned.
kubernetes_cluster_name: k8s5

Virtual Network in which the Kubernetes cluster should be provisioned.
nested_cluster_network: {domain: default-domain, project: admin, name: 5-k8s-VM-network}

Access token to connect to Kuberenetes API server.
kubernetes_access_token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc
3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9z
ZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlc
y5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImRlZmF1bHQtdG9
rZW4tcTUzYmYiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZp
Y2UtYWNjb3VudC5uYW1lIjoiZGVmYXVsdCIsImt1YmVybmV0ZXMuaW8vc2V
ydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImVhNzE1YjJkLTJhY
WUtMTFlNy1iZmJmLTAyMWQwOTNhMzRkMSIsInN1YiI6InN5c3RlbTpzZXJ2
aWNlYWNjb3VudDpkZWZhdWx0OmRlZmF1bHQifQ.Kj0-NYBopRc8rMsX4Nn
KpJa570k2iamPOgCTdj3d93MW20girt4IgdAmR4v4kifQO-h5eYGVlfA3ftkPu
Wb5GbHDz9x7BoYc7b759i2cuX3AmtbCl5kNcbGY7_7JPIDkMHwwRj7FK7Y

122

57eEFTstCxcpR4itqxzsRi7jc0nrrcbDkvlOkDhA93ID4ChPwE2PcsAf_LV9ds-g
SzuyPIQt0qdxnQvI262AjgeNowbQhkYguoqZWJIE--AwpgSE0NiNpjcxiUx1HC2
uaRSP3g9mMr2g4YQHRjxJwuz3fUkaSRNZyQEpyE5G5WKXTefc7h52R5Kph
n2nT9gg6x175mrrnNQ

Kubernetes cluster is nested within an Openstack cluster.
nested_mode: true

Kubernetes API server IP.
kubernetes_api_server: 10.14.27.16

RELATED DOCUMENTATION

Contrail Integration with Kubernetes | 105

Viewing Configuration for CNI for Kubernetes | 123

Viewing Configuration for CNI for Kubernetes

IN THIS SECTION

View Pod Name and IP Address | 124

Verify Reachability of Pods | 124

Verify If Isolated Namespace-Pods Are Not Reachable | 124

Verify If Non-Isolated Namespace-Pods Are Reachable | 125

Verify If a Namespace is Isolated | 126

Use the verification steps in this topic to view and verify your configuration of Contrail Container
Network Interface (CNI) for Kubernetes.

123

View Pod Name and IP Address

Use the following command to view the IP address allocated to a pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide
NAMESPACE NAME READY STATUS RESTARTS AGE
IP NODE
default client-1 1/1 Running 0
19d 10.47.25.247 k8s-minion-1-3
default client-2 1/1 Running 0
19d 10.47.25.246 k8s-minion-1-1
default client-x 1/1 Running 0
19d 10.84.21.272 k8s-minion-1-1

Verify Reachability of Pods

Perform the following steps to verify if the pods are reachable to each other.

1. Determine the IP address and name of the pod.

[root@device ~]# kubectl get pods --all-namespaces -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example1-36xpr 1/1 Running 0 43s 10.47.25.251 b3s37
example2-pldp1 1/1 Running 0 39s 10.47.25.250 b3s37

2. Ping the destination pod from the source pod to verify if the pod is reachable.

root@device ~]# kubectl exec -it example1-36xpr ping 10.47.25.250
PING 10.47.25.250 (10.47.25.250): 56 data bytes
64 bytes from 10.47.25.250: icmp_seq=0 ttl=63 time=1.510 ms
64 bytes from 10.47.25.250: icmp_seq=1 ttl=63 time=0.094 ms

Verify If Isolated Namespace-Pods Are Not Reachable

Perform the following steps to verify if pods in isolated namespaces cannot be reached by pods in non-
isolated namespaces.

124

1. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example3-bvqx5 1/1 Running 0 1h 10.47.25.249 b3s37

2. Determine the IP address of a pod in a non-solated namespace.

[root@device ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
example1-36xpr 1/1 Running 0 15h
example2-pldp1 1/1 Running 0 15h

3. Ping the IP address of the pod in the isolated namespace from the pod in the non-isolated
namespace.

[root@device ~]# kubectl exec -it example1-36xpr ping 10.47.25.249
 --- 10.47.255.249 ping statistics ---
 2 packets transmitted, 0 packets received, 100% packet loss

Verify If Non-Isolated Namespace-Pods Are Reachable

Perform the following steps to verify if pods in non-isolated namespaces can be reached by pods in
isolated namespaces.

1. Determine the IP address of a pod in a non-isolated namespace.

[root@device ~]# kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example1-36xpr 1/1 Running 0 15h 10.47.25.251 b3s37
example2-pldp1 1/1 Running 0 15h 10.47.25.250 b3s37

2. Determine the IP address and name of a pod in an isolated namespace.

[root@device ~]# kubectl get pod -n test-isolated-ns -o wide
NAME READY STATUS RESTARTS AGE IP NODE
example3-bvqx5 1/1 Running 0 1h 10.47.25.249 b3s37

125

3. Ping the IP address of the pod in the non-isolated namespace from a pod in the isolated namespace.

[root@device ~]# kubectl exec -it example3-bvqx5 -n test-isolated-ns ping 10.47.25.251
PING 10.47.25.251 (10.47.25.251): 56 data bytes
64 bytes from 10.47.25.251: icmp_seq=0 ttl=63 time=1.467 ms
64 bytes from 10.47.25.251: icmp_seq=1 ttl=63 time=0.137 ms
^C--- 10.47.25.251 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.137/0.802/1.467/0.665 ms

Verify If a Namespace is Isolated

Namespace annotations are used to turn on isolation in a Kubernetes namespace. In isolated Kubernetes
namespaces, the namespace metadata is annotated with the opencontrail.org/isolation : true annotation.

Use the following command to view annotations on a namespace.

[root@a7s16 ~]#
kubectl describe namespace test-isolated-ns
Name: test-isolated-ns
Labels: <none>
Annotations: opencontrail.org/isolation : true Namespace is isolated
Status: Active

RELATED DOCUMENTATION

Contrail Integration with Kubernetes | 105

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Provisioning Contrail CNI for Kubernetes

IN THIS SECTION

Requirements | 127

Overview | 130

126

Configuration | 130

Troubleshooting | 132

You can use the following procedure to provision Contrail Container Network Interface (CNI) for
Kubernetes.

Requirements

This procedure requires the following minimum virtual machine and host specifications:

• 32 GB RAM

• Eight vCPUs

• 150 GB disk space

The supported software versions for provisioning Contrail CNI for Kubernetes are:

• Kubernetes 1.6

• Docker Engine versions 1.11.0 to 1.13.0

• Ubuntu 16.04.2 or CentOS 7 operating systems

Preparing for Installation

Before provisioning Contrail CNI for Kubernetes, ensure the following prerequisites are met:

1. Stop the firewall service and delete all the iptable rules.

• For Ubuntu 16.04 host OS, use the following commands:

sudo service ufw stop
sudo iptables -F

• For CentOS 7 host OS, use the following commands:

sudo service firewalld stop
sudo iptables -F

2. Ensure that the Kubernetes cluster is running. You can choose any method to install Kubernetes. For
quick installation steps, use the following commands:

127

• Commands for Ubuntu 16.04 host OS:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl -y

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo bash -c 'cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF'
sudo apt-get update -y
sudo apt-get install -y kubectl
sudo apt-get install -y kubelet
sudo apt-get install -y kubeadm
sudo apt-get install -y docker-engine

sudo kubeadm init

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

If you have multi-node cluster then please copy paste the kubeadm join line
on all the slave nodes from the stdout of sudo kubeadm init command.
It looks like below
sudo kubeadm join --token fd554a.97d239c2234d0de352 192.0.2.0:6443

• Commands for CentOS 7 host OS:

sudo bash -c 'cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
 https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF'

128

sudo setenforce 0 || true

yum install -y kubelet kubeadm kubectl docker
systemctl enable docker && systemctl start docker
systemctl enable kubelet && systemctl start kubelet

echo 1 > /proc/sys/net/bridge/bridge-nf-call-iptables

sudo kubeadm init --kubernetes-version v1.7.4

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

If you have multi-node cluster then please copy paste the kubeadm join line
on all the slave nodes from the stdout of sudo kubeadm init command.
It looks like below
sudo kubeadm join --token fd554a.97d239c2234d0de352 192.0.2.01:6443

3. Patch LivenessProbe and ReadinessProbe of kube-dns deployment using the following commands:

kubectl patch deploy/kube-dns --type json -p='[{"op": "replace", "path": "/spec/template/
spec/containers/0/readinessProbe", "value": {"exec": {"command": ["wget", "-O", "-", "http://
192.0.2.1:8081/readiness"]}}}]' -n kube-system
kubectl patch deploy/kube-dns --type json -p='[{"op": "replace", "path": "/spec/template/
spec/containers/0/livenessProbe", "value": {"exec": {"command": ["wget", "-O", "-", "http://
192.0.2.1:10054/healthcheck/kubedns"]}}}]' -n kube-system && kubectl patch deploy/kube-dns --
type json -p='[{"op": "replace", "path": "/spec/template/spec/containers/1/livenessProbe",
"value": {"exec": {"command": ["wget", "-O", "-", "http://192.0.2.1:10054/healthcheck/
dnsmasq"]}}}]' -n kube-system && kubectl patch deploy/kube-dns --type json -p='[{"op":
"replace", "path": "/spec/template/spec/containers/2/livenessProbe", "value": {"exec":
{"command": ["wget", "-O", "-", "http://192.0.2.1:10054/metrics"]}}}]' -n kube-system

4. (Optional) If you are re-provisioning Contrail on the same setup, ensure that you delete the configdb
and analyticsdb data from the previous installation.

sudo rm -rf /var/lib/contrail*
sudo rm -rf /var/lib/configdb*
sudo rm -rf /var/lib/analyticsdb*

129

Overview

Kubernetes is an open source platform for automating deployment, scaling, and operations of
application containers across clusters of hosts, providing container-centric infrastructure. Kubernetes
supports a pluggable framework called CNI for most of the basic network connectivity, including
container pod addressing, network isolation, policy-based security, a gateway, SNAT, load-balancer, and
service chaining capability for Kubernetes orchestration. Contrail supports CNI for integrating Contrail
with the Kubernetes automation platform.

Configuration

IN THIS SECTION

Procedure | 130

Procedure

Step-by-Step Procedure

To provision Contrail CNI for Kubernetes, perform the following steps:

1. Git clone the contrail-docker repository.

git clone https://github.com/Juniper/contrail-docker.git -b R4.0

2. Change directory to contrail-docker/kubernetes/manifests/.

cd contrail-docker/kubernetes/manifests/

3. Edit the single yaml file. You can use any editor to edit the file.

• For Ubuntu 16.04 host OS:

vim contrail-host-ubuntu.yaml

130

• For CentOS 7 host OS:

vim contrail-host-centos.yaml

4. Edit the following variables in configmap and change it according to your setup. Mandatory variables
that must be changed are config_nodes, controller_nodes, analytics_nodes, analyticsdb_nodes, and
api_server. Refer to Definable Input Variables While Provisioning Contrail for Kubernetes for more
information.

data:
global-config: |-
 [GLOBAL]
 cloud_orchestrator = kubernetes
 sandesh_ssl_enable = False
 enable_config_service = True
 enable_control_service = True
 enable_webui_service = True
 introspect_ssl_enable = False
 config_nodes = "192.0.2.2"
 controller_nodes = 192.0.2.2
 analytics_nodes = 192.0.2.2
 analyticsdb_nodes = 192.0.2.2
agent-config: |-
 [AGENT]
 compile_vrouter_module = True
 # Optional ctrl_data_network, if different from management
 # ctrl_data_network = "192.0.2.3/24"
kubemanager-config: |-
 [KUBERNETES]
 cluster_name = k8s-default
 cluster_project = {'domain': 'default-domain', 'project': 'default'}
 cluster_network = {}
 service_subnets = 192.0.2.4/12
 pod_subnets = 192.0.2.5/12
 api_server = 192.0.2.2
kubernetes-agent-config: |-
 [AGENT]

131

https://github.com/Juniper/contrail-docker/wiki/Definable-input-variables-while-provisioning-contrail-for-k8s

5. (Optional) If the setup is a single node setup then uncomment the following lines in contrail-agent
daemonset.

#tolerations:
#- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule

6. Deploy Contrail using the following command.

kubectl apply -f contrail-host-ubuntu.yaml

7. Verify Contrail status on all Contrail containers. Look-up Contrail pod names using the following
command.

kubectl get pods -n kube-system
contrail-analytics-9m545 1/1 Running 1 23h
contrail-analyticsdb-cpdjn 1/1 Running 1 23h
contrail-controller-gd5vl 1/1 Running 1 23h
contrail-kube-manager-82fcq 1/1 Running 1 23h
contrail-vrouter-agent-vwmbk 1/1 Running 1 23h

8. Check the contrail-status for all the pods, using the following command.

kubectl exec -it <contrail-pod-name> -n kube-system -- contrail-status

Troubleshooting

IN THIS SECTION

 | 133

 | 133

 | 133

 | 134

132

Problem

To check if Contrail pods are running.

Solution

Use the following command to list the Contrail pods:

 kubectl get pods -n kube-system -o wide | grep contrail

Problem

To ensure that contrail-agent pod is displayed.

Solution

If the setup is a single node setup then uncomment the following lines in contrail-agent daemonset.

#tolerations:
#- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule

Problem

To bring up Contrail control plane pods on nodes other than the Kubernetes master.

Solution

Label the node as opencontrail.org/controller=true using the following command:

kubectl label node <node-name> opencontrail.org/controller=true

133

Problem

To delete the Contrail stack.

Solution

Use the following command to delete the Contrail stack:

kubectl delete -f contrail-host-ubuntu.yaml

RELATED DOCUMENTATION

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Using Kubernetes Helm to Provision Contrail

IN THIS SECTION

Requirements | 134

Overview | 137

Configuration | 137

Troubleshooting | 139

Starting with Contrail Release 4.0.1, you can use Kubernetes Helm to provision Contrail.

Requirements

This procedure requires the following minimum virtual machine and host specifications:

• 32 GB RAM

• Eight vCPUs

• 150 GB disk space

134

The supported software versions for using Kubernetes Helm for provisioning Contrail are:

• Kubernetes 1.6

• Docker Engine versions 1.11.0 to 1.13.0

• Helm 2.4 and greater

• Contrail Release 4.0.1

Preparing for Installation

Before using Helm to provision Contrail with Kubernetes, ensure the following prerequisites are met:

1. Stop the firewall service and delete all the iptable rules.

• For Ubuntu 16.04 host OS, use the following commands:

sudo service ufw stop
sudo iptables -F

• For CentOS 7 host OS, use the following commands:

sudo service firewalld stop
sudo iptables -F

2. Ensure that the Kubernetes cluster is running. You can choose any method to install Kubernetes. For
quick installation steps, use the following commands:

• Commands for Ubuntu 16.04 host OS:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl -y

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
sudo bash -c 'cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF'
sudo apt-get update -y
sudo apt-get install -y kubectl
sudo apt-get install -y kubelet

135

sudo apt-get install -y kubeadm
sudo apt-get install -y docker-engine

sudo kubeadm init

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

If you have multi-node cluster then please copy paste the kubeadm join line
on all the slave nodes from the stdout of sudo kubeadm init command.
It looks like below
sudo kubeadm join --token fd554a.97d239c2234d0de352 192.0.2.0:6443

• Commands for CentOS7 host OS:

sudo bash -c 'cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
 https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF'

sudo setenforce 0 || true

yum install -y kubelet kubeadm kubectl docker
systemctl enable docker && systemctl start docker
systemctl enable kubelet && systemctl start kubelet

echo 1 > /proc/sys/net/bridge/bridge-nf-call-iptables

sudo kubeadm init --kubernetes-version v1.7.4

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

If you have multi-node cluster then please copy paste the kubeadm join line

136

on all the slave nodes from the stdout of sudo kubeadm init command.
It looks like below
sudo kubeadm join --token fd554a.97d239c2234d0de352 192.0.2.0:6443

3. Patch LivenessProbe and ReadinessProbe of kube-dns deployment using the following commands:

kubectl patch deploy/kube-dns --type json -p='[{"op": "replace", "path": "/spec/template/
spec/containers/0/readinessProbe", "value": {"exec": {"command": ["wget", "-O", "-", "http://
192.0.2.1:8081/readiness"]}}}]' -n kube-system
kubectl patch deploy/kube-dns --type json -p='[{"op": "replace", "path": "/spec/template/
spec/containers/0/livenessProbe", "value": {"exec": {"command": ["wget", "-O", "-", "http://
192.0.2.1:10054/healthcheck/kubedns"]}}}]' -n kube-system && kubectl patch deploy/kube-dns --
type json -p='[{"op": "replace", "path": "/spec/template/spec/containers/1/livenessProbe",
"value": {"exec": {"command": ["wget", "-O", "-", "http://192.0.2.1:10054/healthcheck/
dnsmasq"]}}}]' -n kube-system && kubectl patch deploy/kube-dns --type json -p='[{"op":
"replace", "path": "/spec/template/spec/containers/2/livenessProbe", "value": {"exec":
{"command": ["wget", "-O", "-", "http://192.0.2.1:10054/metrics"]}}}]' -n kube-system

4. (Optional) If you are re-provisioning Contrail on the same Kubernetes cluster, ensure the following:

• Delete the configdb and analyticsdb data from the previous installation.

sudo rm -rf /var/lib/contrail*
sudo rm -rf /var/lib/configdb*
sudo rm -rf /var/lib/analyticsdb*

• Remove the vhost0 interface from all the nodes. Reboot the cluster to remove the vhost0
interface.

Overview

Helm is a tool that helps package, install, and manage Kubernetes applications. Starting with Contrail
4.0.1, you can use Kubernetes Helm to provision Contrail.

Configuration

IN THIS SECTION

Procedure | 138

137

Procedure

Step-by-Step Procedure

1. Download and install Kubernetes Helm.

export HELM_VERSION=v2.5.1
 export TMP_DIR=$(mktemp -d)
 curl -sSL https://storage.googleapis.com/kubernetes-helm/helm-${HELM_VERSION}-linux-
amd64.tar.gz | tar -zxv --strip-components=1 -C ${TMP_DIR}
 sudo mv ${TMP_DIR}/helm /usr/local/bin/helm
 rm -rf ${TMP_DIR}

2. Download Contrail-related charts and manifests. Ensure that the correct version of contrail-docker tag
is checked out.

git clone https://github.com/Juniper/contrail-docker.git -b R4.0

3. Install Kubernetes Helm's tiller pods with the correct tiller version.

cd contrail-docker/kubernetes/manifests
 kubectl create -f tiller.yaml
 kubectl patch ds/tiller-ds --type json -p='[{"op": "replace", "path": "/spec/
updateStrategy/type", "value": "RollingUpdate"}]' -n kube-system && kubectl set image ds/
tiller-ds tiller=gcr.io/kubernetes-helm/tiller:${HELM_VERSION} -n kube-system

4. Initialize the Kubernetes Helm client by using the following command

helm init --client-only

5. Edit the values.yaml file. Refer to Definable Input Variables While Provisioning Contrail for
Kubernetes for more information.

cd ../helm
 vi contrail/values.yaml

138

https://github.com/Juniper/contrail-docker/wiki/Definable-input-variables-while-provisioning-contrail-for-k8s
https://github.com/Juniper/contrail-docker/wiki/Definable-input-variables-while-provisioning-contrail-for-k8s

6. Install Contrail charts using the following command.

helm install --name deployment name path_to_chart

7. Verify Contrail status on all Contrail containers.

• Check the Contrail pod names using the following command.

kubectl get pods -n kube-system
contrail-analytics-9m545 1/1 Running 1 23h
contrail-analyticsdb-cpdjn 1/1 Running 1 23h
contrail-controller-gd5vl 1/1 Running 1 23h
contrail-kube-manager-82fcq 1/1 Running 1 23h
contrail-vrouter-agent-vwmbk 1/1 Running 1 23h

• Check the contrail-status for all the pods, using the following command.

kubectl exec -it contrail-pod-name -n kube-system -- contrail-status

Troubleshooting

IN THIS SECTION

 | 139

 | 140

 | 140

 | 141

Problem

To check if Contrail pods are running.

139

Solution

Use the following command to list the Contrail pods:

kubectl get pods -n kube-system -o wide | grep contrail

Problem

To bring up Contrail control plane pods on nodes other than the Kubernetes master.

Solution

Label the node as opencontrail.org/controller=true using the following command:

kubectl label node node-name opencontrail.org/controller=true

Problem

To install Helm on locally loaded Contrail containers.

Solution

1. Look-up the Contrail-image name and tags using the following command:

sudo docker images | grep contrail-controller
contrail-controller-ubuntu16.04 4.0.1.0-31
1cbed50707a7 3 days ago 1.614 GB

2. Edit the contrail/values.yaml file and change the respective image name under images using the
image-name:tag format. For example:

images:
 controller: "docker.io/opencontrail/contrail-controller-ubuntu16.04:4.0.1."

Edit the file before installing Helm.

140

Problem

To delete the Contrail stack.

Solution

Use the following command to delete the Contrail stack:

kubectl delete -f contrail-host-ubuntu.yaml

RELATED DOCUMENTATION

Installing and Provisioning Containerized Contrail Controller for Kubernetes | 112

Provisioning Contrail CNI for Kubernetes | 126

141

CHAPTER 6

Using VMware vCenter with Containerized Contrail,
Release 4.0.1 and Greater

IN THIS CHAPTER

Installing and Provisioning VMware vCenter with Containerized Contrail | 142

Underlay Network Configuration for Containerized ContrailVM | 149

Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater | 159

Using the Contrail and VMWare vCenter User Interfaces to Manage the Network | 175

Installing and Provisioning VMware vCenter with Containerized Contrail

IN THIS SECTION

Overview: Integrating Contrail 4.0.1 and Greater with vCenter Server | 143

Different Modes of vCenter Integration with Contrail | 143

vCenter-Only Mode | 143

vCenter-as-Compute Mode | 144

Preparing the Installation Environment | 145

Installation for vCenter-Only Mode | 145

Installing the vCenter-Only Components | 146

Installation of vCenter-as-Compute Mode | 147

Installing the vCenter-as-Compute Components | 148

Verification | 148

Adding Hosts or Nodes | 148

Adding an ESXi Host to an Existing vCenter Cluster | 148

Adding a vCenter Cluster to vCenter-as-Compute | 148

142

Overview: Integrating Contrail 4.0.1 and Greater with vCenter Server

This topic describes how to install and provision Contrail Release 4.0.1 and later.

The Contrail VMware vCenter solution has the following main components:

• Control and management that runs the following components as needed per Contrail system:

a. A VMware vCenter Server independent installation that is not managed by Juniper Networks
Contrail. The Contrail software provisions vCenter with Contrail components and creates entities
required to run Contrail.

b. The Contrail controller, including the configuration nodes, control nodes, analytics, database, and
Web UI, which are installed, provisioned, and managed by Contrail software.

c. A VMware vCenter plugin provided with Contrail. Starting with Contrail Release 4.0.1 release, the
contrail-vcenter-plugin runs in Docker container and provisioning of additional contrail-vcenter-
plugin and contrail-vcenter-compute server roles are added

• VMware ESXi virtualization platforms forming the compute cluster, with Contrail data plane (vRouter)
components running inside an Ubuntu-based virtual machine. The virtual machine, named
ContrailVM, forms the compute personality while performing Contrail installs. The ContrailVM is set
up and provisioned by Contrail. There is one ContrailVM running on each ESXi host.

Different Modes of vCenter Integration with Contrail

The vCenter integrated Contrail solution has the following modes:

• vCenter-only

• vCenter-as-compute

vCenter-Only Mode

In the vCenter-only mode, vCenter is the main orchestrator, and Contrail is integrated with vCenter for
the virtual networking.

Figure 20 on page 144 shows the Contrail vCenter-only solution.

143

Figure 20: Contrail vCenter-Only Solution

vCenter-as-Compute Mode

In the vCenter-as-compute mode, OpenStack is the main orchestrator, and the vCenter cluster, along
with the managed ESXi hosts, act as a Nova compute node to the OpenStack orchestrator.

Figure 21 on page 145 shows the Contrail vCenter-as-compute solution.

144

Figure 21: Contrail vCenter-as-Compute Solution

Preparing the Installation Environment

Use the standard containerized Contrail installation procedure using Server Manager to install Contrail
components in cluster nodes.

Follow the steps in Installing Containerized Contrail Clusters Using Server Manager.

NOTE: Refer to the sample JSONs for Contrail vCenter in "Sample JSON Configuration Files for
vCenter with Containerized Contrail 4.0.1 and Greater" on page 159.

Installation for vCenter-Only Mode

This section lists the basic installation procedure and the assumptions and prerequisites necessary
before starting the installation of any VMware vCenter Contrail integration.

NOTE: To ensure you are using the correct versions of all software for your specific system, refer
to the Supported Platforms section in the release notes for your release of Contrail .

Installation: Assumptions and Prerequisites

The following assumptions and prerequisites are required for a successful installation of a VMware
vCenter Contrail integrated system:

• VMware vCenter Server

145

• A cluster of ESXi hosts with VMware

• The following software installation packages:

• The contrail-vcenter-docker_x.x.x.x-x_trusty.tgz for Ubuntu 14.04

The contrail-vcenter-docker_4.0.1.0-40_xenial.tgz for Ubuntu 16.04.

• Tar file of the OVF image of ContrailVM

• Because a Contrail vRouter runs as a virtual machine on each ESXi host, it needs an IP address
assigned from the same underlay network as the host, all of which must be specified appropriately in
the server JSON configuration. Refer to the section "Underlay Network Configuration for
Containerized ContrailVM" on page 149 for ContrailVM IP fabric connectivity.

Installing the vCenter-Only Components

Follow the steps in this section to install the Contrail for vCenter-only components. See sample image,
server, and cluster JSON configuration files for Contrail vCenter in "Sample JSON Configuration Files for
vCenter with Containerized Contrail 4.0.1 and Greater" on page 159 for specific examples.

ContrailVM IP fabric connectivity can be configured in various ways. See "Underlay Network
Configuration for Containerized ContrailVM" on page 149 for more information. The ContrailVM is
created as part of Ansible-provisioning triggered from Server Manager. The IP address or MAC address
for the ContrailVM is specified in the server JSON. Configure the DHCP server, allocating IP addresses
to the cluster nodes, with static mapping of the MAC to IP address in DHCP server. The server_manager
or smlite version of the Server Manager can be used for provisioning the Contrail cluster with a vcenter-
as-orchestrator node. Ensure that the image is added to the Server Manager, and the servers and cluster
configurations are added to the Server Manager. See Installing Containerized Contrail Using Server
Manager Lite (SM-Lite).

1. Ensure that openstack_sku is configured as “vcenter” in the image JSON. See "Sample JSON
Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater" on page 159.

2. Ensure that orchestrator is set to “vcenter” in the cluster JSON. See "Sample JSON Configuration Files
for vCenter with Containerized Contrail 4.0.1 and Greater" on page 159.

3. Add the image to Server Manager:

server-manager add image –f <path_to_image_json>

4. Add the cluster configuration to the Server Manager:

server-manager add cluster –f <path_to_cluster_json>

5. Add the server configuration to the Server Manager:

server-manager add server –f <path_to_server_json>

6. Use one of the following commands to provision Contrail clusters.

146

• To provision a Contrail cluster using server-manager:

server-manager provision –cluster_id <cluster_id> <contrail_image>

• To provision a Contrail cluster using SMLite:

Cd /opt/contrail/contrail_server_manager

./provision_containers.sh –j <json file path having image/cluster/server params>

When using SMLite installation, the single JSON file must include image, cluster, and server
configurations. See Installing Containerized Contrail Using Server Manager Lite (SM-Lite).

Installation of vCenter-as-Compute Mode

This section lists the basic installation procedure and the assumptions and prerequisites necessary
before starting the installation of any VMware vCenter-as-compute Contrail integration.

NOTE: To ensure you are using the correct versions of all software for your specific system, see
the Supported Platforms section in the Release Notes for your release of Contrail .

Installation: Assumptions and Prerequisites

The following assumptions and prerequisites are required for a successful installation of a VMware
vCenter containerized Contrail integrated system:

• VMware vCenter Server 6.0 or 6.5

• A cluster of ESXi hosts with VMware

• The following software installation packages:

• The contrail-cloud-docker_x.x.x.x-x-mitaka_trusty.tgz for Ubuntu14.04

• The contrail-cloud-docker_x.x.x.x-x-newton_xenial.tgz for Ubuntu 16.04

• Tar file of the OVF image of ContrailVM

• Because a Contrail vRouter runs as a virtual machine on each ESXi host, it needs an IP address
assigned from the same underlay network as the host, all of which must be specified appropriately in
the server JSON file. Refer to "Underlay Network Configuration for Containerized ContrailVM" on
page 149 for ContrailVM IP fabric connectivity.

147

For the vCenter-as-compute mode, an additional role of ‘contrail-vcenter-compute’ is required, specified as
[‘contrail-vcenter_compute’] in the server JSON configuration in Server Manager. Nodes configured as
contrail-vcenter_compute act as the nova-compute nodes in this mode.

Installing the vCenter-as-Compute Components

Ensure that the contrail-vcenter-compute role is defined in the server JSON. The installation or provisioning
of the vcenter-as-compute cluster is the same as specified in the vcenter-as-orchestrator using Server
Manager. Refer to the sample JSON files in "Sample JSON Configuration Files for vCenter with
Containerized Contrail 4.0.1 and Greater" on page 159.

Verification

When the provisioning step completes, run the contrail-status command on all containers to view a
health check of the Contrail configuration and control components.

Adding Hosts or Nodes

You can add some vCenter features to existing installations, including:

• Adding an ESXi host

• Adding a vCenter cluster

Adding an ESXi Host to an Existing vCenter Cluster

You can provision and add an ESXi host to an existing vCenter cluster.

To add an ESXi host, add the server JSON configuration for the new contrail-compute server role in the
Server Manager and run the following server-manager provision command for the cluster:

server-manager provision –cluster_id <cluster_id> <image_id>

NOTE: The server-manager provision command also works for server-manager smlite version.

Adding a vCenter Cluster to vCenter-as-Compute

Use this procedure to add a vCenter cluster to a vCenter-as-compute system to an existing cluster.
Ensure that you have provisioned and added all the ESXI hosts, as described in the procedure Adding an
ESXI Host to an Existing vCenter Cluster procedure.

148

To set up and add a vCenter compute node, add the server JSON configuration for the new server with
the contrail-vcenter-compute role in Server Manager and run the following server-manager provision command
for the cluster:

server-manager provision –cluster_id <cluster_id> <image_id>

NOTE: The server-manager provision command also works for the server-manager smlite version.

RELATED DOCUMENTATION

Underlay Network Configuration for Containerized ContrailVM | 149

Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater | 159

Using the Contrail and VMWare vCenter User Interfaces to Manage the Network | 175

Underlay Network Configuration for Containerized ContrailVM

IN THIS SECTION

Standard Switch Setup | 149

Distributed Switch Setup | 151

PCI Pass-Through Setup | 152

SR-IOV Setup | 155

Starting with Contrail Release 4.0.1 and greater, vCenter can be used with containerized Contrail.

When using vCenter-as-compute with containerized Contrail, the ContrailVM can be configured in
several different ways for the underlay (ip-fabric) connectivity:

Standard Switch Setup

In the standard switch setup, the ContrailVM is provided an interface through the standard switch port
group that is used for management and control data, see Figure 22 on page 150.

149

Figure 22: Standard Switch Setup

To set up the ContrailVM in this mode, the standard switch and port group must be configured in the
server JSON configuration.

If switch name is not configured, the default values of vSwitch0 are used for the standard switch.

The ContrailVM supports multiple NICs for management and control_data interfaces. The management
interface must have the DHCP flag as true and the control_data interface can have DHCP set as false.
When DHCP is set to false, the interface script is updated with the IP address as specified in the server
JSON. Additional configuration such as static routes and bond interface can be configured in the server
JSON in Server Manager.

The following is an example of server configuration in Server Manager with standard switch.

 "contrail_vm": {
 “mgmt_switch”: “vSwitch0”,
 “mgmt_pg": “mgmt.-pg”
 "control_data_switch": "vSwitch1",
 "control_data_pg": "control-pg",

150

 "vmdk": "/root/vmdk_new/vmdk.tar"
 },

Distributed Switch Setup

A distributed switch functions as a single virtual switch across associated hosts.

In the distributed switch setup, the ContrailVM is provided an interface through the distributed switch
port group that is used for management and control data, see Figure 23 on page 151.

The ContrailVM can be configured to use the management and control_data NICs from DVS. The DVS
configuration for control_data and mgmt is provided in the cluster JSON configuration in Server
Manager. When the DVS configuration is specified, the standard switch configuration is ignored.

Figure 23: Distributed Switch Setup

To set up the ContrailVM in this mode, configure the distributed switch, port group, number of ports in
the port group, and the uplink in the vcenter_servers section in the cluster JSON configuration.

151

NOTE: The uplink can be a link aggregation group (LAG). If you use LAG, then DVS and LAG
need to be preconfigured.

The following is an example distributed switch configuration in cluster JSON.

 "vcenter_servers": [
 {
 "server1": {
 "datacenters": {
 "i27_datacenter11": {
 "dv_switch_control_data": {
 "dv_port_group_control_data": {
 "dv_portgroup_name": "pg_name",
 "number_of_ports": "3",
 "uplink": "vmnic1"
 },
 "dv_switch_name": "dvs_name"
 },
 "dv_switch_mgmt": {
 "dv_port_group_mgmt": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 }
 }
 }
 }
 }
]

PCI Pass-Through Setup

PCI pass-through is a virtualization technique in which a physical Peripheral Component Interconnect
(PCI) device is directly connected to a virtual machine, bypassing the hypervisor. Drivers in the VM can
directly access the PCI device, resulting in a high rate of data transfer.

152

In the pass-through setup, the ContrailVM is provided management and control data interfaces. Pass-
through interfaces are used for control data. Figure 24 on page 153 shows a PCI pass-through setup
with a single control_data interface.

Figure 24: PCI Pass-Through with Single Control Data Interface

When setting up the ContrailVM with pass-through interfaces, upon provisioning ESXi hosts in the
installation process, the PCI pass-through interfaces are exposed as Ethernet interfaces in the
ContrailVM, and are identified in the control_data device field.

The following is an example PCI pass-through configuration with a single control_data interface:

 'contrail_vm': {
 “”“”“” “pci_devices'”: {
 “nics”: [“04:00.0"],
 },
 "vmdk": "/root/vmdk_new/vmdk.tar"

153

 }

Figure 25 on page 154 shows a PCI pass-through setup with a bond_control data interface, which has
multiple pass-through NICs.

Figure 25: PCI Pass-Through Setup with Bond Control Interface

Update the ContrailVM section in server JSON configuration with pci_devices as shown in the following
example. Refer to the Server Manager documentation for bond interface-configuration in server JSON
configuration.

 "contrail_vm": {
 “pci_devices”: {
 “nics”: [“04:00.0”, “04:00.1”]
 }

154

 "vmdk": "/root/vmdk_new/vmdk.tar"
 },

SR-IOV Setup

A single root I/O virtualization (SR-IOV) interface allows a network adapter device to separate access to
its resources among various hardware functions.

In the SR-IOV setup, the ContrailVM is provided management and control data interfaces. SR-IOV
interfaces are used for control data. See Figure 26 on page 155.

Figure 26: SR-IOV Setup

In VMware, the port-group is mandatory for SR-IOV interfaces because the ability to configure the
networks is based on the active policies for the port holding the virtual machines. For more information,
refer to VMware’s SR-IOV Component Architecture and Interaction.

The port-group is created as part of provisioning; however, before the provisioning, the distributed virtual
switch (DVS) for the port-group should be created by the user.

155

https://pubs.vmware.com/vsphere-55/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-DD13D453-98B9-4D26-85EA-A738293AEE00.html

To set up the ContrailVM with SR-IOV interfaces, all JSON file configurations used for the standard
switch setup are also used for the pass-through setup, providing the management connectivity to the
ContrailVM.

To provide the control_data interfaces, configure the SR-IOV-enabled physical interfaces in the contrail_vm
section, and configure the control_data in the global section of JSON file.

Configure the port group (dv_port_group_sr_iov) and the DVS (dv_switch_sr_iov) in the cluster JSON
configuration in Server Manager.

Upon provisioning ESXi hosts in the installation process, the SR-IOV interfaces are exposed as Ethernet
interfaces in the ContrailVM.

Figure 27 on page 156 shows a SR-IOV setup with a single control_data interface.

Figure 27: SR-IOV With Single Control Data Interface

The following is an example SR-IOV configuration for the cluster and server configuration.

156

The cluster configuration:

 "vcenter_servers": [
 {
 "server1": {
 "datacenters": {
 "i27_datacenter11": {
 "dv_switch_sr_iov": {
 "dv_port_group_sriov": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 }
 }
 }
 }
 }
]

The server configuration:

 "contrail_vm": {
 “sr_iov_nics”: {
 “nics”: [“vmnic0”]
 }
 "vmdk": "/root/vmdk_new/vmdk.tar"
 },

Figure 28 on page 158 shows an SR-IOV configuration with a bond control_data interface, which has
multiple SR-IOV NICs.

157

Figure 28: SR-IOV With Bond Control Data Interface

For Bond interface-configuration specify multiple NICs in sr_iov_nics, and add required configuration for
multi-interface and bond configuration in server JSON configuration as specified in Server Manager
documentation.

The cluster configuration:

 "vcenter_servers": [
 {
 "server1": {
 "datacenters": {
 "i27_datacenter11": {
 "dv_switch_sr_iov": {
 "dv_port_group_sriov": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""

158

 },
 "dv_switch_name": ""
 }
 }
 }
 }
 }
]

The server configuration:

 "contrail_vm": {
 “sr_iov_nics”: {
 “nics”: [“vmnic0”, “vmnic1”]
 }
 "vmdk": "/root/vmdk_new/vmdk.tar"
 },

RELATED DOCUMENTATION

Installing and Provisioning VMware vCenter with Containerized Contrail | 142

Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater | 159

Using the Contrail and VMWare vCenter User Interfaces to Manage the Network | 175

Sample JSON Configuration Files for vCenter with Containerized Contrail
4.0.1 and Greater

IN THIS SECTION

Sample Image JSON for vCenter-Only Mode | 160

Sample Cluster JSON for vCenter-Only Mode | 160

Sample Server JSON for vCenter-Only Mode | 162

Sample JSON for vCenter-only with High Availability | 164

Sample Image JSON for vCenter-as-Compute Mode | 169

159

Sample Cluster JSON for vCenter-as-Compute Mode | 170

Sample Server JSON for vCenter-as-Compute Mode | 171

Starting with Contrail Release 4.0.1, vCenter can be used with containerized Contrail. This section
presents sample JSON files that can be used to provision containerized Contrail using Server Manager.
Be sure to replace parameters in the samples with values specific to your system.

Sample Image JSON for vCenter-Only Mode

{
"image": [
 {
 "category": "package",
 "id": "contrail_vc_orch",
 "path": "/root/contrail-vcenter-docker_4.0.1.0-50_trusty.tgz",
 "type": "contrail-ubuntu-package",
 "parameters": {"openstack_sku": "vcenter"},
 "version": "4.0.1.0-50"
 }
]
}

Sample Cluster JSON for vCenter-Only Mode

{
"cluster": [
 {
 "id": "cluster-esxi-new",
 "parameters": {
 "provision": {
 "contrail": {
 },
 "contrail_4": {
 "cloud_orchestrator": "vcenter",
 "vcenter_servers": [
 {
 "server1": {

160

 "datacenters": {
 "kp_datacenter11": {
 "datacenter_mtu": 1500,
 "dv_switch_control_data": {
 "dv_port_group_control_data": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 },
 "dv_switch_mgmt": {
 "dv_port_group_mgmt": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 },
 "dv_switches": [
 {
 "clusternames": [
 "kp_cluster11",
 "kp_cluster12"
],
 "dv_port_group": {
 "dv_portgroup_name": "vm_dvs_pg2",
 "number_of_ports": "3"
 },
 "dv_switch_name": "vm_dvs2",
 }
]
 }
 },
 "hostname": "10.xx.x.76",
 "password": "<password>",
 "username": "administrator@vsphere.local",
 "validate_certs": false
 }
 }
]
 }
 }

161

 }
 }
]
}

Sample Server JSON for vCenter-Only Mode

{
"server": [
 {
 "cluster_id": "cluster-esxi-new",
 "contrail": {
 "control_data_interface": "eth1"
 },
 "domain": "contrail.juniper.net",
 "host_name": "controller1-b7s28",
 "id": "controller1-b7s28",
 "network": {
 "interfaces": [
 {
 "dhcp": true,
 "ip_address": "10.xx.xx.59",
 "mac_address": "00:50:56:a6:47:72",
 "default_gateway": "10.xx.xx.254",
 "name": "eth0"
 },
 {
 "dhcp": false,
 "ip_address": "192.xxx.xxx.101/24",
 "mac_address": "00:50:56:a6:4d:38",
 "name": "eth1"
 }
],
 "management_interface": "eth0"
 },
 "password": "<password>",
 "roles": [
 "contrail-controller",
 "contrail-analytics",
 "contrail-analyticsdb",
 "contrail-vcenter-plugin"

162

]
 },
 {
 "cluster_id": "cluster-esxi-new",
 "contrail": {
 "control_data_interface": "eth1"
 },
 "domain": "contrail.juniper.net",
 "host_name": "computevm-b7s28",
 "id": "computevm-b7s28",
 "ip_address": "10.xx.xx.54",
 "network": {
 "interfaces": [
 {
 "dhcp": true,
 "ip_address": "10.xx.xx.54",
 "mac_address": "00:50:56:05:ba:ba",
 "default_gateway": "10.xx.x.254",
 "name": "eth0"
 },
 {
 "dhcp": false,
 "ip_address": "192.xxx.xxx.28/24",
 "mac_address": "00:50:56:05:bb:bb",
 "name": "eth1"
 }
],
 "management_interface": "eth0"
 },
 "parameters": {
 "esxi_parameters": {
 "cluster": "kp_cluster11",
 "contrail_vm": {
 "control_data_pg": "control_data",
 "control_data_switch": "vSwitch1",
 "mgmt_pg": "mgmt-pg",
 "vmdk": "/root/vmdk/vmdk.tar"
 },
 "datacenter": "kp_datacenter11",
 "datastore": "datastore1",
 "name": "10.xx.xx.28",
 "password": "<password>",
 "username": "root",

163

 "validate_certs": false,
 "vcenter_server": "server1"
 }
 },
 "password": "<password>",
 "roles": [
 "contrail-compute"
]
 }
]
}

Sample JSON for vCenter-only with High Availability

{
 "cluster": [{
 "id": "vcenter_cluster",
 "parameters": {
 "provision": {
 "contrail_4": {
 "cloud_orchestrator": "vcenter",
 "vcenter_servers": [
 {
 "<your.server.company.net>": {
 "datacenters": {
 "Cluster": {
 "datacenter_mtu": 1500,
 "dv_switches": [
 {
 "clusternames": [
 "contrail-csg2"
],
 "dv_port_group": {
 "dv_portgroup_name": "dv-portgroup",
 "number_of_ports": "3"
 },
 "dv_switch_name": "dvs-switch"
 }
]
 }
 },

164

 "hostname": "10.xx.xx.xxx",
 "password": "<password>!",
 "username": "administrator@vsphere.local",
 "validate_certs": false
 }
 }],
 "ha":
 {
 "contrail_external_vip": "10.12.34.1",
 "contrail_internal_vip": "10.12.34.1"
 }
 }
 }
 }
 }
],
 "server": [{
 "cluster_id": "vcenter_cluster",
 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<hostname>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.152/24",
 "mac_address": "00:0c:29:99:77:45",
 "name": "eth0"
 }],
 "management_interface": "eth0"
 },
 "parameters": {},
 "password": "<password>",
 "roles": [
 "contrail-controller",
 "contrail-analytics",
 "contrail-analyticsdb",
 "contrail-vcenter-plugin"
]
 },
 {
 "cluster_id": "vcenter_cluster",

165

 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<hostname>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.155/24",
 "mac_address": "00:0c:29:38:6d:5d",
 "name": "eth0"
 }],
 "management_interface": "eth0"
 },
 "parameters": {},
 "password": "<password>",
 "roles": [
 "contrail-controller",
 "contrail-analytics",
 "contrail-analyticsdb",
 "contrail-vcenter-plugin"
]
 },
 {
 "cluster_id": "vcenter_cluster",
 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<id-name>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.156/24",
 "mac_address": "00:0c:29:ea:37:33",
 "name": "eth0"
 }],
 "management_interface": "eth0"
 },
 "parameters": {},
 "password": "<password>",
 "roles": [
 "contrail-controller",

166

 "contrail-analytics",
 "contrail-analyticsdb",
 "contrail-vcenter-plugin"
]
 },
 {
 "cluster_id": "vcenter_cluster",
 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<id-name>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.1/24",
 "mac_address": "08:9e:01:93:cb:e0",
 "name": "em1"
 }],
 "management_interface": "em1"
 },
 "parameters": {},
 "password": "<password>",
 "roles": [
 "contrail-lb"
]
 },
 {
 "cluster_id": "vcenter_cluster",
 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<id-name>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.153/24",
 "mac_address": "00:50:56:05:ba:b5",
 "name": "eth0"
 }],
 "management_interface": "eth0"
 },

167

 "parameters": {
 "esxi_parameters": {
 "cluster": "contrail-csg2",
 "contrail_vm": {
 "mgmt_pg": "mgmt-pg",
 "vmdk": "/var/tmp/ContrailVM1604-ovf.tar"
 },
 "datacenter": "Cluster",
 "datastore": "datastore1",
 "name": "10.xx.xx.41",
 "password": "<password>",
 "username": "root",
 "validate_certs": false,
 "vcenter_server": "<hostname.domain-name.company.net>"
 }
 },
 "password": "<password>",
 "roles": [
 "contrail-compute"
]
 },
 {
 "cluster_id": "vcenter_cluster",
 "contrail": {},
 "domain": "<domain-name.company.net>",
 "host_name": "<hostname>",
 "id": "<id-name>",
 "network": {
 "interfaces": [{
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.154/24",
 "mac_address": "00:50:56:05:ce:c5",
 "name": "eth0"
 }],
 "management_interface": "eth0"
 },
 "parameters": {
 "esxi_parameters": {
 "cluster": "contrail-csg2",
 "contrail_vm": {
 "mgmt_pg": "mgmt-pg",
 "vmdk": "/var/tmp/ContrailVM1604-ovf.tar"

168

 },
 "datacenter": "Cluster",
 "datastore": "datastore2",
 "name": "10.xx.xx.42",
 "password": "<password>",
 "username": "root",
 "validate_certs": false,
 "vcenter_server": "<hostname.domain-name.company.net>"
 }
 },
 "password": "<password>",
 "roles": [
 "contrail-compute"
]
 }
],
 "image": [{
 "category": "package",
 "id": "contrail_vc_orch",
 "path": "/var/tmp/contrail-vcenter-docker_4.1.0.0-33_xenial.tgz",
 "type": "contrail-ubuntu-package",
 "parameters": {
 "openstack_sku": "vcenter"
 },
 "version": "4.1.0.0-33"
 }]
}

Sample Image JSON for vCenter-as-Compute Mode

{
"image": [
 {
 "category": "package",
 "id": "contrail_vc_compute",
 "path": "/root/contrail-cloud-docker_4.0.1.0-39-mitaka_trusty.tgz",
 "type": "contrail-ubuntu-package",
 "version": "4.0.1.0-39"
 }
]
}

169

Sample Cluster JSON for vCenter-as-Compute Mode

{
 "cluster": [
 {
 "id": "vcenter_five_node",
 "parameters": {
 "provision": {
 "contrail": {
 },
 "contrail_4": {
 "vcenter_servers": [
 {
 "server1": {
 "datacenters": {
 "vc_datacenter1": {
 "datacenter_mtu": 1500,
 "dv_switch_control_data": {
 "dv_port_group_control_data": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 },
 "dv_switch_mgmt": {
 "dv_port_group_mgmt": {
 "dv_portgroup_name": "",
 "number_of_ports": "",
 "uplink": ""
 },
 "dv_switch_name": ""
 },
 "dv_switches": [
 {
 "clusternames": [
 "vcenter1"
],
 "dv_port_group": {
 "dv_portgroup_name": "guest_dvs_pg",
 "number_of_ports": "3"
 },

170

 "dv_switch_name": "guest_vm_dvs",
 "vcenter_compute": "10.xx.x.205"
 }
]
 }
 },
 "hostname": "10.xx.x.76",
 "password": "<password>",
 "username": "administrator@vsphere.local",
 "validate_certs": false
 }
 }
]
 },
 "openstack": {
 }
 }
 }
 }
]
}

Sample Server JSON for vCenter-as-Compute Mode

{
"server": [
 {
 "cluster_id": "vcenter_five_node",
 "contrail": {},
 "domain": "contrail.juniper.net",
 "gateway": "10.xx.x.254",
 "host_name": "nk-vm1",
 "id": "nk-vm1",
 "network": {
 "interfaces": [
 {
 "default_gateway": "10.xx.x.254",
 "ip_address": "10.xx.x.202/24",
 "mac_address": "52:54:DE:AD:BD:A1",
 "name": "eth1"
 }

171

],
 },
 "password": "<password>",
 "roles": [
 "contrail-controller",
 "contrail-analytics",
 "contrail-analyticsdb"
]
 },
 {
 "cluster_id": "vcenter_five_node",
 "contrail": {},
 "domain": "contrail.juniper.net",
 "host_name": "nk-vm2",
 "id": "nk-vm2",
 "network": {
 "interfaces": [
 {
 "default_gateway": "10.xx.x.254",
 "ip_address": "10.xx.x.203/24",
 "mac_address": "52:54:DE:AD:BD:A2",
 "name": "eth1"
 }
]
 },
 "password": "<password>",
 "roles": [
 "openstack"
]
 },
 {
 "cluster_id": "vcenter_five_node",
 "contrail": {},
 "domain": "contrail.juniper.net",
 "host_name": "nk-vm3",
 "id": "nk-vm3",
 "network": {
 "interfaces": [
 {
 "default_gateway": "10.xx.x.254",
 "ip_address": "10.xx.x.204/24",
 "mac_address": "52:54:DE:AD:BD:A3",
 "name": "eth1"

172

 }
]
 },
 "password": "<password>",
 "roles": [
 "contrail-vcenter-plugin"
]
 },
 {
 "cluster_id": "vcenter_five_node",
 "contrail": {},
 "domain": "contrail.juniper.net",
 "host_name": "nk-vm4",
 "id": "nk-vm4",
 "network": {
 "interfaces": [
 {
 "default_gateway": "10.xx.x.254",
 "ip_address": "10.xx.x.205/24",
 "mac_address": "52:54:DE:AD:BD:A4",
 "name": "eth1"
 }
]
 },
 "password": "<password>",
 "roles": [
 "contrail-vcenter-compute"
]
 },
 {
 "cluster_id": "vcenter_five_node",
 "contrail": {},
 "domain": "contrail.juniper.net",
 "host_name": "computevm-b7s27",
 "id": "computevm-b7s27",
 "network": {
 "interfaces": [
 {
 "default_gateway": "10.xx.xx.254",
 "dhcp": true,
 "ip_address": "10.xx.xx.57/24",
 "mac_address": "00:50:56:AD:BD:A5",
 "name": "eth1"

173

 }
]
 },
 "parameters": {
 "esxi_parameters": {
 "cluster": "vcenter1",
 "contrail_vm": {
 "mgmt_pg": "mgmt-pg",
 "mode": "vcenter",
 "vmdk": "/root/vmdk/vmdk.tar"
 },
 "datacenter": "vc_datacenter1",
 "datastore": "datastore1",
 "name": "10.xx.xx.27",
 "password": "<password>",
 "username": "root",
 "validate_certs": false,
 "vcenter_server": "server1"
 }
 },
 "password": "<password>",
 "roles": [
 "contrail-compute"
]
 }
]
}

RELATED DOCUMENTATION

Installing and Provisioning VMware vCenter with Containerized Contrail | 142

Underlay Network Configuration for Containerized ContrailVM | 149

174

Using the Contrail and VMWare vCenter User Interfaces to Manage the
Network

IN THIS SECTION

Overview: User Interfaces for Contrail Integration with VMware vCenter | 175

Feature Configuration for Contrail vCenter | 176

Creating a Virtual Machine | 185

Configuring the vCenter Network in Contrail UI | 195

You can install Contrail to work with the VMware vCenter Server in various vSphere environments and
use the Contrail user interface and the vCenter user interface to configure and manage the integrated
Contrail system.

Overview: User Interfaces for Contrail Integration with VMware vCenter

This topic shows how to use the Contrail user interface and the vCenter user interface to configure and
manage features of a Contrail VMware integrated system.

The two user interfaces are available after installing the integrated Contrail system, see Installing and
Provisioning VMware vCenter with Contrail .

When Contrail is integrated with VMware vCenter, the following two user interfaces are used to manage
and configure features of the system.

Contrail Administration User Interface

The Contrail UI is an administrator’s user interface. It provides a view of all components managed by the
Contrail controller.

To log in to the Contrail UI, use your Contrail server main IP address URL as follows:

https://<Contrail IP>:8143

Then log in using your registered Contrail account administrator credentials.

175

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vcenter-integration-vnc.html
https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vcenter-integration-vnc.html

Contrail vCenter User Interface

The Contrail vCenter user interface (vCenter UI) is a subset of the Contrail administration UI. The
Contrail vCenter UI provides a view of all of the virtual components within a Contrail vCenter project.

NOTE: This is applicable only to the vCenter-only mode.

To access the login page for the Contrail vCenter UI, use your Contrail IP address URL as follows:

https://<Contrail URL>:8143/vcenter

Then use the vCenter registered account log in name and password to access the Contrail vCenter UI.

Upon successful login, the Contrail vCenter user interface is displayed, as in the following example.

Feature Configuration for Contrail vCenter

This section shows how to use the Contrail UI and the Contrail vCenter UI to configure features for the
Contrail vCenter integrated system.

Creating a Virtual Network

This section describes how to create a virtual network using the Contrail UI and the Contrail vCenter UI.

Create Virtual Network – Contrail UI

After logging in to the Contrail UI, select Configure > Networking > Networks to access the Networks
window.

176

At Networks, click the plus icon (+)to access the Create Network window.

Complete the fields in the Create Network window. Provide a Primary VLAN value and a Secondary
VLAN value as part of a Private VLAN configuration. Private VLAN pairs are configured on a Distributed
Virtual Switch. Select the values for the Primary and Secondary VLANs from one of the configured,
isolated, private-vlan pairs.

The following figure shows the creation of a virtual network named Green-VN.

Click Save to create the virtual network.

The virtual network just created (Green-VN) is displayed with its details, as in the following figure.

177

Create Virtual Networks – Contrail vCenter UI

You can also create a virtual network in the vCenter UI, and view and manage it from either the vCenter
UI or the Contrail UI.

NOTE: This is applicable only to the vCenter-only mode.

In vCenter, a virtual network is called a port group, which is part of a distributed switch.

Log in to the vCenter client UI (https://<Contrail URL>:9443/vsphere-client).

To start creating a virtual network (distributed port group), click the distributed virtual switch (dvswitch)
on the left panel.

The following figure shows the demo_dvswitch has been selected for this example.

To create a virtual network (vCenter port group), at the bottom of the window, click Create a new port
group .

178

When you click Create a new port group, the Create Distributed Port Group window is displayed, as in
the following figure.

Enter the name of the virtual network. Select the VLAN type, then select other details for the selected
VLAN type.

The following figure shows the Create Distributed Port Group window with the example creation of a
virtual network named Red-VN, with a Private VLAN and isolated private VLAN ports 102, 103.

When you are finished, click Next.

179

The Ready to Complete window is displayed, see the following figure. It shows the details entered for
the virtual network (distributed port group).

If changes are needed, click Back. If the details are correct, click Finish to verify the port group details
and complete its creation.

180

Next, create IP pools for the virtual network port group. Select the datacenter name in the left side
panel, then click the IP Pools tab.

The following figure shows the IP Pools tab for the datacenter named demo_dc.

Near the top of the IP Tools window, click Add to open the New IP Pool Properties window, as in the
following figure. The IP Pool Properties window has several tabs across the upper area. Ensure the IPv4
tab is selected, and enter a name for the IP pool. Then enter the IP pool IPv4 details, including subnet,
gateway, and IP address ranges. To enable IP address pools, select Enable IP Pool.

181

In the New IP Pool Properties window, click the Associations tab to select the networks that should use
the IP address pool you are creating. This tab enables you to associate the IP pool with the port group.

The following figure of the Associations tab shows that the IP pool being created should be associated
with the virtual network port group named Red-VN.

When you are finished, click OK.

182

To verify that the virtual network is created and visible to Contrail, in the Contrail UI, select Configure >
Networking > Networks to display Contrail network information.

The virtual network just created (Red-VN in this example) is displayed in the Networks window, see the
following.

183

Delete Virtual Network – Contrail UI

You can delete a virtual network in either the Contrail UI or in the vCenter UI. This section shows you
how to delete a virtual network in the Contrail UI.

In the Contrail UI, select Configure > Networking > Networks to display Contrail network information.

Select the network you want to delete, then click the trashcan icon.

A Confirm window is displayed. Click Confirm to delete the selected network.

Delete Virtual Networks – vCenter UI

You can also delete a virtual network from the vCenter UI. From the vCenter UI, in the left side panel,
right-click the port-group (virtual-network) you want to delete. In the menu, select Delete to delete the
selected port group. An example is shown in the following.

184

When deleting a port group (virtual network) using the vCenter UI, you must also delete the IP pool
associated with the port group. Select the IP Pools tab, and right click the name of the IP pool associated
with the port group being deleted. From the menu, select Remove to delete the IP pool.

The following shows the deletion of the IP pool associated with the Red-VN from the vCenter UI.

Creating a Virtual Machine

Use the vCenter client interface to create a virtual machine for your VMware vCenter Contrail
integrated system. This section describes how to create a virtual machine using a virtual machine
template from the vCenter client interface.

185

Create a Virtual Machine – vCenter UI

From the vCenter UI, select the virtual machine template from the left side panel. At the bottom of the
right side pane, click Deploy to deploy a new virtual machine.

The following figure shows the vm-template-ubuntu-12.04.2 virtual machine selected.

The Deploy Template Name and Location window is displayed, as in the following. Specify a name for
the virtual machine and select the datacenter on which the virtual machine is to be spawned.

When you are finished, click Next.

186

The Host/Cluster window is displayed, as in the following. Select the cluster on which to spawn the
virtual machine.

When you are finished, click Next.

187

The Specify a Specific Host window is displayed, as in the following. Select the ESXi host on which to
spawn the virtual machine.

When you are finished, click Next.

In the Storage window, select the destination storage location for the virtual machine.

When you are finished, click Next.

188

On the Guest Customization window, the typical selection is Do not customize. Select Do not
customize.

When you are finished, click Next.

189

On the Ready to Complete window, review all of the virtual machine definitions that you have selected
for the template.

If all the selections are correct, click Finish. This spawns the virtual machine.

190

To complete the settings for the virtual machine, select the virtual machine to be edited in the left
column of the main window of the vCenter UI. Then click Edit virtual machine settings.

The Virtual Machine Properties window is displayed, as in the following. From here you can update the
virtual machine properties.

191

Click the Hardware tab in the Virtual Machine Properties window. Next, click Add to add a NIC and
select the appropriate network. Select Connect at power on, as in the following.

When you are finished, click OK.

192

You are returned to the main vCenter UI window. Select the Getting Started tab. Select Power on the
virtual machine. The virtual machine launches.

193

Once the virtual machine is launched, you can view it from the Contrail UI. Select Monitor > Networking
> Instances. The virtual machines are displayed in the Instances Summary window, as in the following.

You can also see real-time running information for the virtual machine in the vCenter UI. Select the
virtual machine and the Console tab. Real-time information is displayed, including ping statistics, as in
the following.

194

Configuring the vCenter Network in Contrail UI

The following items can be configured for the vCenter network by using the Contrail UI.

• Network policy is configured by using the Contrail UI.

• Security policy is configured by using the Contrail UI.

• Public networks, floating IP address pools, and floating IP addresses are configured using the Contrail
Administrator UI.

When you configure a virtual network using the administrator UI, the network is a Contrail-only
network. No resources are consumed on vCenter to implement this type of network. You can
configure a floating IP address pool on the network, allocate floating IP addresses, and associate
floating IP addresses to virtual machine interfaces (ports).

RELATED DOCUMENTATION

Installing and Provisioning VMware vCenter with Contrail

195

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/vcenter-integration-vnc.html

CHAPTER 7

Using Contrail with Red Hat

IN THIS CHAPTER

Deploying Contrail with Red Hat OpenStack Platform Director 10 | 196

Installing Red Hat OpenShift Container Platform with Contrail Networking | 247

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1 | 254

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2 | 268

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3 | 279

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4 | 292

Restoring Contrail Nodes in a RHOSP-based Environment | 308

Deploying Contrail with Red Hat OpenStack Platform Director 10

IN THIS SECTION

Overview | 197

TripleO Features | 197

Deployment Tools | 199

Preparing the Environment for Deployment | 199

Deploying an OSPD-10 Overcloud | 203

Configuring the Overcloud | 206

Sample Heat Templates for NICs | 219

What are NIC Templates? | 230

How NIC Templates Work | 230

Contrail NIC Templates | 232

NIC Templates for Compute Nodes | 237

NIC Templates for DPDK Compute Nodes | 242

196

This document explains how to integrate a Contrail 3.2 through Contrail 4.1 installation with RedHat
OpenStack Platform Director 10.

Overview

RedHat OpenStack Platform provides an installer named Director (RHOSPD). The Red Hat Director
installer is based on the OpenStack project TripleO (OOO, OpenStack on OpenStack). TripleO is an open
source project that uses features of OpenStack to deploy a fully functional, tenant-facing OpenStack
environment.

You can use TripleO and Director to deploy a Red Hat cloud environment integrated with Contrail.

NOTE: For Contrail Release 4.1.1, you must ensure that the OpenJDK version is java-1.8.0-
openjdk-1.8.0.151-5.b12.el7_4.x86_64. This is because of a compatibility issue that the
Cassandra 3.0 package has with the latest version of Open JDK provided in RHEL 7.5.

TripleO Features

TripleO uses the concepts of undercloud and overcloud. TripleO sets up an undercloud, an operator-
facing deployment cloud that contains the OpenStack components needed to deploy and manage an
overcloud, a tenant-facing cloud that hosts user workloads.

The overcloud is the deployed solution that can represent a cloud for any purpose, such as production,
staging, test, and so on. The operator can select to deploy to their environment any of the available
overcloud roles, such as controller, compute, and the like.

TripleO leverages existing core components of OpenStack including Nova, Ironic, Neutron, Heat, Glance,
and Ceilometer to deploy OpenStack on bare metal hardware.

• Nova and Ironic are used in the undercloud to manage the bare metal instances that comprise the
infrastructure for the overcloud.

• Neutron is used to provide a networking environment in which to deploy the overcloud.

• Glance stores machine images.

• Ceilometer collects metrics about the overcloud.

For more information about TripleO architecture, see
https://docs.openstack.org/developer/tripleo-docs/introduction/architecture.html

197

https://docs.openstack.org/developer/tripleo-docs/introduction/architecture.html

Composable Roles

TripleO enables composable roles. Each role is a group of services that are defined in Heat templates.
Composable roles gives the operator the flexibility to add and modify roles as needed.

The following are the Contrail roles used for integrating Contrail to the overcloud environment:

• Contrail Controller

• Contrail Analytics

• Contrail Analytics Database

• Contrail-TSN

• Contrail-DPDK

Figure 29 on page 198 shows the relationship and components of an undercloud and overcloud
architecture for Contrail.

Figure 29: Undercloud and Overcloud with Roles

198

Deployment Tools

Deployment to physical servers or virtual machines occurs by means of collaboration between Heat,
Nova, Neutron, Glance, and Ironic.

One nested Heat stack is deployed from the undercloud. The Heat stack has various Nova instances.
The Nova instances are the overcloud roles. The definitions for all roles are provided in the Heat
templates.

To deploy the stack, Heat makes successive calls to Nova, OpenStack’s compute service controller. Nova
depends on Ironic, which, by this stage in the process, has acquired an inventory of introspected
hardware.

If configured, Nova flavors can act as a constraint, influencing the range of machines that can be
selected for deployment by the Nova scheduler. For each request to deploy a new node with a specific
role, Nova filters the list of available nodes, ensuring that the selected nodes meet the hardware
requirements.

When the target node has been selected, Ironic performs the provisioning of the node: Ironic retrieves
from Glance the OS image associated with the role, causes the node to boot a deployment ramdisk, and,
in a typical case, exports the node’s local disk over iSCSI so that the disk can be partitioned and have the
OS image written onto it by the Ironic conductor.

Preparing the Environment for Deployment

The overcloud roles can be deployed to bare metal servers or to virtual machines (VMs). The compute
nodes must be deployed to bare metal systems.

Ensure your environment is prepared for the Red Hat deployment. Refer to Red Hat documentation:

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/
director_installation_and_usage

Preparing for the Contrail Roles

Ensure the following requirements are met for the Contrail nodes per role.

• Non-high availability: A minimum of four overcloud nodes are needed for control plane roles for a
non-high availability deployment:

• 1x contrail-config (includes Contrail control)

• 1x contrail-analytics

• 1x contrail-analytics-database

199

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage

• 1x OpenStack controller

• High availability: A minimum of 12 overcloud nodes are needed for control plane roles for a high
availability deployment:

• 3x contrail-config (includes Contrail control)

• 3x contrail-analytics

• 3x contrail-analytics-database

• 3x OpenStack controller

• If the control plane roles will be deployed to VMs, use 3 separate physical servers and deploy one
role of each kind to each physical server.

RHOSP Director expects the nodes to be provided by the administrator, for example, if you are
deploying to VMs, the administrator must create the VMs before starting with deployment.

Preparing for the Underlay Network

Refer to Red Hat documentation for planning and implementing underlay networking, including the
kinds of networks used and the purpose of each:

• https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/ html-single/
director_installation_and_usage/#sect-Planning_Networks

• https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/ html-single/
director_installation_and_usage/#sect-Networking_Requirements

At a high level, every overcloud node must support IPMI.

Refer to “Requirements for Deploying to VMs” in this document if you are deploying to VMs.

Preparing for the Provisioning Network

Ensure the following requirements are met for the provisioning network.

• One NIC from every machine must be in the same broadcast domain of the provisioning network,
and it should be the same NIC on each of the overcloud machines. For example, if you use the
second NIC on the first overcloud machine, you should use the second NIC on each additional
overcloud machine.

During installation, these NICs will be referenced by a single name across all overcloud machines.

• The provisioning network NIC should not be the same NIC that you are using for remote connectivity
to the undercloud machine. During the undercloud installation, an Open vsSwitch bridge will be

200

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Planning_Networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Planning_Networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Networking_Requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Networking_Requirements

created for Neutron and the provisioning NIC will be bridged to the Open vSwitch bridge.
Consequently, connectivity would be lost if the provisioning NIC was also used for remote
connectivity to the undercloud machine.

• The provisioning NIC on the overcloud nodes must be untagged.

• You must have the MAC address of the NIC that will PXE boot the IPMI information for the machine
on the provisioning network. The IPMI information will include such things as the IP address of the
IPMI NIC and the IPMI username and password.

• All of the networks must be available to all of the Contrail roles and computes.

Network Isolation

TripleO enables configuration of isolated overcloud networks. Using this approach, it is possible to host
traffic in isolated networks for specific types of network traffic, such as tenants, storage, API, and the
like. This enables assigning network traffic to specific network interfaces or bonds.

When isolated networks are configured, the OpenStack services are configured to use the isolated
networks. If no isolated networks are configured, all services run on the provisioning network.

The following networks are typically used when using network isolation topology:

• Provisioning---for the undercloud control plane

• Internal API--- for OpenStack internal APIs

• Tenant

• Storage

• Storage Management

• External

• Floating IP---Can either be merged with external or can be a separate network.

• Management

Templates for Network Isolation

Use the following template files to enable network isolation:

• environments/network-isolation.yaml

Contains the path of templates that need to be included to create various Neutron networks and
ports

201

• environments/contrail/contrail-net.yaml

Contains the subnet/mask, allocation pool, default gateway IP information. Make changes to this file
to configure the subnets for your setup.

• environments/contrail/contrail-nic-config.yaml

Defines the NICs that the overcloud VMs will use for each of the networks. Change the contents of
this template as needed for your environment.

Features of the default configuration include:

• The first NIC is used for the control plane provisioning network.

• The second NIC is used for the internal API network.

• The third NIC uses multiple VLANs to provide for the rest of the networks:

• VLAN-10: External network

• VLAN-30: Storage network

• VLAN-40: Storage management network

• VLAN-50: Tenant network

• VLAN-60: Management network

• VLAN-XXX: Floating network (if separate from external network)

Figure 30 on page 203 shows the network connectivity for the overcloud roles when you use the
default Heat templates. Fig . In Figure 30 on page 203, the vertical lines depict the underlay, which
could be a switch. The underlay connectivity must be prepared before starting the deployment. The
undercloud must have reachability in the provisioning network and the external networks.

202

Figure 30: Network Isolation Model

Deploying an OSPD-10 Overcloud

When the requirements for the environment are met, you are ready to start deploying.

Installing the Undercloud

Use the Red Hat OS Director to install the undercloud after the environment has been prepared. You’ll
need Red Hat credentials, such as account, password, pool, and the like, to register the undercloud and
overcloud nodes.

Follow procedures in the Red Hat documentation to install an undercloud:

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/ html-single/
director_installation_and_usage/#chap-Installing_the_Undercloud

203

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#chap-Installing_the_Undercloud

Configuring Undercloud and Overcloud

After the undercloud is installed, you can use the following procedures to change parameters in the
undercloud.conf file to match your local deployment.

1. Configure the undercloud.

cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf

vi ~/undercloud.conf

2. Install the undercloud OpenStack.

openstack undercloud install

3. Source the undercloud credentials.

source ~/stackrc

4. Get overcloud images.

sudo yum install rhosp-director-images rhosp-director-images-ipa

mkdir ~/images

cd ~/images

5. Upload overcloud images.

for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-director-images/
ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

openstack overcloud image upload --image-path /home/stack/images/

cd ~

Defining Nodes with Ironic

The properties of the overcloud nodes and VMs are in the instackenv.json file, which is imported to Ironic.

This procedure shows how to define nodes with Ironic.

1. Define nodes in instackenv.json.

vi ~/instackenv.json

• A password-less SSH must be enabled on all hosts on which overcloud VMs will be spawned.

204

• If you need definitive node placement, assign the appropriate capabilities in the node definition in
instackenv.json.

For more information about using instackenv.json, see Red Hat documentation:

• https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/
director_installation_and_usage/chap-
configuring_basic_overcloud_requirements_with_the_cli_tools

• https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/ html-single/
director_installation_and_usage/#sect-Registering_Nodes_for_the_Overcloud

A sample instackenv.json is included later in this topic.

2. Import nodes to Ironic.

openstack baremetal import --json ~/instackenv.json

3. Activate node introspection.

Introspection boots each Ironic node over the PXE network and is used to collect hardware data for
the nodes. The capabilities and profile of each node is determined at this step. Because this step
includes pushing an image to each of the overcloud roles, successful completion of Ironic
introspection also means that the underlay configuration is valid on the provisioning network.

NOTE: Make sure that the maximum transmission unit (MTU) is consistent across all of the
networks to prevent any issues.

for node in $(openstack baremetal node list -c UUID -f value) ; do openstack baremetal node manage $node ;
done

openstack overcloud node introspect --all-manageable --provide

4. Perform node profiling.

If you provided capabilities for overcloud nodes, create the corresponding flavors at this time. Each
overcloud role can be assigned a certain Nova-flavor in the Heat templates. You can provide details
such as memory, disk-size, number of CPUs, and so on. At the time of deploying a role, Director tries
to find an Ironic node that has the capabilities listed in the flavor. This is the way in which you can
control node placement.

openstack flavor create <flavor-name> --ram <RAM> --vcpus <CPUs> --disk <disk-size>

openstack flavor set --property "capabilities:boot_option"="local" --property
"capabilities:profile"="<capability-name>" <flavor-name>

205

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_with_the_cli_tools
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Registering_Nodes_for_the_Overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Registering_Nodes_for_the_Overcloud

Configuring the Overcloud

Get Contrail Components

This procedure provides the components needed to integrate Contrail with Director, including adding a
repo that hosts Contrail packages and providing Heat templates and corresponding Puppet modules.

1. Create a Contrail repo.

A Contrail repo is needed to make sure that the overcloud Contrail roles can install the Contrail
packages. The Contrail repo can be hosted on the undercloud or on any machine that is accessible
from the overcloud nodes on the provisioning network.

sudo mkdir /var/www/html/contrail sudo tar zxvf ~/contrail-install-packages_<package>.tgz -C /var/www/html/
contrail/

2. Upload Puppet modules to Swift.

Install the RPMs for Puppet modules in the directory: home/stack//usr/share/openstack-puppet/
modules/.

This folder must contain the Puppet modules necessary to successfully install and start Contrail
services in the overcloud roles.

Use the command upload-swift-artifacts to make sure that these modules get uploaded on the
overcloud nodes during deployment. All of the commands are executed as user stack.

cd /var/www/html/contrail

yum localinstall contrail-tripleo-puppet-<version>.el7.noarch.rpm puppet-contrail-<version>.el7.noarch.rpm

mkdir -p ~/usr/share/openstack-puppet/modules/contrail

cp -R /usr/share/openstack-puppet/modules/contrail/* ~/usr/share/openstack-puppet/modules/contrail/

mkdir -p ~/usr/share/openstack-puppet/modules/tripleo

cp -R /usr/share/contrail-tripleo-puppet/* ~/usr/share/openstack-puppet/modules/tripleo

cd ~

tar czvf puppet-modules.tgz ~/usr/

upload-swift-artifacts -f puppet-modules.tgz

3. Get TripleO Heat templates.

cp -r /usr/share/openstack-tripleo-heat-templates/ ~/tripleo-heat-templates

206

cd /var/www/html/contrail

yum localinstall contrail-tripleo-heat-templates-<version>.el7.noarch.rpm

cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail ~/tripleo-heat-templates/environments

cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* ~/tripleo-heat-templates/puppet/
services/network

4. Update the contrail-services.yaml.

The contrail-services.yaml is the main administrator-facing Heat template. Provide the correct URL for
the Contrail repo that you created, the flavor for overcloud roles, the count for overcloud roles, and
other various environment-specific parameters such as DNS-server, NTP server, and the like.

vi ~/tripleo-heat-templates/environments/contrail/contrail-services.yaml

You must set the value for ContrailVersion to 5.

Configure NICs for Overcloud Networking

Use this information to configure the NICs for your system.

Overcloud Networking—Multiple NICs

vi ~/tripleo-heat-templates/environments/contrail/contrail-net.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config-compute.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config.yaml

Overcloud Networking—Multiple NICs with Bond and VLAN

vi ~/tripleo-heat-templates/environments/contrail/contrail-net-bond-vlan.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config-compute-bond-vlan.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config-vlan.yaml

Overcloud Networking—Single NIC

vi ~/tripleo-heat-templates/environments/contrail/contrail-net-single.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config-compute-single.yaml
vi ~/tripleo-heat-templates/environments/contrail/contrail-nic-config-single.yaml

207

Assign Addresses and Credentials

1. Assign static IP addresses.

Use the template ips-from-pool-all.yaml to provide static IP addresses for the overcloud nodes.

vi ~/tripleo-heat-templates/environments/contrail/ips-from-pool-all.yaml

2. Provide subscription manager credentials.

Use the template environment-rhel-registration.yaml to provide subscription manager credentials,
including rhel_reg_password, rhel_reg_pool_id, rhel_reg_repos, rhel_reg_user, and method.

vi ~/tripleo-heat-templates/extraconfig/pre_deploy/ rhel-registration/environment-rhel-registration.yaml

The following is a sample environment-rhel-registration.yaml file for deployment.

NOTE: The repos enabled are required to enable deployment for Contrail 3.2 with Director 10
and OpenStack Newton.

[stack@instack ~]$ cat environment-rhel-registration.yaml
Note this can be specified either in the call
to heat stack-create via an additional -e option
or via the global environment on the seed in
/etc/heat/environment.d/default.yaml
parameter_defaults:
 rhel_reg_activation_key: ""
 rhel_reg_auto_attach: "true"
 rhel_reg_base_url: ""
 rhel_reg_environment: ""
 rhel_reg_force: ""
 rhel_reg_machine_name: ""
 rhel_reg_org: ""
 rhel_reg_password: ""
 rhel_reg_pool_id: ""
 rhel_reg_release: ""
 rhel_reg_repos: "rhel-7-server-rpms rhel-7-server-extras-rpms rhel-7-server-rh-common-rpms
rhel-ha-for-rhel-7-server-rpms rhel-7-server-openstack-10-rpms rhel-7-server-openstack-10-
devtools-rpms"
 rhel_reg_sat_url: ""
 rhel_reg_server_url: ""
 rhel_reg_service_level: ""

208

 rhel_reg_user: ""
 rhel_reg_type: ""
 rhel_reg_method: "portal"
 rhel_reg_sat_repo: "rhel-7-server-satellite-tools-6.1-rpms"

3. Set the overcloud nameserver.

neutron subnet-show neutron subnet-update <SUBNET-UUID> --dns-nameserver NAMESERVER_IP

Deploying the Overcloud

When you perform the overcloud installation, the overcloud is generated with the definitions you
provide in the Heat templates.

The openstack overcloud deploy command creates a nested stack with all the resources needed to deploy
the overcloud roles, networks, services, and so on.

• The stack can be updated if you wish to make changes to the overcloud.

• To redeploy the overcloud with a fresh installation, you delete the existing stack, make appropriate
changes to the Heat templates, and then redeploy the stack.

Deploy Overcloud with a Single NIC

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --roles-file tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ environment-rhel-
registration.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ rhel-registration-resource-
registry.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-net-single.yaml

Deploy Overcloud with Multiple NICs

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --roles-file tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/network-isolation.yaml \

209

 -e tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e tripleo-heat-templates/environments/contrail/ips-from-pool-all.yaml \
 -e tripleo-heat-templates/environments/network-management.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ environment-rhel-
registration.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ rhel-registration-resource-
registry.yaml

Deploy Overcloud with Multiple NICs with Bond and VLAN

openstack overcloud deploy --templates tripleo-heat-templates/ \
 --roles-file tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e tripleo-heat-templates/environments/contrail/network-isolation.yaml \
 -e tripleo-heat-templates/environments/contrail/contrail-net-bond-vlan.yaml \
 -e tripleo-heat-templates/environments/contrail/ips-from-pool-all.yaml \
 -e tripleo-heat-templates/environments/network-management.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ environment-rhel-
registration.yaml \
 -e tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/ rhel-registration-resource-
registry.yaml

Sample instackenv.json

This section has a sample instackenv.json, with OpenStack and Contrail controller on separate physical
machines. This sample imports VMs to Ironic.

The sample instackenv.json is from a working environment that includes:

• 3x KVM hosts: 10.xx.xx.22, 10.xx.xx.24, 10.xx.xx.25 2.

• The following overcloud VMs on each KVM host:

• openstack-controller

• contrail-controller

• contrail-analytics

• contrail-analytics database

• compute

210

• This sample imports VMs to Ironic.

Mandatory parameters for importing VMs to Ironic include:

Pm_addr the IP address of the host on which the target VM is spawned.

Pm_user Preferably the root user, or any other user with required permissions for accessing
libvirtd.

Pm_password the public SSH key of the host on which the target VM is spawned. Make sure that the
line breaks are replaced with ‘\n’. You can use a simple program such as ‘awk '{printf "%s\
\n", $0}' ~/.ssh/id_rsa’ to achieve this.

MAC the MAC address of the target VM’s NIC that is connected to the provisioning control
plane network.

Pm_type pxe_ssh, the driver needed to provision VMs.

Sample instackenv.json

{
 "arch": "x86_64",
 "host-ip": "192.168.122.1",
 "power_manager": "nova.virt.baremetal.virtual_power_driver.VirtualPowerManager",
 "seed-ip": "",
 "ssh-key": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----\n",
 "ssh-user": "root",
 "nodes": [
 {
 "mac": [
 "52:54:00:d7:e4:87"
],
 "name": "control_1_at_5b5s36",
 "capabilities" : "profile:control",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.24",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----

211

 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:82:0d:9e"
],
 "name": "compute_1_at_5b5s36",
 "capabilities" : "profile:compute",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.24",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:a2:ff:7a"
],
 "name": "contrail-controller_1_at_5b5s36",
 "capabilities" : "profile:contrail-controller",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.24",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [

212

 "52:54:00:51:35:bd"
],
 "name": "contrail-analytics_1_at_5b5s36",
 "capabilities" : "profile:contrail-analytics",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.24",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:a1:ae:4d"
],
 "name": "contrail-analytics-database_1_at_5b5s36",
 "capabilities" : "profile:contrail-analytics-database",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.24",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:8b:0e:b8"
],
 "name": "control_1_at_5b5s34",
 "capabilities" : "profile:control",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",

213

 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.22",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:c5:ba:b0"
],
 "name": "compute_1_at_5b5s34",
 "capabilities" : "profile:compute",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.22",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:b8:5b:aa"
],
 "name": "contrail-controller_1_at_5b5s34",
 "capabilities" : "profile:contrail-controller",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.22",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"

214

 }
 ,
 {
 "mac": [
 "52:54:00:2a:38:f1"
],
 "name": "contrail-analytics_1_at_5b5s34",
 "capabilities" : "profile:contrail-analytics",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.22",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:fc:b7:67"
],
 "name": "contrail-analytics-database_1_at_5b5s34",
 "capabilities" : "profile:contrail-analytics-database",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.22",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:48:b0:9b"
],
 "name": "control_1_at_5b5s37",

215

 "capabilities" : "profile:control",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.25",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:b3:01:b8"
],
 "name": "compute_1_at_5b5s37",
 "capabilities" : "profile:compute",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.25",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:9a:8c:f8"
],
 "name": "contrail-controller_1_at_5b5s37",
 "capabilities" : "profile:contrail-controller",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.25",

216

 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:8d:3d:d9"
],
 "name": "contrail-analytics_1_at_5b5s37",
 "capabilities" : "profile:contrail-analytics",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.25",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
 ,
 {
 "mac": [
 "52:54:00:9d:9e:57"
],
 "name": "contrail-analytics-database_1_at_5b5s37",
 "capabilities" : "profile:contrail-analytics-database",
 "cpu": "4",
 "memory": "16384",
 "disk": "50",
 "arch": "x86_64",
 "pm_user": "root",
 "pm_addr": "10.xx.xx.25",
 "pm_password": "-----BEGIN RSA PRIVATE KEY-----
 $ABC123
-----END RSA PRIVATE KEY-----",
 "pm_type": "pxe_ssh"
 }
]

217

}

Adding a New Physical Compute Node

The following is a sample instackenv.json for adding a new physical compute node, by importing the
physical compute or bare metal server to Ironic.

{
 "nodes": [
 {
 "mac": [
 "00:1b:21:99:ce:94"
],
 "name": "physical-compute_5b5s35",
 "capabilities" : "profile:compute",
 "pm_user": "ADMIN",
 "pm_addr": "10.xx.xxx.206",
 "pm_password": "ADMIN",
 "pm_type": "pxe_ipmitool"
 }
]
}

The following are the mandatory parameters to import a physical compute or bare metal server to Ironic.

Pm_addr Server’s IPMI

Pm_user IPMI user name

Pm_password IPMI password

MAC MAC address of the server’s NIC that is connected to the provisioning/control-plane
network

Pm_type pxe_ipmitoo

Specify this driver to provision physical servers.

218

Requirements for Deploying to VMs

The following are required for deploying to VMs.

• Password-less SSH must be set up from the undercloud to all servers that will host overcloud VMs,
for the user ‘root’.

• Libvirtd on KVM hosts must be configured to allow TCP sessions without requiring Transport Layer
Security (TLS).

Sample Heat Templates for NICs

This section provides sample Heat templates for different configurations for NICs.

Example 1: NIC-1 to control plane; NIC-2 bridged interface

This sample has the following topology:

• NIC-1 is connected to the control plane provisioning network

Connected to an access port on the underlay switch

• NIC-2 is a bridged interface, and has a unique VLAN tag for each of the other overlay networks.

Underlying switch configuration:

• NIC-1 is connected to the control plane provisioning VLAN access-ports of a switch.

• NIC-2 is connected to trunk ports on the switch. The trunk ports will carry multiple VLAN tags, one
each for the following networks:

VLAN-10: External VLAN

VLAN-20: Internal API VLAN

VLAN-30: Storage VLAN

VLAN-40: Storage-MGMT VLAN

VLAN-60: Management VLAN

Figure 31 on page 220 shows the server NIC configuration for this example.

219

Figure 31: Server NIC Configuration

NIC Template

The following is the NIC template to configure the setup in this example.

Note: For this setup, the default route is reachable by means of the InternalAPI network.

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role.

parameters:
 ControlPlaneIp:

220

 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number

221

 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:

222

 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 1xx.254.1xx.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: vlan
 use_dhcp: false
 vlan_id: {get_param: InternalApiNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -

223

 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

NIC definitions of the corresponding compute file are the following.

 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.xxx.xxx.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: interface
 name: vhost0
 use_dhcp: false

224

 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

Example 2: NIC-1 to control plane; NIC-2 and NIC-3 bond interface; NIC-4 other networks

This sample has the following topology:

• NIC-1 is connected to the control plane provisioning network

Connected to an access port on the underlay switch

• NIC-2 and NIC-3 are connected to the InternalAPI network.

These two NICs are part of a bond interface.

• NIC-4 has a unique VLAN tag for each of the other overlay networks. It carries the rest of the
networks.

225

Underlying switch configuration:

• NIC-1 is connected to the control plane provisioning VLAN access-ports of a switch.

• NIC-2 and NIC-3 connected to access ports on the switch in the InternalAPI VLAN. These switch
ports are bundled together as a LAG

• NIC-4 is connected to trunk ports on the switch. The trunk ports will carry multiple VLAN tags, one
each for the following networks:

VLAN-10: External VLAN

VLAN-30: Storage VLAN

VLAN-40: Storage-MGMT VLAN

VLAN-60: Management VLAN

Figure 32 on page 227 shows the server NIC configuration for this example.

226

Figure 32: Server NIC Configuration

NIC Template

The following is a snippet of the corresponding NIC template to configure the setup in this example.

Note: For this setup, the default route is reachable by means of the InternalAPI network.

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:

227

 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.xxx.xxx.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: linux_bond
 name: bond0
 use_dhcp: false
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 bonding_options: “mode=active-active”
 members:
 -
 type: interface
 name: nic2
 -
 type: interface
 name: nic3
 - -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: nic4
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -

228

 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic4
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic4
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic4
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

More Template Examples

More template examples are available in the directory:

/home/stack/tripleo-heat-templates/environments/contrail

There are separate templates for control-plane and compute. You can modify the example templates to
match your topology.

[stack@instack contrail]$ pwd
/home/stack/tripleo-heat-templates/environments/contrail
[stack@instack contrail]$ ls -lrt | grep nic | grep compute
-rw-rw-r--. 1 stack stack 6136 May 31 15:07 contrail-nic-config-compute-bond-vlan.yaml
-rw-rw-r--. 1 stack stack 5839 May 31 15:07 contrail-nic-config-compute-bond-vlan-dpdk.yaml
-rw-rw-r--. 1 stack stack 5669 May 31 15:07 contrail-nic-config-compute-storage-mgmt.yaml
-rw-rw-r--. 1 stack stack 3864 May 31 15:07 contrail-nic-config-compute-single.yaml

229

-rw-rw-r--. 1 stack stack 5422 May 31 15:07 contrail-nic-config-compute-dpdk.yaml
-rw-rw-r--. 1 stack stack 5643 Jun 1 11:56 contrail-nic-config-compute-dpdk-bond-vlan.yaml
-rw-rw-r--. 1 stack stack 5661 Jun 2 12:43 contrail-nic-config-compute.yaml
[stack@instack contrail]$
[stack@instack contrail]$
[stack@instack contrail]$ ls -lrt | grep nic | grep -v compute
-rw-rw-r--. 1 stack stack 5568 May 31 15:07 contrail-nic-config-storage-mgmt.yaml
-rw-rw-r--. 1 stack stack 3861 May 31 15:07 contrail-nic-config-single.yaml
-rw-rw-r--. 1 stack stack 6688 May 31 15:07 contrail-nic-config-ovs-bond.yaml
-rw-rw-r--. 1 stack stack 5793 Jun 1 11:46 contrail-nic-config-vlan.yaml
-rw-rw-r--. 1 stack stack 5793 Jun 2 11:54 contrail-nic-config.yaml

What are NIC Templates?

TripleO (OpenStack On OpenStack) provides the flexibility to have different NIC templates for different
overcloud roles. For example, there might be differences between the NIC and networking layout for the
overcloud-compute-nodes and the overcloud-contrail-controller-nodes.

How NIC Templates Work

The NIC templates provide data to the backend scripts that take care of provisioning the network on the
overcloud nodes. The templates are written in standard JSON formats.

The resources section within each template contains all of the networking information for the
corresponding overcloud role, including:

• Number of NICs

• Network associated with each NIC

• Static routes associated with each NIC

• Any VLAN configuration which is tied to a particular NIC

• Network associated with each VLAN interface

• Static routes associated with each VLAN

For more information on what each of these sections looks like, see Red Hat documentation: https://
access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/
advanced_overcloud_customization/sect-isolating_networks

The Red Hat documentation has many examples of how to define a NIC within the template, and some
of that information is used in the examples in this topic.

230

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/advanced_overcloud_customization/sect-isolating_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/advanced_overcloud_customization/sect-isolating_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/advanced_overcloud_customization/sect-isolating_networks

A limitation in Red Hat Director 10 is that all of the overcloud networks must be stretched at Layer 2 to
all of the overcloud nodes. If the overcloud nodes are physical servers that are present in different racks
or subnets of an IP fabric, then you’ll have to first stretch all the overcloud networks to the physical
servers. One way to do this is to use EVPN. If you have a traditional datacenter topology (non-IP fabric),
then you can extend VLANs across the physical computes to extend all the overcloud networks.

Deploying an overcloud using TripleO and Director across multiple subnets is an upstream feature and a
work-in-progress at this time. Upstream developers (mostly from Red Hat) are driving this effort. To
check the status of this feature, see:

Common Topologies

One of the most common topologies for a TripleO deployment consists of 3 NICs:

• NIC-1: Carries these networks:

• Provisioning: Untagged

• Management: Tagged

• External: Tagged

• NIC-2: Carries internal-API network

• NIC-3: Carries tagged storage related networks (storage and storage management)

Conventions in this Document

Examples are provided in this document.

• The topology used in the examples has the following constraints:

• The first NIC must be connected to the ControlPlane network.

• The second NIC must have separate VLAN interfaces for every other network.

• With the above limitations, ‘eth1’ is specified as the VlanParentInterface.

• Note that ‘nic-2’ is specified as the interface with multiple VLAN sub-interfaces in the NIC definition
template.

• In the current version of RHEL 7.3/7.4, the NICs manifest as eth0, eth1, and so on. Because of this,
NIC-2 translates to eth-1.

There are several NIC templates within Contrail that are available to users. These templates are named
according to the topology that they’re trying to solve, and are available in the environments/contrail/

231

directory. Please modify these templates according to your topology before deploying Contrail with
TripleO/Red Hat Director.

Contrail NIC Templates

As part of deployment, a network (net) template must be provided. The net template files are all
available at the same location:

Sample Net Templates

[stack@undercloud contrail]$ ls -lrt | grep contrail-net
-rw-rw-r--. 1 stack stack 1866 Sep 19 17:10 contrail-net-storage-mgmt.yaml
-rw-rw-r--. 1 stack stack 894 Sep 19 17:10 contrail-net-single.yaml
-rw-rw-r--. 1 stack stack 1528 Sep 19 17:10 contrail-net-dpdk.yaml
-rw-rw-r--. 1 stack stack 1504 Sep 19 17:10 contrail-net-bond-vlan.yaml
-rw-rw-r--. 1 stack stack 1450 Sep 19 17:12 contrail-net.yaml

The template files are prepopulated examples that are included with a Contrail package. The file names
match the use case that each is trying to solve. For example, use the contrail-net-dpdk.yaml file if your use
case includes a DPDK compute. Similarly, use the contrail-net-bond-vlan.yaml file if your topology uses
bond interfaces and VLAN subinterfaces that need to be created on top of the bond interfaces.

Please note that these are example files, and you’ll need to modify them to match your topology.

Resource Registry Example

The resource_registry section of the net template file specifies which NIC template must be used for each
role:

Sample Resource Registry of Net Template

[stack@undercloud contrail]$ cat contrail-net.yaml
resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: contrail-nic-config-compute.yaml
 OS::TripleO::ContrailDpdk::Net::SoftwareConfig: contrail-nic-config-compute-dpdk-bond-vlan.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: contrail-nic-config.yaml
 OS::TripleO::ContrailController::Net::SoftwareConfig: contrail-nic-config.yaml
 OS::TripleO::ContrailAnalytics::Net::SoftwareConfig: contrail-nic-config.yaml
 OS::TripleO::ContrailAnalyticsDatabase::Net::SoftwareConfig: contrail-nic-config.yaml
 OS::TripleO::ContrailTsn::Net::SoftwareConfig: contrail-nic-config-compute.yaml

parameter_defaults:

232

 ControlPlaneSubnetCidr: '24'
 InternalApiNetCidr: 10.0.0.0/24
 InternalApiAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiDefaultRoute: 10.0.0.1
 ManagementNetCidr: 10.1.0.0/24
 ManagementAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ManagementInterfaceDefaultRoute: 10.1.0.1
 ExternalNetCidr: 10.2.0.0/24
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 EC2MetadataIp: 192.0.2.1 # Generally the IP of the Undercloud
 DnsServers: ["8.8.8.8","8.8.4.4"]
 VrouterPhysicalInterface: vlan20
 VrouterGateway: 10.0.0.1
 VrouterNetmask: 255.255.255.0
 ControlVirtualInterface: eth0
 PublicVirtualInterface: vlan10
 VlanParentInterface: eth1 # If VrouterPhysicalInterface is a vlan interface using vlanX
notation

NIC Templates for Control Nodes

In this example, all of the OpenStack controller and the Contrail control plane roles use the NIC template
named contrail-nic-config.yaml. Note that the compute roles and the DPDK roles use different NIC
templates.

The NIC template files can be accessed at this location:

Sample NIC Templates

[stack@undercloud contrail]$ ls -lrt | grep contrail-nic-config-
-rw-rw-r--. 1 stack stack 5615 Sep 19 17:10 contrail-nic-config-vlan.yaml
-rw-rw-r--. 1 stack stack 5568 Sep 19 17:10 contrail-nic-config-storage-mgmt.yaml
-rw-rw-r--. 1 stack stack 3861 Sep 19 17:10 contrail-nic-config-single.yaml
-rw-rw-r--. 1 stack stack 5669 Sep 19 17:10 contrail-nic-config-compute-storage-mgmt.yaml
-rw-rw-r--. 1 stack stack 3864 Sep 19 17:10 contrail-nic-config-compute-single.yaml
-rw-rw-r--. 1 stack stack 5385 Sep 19 17:10 contrail-nic-config-compute-dpdk.yaml
-rw-rw-r--. 1 stack stack 5839 Sep 19 17:10 contrail-nic-config-compute-bond-vlan.yaml
-rw-rw-r--. 1 stack stack 5666 Sep 19 17:10 contrail-nic-config-compute-bond-vlan-dpdk.yaml
-rw-rw-r--. 1 stack stack 5538 Sep 19 17:10 contrail-nic-config-compute-bond-dpdk.yaml
-rw-rw-r--. 1 stack stack 5132 Sep 19 17:13 contrail-nic-config-compute.yaml
-rw-r--r--. 1 stack stack 5503 Sep 19 17:13 contrail-nic-config-compute-dpdk-bond-vlan.yaml

233

Just like the network template files, these NIC template files are examples which are included with the
Contrail package. These files also have their names matching the use case that they’re trying to solve.

Note that these NIC template files are examples, and you may have to modify these according to your
cluster’s topology.

Also, these examples call out NIC names in the format of nic1, nic2, nic3, and so on (nic.$<number>).
Think of these as variables, and Director’s backend scripts translate these NIC numbers into actual
interface names based on the interface boot order. So if you specify nic1, nic2, and nic3 in the template
and the boot order of interfaces is eth0, eth1, and eth2, then the mapping of these nic variables to
actual interfaces would look like:

• Nic1 mapped to eth0

• Nic2 mapped to eth1

• Nic3 mapped to eth2

TripleO also provides the flexibility to use actual NIC names (eth0, em1, ens2f, and so on) in the NIC
templates instead of using nic1, nic2, nic3, and the like.

NOTE: A common mistake while defining NIC templates is that the boot order of NICs is not set
correctly. Because of this, your deployment might progress beyond the network configuration
stage, but there might be connectivity issues because the IP/Subnet/route information might not
be configured correctly for the NICs of overcloud nodes.

This section takes a zoom-in look at the network_config section of the NIC template used by the
controllers: contrail-nic-config.yaml.

Sample Network Config for Control Nodes

 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}

234

 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: vlan
 use_dhcp: false
 vlan_id: {get_param: InternalApiNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic2
 addresses:

235

 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

NIC Control Node Template Subsection: Definition for NIC1

The subsection of the template for NIC1 includes the following.

• The definition for an interface called ‘nic1’

• The DNS server is defined. Make sure that this parameter has a valid value. Most commonly, this
variable is assigned a value in the contrail-services.yaml file.

• An IP and subnet is provided under the ‘addresses’ section. Note that these values are also variables,
and the format is: $(Network_Name)IP and $(Network_Name)SubnetCidr.

• This means that this particular NIC is on the ControlPlane network. In the background, this NIC
might be connected to an access port on a switch for the ControlPlane VLAN.

• In the ‘routes’ section, there’s a /32 route out of this NIC. At the time of planning the networking for
your cluster, you may need to provision static routes on the overcloud roles. Use the format
mentioned under the ‘routes’ section to specify any such static routes.

Sample NIC1

 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}

236

NIC Template Subsection: Definition for NIC2

The subsection of the template for NIC2 includes the following.

• The NIC2 has multiple VLANs defined on it.

• In the background, NIC2 might be connected to a switch’s trunk port, and all of the corresponding
VLANs must be allowed on the trunk.

• Because Director-based deployments need the administrator to use a number of networks, it’s a
very common requirement or design to use VLAN interfaces on the overcloud nodes.
Consequently, the administrators do not have to be concerned about having 6-7 physical NICs on
each overcloud node.

• For each VLAN interface, the vlan_id is defined. Note that the vlan_id points to a variable. As with
the example for NIC1, these variables can be assigned values in the contrail-net.yaml.

• Another important observation is the setting of the default route. In this example, the default route
was provisioned on the VLAN interface in the InternalAPI network. Note that the next hop points to
a variable. As with other variables, this variable can be set in the contrail-net.yaml file. The following
snippet shows the default route information.

Sample Default Route Information

 -
 type: vlan
 use_dhcp: false
 vlan_id: {get_param: InternalApiNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}

NIC Templates for Compute Nodes

The NIC definitions for compute roles are slightly different from the definitions for control nodes. This is
because Contrail provisions a logical interface called ‘vhost0’ on all compute nodes, and this interface
must be provided in the NIC definition file for a compute node. Vhost0 is the logical interface that gets
attached to the control data network (or the InternalAPI network in TripleO-based installation).

237

In the contrail-net.yaml example provided in the beginning of this topic, the NIC template used for the
compute nodes is contrail-nic-config-compute.yaml. The following is the ‘resources’ section of the contrail-
nic-config-compute.yaml file:

Sample Resources for Compute Nodes

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 device: nic2
 -
 type: interface
 name: vhost0
 use_dhcp: false
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:

238

 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

NIC Compute Node Template Subsection: Definition for NIC1

This section is very similar to the NIC1 definition template for the control nodes. In this example
topology, the first NIC for all the compute nodes is connected to the ControlPlane network. Note that
this is untagged, so this NIC might be connected to an access port on the underlay switch.

Sample NIC1 for Compute Node

 -
 type: interface

239

 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}

NIC Compute Node Template Subsection: Definition for NIC2

This section is very similar to the NIC2 definition template for the control nodes, however there are two
major differences:

• The VLAN subinterface for InternalApiNetwork does not have an IP address.

• The Vhost0 interface holds the IP address for InternalApiNetwork.

• If you’re using stock TripleO-based installation, then the IP address for the InternalApiNetwork will
always be configured on the vhost0 interface.

Sample NIC2 for Compute Node

 -
 type: interface
 name: vhost0
 use_dhcp: false
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}

240

 device: nic2
 -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: nic2
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

The following are additional parameters that are required to successfully provision compute nodes. The
parameters are handled as variables and are normally specified in the contrail-net.yaml file.

• Network-related parameters:

• Subnet CIDR: You can set the subnet mask of each overcloud network in this file.

• Allocation Pool Range: If set, then the overcloud nodes are allocated IP addresses from the specified
range

• Default Route: Set the next hop for the default route in the specified format. In this example, the
default route is set for InternalApi network and the next hop is set as 10.0.0.1

241

• VrouterPhysicalInterface: This is the interface on which vhost0 interface gets attached. This may be a
physical NIC (e.g. eth2 or enps0f0), or a VLAN interface (e.g. Vlan20)

• VrouterGateway: This is the IP address of the SDN gateway. In a lot of deployments, this might be the IP
address of the MX router’s IP address. This IP must be reachable via the InternalAPI network

• VrouterNetmask: subnet mask for the vhost0 interface (this is provisioned in the compute nodes’ config
files).

• VlanParentInterface: This is optional, and needed only if vhost0 needs to be attached to a VLAN
interface.

Sample NIC2 Additional Parameters for Compute Node

 parameter_defaults:
 ControlPlaneSubnetCidr: '24'
 InternalApiNetCidr: 10.0.0.0/24
 InternalApiAllocationPools: [{'start': '10.0.0.10', 'end': '10.0.0.200'}]
 InternalApiDefaultRoute: 10.0.0.1
 ManagementNetCidr: 10.1.0.0/24
 ManagementAllocationPools: [{'start': '10.1.0.10', 'end': '10.1.0.200'}]
 ManagementInterfaceDefaultRoute: 10.1.0.1
 ExternalNetCidr: 10.2.0.0/24
 ExternalAllocationPools: [{'start': '10.2.0.10', 'end': '10.2.0.200'}]
 EC2MetadataIp: 192.0.2.1 # Generally the IP of the Undercloud
 DnsServers: ["8.8.8.8","8.8.4.4"]
 VrouterPhysicalInterface: vlan20
 VrouterGateway: 10.0.0.1
 VrouterNetmask: 255.255.255.0
 ControlVirtualInterface: eth0
 PublicVirtualInterface: vlan10

NIC Templates for DPDK Compute Nodes

You can either use a separate YAML template for DPDK compute nodes or use the contrai-net.yaml
template file. If you use the contrai-net.yaml template file, you must add the following additional
parameters:

VrouterDpdkPhysicalInterface: bond0
 ContrailVrouterDpdkPhysicalInterface: bond0
 BondDpdkInterface: bond0
 ContrailBondDpdkInterface: bond0

242

 BondDpdkInterfaceMembers: 'ens7f0'
 BondInterfaceMembers: 'ens7f0'

Sample Config for DPDK Compute Nodes

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config to configure multiple interfaces
 for the compute role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 InternalApiDefaultRoute: # Not used by default in this template
 default: '10.88.0.1'
 description: The default route of the internal api network.
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''

243

 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.88.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []

244

 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 type: linux_bond
 name: bond0
 use_dhcp: false
 bonding_options: "mode=802.3ad lacp_rate=fast updelay=1000 miimon=100"
 -
 type: interface
 name: vhost0
 use_dhcp: false
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}

245

 routes:
 -
 default: true
 next_hop: {get_param: InternalApiDefaultRoute}
 -
 type: linux_bridge
 name: br0
 use_dhcp: false
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 # primary: true
 #
 -
 type: vlan
 vlan_id: {get_param: ManagementNetworkVlanID}
 device: br0
 addresses:
 -
 ip_netmask: {get_param: ManagementIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 device: br0
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 device: br0
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 device: br0
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

246

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

Installing Red Hat OpenShift Container Platform with Contrail
Networking

IN THIS SECTION

Launch Instances (Azure, AWS, or Baremetal) | 247

Host Registration | 248

Install Base Packages | 248

Install OpenShift with Contrail Networking | 250

Installing a Contrail System on an Existing OpenShift Setup | 252

Perform the following steps to install Red Hat OpenShift Container Platform version 3.7 with Juniper
Networks Contrail Networking Release 4.1. These instructions are valid for systems with Microsoft
Azure, Amazon Web Services (AWS), or baremetal systems (BMS).

Launch Instances (Azure, AWS, or Baremetal)

Launch instances in the same subnet, using the following minimum configuration guidelines.

• Master Node (x1 or x3 for high availability)

• Image: RHEL 7.3 or 7.4

• CPU/RAM: 4 CPU, 32 GB RAM

• Disk: 250 GB

• Security Group: Allow all traffic from everywhere

• Slave Node (xn)

• Image: RHEL 7.3 or 7.4

247

• CPU/RAM: 8 CPU, 64 GB RAM

• Disk: 250 G

• Security Group: Allow all traffic from everywhere

• Load Balancer Node (x1, only when using high availability. Not needed for single master node
installation)

• Image: RHEL 7.3 or 7.4

• CPU/RAM: 2 CPU, 16 GB RAM

• Disk: 100 G

• Security Group: Allow all traffic from everywhere

Host Registration

Use the following procedure to register all nodes in the cluster.

1. Register all nodes in cluster using Red Hat Subscription Manager (RHSM).

(all-nodes)# subscription-manager register --username <username> --password <password> --force
2. List the available subscriptions.

(all-nodes)# subscription-manager list --available --matches '*OpenShift*'

3. From the list of available subscriptions, find the pool ID for the OpenShift Container Platform
subscription and attach it.

(all-nodes)# subscription-manager attach --pool=<pool-ID>
4. Disable all yum repositories.

(all-nodes)# subscription-manager repos --disable="*"

5. Enable only the repositories required by OpenShift Container Platform 3.7.

(all-nodes)# subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-3.7-rpms" \
 --enable="rhel-7-fast-datapath-rpms"

Install Base Packages

1. Install Extra Packages for Enterprise Linux (EPEL).

248

(all-nodes)# yum install wget -y && wget -O /tmp/epel-release-latest-7.noarch.rpm https://
dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm && rpm -ivh /tmp/epel-release-
latest-7.noarch.rpm

2. Update the system to use the latest packages.

(all-nodes)# yum update -y

3. Install the atomic package that provides the OpenShift Container Platform utilities.

(all-nodes)# yum install atomic-openshift-excluder atomic-openshift-utils git -y

4. Use unexclude to remove the atomic-openshift packages from the list for the duration of the
installation.

(all-nodes)# atomic-openshift-excluder unexclude -y

5. Enable SSH access for the root user.

(all-nodes)# sudo su
 (all-nodes)# passwd
 (all-nodes)# sed -i -e 's/#PermitRootLogin yes/PermitRootLogin yes/g' -e 's/
PasswordAuthentication no/PasswordAuthentication yes/g' /etc/ssh/sshd_config
 (all-nodes)# service sshd restart
 (all-nodes)# logout

After logout, log in as root user.

6. Enforce the SELinux security policy.

 (all-nodes)# vi /etc/selinux/config

 SELINUX=enforcing

7. Add a static entry for master and slaves in /etc/hosts and test with ping. Be sure to use the output of
“hostname -f” to populate the file.

 (all-nodes)# vi /etc/hosts

 10.xx.vv.1 master.test.net master
 10.xx.xx.2 slave.test.net slave

 (all-nodes)# ping master
 (all-nodes)# ping slave

249

8. Enable passwordless SSH access.

(ansible-node)# ssh-keygen -t rsa
 (ansible-node)# ssh-copy-id root@<master>

 (ansible-node)# ssh-copy-id root@<slave>

9. Sync NTP.

(all-nodes)# service ntpd stop
(all-nodes)# ntpdate -s time.nist.gov
(all-nodes)# service ntpd start

Install OpenShift with Contrail Networking

1. Download the Contrail Docker images from the Juniper software download site: https://
www.juniper.net/support/downloads/?p=contrail#sw.

Image 4.1 (Red Hat Enterprise Linux 7.X):contrail-kubernetes-docker-images_4.1.0.0-8.tgz

(ansible-node)# cd /tmp && wget <contrail-container-image.tgz>
2. Clone the openshift-ansible repo.

(ansible-node)# cd /root
(ansible-node)# git clone https://github.com/savithruml/openshift-ansible -b contrail-
openshift

3. Copy the install files.

(ansible-node)# wget -O /root/openshift-ansible/inventory/byo/ose-prerequisites.yml https://
raw.githubusercontent.com/savithruml/openshift-contrail/master/openshift/install-files/all-in-
one/ose-prerequisites.yml
(ansible-node)# wget -O /root/openshift-ansible/inventory/byo/ose-install https://
raw.githubusercontent.com/savithruml/openshift-contrail/master/openshift/install-files/all-in-
one/ose-install

4. Populate the install file with Contrail configuration parameters specific to your system. Refer to the
following example.

250

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw

Be sure to add the masters in the [nodes] section of the inventory, to ensure that the Contrail control
pods will come up on OpenShift masters.

(ansible-node)# vi /root/openshift-ansible/inventory/byo/ose-install

 [OSEv3:vars]
 ...
 os_sdn_network_plugin_name='cni'
 openshift_use_contrail=true
 contrail_os_release=redhat7
 contrail_version=4.1.0.0-8
 analyticsdb_min_diskgb=50
 configdb_min_diskgb=25
 vrouter_physical_interface=eno1
 contrail_docker_images_path=/tmp
 cni_version=v0.5.2
 ...

For an example for a single master, see https://github.com/savithruml/openshift-contrail/blob/
master/openshift/install-files/all-in-one/ose-install

For an example for a HA master, see https://github.com/savithruml/openshift-contrail/blob/master/
openshift/install-files/all-in-one/ose-install-ha

5. Run the Ansible playbook to install the OpenShift container platform with Contrail Networking.

(ansible-node)# cd /root/openshift-ansible
(ansible-node)# ansible-playbook -i inventory/byo/ose-install inventory/byo/ose-
prerequisites.yml
(ansible-node)# ansible-playbook -i inventory/byo/ose-install playbooks/byo/
openshift_facts.yml
(ansible-node)# ansible-playbook -i inventory/byo/ose-install playbooks/byo/config.yml

6. Verify that Contrail has been installed and is operational.

(master)# oc get ds -n kube-system
(master)# oc get pods -n kube-system

251

https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/ose-install
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/ose-install
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/ose-install-ha
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/ose-install-ha

7. Create a password for the admin user to log in to the Contrail UI.

(master-node)# htpasswd /etc/origin/master/htpasswd admin
(master-node)# oc login -u admin

8. Use the following to access the Contrail and OpenShift Web user interfaces, and attempt to log in to
each.

Contrail: https://<master-node-ip>:8143

OpenShift: https://<master-node-ip>:8443

NOTE: If access and log in is unsuccessful, flush the iptables.

9. Perform the following setups in the Contrail UI.

• Set up BGP peering with the gateway router.

Configure > Infrastructure > BGP Routers

• Set up a network IPAM under the “default” project.

Configure > Networking > IP Address Management > default-domain > default

• Create a public virtual network.

Configure > Networking > Networks > default-domain > default

Installing a Contrail System on an Existing OpenShift Setup

1. Remove any existing SDN system, such as OVS, Calico, Nuage, and the like. Use removal
instructions as published by the vendor of the existing system.

2. Download the contrail-container-image package from the Juniper site. Untar the package and load
the containers.

(all-nodes)# wget <contrail-container-image.tgz> && tar -xvzf <contrail-container-image.tgz>

(all-nodes)# docker load <contrail-container-image.tgz>
3. The following Docker containers must be on the masters.

• contrail-controller

• contrail-analytics

252

• contrail-analyticsdb

• contrail-kube-manager

4. The following Docker containers must be on the minions.

• contrail-agent

• contrail-kubernetes-agent

5. Add contrail and daemon-set-controller to the OpenShift privileged security context constraints (scc).

(master)# oadm policy add-scc-to-user privileged system:serviceaccount:kube-system:contrail
 (master)# oadm policy add-scc-to-user privileged system:serviceaccount:kube-system:daemon-
set-controller

6. Label the master nodes prior to launching the Contrail pods.

(master)# oc label nodes <all-master-nodes> opencontrail.org/controller=true
7. Make the masters schedulable.

(master)# oadm manage -<all-master-nodes> --schedulable
8. Open relevant Contrail ports in the iptables.

On master instances, refer to the following to open ports:

https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/
iptables-master

On node instances, refer to the following to open ports:

https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/
iptables-node

9. Populate the single YAML file with your environment variables and launch the installer.

(master)# wget https://raw.githubusercontent.com/savithruml/openshift-contrail/master/
openshift/install-files/all-in-one/contrail-installer.yaml
(master)# oc create –f contrail-installer.yml

10. Verify that all services are up and running.

(master)# oc get ds –n kube-system
(master)# oc get pods –n kube-system
(master)# oc exec <contrail-pod-name> contrail-status –n kube-system

253

https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/iptables-master
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/iptables-master
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/iptables-node
https://github.com/savithruml/openshift-contrail/blob/master/openshift/install-files/all-in-one/iptables-node

11. Create a password for the admin user to log in to the UI.

(master-node)# htpasswd /etc/origin/master/htpasswd admin
(master-node)# oc login -u admin

12. Patch the scc restricted.

master-node)# oc patch scc restricted --patch='{ "runAsUser": { "type": "RunAsAny" } }'

13. Use the following to access the Contrail and OpenShift Web user interfaces, and log in to each.

Contrail: https://<master-node-ip>:8143
OpenShift: https://<master-node-ip>:8443

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1

IN THIS SECTION

Prerequisite | 255

Upgrade the Undercloud | 255

Update Red Hat Director Image Archives | 257

Prepare Repositories on all Nodes | 259

Upgrade the Operating System on Contrail Nodes | 260

Prepare the Contrail Packages | 260

Upgrade the Contrail Heat Templates | 260

Modify the Yum Update Script for TripleO Puppet | 261

Update the Overcloud Deployment Plan | 261

Upgrade Cautions | 262

Upgrade the Overcloud | 265

Contrail Service Recovery After Upgrade | 266

This section presents the steps to upgrade an OSP-based Contrail deployment from Contrail version
3.2.x to Contrail version 4.1.

254

Prerequisite

Ensure that you have a cloud up and running with RHOSP10 Z4 and Contrail 3.2 before you proceed
with the upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

Contrail Version Red Hat Version OpenStack Version

3.2.3 RHEL 7.3 RHOSP10 (packages dated Apr. 15, 2017)

3.2.6 RHEL 7.4 RHOSP10 (packages dated Feb. 2, 2018)

4.1 RHEL 7.4 RHOSP10 (packages dated Feb. 27, 2018)

4.1.1 RHEL 7.5 RHOSP10 (packages dated Jun. 4, 2018)

RHOSP11 (packages dated Jun. 4, 2018)

4.1.2 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

NOTE: For Contrail Release 4.1.1, you must ensure that the OpenJDK version is java-1.8.0-
openjdk-1.8.0.151-5.b12.el7_4.x86_64. This is because of a compatibility issue that the
Cassandra 3.0 package has with the latest version of Open JDK provided in RHEL 7.5.

You must add the correct version of OpenJDK to the Contrail repository and remove the older
version of the package from the contrail controllers and analytics database.

To upgrade to OpenStack Platform release 10, you must first apply the patch for updating puppet-
tripleo. This is because of a bug in the OpenStack Platform release OSP10 z8. For more information, see
https://bugzilla.redhat.com/show_bug.cgi?id=1579184. This bug has been resolved in build puppet-
tripleo-5.6.8-7.el7ost; see https://access.redhat.com/errata/RHBA-2018:2101. For more information
about this bug, see https://bugs.launchpad.net/tripleo/+bug/1771324.

Upgrade the Undercloud

Upgrade the undercloud to the most current RHOSP10 version.

1. Log in to the undercloud as the stack user.

255

https://bugzilla.redhat.com/show_bug.cgi?id=1579184
https://access.redhat.com/errata/RHBA-2018:2101
https://bugs.launchpad.net/tripleo/+bug/1771324

su – stack

2. Update the Contrail repositories.

sudo rm –rf /etc/yum.repos.d/*contrail*

curl http://newrepo.contrail41-dev.repo -o /etc/yum.repos.d/localrepo.repo

3. Stop the main OpenStack platform services.

sudo systemctl stop 'openstack-*' 'neutron-*' httpd

4. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

5. Upgrade the undercloud.

$ openstack undercloud upgrade

6. Reboot the node.

$ sudo reboot

7. Wait until the node reboots, then check the status of all services.

NOTE: It can take as much as 10 minutes or more for the openstack-nova-compute to become
active after a reboot.

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

8. Verify the version of RHEL after the undercloud upgrade.

[root@undercloud ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.4 (Maipo)
[root@undercloud ~]#

9. Check the versions of the RHOSP images to verify that the new images are available.

In the following example, the new images are rhosp-director-images-
ipa-10.0-20180103.3.el7ost.noarch and rhosp-director-images-10.0-20180103.3.el7ost.noarch.

[root@undercloud ~]# rpm -qa | grep -i rhosp
rhosp-director-images-ipa-10.0-20180103.3.el7ost.noarch

256

rhosp-director-images-10.0-20180103.3.el7ost.noarch
rhosp-director-images-ipa-10.0-20170615.1.el7ost.noarch
rhosp-director-images-10.0-20170615.1.el7ost.noarch
[root@undercloud ~]#

10. Verify the existence of the overcloud and its nodes.

$ openstack stack list

$ ironic node-list

11. Review the power status, provision state, and maintenance, ensuring:

• Power state is set to Power on

• Provision state is set to Active

• Maintenance is set to False

12. Verify that all OpenStack servers are Active.

$ openstack server list

Figure 33: Server List

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You’ll want to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

257

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud ~]$ sudo grep "rhosp-director-images" /var/log/yum.log
Feb 05 16:03:59 Installed: rhosp-director-images-ipa-10.0-20180103.3.el7ost.noarch
Feb 05 16:04:54 Installed: rhosp-director-images-10.0-20180103.3.el7ost.noarch
[stack@undercloud ~]$

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
--copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
 --run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
 --run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/
modules/tripleo/ ‘ \
 --run-command 'rm -fr /var/cache/yum/*' \
 --run-command 'yum clean all' \ --selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/ $ openstack baremetal
configure boot

6. Verify that the images are uploaded.

$ glance image-list

258

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ glance image-show overcloud-full

8. Observe the contrail-status on all Contrail nodes. All services in the Contrail nodes, except the
controller (OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Prepare Repositories on all Nodes

1. Delete existing repositories on all overcloud nodes. Be sure to verify each deletion.

for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo cleaning
yum repolist on $ipnode && ssh heat-admin@$ipnode 'find /etc/yum.repos.d/ ! -name 'contrail-install.repo' -
type f -exec sudo rm -f {} +' ; done

259

2. Add new repositories on all overcloud nodes. Be sure to verify each addition.

for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo cleaning
yum repolist on $ipnode && ssh heat-admin@$ipnode ' curl http://newrepo.contrail41-dev.repo -o /etc/
yum.repos.d/localrepo.rep' ; done

Upgrade the Operating System on Contrail Nodes

1. Define a list ($iplist) that contains all Contrail nodes.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

2. Upgrade the operating system for all nodes in the iplist.

for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode 'sudo
yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

Prepare the Contrail Packages

Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and contrail-
tripleo-puppet. The newest versions of those packages must be installed before proceeding with the
overcloud upgrade. See the following example, with current packages versions.

[root@director-ctl ~]# rpm -qa | grep contrail
contrail-tripleo-puppet-4.1.0.0-8.el7.noarch
contrail-tripleo-heat-templates-4.1.0.0-8.el7.noarch
puppet-contrail-4.1.0.0-8.el7.noarch

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/templates/
openstack-tripleo-heat-templates/environments/

260

cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
templates/openstack-tripleo-heat-templates/puppet/services/network

Modify the Yum Update Script for TripleO Puppet

Before starting the upgrade, a few Puppet commands must be added to the yum_update script, located
at:

/home/stack/templates/openstack-tripleo-heat-templates/extraconfig/tasks/yum_update.sh

1. Update the following Puppet commands in the yum_update.sh. Refer to the following patch for
details regarding the exact placement of the commands patch: https://github.com/Juniper/contrail-
tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Ensure that the new version of the packages puppet-contrail and contrail-tripleo-puppet have been
installed on the Contrail nodes, and that contrail-tripleo-puppet has been copied to openstack-
puppet.

rm -rf /usr/share/openstack-puppet/modules/tripleo/contrail-tripleo-puppet

cp -R /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo

3. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Filename: \templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

Update the Overcloud Deployment Plan

1. Update the current plan by rerunning the command used for cloud deployment and adding the suffix
- -update-plan-only.

<openstack overcloud deploy> –update-plan-only

261

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

Example

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

2. Make a copy of the existing deploy script to the update-stack.sh. The update-stack.sh is the script used to
update the overcloud plan, and it references the same templates that were used to deploy the stack.
All files used for the overcloud update should be identical to the files used for deployment, with the
exception of the contrail-services file that was updated with the latest contrail-version and contrail-
repo.

cp deploy.sh update-stack.sh

3. Update the deployment plan.

./update-stack.sh

Upgrade Cautions

CAUTION: The steps to perform the overcloud upgrade are service disrupting, and
should only be performed within a maintenance window.

Potential Packages Failures

Read the following before proceeding with the overcloud upgrade. The upgrade may fail due to
packages conflicts in Contrail nodes for analytics, analytics database, and Contrail controllers. Some
observed failures due to packages conflicts are detailed in this section.

262

OpenStack Undercloud Upgrade Failure

 From Version: RHEL-7.3 with rhosp-director-images-10.0-20170228.1.el7ost.noarch
 To Version: RHEL-7.5 with rhosp-director-images-10.0-20180628.2.el7ost.noarch

OpenStack undercloud upgrade may fail with the following error message:

INFO: 2018-06-13 20:17:03 - Could not retrieve fact='current_nova_host',
resolution='<anonymous>': uninitialized constant Tempfile 2018-06-13 20:17:04,404
INFO: 2018-06-13 20:17:04 - ^[[1;31mError: Puppet::Parser::AST::Resource failed with error
ArgumentError: Invalid resource type sysctl::value at /etc/puppet/manifests/puppet-stack-
config.pp:24 on node undercloud.example.com^[[0m

For more information about this error, see https://bugs.launchpad.net/juniperopenstack/+bug/1792036.

Contrail-api Service Not Restarted During Upgrade

Contrail-api remains in the initializing state during upgrade. Modify the puppet file as described in
https://github.com/Juniper/puppet-contrail/commit/b5ec14743d6c13cf847f277f1d28a404931c7b0e.

NOTE: This issue has been resolved in Contrail Release 4.1.2.

Contrail-api Service Down After Upgrade

You can resolve this issue by removing the admin_token entry from the /etc/contrail/contrail-keystone-
auth.conf file. For more information, see https://bugs.launchpad.net/juniperopenstack/+bug/1791861.

NOTE: This issue has been resolved in Contrail Release 4.1.2.

Overcloud Update Failure

Upgrade from OpenStack Platform release 10 GA image to the latest version hangs because of a systemd
bug. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1582338

Solution:

To upgrade from Contrail Release 3.2.x to 4.1.1:

263

https://bugs.launchpad.net/juniperopenstack/+bug/1792036
https://github.com/Juniper/puppet-contrail/commit/b5ec14743d6c13cf847f277f1d28a404931c7b0e
https://bugs.launchpad.net/juniperopenstack/+bug/1791861
https://bugzilla.redhat.com/show_bug.cgi?id=1582338

1. Run the following command before you start the update:

source ~/stackrc
for address in $(openstack server list -f json | jq -r -c '.[] | .Networks' | grep -oP
'[0-9.]+'); do \
 ssh -q -o StrictHostKeyChecking=no heat-admin@$address \
 'sudo yum install -y yum-plugin-versionlock; \
 sudo yum versionlock add systemd systemd-libs libgudev1 systemd-sysv rsyslog;'
done

2. Run the overcloud update.

3. Run the following command:

source ~/stackrc
for address in $(openstack server list -f json | jq -r -c '.[] | .Networks' | grep -oP
'[0-9.]+'); do \
 ssh -q -o StrictHostKeyChecking=no heat-admin@$address \
 'sudo yum versionlock del systemd systemd-libs libgudev1 systemd-sysv rsyslog;
 sudo yum versionlock add java-1.8.0-openjdk-headless-1.8.0.151 java-1.8.0-
openjdk-1.8.0.151;
 sudo yum update -y'
done

4. Restart the node.

Analytics Database Failure

You may encounter a Cassandra package version conflict issue.

Error message: cassandra22 conflicts with cassandra-3.10-0contrail0.el7.centos.noarch

Solution: Remove the cassandra22 package.

sudo rpm -e --nodeps cassandra22-2.2.8-1.noarch

Analytics Node Failure

Error message: file /usr/lib/python2.7/site-packages/redis/__init__.py from install of python-
redis-2.10.3-3.el7ost.noarch conflicts with file from package redis-py-0.1-2contrail.el7.noarch

Solution: Remove the redis-py package.

264

sudo rpm -e python-redis-2.10.3-3.el7ost.noarch

Contrail Controller Failure

Error message: cassandra22 conflicts with cassandra-3.10-0contrail0.el7.centos.noarch

Solution: Remove the cassandra22 package.

sudo rpm -e --nodeps cassandra22-2.2.8-1.noarch

NOTE: You can delete redis-py from the analytics node, and delete cassandra22 from the
analytics database and the Contrail controllers node.

Contrail vRouter Package Conflict

Error message: /etc/init.d/contrail-vrouter-nodemgr conflicts between attempted installs of contrail-openstack-
vrouter-4.1.0.0-8.el7.noarch and contrail-vrouter-agent-4.1.0.0-8.el7.x86_64

Solution: Remove the contrail-openstack-vrouter.

yum remove contrail-openstack-vrouter

Analytics Node snmp-lib Version Conflict

Error message: duplicate versions of net-snmp-libs -> net-snmp-libs-5.7.2-28.el7_4.1.x86_64 is a duplicate with
1:net-snmp-libs-5.7.2-28.el7.i686

Solution:

rpm -e --nodeps net-snmp-libs

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
2018-02-09 16:24:46Z [overcloud]: UPDATE_COMPLETE Stack UPDATE completed successfully
Stack overcloud UPDATE_COMPLETE

265

Overcloud Endpoint: http://19x.xxx.xxx.xx:5000/v2.0
Overcloud Deployed

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

Overcloud Stack Status

[stack@undercloud ~]$ openstack stack list

+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| ID | Stack Name | Stack Status | Creation Time
| Updated Time |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| e56c5512-3e32-4940-a05a-e194f48ce67a | overcloud | UPDATE_COMPLETE | 2018-02-16T20:32:17Z
| 2018-02-21T01:12:08Z |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
[stack@undercloud ~]$

Contrail Stack Status

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-status; done

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; done

Contrail Service Recovery After Upgrade

Upon completing the upgrade, you might have some Contrail services reporting status down on some
nodes. this section provides recovery suggestions for different services.

Contrail Controller Services

In a recent upgrade, the following services were down in the Contrail controller nodes.

266

• contrail-control — failed

• contrail-dns — failed

To determine the root cause of these failures, check the Contrail logs in /var/log/contrail/ .

In this example, it was the IFMap and Discovery services causing the failures, because those services are
no longer used in the Contrail 4.x releases.

Solution

1. Remove the IFMap and Discover configuration sections from:

a. /etc/contrail/contrail-control.conf

b. /etc/contrail/contrail-dns.conf

2. Restart the services contrail-controller and contrail-dns.

a. service contrail-control restart

b. service contrail-dns restart

3. Verify that the services contrail-controller and contrail-dns are up and running after the restart.

a. contrail-status

Contrail Compute Services

On the Contrail compute node, the contrail-vrouter-agent service might be down after the upgrade. The
vrouter agent is dependent on the kernel module. The RHEL7.3 has been upgraded to RHEL7.4, and the
node needs to b rebooted to ensure the correct kernel module gets loaded.

1. Reboot the node.

2. After reboot, restart the vrouter service..

service supervisor-vrouter restart

3. Verify that all Contrail services are up and running.

contrail-status

RELATED DOCUMENTATION

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2 | 268

267

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3 | 279

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2

IN THIS SECTION

Prerequisite | 268

Upgrade the Undercloud | 269

Update Red Hat Director Image Archives | 271

Prepare Repositories on all Nodes | 273

Upgrade the Operating System on Contrail Nodes | 273

Prepare the Contrail Packages | 274

Upgrade the Contrail Heat Templates | 274

Modify the Yum Update Script for TripleO Puppet | 275

Update the Overcloud Deployment Plan | 275

Upgrade Cautions | 277

Upgrade the Overcloud | 277

This section presents the steps to upgrade an OSP-based Contrail deployment from Contrail version
4.1.1 to Contrail version 4.1.2.

Prerequisite

Ensure you have a cloud up and running with RHOSP10 Z4 and Contrail 4.1.1 before you proceed with
the upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

Contrail Version Red Hat Version OpenStack Version

3.2.3 RHEL 7.3 RHOSP10 (packages dated Apr. 15, 2017)

268

(Continued)

Contrail Version Red Hat Version OpenStack Version

3.2.6 RHEL 7.4 RHOSP10 (packages dated Feb. 2, 2018)

4.1 RHEL 7.4 RHOSP10 (packages dated Feb. 27, 2018)

4.1.1 RHEL 7.5 RHOSP10 (packages dated Jun. 4, 2018)

RHOSP11 (packages dated Jun. 4, 2018)

4.1.2 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

4.1.3 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

CAUTION: Set the Red Hat Satellite filter end date to October 29, 2018 before
proceeding with the upgrade.

Upgrade the Undercloud

Upgrade the undercloud to the most current RHOSP10 version.

1. Log in to the undercloud as the stack user.

$ su – stack

2. Update the Contrail repositories.

$ sudo rm –rf /etc/yum.repos.d/*contrail*

$ curl http://newrepo.contrail41-dev.repo -o /etc/yum.repos.d/localrepo.repo

3. Stop the main OpenStack platform services.

$ sudo systemctl stop 'openstack-*' 'neutron-*' httpd

4. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

269

5. Upgrade the undercloud.

$ openstack undercloud upgrade

6. Reboot the node.

$ sudo reboot

7. Wait until the node reboots, then check the status of all services.

NOTE: It can take as much as 10 minutes or more for the openstack-nova-compute to become
active after a reboot.

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

8. Verify the version of RHEL after the undercloud upgrade.

NOTE: Contrail does not support undercloud Red Hat version running with RHEL-7.6 as part
of Contrail 4.1.2 release.

[root@undercloud ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.5 (Maipo)
[root@undercloud ~]#

9. Verify the existence of the overcloud and its nodes.

$ openstack stack list

$ ironic node-list

10. Verify that all OpenStack servers are Active.

$ openstack server list

270

Figure 34: Server List

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You will have to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud]$ sudo grep "rhosp-director-images" /var/log/yum.log

Oct 26 15:09:20 Installed: rhosp-director-images-ipa-10.0-20180821.1.el7ost.noarch
Oct 26 15:10:10 Installed: rhosp-director-images-10.0-20180821.1.el7ost.noarch

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
 cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

271

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
--copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
--run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
--run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/
tripleo/ ‘ \
--run-command 'rm -fr /var/cache/yum/*' \
--run-command 'yum clean all' \ --selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

6. Verify that the images are uploaded.

$ openstack image list

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ openstack image show overcloud-full

272

8. Verify contrail-status on all Contrail nodes. All services in the Contrail nodes, except the controller
(OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Prepare Repositories on all Nodes

1. Delete existing repositories on all overcloud nodes. Verify each deletion.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode 'find /etc/yum.repos.d/ ! -name 'contrail-
install.repo' -type f -exec sudo rm -f {} +' ; done

2. Add new repositories on all overcloud nodes. Verify each addition.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode ' curl http://newrepo.contrail41-dev.repo -o /etc/
yum.repos.d/localrepo.rep' ; done

Upgrade the Operating System on Contrail Nodes

1. Define a list ($iplist) that contains all Contrail nodes. Run the following command on undercloud VM
as stack user.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

CAUTION: Attach the new satellite subscription key on all overcloud nodes before
upgrading the overcloud packages. Satellite must be synced with filter end date 29th
Oct 2018. Make sure to clear cache by typing sudo yum clean all.

2. Upgrade the operating system for all nodes in the iplist. Run the following command on undercloud
VM as stack user

sudo for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode
'sudo yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

3. Reboot overcloud contrail compute nodes, if there is any change in the kernel version. This needs to
be done before installing contrail packages on compute VM.

Supported kernel versions: 3.10.0-862.11.6.el7.x86_64 and 3.10.0-957.el7.x86_64
------------------------------- [root@overcloud-novacompute-2 ~]# modinfo vrouter filename: /lib/modules/

273

3.10.0-862.11.6.el7.x86_64/extra/net/vrouter/vrouter.ko version: 4.1.2.0 license: GPL retpoline: Y
rhelversion: 7.5

Prepare the Contrail Packages

Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and contrail-
tripleo-heat-templates. The newest versions of those packages must be installed before proceeding with
the overcloud upgrade. See the following example, with current packages versions.

[stack@undercloud~]$ rpm -qa | grep contrail

puppet-contrail-4.1.2.0-NN.el7.noarch
contrail-tripleo-heat-templates-4.1.2.0-NN.el7.noarch
contrail-tripleo-puppet-4.1.2.0-NN.el7.noarch

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

NOTE: Red Hat does not support changing IP address of the existing cluster as a part of
upgrade. Do not change IP address of the cluster while creating new tripleo-heat-templates

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

sudo cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/
tripleo-heat-templates/environments/

sudo cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
tripleo-heat-templates/puppet/services/network

NOTE: The directory /home/stack/tripleo-heat-templates is user defined, it can be User
Defined-directory>/openstack-tripleo-heat-templates

274

Modify the Yum Update Script for TripleO Puppet

Following Puppet commands must be added to the yum_update script before starting the upgrade. The
script is located at:

/home/stack/tripleo-heat-templates/extraconfig/tasks/yum_update.sh

1. Update the following Puppet commands in the yum_update.sh after the line “echo -n "false" >
$heat_outputs_path.update_managed_packages”.

Refer to the following patch for details regarding the exact placement of the commands patch:
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/
contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Default parameter for contrailVersion is 4.

Filename:/home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

NOTE: /home/stack/tripleo-heat-templatesdirectory is user defined and it can be directory
name under stack user.

Update the Overcloud Deployment Plan

1. Update the current plan by re-running the command used for cloud deployment and adding the suffix
- -update-plan-only.

<openstack overcloud deploy> –update-plan-only

275

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

Example

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

2. Make a copy of the existing deploy script to the update-stack.sh. The update-stack.sh is the script used to
update the overcloud plan, and it references the same templates that were used to deploy the stack.
All files used for the overcloud update should be identical to the files used for deployment, except
contrail-services file that was updated with the latest contrail-version and contrail-repo.

cp deploy.sh update-stack.sh

3. Update the deployment plan.

./update-stack.sh

Example

[stack@undercloud-R4-1-1-upg-R4-1-2 ~]$./update-stack.sh
Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: 6c8fb5b7-6eda-4d92-8245-f7ac46bb369d
Plan updated
Deploying templates in the directory /tmp/tripleoclient-CdyN2I/tripleo-heat-templates
Overcloud Endpoint: http://10.87.67.232:5000/v2.0

276

Overcloud Deployed
[stack@undercloud-R4-1-1-upg-R4-1-2 ~]$

Upgrade Cautions

CAUTION: The steps to perform the overcloud upgrade are service disrupting, and
should only be performed within a maintenance window.

The upgrade procedure may fail due to packages conflicts in Contrail analytics nodes. Some observed
failures due to packages conflicts are detailed in this section. Continue with the deployment after
applying the recommended solution.

Analytics Node snmp-lib Version Conflict

Error message: Protected multilib versions: 1:net-snmp-libs-5.7.2-37.el7.x86_64 != 1:net-snmp-
libs-5.7.2-33.el7_5.2.i686

Solution:

rpm -e --nodeps net-snmp-libs

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
on_breakpoint: [u'overcloud-contrailanalyticsdatabase-0']
Breakpoint reached, continue? Regexp or Enter=proceed (will clear
4386bdc7-5087-4a4d-865c-0b0181ce9345), no=cancel update, C-c=quit interactive mode:
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS

277

IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
COMPLETE
update finished with status COMPLETE

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

Overcloud Stack Status

[stack@undercloud]# heat stack-list

+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| ID | Stack Name | Stack Status | Creation Time
| Updated Time |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| e56c5512-3e32-4940-a05a-e194f48ce67a | overcloud | UPDATE_COMPLETE | 2018-02-16T20:32:17Z
| 2018-02-21T01:12:08Z |
+--------------------------------------+------------+-----------------+----------------------

278

+----------------------+
[stack@undercloud ~]$

Contrail Stack Status

sudo for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; done

RELATED DOCUMENTATION

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1 | 254

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3

IN THIS SECTION

Prerequisite | 280

Upgrade the Undercloud | 281

Update Red Hat Director Image Archives | 282

Prepare Repositories on all Nodes | 284

Upgrade the Operating System on Contrail Nodes | 285

Prepare the Contrail Packages | 285

Upgrade the Contrail Heat Templates | 287

Modify the Yum Update Script for TripleO Puppet | 288

Update the Overcloud Deployment Plan | 288

Upgrade the Overcloud | 290

279

This section presents the steps to upgrade an OSP-based Contrail deployment from Contrail version
4.1.2 to Contrail version 4.1.3.

Prerequisite

Before upgrading to Contrail Release 4.1.3, you must update the net-snmp package to the net-snmp #37
version. The following net-snmp packages must be available in the upgrade repository and are installed
automatically on Contrail Analytics nodes during the upgrade process:

• net-snmp-5.7.2-37.el7.x86_64.rpm

• net-snmp-agent-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-utils-5.7.2-37.el7.x86_64.rpm

Ensure you have a cloud up and running with RHOSP10 and Contrail 4.1.2 before you proceed with the
upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

Contrail Version Red Hat Version OpenStack Version

3.2.3 RHEL 7.3 RHOSP10 (packages dated Apr. 15, 2017)

3.2.6 RHEL 7.4 RHOSP10 (packages dated Feb. 2, 2018)

4.1 RHEL 7.4 RHOSP10 (packages dated Feb. 27, 2018)

4.1.1 RHEL 7.5 RHOSP10 (packages dated Jun. 4, 2018)

RHOSP11 (packages dated Jun. 4, 2018)

4.1.2 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

4.1.3 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

280

CAUTION: Set the Red Hat Satellite filter end date to October 29, 2018 before
proceeding with the upgrade.

Upgrade the Undercloud

Upgrade the undercloud to the most current RHOSP10 version.

1. Log in to the undercloud as the stack user.

$ su – stack

2. Update the Contrail repositories.

$ sudo rm –rf /etc/yum.repos.d/*contrail*

$ curl http://newrepo.contrail41-dev.repo -o /etc/yum.repos.d/localrepo.repo

3. Stop the main OpenStack platform services.

$ sudo systemctl stop 'openstack-*' 'neutron-*' httpd

4. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

5. Upgrade the undercloud.

$ openstack undercloud upgrade

6. Reboot the node.

$ sudo reboot

7. Wait until the node reboots, then check the status of all services.

NOTE: It can take as much as 10 minutes or more for the openstack-nova-compute to become
active after a reboot.

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

8. Verify the version of RHEL after the undercloud upgrade.

281

NOTE: Contrail does not support undercloud Red Hat version running with RHEL-7.6 as part
of Contrail 4.1.3 release.

[root@undercloud ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.5 (Maipo)
[root@undercloud ~]#

9. Verify the existence of the overcloud and its nodes.

$ openstack stack list

$ ironic node-list

10. Verify that all OpenStack servers are Active.

$ openstack server list

Figure 35: Server List

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You will have to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

282

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud]$ sudo grep "rhosp-director-images" /var/log/yum.log

Oct 26 15:09:20 Installed: rhosp-director-images-ipa-10.0-20180821.1.el7ost.noarch
Oct 26 15:10:10 Installed: rhosp-director-images-10.0-20180821.1.el7ost.noarch

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
 cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
--copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
--run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
--run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/
tripleo/ ‘ \
--run-command 'rm -fr /var/cache/yum/*' \
--run-command 'yum clean all' \ --selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

6. Verify that the images are uploaded.

$ openstack image list

283

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ openstack image show overcloud-full

8. Verify contrail-status on all Contrail nodes. All services in the Contrail nodes, except the controller
(OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Prepare Repositories on all Nodes

1. Delete existing repositories on all overcloud nodes. Verify each deletion.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode 'find /etc/yum.repos.d/ ! -name 'contrail-
install.repo' -type f -exec sudo rm -f {} +' ; done

2. Add new repositories on all overcloud nodes. Verify each addition.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode ' curl http://newrepo.contrail41-dev.repo -o /etc/
yum.repos.d/localrepo.rep' ; done

284

Upgrade the Operating System on Contrail Nodes

1. Define a list ($iplist) that contains all Contrail nodes. Run the following command on undercloud VM
as stack user.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

CAUTION: Attach the new satellite subscription key on all overcloud nodes before
upgrading the overcloud packages. Satellite must be synced with filter end date 29th
Oct 2018. Make sure to clear cache by typing sudo yum clean all.

2. Upgrade the operating system for all nodes in the iplist. Run the following command on undercloud
VM as stack user

sudo for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode
'sudo yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

3. Reboot overcloud contrail compute nodes, if there is any change in the kernel version. This needs to
be done before installing contrail packages on compute VM.

Supported kernel versions: 3.10.0-862.11.6.el7.x86_64 and 3.10.0-957.el7.x86_64
------------------------------- [root@overcloud-novacompute-2 ~]# modinfo vrouter filename: /lib/modules/
3.10.0-862.11.6.el7.x86_64/extra/net/vrouter/vrouter.ko version: 4.1.3.0 license: GPL retpoline: Y
rhelversion: 7.5

Prepare the Contrail Packages

To prepare the Contrail packages for the installation from a local repository:

1. Navigate to the Contrail repository and perform the following tasks:

• Delete the existing Contrail repositories.

All existing repositories in the undercloud and overcloud will be deleted during these steps.

• Access the Contrail update package.

• Copy the SNMP packages into the repository:

• net-snmp-5.7.2-37.el7.x86_64.rpm

• net-snmp-agent-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-libs-5.7.2-37.el7.x86_64.rpm

285

• net-snmp-utils-5.7.2-37.el7.x86_64.rpm

In the provided example, all 4 of these files are in the /mnt/net-snmp/ directory and all files from the
directory are copied into the repository.

• Unsubscribe every node with all registered satellite server repositories.

• Delete all repositories on undercloud and overcloud nodes, and replace these deleted repositories
with a Contrail repository.

• Clean the yum cache, verify the repository list, and check for yum updates.

A sample procedure:

[stack@undercloud ~]#
sudo su –
cd /var/www/html/contrail
rm -rf /var/www/html/contrail/*
#enter the location of the contrail update package
tar -xzvf /mnt/contrail-install-packages_4.1.3.0-30-newton.tgz
#copy prerequisite snmp packages; in this setup packages are in /mnt/net-snmp/
cp /mnt/net-snmp/* .
rm -rf /var/www/html/contrail/repodata/usr/bin/createrepo /var/www/html/contrail/subscription-
manager repos --disable=*subscription-manager unregister
rm -f /etc/yum.repos.d/*
#create local repo file
echo -e '[Contrail]\nname=Contrail Repo\nbaseurl=http://192.168.24.1/contrail
\nenabled=1\ngpgcheck=0' > /etc/yum.repos.d/contrail.repo
disable yum plugins
sed -i 's/plugins=1/plugins=0/g' /etc/yum.conf
yum clean all
rm -rf /var/cache/yum/*
yum check-update
exit
yum repolist

[stack@undercloud ~]#
 . stackrc;for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -
d '|');
do echo "Node $ipnode";
echo "sudo subscription-manager repos --disable=*;
sudo subscription-manager unregister;
sudo rm -f /etc/yum.repos.d/*;
sudo echo -e '[Contrail]\nname=Contrail Repo\nbaseurl=http://192.168.24.1/contrail

286

\nenabled=1\ngpgcheck=0' > /tmp/contrail.repo;
sudo mv /tmp/contrail.repo /etc/yum.repos.d/;
sudo sed -i 's/plugins=1/plugins=0/g' /etc/yum.conf;
sudo yum clean all;sudo rm -rf /var/cache/yum/*;
sudo yum repolist;sudo yum check-update" | ssh heat-admin@$ipnode bash;
done

2. Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and
contrail-tripleo-heat-templates. The newest versions of those packages must be installed before
proceeding with the overcloud upgrade. See the following example, with current package versions.

[stack@undercloud~]$ rpm -qa | grep contrail

puppet-contrail-4.1.3.0-NN.el7.noarch
contrail-tripleo-heat-templates-4.1.3.0-NN.el7.noarch
contrail-tripleo-puppet-4.1.3.0-NN.el7.noarch

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

NOTE: Red Hat does not support changing IP address of the existing cluster as a part of
upgrade. Do not change IP address of the cluster while creating new tripleo-heat-templates

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

cp /home/stack/tripleo-heat-templates /home/stack/tripleo-heat-templates-bk

sudo cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/
tripleo-heat-templates/environments/

sudo cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
tripleo-heat-templates/puppet/services/network

287

NOTE: The directory /home/stack/tripleo-heat-templates is user defined, it can be User
Defined-directory>/openstack-tripleo-heat-templates

Modify the Yum Update Script for TripleO Puppet

Following Puppet commands must be added to the yum_update script before starting the upgrade. The
script is located at:

/home/stack/tripleo-heat-templates/extraconfig/tasks/yum_update.sh

1. Update the following Puppet commands in the yum_update.sh after the line “echo -n "false" >
$heat_outputs_path.update_managed_packages”.

Refer to the following patch for details regarding the exact placement of the commands patch:
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/
contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Default parameter for contrailVersion is 4.

Filename:/home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

NOTE: /home/stack/tripleo-heat-templatesdirectory is user defined and it can be directory
name under stack user.

Update the Overcloud Deployment Plan

288

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

1. Make a copy of the existing deploy script to the update-stack.sh file by re-running the command
used for cloud deployment and adding the suffix - -update-plan-only.

<openstack overcloud deploy> –update-plan-only

Example:

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/environments/hostname-map.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

2. If you are using a local repository for the update and the environment-rhel-registration.yaml and rhel-
registration-resource-registry.yaml files are present, delete these lines from the deploy script:

 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \

3. Prepare the YAML files for the update:

• Verify each .yaml template referenced in the update-stack.sh file contains the original settings that
match the files that were backed up.

• In the contrail-net.yaml file, adapt all referenced templates from heat_template_version: newton
to heat_template_version: 2015-04-30. Keep all other original installation settings in this file.

4. Update the deployment plan.

289

./update-stack.sh

Example

[stack@undercloud ~]$./update-stack.sh
Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: 6c8fb5b7-6eda-4d92-8245-f7ac46bb369d
Plan updated
Deploying templates in the directory /tmp/tripleoclient-CdyN2I/tripleo-heat-templates
Overcloud Endpoint: http://10.87.67.232:5000/v2.0
Overcloud Deployed
[stack@undercloud ~]$

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
on_breakpoint: [u'overcloud-contrailanalyticsdatabase-0']
Breakpoint reached, continue? Regexp or Enter=proceed (will clear
4386bdc7-5087-4a4d-865c-0b0181ce9345), no=cancel update, C-c=quit interactive mode:
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS

290

IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
COMPLETE
update finished with status COMPLETE

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

Overcloud Stack Status

[stack@undercloud]# heat stack-list
WARNING (shell) "heat stack-list" is deprecated, please use "openstack stack list" instead
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| id | stack_name | stack_status | creation_time
| updated_time |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| e873706c-7fb3-44ba-80dc-30b0fdbd519e | overcloud | UPDATE_COMPLETE | 2019-03-13T19:20:52Z
| 2019-03-13T22:01:05Z |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
[stack@undercloud ~]$

Contrail Stack Status

sudo for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

291

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; done

RELATED DOCUMENTATION

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4

IN THIS SECTION

Prerequisites | 293

Post-Installation | 293

Acquire the Software | 294

Upgrade the Undercloud | 294

Update Red Hat Director Image Archives | 299

Upgrade the Operating System on Contrail Nodes | 301

Prepare the Contrail Packages | 303

Upgrade the Contrail Heat Templates | 303

Modify the Yum Update Script for TripleO Puppet | 303

Update the Overcloud Deployment Plan | 304

Upgrade the Overcloud | 305

Upgrade Cautions | 307

This section presents the steps to upgrade a RHOSP-based Contrail deployment from Contrail version
4.1.3 to Contrail version 4.1.4.

292

https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-326-to-41-rhoso.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-411-to-412-rhosp.html

Prerequisites

Ensure you have a cloud up and running with RHOSP10 and Contrail 4.1.3 before you proceed with the
upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

Table 6: Pre-Installation Software Versions

Contrail Version Red Hat Version OpenStack Version

4.1.3 RHEL 7.6 (3.10.0-957.el7.x86_64) RHOSP10 (packages dated October 29, 2018)

4.1.3 RHEL 7.5 (3.10.0-862.11.6.el7.x86_64) RHOSP10 (packages dated October 29, 2018)

CAUTION: Set the Red Hat Satellite filter end date to December 9, 2019 before
proceeding with the upgrade.

Post-Installation

After the installation, you’ll have a cloud networking running RHOSP10 and Contrail 4.1.4. The Red Hat
Enterprise Linux (RHEL) kernel version updates to 7.7 during this procedure.

Table 7 on page 293 summarizes the post-installation software versions.

Table 7: Post Installation Software Summary

Contrail Version Red Hat Version OpenStack Version

4.1.4 RHEL 7.7 (3.10.0-1062.el7.x86_64)

RHEL 7.7
(3.10.0-1062.1.2.el7.x86_64)

RHEL 7.7
(3.10.0-1062.9.1.el7.x86_64)

RHOSP10 (packages dated
December 9, 2019)

Contrail version R4.1.4 supports net-snmp package version 5.7.2-43 to support SNMP. The net-snmp
packages come from Red Hat, with the exception of the net-snmp-python-5.7.2-43.el7.x86_64.rpm
package which is provided in the Contrail repository.

293

Table 8 on page 294 summarizes the net-snmp depend packages and their associated repository
locations.

Table 8: Post Installation Software Summary

Net-SNMP Depend Packages Repository

net-snmp-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

net-snmp-agent-libs-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

net-snmp-libs-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

net-snmp-python-5.7.2-43.el7.x86_64.rpm Contrail

net-snmp-utils-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

Acquire the Software

To download the software images for this procedure:

1. Go to the Juniper Networks Support site for Contrail.

2. Select OS as Contrail and Version as 4.1.4. Download the images that apply to your environment.

Upgrade the Undercloud

1. Log in to the undercloud as the stack user.

$ su – stack

2. Update the Contrail repositories.

• Backup the Contrail 4.1.3 packages to a repository with a different name. In this example, the
packages are moved to a repository named contrail-R4-1-3.

[stack@undercloud ~]$ cd /var/www/html/
[stack@undercloud html]$ sudo mv contrail/ contrail-R4-1-3

294

https://support.juniper.net/support/downloads/?p=contrail#sw

• Create a new repository directory to store the Contrail 4.1.4 packages:

[stack@undercloud html]$ sudo mkdir contrail

3. Copy the downloaded file—in the provided sample, the file is contrail-install-packages_4.1.4.0-63-
newton.tgz—to the Contrail repository created in Step 2.

NOTE: This step assumes that you've already downloaded the Contrail software. See
"Acquire the Software" on page 294.

[stack@undercloud contrail]$ ls -lrt
 total 377104
 -rw-r--r--. 1 root root 386151602 Mar 14 06:58 contrail-install-packages_4.1.4.0-63-
newton.tgz

4. Untar the downloaded tgz file.

[stack@undercloud contrail]$ sudo tar -xvf contrail-install-packages_4.1.4.0-63-newton.tgz

5. Create a repository in the new directory:

[stack@undercloud contrail]$ pwd
 /var/www/html/contrail

 [stack@undercloud contrail]$ sudo createrepo .

If the createrepo command is not available, download the createrepo package from Red Hat (Red
Hat subscription required).

6. (Clusters deployed using Swift Puppet files only) If your Contrail 4.1 cluster was deployed using
Swift Puppet, perform these steps:

a. Remove overcloud artifacts from the undercloud:

[stack@undercloud ~]$ swift delete overcloud-artifacts
puppet-modules.tgz
overcloud-artifacts

295

b. Delete the deployments-artifacts.yaml file if the file is present.

[stack@undercloud ~]$ ls /home/stack/.tripleo/environments/deployment-artifacts.yaml
[stack@undercloud ~]$ rm -rf /home/stack/.tripleo/environments/deployment-artifacts.yaml

c. Clean the repositories and confirm that all repositories are available.

[stack@undercloud ~]$ sudo yum clean all
[stack@undercloud ~]$ sudo yum repolist

7. Stop the main OpenStack platform services.

$ sudo systemctl stop 'openstack-*' 'neutron-*' httpd

8. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

9. Upgrade the undercloud.

$ openstack undercloud upgrade

10. Reboot the node.

$ sudo reboot

Wait for the node to reboot. The reboot process can take 10 or more minutes to complete.

11. Ensure the undercloud has the latest Contrail R4.1.4 contrail packages:

[stack@undercloud ~]$ rpm -qa | grep contrail

puppet-contrail-4.1.4.0-X.el7.noarch
contrail-tripleo-heat-templates-4.1.4.0-x.el7.noarch
contrail-tripleo-puppet-4.1.4.0-x.el7.noarch
python-gevent-1.1rc5-1contrail1.el7.x86_64

12. Ensure the undercloud has the latest RHOSP images:

[stack@undercloud]$ rpm -qa | grep direct

296

rhosp-director-images-10.0-20180821.1.el7ost.noarch
rhosp-director-images-10.0-20190829.1.el7ost.noarch
rhosp-director-images-10.0-20190918.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20190829.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20180821.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20190918.1.el7ost.noarch

13. Review the ironic node-list output to confirm the following statuses for each package::

• Power state is power on.

• Provision State is active.

• Maintenance is False.

[stack@undercloud ~]$ ironic node-list
+-------------------------------+----------+--------------+-------------+
| Name | Power | Provisioning | Maintenance |
| | State | State | |
+-------------------------------+----------+--------------+-------------+
controller-3	power on	active	False
compute-5c5s35	power on	active	False
contrail-controller1	power on	active	False
contrail-analytics1	power on	active	False
contrail-controller-3	power on	active	False
contrail-controller-2	power on	active	False
contrail-analytics-database1	power on	active	False
controller-2	power on	active	False
controller1	power on	active	False
compute-5c5s37	power on	active	False
compute-5c5s36	power on	active	False
contrail-analytics-2	power on	active	False
contrail-analytics-3	power on	active	False
compute-5c5s38	power on	active	False
contrail-analytics-database-3	power on	active	False
contrail-analytics-database-2	power on	active	False
+-------------------------------+----------+--------------+-------------+

NOTE: This output presentation has been modified for readability. The UUID and Instance
UUID fields were removed as part of this modification.

297

14. Verify that all OpenStack servers are in the Active state.

[stack@undercloud ~]$ openstack server list
+---+--------+
| Name | Status |
+---+--------+
overcloud-contrailanalytics-2-4-1-4-7-7	ACTIVE
overcloud-controller-0-4-1-4-7-7	ACTIVE
overcloud-contrailanalytics-0-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-2-4-1-4-7-7	ACTIVE
overcloud-contrailanalytics-1-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-0-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-1-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-1-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-2-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-0-4-1-4-7-7	ACTIVE
compute-0-4-1-4-rhel-7-7	ACTIVE
overcloud-contraildpdk-0-4-1-4-7-7	ACTIVE
overcloud-contraildpdk-1-4-1-4-7-7	ACTIVE
compute-1-4-1-4-rhel-7-7	ACTIVE
+---+--------+

NOTE: This output presentation has been modified for readability. The ID, Image Name, and
Networks fields were removed as part of this modification.

15. If new image archives are available, replace your current images with the new images.

Before uploading the new images onto the undercloud node, move any existing images from the
images directory on the stack user’s home directory (/home/stack/images).

$ mv /home/stack/images /home/stack/images-old

16. Extract the new image archives.

mkdir images
cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

298

17. Import the new image archives into the undercloud and configure the nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

18. Verify that the images are uploaded:

$ glance image-list

19. Observe the contrail-status on all Contrail nodes. All services in the Contrail nodes, except the
controller (OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ source stackrc
[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '='
-f2); do ssh heat-admin@$i sudo contrail-status; done

20. Ensure that all overcloud node contrail repository pointers are properly pointing to the contrail
repository.

Contrail Analytics Example:

[root@overcloud-contrailanalytics-0 heat-admin]# cat /etc/yum.repos.d/contrail.repo
 [Contrail]
 name=Contrail Repo
 baseurl=http://192.168.24.1/contrail
 enabled=1
 gpgcheck=0
 protect=1
 metadata_expire=30

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You will have to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

299

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud]$ sudo grep "rhosp-director-images" /var/log/yum.log

Dec 12 15:09:20 Installed: rhosp-director-images-ipa-10.0-20190918.1.el7ost.noarch
Dec 12 15:10:10 Installed: rhosp-director-images-10.0-20190918.1.el7ost.noarch

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
 cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
-copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
-run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
-run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/
tripleo/ ‘ \
-run-command 'rm -fr /var/cache/yum/*' \
-run-command 'yum clean all' \ -selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload -update-existing -image-path /home/stack/images/

6. Verify that the images are uploaded.

$ openstack image list

300

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ openstack image show overcloud-full

8. Verify contrail-status on all Contrail nodes. All services in the Contrail nodes, except the controller
(OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Upgrade the Operating System on Contrail Nodes

To upgrade the operating system on Contrail nodes:

1. Define a list ($iplist) that contains all Contrail nodes. Run the following command on undercloud VM
as a stack user.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

CAUTION: Attach the new satellite subscription key on all overcloud nodes before
upgrading the overcloud packages. Satellite must be synced with filter end date 9th
Dec 2019. Make sure to clear cache by typing sudo yum clean all.

2. Upgrade the operating system for all nodes in the iplist.

Run the following command on undercloud VM as a stack user:

sudo for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode
'sudo yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

3. (Compute nodes only) Reboot overcloud contrail compute nodes. After the reboot, stop the
supervisor-vrouter service.

This step needs to be performed before installing contrail packages on the compute VM.

301

Compute services may go down after rebooting with the latest kernel. These services return later in
this procedure during the openstack overcloud deploy process.

Reboot Procedure:

[root@compute-1-7-6 modules]# sudo reboot
Connection to 192.0.2.16 closed by remote host.
Connection to 192.0.2.16 closed.

Post-Reboot:

[stack@undercloud-R4-1-2-b22 ~]$ ssh heat-admin@192.0.2.16
Warning: Permanently added '192.0.2.16' (ECDSA) to the list of known hosts.
Last login: Sat Dec 7 03:46:07 2019 from gateway
[heat-admin@compute-1-7-6 ~]$ sudo su
[root@compute-1-7-6 heat-admin]# contrail-status
vRouter is NOT PRESENT

== Contrail vRouter ==
supervisor-vrouter: active
contrail-vrouter-agent initializing
contrail-vrouter-nodemgr initializing

Stop the supervisor-vrouter service:

[root@compute-1-7-6 heat-admin]# service supervisor-vrouter stop
Stopping supervisor-vrouter (via systemctl): [OK]

[root@compute-1-7-6 heat-admin]# contrail-status
vRouter is NOT PRESENT

== Contrail vRouter ==
supervisor-vrouter: inactive
unix:///var/run/supervisord_vrouter.sockno

302

Prepare the Contrail Packages

Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and contrail-
tripleo-heat-templates.

[stack@undercloud~]$ rpm -qa | grep contrail

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

NOTE: Red Hat does not support changing IP address of the existing cluster as a part of
upgrade. Do not change IP address of the cluster while creating new tripleo-heat-templates

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

sudo cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/
tripleo-heat-templates/environments/

sudo cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
tripleo-heat-templates/puppet/services/network

NOTE: The directory /home/stack/tripleo-heat-templates is user defined, it can be User
Defined-directory>/openstack-tripleo-heat-templates

Modify the Yum Update Script for TripleO Puppet

Following Puppet commands must be added to the yum_update script before starting the upgrade. The
script is located at:

/home/stack/tripleo-heat-templates/extraconfig/tasks/yum_update.sh

303

1. Update the following Puppet commands in the yum_update.sh after the line “echo -n "false" >
$heat_outputs_path.update_managed_packages”.

Refer to the following patch for details regarding the exact placement of the commands patch:
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/
contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Default parameter for contrailVersion is 4.

Filename:/home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

NOTE: /home/stack/tripleo-heat-templatesdirectory is user defined and it can be directory
name under stack user.

Update the Overcloud Deployment Plan

1. Update the current plan by re-running the command used for cloud deployment and adding the suffix
- -update-plan-only.

openstack overcloud deploy –update-plan-only

Example:

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \

304

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

2. Make a copy of the existing deploy script to the update-stack.sh. The update-stack.sh is the script used to
update the overcloud plan, and it references the same templates that were used to deploy the stack.
All files used for the overcloud update should be identical to the files used for deployment, except
contrail-services file that was updated with the latest contrail-version and contrail-repo.

cp deploy.sh update-stack.sh

3. Update the deployment plan.

./update-stack.sh

Example:

[stack@undercloud ~]$./update-stack.sh
 nRemoving the current plan files
 Uploading new plan files
 Started Mistral Workflow. Execution ID: 998a1b40--a034-8cff453acfb1
 Plan updated
 Deploying templates in the directory /tmp/tripleoclient-JulIDe/tripleo- heat-
templates
 Overcloud Endpoint: http://10.0.0.35:5000/v2.0
 Overcloud Deployed

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
on_breakpoint: [u'overcloud-contrailanalyticsdatabase-0']
Breakpoint reached, continue? Regexp or Enter=proceed (will clear

305

4386bdc7-5087-4a4d-865c-0b0181ce9345), no=cancel update, C-c=quit interactive mode:
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
COMPLETE
update finished with status COMPLETE

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

Overcloud Stack Status

[stack@undercloud ~]$ openstack stack list
+------------+-----------------+----------------------+----------------------+
| Stack Name | Stack Status | Creation Time | Updated Time |
+------------+-----------------+----------------------+----------------------+
| overcloud | UPDATE_COMPLETE | 2019-12-06T23:30:26Z | 2019-12-09T22:40:01Z |
+------------+-----------------+----------------------+----------------------+

NOTE: The openstack stack list output presentation has been modified for readability. The ID
field was removed as part of this modification.

Contrail Stack Status

sudo for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; ssh heat-admin@$i sudo contrail-status -d ; done

306

Upgrade Cautions

CAUTION: The steps to perform the overcloud upgrade are service disrupting, and
should only be performed within a maintenance window.

The upgrade procedure may fail due to packages conflicts in Contrail analytics nodes. Some observed
failures due to packages conflicts are detailed in this section. Continue with the deployment after
applying the recommended solution.

Analytics Node snmp-lib Version Conflict

Error message: Protected multilib versions: 1:net-snmp-libs-5.7.2-37.el7.x86_64 != 1:net-snmp-
libs-5.7.2-33.el7_5.2.i686

Solution:

rpm -e --nodeps net-snmp-libs

Services Need Manual Restart After Upgrade

Services may need to be restarted after performing this upgrade. The services might continue to run
using Contrail 4.1.3-related processes for a period of time.

Enter the contrail-status command to see if the processes continued to run through the upgrade, and
monitor the warning messages that appear.

Manually restart the services if you run into this issue.

In the following example, this issue is seen for the Contrail Analytics services immediately after the
upgrade:

[heat-admin@overcloud-contrailanalytics ~]$ sudo contrail-status -d
Warning: supervisor-analytics.service changed on disk. Run 'systemctl daemon-reload' to reload
units.
== Contrail Analytics ==
supervisor-analytics: active
contrail-alarm-gen active pid 975462, uptime 15 days, 19:07:11
contrail-analytics-api active pid 127224, uptime 20 days, 19:48:28
contrail-analytics-nodemgr active pid 127219, uptime 20 days, 19:48:28
contrail-collector active pid 127222, uptime 20 days, 19:48:28
contrail-query-engine active pid 127223, uptime 20 days, 19:48:28

307

contrail-snmp-collector active pid 127220, uptime 20 days, 19:48:28
contrail-topology active pid 127221, uptime 20 days, 19:48:28

Restoring Contrail Nodes in a RHOSP-based Environment

IN THIS SECTION

Prerequisites | 308

Verify the Controller Node Status and Rebuild the Node | 308

Finish Rebuilding One or Two Contrail Controller Nodes | 310

Finish the Rebuilding of all Contrail Controller Nodes | 311

Rebuilding Contrail Analytics And Analytics Database Nodes | 312

Finish Rebuilding the Analytics Nodes | 314

Contrail nodes are virtual machines hosted on a KVM hypervisor. In the Contrail RHOSP environment,
the Contrail nodes are of three types– controller nodes, analytics nodes, and analytics database nodes.
From time-to-time, the system may encounter a node crash or other node failure. This topic describes
how to restore one or more failed Contrail controller nodes or analytics and analytics database nodes.

Use the following procedures to rebuild one or more Contrail nodes.

Prerequisites

Before attempting to rebuild one or more failed Contrail nodes, ensure that:

• The system is stable and the node has the correct status to be deployed again.

• The MAC address of the network interface card (NIC) used for PXE boot has not changed.

• If you are restoring more than one node, make a backup of the Contrail databases and make sure you
have access to the backup file (*.tar.bz2). For more information about backups, see "Backing Up
Contrail Databases Using JSON Format" on page 1058.

Verify the Controller Node Status and Rebuild the Node

This is the initial procedure for verifying the node is ready to be rebuilt.

308

1. Check the node status. The failed node status should be listed as Power State power off and Maintenance
False.

In this example, contrail-controller02 is the node to be rebuilt, and its status is Power State power offand
Maintenance False.The status indicates that contrail-controller02 is ready for rebuilding.

[stack@<director-controlzone>]$ ironic node-list --fields uuid name power_state maintenance
+--------------------------------------+--------------------------+-------------+-------------
+
| UUID | Name | Power State | Maintenance
|
+--------------------------------------+--------------------------+-------------+-------------
+
| 92242f30-7131-462a-bbe4-b9535d8f6b77 | contrail-controller01 | power on | False
|
| 3555e9a6-eb0b-45ba-9bc0-51964cf3851f | contrail-controller02 | power off | False
|
| a0adffdb-410f-471d-9647-9925d9b28ae2 | contrail-controller03 | power on | False
|
+--------------------------------------+--------------------------+-------------+-------------
+

2. In some cases, the power state of a failed node could be none. If the power state is none, you must
set the power to off. To set the Power State power off:

[stack@<director-controlzone> ~]$ ironic node-set-power-state <UUID of failed node> off

3. In some cases, the Maintenance mode could be set to True. If this is the case, you must set the Maintenance
mode to False.

[stack@<director-controlzone> ~]$ ironic node-set-maintenance <UUID of failed node> false

4. Restore the node, and wait until its status turns to ACTIVE.

[stack@<director-computezone> ~]$ source ~/stackrc
[stack@<director-computezone> ~]$ openstack baremetal configure boot
[stack@<director-computezone> ~]$ nova rebuild contrail-controller-1 overcloud-compute
[stack@<director-controlzone> ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| ID | Name | Status |

309

Networks | Image Name |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-controller-0 | ACTIVE |
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-controller-1 | ACTIVE |
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-controller-2 | ACTIVE |
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

5. Repeat steps 1-4 for each node that you want to restore.

6. After restoration, finish rebuilding the node or nodes, using the next procedures.

Finish Rebuilding One or Two Contrail Controller Nodes

This procedure provides details to finish the rebuilding of the nodes when you are restoring one or two
Contrail controller nodes.

1. Verify the status of the rebuild process. Wait until the status turns ACTIVE.

[stack@director-controlzone ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| ID | Name | Status |
Networks | Image Name |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-controller-0 | ACTIVE |
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-controller-1 | REBUILD|
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-controller-2 | ACTIVE |
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

2. Establish an SSH connection to the node you have rebuilt and observe the journal of the os-collect-
config process until you see multiple occurrences of the message No local metadata found (['/var/lib/os-
collect-config/local-data']).

310

If you want to rebuild two controller nodes, repeat this step for the other node before moving to the
next step.

[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.31 sudo journalctl -u os-collect-
config -f

3. Perform a full stack update to reconverge the stack and bring the system back to operational state.

[stack@<director-controlzone> ~]$ source ~/stackrc
[stack@<director-controlzone> ~]$./deploy.sh

Finish the Rebuilding of all Contrail Controller Nodes

This procedure provides details to finish the rebuilding of the nodes when you are restoring all of the
Contrail controller nodes.

1. Observe the status of the rebuild process. The status of nodes will display REBUILD while the rebuilding
process is occurring.

[stack@<director-controlzone> ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| ID | Name | Status |
Networks | Image Name |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-controller-0 | REBUILD|
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-controller-1 | REBUILD|
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-controller-2 | REBUILD|
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

2. Wait until the status of all nodes changes to ACTIVE.

[stack@<director-controlzone> ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

311

| ID | Name | Status |
Networks | Image Name |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-controller-0 | ACTIVE |
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-controller-1 | ACTIVE |
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-controller-2 | ACTIVE |
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

3. Establish an SSH connection to each of the nodes that have been rebuilt and observe the journal of
the os-collect-config process until you see multiple occurrences of the string No local metadata found
(['/var/lib/os-collect-config/local-data']).

[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.32 sudo journalctl -u os-collect-
config -f
[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.31 sudo journalctl -u os-collect-
config -f
[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.26 sudo journalctl -u os-collect-
config -f

4. Retrieve the Contrail controller databases backup.tar.bz2 and put it into your Director Control Zone,
and perform a database restore. For more information about backups, see "Backing Up Contrail
Databases Using JSON Format" on page 1058

5. Verify that the Contrail services are running.

[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.31 "sudo contrail-status"

6. Perform a full stack update to reconverge the stack and bring the system back to operational state.

[stack@<director-controlzone> ~]$ source ~/stackrc
[stack@<director-controlzone> ~]$./deploy.sh
UPDATE_COMPLETE

Rebuilding Contrail Analytics And Analytics Database Nodes

This topic describes how to rebuild failed Contrail analytics and analytics database nodes. The same
procedure is used for analytics nodes and analytics database nodes.

312

To rebuild Contrail analytics and analytics database nodes:

1. Verify that the failed node is ready to be redeployed. To be ready, the failed node must have a Power
State power off and Maintenance False.

[stack@<director-controlzone> ~]$ ironic node-list --fields uuid name power_state maintenance
+--------------------------------------+--------------------------------+-------------
+-------------+
| UUID | Name | Power State |
Maintenance |
+--------------------------------------+--------------------------------+-------------
+-------------+
| 92242f30-7131-462a-bbe4-b9535d8f6b77 | contrail-analytics01 | power on |
False |
| 3555e9a6-eb0b-45ba-9bc0-51964cf3851f | contrail-analytics02 | power off |
False |
| a0adffdb-410f-471d-9647-9925d9b28ae2 | contrail-analytics03 | power on |
False |
+--------------------------------------+--------------------------------+-------------
+-------------+

2. In some cases, the power state might be None. If the power state is None, set it to off.

[stack@<director-controlzone> ~]$ ironic node-set-power-state <UUID of failed node> off

3. In some cases, the Maintenance mode might be set to True. If maintenance mode is True, set it to
False.

[stack@<director-controlzone> ~]$ ironic node-set-maintenance <UUID of failed node> false

4. Rebuild the node, and wait for the node status to turn ACTIVE. Repeat the procedure for each node
you need to replace.

[stack@director-computezone ~]$ source ~/stackrc
[stack@director-computezone ~]$ openstack baremetal configure boot
[stack@director-computezone ~]$ nova rebuild contrail-analytics-1 overcloud-compute
[stack@<director-controlzone> ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| ID | Name | Status |
Networks | Image Name |

313

+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-analytics-0 | ACTIVE |
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-analytics-1 | ACTIVE |
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-analytics-2 | ACTIVE |
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

Finish Rebuilding the Analytics Nodes

Use this procedure to finish the rebuilding of the Contrail analytics or analytics database nodes that
have been rebuilt.

1. Observe the status of the rebuild process. Nodes undergoing rebuilding will have Status of REBUILD.
Wait until the status of all nodes being rebuilt turns ACTIVE.

[stack@<director-controlzone> ~]$ openstack server list
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| ID | Name | Status |
Networks | Image Name |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+
| 03af3384-3220-4b76-a0d0-b221d22a03a7 | contrail-analytics-0 | ACTIVE |
ctlplane=192.168.210.32 | overcloud-full |
| a905105b-efb5-4d11-bec3-23a7cd19655e | contrail-analytics-1 | REBUILD|
ctlplane=192.168.210.31 | overcloud-full |
| 8a001ca2-0bf6-4662-ad81-252cdfccf09d | contrail-analytics-2 | ACTIVE |
ctlplane=192.168.210.26 | overcloud-full |
+--------------------------------------+--------------------------------+--------
+-------------------------+----------------+

2. Activate os-collect-config on the node.

[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.31 sudo systemctl start os-
collect-config

314

3. Establish an SSH connection to the node you have rebuilt and observe the journal of the os-collect-
config process until you see multiple occurrences of the message No local metadata found (['/var/lib/os-
collect-config/local-data']). Repeat this step for each node being rebuilt.

[stack@<director-controlzone> ~]$ ssh heat-admin@19x.xxx.xxx.31 sudo journalctl -u os-collect-
config -f

4. Perform a full stack update to reconverge the stack and bring the system back to operational state.

[stack@<director-controlzone> ~]$ source ~/stackrc
[stack@<director-controlzone> ~]$./deploy.sh

RELATED DOCUMENTATION

Backing Up Contrail Databases Using JSON Format | 1058

315

CHAPTER 8

Using Server Manager to Automate Provisioning

IN THIS CHAPTER

Installing Server Manager | 316

Using Server Manager to Automate Provisioning | 323

Using the Server Manager Web User Interface | 357

Installing and Using Server Manager Lite | 381

Installing Server Manager

IN THIS SECTION

Installation Requirements for Server Manager | 316

Installing Server Manager | 318

Upgrading Server Manager Software | 319

Server Manager Installation Completion Checks | 320

Sample Configurations for Server Manager Templates | 321

Installation Requirements for Server Manager

This document provides details for installing Server Manager.

Platform Support

As of Contrail 4.0, Server Manager can be installed on, and used to reimage and provision, the following
platform operating systems:

• Ubuntu 16.04.01

316

• Ubuntu 16.04.02

• Ubuntu 14.04.5

• Ubuntu 14.04.4

• Ubuntu 14.04.2

• Ubuntu 14.04.1

• Ubuntu 14.04

As of Contrail 4.0, Server Manager installation supports Contrail provisioning for only the following
OpenStack versions:

• Ocata, on Ubuntu 16.04 platform, only

• Newton, on Ubuntu 16.04 platform, only

• Mitaka

• Liberty

• Kilo, on Contrail networking only

Installation Prerequisites

Before installing Server Manager ensure the following prerequisites are met.

• The system has Internet access to get dependent packages. Ensure access is available to the Ubuntu
archive mirrors/repos at /etc/apt/sources.list.

NOTE: Server Manager is tested with only the following versions of dependent packages:
Ansible 2.2.0.0, Docker 1.13.0, Puppet 3.7.3-1, and Cobbler 2.6.3-1. These tested versions
are installed during Server Manager installation.

• Puppet Master requires the fully-qualified domain name (FQDN) of the Server Manager for key
generation. The domain name is taken from the /etc/hosts file. If the server is part of multiple
domains, specify the domain name by using the --domain option during the installation.

• On multi-interface systems, specify the interface on which Server Manager needs to listen by using
the --hostip option during installation. If the listening interface is not specified, the first available
interface from the ifconfig list is used.

• The system administrator might need to configure the Linux kernel security module AppArmor to
allow server-manager access.

317

Installing Server Manager

Server Manager and all of its components (Server Manager, monitoring, Server Manager client, Server
Manager Web user interface) are provided together in a wrapper installation package:

Ubuntu: contrail-server-manager-installer_<version~sku>.deb

You can choose to install all components at once or install individual components one at a time.

Use the following steps to install and set up Server Manager and its components.

1. Install the Server Manager packages:

Ubuntu: dpkg –i contrail-server-manager–installer_<version-sku>.deb

NOTE: Make sure to select the correct version package that corresponds to the platform for
which you are installing.

2. Set up the Server Manager components. Use the setup.sh command to install all of the components,
or you can install individual components.

cd /opt/contrail/contrail_server_manager; ./setup.sh [--hostip=<ip address>] [--domain=<domain name>]

• To set up all components:

./setup.sh --all

• To set up only the Server Manager server:

./setup.sh --sm=contrail-server-manager_<version-sku>.deb

• To set up only the Server Manager client:

setup.sh --sm-client=contrail-server-manager_<version-sku>.deb

• To set up only the Server Manager user interface:

setup.sh --webui=contrail-server-manager_<version-sku>.deb

• To set up only Server Manager monitoring:

setup.sh --sm-mon=contrail-server-manager_<version-sku>.deb

Other options include:

• --sm-cliff-client

• --nowebui

318

• --nosm-mon

3. Installation logs are located at /var/log/contrail/install_logs/.

Finishing the Installation

The Server Manager service does not start automatically upon successful installation. You must finish
the installation by modifying the following templates. Refer to the sample configuration section included
in this topic for details about configuring these files.

1. /etc/cobbler/dhcp.template

2. /etc/cobbler/named.template

3. /etc/bind/named.conf.options

4. /etc/cobbler/settings

5. /etc/cobbler/modules.conf

6. /etc/mail/sendmail.cf

Starting the Server Manager Service

When you are finished modifying the templates to match your environment, start the Server Manager
service using the following command:

service contrail-server-manager start

Upgrading Server Manager Software

If you are upgrading Server Manager software from a previous version to the current version, use the
following guidelines to ensure successful installation.

Steps for Upgrading

Use the following steps to upgrade your Server Manager installation.

NOTE: You do not need to manually delete your previous Server Manager installation before
upgrading.

1. dpkg –i <contrail-server-manager-installer*deb>

319

2. cd /opt/contrail/contrail_server_manager

3. ./setup.sh –all

4. After the setup script has completed running, you can restart Server Manager by issuing:

service contrail-server-manager restart

It is not necessary to reconfigure the templates of DHCP, bind, and so on. Previous template
configurations and configured data are preserved during the upgrade.

Server Manager Installation Completion Checks

The following are various checks you can use to investigate the status of your Server Manager
installation.

Server Manager Checks

Use the following to check that the Server Manager installation is complete.

• Use the following commands to verify that the services are running:

service contrail-server-manager status

service cobblerd status

cobbler sync

service bind9 status

service isc-dhcp-server status

service apache2 status

service docker status

• Also verify processes using the following command:

ps auwx | grep Passenger

Server Manager Client Checks

• Verify the items listed:

which server-manager

• Check the client configuration at /etc/contrail/sm-client-config.ini

320

• Make sure that listen_ip_addr is configured with the correct Server Manager IP address.

Server Manager WebUI Checks

• Verify the status of the Server Manager WebUI:

service supervisor-webui-sm status

• Check the webui access from the browser:

• Contrail release 4.0 and greater—http:<server manager ip> :9143

• Contrail releases 3.0, 3.1, and 3.2—http:<server manager ip> :9080

• Contrail release 2.2 and lower—http:<server manager ip> :8080

Sample Configurations for Server Manager Templates

The following are sample parameters for the Server Manager templates. Use settings specific for your
environment. Typically, you configure parameters for DHCP, bind, and e-mail services.

Sample Settings

bind_master: 10.XX.11.6

manage_forward_zones: ['contrail.juniper.net']

manage_reverse_zones: ['10.XX.11']

next_server: 10.XX.11.6

server: 10.XX.11.6

Sample dhcp.template File

Add Server Manager hooks into the dhcp.template file, so that when DHCP actions occur, such as
commit, release, or expire, the Server Manager is notified. The DHCP servers are detected on the Server
Manager and the Discovered status is maintained.

Use the following sample to help define the subnet blocks that the DHCP server needs to support:

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/dhcp.template

321

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/dhcp.template

NOTE: Your DHCP template must have a separate block for each subnet for which Server
Manager will be the DHCP server.

Sample named.conf.options File

Use the following sample to help configure the /etc/bind/named.conf.options:

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/named.conf.options.u

You can also configure the following parameter:

forwarders {
 0.0.0.0;
 };

Sample named.template File

Use the following sample to help configure the /etc/cobbler/named.template:

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/named.template

The sendmail.cf File

The sendmail.cf template is present with a juniper.net configuration. Populate it with configuration
specific to your environment. The Server Manager uses the template to generate e-mails when
reimaging or provisioning is completed.

RELATED DOCUMENTATION

Using Server Manager to Automate Provisioning

Using the Server Manager Web User Interface

Installing and Using Server Manager Lite

322

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/named.conf.options.u
https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/named.template
https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/server-manager-lite-installing-40.html

Using Server Manager to Automate Provisioning

IN THIS SECTION

Overview of Server Manager | 323

Server Manager Requirements and Assumptions | 324

Server Manager Component Interactions | 325

Configuring Server Manager | 326

Configuring the Cobbler DHCP Template | 328

User-Defined Tags for Server Manager | 329

Server Manager Client Configuration File | 329

Restart Services | 330

Accessing Server Manager | 330

Communicating with the Server Manager Client | 331

Server Manager Commands for Configuring Servers | 332

Server Manager REST API Calls | 349

Example: Reimaging and Provisioning a Server | 355

Overview of Server Manager

The Contrail Server Manager is used to provision, configure, and reimage a Contrail virtual network
system of servers, clusters, and nodes.

This section describes the functions and usage guidelines for the Contrail Server Manager.

The Server Manager provides a simple, centralized way for users to manage and configure components
of a virtual network system running across multiple physical and virtual servers in a cloud infrastructure.

You can use Server Manager to configure, provision, and reimage servers with the correct software
version and packages for the nodes that are running on each server in multiple virtual network system
clusters.

The Server Manager:

• Provides REST APIs to handle customer requests.

• Manages its own database to store information about the servers.

323

• Interacts with other open source products such as Cobbler, Puppet, and Ansible to configure servers
based on user requests.

Server Manager Requirements and Assumptions

The following are requirements and assumptions for the Server Manager:

• The Server Manager runs on a Linux server (bare metal or virtual machine) and assumes availability of
several software products with which it interacts to provide the functionality of managing servers.

• The Server Manager has network connectivity to the servers it is trying to manage.

• The Server Manager has access to a remote power management tool to power cycle the servers that
it manages.

• The Server Manager uses Cobbler software for Linux provisioning to configure and download
software to physical servers. Cobbler resides on the same server that is running the Server Manager
daemon.

• Server Manager assumes that DNS and DHCP servers embedded with Cobbler provide IP
addresses and names to the servers being managed, although it is possible to use external DNS
and DHCP servers.

• The Server Manager uses Puppet software, an open source configuration management tool, to
accomplish the configuration management of target servers, including the installation and
configuration of different software packages and the launching of various services.

• Starting with Contrail Release 4.0, Server Manager uses Ansible software, an open source
configuration management tool primarily used to automate the configuration and provisioning of
Contrail components inside containers.

• The Server Manager also uses Docker to load and move these Contrail containers to the target
servers. The Server Manager maintains a local registry on the Server Manager machine and users also
have an option to use an external registry from which they can copy their Contrail Docker images
directly onto the target servers.

• SQLite3 database management software is used to maintain and manage server configurations and it
runs on the same machine where the Server Manager daemon is running.

• Because the server-manager process listens on port 9001, and the server-manager webui listens on
ports 9080 and 9143, the firewall must be enabled for those ports.

• Server Manager needs a minimum of 4GB of RAM, 2 CPU cores, and 80GB of disks (to support
multiple Contrail installations).

• Server Manager assumes that SSH is enabled on target nodes.

324

Server Manager Component Interactions

The Server Manager runs as a daemon and provides REST APIs for interaction with the client. The
Server Manager accepts user input in the form of REST API requests, performs the requested function
on the resources, and responds with a REST API response.

Configuration parameters required by the Server Manager are provided in the Server Manager
configuration file. However, the parameters can be overridden by Server Manager command line
parameters.

Figure 36 on page 325 illustrates several high-level components with which the Server Manager
interacts.

Figure 36: Server Manager Component Interactions

Internally, the Server Manager uses a SQLite3 database to hold server configuration information. The
Server Manager coordinates the database configuration information and user requests to manage the
servers defined in the database.

While managing the servers, the Server Manager also communicates with other software components. It
uses Cobbler for reimaging target servers, Docker to host Contrail containers, and Ansible and Puppet

325

for provisioning, thereby ensuring necessary software packages are installed and configured, required
services are running, and so on.

A Server Manager agent runs on each of the servers and communicates with the Server Manager,
providing the information needed to monitor the operation of the servers. The Server Manager agent
also uses REST APIs to communicate with the Server Manager, and it can use other software tools to
fetch other information, such as Intelligent Platform Interface (IPMI). Monitoring functionality is enabled
by default with Server Manager installation but can be skipped if the user wishes.

Configuring Server Manager

When the installation of all Server Manager components and dependent packages is finished, configure
the Server Manager with parameters that identify your environment and make it available for clients to
serve REST API requests.

Upon installation, a sample Server Manager configuration file is created at:

/opt/contrail/server_manager/sm-config.ini

Modify the sm-config.ini configuration file to include parameter values specific to your environment.

The environment-specific configuration section of the sm-config.ini file is named SERVER-MANAGER.

The following example shows the format and parameters of the SERVER-MANAGER section. Typically, only the
listen_ip_addr, cobbler_username, and cobbler_passwd values need to be modified.

[SERVER-MANAGER]

listen_ip_addr = <SM-IP-address>

listen_port = <port-number>

cobbler_ip_address = <cobbler-ip-address>

cobbler_port = <cobbler-port-number>

cobbler_username = <cobbler-username>

cobbler_password = <cobbler-password>

ipmi_username = <IPMI username>

ipmi_password = <IPMI password>

326

ipmi_type = <IPMI type>

Table 9 on page 327 provides details for each of the parameters in the SERVER-MANAGER section.

Table 9: Server Manager Parameters

Parameter Configuration

listen_ip_addr Specify the IP address of the server on which the Server Manager is listening
for REST API requests.

listen_port The port number on which the Server Manager is listening for REST API
requests. The default is 9001.

cobbler_ip_address The IP address used to access Cobbler. This address MUST be the same
address as the listen_ip_address. The Server Manager assumes that the
Cobbler service is running on the same server as the Server Manager service.

cobbler_port The port on which Cobbler listens for user requests. Leave this field blank.

cobbler_username Specify the user name to access the Cobbler service. Specify testing unless
your Cobbler settings have been modified to use a different user name.

cobbler_password Specify the password to access the Cobbler service. Specify testing unless
your Cobbler settings have been modified to use a different password.

ipmi_username The IPMI username for power management.

ipmi_password The IPMI password for power management.

ipmi_type The IPMI type (ipmilan, lanplus, or other Cobbler-supported types).

Starting with Contrail Release 4.0, there is an ANSIBLE-SERVER section for parameters for running the Server
Manager Ansible daemon, which is used to set up a Docker registry. This registry is used by Ansible to
provision Contrail Release 4.0 containers onto targets. These values can be modified to reflect any
remote or non-Server Manager Docker registry that the user wants to use to host the Contrail Release

327

4.0 Docker containers. The following example shows the format and parameters of the ANSIBLE-SERVER
section:

[ANSIBLE-SERVER]

docker_insecure_registries = <IP address:Port>

docker_registry = <IP address:Port>

ansible_srvr_ip = <IP address>

ansible_srvr_port = <Port>

ansible_log_path = /var/log/contrail-server-manager/debug.log

Table 10 on page 328 provides details for each of the parameters in the ANSIBLE-SERVER section.

Table 10: Ansible Server Parameters

Parameter Configuration

docker_insecure_registries Specify the IP address and port of the server on which the insecure Docker
registry used by the Server Manager resides

docker_registry Specify the IP address and port of the server on which the Docker registry
used by the Server Manager resides

ansible_srvr_ip Specify the IP address of the Server Manager machine on which the Ansible
daemon will run

ansible_srvr_port Specify the port on the Server Manager machine on which the Ansible daemon
will run

ansible_log_path Specify the log path where the Ansible daemon stores its log messages

Configuring the Cobbler DHCP Template

In addition to configuring the sm_config.ini file, you must manually change the settings in the/etc/cobbler/
dhcp.template file to use the correct subnet address, mask, and DNS domain name for your environment.

328

Optionally, you can also restrict the use of the current instance of Server Manager and Cobbler to a
subset of servers in the network.

The following is a link to a sample dhcp.template file, which you can modify to match the subnets in your
setup.

NOTE: The IP addresses and other values in the sample are for example purposes only. Be sure
to use values that are correct for your environment.

Sample dhcp.template

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/dhcp.template.u.sample

User-Defined Tags for Server Manager

Server Manager enables you to define tags that can be used to group servers for performing a particular
operation, such as show information, reimage, provision, and so on. Server Manager supports up to
seven different tags that can be configured and used for grouping servers.

The names of user-defined tags are kept in the tags.ini file, at /etc/contrail_smgr/tags.ini.

It is possible to modify tag names, and add or remove tags dynamically using the Server Manager REST
API interface. However, if a tag is already being used to group servers, the tag must be removed from
the servers before tag modification is allowed.

The following is a sample tags.ini file that is copied on installation. In the sample file, five tags are
defined – datacenter, floor, hall, rack, and user_tag. Use the tags to group servers together.

 [TAGS]
 tag1 = datacenter
 tag2 = floor
 tag3 = hall
 tag4 = rack
 tag5 = user_tag

Server Manager Client Configuration File

The Server Manager client application installation copies the /etc/contrail/sm-client-config.ini sample
configuration file. The sample file contains parameter values such as the IP address to reach the Server
Manager and the port used by Server Manager. You must modify the values in the sm-client-config.ini file
to match your environment.

329

https://github.com/Juniper/contrail-server-manager/blob/master/src/cobbler/dhcp.template.u.sample

The CLUSTER and SERVER subsections have fields that represent the password for a host or a service. If a
value for the password field is not explicitly provided, the Server Manager selects a default password.

Starting with Contrail Release 3.0.2, if you don’t explicitly specify a password, a password is
automatically generated by the system. This makes the clusters provisioned by Server Manager more
secure. There are no default passwords. The system administrator can specify the passwords to
configure, or you can use the passwords that are automatically generated by Server Manager.

The following fields get an autogenerated password whenever an explicit password is not provided.

• Ceilometer Mongodb password

• Ceilometer keystone auth password

• Cinder keystone auth password

• Glance keystone auth password

• Heat encryption key

• Heat keystone auth password

• Keystone admin password

• Keystone admin token

• MYSQL root password

• MYSQL service password

• Neutron keystone auth password

• Nova keystone auth password

• Swift keystone auth password

Restart Services

When all user changes have been made to the configuration files, restart the Server Manager so that it
runs with the modifications:

service contrail-server-manager restart

Accessing Server Manager

When the Server Manager configuration has been customized to your environment, and the required
daemon services are running, clients can request and use services of the Server Manager by using REST
APIs. Any standard REST API client can be used to construct and send REST API requests and process
Server Manager responses.

330

The following steps are typically required to fully implement a new cluster of servers being managed by
the Server Manager.

1. Add a boot image (ISO) to server-manager, along with the kickstart and preseed files compatible with
your datacenter server. Each Server Manager release has a default kickstart file. If your system
administrator doesn’t provide the kickstart files, Server Manager default files will be used.

2. Add the Contrail image you are using to Server Manager.

3. Add the cluster(s) to Server Manager. You can add common provisioning parameters for servers to
the cluster, and the parameters get passed to the server when provisioning starts.

4. Add the servers that will be managed by Server Manager. Remember to add the cluster_id to link
with the cluster.

The following are the minimum parameters needed for reimaging or provisioning:

• ID

• cluster

• domain

• interface details

• roles assigned to each server

• password

5. Specify the name and location of boot images, packages, and repositories used to bring up the
servers with needed software of the supported versions.

6. Provision or configure the servers by installing necessary packages, creating configuration files, and
bringing up the correct services so that each server can perform the functions or role(s) configured
for that server.

A Contrail system of servers has several components or roles that work together to provide the
functionality of the virtual network system, including: control, config, analytics, compute, web-ui,
OpenStack, and database. Each of the roles has different requirements for the software and services
needed. The provisioning REST API enables the client to configure the roles on servers using the
Server Manager.

7. Set up API calls for monitoring servers.

Once the servers in the Contrail system are correctly reimaged and provisioned to run configured
roles, the server monitoring REST API calls allow clients to monitor performance of the servers as
they provide one or more role functions.

Communicating with the Server Manager Client

Server Manager provides a REST API interface for clients to talk to the Server Manager software. Any
client that can send and receive REST API requests and responses can be used to communicate with
Server Manager, for example, Curl or Postman. Additionally, the Server Manager software provides a

331

client with a simplified CLI interface, in a separate package. The Server Manager client can be installed
and run on the Server Manager machine itself or on another server with an IP connection to the Server
Manager machine.

Prior to using the Server Manager client CLI commands, you need to modify the sm-client-config.ini file
to specify the IP address and the port for the Server Manager.

Each of the commands described in this section takes a set of parameters you specify, constructs a REST
API request to the Server Manager, and provides the server’s response.

The following describes each Server Manager client CLI command in detail.

Server Manager Commands for Configuring Servers

IN THIS SECTION

Server Manager Commands Common Options | 332

Add New Servers or Update Existing Servers | 333

Delete Servers | 334

Display Server Configuration | 335

Server Manager Commands for Managing Clusters | 336

Server Manager Commands for Managing Tags | 338

Server Manager Commands for Managing Images | 340

Server Manager Operational Commands for Managing Servers | 344

Reimaging Server(s) | 344

Provisioning and Configuring Roles on Servers | 346

Restarting Server(s) | 347

Show Status of Server(s) | 348

Show Status of Provision | 349

This section describes commands that are used to configure servers and server parameters in the Server
Manager database. These commands allow you to add, modify, delete, or view servers, clusters, images,
and tags.

Server Manager Commands Common Options

The common options in Table 11 on page 333 are available with every Server Manager command.

332

Table 11: Common Command Options

Option Description

-h, --help Show the options available for the current command and exit.

--config_file CONFIG_FILE, -c
CONFIG_FILE

The name of the Server Manager client configuration file. The default file
is /etc/contrail/sm-client-config.ini.

--smgr_ip SMGR_IP The IP address of the Server Manager process if different from that
specified in the config file.

--smgr_port SMGR_PORT The port that the Server Manager process is listening on if different from
that in the config file.

Add New Servers or Update Existing Servers

Use the server-manager add command to create a new server or update a server in the Server Manager
database.

server-manager [-h] [--smgr_ip SMGR_IP] [--smgr_port SMGR_PORT]
[--config_file CONFIG_FILE] add server [-f FILE_NAME]

Table 12 on page 333 lists the optional arguments.

Table 12: Server Manager Add Server Command Options

Option Description

--file_name FILE_NAME, -f FILE_NAME The JSON file that contains the server parameter values.

The JSON file contains a number of server entries, in the format shown in the following example:

https://github.com/Juniper/contrail-server-manager/blob/R3.1/src/client/new-server.json

Most of the parameters in the JSON sample file are self-explanatory. Cluster_id defines the cluster to
which the server belongs. The sample roles array in the example lists all valid role values. Tag defines the
mapping of tag names and values for grouping and classifying the server.

333

https://github.com/Juniper/contrail-server-manager/blob/R3.1/src/client/new-server.json

The server-manager add command will add a new entry if the server with the given ID or mac_address does
not exist in the Server Manager database. If an entry already exists, the add command modifies the
fields in the existing entry with any new parameters specified.

NOTE: It is not possible to re-add an existing MAC address under a new server, even if the ID
and IP address of that new server are unique.

Delete Servers

Use the server-manager delete command to delete one or more servers from the Server Manager database.

server-manager [-h] [--smgr_ip SMGR_IP] [--smgr_port SMGR_PORT][--config_file CONFIG_FILE]
delete server (--server_id SERVER_ID | --mac MAC | --ip IP | --cluster_id CLUSTER_ID | --tag
<tag_name=tag_value>..)

Table 13 on page 334 lists the optional arguments.

Table 13: Server Manager Delete Server Command Options

Option Description

--server_id SERVER_ID The server ID for the server or servers to be deleted.

--mac MAC The MAC address for the server or servers to be deleted.

--ip IP The IP address for the server or servers to be deleted.

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be deleted.

--tag TagName=TagValue The TagName that is to be matched with the Tagvalue. Up
to seven TagName and Tagvalue pairs separated by
commas can be provided.

The criteria for identifying servers to be deleted can be specified by providing the server_id or the
server: mac address, ip, cluster_id, or the TagName = TagValue.

Provide one of the server matching criteria to display a list of servers available to be deleted.

334

Display Server Configuration

Use the server-manager display command to display the configuration of servers from the Server Manager
database.

server-manager display [--smgr_ip SMGR_IP] [--smgr_port SMGR_PORT][--config_file CONFIG_FILE]
 server (--server_id SERVER_ID | --mac MAC | --ip IP | --cluster_id
CLUSTER_ID | --tag <tag_name=tag_value>..) [--detail]

Table 14 on page 335 lists the optional arguments.

Table 14: Server Manager Display Server Command Options

Option Description

--server_id SERVER_ID The server ID for the server or servers to be deleted.

--mac MAC The MAC address for the server or servers to be displayed.

--ip IP The IP address for the server or servers to be displayed.

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be displayed.

--tag TagName=TagValue The TagName that is to be matched with the Tagvalue. Up
to seven TagName and Tagvalue pairs separated by
commas can be provided.

--detail, -d Flag to indicate if details are requested.

The criteria for identifying servers to be displayed can be specified by providing the server_id or one of
the following server parameters: mac address, ip, cluster_id, or TagName=TagValue.

Provide one or more of the server matching criteria to display a list of servers.

335

Server Manager Commands for Managing Clusters

IN THIS SECTION

Create a New Cluster or Update an Existing Cluster | 336

Delete a Cluster | 337

Display Cluster Configuration | 337

A cluster is used to store parameter values that are common to all servers belonging to that cluster. The
commands in this section facilitate managing clusters in the Server Manager database, enabling you to
add, modify, delete, and view clusters.

NOTE: Whenever a server is created with a specific cluster_id, Server Manager checks to see if a
cluster with that ID has already been created. If there is no matching cluster_id already in the
database, an error is returned.

Create a New Cluster or Update an Existing Cluster

Use the server-manager add command to create a new cluster or update an existing cluster in the Server
Manager database.

server-manager add cluster [--file_name FILE_NAME]

Table 15 on page 336 lists the optional arguments.

Table 15: Server Manager Add Cluster Command Options

Option Description

--file_name FILE_NAME, -f FILE_NAME The JSON file that contains the cluster parameter values.

The JSON file contains a number of cluster entries, in the format shown in the following example:

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-cluster-contrail-4.x.json

Server membership to a cluster is determined by specifying the ID corresponding to the cluster when
defining the server. All of the cluster parameters are available to the server when provisioning roles on
the server.

336

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-cluster-contrail-4.x.json

Delete a Cluster

Use the server-manager delete command to delete a cluster from the Server Manager database that are no
longer needed. Use this command after all servers in the cluster have been deleted.

NOTE: A cluster can only be deleted if no servers are attached to it. If any servers are attached,
deletion will fail.

server-manager delete cluster [--cluster_id CLUSTER_ID]

Table 16 on page 337 lists the optional arguments.

Table 16: Server Manager Delete Cluster Command Options

Option Description

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be displayed.

Display Cluster Configuration

Use the server-manager display command to list the configuration of a cluster.

server-manager display cluster [--cluster_id CLUSTER_ID] [--detail]

Table 17 on page 337 lists the optional arguments.

Table 17: Server Manager Display Cluster Command Options

Option Description

--detail, -d Flag to indicate if details are requested.

--cluster_id CLUSTER_ID The cluster ID for the cluster or clusters.

You can optionally specify a cluster ID to get server information about a particular cluster. If the optional
parameter is not specified, server information about all clusters in the system is returned.

337

Server Manager Commands for Managing Tags

IN THIS SECTION

Create a New Tag or Update an Existing Tag | 338

Display Tag Configuration | 339

Tags are used for grouping servers together so that an operation such as show, reimage, provision,
status, and so on can be easily performed on servers that have matching tags. The Server Manager
provides a flexible way for you to define your own tags, and then use those tags to assign values to
servers. Servers with matching tag values can be easily grouped together. The Server Manager can store
a maximum of seven tag values. At initialization, the Server Manager reads the tag names from the
configuration file. The tag names can be retrieved or modified using CLI commands. When modifying tag
names, the Server Manager ensures that the tag name being modified is not used by any of the server
entries.

Create a New Tag or Update an Existing Tag

Use the server-manager add command to create a new tag or update an existing tag in the Server Manager
database.

server-manager add tag [--file_name FILE_NAME] [--tags TAG_LIST]

Table 18 on page 338 lists the optional arguments.

Table 18: Server Manager Add New Tag

Option Description

--file_name FILE_NAME, -f FILE_NAME The JSON file that contains the tag names.

--tags TAG_LIST Comma separated list of tag number and tag. For
example: tag0=abc,tag1=xyz

The sample JSON file contains a number of tag entries, in the format shown in the following example:

{

338

 "tag1" : "data-center",

 "tag2" : "floor",

 "tag3" : "",

 "tag4" : "pod",

 "tag5" : "rack",

}

In the example, you specify a JSON file to add or modify the tags, tag1 through tag5. For tag3, the “”
value specifies that if the tag is defined prior to the CLI command, it is removed on execution of the
command. The tag name for tag1 is set to data-center. This is allowed if, and only if, none of the server
entries are using tag1.

Display Tag Configuration

Use the server-manager display command to list the configuration of a tag.

server-manager display tag

The following is sample output for the display tag command.

{

 "tag1": "datacenter",

 "tag2": "floor",

 "tag3": "hall",

 "tag4": "rack",

 "tag5": "user_tag"

}

339

Server Manager Commands for Managing Images

IN THIS SECTION

Creating New Images or Updating Existing Images | 341

Add an Image | 341

Upload an Image | 342

Delete an Image | 343

Display Image Configuration | 344

In addition to servers and clusters, the Server Manager also manages information about images and
packages that can be used to reimage and configure servers. Images and packages are both stored in the
database as images. When new images are added to the database, or existing images are deleted, the
Server Manager interfaces with Cobbler to make corresponding modifications in the Cobbler distribution
profile for the specified image.

Table 19 on page 340 lists the image types supported.

Table 19: Server Manager Image Types

Image Type Description

centos Manages the CentOS ISO base.

contrail-centos-package Maintains a repository of the package to be installed on the CentOS system
image.

ubuntu Manages the base Ubuntu ISO.

contrail-ubuntu-package Maintains a repository of packages that contain Contrail and dependent
packages to be installed on an Ubuntu base system.

ESXi5.1/ESXi5.5 Manages VMware ESXi 5.1 or 5.5 ISO.

340

Creating New Images or Updating Existing Images

The Server Manager maintains four types of images – CentOS ISO, Ubuntu ISO,Contrail CentOS
package, and Contrail Ubuntu package.

Use the server-manager add command or the server-manager upload command to add new images to the
Server Manager database.

• Use add when the new image is present locally on the Server Manager machine. The path provided is
the image path on the Server Manager machine.

• Use upload_image when the new image is present on the machine where the client program is being
invoked. The path provided is the image path on the client machine.

Add an Image

server-manager add image [--file_name FILE_NAME]

Table 20 on page 341 lists the optional arguments.

Table 20: Server Manager Add Image

Option Description

--file_name FILE_NAME, -f FILE_NAME The name of the JSON file that contains the image
parameter values.

The JSON file contains an array of possible entries, in the following sample format. The sample shows
three images: one CentOS ISO containing Contrail packages, one Ubuntu base ISO, and one Contrail
Ubuntu package. When the images are added, corresponding distribution, profile, and repository entries
are created in Cobbler by the Server Manager.

NOTE: Release numbers are represented in the sample with <x.xx>. Be sure to use the correct
release numbers for your image versions.

{

 "image": [

 {

341

 "id": "ubuntu-<x.xx.x>",

 "type": "ubuntu",

 "version": "ubuntu-<x.xx.x>",

 "path": "/iso/ubuntu-<x.xx.x>-server-amd64.iso"

 },

 {

 "id": "centos-<x.xx>",

 "type": "centos",

 "version": "centos-<x.xx>",

 "path": "/iso/CentOS-<x.xx>-x86_64-minimal.iso"

 },

 {

 "id": "contrail-ubuntu-<x.xx>",

 "type": "contrail-ubuntu-package",

 "version": "contrail-ubuntu-<x.xx>",

 "path": "/iso/contrail-cloud-docker_<x.xx-xx>_all.deb"

 }

]

}

Upload an Image

The server-manager upload_image command is similar to the server-manager add command, except that the
path provided for the image being added is the local path on the client machine. This command is useful

342

if the client is being run remotely, not on the Server Manager machine, and the image being added is not
physically present on the Server Manager machine.

server-manager upload_image image_id image_version image_type file_name

Table 21 on page 343 lists the optional arguments.

Table 21: Server Manager Upload Image

Option Description

image_id Name of the new image.

image_version Version number of the new image.

image_type Type of image: fedora, centos, ubuntu, contrail- ubuntu-package, contrail-centos-package

file_name Complete path for the file.

Delete an Image

Use the server-manager delete command to delete an image from the Server Manager database. When an
image is deleted from the Server Manager database, the corresponding distribution, profile, or repository
for the image is also deleted from the Cobbler database.

server-manager delete image --image_id <image_id>

Table 22 on page 343 lists the optional arguments.

Table 22: Server Manager Delete Image

Option Description

image_id The image ID for the image to be deleted.

343

Display Image Configuration

Use the server-manager display command to list the configuration of images from the Server Manager
database. If the detail flag is specified, detailed information about the image is returned. If the optional
image_id is not specified, information about all the images is returned.

server-manager display image [--image_id IMAGE_ID] [--detail]

Table 23 on page 344 lists the optional arguments.

Table 23: Server Manager Display Image Configuration

Option Description

image_id The image ID for the image or images.

--detail, -d Flag to indicate if details are requested.

Server Manager Operational Commands for Managing Servers

The Server Manager commands in the following sections are operational commands for performing a
specific operation on a server or a group of servers. These commands assume that the base
configuration of entities required to execute the operational commands is already completed using
configuration CLI commands.

Reimaging Server(s)

Use the server-manager reimage command to reimage a server or servers with a provided base ISO and
package. Servers are specified by providing match conditions to select them from the database.

Before issuing the reimage command, the images must be added to the Server Manager, which also adds
the images to Cobbler. The set of servers to be reimaged can be specified by providing match criteria for
servers already added to the Server Manager database, using server_id.

You must identify the base image ID to be used to reimage.

344

The command prompts for a confirmation before making the REST API call to the Server Manager to
start reimaging the servers. This confirmation message can be bypassed by specifying the optional --
no_confirm or –F parameter on the command line.

server-manager reimage
 [--package_image_id PACKAGE_IMAGE_ID]

 [--no_reboot]

 (--server_id SERVER_ID | --cluster_id CLUSTER_ID |--tag <tag_name=tag_value>)

 [--no_confirm]
 base_image_id

Options include the following:

Table 24 on page 345 lists the optional arguments.

Table 24: Server Manager Reimage

Option Description

base_image_id The image ID of the base image to be used.

--package_image_id PACKAGE_IMAGE_ID, -p
PACKAGE_IMAGE_ID

The optional Contrail package to be used to reimage the
server or servers.

--no_reboot, -n Optional parameter to indicate that the server should not
be rebooted following the reimage setup.

--server_id SERVER_ID The server ID for the server or servers to be reimaged.

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be reimaged.

--tag TagName=TagValue TagName which is to be matched with Tagvalue

--no_confirm, -F Flag to bypass confirmation message, default = do NOT
bypass.

345

Provisioning and Configuring Roles on Servers

Use the server-manager provision command to provision identified server(s) with configured roles for the
virtual network system. The servers can be selected from the database configuration (using standard
server match criteria), identified in a JSON file, or provided interactively.

From the configuration of servers in the database, the Server Manager determines which roles to
configure on which servers and uses this information along with other parameters from the database to
achieve the task of configuring the servers with specific roles.

When the server-manager provision command is used, the Server Manager pushes the specified server
configurations to the servers.

server-manager provision
 (--server_id SERVER_ID | --cluster_id CLUSTER_ID | --tag <tag_name=tag_value>)
 [--no_confirm]
 package_image_id

Options include the following:

Table 25 on page 346 lists the optional arguments.

Table 25: Server Manager Provision

Option Description

package_image_id The Contrail package image ID to be used for provisioning.

--server_id SERVER_ID The server ID for the server or servers to be provisioned.

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be provisioned.

--tag TagName=TagValue TagName to be matched with Tagvalue.

--provision_params_file PROVISION_PARAMS_FILE, -f
PROVISION_PARAMS_FILE

Optional JSON file containing the parameters for
provisioning the server(s).

--no_confirm, -F Flag to bypass confirmation message, default = do NOT
bypass.

346

NOTE: Adding and deleting roles is not supported in Contrail Release 4.0.

Restarting Server(s)

Use the server-manager restart command to reboot identified server(s). Servers can be specified from the
database by providing standard match conditions. The restart command provides a way to reboot or
power-cycle the servers, using the Server Manager REST API interface. If reimaging is intended, use the
restart command with the net-boot flag enabled. When netbooted, the Puppet agent is also installed and
configured on the servers. If there are Puppet manifest files created for the server prior to rebooting, the
agent pulls those from the Server Manager and executes the configured Puppet manifests. The restart
command uses an IPMI mechanism to power cycle the servers, if available and configured. Otherwise,
the restart command uses SSH to the server and the existing reboot command mechanism is used.

server-manager restart
 (--server_id SERVER_ID | --cluster_id CLUSTER_ID | --tag <tag_name=tag_value>)

 [--net_boot]

 [--no_confirm]

Table 26 on page 347 lists the optional arguments.

Table 26: Server Manager Restart

Option Description

--server_id SERVER_ID The server ID for the server or servers to be restarted.

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be restarted.

--tag TagName=TagValue TagName to be matched with Tagvalue.

--net_boot, -n Optional parameter to indicate if the server should be
netbooted.

347

Table 26: Server Manager Restart (Continued)

Option Description

--no_confirm, -F Flag to bypass confirmation message, default = do NOT
bypass.

Show Status of Server(s)

Use the server-manager status command to view the reimaging or provisioning status of server(s).

server-manager status server (--server_id SERVER_ID | --cluster_id CLUSTER_ID | --tag
<tag_name=tag_value>)

Table 27 on page 348 lists the optional arguments.

Table 27: Server Manager Status Server

Option Description

--server_id SERVER_ID The server ID for the server whose status is to be fetched.

Table 27: Server Manager Status Server (Continued)

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be restarted.

--tag TagName=TagValue TagName to be matched with Tagvalue.

The status command provides a way to fetch the current status of a server.

Status outputs include the following:

1. restart_issued

reimage_started

provision_issued

provision_completed

openstack_started

348

openstack_completed

Show Status of Provision

Use the server-manager status provision to view the detailed provisioning status of servers or cluster. The
status command provides a way to fetch the current status of a provision command.

server-manager status provision (--server_id SERVER_ID | --cluster_id CLUSTER_ID | --tag
<tag_name=tag_value>)

Table 28 on page 349 lists the optional arguments.

Table 28: Server Manager Status Provision

Option Description

--server_id SERVER_ID The server ID for the server whose status is to be fetched.

Table 28: Server Manager Status Provision (Continued)

--cluster_id CLUSTER_ID The cluster ID for the server or servers to be restarted.

--tag TagName=TagValue TagName to be matched with Tagvalue.

Server Manager REST API Calls

IN THIS SECTION

REST APIs for Server Manager Configuration Database Entries | 350

API: Add a Server | 350

API: Delete Servers | 350

API: Retrieve Server Configuration | 351

API: Add an Image | 351

API: Upload an Image | 352

API: Get Image Information | 352

API: Delete an Image | 352

349

API: Add or Modify a Cluster | 353

API: Delete a Cluster | 353

API: Get Cluster Configuration | 353

API: Get All Server Manager Configurations | 354

API: Reimage Servers | 354

API: Provision Servers | 354

API: Restart Servers | 355

This section describes all of the REST API calls to the Server Manager. Each description includes an
example configuration.

REST APIs for Server Manager Configuration Database Entries

The REST API calls in this section help in configuring different elements in the Server Manager database.

NOTE: The IP addresses and other values in the following are shown for example purposes only.
Be sure to use values that are correct for your environment.

API: Add a Server

To add a new server to the service manager configuration database:

URL: http://<SM-IP-Address>:<SM-Port>/server

Method: PUT

Payload: JSON payload containing an array of servers to be added. For each server in the array, all the
parameters are specified as JSON fields. The mask, gateway, password, and domain fields are optional,
and if not specified, the values of these fields are taken from the cluster to which the server belongs.

The following is a sample JSON file for adding a server in Contrail Release 4.0.

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-server-contrail-4.x.json

API: Delete Servers

Use one of the following formats to delete a server.

350

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-server-contrail-4.x.json

URL: http://<SM-IP-Address>:<SM-Port>/server?server_id=SERVER_ID

http://<SM-IP-Address>:<SM-Port>/server?cluster_id=CLUSTER_ID

http://<SM-IP-Address>:<SM-Port>/server?mac=MAC

http://<SM-IP-Address>:<SM-Port>/server?ip=IP

http://<<SM-IP-Address>:<SM-Port>/server[?tag=<tag_name>=<tag_value>,.]

Method : DELETE

Payload : None

API: Retrieve Server Configuration

Use one of the following methods to retrieve a server configuration. The detail argument is optional, and
specified as part of the URL if details of the server entry are requested.

URL: http://<SM-IP-Address>:<SM-Port>/server[?server_id=SERVER_ID&detail]

http://<SM-IP-Address>:<SM-Port>/server[?cluster_id=CLUSTER_ID&detail]

http://<SM-IP-Address>:<SM-Port>/server[?tag=<tag_name>=<tag_value>,.]

http://<SM-IP-Address>:<SM-Port>/server[?mac=MAC&detail]

http://<SM-IP-Address>:<SM-Port>/server[?ip=IP&detail]

http://<SM-IP-Address>:<SM-Port>/server[?tag=<tag_name>=<tag_value>,.]

Method : GET

Payload : None

API: Add an Image

Use the following to add a new image to the Server Manager configuration database from the Server
Manager machine.

An image is either an ISO for a CentOS or Ubuntu distribution or an Ubuntu Contrail package repository.
When adding an image, the image file is assumed to be available on the Server Manager machine.

URL : http://<SM-IP-Address>:<SM-Port>/image

Method: PUT

Payload: Specifies all the parameters that define the image being added.

See sample payload in the following:

351

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-package.json

API: Upload an Image

Use the following to upload a new image from a client to the Server Manager configuration database.

An image is an ISO for a CentOS or Ubuntu distribution or an Ubuntu Contrail package repository. Add
image assumes the file is available on the Server Manager, whereas upload image transfers the image file
from the client machine to the Server Manager machine.

URL : http://<SM-IP-Address>:<SM-Port>/image/upload

Method: PUT

Payload: Specifies all the parameters that define the image being added.

{
 "image": [
 {
 " id": "Image-id",
 "type": "image_type", <ubuntu or centos or esxi5.1 or esxi5.5 or contrail-ubuntu-
package or contrail-centos-package>
 "version": "image_version",
 "path":"path-to-image-on-client-machine"
 }
]
}

API: Get Image Information

Use the following to get image information.

URL : http://<SM-IP-Address>:<SM-Port>/image[?image_id=IMAGE_ID&detail]

Method: GET

Payload: Specifies criteria for the image being sought. If no match criteria is specified, information about
all the images is provided. The details field specifies if details of the image entry in the database are
requested.

API: Delete an Image

Use the following to delete an image.

352

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-package.json

URL: http://<SM-IP-Address>:<SM-Port>/image?image_id=IMAGE_ID

Method: DELETE

Payload: Specifies criteria for the image being deleted.

API: Add or Modify a Cluster

Use the following to add a cluster to the Server Manager configuration database. A cluster maintains
parameters for a set of servers that work together in different roles to provide complete functions for a
Contrail cluster.

URL: http://<SM-IP-Address>:<SM-Port>/cluster

Method: PUT

Payload: Contains the definition of the cluster, including all the global parameters needed by all the
servers in the cluster. The subnet_mask, gateway, password, and domain fields define parameters that
apply to all servers in the VNS. These parameter values can be individually overridden for a server by
specifying different values in the server entry.

A sample JSON for Contrail Release 4.0 is at the following:

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-cluster-contrail-4.x.json

API: Delete a Cluster

Use this API to delete a cluster from the Server Manager database.

URL: http://<SM-IP-Address>:<SM-Port>/cluster?cluster_id=CLUSTER_ID

Method: DELETE

Payload: None

API: Get Cluster Configuration

Use this API to get a cluster configuration.

URL: http://<SM-IP-Address>:<SM-Port>/cluster[?cluster_id=CLUSTER_ID&detail]

Method: GET

Payload: None

The optional detail argument is specified as part of the URL if details of the VNS entry are requested.

353

https://github.com/Juniper/contrail-server-manager/blob/master/src/client/new-cluster-contrail-4.x.json

API: Get All Server Manager Configurations

Use this API to get all configurations of Server Manager objects, including servers, clusters, images, and
tags.

URL: http://<SM-IP-Address>:<SM-Port>/all[?detail]

Method: GET

Payload: None

The optional detail argument is specified as part of the URL if details of the Server Manager
configuration are requested.

API: Reimage Servers

Use one of the following API formats to reimage one or more servers.

URL: http://<SM-IP-Address>:<SM-Port>/server/reimage?server_id=SERVER_ID
http://<SM-IP-Address>:<SM-Port>/server/reimage?cluster_id=CLUSTER_ID
http://<SM-IP-Address>:<SM-Port>/server/reimage?mac=MAC
http://<SM-IP-Address>:<SM-Port>/server/reimage?ip=IP
http://<SM-IP-Address>:<SM-Port>/server/reimage [?tag=<tag_name>=<tag_value>,.]

Method: POST

Payload: None

API: Provision Servers

Use this API to provision or configure one or more servers for roles configured on them.

URL: http://<SM-IP-Address>:<SM-Port>/server/provision

Method: POST

Payload: Specifies the criteria to be used to identify servers which are being provisioned. The servers
can be identified by server_id, mac, cluster_id or tags. See the following example.

{
 server_id : <server_id> OR
 mac : <server_mac_address> OR
 cluster_id : <cluster_id> OR
 tag : {“data-center” : “dc1”} }
}

354

API: Restart Servers

This REST API is used to power cycle the servers and reboot either with net-booting enabled or
disabled.

If the servers are to be reimaged and reprovisioned, the net-boot flag should be set.

If servers are only being reprovisioned, the net-boot flag is not needed, however, the Puppet agent must
be running on the target systems with the correct puppet configuration to communicate to the puppet
master running on the Server Manager.

URL: http://<SM-IP-Address>:<SM-Port>/server/restart?server_id=SERVER_ID
http://<SM-IP-Address>:<SM-Port>/server/restart?[netboot&]cluster_id=CLUSTER_ID
http://<SM-IP-Address>:<SM-Port>/server/restart? [netboot&]mac=MAC
http://<SM-IP-Address>:<SM-Port>/server/restart? [netboot&]ip=IP
http://<SM-IP-Address>:<SM-Port>/server/restart ? [netboot&]tag=<tag_name>=<tag_value>

Method: POST

Payload: Specifies the criteria to be used to identify servers which are being restarted. The servers can
be identified by their server_id, mac, cluster_id, or tag. The netboot parameter specifies if the servers
being power-cycled are to be booted from Cobbler or locally.

Example: Reimaging and Provisioning a Server

This example shows the steps used in Server Manager software to configure, reimage, and provision a
server running all roles of the Contrail system in a single-node configuration.

NOTE: Component names and IP addresses in the following are used for example only. To use
this example in your own environment, be sure to use addresses and names specific to your
environment.

The Server Manager client configuration file used for the following CLI commands, is /opt/contrail/
server_manager/client/sm-client-config.ini . It contains the values for the server IP address and port
number as follows:

[SERVER-MANAGER]

listen_ip_addr = 192.168.1.10 (Server Manager IP address)

listen_port = 9001

Overview

The steps to be followed include:

355

1. Configure cluster.

2. Configure servers.

3. Configure images.

4. Reimage servers (either using servers configured above or using explicitly specified reimage
parameters with the request).

5. Provision servers (either using servers configured above or using explicitly specified provision
parameters with the request).

Procedure

1. Configure a cluster.

server-manager add cluster -f cluster.json

2. Configure the server.

server-manager add server –f server.json

3. Configure images.

In the example, the image files for ubuntu-xx.xx.x and contrail-ubuntu-164 are located at the
corresponding image path specified on the Server Manager.

server-manager add -c smgr_client_config.ini image –f image.json

4. Reimage servers.

This step can be performed after the configuration from the previous steps is in the Server Manager
database.

server-manager reimage –server_id demo-server ubuntu-<x.xx.x>

5. Provision servers.

server-manager provision –server_id demo-server contrail-ubuntu-164

NOTE: The samples for all JSONs used in the procedure above are available as links in the
documentation for the API calls for those respective commands.

SEE ALSO

Installing Server Manager

Using the Server Manager Web User Interface

Installing and Using Server Manager Lite

356

https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/server-manager-lite-installing-40.html

Using the Server Manager Web User Interface

IN THIS SECTION

Log In to Server Manager | 357

Create a Cluster for Server Manager | 358

Edit a Cluster through Edit JSON | 369

Working with Servers in the Server Manager User Interface | 369

Add a Server | 370

Edit Tags for Servers | 373

Using the Edit Config Option for Multiple Servers | 373

Edit a Server through Server Manager, Edit JSON | 374

Filter Servers by Tag | 375

Viewing Server Details | 375

Configuring Images and Packages | 378

Add New Image or Package | 379

Selecting Server Manager Actions for Clusters | 379

Reimage a Cluster | 380

Provision a Cluster | 380

When the Server Manager is installed on your Contrail system, you can also install a Server Manager
Web user interface that you can use to access the features of Server Manager.

Log In to Server Manager

The Server Manager user interface can be accessed using:

http://<server-manager-user-interface-ip>:9080

Where <server-manager-user-interface-ip> is the IP address of the server on which the Server Manager web
user interface is installed.

From the Contrail user interface, select Setting > Server Manager to access the Server Manager home
page. From this page you can manage Server Manager settings for clusters, servers, images, and
packages.

357

Create a Cluster for Server Manager

Select Add Cluster to identify a cluster to be managed by the Server Manager. Select Setting > Server
Manager > Clusters, to access the Clusters page, see Figure 37 on page 358.

Figure 37: Server Manager > Clusters

To create a new cluster, click the plus icon in the upper right of the Clusters page. The Add Cluster
window is displayed. In the Add Cluster window, you can add a new cluster ID and the domain e-mail
address of the cluster. See Figure 38 on page 358.

Figure 38: Add Cluster

When you are finished adding information about the new cluster in the Add Clusters window, click Save
& Next. Now you can add servers to the cluster, see Figure 39 on page 359.

358

Figure 39: Add Servers to Cluster

Click the check box of each server to be added to the cluster.

When you are finished, click Next. The selected servers are added to the cluster, see Figure 40 on page
359.

Figure 40: Add Servers to Cluster, Next

When you are finished adding servers, click Save & Next. Now you can assign Contrail roles to servers
that you select in the cluster. Roles available are Config, OpenStack, Control, Compute, and Collector.
Select each role assignment for the selected server. You can also unselect any assigned role. The
assigned roles correspond to the role functions in operation on the server, see Figure 41 on page 360.

359

Figure 41: Assign Roles

When you are finished selecting roles for the selected server in the Roles window, click Apply to save
your choices.

Click Save & Next to view your selections. Check marks are displayed in the columns of the Add Cluster
window, see Figure 42 on page 360.

Figure 42: Roles Assigned

The next step after roles are assigned is to enter the cluster configuration information for OpenStack.
After viewing the assigned roles, click Save & Next. The Add Cluster window is displayed. Click an icon
that opens a set of fields where you can enter OpenStack or Contrail configuration information for the
cluster. In the following image, the Openstack icon is selected. You can enter Keystone configuration
information, such as IP, Admin tenant, user, and password, service tenant, and region name. You can also
enable LBaaS and Ceilometer, see Figure 43 on page 361.

360

Figure 43: OpenStack Configuration

In the following image, the Contrail controller icon is selected. You can enter configuration information
for Contrail, such as External BGP, Router ASN, Huge Pages, Core Mask, Encapsulation Priority,
Healthcheck Interval, Zookeeper IP Port, Enable SRIOV, and so on, see Figure 44 on page 361.

Figure 44: Configure Contrail

In the following image, the High Availability (HA) icon is selected. You can configure high availability
parameters such as HA Proxy Enable, Internal and External VIP, and so on, see Figure 45 on page 362.

361

Figure 45: Configure High Availability

In the following image, the Analytics icon is selected. Here you can configure parameters for Contrail
Analytics, including Syslog Port, various scan frequencies, and various TTL settings, see Figure 46 on
page 362.

Figure 46: Configure Analytics

In following image, the Database icon is selected. You can configure parameters for the Contrail
database, including IP Port, Directory, Minimum Disk GB, and so on, see Figure 47 on page 363.

362

Figure 47: Configure Database

In following image, the VMware icon is selected. You can configure parameters for Contrail VMware ,
including VMware IP, VMware vSwitch, Username, Password , and so on, see Figure 48 on page 363.

Figure 48: Configure VMware

In following image, the Virtual Gateway icon is selected. You can configure parameters for the Contrail
Virtual Gateway, including VGW Public Interface, VGW Public VN Name, VGW Interface, Routes , and
so on, see Figure 49 on page 364.

363

Figure 49: Configure Virtual Gateway

In following image, the Contrail Storage icon is selected. You can configure parameters for Contrail
Storage, including Storage Monitor Secret, OSD Bootstrap Key, Admin Key, and so on, see Figure 50 on
page 364.

Figure 50: Configure Contrail Storage

When you are finished entering all of the cluster configuration information, click Save to submit the
configurations. You can view all configured clusters on the Clusters window by selecting Setting > Server
Manager > Clusters, see Figure 51 on page 365.

364

Figure 51: View Configured Clusters

To perform an action on one of the configured clusters, click the gear wheel icon at the right to select
from a menu of actions available for that cluster, including Add Servers, Remove Servers, Assign Roles,
Edit Config, Reimage, Provision, and Delete, see Figure 52 on page 365.

Figure 52: Select Cluster Action

You can also click the expansion icon on the left side of the cluster name to display the details of that
cluster in an area below the name line, see Figure 53 on page 366.

365

Figure 53: Display Cluster Details

Click the upper right icon to switch to the JSON view to see the contents of the JSON file for the
cluster, see Figure 54 on page 367.

366

Figure 54: View Cluster JSON

The cluster name is a link, click the cluster name to display the cluster Details page, see Figure 55 on
page 368.

367

Figure 55: Link to View Cluster Details

Click the Servers tab to display the servers under that cluster, see Figure 56 on page 368.

Figure 56: Display Servers for Cluster

368

Edit a Cluster through Edit JSON

Select Edit JSON to edit a cluster by editing the JSON file. Make changes to the JSON code and click
Save to save the edited configuration for the cluster, see Figure 57 on page 369.

Figure 57: Edit Cluster JSON

Working with Servers in the Server Manager User Interface

Select Setting > Server Manager and click the Servers link in the left sidebar at to view a list of all
servers, see Figure 58 on page 370.

369

Figure 58: View Servers

Add a Server

To add a new server, select Setting > Server Manager > Servers and click the plus (+) icon at the upper
right side in the header line. The Add Server window is displayed, see Figure 59 on page 371, in which
the System Management tab is expanded. Here you enter the details of ID, Password, Domain, Partition,
and so on for the server.

370

Figure 59: Add Server, System Management

In the following image, the Physical Interfaces icon is selected. You can add new interfaces or edit
existing interfaces. To enable editing for any field, hover the cursor on any selected field to open it, see
Figure 60 on page 371.

Figure 60: Add Server, Physical Interfaces

371

In the following image, the Contrail Storage icon is selected. You can configure parameters for Contrail
Storage, including selecting a package and adding storage disks locations, see Figure 61 on page 372.

Figure 61: Add Server, Contrail Storage

When you are finished entering new server details in the Add Server window, click Save to add the new
server configuration to the list of servers.

You can change details of the new server by clicking the gear wheel icon to the right side to get a list of
actions available, including Edit Config, Edit JSON, Edit Tags, Reimage, Provision, Refresh Inventory, and
Delete, see Figure 62 on page 373.

372

Figure 62: Select Server Actions

Edit Tags for Servers

Select Edit Tags from the gear wheel icon menu. The Edit Tags window is displayed. Enter any user-
defined tags to be associated with the selected server, then click Save to add the tags to the server
configuration, see Figure 63 on page 373.

Figure 63: Edit Tags

Using the Edit Config Option for Multiple Servers

You can also edit the configuration of multiple servers at one time. From the Servers window at Setting
> Server Manager > Servers, select the servers you want to edit, then click a gear wheel icon at the right
to open the action menu, and select Edit Config.

373

The Edit Config window is displayed, as shown.

Click a pencil icon to open configuration fields that can be edited Fields include System Management,
Contrail Controller, Contrail Storage, and so on, see Figure 64 on page 374.

Figure 64: Edit Config, Multiple Servers

Edit a Server through Server Manager, Edit JSON

Select Edit JSON to edit the server through JSON file. Make changes to the server details in the JSON,
then click Save, see Figure 65 on page 375.

374

Figure 65: Server Edit JSON

Filter Servers by Tag

You can filter servers according to the tags defined for them. In the Servers window, click the Filter Tags
field in the upper right heading. A list of configured tags is displayed. Select a tag by which to filter the
list of servers, see Figure 66 on page 375.

Figure 66: Filter Servers by Tag

Viewing Server Details

Each server name on the Servers page is a link to the details page for that server. Click any server name
to open the details for that server, including System Management information, Status, Contrail
Controller, Contrail Storage, Roles, Tags, and Provisioning, see Figure 67 on page 376.

375

Figure 67: View Server Details, System Management

At the Servers page, click the Monitoring tab to see detailed information regarding CPU/Memory
Information, Chassis State, Sensors, Interface Monitoring, File System, and Disk Usage, see Figure 68 on
page 377.

376

Figure 68: Server Monitoring

At the Servers page, click the Inventory tab to see detailed information regarding Overview of the
server, Interface Information, CPU information, Memory, and FRU Information, see Figure 69 on page
378.

377

Figure 69: Server Inventory

Configuring Images and Packages

Use the sidebar Images and Packages options to configure the software images and packages to be used
by the Server Manager. Images are typically used to reimage clusters with an operating system version.
Packages are used to provision clusters with a Contrail setup.

Both areas of the Server Manager user interface operate in a similar fashion. The figure shows the
Images section. The Packages section has similar options.

Select Images. The Images page is displayed, see Figure 70 on page 379.

378

Figure 70: Servers OS Images

Add New Image or Package

To add a new image or package, on the respective Images or Packages page, click the plus (+) icon in the
upper right header. The Add Image window is displayed. Enter the information for the new image (or
package) and click Save to add the new item to the list of configured items, see Figure 71 on page 379.

NOTE: The path field requires the path of the image where it is located on the server upon which
the server-manager process is running.

Figure 71: Add OS Image

Selecting Server Manager Actions for Clusters

After all aspects of a cluster are configured, you can select actions for the Server Manager to perform on
the cluster, such as Reimage or Provision.

379

Reimage a Cluster

Select Setting > Servers > Clusters. The Clusters window is displayed. Click the right side gear wheel
icon of the cluster to be reimaged, then select Reimage from the action menu.

The Reimage dialog box is displayed, as shown. Verify that the correct image is selected in the Default
Image field, then click Save to initiate the reimage action, se Figure 72 on page 380.

Figure 72: Reimage Cluster

Provision a Cluster

The process to provision a cluster is similar to the process to reimage a cluster. Select Setting > Servers >
Clusters. The Clusters window is displayed. Click the right side gear wheel icon of the cluster to be
provisioned, then select Provision from the action menu.

The Provision Cluster dialog box is displayed, as shown. Verify that the correct package for provisioning
is selected in the Default Package field, then click Save to initiate the provisioning action, see Figure 73
on page 380.

Figure 73: Provision Cluster

SEE ALSO

Using Server Manager to Automate Provisioning

380

Installing Server Manager

Installing and Using Server Manager Lite

Installing and Using Server Manager Lite

IN THIS SECTION

Server Manager Lite Overview | 381

Installing Server Manager Lite | 382

Provisioning Using SM-Lite with Contrail 4.0 | 382

Displaying the Cluster Status | 383

Displaying the SM-Lite Installation and Provisioning Log Files | 383

Contrail Provisioning Log Files | 383

This topic describes how to install and troubleshoot Server Manager Lite.

Server Manager Lite Overview

Server Manager Lite (SM-Lite), is a streamlined version of the Server Manager software that does not
include the reimage function.

SM-Lite supports the Server Manager functions of provisioning, monitoring, inventory, and WebUI. SM-
Lite is intended to replace fab command provisioning. It allows easy deployment of Contrail provisioning
and enables developers to work in isolated environments for Contrail provisioning.

SM-Lite eliminates installation and configuration of DHCP, DNS, and Cobbler services. Additionally, SM-
Lite installation setup scripts are enhanced to reduce installation time.

SM-Lite provides a single command to install SM-Lite and provision a Contrail cluster.

SM-Lite introduces additional capabilities into Server Manager. The SM-Lite package is part of the
Contrail Server Manager installer Debian package (contrail-server-manager-installer_<version string>.deb).

SM-Lite works with or without having a separate node for the SM-Lite installation, it can be installed on
any Contrail node, but it is recommended to install it on the config node.

381

https://www.juniper.net/documentation/en_US/contrail/topics/task/installation/server-manager-lite-installing-40.html

SM-Lite preserves the existing Server Manager WebUI functionality and it can be run on the same node
as the Contrail WebUI. Because of that, the default port for the Server Manager WebUI has been
changed to port 9080.

It is important to note that the code base used for SM-Lite and Server Manager is common. Therefore,
any changes or enhancements made to Server Manager provisioning functionality are automatically
available in the SM-Lite software.

Installing Server Manager Lite

The SM-Lite package is included as part of the Server Manager installer package.

The installer package also has other packages such as Server Manager, Server Manager client, Server
Manager WebUI, and Server Manager inventory. Before provisioning commands can be executed using
SM-Lite, you need to install the Server Manager installer package.

Use the following command to install the Server Manager installer package.

dpkg -i <contrail-server-manager-installer-deb>

After the Server Manager installer package is installed, all necessary Server Manager packages, scripts,
and so on are made available on the server where it is installed. You can then start using Server Manager
Lite commands.

Provisioning Using SM-Lite with Contrail 4.0

For Contrail 4.0, to provision the target systems, use the script.

The provision_containers.sh script performs the following functions:

1. Installs SM-Lite.

Uses the setup.sh installation script with the -smlite option to install the SM-Lite package (contrail-
server-manager-lite_<version-sku>_all.deb) and all other needed packages on the system.

2. Prepares the cluster for Contrail provisioning.

Translates the parameters in the testbed.py file into Server Manager objects and stores them in the
Server Manager database. This specifies the servers in the cluster and the configuration parameters.
The cluster-id value is used, if it is specified.

3. Performs a pre-check on the target systems to ensure that they are ready for running provisioning.
SM-Lite uses from the Contrail package to provision the Contrail cluster.

4. This step issues provisioning commands for the cluster with the given Contrail package.

382

Server Manager Lite can be installed on any node. We recommend that you install it on the config node.
Server Manager Lite can be installed on a separate node other than the Contrail cluster nodes.

The Server Manager WebUI default port is 9080. You can change the port by editing the /etc/contrail/
config.global.sm.js file, and then restarting the supervisor-webui-sm process.

Displaying the Cluster Status

The server-manager cluster -detail command displays the provisioning status of a cluster by role and by
role progress.

Use the server-manager status server command to display the current status of the servers.

Displaying the SM-Lite Installation and Provisioning Log Files

Log files that provide information during installation and use of SM-Lite software are available at:

• /var/log/contrail/install_logs/install_<timestamp>.log (SM-Lite install)

• /var/log/contrail/install_logs/provision_<timestamp>.log (provisioning command logs)

• testbed_parser.log and preconfig.log

Contrail Provisioning Log Files

For each Puppet run, log files are automatically uploaded to the Server Manager at the following
locations:

• http:<sm-lite-ip-address>/logs

• /var/log/contrail_server_manager/<target>/<timestamp>.log

• /var/log/contrail/*

You can also display the status of the processes and services using the contrail-status command.

RELATED DOCUMENTATION

Using Server Manager to Automate Provisioning

Using the Server Manager Web User Interface

383

CHAPTER 9

Extending Contrail to Physical Routers, Bare Metal
Servers, Switches, and Interfaces

IN THIS CHAPTER

Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other Instances | 384

Configuring High Availability for the Contrail OVSDB ToR Agent | 397

Using Device Manager to Manage Physical Routers | 404

SR-IOV VF as the Physical Interface of vRouter | 436

Using Gateway Mode to Support Remote Instances | 438

REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical Interfaces | 440

Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other
Instances

IN THIS SECTION

Support for ToR Switch and OVSDB Overview | 385

ToR Services Node (TSN) | 385

Contrail ToR Agent | 385

Using the Web Interface to Configure ToR Switch and Interfaces | 388

Configuration Parameters for Provisioning ToR and TSN | 390

Prerequisite Configuration for QFX5100 Series Switch | 394

Changes to Agent Configuration File | 396

REST APIs | 397

384

Support for ToR Switch and OVSDB Overview

Contrail Releases 2.1 and greater support extending a cluster to include bare metal servers and other
virtual instances connected to a top-of-rack (ToR) switch that supports the Open vSwitch Database
Management (OVSDB) protocol. The bare metal servers and other virtual instances can belong to any of
the virtual networks configured in the Contrail cluster, facilitating communication with the virtual
instances running in the cluster. Contrail policy configurations can be used to control this
communication.

The OVSDB protocol is used to configure the ToR switch and to import dynamically-learned addresses.
VXLAN encapsulation is used in the data plane communication with the ToR switch.

ToR Services Node (TSN)

A ToR services node (TSN) can be provisioned as a role in the Contrail system. The TSN acts as the
multicast controller for the ToR switches. The TSN also provides DHCP and DNS services to the bare
metal servers or virtual instances running behind ToR switch ports.

The TSN receives all the broadcast packets from the ToR switch, and replicates them to the required
compute nodes in the cluster and to other EVPN nodes. Broadcast packets from the virtual machines in
the cluster are sent directly from the respective compute nodes to the ToR switch.

The TSN can also act as the DHCP server for the bare metal servers or virtual instances, leasing IP
addresses to them, along with other DHCP options configured in the system. The TSN also provides a
DNS service for the bare metal servers. Multiple TSN nodes can be configured in the system based on
the scaling needs of the cluster.

Contrail ToR Agent

A ToR agent provisioned in the Contrail cluster acts as the OVSDB client for the ToR switch, and all of
the OVSDB interactions with the ToR switch are performed by using the ToR agent. The ToR agent
programs the different OVSDB tables onto the ToR switch and receives the local unicast table entries
from the ToR switch.

The ToR agent receives the configuration information for the ToR switch, translates the Contrail
configuration to OVSDB, and populates the relevant OVSDB table entries in the ToR switch.

Contrail recognizes the ToR after you configure tsn and toragent roles.

The typical practice is to run the ToR agent on the TSN node.

Configuration Model

Figure 74 on page 386 depicts the configuration model used in the system.

385

Figure 74: Configuration Model

Table 29 on page 386 maps the Contrail configuration objects to the OVSDB tables.

Table 29: Contrail Objects in the OVSDB

Contrail Object OVSDB Table

Physical device Physical switch

Physical interface Physical port

Logical interface <VLAN physical port> binding to logical switch

Virtual networks Logical switch

Layer 2 unicast route table Unicast remote and local table

386

Table 29: Contrail Objects in the OVSDB (Continued)

Contrail Object OVSDB Table

Multicast remote table

Multicast local table

Physical locator table

Physical locator set table

Control Plane

The ToR agent receives the EVPN route entries for the virtual networks in which the ToR switch ports
are members, and adds the entries to the unicast remote table in the OVSDB.

MAC addresses learned in the ToR switch for different logical switches (entries from the local table in
OVSDB) are propagated to the ToR agent. The ToR agent exports the addresses to the control node in
the corresponding EVPN tables, which are further distributed to other controllers and subsequently to
compute nodes and other EVPN nodes in the cluster.

The TSN node receives the replication tree for each virtual network from the control node. It adds the
required ToR addresses to the received replication tree, forming its complete replication tree. The other
compute nodes receive the replication tree from the control node, whose tree includes the TSN node.

Data Plane

The data plane encapsulation method is VXLAN. The virtual tunnel endpoint (VTEP) for the bare metal
end is on the ToR switch.

Unicast traffic from bare metal servers is VXLAN-encapsulated by the ToR switch and forwarded, if the
destination MAC address is known within the virtual switch.

Unicast traffic from the virtual instances in the Contrail cluster is forwarded to the ToR switch, where
VXLAN is terminated and the packet is forwarded to the bare metal server.

Broadcast traffic from bare metal servers is received by the TSN node. The TSN node uses the
replication tree to flood the broadcast packets in the virtual network.

Broadcast traffic from the virtual instances in the Contrail cluster is sent to the TSN node, which
replicates the packets to the ToR switches.

387

Using the Web Interface to Configure ToR Switch and Interfaces

The Contrail Web user interface can be used to configure a ToR switch and the interfaces on the switch.
To add a switch, select Configure > Physical Devices > Physical Routers.

The Physical Routers list is displayed.

Click the + symbol to open the Add menu. From the Add menu you can select one of the following:

• Add OVSDB Managed ToR

• Add Netconf Managed Physical Router

• CPE Router

• Physical Router

To add a physical ToR, select Add OVSDB Managed ToR. The Create window is displayed, as shown in
Figure 75 on page 389. Enter the IP address and VTEP address of the ToR switch . Also configure the
TSN and ToR agent names for the ToR.

388

Figure 75: Create OVSDB Managed ToR

To add the logical interfaces to be configured on the ToR switch, select Configure > Physical Devices >
Interfaces.

The Physical Routers list is displayed. Click the + symbol. The Add Interface window is displayed, as
shown in Figure 76 on page 390.

At Add Interface , enter the name of the logical interface. The name must match the name on the ToR,
for example, ge-0/0/0.10. Also enter other logical interface configuration parameters, such as VLAN ID,
MAC address, and IP address of the bare metal server and the virtual network to which it belongs.

389

Figure 76: Add Interface

Configuration Parameters for Provisioning ToR and TSN

This section presents the configuration parameters for different methods of provisioning ToR and TSN.

The following information can be provided for each ToR agent.

• IP address of the ToR

• a unique numeric identifier for the ToR

• a unique (optional) name for the ToR Agent

• the OVS protocol (TCP or SSL)

• the OVS port

• when OVS protocol is TCP, port indicates the TCP port to connect on the ToR

390

• when OVS protocol is pssl, port indicates the SSL port on which the ToR agent listens for
connections from the TOR

• TSN IP address of the ToR

• name of the TSN node

• IP address of the data tunnel endpoint

• HTTP server port of the ToR Agent using which introspect data can be checked

• vendor name for ToR (optional)

• product name of ToR switch (optional)

• OVS keepalive timeout (optional)

Inventory Format ToR and TSN

Indicate the compute node to act as TSN.

[contrail-computes]
1.1.1.7 ctrl_data_ip=10.1.1.7 tsn_mode=True

tor_agent = { ‘host1': [
 { 'tor_ip': '10.xxx.221.35’,
 'tor_agent_id': '1’,
 ‘tor_agent_name’:’node-1’,
 'tor_ovs_protocol': 'tcp’,
 'tor_ovs_port': '9999’,
 'tor_tsn_ip': '10.xxx.221.33’,
 'tor_tsn_name':’tsn1’,
 'tor_name': 'contrail-tor-1’,
 ‘tor_tunnel_ip’:’5.5.5.5’,
 'tor_http_server_port': '9090’,
 'tor_vendor_name': 'Juniper’,
 ‘tor_product_name’:’QFX5100’,
 'tor_agent_ovs_ka': ‘1000’
 } ,
 { … }
],

391

 ‘host2': […]
 }

JSON Format ToR and TSN

If you are provisioning using JSON, the following example is the JSON format.

For ToR in server.json.

{
 "server": [
 {
 "id": “new-server",
 "parameters" : {
 "top_of_rack": {
 "switches" : [
 {
 "agent_id": "1",
 "ip": "10.x.141.84",
 "tunnel_ip": "10.xx.141.84",
 "name": "TOR1",
 "tsn_name": "TSN1",
 "agent_name": "AGENT1",
 "ovs_port": "6632",
 "agent_ovs_ka": "1000",
 "ovs_protocol": "tcp",
 "http_server_port": "9912",
 "vendor_name": "Juniper"
 },
 {
 "agent_id": "2",
 "ip": "10.xx.141.83",
 "tunnel_ip": "10.xx.141.83",
 "name": "TOR2",
 "ovs_port": "6632",
 "ovs_protocol": "tcp",
 "http_server_port": "9913",
 "vendor_name": "Juniper"
 }

392

]
 },

For TSN in server.json.

 {
 “server" : [
 {
 "id": “new-server",
 "parameters" : {
 "provision": {
 "contrail_4": {
 “tsn_mode": false
 }
 }
 }
 }]
}

Testbed.py Format ToR and TSN

Starting with Contrail 4.0, if you are provisioning using SM-Lite, you can provision with JSON or
testbed.py. The following is the testbed.py format.

The ToR agent and TSN can be provisioned using the testbed.py configured with the following:

• The env.roledef section is configured with the tsn and toragent roles. The hosts for these roles should
also host a compute node.

• The env.tor_agent section should be present and configured.

For ToR:

#env.tor_agent = {host10:[{
 # 'tor_ip':'10.xxx.217.39',
 # 'tor_agent_id':'1',
 # 'tor_agent_name':'nodexx-1',
 # 'tor_type':'ovs',
 # 'tor_ovs_port':'9999',
 # 'tor_ovs_protocol':'tcp',
 # 'tor_tsn_name':'nodec45',
 # 'tor_name':'bng-contrail-qfx51-2',

393

 # 'tor_tunnel_ip':'34.34.34.34',
 # 'tor_vendor_name':'Juniper',
 # 'tor_product_name':'QFX5100',
 # 'tor_agent_http_server_port': '9010',
 # 'tor_agent_ovs_ka': '10000',
 # }]
 # }

For TSN:

env.roledefs = {
 'tsn': [host1], # Optional, Only to enable TSN. Only compute can support TSN
}

For more information, see https://github.com/Juniper/contrail-controller/wiki/Baremetal-Support .

Prerequisite Configuration for QFX5100 Series Switch

When using the Juniper Networks QFX5100 Series switches, ensure the following configurations are
made on the switch before extending the Contrail cluster.

1. Enable OVSDB.

2. Set the connection protocol.

3. Identify the interfaces that are managed by means of OVSDB.

4. Configure the controller (in case pssl is used). If HA Proxy is used, use the address of the HA Proxy
node and use the VIP when VRRP is used between multiple nodes running HA Proxy. The following
is an example:

set interfaces lo0 unit 0 family inet address

set switch-options ovsdb-managed

set switch-options vtep-source-interface lo0.0

set protocols ovsdb interfaces

set protocols ovsdb passive-connection protocol tcp port

394

https://github.com/Juniper/contrail-controller/wiki/Baremetal-Support

set protocols ovsdb controller <tor-agent-ip> inactivity-probe-duration 10000 protocol ssl
port <tor-agent-port>

5. When using SSL to connect, CA-signed certificates must be copied to the /var/db/certs directory in
the QFX device. The following example shows one way to get the certificates. The following
comands could be run on any server.

apt-get install openvswitch-common
ovs-pki init
ovs-pki req+sign vtep
scp vtep-cert.pem root@<qfx>:/var/db/certs
scp vtep-privkey.pem root@<qfx>:/var/db/certs
cacert.pem file will be available in /var/lib/openvswitch/pki/switchca, when the above are
done. This is the file to be provided in the above testbed (in env.ca_cert_file).

Debug QFX5100 Configuration

You can use the following commands on the QFX switch to show the OVSDB configuration.

show ovsdb logical-switch

show ovsdb interface

show ovsdb mac

show ovsdb controller

show vlans

You can use the agent introspect on the ToR agent and the TSN nodes to show the configuration and
operational state of these modules.

• The TSN module is like any other contrail-vrouter-agent on a compute node, with introspect access
available on port 8085 by default. Use the introspect on port 8085 to view operational data such as
interfaces, virtual network, and VRF information, along with their routes.

• The port on which the ToR agent introspect access is available is in the configuration file provided to
the contrail-tor-agent. This provides the OVSDB data available through the client interface, apart
from the other data available in a Contrail Agent.

395

Changes to Agent Configuration File

You can make changes to the agent features by making changes in the configuration file.

In the /etc/contrail/contrail-vrouter-agent.conf file for TSN, the agent _mode option is available in the
DEBUG section to configure the agent to be in TSN mode.

agent_mode = tsn

The following are typical configuration items in a ToR agent configuration file.

[DEFAULT]

agent_name = noded2-1 # Name (formed with hostname and TOR id from below)

agent_mode = tor # Agent mode

http_server_port=9010 # Port on which Introspect access is available

[TOR]

tor_ip=<ip> # IP address of the TOR to manage

tor_id=1 # Identifier for ToR Agent.

tor_type=ovs # ToR management scheme - only “ovs” is supported

tor_ovs_protocol=tcp # IP-Transport protocol used to connect to TOR, can be tcp or pssl

tor_ovs_port=port # OVS server port number on the ToR

tsn_ip=<ip> # IP address of the TSN

tor_keepalive_interval=10000 # keepalive timer in ms

ssl_cert=/etc/contrail/ssl/certs/tor.1.cert.pem # path to SSL certificate on TOR Agent, needed
for pssl

ssl_privkey=/etc/contrail/ssl/private/tor.1.privkey.pem # path to SSL private key on TOR Agent,
needed for pssl

396

ssl_cacert=/etc/contrail/ssl/certs/cacert.pem # path to SSL CA cert on the node, needed for pssl

REST APIs

For information regarding REST APIs for physical routers and physical and logical interfaces, see "REST
APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical Interfaces" on page
440.

RELATED DOCUMENTATION

REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical
Interfaces | 440

Using Device Manager to Manage Physical Routers | 404

Configuring High Availability for the Contrail OVSDB ToR Agent | 397

Configuring High Availability for the Contrail OVSDB ToR Agent

IN THIS SECTION

Overview: High Availability for a ToR Switch | 397

High Availability Solution for Contrail ToR Agent | 398

Failover Methodology Description | 399

Failure Scenarios | 399

Redundancy for HAProxy | 401

Configuration for ToR Agent High Availability | 402

This topic describes how high availability can be configured for the Contrail ToR agent.

Overview: High Availability for a ToR Switch

In Contrail Release 2.20 and later, high availability can be configured for the Contrail ToR agent.

397

When a top-of-rack (ToR) switch is managed through the Open vSwitch Database (OVSDB) protocol by
using a ToR agent on Contrail, a high availability configuration is necessary to maintain ToR agent
redundancy. With ToR agent redundancy, if the ToR agent responsible for a ToR switch is unable to act
as the vRouter agent for the ToR switch, due to any failure condition in the network or the node, then
another ToR agent takes over and manages the ToR switch.

ToR agent redundancy (high availability) is achieved using HAProxy. HAProxy is an open source, reliable
solution that offers high availability and proxy service for TCP applications. The solution uses HAProxy
to initiate an SSL connection from the ToR switch to the ToR agent. This configuration ensures that the
ToR switch is connected to exactly one active ToR agent at any given point in time.

High Availability Solution for Contrail ToR Agent

The following figure illustrates the method for achieving high availability for the ToR agent in Contrail.

Figure 77: High Availability Solution for Contrail ToR Agent

The following describes the events shown in the figure:

• ToR agent redundancy is achieved using HAProxy.

398

• Two ToR agents are provisioned on different TSN nodes, to manage the same ToR switch.

• Both ToR agents created in the cluster are active and get the same information from the control
node.

• HAProxy monitors these ToR agents.

• An SSL connection is established from the ToR switch to the ToR agent, via HAProxy.

• HAProxy selects one ToR agent to establish the SSL connection (e.g., ToR Agent 1 running on TSN A).

• Upon connection establishment, this ToR Agent adds the ff:ff:ff:ff:ff:ff broadcast MAC address in the
OVSDB with its own TSN IP address.

• The ToR Agent sends the MAC addresses of the bare metal servers learned by the ToR switch to the
control node using XMPP.

• The control node reflects the addresses to other ToR agents and vRouter agents.

Failover Methodology Description

The ToR switch connects to the HAProxy that is configured to use one of the ToR agents on the two ToR
services nodes (TSNs). An SSL connection is established from the ToR switch to the ToR agent, making
that agent the active ToR agent. The active ToR agent is responsible for managing the OVSDB on the
ToR switch. It configures the OVSDB tables based on the configuration. It advertises the MAC routes
learned on the ToR switch as Ethernet VPN (EVPN) routes to the Contrail controller. It also programs any
routes learned by means of EVPN over XMPP, southbound into OVSDB on the ToR switch.

The active ToR agent also advertises the multicast route (ff:ff:ff:ff:ff:ff) to the ToR switch, ensuring that
there is only one multicast route in OVSDB pointing to the active TSN.

Both the ToR agents, active and standby, receive the same configuration from the control node, and all
routes are synchronized by means of BGP.

After the SSL connection is established, keepalive messages are exchanged between the ToR switch and
the ToR agent. The messages can be sent from either end and are responded to from the other end.
When any message exchange is seen on the connection, the keepalive message is skipped for that
interval. When the ToR switch sees that keepalive has failed, it closes the current SSL session and
attempts to reconnect. When the ToR agent side sees that keepalive has failed, it closes the SSL session
and retracts the routes it exported to the control node.

Failure Scenarios

Whenever the HAProxy cannot communicate with the ToR agent, a new SSL connection from the ToR
switch is established to the other ToR agent.

399

HAProxy communication failures can occur under several scenarios, including:

• The node on which the ToR agent is running goes down or fails.

• The ToR agent crashes.

• A network or other issue prevents or interrupts HAProxy communication with the ToR agent.

Figure 78: Failure Scenarios

When a connection is established to the other ToR agent, the new ToR agent does the following:

• Updates the multicast route in OVSDB to point to the new TSN.

• Gets all of the OVSDB entries.

400

• Audits the data with the configurations available.

• Updates the database.

• Exports entries from the OVSDB local table to the control node.

Because the configuration and routes from the control node are already synchronized to the new ToR
Services Node (TSN), the new TSN can immediately act on the broadcast traffic from the ToR switch.
Any impact to the service is only for the time needed for the SSL connection to be set up and for
programming the multicast and unicast routes in the OVSDB.

When the SSL connection goes down, the ToR agent retracts the routes exported. Also, if the Extensible
Messaging and Presence Protocol (XMPP) connection between the ToR agent and the control node goes
down, the control node removes the routes exported by the ToR agent. In these scenarios, the entries
from the OVSDB local table are retracted and then added back from the new ToR agent.

Redundancy for HAProxy

In a high availability configuration, multiple HAProxy nodes are configured, with Virtual Router
Redundancy Protocol (VRRP) running between them. The ToR agents are configured to use the virtual IP
address of the HAProxy nodes to make the SSL connection to the controller. The active TCP
connections go to the virtual IP master node, which proxies them to the chosen ToR agent. A ToR agent
is chosen based on the number of connections from the HA Proxy to that node (the node with lower
number of connections gets the new connection) and can be controlled through configuration of the
HAProxy.

401

Figure 79: Redundancy for HAProxy

If the HAProxy node fails, a standby node becomes the virtual IP master and sets up the connections to
the ToR agents. The SSL connections are reestablished, following the same methods discussed earlier.

Configuration for ToR Agent High Availability

To get the required configuration downloaded from the control node to the TSN agent and to the ToR
agent, the physical router node must be linked to the virtual router nodes that represent the two ToR
agents and the two TSNs.

In the Contrail Web user interface select Configure > Physical Devices > Physical Routers. In the Physical
Routers window, click the + icon. The Add OVSDB Managed ToR window is displayed. See Figure 80 on
page 403.

402

Figure 80: Add OVSDB Managed ToR Window

Enter a name to create an entry for the ToR switch, enter the ToR switch management IP address, and
enter the virtual tunnel endpoint (VTEP) address. The router name should match the hostname of the
ToR switch. Both ToR agents and their respective TSN nodes can be configured here.

RELATED DOCUMENTATION

Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other Instances | 384

403

Using Device Manager to Manage Physical Routers

IN THIS SECTION

Support for Physical Routers Overview | 404

Configuration Model | 404

Alternate Ways to Configure a Physical Router | 407

Device Manager Configurations | 407

Prerequisite Configuration Required on MX Series Device | 408

Configuration Scenarios | 408

Device Manager Functionality | 409

Dynamic Tunnels | 409

Extending the Public Network | 417

Ethernet VPN Configuration | 419

Floating IP Addresses and Source Network Address Translation for Guest Virtual Machines and Bare Metal
Servers | 420

Samples of Generated Configurations for an MX Series Device | 430

Support for Physical Routers Overview

A configuration node daemon named Device Manager can be used to manage physical routers in the
Contrail system.

The Device Manager daemon listens to configuration events from the API server, creates any necessary
configurations for all physical routers it is managing, and programs those physical routers.

You can extend a cluster to include physical Juniper Networks MX Series routers and other physical
routers that support the Network Configuration (NETCONF) protocol. You can configure physical
routers to be part of any of the virtual networks configured in the Contrail cluster, facilitating
communication between the physical routers and the Contrail control nodes. Contrail policy
configurations can be used to control this communication.

Configuration Model

Figure 81 on page 405 depicts the configuration model used in the system. The Physical Router, Physical
Interface, and Logical Interface all represent physical router entities.

404

Figure 81: Contrail Configuration Model

Configuring a Physical Router

The Contrail Web user interface can be used to configure a physical router into the Contrail system.
Select Configure > Physical Devices > Physical Routers to create an entry for the physical router and
provide the router's management IP address and user credentials.

The following shows how a Juniper Networks MX Series device can be configured from the Contrail
Web user interface.

405

Figure 82: Add Physical Router Window

Select Configure > Physical Devices > Interfaces to add the logical interfaces to be configured on the
router. The name of the logical interface must match the name on the router (for example, ge-0/0/0.10).

406

Figure 83: Add Interface Window

Alternate Ways to Configure a Physical Router

You can also configure a physical router by using a Contrail REST API, see "REST APIs for Extending the
Contrail Cluster to Physical Routers, and Physical and Logical Interfaces" on page 440.

Device Manager Configurations

Device Manager can configure all of the following on a Juniper Networks MX Series device and other
physical routers.

• Create configurations for physical interfaces and logical interfaces as needed.

• Create VRF table entries as needed by the configuration.

• Add interfaces to VRF tables as needed.

• Create public VRF tables corresponding to external virtual networks.

407

• Create BGP protocol configuration for internal or external BGP groups as needed and adding iBGP
and eBGP peers in appropriate groups.

• Program route-target import and export rules as needed by policy configurations.

• Create policies and firewalls as needed.

• Configure Ethernet VPNs (EVPNs).

Prerequisite Configuration Required on MX Series Device

Before using Device Manager to manage the configuration for an MX Series device, use the following
Junos CLI commands to enable NETCONF on the device:

set system services netconf ssh

set system services netconf traceoptions file nc

set system services netconf traceoptions flag all

Debugging Device Manager Configuration

If there is any failure during a Device Manager configuration, the failed configuration is stored on the
MX Series device as a candidate configuration. An appropriate error message is logged in the local
system log by the Device Manager.

The log level in the Device Manager configuration file should be set to INFO for logging NETCONF XML
messages sent to physical routers.

Configuration Scenarios

This section presents different configuration scenarios and shows snippets of generated MX Series
configurations.

Configuring Physical Routers Using REST APIs

For information regarding configurations using REST APIs, see "REST APIs for Extending the Contrail
Cluster to Physical Routers, and Physical and Logical Interfaces" on page 440.

Sample Python Script Using Rest API for Configuring an MX Device

Refer to the following link for a Python-based script for configuring required MX Series device resources
in the Contrail system, using the VNC Rest API provided by Contrail.

https://github.com/Juniper/contrail-controller/blob/master/src/config/utils/provision_physical_router.py

408

https://github.com/Juniper/contrail-controller/blob/master/src/config/utils/provision_physical_router.py

Device Manager Functionality

Device Manager auto configures physical routers when it detects associations in the Contrail database.

The following naming conventions are used for generating MX Series router configurations:

• Device Manager generated configuration group name: __contrail__

• BGP groups:

• Internal group name: __contrail__

• External group name: __contrail_external

• VRF name: _contrai_{l2|l3}_[vn-id]_[vn-name]

• NAT VRF name: _contrai_{l2|l3}_[vn-id]_[vn-name]-nat

• Import policy: [vrf-name]—import, Export policy: [vrf-name]—export

• Service set: sv-[vrf-name]

• NAT rules, SNAT: sv-[vrf-name]-sn-rule, DNAT: sv-[vrf-name]-dn-rule

• SNAT term name: term_[private_ip], DNAT term name: term_[public_ip]

• Firewall filters:

• Public VRF filter: redirect_to_public_vrf_filter

• Private VRF filter: redirect_to_[vrf_name]_vrf

• Logical interface unit numbers:

• Service ports: 2*vn_id -1, 2*vn_id

• IRB interface: vn_id

Dynamic Tunnels

Dynamic tunnel configuration in Contrail allows you to configure GRE tunnels on the Contrail Web user
interface. When Contrail detects this configuration, the Device Manager module constructs GRE tunnel
configuration and pushes it to the MX Series router. A property named ip-fabric-subnets is used in the
global system configuration of the Contrail schema. Each IP fabric subnet and BGP router is configured
as a dynamic tunnel destination point in the MX Series router. The physical router data plane IP address
is considered the source address for the dynamic tunnel. You must configure the data plane IP address
for auto configuring dynamic tunnels on a physical router. The IP fabric subnets is a global configuration;

409

all of the subnets are configured on all the physical routers in the cluster that have data plane IP
configuration.

The following naming conventions are used in the API configuration:

• Global System Config: ip-fabric-subnets

• Physical Router: data-plane-ip

Web UI Configuration

Figure 84 on page 410 shows the web user interface used to configure dynamic tunnels.

Figure 84: Edit Global Config Window

In the Edit Global Config window, the VTEP address is used for the data-plane-ip address.

410

The following is an example of the MX Series router configuration generated by the Device Manager.

root@host# show groups __contrail__ routing-options

router-id 172.16.184.200;

route-distinguisher-id 10.87.140.107;

autonomous-system 64512;

dynamic-tunnels {

 __contrail__ {

 source-address 172.16.184.200;

 gre;

 destination-networks {

 172.16.180.0/24;

 172.16.180.8/32;

 172.16.185.200/32;

 172.16.184.200/32;

 172.16.180.5/32;

 172.16.180.7/32;

 }

 }

}

411

BGP Groups

When Device Manager detects BGP router configuration and its association with a physical router, it
configures BGP groups on the physical router.

Figure 85 on page 412 shows the web user interface used to configure BGP groups.

Figure 85: Edit BGP Router Window

Figure 86 on page 413 shows the web user interface used to configure the physical router.

412

Figure 86: Edit Physical Router Window for BGP Groups

The following is an example of the MX Series router configuration generated by the Device Manager.

root@host show groups __contrail__ protocols bgp
group __contrail__ {
 type internal;
 multihop;
 local-address 172.16.184.200;
 hold-time 90;
 keep all;
 family inet-vpn {
 unicast;
 }
 family inet6-vpn {
 unicast;
 }
 family evpn {
 signaling;
 }
 family route-target;
 neighbor 172.16.180.8;
 neighbor 172.16.185.200;
 neighbor 172.16.180.5;
 neighbor 172.16.180.7;
}

group __contrail_external__ {
 type external;
 multihop;

413

 local-address 172.16.184.200;
 hold-time 90;
 keep all;
 family inet-vpn {
 unicast;
 }
 family inet6-vpn {
 unicast;
 }
 family evpn {
 signaling;
 }
 family route-target;
}

Extending the Private Network

Device Manager allows you to extend a private network and ports to a physical router. When Device
Manager detects a VNC configuration, it pushes Layer 2 (EVPN) and Layer 3 VRF, import and export
rules and interface configuration to the physical router.

Figure 87 on page 415 shows the web user interface for configuring the physical router for extending
the private network.

414

Figure 87: Edit Physical Router Window for Extending Private Networks

The following is an example of the MX Series router configuration generated by the Device Manager.

/* L2 VRF */

root@host# show groups __contrail__ routing-instances _contrail_l2_147_vn_private-
x1-63
vtep-source-interface lo0.0;
instance-type virtual-switch;
vrf-import _contrail_l2_147_vn_private-x1-63-import;
vrf-export _contrail_l2_147_vn_private-x1-63-export;
protocols {
 evpn {
 encapsulation vxlan;
 extended-vni-list all;
 }
}
bridge-domains {
 bd-147 {
 vlan-id none;
 routing-interface irb.147;
 vxlan {
 vni 147;
 }

415

 }
}

/* L3 VRF */
root@host# show groups __contrail__ routing-instances _contrail_l3_147_vn_private-x1-63
instance-type vrf;
interface irb.147;
vrf-import _contrail_l3_147_vn_private-x1-63-import;
vrf-export _contrail_l3_147_vn_private-x1-63-export;
vrf-table-label;
routing-options {
 static {
 route 1.0.63.0/24 discard;
 }
 auto-export {
 family inet {
 unicast;
 }
 }
}

/* L2 Import policy */

root@host# ...cy-options policy-statement _contrail_l2_147_vn_private-x1-63-import
term t1 {
 from community target_64512_8000066;
 then accept;
}
then reject;

/* L2 Export Policy */
root@host# ...ail__ policy-options policy-statement _contrail_l2_147_vn_private-x1-63-export
term t1 {
 then {
 community add target_64512_8000066;
 accept;
 }
}

/* L3 Import Policy */

416

root@host# ...ail__ policy-options policy-statement _contrail_l3_147_vn_private-x1-63-import
term t1 {
 from community target_64512_8000066;
 then accept;
}
then reject;

/*L3 Export Policy */
root@host# ...ail__ policy-options policy-statement _contrail_l3_147_vn_private-x1-63-export
term t1 {
 then {
 community add target_64512_8000066;
 accept;
 }
}

Extending the Public Network

When a public network is extended to a physical router, a static route is configured on the MX Series
router. The configuration copies the next hop from the public.inet.0 routing table to the inet.0 default
routing table, and copies a forwarding table filter from the inet.0 routing table to the public.inet.0
routing table. The filter is applied to all packets being looked up in the inet.0 routing table and matches
destinations that are in the subnet(s) for the public virtual network. The policy action is to perform the
lookup in the public.inet.0 routing table.

Figure 88 on page 418 shows the web user interface for extending the public network.

417

Figure 88: Edit Network Gateway Window

The following is an example of the MX Series router configuration generated by the Device Manager.

/* forwarding options */

root@host show groups __contrail__ forwarding-options
family inet {
 filter {
 input redirect_to_public_vrf_filter;
 }
}

/* firewall filter configuration */

root@host# show groups __contrail__ firewall family inet filter redirect_to_public_vrf_filter

term term-_contrail_l3_184_vn_public-x1- {

418

 from {

 destination-address {

 20.1.0.0/16;

 }

 }

 then {

 routing-instance _contrail_l3_184_vn_public-x1-;

 }

}

term default-term {

 then accept;

}

/* L3 VRF static route 0.0.0.0/0 configuration */

root@host# ...instances _contrail_l3_184_vn_public-x1- routing-options static route 0.0.0.0/0
next-table inet.0;

Ethernet VPN Configuration

For every private network, a Layer 2 Ethernet VPN (EVPN) instance is configured on the MX Series
router. If any Layer 2 interfaces are associated with the virtual network, logical interfaces are also
created under the bridge domain.

The following is an example of the MX Series router configuration generated by the Device Manager.

root@host# show groups __contrail__ routing-instances _contrail_l2_147_vn_private-
x1-63
vtep-source-interface lo0.0;
instance-type virtual-switch;
vrf-import _contrail_l2_147_vn_private-x1-63-import;

419

vrf-export _contrail_l2_147_vn_private-x1-63-export;
protocols {
 evpn {
 encapsulation vxlan;
 extended-vni-list all;
 }
}
bridge-domains {
 bd-147 {
 vlan-id none;

 interface ge-1/0/5.0;
 routing-interface irb.147;
 vxlan {
 vni 147;
 }
 }
}

Floating IP Addresses and Source Network Address Translation for Guest Virtual
Machines and Bare Metal Servers

This section describes a bare metal server deployment scenario in which servers are connected to a TOR
QFX device inside a private network and an MX Series router is the gateway for the public network
connection.

The MX Series router provides the NAT capability that allows traffic from a public network to enter a
private network and also allows traffic from the private network to the public network. To do this, you
need to configure NAT rules on the MX Series router. The Device Manager is responsible for
programming these NAT rules on MX Series routers when it detects that a bare metal server is
connected to a public network.

You must configure virtual network computing for the TOR device, the MX Series router, the private
network, and the public network, including the address pool. When a logical interface on the TOR device
is associated with the virtual machine interface and a floating IP address is assigned to the same virtual
machine interface (VMI), Contrail detects this and the Device Manager configures the necessary floating
IP NAT rules on each of the MX Series routers associated with the private network.

Figure 89 on page 421 illustrates that the Device Manager configures two special logical interfaces
called service-ports on the MX Series router for NAT translation from the private network to the public
network.

420

Figure 89: Logical Topology for Floating IP and SNAT

The Contrail schema allows a user to specify a service port name using the virtual network computing
API. The service port must be a physical link on the MX Series router and the administrative and
operational state must be up. The Device Manager creates two logical interfaces on this service port,
one for each private virtual network, and applies NAT rules.

The private network routing instance on the MX Series router has a default static route (0.0.0.0/0) next
hop pointing to the inside service interface. A public network routing instance on the MX Series router
has a route for the private IP prefix next hop pointing to the outside service interface. The public IP
address to private IP address and the reverse NAT rules are configured on the MX Series router.

A special routing instance for each private network to one or more public networks association is
created on the MX Series router. This VRF has two interfaces on one side allowing traffic to and from
the public network and another interface allowing traffic to and from the private network. Firewall filters
on the MX Series router are configured so that, if the public network has floating IP addresses
associated with a guest VM managed by the Contrail vRouter, the vRouter performs the floating IP
address functionality. Otherwise, the MX Series router performs the NAT functions to send and receive
the traffic to and from the bare metal server VM.

As illustrated in Figure 89 on page 421, you must create the necessary physical device, interface, and
virtual network configuration that is pushed to the to the MX Series router.

421

Contrail configuration can be done using the Web UI or VNC API. The required configuration is:

• Create the private virtual network.

• Create one or more TOR physical routers (No Junos OS configuration needs to be pushed to this
device by Contrail. Therefore set the vnc managed attribute to False).

• Extend the private virtual network to the TOR device.

• Create physical and logical interfaces on the TOR device.

• Create the VMI on the private network for the bare metal server and associate the VMI with the
logical interface. Doing that indicates that the bare metal server is connected to the TOR device
through the logical interface. An instance IP address must be assigned to this VMI. The VMI uses a
private IP address for the bare metal server.

• Create the gateway router. This is a physical router that is managed by the Device Manager.

• Configure the service-port physical interface information for the physical MX Series router. Device
Manager configures two logical service interfaces on the MX Series router for each private network
associated with the device, and automatically configures NAT rules on these interfaces for the
private-to-public IP address translation and SNAT rules for the opposite direction. The logical port ID
is calculated from the virtual network ID allocated by Contrail VNC. Two logical ports are required for
each private network

• Associate the floating IP address, including creating the public network, the floating IP address pool,
and a floating IP address in Contrail, and associate this IP address with the VMI bare metal server.

• The private network and public network must be extended to the physical router.

When the required configuration is present in Contrail, the Device Manager pushes the generated Junos
OS configuration to the MX Series device. An example configuration is shown in the following.

/* NAT VRF configuration */

root@host# show groups __contrail__ routing-instances _contrail_l3_147_vn_private-x1-63-nat

instance-type vrf;

interface si-2/0/0.293;

vrf-import _contrail_l3_147_vn_private-x1-63-nat-import;

vrf-export _contrail_l3_147_vn_private-x1-63-nat-export;

422

vrf-table-label;

routing-options {

 static {

 route 0.0.0.0/0 next-hop si-2/0/0.293;

 }

 auto-export {

 family inet {

 unicast;

 }

 }

}

/* NAT VRF import policy */

root@host# ...y-statement _contrail_l3_147_vn_private-x1-63-nat-import

term t1 {

 from community target_64512_8000066;

 then accept;

}

then reject;

/* NAT VRF Export policy */

root@host# ..._ policy-options policy-statement _contrail_l3_147_vn_private-x1-63-nat-export

term t1 {

 then reject;

423

}

/* The following additional config is generated for public l3 vrf */

root@host# show groups __contrail__ routing-instances _contrail_l3_184_vn_public-x1-

interface si-2/0/0.294;

routing-options {

 static {

 route 20.1.252.8/32 next-hop si-2/0/0.294;

 route 20.1.252.9/32 next-hop si-2/0/0.294;

 }

}

/* Services set configuration */

root@host# show groups __contrail__

services {

 service-set sv-_contrail_l3_147_vn_ {

 nat-rules sv-_contrail_l3_147_vn_-sn-rule;

 nat-rules sv-_contrail_l3_147_vn_-dn-rule;

 next-hop-service {

 inside-service-interface si-2/0/0.293;

 outside-service-interface si-2/0/0.294;

 }

 }

424

}

/* Source Nat Rules*/

root@host# show groups __contrail__ services nat rule sv-_contrail_l3_147_vn_-sn-rule

match-direction input;

term term_1_0_63_248 {

 from {

 source-address {

 1.0.63.248/32;

 }

 }

 then {

 translated {

 source-prefix 20.1.252.8/32;

 translation-type {

 basic-nat44;

 }

 }

 }

}

term term_1_0_63_249 {

 from {

 source-address {

425

 1.0.63.249/32;

 }

 }

 then {

 translated {

 source-prefix 20.1.252.9/32;

 translation-type {

 basic-nat44;

 }

 }

 }

}

/* Destination NAT rules */

root@host# show groups __contrail__ services nat rule sv-_contrail_l3_147_vn_-dn-rule

match-direction output;

term term_20_1_252_8 {

 from {

 destination-address {

 20.1.252.8/32;

 }

 }

426

 then {

 translated {

 destination-prefix 1.0.63.248/32;

 translation-type {

 dnat-44;

 }

 }

 }

}

term term_20_1_252_9 {

 from {

 destination-address {

 20.1.252.9/32;

 }

 }

 then {

 translated {

 destination-prefix 1.0.63.249/32;

 translation-type {

 dnat-44;

 }

 }

427

 }

}

/* Public VRf Filter */

root@host# show groups __contrail__ firewall family inet filter redirect_to_public_vrf_filter

term term-_contrail_l3_184_vn_public-x1- {

 from {

 destination-address {

 20.1.0.0/16;

 }

 }

 then {

 routing-instance _contrail_l3_184_vn_public-x1-;

 }

}

term default-term {

 then accept;

}

/* NAT Vrf filter */

root@host# ...all family inet filter redirect_to__contrail_l3_147_vn_private-x1-63-nat_vrf

term term-_contrail_l3_147_vn_private-x1-63-nat {

428

 from {

 source-address {

 1.0.63.248/32;

 1.0.63.249/32;

 }

 }

 then {

 routing-instance _contrail_l3_147_vn_private-x1-63-nat;

 }

}

term default-term {

 then accept;

}

/* IRB interface for NAT VRF */

root@host# show groups __contrail__ interfaces

irb {

 gratuitous-arp-reply;

 unit 147 {

 family inet {

 filter {

 input redirect_to__contrail_l3_147_vn_private-x1-63-nat_vrf;

 }

429

 address 1.0.63.254/24;

 }

 }

/* Service Interfaces config */

root@host# show groups __contrail__ interfaces si-2/0/0

unit 293 {

 family inet;

 service-domain inside;

}

unit 294 {

 family inet;

 service-domain outside;

}

Samples of Generated Configurations for an MX Series Device

This section provides several scenarios and samples of MX Series device configurations generated using
Python script.

Scenario 1: Physical Router With No External Networks

The following describes the use case of basic vn, vmi, li, pr, pi configuration with no external virtual
networks. When the Python script shown in the following is executed with the parameters of this use
case, the configuration is applied on the MX Series physical router.

430

Script executed on the Contrail controller:

python provision_physical_router.py --api_server_ip 127.0.0.1 --api_server_port 8082 --
admin_user user1 --admin_password password1 --admin_tenant_name default-domain --op add_basic

Generated configuration for MX Series device:

root@host# show groups __contrail__
routing-options {
 route-distinguisher-id 10.84.63.133;
 autonomous-system 64512;
}
protocols {
 bgp {
 group __contrail__ {
 type internal;
 multihop;
 local-address 10.84.63.133;
 keep all;
 family inet-vpn {
 unicast;
 }
 family inet6-vpn {
 unicast;
 }
 family evpn {
 signaling;
 }
 family route-target;
 }
 group __contrail_external__ {
 type external;
 multihop;
 local-address 10.84.63.133;
 keep all;
 family inet-vpn {
 unicast;
 }
 family inet6-vpn {
 unicast;
 }

431

 family evpn {
 signaling;
 }
 family route-target;
 }
 }
}
policy-options {
 policy-statement __contrail__default-domain_default-project_vn1-export {
 term t1 {
 then {
 community add target_64200_8000008;
 accept;
 }
 }
 }
 policy-statement __contrail__default-domain_default-project_vn1-import {
 term t1 {
 from community target_64200_8000008;
 then accept;
 }
 then reject;
 }
 community target_64200_8000008 members target:64200:8000008;
}
routing-instances {
 __contrail__default-domain_default-project_vn1 {
 instance-type vrf;
 interface ge-1/0/5.0;
 vrf-import __contrail__default-domain_default-project_vn1-import;
 vrf-export __contrail__default-domain_default-project_vn1-export;
 vrf-table-label;
 routing-options {
 static {
 route 10.0.0.0/24 discard;
 }
 auto-export {
 family inet {
 unicast;
 }
 }
 }

432

 }
}

Scenario 2: Physical Router With External Network, Public VRF

This section describes the use case of vn, vmi, li, pr, pi configuration with an external virtual network,
public VRF. When the Python script shown is executed with the parameters of this use case, the
configuration is applied on the MX Series physical router.

This example assumes that the configuration already described in Scenario 1 has been executed.

Script executed on the Contrail controller:

python provision_physical_router.py --api_server_ip 127.0.0.1 --api_server_port 8082 --
admin_user user1 --admin_password password1 --admin_tenant_name default-domain --op add_basic --
public_vrf_test True

Generated configuration for MX Series device:

The following additional configuration is pushed to the MX Series device, in addition to the
configuration generated in Scenario 1.

forwarding-options {
 family inet {
 filter {
 input redirect_to___contrail__default-domain_default-project_vn1_vrf;
 }
 }
}
firewall {
 filter redirect_to___contrail__default-domain_default-project_vn1_vrf {
 term t1 {
 from {
 destination-address {
 10.0.0.0/24;
 }
 }
 then {
 routing-instance __contrail__default-domain_default-project_vn1;
 }
 }
 term t2 {

433

 then accept;
 }
 }
}
routing-instances {
 __contrail__default-domain_default-project_vn1 {
 routing-options {
 static {
 route 0.0.0.0/0 next-table inet.0;
 }
 }
 }
}

Scenario 3: Physical Router With External Network, Public VRF, and EVPN

The scenario in this section describes the use case of vn, vmi, li, pr, pi physical router configuration
with external virtual networks (public VRF) and EVPN configuration. When the Python script (as in the
previous examples) is executed with the parameters of this scenario, the following configuration is
applied on the MX Series physical router.

This example assumes that the configuration already described in Scenario 1 has been executed.

Script executed on the Contrail controller:

python provision_physical_router.py --api_server_ip 127.0.0.1 --api_server_port 8082 --
admin_user user1 --admin_password password1 --admin_tenant_name default-domain --op add_basic --
public_vrf_test True –vxlan 2002

Generated configuration for MX Series device:

The following additional configuration is pushed to the MX Series device, in addition to the
configuration generated in Scenario 1.

protocols {
 mpls {
 interface all;
 }
}
firewall {
 filter redirect_to___contrail__default-domain_default-project_vn1_vrf {
 term t1 {

434

 from {
 destination-address {
 10.0.0.0/24;
 }
 }
 then {
 routing-instance __contrail__default-domain_default-project_vn1;
 }
 }
 term t2 {
 then accept;
 }
 }
}
routing-instances {
 __contrail__default-domain_default-project_vn1 {
 vtep-source-interface lo0.0;
 instance-type virtual-switch;
 vrf-target target:64200:8000008;
 protocols {
 evpn {
 encapsulation vxlan;
 extended-vni-all;
 }
 }
 bridge-domains {
 bd-2002 {
 vlan-id 2002;
 interface ge-1/0/5.0;
 routing-interface irb.2002;
 vxlan {
 vni 2002;
 ingress-node-replication;
 }
 }
 }
 }
}

435

Scenario 4: Physical Router With External Network, Public VRF, and Floating IP Addresses for
a Bare Metal Server

The scenario in this section describes the user case of vn, vmi, li, pr, pi physical router configuration
with external virtual networks (public VRF) and floating IP addresses for bare metal server configuration.

Script executed on the Contrail controller:

#python provision_physical_router.py --api_server_ip <ip address> --api_server_port 8082 --
admin_user admin --admin_password <password> --admin_tenant_name default-domain --op {fip_test|
delete_fip_test}

RELATED DOCUMENTATION

REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical
Interfaces | 440

SR-IOV VF as the Physical Interface of vRouter

Starting with Contrail 3.0, support is provided for single-root I/O virtualization (SR-IOV) virtual functions
used as the physical router for vRouter.

SR-IOV allows a network interface to separate the access to its resources across multiple PCI Express
functions. The functions can be physical or virtual.

The Contrail vRouter can use an SR-IOV virtual function as its physical interface. One virtual function on
a network interface can be used by vRouter, while the remaining virtual functions can be used by virtual
machines on the same compute node. It is also possible to create a VLAN interface on a virtual function,
and use that as the physical interface of the vRouter.

Alternatively, virtual functions from two different interfaces can be bonded together, and that bonded
interface can be used as the physical interface of the vRouter. It is also possible to create a VLAN on a
bonded interface, like the one just described, and then use that bonded inteface as the physical interface
of the vRouter.

To set up virtual functions for the physical interface of a vRouter:

1. Include the env.sriov section in the testbed.py file, and complete the following steps to define the SR-
IOV virtual functions, so that the virtual functions are created during the provisioning of the cluster.

436

2. Within env.sriov, create SR-IOV virtual functions on the compute nodes (host1 and host2, in this
example). Virtual functions are usually identified with the following naming scheme: p6p2_1, p6p2_2, and
so on. For example:

env.sriov = {

host1 :[{'interface' : 'p6p2', 'VF' : 7, 'physnets' : ['physnet1']}],
host2 :[{'interface' : 'p6p2', 'VF' : 7, 'physnets’ : ['physnet1']}]

}

3. Specify the virtual function interfaces in the control_data section of the testbed.py file, with or without
a VLAN, so that they can be used by the vRouter. For example:

control_data = {

 host1 : { 'ip': '10.x.x.100/2x', 'gw' : '10.x.x.254','device':'p6p2_1' },
 host2 : { 'ip': '10.x.x.200/2x', 'gw' : '10.x.x.254','device':'p6p2_2' }

}

4. Optionally, for bonded interfaces (bond0 in this example), specify the virtual functions in the bond
section of the testbed.py file, with or without a VLAN. For example:

bond= {

host1 : {'name':'bond0','member':['p6p2_4','p6p1_5'],'mode':'balance-xor' },
host2 : {'name':'bond0','member':['p6p2_2','p6p1_3'],'mode':'balance-xor' }

}

437

Using Gateway Mode to Support Remote Instances

IN THIS SECTION

Gateway Mode Overview | 438

Provisioning Gateway Mode | 438

Configuring Gateway Mode | 439

Configuring Gateway Mode and High Availability | 439

Scaling | 440

Extending virtual instances running non-Openstack clusters or extending bare metal servers into
Contrail virtual networks can be achieved using the OVSDB protocol.

Additionally, starting with Contrail Release 3.1, an experimental mode has been added that enables you
to configure a Contrail compute node to run in gateway mode to support remote instances.

With Contrail Release 3.2, the gateway mode can also be used with VMware, using the VMware VMs as
the remote instances.

Gateway Mode Overview

Traffic from each external virtual instance is tagged with a unique VLAN, which is then mapped to a
virtual machine interface (VMI) in the Contrail cluster. A Contrail compute node can be configured to
map VLAN-tagged traffic coming on a physical port, other than the cluster's underlay IP fabric port, to a
VMI configured in the Contrail cluster. The VMI corresponds to the interface of the remote instance. A
vRouter on a gateway compute node operates like a local VMI, with traffic subjected to the forwarding
decisions and policies that would be on the local VMI.

NOTE: For gateway mode, one VLAN is mapped to one virtual machine interface.

Provisioning Gateway Mode

To provision gateway mode:

In /etc/contrail/contrail-vrouter-agent.conf, in the DEFAULT section add:

gateway_mode = server

438

When finished, restart contrail-vrouter-agent.

Configuring Gateway Mode

To configure gateway mode:

1. Configure a physical router, using the host name of the compute node that acts as the gateway.

2. Create a physical interface on the physical router, using the name of the interface on the compute
node that will be used for the gateway traffic.

3. Create a logical interface on the physical interface, using a unique VLAN ID and set the type to L2.

4. Create a virtual machine interface (VMI) in the required virtual network, identifying the MAC address
and IP address of the remote instance, then link the VMI to the logical interface.

External Configuration

The traffic from the remote instance should come to the gateway port with the required VLAN tag.

Configuring Gateway Mode and High Availability

Multiple gateway nodes can be configured to have high availability.

The selection of the active gateway node is expected to be handled by using (R)STP from the switches
connecting the gateway node. For this, a special virtual network is configured in Contrail that will flood
the STP BPDUs.

For high availability for the gateway mode, make the following changes to the gateway mode
configuration procedure:

1. On the gateway compute nodes, create logical interfaces with VLAN 0.

2. Create a dummy VMI belonging to the special virtual network, following the regular gateway mode
configuration procedure.

3. Link the VMI to the VLAN 0 logical interfaces on the gateway nodes that will form a high availability
group. This enables STP to allow traffic to one of the gateway ports, while blocking others.

4. For each remote instance, create a logical interface on the gateway nodes in the high availability
group. Link the logical interface to the VMI created for the remote instance. The corresponding
instance IP should have active-backup mode set, which is the default mode.

Upon completion of this procedure, Contrail will handle the switch over of the traffic to a different
gateway node.

439

NOTE: This procedure can also be used to set up a vCenter gateway. Because the VMware VMs
are the remote instances, their traffic must be configured to arrive VLAN-tagged at the gateway
node’s physical interface and their interfaces must be configured in Contrail. Using this
configuration, all Contrail features available on a virtual machine interface will be applied for any
traffic between VMware and Contrail.

Scaling

The default number of interfaces supported on a compute node is 4352. Because each remote instance
has a logical interface and a virtual machine interface, up to 2K remote interfaces can be supported with
the default configuration. To support 4K remote instances, the maximum number of interfaces on the
compute node that is acting as the gateway should be configured to be 8K. For more information about
how the vRouter options can be modified, see https://github.com/Juniper/contrail-controller/wiki/
Vrouter-Module-Parameters.

REST APIs for Extending the Contrail Cluster to Physical Routers, and
Physical and Logical Interfaces

IN THIS SECTION

Introduction: REST APIs for Extending Contrail Cluster | 440

REST API for Physical Routers | 441

REST API for Physical Interfaces | 443

REST API for Logical Interfaces | 444

Introduction: REST APIs for Extending Contrail Cluster

Use the following REST APIs when extending the Contrail cluster to include physical routers, physical
interfaces, and logical interfaces.

440

https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters
https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters

REST API for Physical Routers

Use the following REST API when extending the Contrail cluster to include physical routers.

{

 u'physical-router': {

 u'physical_router_management_ip': u'100.100.100.100',

 u'virtual_router_refs': [],

 u'fq_name': [

 u'default-global-system-config',

 u'test-router'

],

 u'name': u'test-router',

 u'physical_router_vendor_name': u'juniper',

 u'parent_type': u'global-system-config',

 u'virtual_network_refs': [],

 'id_perms': {

 u'enable': True,

 u'uuid': None,

 u'creator': None,

 u'created': 0,

 u'user_visible': True,

 u'last_modified': 0,

441

 u'permissions': {

 u'owner': u'cloud-admin',

 u'owner_access': 7,

 u'other_access': 7,

 u'group': u'cloud-admin-group',

 u'group_access': 7

 },

 u'description': None

 },

 u'bgp_router_refs': [],

 u'physical_router_user_credentials': {

 u'username': u'',

 u'password': u''

 },

 'display_name': u'test-router',

 u'physical_router_dataplane_ip': u'101.1.1.1'

 }

}

442

REST API for Physical Interfaces

Use the following REST API when extending the Contrail cluster to include physical interfaces.

{

 u'physical-interface': {

 u'parent_type': u'physical-router',

 'id_perms': {

 u'enable': True,

 u'uuid': None,

 u'creator': None,

 u'created': 0,

 u'user_visible': True,

 u'last_modified': 0,

 u'permissions': {

 u'owner': u'cloud-admin',

 u'owner_access': 7,

 u'other_access': 7,

 u'group': u'cloud-admin-group',

 u'group_access': 7

 },

 u'description': None

 },

443

 u'fq_name': [

 u'default-global-system-config',

 u'test-router',

 u'ge-0/0/1'

],

 u'name': u'ge-0/0/1',

 'display_name': u'ge-0/0/1'

 }

}

REST API for Logical Interfaces

Use the following REST API when extending the Contrail cluster to include logical interfaces.

{

 u'logical-interface': {

 u'fq_name': [

 u'default-global-system-config',

 u'test-router',

 u'ge-0/0/1',

 u'ge-0/0/1.0'

],

 u'parent_uuid': u'6608b8ef-9704-489d-8cbc-fed4fb5677ca',

 u'logical_interface_vlan_tag': 0,

444

 u'parent_type': u'physical-interface',

 u'virtual_machine_interface_refs': [

 {

u'to': [

 u'default-domain',

 u'demo',

 u'4a2edbb8-b69e-48ce-96e3-7226c57e5241'

]

 }

],

 'id_perms': {

 u'enable': True,

 u'uuid': None,

 u'creator': None,

 u'created': 0,

 u'user_visible': True,

 u'last_modified': 0,

 u'permissions': {

 u'owner': u'cloud-admin',

 u'owner_access': 7,

 u'other_access': 7,

445

 u'group': u'cloud-admin-group',

 u'group_access': 7

 },

 u'description': None

 },

 u'logical_interface_type': u'l2',

 'display_name': u'ge-0/0/1.0',

 u'name': u'ge-0/0/1.0'

 }

}

RELATED DOCUMENTATION

Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other Instances | 384

Using Device Manager to Manage Physical Routers | 404

446

CHAPTER 10

Installing and Using Contrail Storage

IN THIS CHAPTER

Installing and Using Contrail Storage | 447

Installing and Using Contrail Storage

IN THIS SECTION

Overview of the Contrail Storage Solution | 447

Basic Storage Functionality with Contrail | 448

Ceph Block and Object Storage Functionality | 448

Using the Contrail Storage User Interface | 449

Hardware Specifications | 450

Contrail Storage Provisioning | 450

Overview of the Contrail Storage Solution

Contrail provides a storage support solution using OpenStack Cinder configured to work with Ceph.
Ceph is a unified, distributed storage system whose infrastructure provides storage services to Contrail.

The Contrail storage solution has the following features:

• Provides storage class features to Contrail clusters, including replication, reliability, and robustness.

• Uses open source components.

• Uses Ceph block and object storage functionality.

• Integrates with OpenStack Cinder functionality.

447

• Does not require virtual machines (VMs) to configure mirrors for replication.

• Allows nodes to provide both compute and storage services.

• Provides easy installation of basic storage functionality based on Contrail roles.

• Provides a Contrail-integrated user interface from which the user can monitor Ceph components and
drill down for more information about components.

• Provides native live-migration support if the VM is booted with Ceph storage as its root volume.

• Provides object storage support through Swift and S3 APIs.

Basic Storage Functionality with Contrail

The following are basic interaction points between Contrail and the storage solution.

• Cinder volumes must be manually configured prior to installing the Contrail storage solution. The
Cinder volumes can be attached to virtual machines (VMs) to provide additional storage.

• The storage solution stores virtual machine boot images and snapshots in Glance, using Ceph object
storage functionality.

• All storage nodes can be monitored through a graphical user interface (GUI).

• It is possible to migrate virtual machines that have ephemeral storage in Ceph.

Ceph Block and Object Storage Functionality

In Contrail Release 4.0, installing the Contrail storage solution creates the following Ceph configurations.

• Each disk is configured as a standalone storage device, enhancing optimal performance and creating
proper failure boundaries. Ceph allocates and assigns a process called object storage daemon (OSD)
to each disk.

• A replication factor of 2 is configured, consisting of one original instance plus one replica copy. Ceph
ensures that each replica is on a different storage node.

• A Ceph monitor process (mon) is configured is configured on the contrail-ceph-controller node.

• The correct number of placement groups are automatically configured, based on the number of disk
drives in the cluster.

• Properly identified SSD drives are set up for use as Ceph OSD journals to reduce write latencies.

• Multi-pool configuration is set up to segregate the OSD disks into logical pools improving
performance and efficiency.

448

• If multiple storage nodes are in a single chassis, the chassis option helps in defining replication of data
and also disabling replication of data within the nodes of the same chassis. Replication helps in
avoiding data loss during a power failure to the chassis.

Using the Contrail Storage User Interface

The Contrail storage solution provides a user interface integrated into the Contrail user interface. The
storage solution user interface displays the following:

• Customer usable space, which is different from Ceph total space. The displayed usable space does
not display the space used by replication and other Ceph functions.

• Monitor OSDs (disks), monitoring processes (mon), and state changes, enabling quick identification of
resource failures within storage components.

• Total cluster I/O statistics and individual drive statistics.

• Ceph-specific information about each OSD (disk).

• Ceph logs, Ceph nodes, and Ceph alerts.

Select Monitor > Infrastructure > Dashboard to display an at-a-glance view of the system infrastructure
components, including the numbers of virtual routers, control nodes, analytics nodes, config nodes, and
storage nodes currently operational, and a bubble chart of storage nodes showing the Available (%) and
Total Storage (GB). See the following figure.

Bubble charts use the following color-coding scheme for storage nodes:

• Blue—working as configured.

• Red—error, node is down.

• Yellow—one of the node disks is down.

449

Select Monitor > Storage > Dashboard to see a summary of cluster health, usage, pools, and disk status,
and to gain insight into activity statistics for all nodes. See the following figure.

Hardware Specifications

The following are additional hardware specifications needed for the Contrail storage solution.

Additional minimum specifications:

• Two 500 GB, 7200 RPM drives in the server 4 and server 5 cluster positions (those with the compute
storage role) in the Contrail installation. This configuration provides 1 TB of clustered, replicated
storage.

Recommended compute storage configuration:

• For every 4-5 HDD devices on one compute storage node, use one SSD device to provide the OSD
journals for that set of HDD devices.

Contrail Storage Provisioning

The contrail-ceph-controller and contrail-ceph-compute are two roles required to enable Ceph storage. The
contrail-ceph-controller role is added to the Ceph monitor servers. The number of mons is limited to three
for small clusters and five for large clusters with more than 1000 disks. The contrail-ceph-compute role is
added to the servers that have the physical disks required for Ceph storage and also to the OpenStack
Nova compute nodes that require Ceph storage services.

The following example displays sample cluster.json to provide Ceph storage configurations.

"parameters": {
 "provision": {

450

 "contrail_4": {
 "storage_ceph_config": {
 "replica_size": 2,
"ceph_object_storage": "True",
"object_store_pool": "volumes"
 }
 }
 }
 }

The replica_size is added to change the default replica size of 2. The ceph_object_storage option enables
the Ceph-based object storage to support Swift and S3 APIs and the object_storage_pool option specifies
the Ceph pool used for the Ceph object storage functionality.

The following example displays sample server.json to enable Ceph storage.

Server.json :

 "parameters": {
 "provision": {
 "contrail_4":{
 "storage":{
 "storage_osd_disks":[
 "/dev/sdb:/dev/sdd:Pool_1",
 "/dev/sdc:/dev/sdd:Pool_2"
],
 "storage_osd_ssd_disks":[
 "/dev/sde:Pool_1",
 "/dev/sdf:Pool_2"
],
 “chassis_id”: “chassis_1”
 }
 }
 }
 "roles": [
"contrail-ceph-controller", "contrail-ceph-compute"
 [p0-]

The storage_osd_disks or storage_osd_ssd_disk is needed to provision the disks for Ceph. The first disk iss
OSD disk and the second optional disk is used as a Journal disk. If a multi-pool configuration is required,
the pool name can be added along the OSD disk as shown in the server.json to enable Ceph storage.
The chassis_id option can also be included per server. Pools and the chassis option cannot co-exist.

451

NOTE: The disks added to Ceph are not included in the OS disk. The partition parameter in the
server JSON lists only the required OS disks.

"parameters": {
"partition": "/dev/sda"
}

The disks added to Ceph cannot be part of LVM.

452

CHAPTER 11

Upgrading Contrail Software

IN THIS CHAPTER

Upgrading Contrail 4.0 to 4.1 | 453

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3 | 455

Upgrade Procedure for Ubuntu-based Contrail 4.1.3 to Contrail 4.1.4 Using Juju with Netronome
SmartNIC | 468

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4 | 477

Dynamic Kernel Module Support (DKMS) for vRouter | 492

Backup and Restore Contrail Configuration Database | 493

Upgrading Contrail 4.0 to 4.1

IN THIS SECTION

Upgrade Assumptions | 453

Upgrade Procedure | 454

This section provides the process for upgrading an existing Contrail Release 4.0 system to Contrail
Release 4.1.

Upgrade Assumptions

This upgrade procedure assumes the following.

• The initial cluster (4.0.x) was provisioned using Server Manager.

• The OpenStack SKU is the same in the “from” and “to” versions.

453

• A backup has been made of the analytics database, see "Backing Up Contrail Databases Using JSON
Format" on page 1058.

Upgrade Procedure

1. Make a backup of the analytics database, because the upgrade procedure removes the analytics
database information, see "Backing Up Contrail Databases Using JSON Format" on page 1058.

2. Add the new Contrail 4.1 Debian image to the Server Manager JSON used for provisioning.

server-manager add image –f contrail_image.json

3. Upgrade the cluster by reprovisioning the cluster with the new image.

• For an all-in-one, single-node demo system:

server-manager provision—-cluster_id <all_in_one_cluster> combined_image_mainline

• For a multinode system:

server-manager provision —-cluster_id <multi_node> combined_image_mainline

4. Monitor progress of the provisioning by observing cluster status or log entries.

• Cluster status: server-manager display server --cluster_id <cluster_id> --select
"id,ip_address,roles,status"

• Log entries: /var/log/contrail-server-manager/debug.log

NOTE: Log entries from the previous version are lost in the upgrade process.

For more upgrade instructions, see:

• Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4

• Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3

• Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2

• Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1

454

https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/upgrade-413-414-rhosp.html
https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/upgrade-412-to-413-rhosp.html
https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/upgrade-411-to-412-rhosp.html
https://www.juniper.net/documentation/en_US/contrail4.1/topics/concept/upgrade-326-to-41-rhoso.html

Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3

IN THIS SECTION

Prerequisite | 455

Upgrade the Undercloud | 456

Update Red Hat Director Image Archives | 458

Prepare Repositories on all Nodes | 460

Upgrade the Operating System on Contrail Nodes | 460

Prepare the Contrail Packages | 461

Upgrade the Contrail Heat Templates | 462

Modify the Yum Update Script for TripleO Puppet | 463

Update the Overcloud Deployment Plan | 464

Upgrade the Overcloud | 465

This section presents the steps to upgrade an OSP-based Contrail deployment from Contrail version
4.1.2 to Contrail version 4.1.3.

Prerequisite

Before upgrading to Contrail Release 4.1.3, you must update the net-snmp package to the net-snmp #37
version. The following net-snmp packages must be available in the upgrade repository and are installed
automatically on Contrail Analytics nodes during the upgrade process:

• net-snmp-5.7.2-37.el7.x86_64.rpm

• net-snmp-agent-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-utils-5.7.2-37.el7.x86_64.rpm

Ensure you have a cloud up and running with RHOSP10 and Contrail 4.1.2 before you proceed with the
upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

455

Contrail Version Red Hat Version OpenStack Version

3.2.3 RHEL 7.3 RHOSP10 (packages dated Apr. 15, 2017)

3.2.6 RHEL 7.4 RHOSP10 (packages dated Feb. 2, 2018)

4.1 RHEL 7.4 RHOSP10 (packages dated Feb. 27, 2018)

4.1.1 RHEL 7.5 RHOSP10 (packages dated Jun. 4, 2018)

RHOSP11 (packages dated Jun. 4, 2018)

4.1.2 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

4.1.3 RHEL 7.5 RHOSP10 (packages dated Oct 29, 2018)

CAUTION: Set the Red Hat Satellite filter end date to October 29, 2018 before
proceeding with the upgrade.

Upgrade the Undercloud

Upgrade the undercloud to the most current RHOSP10 version.

1. Log in to the undercloud as the stack user.

$ su – stack

2. Update the Contrail repositories.

$ sudo rm –rf /etc/yum.repos.d/*contrail*

$ curl http://newrepo.contrail41-dev.repo -o /etc/yum.repos.d/localrepo.repo

3. Stop the main OpenStack platform services.

$ sudo systemctl stop 'openstack-*' 'neutron-*' httpd

4. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

456

5. Upgrade the undercloud.

$ openstack undercloud upgrade

6. Reboot the node.

$ sudo reboot

7. Wait until the node reboots, then check the status of all services.

NOTE: It can take as much as 10 minutes or more for the openstack-nova-compute to become
active after a reboot.

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

8. Verify the version of RHEL after the undercloud upgrade.

NOTE: Contrail does not support undercloud Red Hat version running with RHEL-7.6 as part
of Contrail 4.1.3 release.

[root@undercloud ~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.5 (Maipo)
[root@undercloud ~]#

9. Verify the existence of the overcloud and its nodes.

$ openstack stack list

$ ironic node-list

10. Verify that all OpenStack servers are Active.

$ openstack server list

457

Figure 90: Server List

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You will have to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud]$ sudo grep "rhosp-director-images" /var/log/yum.log

Oct 26 15:09:20 Installed: rhosp-director-images-ipa-10.0-20180821.1.el7ost.noarch
Oct 26 15:10:10 Installed: rhosp-director-images-10.0-20180821.1.el7ost.noarch

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
 cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

458

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
--copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
--run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
--run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/
tripleo/ ‘ \
--run-command 'rm -fr /var/cache/yum/*' \
--run-command 'yum clean all' \ --selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

6. Verify that the images are uploaded.

$ openstack image list

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ openstack image show overcloud-full

459

8. Verify contrail-status on all Contrail nodes. All services in the Contrail nodes, except the controller
(OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Prepare Repositories on all Nodes

1. Delete existing repositories on all overcloud nodes. Verify each deletion.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode 'find /etc/yum.repos.d/ ! -name 'contrail-
install.repo' -type f -exec sudo rm -f {} +' ; done

2. Add new repositories on all overcloud nodes. Verify each addition.

sudo for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -d '|'); do echo
cleaning yum repolist on $ipnode && ssh heat-admin@$ipnode ' curl http://newrepo.contrail41-dev.repo -o /etc/
yum.repos.d/localrepo.rep' ; done

Upgrade the Operating System on Contrail Nodes

1. Define a list ($iplist) that contains all Contrail nodes. Run the following command on undercloud VM
as stack user.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

CAUTION: Attach the new satellite subscription key on all overcloud nodes before
upgrading the overcloud packages. Satellite must be synced with filter end date 29th
Oct 2018. Make sure to clear cache by typing sudo yum clean all.

2. Upgrade the operating system for all nodes in the iplist. Run the following command on undercloud
VM as stack user

sudo for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode
'sudo yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

3. Reboot overcloud contrail compute nodes, if there is any change in the kernel version. This needs to
be done before installing contrail packages on compute VM.

Supported kernel versions: 3.10.0-862.11.6.el7.x86_64 and 3.10.0-957.el7.x86_64
------------------------------- [root@overcloud-novacompute-2 ~]# modinfo vrouter filename: /lib/modules/

460

3.10.0-862.11.6.el7.x86_64/extra/net/vrouter/vrouter.ko version: 4.1.3.0 license: GPL retpoline: Y
rhelversion: 7.5

Prepare the Contrail Packages

To prepare the Contrail packages for the installation from a local repository:

1. Navigate to the Contrail repository and perform the following tasks:

• Delete the existing Contrail repositories.

All existing repositories in the undercloud and overcloud will be deleted during these steps.

• Access the Contrail update package.

• Copy the SNMP packages into the repository:

• net-snmp-5.7.2-37.el7.x86_64.rpm

• net-snmp-agent-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-libs-5.7.2-37.el7.x86_64.rpm

• net-snmp-utils-5.7.2-37.el7.x86_64.rpm

In the provided example, all 4 of these files are in the /mnt/net-snmp/ directory and all files from the
directory are copied into the repository.

• Unsubscribe every node with all registered satellite server repositories.

• Delete all repositories on undercloud and overcloud nodes, and replace these deleted repositories
with a Contrail repository.

• Clean the yum cache, verify the repository list, and check for yum updates.

A sample procedure:

[stack@undercloud ~]#
sudo su –
cd /var/www/html/contrail
rm -rf /var/www/html/contrail/*
#enter the location of the contrail update package
tar -xzvf /mnt/contrail-install-packages_4.1.3.0-30-newton.tgz
#copy prerequisite snmp packages; in this setup packages are in /mnt/net-snmp/
cp /mnt/net-snmp/* .
rm -rf /var/www/html/contrail/repodata/usr/bin/createrepo /var/www/html/contrail/subscription-
manager repos --disable=*subscription-manager unregister

461

rm -f /etc/yum.repos.d/*
#create local repo file
echo -e '[Contrail]\nname=Contrail Repo\nbaseurl=http://192.168.24.1/contrail
\nenabled=1\ngpgcheck=0' > /etc/yum.repos.d/contrail.repo
disable yum plugins
sed -i 's/plugins=1/plugins=0/g' /etc/yum.conf
yum clean all
rm -rf /var/cache/yum/*
yum check-update
exit
yum repolist

[stack@undercloud ~]#
 . stackrc;for ipnode in $(nova list | sed '4,$!d;$d'| awk -F 'ctlplane=' '{print $2}' | tr -
d '|');
do echo "Node $ipnode";
echo "sudo subscription-manager repos --disable=*;
sudo subscription-manager unregister;
sudo rm -f /etc/yum.repos.d/*;
sudo echo -e '[Contrail]\nname=Contrail Repo\nbaseurl=http://192.168.24.1/contrail
\nenabled=1\ngpgcheck=0' > /tmp/contrail.repo;
sudo mv /tmp/contrail.repo /etc/yum.repos.d/;
sudo sed -i 's/plugins=1/plugins=0/g' /etc/yum.conf;
sudo yum clean all;sudo rm -rf /var/cache/yum/*;
sudo yum repolist;sudo yum check-update" | ssh heat-admin@$ipnode bash;
done

2. Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and
contrail-tripleo-heat-templates. The newest versions of those packages must be installed before
proceeding with the overcloud upgrade. See the following example, with current package versions.

[stack@undercloud~]$ rpm -qa | grep contrail

puppet-contrail-4.1.3.0-NN.el7.noarch
contrail-tripleo-heat-templates-4.1.3.0-NN.el7.noarch
contrail-tripleo-puppet-4.1.3.0-NN.el7.noarch

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

462

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

NOTE: Red Hat does not support changing IP address of the existing cluster as a part of
upgrade. Do not change IP address of the cluster while creating new tripleo-heat-templates

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

cp /home/stack/tripleo-heat-templates /home/stack/tripleo-heat-templates-bk

sudo cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/
tripleo-heat-templates/environments/

sudo cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
tripleo-heat-templates/puppet/services/network

NOTE: The directory /home/stack/tripleo-heat-templates is user defined, it can be User
Defined-directory>/openstack-tripleo-heat-templates

Modify the Yum Update Script for TripleO Puppet

Following Puppet commands must be added to the yum_update script before starting the upgrade. The
script is located at:

/home/stack/tripleo-heat-templates/extraconfig/tasks/yum_update.sh

1. Update the following Puppet commands in the yum_update.sh after the line “echo -n "false" >
$heat_outputs_path.update_managed_packages”.

Refer to the following patch for details regarding the exact placement of the commands patch:
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/
contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Default parameter for contrailVersion is 4.

463

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

Filename:/home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

NOTE: /home/stack/tripleo-heat-templatesdirectory is user defined and it can be directory
name under stack user.

Update the Overcloud Deployment Plan

1. Make a copy of the existing deploy script to the update-stack.sh file by re-running the command
used for cloud deployment and adding the suffix - -update-plan-only.

<openstack overcloud deploy> –update-plan-only

Example:

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/environments/hostname-map.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

464

2. If you are using a local repository for the update and the environment-rhel-registration.yaml and rhel-
registration-resource-registry.yaml files are present, delete these lines from the deploy script:

 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \

3. Prepare the YAML files for the update:

• Verify each .yaml template referenced in the update-stack.sh file contains the original settings that
match the files that were backed up.

• In the contrail-net.yaml file, adapt all referenced templates from heat_template_version: newton
to heat_template_version: 2015-04-30. Keep all other original installation settings in this file.

4. Update the deployment plan.

./update-stack.sh

Example

[stack@undercloud ~]$./update-stack.sh
Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: 6c8fb5b7-6eda-4d92-8245-f7ac46bb369d
Plan updated
Deploying templates in the directory /tmp/tripleoclient-CdyN2I/tripleo-heat-templates
Overcloud Endpoint: http://10.87.67.232:5000/v2.0
Overcloud Deployed
[stack@undercloud ~]$

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

465

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
on_breakpoint: [u'overcloud-contrailanalyticsdatabase-0']
Breakpoint reached, continue? Regexp or Enter=proceed (will clear
4386bdc7-5087-4a4d-865c-0b0181ce9345), no=cancel update, C-c=quit interactive mode:
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
COMPLETE
update finished with status COMPLETE

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

466

Overcloud Stack Status

[stack@undercloud]# heat stack-list
WARNING (shell) "heat stack-list" is deprecated, please use "openstack stack list" instead
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| id | stack_name | stack_status | creation_time
| updated_time |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
| e873706c-7fb3-44ba-80dc-30b0fdbd519e | overcloud | UPDATE_COMPLETE | 2019-03-13T19:20:52Z
| 2019-03-13T22:01:05Z |
+--------------------------------------+------------+-----------------+----------------------
+----------------------+
[stack@undercloud ~]$

Contrail Stack Status

sudo for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; done

RELATED DOCUMENTATION

Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1

Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2

467

https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-326-to-41-rhoso.html
https://www.juniper.net/documentation/en_US/contrail/topics/concept/upgrade-411-to-412-rhosp.html

Upgrade Procedure for Ubuntu-based Contrail 4.1.3 to Contrail 4.1.4
Using Juju with Netronome SmartNIC

IN THIS SECTION

Prerequisites | 468

Acquire the Software | 468

Attach Contrail Packages using Juju | 469

Upgrade the Contrail Clusters | 469

This section presents the steps to upgrade from an Ubuntu-16.04-based Contrail deployment from
Contrail version 4.1.3 to Contrail version 4.1.4 using Juju charms.

Prerequisites

These instructions assume that these requirements for installing Contrail Release 4.1.3 are already
present in your environment:

• MaaS Server—MaaS version 2.3 is installed on this server. This procedure was tested using MaaS
version 2.3.5.

• Juju Controller—Juju version 2.3 is installed, and the Juju controller is bootstrapped on a VM or a
bare metal server. This procedure was tested using Juju version 2.3.7-xenial-amd64.

• A repository to get Netronome, patched Openstack packages, and Contrail vRouter packages is
operational.

• A Contrail Controller using Ubuntu 16.04 xenial is operational.

• A Contrail cluster with one or more compute nodes using Agilio SmartNICs.

Acquire the Software

To acquire the Contrail 4.1.4 software images to perform this procedure:

1. Go to the Juniper Networks Support site for Contrail.

2. Select OS as Contrail and Version as 4.1.4 from the drop-down menus.

3. Download the contrail-cloud-docker_4.1.4.0-63-ocata_xenial.tgz file.

468

https://support.juniper.net/support/downloads/?p=contrail#sw

4. Extract the following images from the contrail-cloud-docker_4.1.4.0-63-ocata_xenial.tgz file:

• Contrail Analytics package: contrail-analytics-ubuntu16.04-4.1.4.0-63.tar.gz.

• Contrail Analytics Database package: contrail-analyticsdb-ubuntu16.04-4.1.4.0-63.tar.gz .

• Contrail Controller package: contrail-controller-ubuntu16.04-4.1.4.0-63.tar.gz

The images need to be extracted because the Contrail Analytics, Contrail Analytics Database, and
Contrail Controller packages must be upgraded individually to perform this upgrade.

Attach Contrail Packages using Juju

The Contrail Controller, Contrail Analytics, and Contrail Analytics DB packages need to be attached
using Juju to perform this upgrade.

To attach these software packages into Juju:

1. Attach the Contrail Controller, Contrail Analytics, & Contrail Analytics DB packages into Juju:

juju attach contrail-analytics contrail-analytics=/home/jenkins/docker/contrail-analytics-
ubuntu16.04-4.1.4.0-63.tar.gz
juju attach contrail-controller contrail-controller=/home/jenkins/docker/contrail-controller-
ubuntu16.04-4.1.4.0-63.tar.gz
juju attach contrail-analyticsdb contrail-analyticsdb=/home/jenkins/docker/contrail-
analyticsdb-ubuntu16.04-4.1.4.0-63.tar.gz

2. Check status of the software image attachments into Juju using the juju status command.

Wait for the juju status command output to indicate that the upgrade is successful. The output in the
juju status should indicate that all processes are Active and all machine states are started.

Upgrade the Contrail Clusters

This section provides the steps to update the Contrail clusters for this upgrade.

It includes the following sections:

Upgrade the Contrail Controllers

The Contrail controllers must be upgraded one by one to complete this procedure.

To upgrade the Contrail controllers:

469

1. SSH into the Contrail controller server and decommission the Contrail controller from the Cassandra
cluster:

sudo docker exec -it contrail-controller /usr/bin/nodetool decommission

2. Remove the Contrail Controller container:

sudo docker rm -f contrail-controller

3. Update the hooks to the Contrail Controller from the Juju Controller:

juju run --application contrail-controller hooks/update-status

4. Wait for the Contrail status for all packages on the upgrading node to change to active. This step can
take up to 10 minutes.

Enter the contrail-status command to check status. All packages in the Contrail Control section of
the output must move to the active state before proceeding.

5. Check Juju status by entering the juju status command.

All Contrail components in this output should be in the active state.

6. After each controller update, check the controllers to make sure the databases are consistent across
all controllers:

• Enter the nodetool describecluster command. Confirm that the schema version output is identical
on all 3 controllers.

• Enter the echo stat | nc localhost 2181 command. The node count output should be identical on
all 3 controllers.

• Ensure that the contrail-status output is active for all components in all 3 controllers.

If your upgrade is not successful after 15 minutes, retry steps 1 through 5.

If you need to decommission a node that is not upgrading successfully, use the nodetool
removenode node-ID command.

7. Repeat steps 1 through 6 for all other Contrail controller nodes.

470

Upgrade Contrail Analytics Nodes

To upgrade the Contrail Analytics nodes:

1. SSH into the first Contrail Analytics node and remove the Contrail Analytics container:

sudo docker rm -f contrail-analytics

2. Confirm Juju status using the juju status command.

The output in the juju status should indicate that all processes are Active and all machine states are
started.

3. From the MaaS server, update hooks to the Contrail Analytics controller:

juju run --application contrail-analytics/0 hooks/update-status

4. Wait for the Contrail status for all packages on the upgrading node to change to active. This step can
take up to 10 minutes.

Enter the contrail-status command to check status. All packages in the Contrail Analytics section of
the output must move to the active state before proceeding.

5. Repeat steps 1 through 4 for all other Contrail Analytics nodes.

Upgrade Analytics Database Nodes

To upgrade the Contrail Analytics database nodes:

1. SSH into a Contrail analytics database server and decommission the node from the Cassandra
cluster:

sudo docker exec -it contrail-analyticsdb /usr/bin/nodetool decommission

2. Remove the AnalyticsDB container:

sudo docker rm -f contrail-analyticsdb

471

3. From the Juju controller, update the hooks to the Contrail Analytics DB controller:

juju run --application contrail-analyticsdb hooks/update-status

4. Wait for the Contrail status for all packages on the upgrading node to change to active. This step can
take up to 10 minutes.

Enter the contrail-status command to check status. All packages in the Contrail Database section of
the output must move to the active state before proceeding.

5. Check Juju status by entering the juju status command.

All Contrail components in this output should be in the active state.

6. After each analytics database node update, check the nodes to ensure the databases are consistent
inside the contrail analytics database containers:

• Enter the nodetool describecluster command. Confirm that the schema version output is identical
on all 3 nodes.

• Enter the echo stat | nc localhost 2181 command. The node count output should be identical on
all 3 nodes.

• Ensure that the contrail-status output is active for all components in all 3 contrail analytics db
nodes.

If your upgrade is not successful after 15 minutes, retry steps 1 through 5.

If you need to decommission a node that is not upgrading successfully, use the nodetool
removenode node-ID command.

7. Repeat steps 1 through 6 for all other Contrail Analytics database nodes.

Updating the Neutron Plugin and the vRouter Agent

The process for updating the neutron plugin and the vRouter agent is different for compute nodes than
it is for other nodes.

This section covers both procedures and includes these sections:

Updating the Neutron Plugin and the vRouter Agent on Non-Compute Nodes

Use this procedure to update the Neutron Plugin and the vRouter agent on all non-compute nodes in
your environment:

472

NOTE: This procedure assumes that the APT Get repository was created during the previous
installation, and that the latest Contrail packages can be placed into the repository.

1. SSH into the Neutron API plugin unit.

2. From the Neutron API plugin unit, get the latest APT Get update:

sudo apt-get update

3. Upgrade APT GET:

sudo apt-get upgrade

NOTE: This step shows how to upgrade APT get for all packages. You can also manually
update the neutron-plugin-contrail and python-contrail packages to complete this step, if
you’d rather not perform the complete upgrade. This procedure does not provide the steps to
manually update these packages.

4. Restart the Neutron service:

sudo systemctl restart neutron-server.service

Updating the Neutron Plugin and the vRouter Agent on Compute Nodes

Use this procedure to update the Neutron Plugin and the vRouter agent on all compute devices in your
environment:

NOTE: This procedure assumes that the APT Get repository was created during the previous
installation, and that the latest Contrail packages can be placed into the repository.

1. SSH into the Neutron API plugin unit.

473

2. From the Neutron API plugin unit, get the latest APT Get update:

sudo apt-get update

3. Upgrade APT GET:

sudo apt-get upgrade

NOTE: This step shows how to upgrade APT get for all packages. You can also manually
update the following packages to complete this step:

• contrail-lib

• contrail-nodemgr

• contrail-setup

• contrail-utils

• contrail-vrouter-agent

• contrail-vrouter-common

• contrail-vrouter-dkms

• contrail-vrouter-init

• contrail-vrouter-utils

• python-contrail

• python-contrail-vrouter-api

• python-opencontrail-vrouter-netns

This procedure does not provide the steps to manually update these packages.

4. Upgrade the vRouter agent and, if using Netronome SmartNICs, the netronome plugin.

• If you are performing this procedure on a compute node without a Netronome SmartNIC:

474

NOTE: The network connection over the vhost is down while this procedure is performed.
Traffic will be lost.

a. Stop the Contrail vRouter agent:

sudo systemctl stop contrail-vrouter-agent

b. Remove the Contrail vRouter module:

sudo rmmod vrouter

c. Insert the vRouter module:

sudo insmod /lib/modules/4.4.0-116-generic/updates/dkms/vrouter.ko

d. Activate the vhost:

sudo ifup vhost0

e. Restart the Contrail vRouter agent:

sudo systemctl start contrail-vrouter-agent

• If you are performing this procedure on a compute node with a Netronome SmartNIC:

NOTE: The network connection over the vhost is down while this procedure is performed.
Traffic will be lost.

a. Stop the Contrail vRouter agent:

sudo systemctl stop contrail-vrouter-agent

475

b. Stop the Virtio forwarder module:

sudo systemctl stop virtio-forwarder

c. Stop the vRouter control module:

sudo /opt/netronome/bin/ns-vrouter-ctl stop

d. Restart the Virtio forwarder module:

sudo systemctl start virtio-forwarder

e. Restart the Contrail vRouter agent:

sudo /opt/netronome/bin/ns-vrouter-ctl start

f. Activate the vhost:

sudo ifup vhost0

g. Restart the Contrail vRouter agent:

sudo systemctl start contrail-vrouter-agent

5. Verify Contrail status:

sudo contrail-status

All packages in the Contrail vRouter section of the output should be in the active state. This step can
take several minutes.

RELATED DOCUMENTATION

Deploying Contrail Release 4.1 with Netronome SmartNICs by Using Juju

476

https://www.juniper.net/documentation/en_US/contrail4.1/information-products/topic-collections/release-notes/jd0e1145.html

Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4

IN THIS SECTION

Prerequisites | 477

Post-Installation | 478

Acquire the Software | 479

Upgrade the Undercloud | 479

Update Red Hat Director Image Archives | 484

Upgrade the Operating System on Contrail Nodes | 486

Prepare the Contrail Packages | 487

Upgrade the Contrail Heat Templates | 487

Modify the Yum Update Script for TripleO Puppet | 488

Update the Overcloud Deployment Plan | 489

Upgrade the Overcloud | 490

Upgrade Cautions | 491

This section presents the steps to upgrade a RHOSP-based Contrail deployment from Contrail version
4.1.3 to Contrail version 4.1.4.

Prerequisites

Ensure you have a cloud up and running with RHOSP10 and Contrail 4.1.3 before you proceed with the
upgrade procedure.

This procedure has been validated with the following Contrail, Red Hat, and OpenStack versions.

Table 30: Pre-Installation Software Versions

Contrail Version Red Hat Version OpenStack Version

4.1.3 RHEL 7.6 (3.10.0-957.el7.x86_64) RHOSP10 (packages dated October 29, 2018)

4.1.3 RHEL 7.5 (3.10.0-862.11.6.el7.x86_64) RHOSP10 (packages dated October 29, 2018)

477

CAUTION: Set the Red Hat Satellite filter end date to December 9, 2019 before
proceeding with the upgrade.

Post-Installation

After the installation, you’ll have a cloud networking running RHOSP10 and Contrail 4.1.4. The Red Hat
Enterprise Linux (RHEL) kernel version updates to 7.7 during this procedure.

Table 31 on page 478 summarizes the post-installation software versions.

Table 31: Post Installation Software Summary

Contrail Version Red Hat Version OpenStack Version

4.1.4 RHEL 7.7 (3.10.0-1062.el7.x86_64)

RHEL 7.7
(3.10.0-1062.1.2.el7.x86_64)

RHEL 7.7
(3.10.0-1062.9.1.el7.x86_64)

RHOSP10 (packages dated
December 9, 2019)

Contrail version R4.1.4 supports net-snmp package version 5.7.2-43 to support SNMP. The net-snmp
packages come from Red Hat, with the exception of the net-snmp-python-5.7.2-43.el7.x86_64.rpm
package which is provided in the Contrail repository.

Table 32 on page 478 summarizes the net-snmp depend packages and their associated repository
locations.

Table 32: Post Installation Software Summary

Net-SNMP Depend Packages Repository

net-snmp-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

net-snmp-agent-libs-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

net-snmp-libs-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

478

Table 32: Post Installation Software Summary (Continued)

Net-SNMP Depend Packages Repository

net-snmp-python-5.7.2-43.el7.x86_64.rpm Contrail

net-snmp-utils-5.7.2-43.el7.x86_64.rpm Red Hat Satellite

Acquire the Software

To download the software images for this procedure:

1. Go to the Juniper Networks Support site for Contrail.

2. Select OS as Contrail and Version as 4.1.4. Download the images that apply to your environment.

Upgrade the Undercloud

1. Log in to the undercloud as the stack user.

$ su – stack

2. Update the Contrail repositories.

• Backup the Contrail 4.1.3 packages to a repository with a different name. In this example, the
packages are moved to a repository named contrail-R4-1-3.

[stack@undercloud ~]$ cd /var/www/html/
[stack@undercloud html]$ sudo mv contrail/ contrail-R4-1-3

• Create a new repository directory to store the Contrail 4.1.4 packages:

[stack@undercloud html]$ sudo mkdir contrail

3. Copy the downloaded file—in the provided sample, the file is contrail-install-packages_4.1.4.0-63-
newton.tgz—to the Contrail repository created in Step 2.

479

https://support.juniper.net/support/downloads/?p=contrail#sw

NOTE: This step assumes that you've already downloaded the Contrail software. See
"Acquire the Software" on page 479.

[stack@undercloud contrail]$ ls -lrt
 total 377104
 -rw-r--r--. 1 root root 386151602 Mar 14 06:58 contrail-install-packages_4.1.4.0-63-
newton.tgz

4. Untar the downloaded tgz file.

[stack@undercloud contrail]$ sudo tar -xvf contrail-install-packages_4.1.4.0-63-newton.tgz

5. Create a repository in the new directory:

[stack@undercloud contrail]$ pwd
 /var/www/html/contrail

 [stack@undercloud contrail]$ sudo createrepo .

If the createrepo command is not available, download the createrepo package from Red Hat (Red
Hat subscription required).

6. (Clusters deployed using Swift Puppet files only) If your Contrail 4.1 cluster was deployed using
Swift Puppet, perform these steps:

a. Remove overcloud artifacts from the undercloud:

[stack@undercloud ~]$ swift delete overcloud-artifacts
puppet-modules.tgz
overcloud-artifacts

b. Delete the deployments-artifacts.yaml file if the file is present.

[stack@undercloud ~]$ ls /home/stack/.tripleo/environments/deployment-artifacts.yaml
[stack@undercloud ~]$ rm -rf /home/stack/.tripleo/environments/deployment-artifacts.yaml

480

c. Clean the repositories and confirm that all repositories are available.

[stack@undercloud ~]$ sudo yum clean all
[stack@undercloud ~]$ sudo yum repolist

7. Stop the main OpenStack platform services.

$ sudo systemctl stop 'openstack-*' 'neutron-*' httpd

8. Update the python-tripleoclient package and its dependencies to ensure you have the most current
scripts for the minor version update.

$ sudo yum update python-tripleoclient

9. Upgrade the undercloud.

$ openstack undercloud upgrade

10. Reboot the node.

$ sudo reboot

Wait for the node to reboot. The reboot process can take 10 or more minutes to complete.

11. Ensure the undercloud has the latest Contrail R4.1.4 contrail packages:

[stack@undercloud ~]$ rpm -qa | grep contrail

puppet-contrail-4.1.4.0-X.el7.noarch
contrail-tripleo-heat-templates-4.1.4.0-x.el7.noarch
contrail-tripleo-puppet-4.1.4.0-x.el7.noarch
python-gevent-1.1rc5-1contrail1.el7.x86_64

12. Ensure the undercloud has the latest RHOSP images:

[stack@undercloud]$ rpm -qa | grep direct

rhosp-director-images-10.0-20180821.1.el7ost.noarch
rhosp-director-images-10.0-20190829.1.el7ost.noarch
rhosp-director-images-10.0-20190918.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20190829.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20180821.1.el7ost.noarch
rhosp-director-images-ipa-10.0-20190918.1.el7ost.noarch

481

13. Review the ironic node-list output to confirm the following statuses for each package::

• Power state is power on.

• Provision State is active.

• Maintenance is False.

[stack@undercloud ~]$ ironic node-list
+-------------------------------+----------+--------------+-------------+
| Name | Power | Provisioning | Maintenance |
| | State | State | |
+-------------------------------+----------+--------------+-------------+
controller-3	power on	active	False
compute-5c5s35	power on	active	False
contrail-controller1	power on	active	False
contrail-analytics1	power on	active	False
contrail-controller-3	power on	active	False
contrail-controller-2	power on	active	False
contrail-analytics-database1	power on	active	False
controller-2	power on	active	False
controller1	power on	active	False
compute-5c5s37	power on	active	False
compute-5c5s36	power on	active	False
contrail-analytics-2	power on	active	False
contrail-analytics-3	power on	active	False
compute-5c5s38	power on	active	False
contrail-analytics-database-3	power on	active	False
contrail-analytics-database-2	power on	active	False
+-------------------------------+----------+--------------+-------------+

NOTE: This output presentation has been modified for readability. The UUID and Instance
UUID fields were removed as part of this modification.

14. Verify that all OpenStack servers are in the Active state.

[stack@undercloud ~]$ openstack server list
+---+--------+
| Name | Status |
+---+--------+

482

overcloud-contrailanalytics-2-4-1-4-7-7	ACTIVE
overcloud-controller-0-4-1-4-7-7	ACTIVE
overcloud-contrailanalytics-0-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-2-4-1-4-7-7	ACTIVE
overcloud-contrailanalytics-1-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-0-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-1-4-1-4-7-7	ACTIVE
overcloud-contrailanalyticsdatabase-1-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-2-4-1-4-7-7	ACTIVE
overcloud-contrailcontroller-0-4-1-4-7-7	ACTIVE
compute-0-4-1-4-rhel-7-7	ACTIVE
overcloud-contraildpdk-0-4-1-4-7-7	ACTIVE
overcloud-contraildpdk-1-4-1-4-7-7	ACTIVE
compute-1-4-1-4-rhel-7-7	ACTIVE
+---+--------+

NOTE: This output presentation has been modified for readability. The ID, Image Name, and
Networks fields were removed as part of this modification.

15. If new image archives are available, replace your current images with the new images.

Before uploading the new images onto the undercloud node, move any existing images from the
images directory on the stack user’s home directory (/home/stack/images).

$ mv /home/stack/images /home/stack/images-old

16. Extract the new image archives.

mkdir images
cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

17. Import the new image archives into the undercloud and configure the nodes to use the new images.

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

483

18. Verify that the images are uploaded:

$ glance image-list

19. Observe the contrail-status on all Contrail nodes. All services in the Contrail nodes, except the
controller (OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ source stackrc
[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '='
-f2); do ssh heat-admin@$i sudo contrail-status; done

20. Ensure that all overcloud node contrail repository pointers are properly pointing to the contrail
repository.

Contrail Analytics Example:

[root@overcloud-contrailanalytics-0 heat-admin]# cat /etc/yum.repos.d/contrail.repo
 [Contrail]
 name=Contrail Repo
 baseurl=http://192.168.24.1/contrail
 enabled=1
 gpgcheck=0
 protect=1
 metadata_expire=30

Update Red Hat Director Image Archives

The undercloud update process might download new image archives from the rhosp-director images and
the rhosp-director-ipa packages. You will have to update your existing system with any new image
archives.

1. Check the yum log to determine if new image archives are available.

$ sudo grep "rhosp-director-images" /var/log/yum.log

[stack@undercloud]$ sudo grep "rhosp-director-images" /var/log/yum.log

484

Dec 12 15:09:20 Installed: rhosp-director-images-ipa-10.0-20190918.1.el7ost.noarch
Dec 12 15:10:10 Installed: rhosp-director-images-10.0-20190918.1.el7ost.noarch

2. If new image archives are available, replace your current images with the new images. Before
deploying any new images, remove any existing images from the images undercloud on the stack
user’s home (/home/stack/images).

$ rm -rf ~/images/*

3. Extract the new image archives.

mkdir images
 cd images
for i in /usr/share/rhosp-director-images/overcloud-full-latest-10.0.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-10.0.tar; do tar -xvf $i; done

4. Install the Contrail package on the overcloud image by using the virt-customize command.

export LIBGUESTFS_BACKEND=direct /usr/bin/virt-customize -a /home/stack/images/overcloud-
full.qcow2 \
-copy-in /etc/yum.repos.d/mylocalrepo.repo:/etc/yum.repos.d \
-run-command 'yum -y install puppet-tripleo contrail-tripleo-puppet puppet-contrail‘\
-run-command ‘ cp -r /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/
tripleo/ ‘ \
-run-command 'rm -fr /var/cache/yum/*' \
-run-command 'yum clean all' \ -selinux-relabel

5. Import the new image archives into the undercloud and configure nodes to use the new images.

$ openstack overcloud image upload -update-existing -image-path /home/stack/images/

6. Verify that the images are uploaded.

$ openstack image list

485

7. Show the details of the new image that has been created. The new image will be used to add a new
node in the overcloud.

$ openstack image show overcloud-full

8. Verify contrail-status on all Contrail nodes. All services in the Contrail nodes, except the controller
(OpenStack), should be up and running before proceeding with the upgrade.

[stack@undercloud ~]$ for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Upgrade the Operating System on Contrail Nodes

To upgrade the operating system on Contrail nodes:

1. Define a list ($iplist) that contains all Contrail nodes. Run the following command on undercloud VM
as a stack user.

Iplist=” @IPcontrailController1 @IPContrailController2 …”

CAUTION: Attach the new satellite subscription key on all overcloud nodes before
upgrading the overcloud packages. Satellite must be synced with filter end date 9th
Dec 2019. Make sure to clear cache by typing sudo yum clean all.

2. Upgrade the operating system for all nodes in the iplist.

Run the following command on undercloud VM as a stack user:

sudo for ipnode in $iplist; do echo -e "\n\n\t******upgrade node : $ipnode ******" && ssh heat-admin@$ipnode
'sudo yum update -y --disablerepo=*contrail* --skip-broken && exit' ; done

3. (Compute nodes only) Reboot overcloud contrail compute nodes. After the reboot, stop the
supervisor-vrouter service.

This step needs to be performed before installing contrail packages on the compute VM.

Compute services may go down after rebooting with the latest kernel. These services return later in
this procedure during the openstack overcloud deploy process.

Reboot Procedure:

[root@compute-1-7-6 modules]# sudo reboot
Connection to 192.0.2.16 closed by remote host.
Connection to 192.0.2.16 closed.

486

Post-Reboot:

[stack@undercloud-R4-1-2-b22 ~]$ ssh heat-admin@192.0.2.16
Warning: Permanently added '192.0.2.16' (ECDSA) to the list of known hosts.
Last login: Sat Dec 7 03:46:07 2019 from gateway
[heat-admin@compute-1-7-6 ~]$ sudo su
[root@compute-1-7-6 heat-admin]# contrail-status
vRouter is NOT PRESENT

== Contrail vRouter ==
supervisor-vrouter: active
contrail-vrouter-agent initializing
contrail-vrouter-nodemgr initializing

Stop the supervisor-vrouter service:

[root@compute-1-7-6 heat-admin]# service supervisor-vrouter stop
Stopping supervisor-vrouter (via systemctl): [OK]

[root@compute-1-7-6 heat-admin]# contrail-status
vRouter is NOT PRESENT

== Contrail vRouter ==
supervisor-vrouter: inactive
unix:///var/run/supervisord_vrouter.sockno

Prepare the Contrail Packages

Check the undercloud Contrail packages versions for contrail-tripleo-puppet, puppet-contrail, and contrail-
tripleo-heat-templates.

[stack@undercloud~]$ rpm -qa | grep contrail

Upgrade the Contrail Heat Templates

You must copy the new Contrail Heat templates package to the undercloud node, while retaining a copy
of the Heat templates that were used for the existing deployment.

487

1. Make a copy of all of the Heat templates that were used for deployment and save the copies,
because the existing files will be overwritten by the new versions. The templates to copy are of the
form contrail-services.yaml, contrail-net.yaml, and so on.

NOTE: Red Hat does not support changing IP address of the existing cluster as a part of
upgrade. Do not change IP address of the cluster while creating new tripleo-heat-templates

2. Copy the new contrail-tripleo-heat templates to the undercloud node.

sudo cp -r /usr/share/contrail-tripleo-heat-templates/environments/contrail /home/stack/
tripleo-heat-templates/environments/

sudo cp -r /usr/share/contrail-tripleo-heat-templates/puppet/services/network/* /home/stack/
tripleo-heat-templates/puppet/services/network

NOTE: The directory /home/stack/tripleo-heat-templates is user defined, it can be User
Defined-directory>/openstack-tripleo-heat-templates

Modify the Yum Update Script for TripleO Puppet

Following Puppet commands must be added to the yum_update script before starting the upgrade. The
script is located at:

/home/stack/tripleo-heat-templates/extraconfig/tasks/yum_update.sh

1. Update the following Puppet commands in the yum_update.sh after the line “echo -n "false" >
$heat_outputs_path.update_managed_packages”.

Refer to the following patch for details regarding the exact placement of the commands patch:
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/
contrail/yum_updates.patch

yum install -y contrail-tripleo-puppet puppet-contrail

rsync -a /usr/share/contrail-tripleo-puppet/ /usr/share/openstack-puppet/modules/tripleo/

2. Update the fields *contrail version and *contrail repo in contrail-services.yaml.

Default parameter for contrailVersion is 4.

488

https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch
https://github.com/Juniper/contrail-tripleo-heat-templates/blob/stable/newton/environments/contrail/yum_updates.patch

Filename:/home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml.

Add the following parameters:

ContrailVersion: 4

ContrailRepo : <location of the contrail-41 repo>

NOTE: /home/stack/tripleo-heat-templatesdirectory is user defined and it can be directory
name under stack user.

Update the Overcloud Deployment Plan

1. Update the current plan by re-running the command used for cloud deployment and adding the suffix
- -update-plan-only.

openstack overcloud deploy –update-plan-only

Example:

openstack overcloud deploy --update-plan-only --templates /home/stack/tripleo-heat-templates/
\
 --roles-file /home/stack/tripleo-heat-templates/environments/contrail/roles_data.yaml \
 -e /home/stack/tripleo-heat-templates/environments/puppet-pacemaker.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-services.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/network-isolation.yaml \
 -e /home/stack/tripleo-heat-templates/environments/contrail/contrail-net.yaml \
 -e /home/stack/tripleo-heat-templates/environments/ips-from-pool-all.yaml \
 -e /home/stack/tripleo-heat-templates/environments/network-management.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/environment-
rhel-registration.yaml \
 -e /home/stack/tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/rhel-
registration-resource-registry.yaml \
 --libvirt-type qemu

2. Make a copy of the existing deploy script to the update-stack.sh. The update-stack.sh is the script used to
update the overcloud plan, and it references the same templates that were used to deploy the stack.
All files used for the overcloud update should be identical to the files used for deployment, except
contrail-services file that was updated with the latest contrail-version and contrail-repo.

cp deploy.sh update-stack.sh

489

3. Update the deployment plan.

./update-stack.sh

Example:

[stack@undercloud ~]$./update-stack.sh
 nRemoving the current plan files
 Uploading new plan files
 Started Mistral Workflow. Execution ID: 998a1b40--a034-8cff453acfb1
 Plan updated
 Deploying templates in the directory /tmp/tripleoclient-JulIDe/tripleo- heat-
templates
 Overcloud Endpoint: http://10.0.0.35:5000/v2.0
 Overcloud Deployed

Upgrade the Overcloud

CAUTION: The steps in this section are service disrupting, and should only be
performed within a maintenance window.

1. Update the overcloud stack.

$ openstack overcloud update stack -i overcloud
on_breakpoint: [u'overcloud-contrailanalyticsdatabase-0']
Breakpoint reached, continue? Regexp or Enter=proceed (will clear
4386bdc7-5087-4a4d-865c-0b0181ce9345), no=cancel update, C-c=quit interactive mode:
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
IN_PROGRESS
COMPLETE
update finished with status COMPLETE

2. Verify the overcloud stack status, the contrail-status, and the contrail-version after the upgrade.

490

Overcloud Stack Status

[stack@undercloud ~]$ openstack stack list
+------------+-----------------+----------------------+----------------------+
| Stack Name | Stack Status | Creation Time | Updated Time |
+------------+-----------------+----------------------+----------------------+
| overcloud | UPDATE_COMPLETE | 2019-12-06T23:30:26Z | 2019-12-09T22:40:01Z |
+------------+-----------------+----------------------+----------------------+

NOTE: The openstack stack list output presentation has been modified for readability. The ID
field was removed as part of this modification.

Contrail Stack Status

sudo for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-
admin@$i sudo contrail-status; done

Contrail Version Check

for i in $(nova list | grep contrail | awk '{print $12}' | cut -d '=' -f2); do ssh heat-admin@
$i sudo contrail-version; ssh heat-admin@$i sudo contrail-status -d ; done

Upgrade Cautions

CAUTION: The steps to perform the overcloud upgrade are service disrupting, and
should only be performed within a maintenance window.

The upgrade procedure may fail due to packages conflicts in Contrail analytics nodes. Some observed
failures due to packages conflicts are detailed in this section. Continue with the deployment after
applying the recommended solution.

Analytics Node snmp-lib Version Conflict

Error message: Protected multilib versions: 1:net-snmp-libs-5.7.2-37.el7.x86_64 != 1:net-snmp-
libs-5.7.2-33.el7_5.2.i686

Solution:

491

rpm -e --nodeps net-snmp-libs

Services Need Manual Restart After Upgrade

Services may need to be restarted after performing this upgrade. The services might continue to run
using Contrail 4.1.3-related processes for a period of time.

Enter the contrail-status command to see if the processes continued to run through the upgrade, and
monitor the warning messages that appear.

Manually restart the services if you run into this issue.

In the following example, this issue is seen for the Contrail Analytics services immediately after the
upgrade:

[heat-admin@overcloud-contrailanalytics ~]$ sudo contrail-status -d
Warning: supervisor-analytics.service changed on disk. Run 'systemctl daemon-reload' to reload
units.
== Contrail Analytics ==
supervisor-analytics: active
contrail-alarm-gen active pid 975462, uptime 15 days, 19:07:11
contrail-analytics-api active pid 127224, uptime 20 days, 19:48:28
contrail-analytics-nodemgr active pid 127219, uptime 20 days, 19:48:28
contrail-collector active pid 127222, uptime 20 days, 19:48:28
contrail-query-engine active pid 127223, uptime 20 days, 19:48:28
contrail-snmp-collector active pid 127220, uptime 20 days, 19:48:28
contrail-topology active pid 127221, uptime 20 days, 19:48:28

Dynamic Kernel Module Support (DKMS) for vRouter

Dynamic Kernel Module Support (DKMS) is a framework provided by Linux to automatically build out-
of-tree driver modules for Linux kernels whenever the Linux distribution upgrades the existing kernel to
a newer version.

In Contrail, the vRouter kernel module is an out-of-tree, high performance packet forwarding module
that provides advanced packet forwarding functionality in a reliable and stable manner. Contrail provides
a DKMS-compatible source package for Ubuntu so that if you deploy an Ubuntu-based Contrail system
you do not need to manually compile the kernel module each time the Linux deployment gets upgraded.

The contrail-vrouter-dkms package provides the DKMS compatibility for Contrail. Prior to installing the
contrail-vrouter-dkms package, you must install both the DKMS package and the contrail-vrouter-utils

492

package, because the contrail-vrouter-dkms package is dependent on both. Installing the contrail-vrouter-
dkms package adds the vRouter sources to the DKMS database, builds the vRouter module, and installs it
in the existing kernel modules tree. When a kernel upgrade occurs, DKMS ensures that the module is
compiled for the newer kernel and installed in the proper location so that upon reboot, the newer
module can be used with the upgraded kernel.

For more information about DKMS, refer to:

• DKMS Ubuntu documentation at https://help.ubuntu.com/community/DKMS

• DKMS Ubuntu manual pages at http://manpages.ubuntu.com/manpages/lucid/man8/dkms.8.html

• Linux Journal article on DKMS at http://www.linuxjournal.com/article/6896

Backup and Restore Contrail Configuration Database

IN THIS SECTION

Backup config database | 494

Restore config database | 497

This document provides information on how to backup and restore the Contrail configuration databases
—Cassandra and Zookeeper, for Contrail Networking deployed with Canonical Openstack through Juju
Charms.

The backup and restore procedure must be completed for the nodes running the same Contrail
Networking release. The procedure is used to backup the Contrail Networking databases only; it does
not include instructions for backing up orchestration system databases.

CAUTION: Database backups must be consistent across all systems because the state
of the Contrail database is associated with other system databases, such as OpenStack
databases. Database changes associated with northbound APIs must be stopped on all
the systems before performing any backup operation. For example, you might block the
external VIP for northbound APIs at the load balancer level, such as HAproxy.

The following procedure was tested with Juju version 2.7 and version 2.3.7 running on Ubuntu 16.04
LTS (Xenial Xerus).

493

https://help.ubuntu.com/community/DKMS
http://manpages.ubuntu.com/manpages/lucid/man8/dkms.8.html
http://www.linuxjournal.com/article/6896

Additionally, the procedure contains an example with Juju machine numbers—1, 2 and 3. You must
replace it with your Juju machine numbers.
You can identify your Juju machine numbers by running the following command on the host:

juju status contrail-controller | grep "^contrail-controller\/" | awk '{print $4}'

Backup config database

Follow the procedure to backup config database:

All the commands are run on the host where Juju client is installed, unless stated otherwise.

NOTE: db_manage.py script is a disaster recovery script. If any errors occur after running this script,
contact Juniper Networks support.

1. Update db_manage.py script.

for i in juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'; do juju ssh $i sudo docker exec contrail-controller curl -k https://
raw.githubusercontent.com/tungstenfabric/tf-controller/master/src/config/api-server/
vnc_cfg_api_server/db_manage.py --output /tmp/db_manage.py; done

2. Update db_json_exim.py script.

for i in juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'; do juju ssh $i sudo docker exec contrail-controller curl -k https://
raw.githubusercontent.com/tungstenfabric/tf-controller/master/src/config/common/cfgm_common/
db_json_exim.py --output /tmp/db_json_exim.py; done

Latest versions of db_json_exim.py script requires python future library.

for i in `juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'`; do juju ssh $i sudo docker exec contrail-controller pip install future; done

494

3. Stop Juju agents for contrail-controller application.

for i in `juju status contrail-controller | grep '^contrail-controller\/' | awk '{print
$1}' | sed -e 's/^contrail-controller\///'|sed -e s/*//`; do juju ssh contrail-
controller/$i sudo systemctl stop jujud-unit-contrail-controller-$i; done

On each controller node, run juju-status command to confirm that agents are in the lost state.

$ juju status contrail-controller

4. Stop Contrail config services on all the nodes.

for i in contrail-svc-monitor contrail-dns contrail-device-manager contrail-schema contrail-
api contrail-control; do for j in 1 2 3; do juju ssh $j sudo docker exec contrail-
controller systemctl stop $i; done; done

5. Verify status for contrail-controller node. It must be in the inactive state.

for i in `juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'`;
do juju ssh $i sudo docker exec contrail-controller contrail-status; done
== Contrail Config ==
contrail-api: inactive
contrail-schema: inactive
contrail-svc-monitor: inactive
contrail-device-manager: inactive

6. Check Contrail config DB for consistency on one of the controller nodes.

juju ssh 1 sudo docker exec contrail-controller python /tmp/db_manage.py check

7. Synchronize the data by running repair command on the Contrail config DB.

juju ssh 1 sudo docker exec contrail-controller nodetool repair

495

8. Save database status. You may need it later to compare with the post procedure database status.

for i in `juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'`; do juju ssh $i sudo docker exec contrail-controller nodetool status; done

9. Log in to one of the controller nodes and take backup of Contrail config DB.

You can follow either one of the following methods:

• Take backup by default db_json_exim.py script.

juju ssh 1 sudo docker exec contrail-controller python /usr/lib/python2.7/dist-packages/
cfgm_common/db_json_exim.py --export-to /tmp/db-dump.json

• Take backup by db_json_exim.py script which you downloaded in the step 2.

juju ssh 1 sudo docker exec contrail-controller python /tmp/db_json_exim.py --export-
to /tmp/db-dump.json

10. Copy the database backup file from the container to the host.

juju ssh 1 sudo docker cp contrail-controller:/tmp/db-dump.json

11. Restart the Contrail config services on all the controller nodes.

for i in contrail-control contrail-svc-monitor contrail-dns contrail-device-manager
contrail-schema contrail-api; do for j in 1 2 3; do juju ssh $j sudo docker exec contrail-
controller systemctl start $i; done; done

On each controller node, run the contrail-status command to confirm that services are in the active
or backup state.

for i in `juju status | grep -e "^contrail-.[a-z]*\/" | awk '{print $1}' | sed -e 's/
//'`; do echo "----- $i -----"; TMP=`echo $i | sed -e 's/\/.//'`; juju ssh $i sudo
docker exec ${TMP} contrail-status; done

496

12. Restart the Juju agents for contrail-controller application.

for i in `juju status contrail-controller | grep '^contrail-controller\/' | awk '{print
$1}' | sed -e 's/^contrail-controller\///'`; do juju ssh contrail-controller/$i sudo
systemctl start jujud-unit-contrail-controller-$i; done

Run the juju status command from a machine where Juju client is configured. Confirm that Juju
agents are in the active state.

13. Verify the db dump json file for logical structure. Make sure it’s not empty.

Node 1 contains db dump.

juju ssh 1 sudo docker exec contrail-controller cat /tmp/db-dump.json | jq .

Verify the db dump file contains the correct configuration for UUIDs and VMs’ IP addresses for
your environment.

juju ssh 1 sudo cat /tmp/db-dump.json | jq . |grep \”ref:virtual_machine:
juju ssh 1 sudo cat /tmp/db-dump.json | jq . |grep __FEW__OF_IPs__

NOTE: If there are no VMs loaded on the environment, the above commands will not show
any output.

Restore config database

Follow the procedure to restore config database:

1. Stop Juju agents for contrail-controller, contrail-analytics and contrail-analyticsdb applications.

for i in `juju status contrail-controller | grep '^contrail-controller\/' | awk '{print
$1}' | sed -e 's/^contrail-controller\///;s/*//'`; do juju ssh contrail-controller/$i sudo
systemctl stop jujud-unit-contrail-controller-$i jujud-unit-contrail-analytics-$i jujud-
unit-contrail-analyticsdb-$i; done

2. Stop Contrail services on all the controller nodes.

for i in contrail-control contrail-svc-monitor contrail-dns contrail-device-manager
contrail-schema contrail-api contrail-config-nodemgr contrail-control-nodemgr contrail-

497

database; do for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller systemctl
stop $i; done; done
for i in contrail-topology contrail-analytics-nodemgr contrail-snmp-collector contrail-
alarm-gen; do for j in 1 2 3; do juju ssh $j sudo docker exec contrail-analytics systemctl
stop $i; done; done
for i in datastax-agent confluent-kafka; do for j in 1 2 3; do juju ssh $j sudo docker exec
contrail-analyticsdb systemctl stop $i; done; done
for i in contrail-query-engine contrail-collector contrail-analytics-api redis-server; do
for j in 1 2 3; do juju ssh $j sudo docker exec contrail-analytics systemctl stop $i; done;
done

3. Run the contrail-status command on each controller nodeto confirm that services are in the inactive
state.

for i in `juju status | grep -e "^contrail-.[a-z]*\/" | awk '{print $1}' | sed -e 's/
//'`; do echo "----- $i -----"; TMP=`echo $i | sed -e 's/\/.//'`; juju ssh $i sudo
docker exec ${TMP} contrail-status; done

4. Take backup of the Zookeeper data directory on all the controllers.

for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller systemctl stop
zookeeper; done
for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller tar -cvzf /tmp/
backup_configdatabase_config_zookeeper.tgz /var/lib/zookeeper/version-2; done
for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller systemctl start
zookeeper; done

5. Clean the current data from one of the Zookeeper instances using rmr command.

for i in `juju ssh 1 sudo docker exec contrail-controller /usr/share/zookeeper/bin/zkCli.sh
ls / | grep "^\[" | sed -e 's/\[//;s/\]//;s/,//g;s/\r//'`; do juju ssh 1 sudo docker exec
contrail-controller /usr/share/zookeeper/bin/zkCli.sh rmr /$i; done

6. Stop Zookeeper services on all the controllers.

for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller systemctl stop
zookeeper; done

498

7. Clean the Zookeeper data directory contents from all the controllers.

for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller "sh -c 'rm -
rvf /var/lib/zookeeper/version-2/*'"; done

8. Backup the Cassandra data directory from all the controllers.

for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller tar -cvzf /tmp/
backup_configdatabase_config_cassandra.tgz /var/lib/cassandra; done

9. Clean the Cassandra data directory contents from all the controllers.

for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller "sh -c 'rm -
rvf /var/lib/cassandra/data/*'"; done
for j in 1 2 3; do juju ssh $j sudo docker exec contrail-controller "sh -c 'rm -
rvf /var/lib/cassandra/commitlog/*'"; done

After running the above commands, the old password is erased.

10. Modify Cassandra configuration on each controller, one at a time, to reset the password.

Edit the authenticator variable in the /etc/cassandra/cassandra.yaml file.

juju ssh <node> sudo docker exec -it contrail-controller vim /etc/cassandra/cassandra.yaml

Replace authenticator: PasswordAuthenticator with authenticator: AllowAllAuthenticator.

11. Verify that no old Contrail services like db * scripts are running. If you find any old services, kill
them.

Run the following command on Contrail nodes outside the docker containers.

root:~# ps -fe |grep -i contrail | grep -v docker
root 2305 2287 0 12:41 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 5168 5150 0 12:43 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 5871 5854 0 12:43 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 13528 13511 0 12:47 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 16826 16807 0 11:58 ? 00:00:13 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf

499

root 29493 29473 0 12:56 ? 00:00:10 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 30810 30784 0 12:06 ? 00:00:12 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf --debug --
verbose
root 32675 32658 0 12:07 ? 00:00:12 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 49265 88219 0 17:48 pts/3 00:00:00 grep --color=auto -i contrail
root 60141 60124 0 12:23 ? 00:00:12 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 60452 60435 0 12:23 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 61231 54435 0 15:48 pts/1 00:00:00 less /etc/contrail/contrail-api.conf
root 63507 63489 0 12:25 ? 00:00:11 python /usr/lib/python2.7/dist-packages/
cfgm_common/db_json_exim.py --import-from /tmp/db-dump.json --api-conf /etc/contrail/
contrail-api-dbrestore.conf
root 67126 67109 0 12:27 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 80449 80431 0 12:35 ? 00:00:12 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf
root 85457 7860 0 16:54 ? 00:00:00 /bin/sh -c contrail-api
root 85458 85457 0 16:54 ? 00:00:04 /usr/bin/python /usr/bin/contrail-api
root 86585 86567 0 12:38 ? 00:00:11 python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /etc/contrail/contrail-api-dbrestore.conf

12. Restart Contrail-Database and Zookeeper service on all the controllers.

for i in contrail-database zookeeper; do for j in 1 2 3; do juju ssh $j sudo docker exec
contrail-controller systemctl start $i; done; done

13. Verify the status of Zookeeper service.

juju ssh 1 sudo docker exec contrail-controller usr/share/zookeeper/bin/zkCli.sh ls /

500

14. Verify the status of Cassandra service.

for i in `juju status contrail-controller | grep "^contrail-controller\/" | awk '{print
$4}'`; do juju ssh $i sudo docker exec contrail-controller nodetool status; done

root@(controller):/# nodetool status
Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host
ID Rack
UN 100.x.x.x 1.15 MiB 256 100.0% eeb0f764-xxxx-4ca6-
xxxx-84829624d588 rack1
UN 100.x.x.x 1.15 MiB 256 100.0% d6cf381c-xxxx-4208-
xxxx-5916f09da6a2 rack1
UN 100.x.x.x 1.15 MiB 256 100.0% ffee7451-xxxx-4058-
xxxx-5efe9f1286f1 rack1

For details on nodetool status command, see https://docs.datastax.com/en/archived/cassandra/3.0/
cassandra/tools/toolsStatus.html.

15. Copy the config DB backup.

for j in 1 2 3; do juju ssh $j sudo docker cp contrail-controller:/tmp/
backup_configdatabase_config_zookeeper.tgz .; done
for j in 1 2 3; do juju ssh $j sudo docker cp contrail-controller:/tmp/
backup_configdatabase_config_cassandra.tgz .; done

16. Restore config DB.

a. Prepare temporary contrail-api.conf file for db restoration.

juju ssh 1 sudo docker exec contrail-controller cp /etc/contrail/contrail-api.conf /tmp/
contrail-api-dbrestore.conf

b. Modify cassandra_password and cassandra_user in the contrail-api.conf file.

501

https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/tools/toolsStatus.html
https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/tools/toolsStatus.html

juju ssh 1 sudo docker exec -it contrail-controller vim /tmp/contrail-
api-dbrestore.conf

[CASSANDRA]
cassandra_password = cassandra
cassandra_user = cassandra

c. Import database from /tmp/db-dump/ db-dump.json file.

You can follow any one of the following methods:

• Import database by default db_json_exim.py script.

juju ssh 1 sudo docker exec contrail-controller python /usr/lib/python2.7/dist-
packages/cfgm_common/db_json_exim.py --import-from /tmp/db-dump.json --api-conf /tmp/
contrail-api-dbrestore.conf

• Import database by downloaded db_json_exim.py script.

juju ssh 1 sudo docker exec contrail-controller python /tmp/db_json_exim.py --import-
from /tmp/db-dump.json --api-conf /tmp/contrail-api-dbrestore.conf

If any error occurs, repeat the procedure to restore config database starting from step 5.

17. Synchronize the Cassandra data between nodes.

juju ssh 1 sudo docker exec contrail-controller nodetool status
juju ssh 1 sudo docker exec contrail-controller nodetool repair

18. Modify Cassandra configuration on each controller, one at a time, to reset the password.

Edit the authenticator variable in the /etc/cassandra/cassandra.yaml file.

juju ssh <node> sudo docker exec -it contrail-controller vim /etc/cassandra/cassandra.yaml

juju ssh <node> sudo docker exec contrail-controller systemctl restart
contrail-database
Replace authenticator: AllowAllAuthenticator with authenticator: PasswordAuthenticator.

502

19. Create Contrail user on any of the controller nodes.

root@(controller):/tmp/taj# cqlsh 100.x.108.1 9041 -u cassandra -p cassandra
Connected to ContrailConfigDB at 100.x.108.1:9041. [cqlsh 5.0.1 | Cassandra 3.11.2 | CQL
spec 3.4.4 | Native protocol v4] Use HELP for help.
cassandra@cqlsh> list roles;
role | super | login | options
-----------+-------+-------+---------
cassandra | True | True | {}
(1 rows)
cassandra@cqlsh> CREATE USER IF NOT EXISTS controller WITH PASSWORD
'00108521aaa2410aaa44da5dd5a863a3' AND SUPERUSER = true;
cassandra@cqlsh> list roles;
role | super | login | options
------------+-------+-------+---------
cassandra | True | True | {}
controller | True | True | {}

CASSANDRA_ADDR=`juju ssh contrail-controller/0 sudo docker exec contrail-controller ss -l |
grep 9041 | awk '{print $5}' | sed -e 's/:/ /'`
CASSANDRA_PASS=`juju ssh contrail-controller/0 sudo docker exec contrail-controller
cat /etc/contrail/contrail-api.conf | grep cassandra_password | sed -e 's/^.*=[]*//'| sed -
e 's/\r//g'`
CQL_QUERY="CREATE ROLE controller with SUPERUSER = true AND LOGIN = true and PASSWORD = '$
{CASSANDRA_PASS}';"
DB_QUERY="cqlsh ${CASSANDRA_ADDR} -u cassandra -p cassandra -e \"${CQL_QUERY}\""
juju ssh contrail-controller/0 "sudo docker exec contrail-controller ${DB_QUERY}"

20. Verify if Contrail user is available on other controller nodes.

CASSANDRA_ADDR=`juju ssh contrail-controller/0 sudo docker exec contrail-controller ss -l |
grep 9041 | awk '{print $5}' | sed -e 's/:/ /'`
CASSANDRA_PASS=`juju ssh contrail-controller/0 sudo docker exec contrail-controller
cat /etc/contrail/contrail-api.conf | grep cassandra_password | sed -e 's/^.*=[]*//'| sed -
e 's/\r//g'`
CQL_QUERY="list roles;"
DB_QUERY="cqlsh ${CASSANDRA_ADDR} -u cassandra -p cassandra -e '${CQL_QUERY}'"
juju ssh contrail-controller/0 "sudo docker exec contrail-controller ${DB_QUERY}"

If you don’t see Contrail user created on these nodes, check replication factor for system_auth
keyspace on all the controller nodes.

503

21. Check replication factor by one of the following methods:

• Using nodetool command.

juju ssh 1 sudo docker exec contrail-controller nodetool status

The output must show that each node owns 100% of tokens and partitions.

• Querying Cassandra db.

CASSANDRA_ADDR=`juju ssh contrail-controller/0 sudo docker exec contrail-controller ss -
l | grep 9041 | awk '{print $5}' | sed -e 's/:/ /'`
CASSANDRA_PASS=`juju ssh contrail-controller/0 sudo docker exec contrail-controller
cat /etc/contrail/contrail-api.conf | grep cassandra_password | sed -e 's/^.*=[]*//'|
sed -e 's/\r//g'`
CQL_QUERY="select * from system_schema.keyspaces;"
DB_QUERY="cqlsh ${CASSANDRA_ADDR} -u controller -p ${CASSANDRA_PASS} -e '${CQL_QUERY}'"
juju ssh contrail-controller/0 "sudo docker exec contrail-controller ${DB_QUERY}"
deployer@infra1:~$ juju ssh contrail-controller/0 "sudo docker exec contrail-controller $
{DB_QUERY}"

 keyspace_name | durable_writes | replication
----------------------+----------------
+---
 system_auth | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 system_schema | True | {'class':
'org.apache.cassandra.locator.LocalStrategy'}
 svc_monitor_keyspace | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 to_bgp_keyspace | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 system_distributed | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 system | True | {'class':
'org.apache.cassandra.locator.LocalStrategy'}
 config_db_uuid | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 dm_keyspace | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}
 system_traces | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '2'}

504

 useragent | True | {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}

(10 rows)

The system_auth parameter must have replication_factor of 3.

If the replication_factor is not set to 3, run the following commands:

CQL_QUERY="ALTER KEYSPACE system_auth WITH replication = {'class':
'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'};"
DB_QUERY="cqlsh ${CASSANDRA_ADDR} -u controller -p ${CASSANDRA_PASS} -e \"${CQL_QUERY}\""
juju ssh contrail-controller/0 "sudo docker exec contrail-controller ${DB_QUERY}"

22. Restart Contrail services on all the controller nodes.

for i in contrail-svc-monitor contrail-dns contrail-device-manager contrail-schema contrail-
api contrail-config-nodemgr contrail-control-nodemgr contrail-control; do for j in 1 2 3;
do juju ssh $j sudo docker exec contrail-controller systemctl start $i; done; done
for i in contrail-topology contrail-analytics-nodemgr contrail-snmp-collector contrail-
alarm-gen; do for j in 1 2 3; do juju ssh $j sudo docker exec contrail-analytics systemctl
start $i; done; done
for i in datastax-agent confluent-kafka; do for j in 1 2 3; do juju ssh $j sudo docker exec
contrail-analyticsdb systemctl start $i; done; done
for i in contrail-collector contrail-analytics-api redis-server contrail-query-engine; do
for j in 1 2 3; do juju ssh $j sudo docker exec contrail-analytics systemctl start $i;
done; done

23. On each controller node, enter the contrail-status command to confirm that services are in the
active or backup state.

for i in `juju status | grep -e "^contrail-.[a-z]*\/" | awk '{print $1}' | sed -e 's/
//'`; do echo "----- $i -----"; TMP=`echo $i | sed -e 's/\/.//'`; juju ssh $i sudo
docker exec ${TMP} contrail-status; done

24. Restart Juju agents for contrail-controller, contrail-analytics and contrail-analyticsdb applications.

for i in `juju status contrail-controller | grep '^contrail-controller\/' | awk '{print
$1}' | sed -e 's/^contrail-controller\///'`; do juju ssh contrail-controller/$i sudo

505

systemctl start jujud-unit-contrail-controller-$i jujud-unit-contrail-analytics-$i jujud-
unit-contrail-analyticsdb-$i; done

25. Check Zookeeper status.

juju ssh 1 sudo docker exec contrail-controller /usr/share/zookeeper/bin/zkCli.sh ls /

26. Check the log files on all the controller nodes for any errors.

27. Check the database using db_manage.py script.

juju ssh 1 sudo docker exec contrail-controller python /tmp/db_manage.py check
root(controller):~# python db_manage.py check
2020-06-15 20:25:29,714 INFO: (v1.31) Checker check_zk_mode_and_node_count: Success
2020-06-15 20:25:30,095 INFO: (v1.31) Checker check_cassandra_keyspace_replication: Success
2020-06-15 20:25:31,025 INFO: (v1.31) Checker check_obj_mandatory_fields: Success
2020-06-15 20:25:32,537 INFO: (v1.31) Checker check_orphan_resources: Success
2020-06-15 20:25:33,963 INFO: (v1.31) Checker check_fq_name_uuid_match: Success
2020-06-15 20:25:33,963 WARNING: Be careful, that check can return false positive errors if
stale FQ names and stale resources were not cleaned before. Run at least commands
'clean_obj_missing_mandatory_fields', 'clean_orphan_resources' and 'clean_stale_fq_names'
before.
2020-06-15 20:25:34,707 INFO: (v1.31) Checker check_duplicate_fq_name: Success
2020-06-15 20:25:34,776 INFO: (v1.31) Checker
check_route_targets_routing_instance_backrefs: Success
2020-06-15 20:25:35,384 INFO: (v1.31) Checker check_subnet_uuid: Success
2020-06-15 20:25:35,830 INFO: (v1.31) Checker check_subnet_addr_alloc: Success
2020-06-15 20:25:36,216 INFO: (v1.31) Checker check_route_targets_id: Success
2020-06-15 20:25:36,261 INFO: (v1.31) Checker check_virtual_networks_id: Success
2020-06-15 20:25:36,315 INFO: (v1.31) Checker check_security_groups_id: Success

506

3
PART

Configuring Contrail

Configuring Virtual Networks | 508

Example of Deploying a Multi-Tier Web Application Using Contrail | 559

Configuring Services | 574

Configuring Service Chaining | 606

Examples: Configuring Service Chaining | 658

Adding Physical Network Functions in Service Chains | 701

Configuring High Availability | 711

QoS Support in Contrail | 726

Load Balancers | 743

Optimizing Contrail | 766

CHAPTER 12

Configuring Virtual Networks

IN THIS CHAPTER

Creating Projects in OpenStack for Configuring Tenants in Contrail | 508

Creating a Virtual Network with Juniper Networks Contrail | 510

Creating a Virtual Network with OpenStack Contrail | 514

Creating an Image for a Project in OpenStack Contrail | 516

Creating a Floating IP Address Pool | 520

Using Security Groups with Virtual Machines (Instances) | 522

Security Policy Enhancements | 526

Support for IPv6 Networks in Contrail | 545

Configuring EVPN and VXLAN | 549

Creating Projects in OpenStack for Configuring Tenants in Contrail

In Contrail, a tenant configuration is called a project. A project is created for each set of virtual machines
(VMs) and virtual networks (VNs) that are configured as a discrete entity for the tenant.

Projects are created, managed, and edited at the OpenStack Projects page.

1. Click the Admin tab on the OpenStack dashboard, then click the Projects link to access the Projects
page; see Figure 91 on page 509.

508

Figure 91: OpenStack Projects

2. In the upper right, click the Create Project button to access the Add Project window; see Figure 92
on page 509.

Figure 92: Add Project

3. In the Add Project window, on the Project Info tab, enter a Name and a Description for the new
project, and select the Enabled check box to activate this project.

509

4. In the Add Project window, select the Project Members tab, and assign users to this project.
Designate each user as admin or as Member.

As a general rule, one person should be a super user in the admin role for all projects and a user with
a Member role should be used for general configuration purposes.

5. Click Finish to create the project.

Refer to OpenStack documentation for more information about creating and managing projects.

RELATED DOCUMENTATION

Creating a Virtual Network with Juniper Networks Contrail

Creating a Virtual Network with OpenStack Contrail

OpenStack documentation

Creating a Virtual Network with Juniper Networks Contrail

Contrail makes creating a virtual network very easy for a self-service user. You create networks and
network policies at the user dashboard, then associate policies with each network. The following
procedure shows how to create a virtual network when using Juniper Networks Contrail.

1. You need to create an IP address management (IPAM) for your project for to create a virtual network.
Select Configure > Networking > IP Address Management, then click the Create button.

The Add IP Address Management window appears, see Figure 93 on page 511.

510

http://docs.openstack.org/

Figure 93: Add IP Address Management

2. Complete the fields in Add IP Address Management: The fields are described in Table 33 on page
511.

Table 33: Add IP Address Management Fields

Field Description

Name Enter a name for the IPAM you are creating.

DNS Method Select from a list the domain name server method for this IPAM: Default, Virtual DNS,
Tenant, or None.

NTP Server IP Enter the IP address of an NTP server to be used for this IPAM.

Domain Name Enter a domain name to be used for this IPAM.

3. Select Configure > Networking > Networks to access the Configure Networks page; see Figure 94 on
page 512.

511

Figure 94: Configure Networks

4. Verify that your project is displayed as active in the upper-right field, then click the

icon. The Create Network window is displayed. See Figure 95 on page 512. Use the scroll bar to
access all sections of this window.

Figure 95: Create Network

5. Complete the fields in the Create Network window with values that identify the network name,
network policy, and IP options as needed. See field descriptions in Table 34 on page 513.

512

Table 34: Create Network Fields

Field Description

Name Enter a name for the virtual network you are creating.

Network
Policy

Select the policy to be applied to this network from the list of available policies. You can
select more than one policy by clicking each one needed.

Subnets Use this area to identify and manage subnets for this virtual network. Click the + icon to
open fields for IPAM, CIDR, Allocation Pools, Gateway, DNS, and DHCP. Select the subnet
to be added from a drop down list in the IPAM field. Complete the remaining fields as
necessary. You can add multiple subnets to a network. When finished, click the + icon to
add the selections into the columns below the fields. Alternatively, click the - icon to
remove the selections.

Host Routes Use this area to add or remove host routes for this network. Click the + icon to open fields
where you can enter the Route Prefix and the Next Hop. Click the + icon to add the
information, or click the - icon to remove the information.

Advanced
Options

Use this area to add or remove advanced options, including identifying the Admin State as
Up or Down, to identify the network as Shared or External, to add DNS servers, or to define
a VxLAN Identifier.

Floating IP
Pools

Use this area to identify and manage the floating IP address pools for this virtual network.
Click the + icon to open fields where you can enter the Pool Name and Projects. Click the +
icon to add the information, or click the - icon to remove the information.

Route Target Move the scroll bar down to access this area, then specify one or more route targets for this
virtual network. Click the + icon to open fields where you can enter route target identifiers.
Click the + icon to add the information, or click the - icon to remove the information.

6. To save your network, click the Save button, or click Cancel to discard your work and start over.

Now you can create a network policy, see Creating a Network Policy—Juniper Networks Contrail.

RELATED DOCUMENTATION

Creating an Image for a Project in OpenStack Contrail

513

https://www.juniper.net/documentation/en_US/contrail/topics/task/configuration/creating-policies-juniper-vnc.html

Creating a Virtual Network with OpenStack Contrail

Contrail makes creating a virtual network very easy for you. You create networks and network policies at
the user dashboard, then associate policies with each network. The following procedure shows how to
create a virtual network when using OpenStack.

1. To create a virtual network when using OpenStack Contrail, select Project > Other > Networking. The
Networks window is displayed. See Figure 96 on page 514.

Figure 96: Networks Window

2. Verify that the correct project is displayed in the Current Project box, then click Create Network. The
Create Network window is displayed. See Figure 97 on page 514 and Figure 98 on page 515.

Figure 97: Create Network Window

514

Figure 98: Create Network Window Subnet Tab

3. Click the Network, Subnet, Subnet Detail, and Associate Network Policies tabs to complete the fields
in the Create Network window. See field descriptions in Table 35 on page 515.

Table 35: Create Network Fields

Field Description

Network Name Enter a name for the network.

Subnet Name Enter a name for the subnetwork.

515

Table 35: Create Network Fields (Continued)

Field Description

IPAM Select the IPAM associated with the IP block.

For new projects, an IPAM can be added while creating the virtual network. VM instances
created in this virtual network are assigned an address from this address block
automatically by the system when a VM is launched.

Network Address Enter the network address in CIDR format.

IP Version* Select IPv4 or IPv6.

Gateway IP Optionally, enter an explicit gateway IP address for the IP address block. Check the
Disable Gateway box if no gateway is to be used.

Network Policy Any policies already created are listed. To select a policy, click the check box for the
policy.

4. Click the Subnet Details tab to specify the Allocation Pool, DNS Name Servers, and Host Routes.

5. Click the Associate Network Policies tab to associate policies to the network.

6. To save your network, click Create Network, or click Cancel to discard your work and start over.

Creating an Image for a Project in OpenStack Contrail

To specify an image to upload to the Image Service for a project in your system by using the OpenStack
dashboard:

1. In OpenStack, select Project > Compute > Images. The Images window is displayed. See Figure 99 on
page 517.

516

Figure 99: OpenStack Images Window

2. Make sure you have selected the correct project to which you are associating an image.

3. Click Create Image.

The Create An Image window is displayed. See Figure 100 on page 518.

517

Figure 100: OpenStack Create An Image Window

518

4. Complete the fields to specify your image. Table 36 on page 519 describes each of the fields on the
window.

NOTE: Only images available through an HTTP URL are supported, and the image location
must be accessible to the Image Service. Compressed image binaries are supported (*.zip and
*.tar.gz).

Table 36: Create an Image Fields

Field Description

Name Enter a name for this image.

Description Enter a description for the image.

Image Source Select Image File or Image Location.

If you select Image File, you are prompted to browse to the local
location of the file.

Image Location Enter an external HTTP URL from which to load the image. The
URL must be a valid and direct URL to the image binary. URLs that
redirect or serve error pages result in unusable images.

Format Required field. Select the format of the image from a list:
AKI– Amazon Kernel Image
AMI– Amazon Machine Image
ARI– Amazon Ramdisk Image
ISO– Optical Disk Image
QCOW2– QEMU Emulator
Raw– An unstructured image format
VDI– Virtual Disk Imade
VHD– Virtual Hard Disk
VMDK– Virtual Machine Disk

Architecture Enter the architecture.

519

Table 36: Create an Image Fields (Continued)

Field Description

Minimum Disk (GB) Enter the minimum disk size required to boot the image. If you do
not specify a size, the default is 0 (no minimum).

Minimum Ram (MB) Enter the minimum RAM required to boot the image. If you do not
specify a size, the default is 0 (no minimum).

Public Select this check box if this is a public image. Leave unselected for
a private image.

Protected Select this check box for a protected image.

5. When you are finished, click Create Image.

Creating a Floating IP Address Pool

A floating IP address is an IP address (typically public) that can be dynamically assigned to a running
virtual instance.

To configure floating IP address pools in project networks in Contrail, then allocate floating IP addresses
from the pool to virtual machine instances in other virtual networks:

1. Select Configure > Networking > Networks; see Figure 101 on page 521. Make sure your project is
the active project in the upper right.

520

Figure 101: Configure > Networking > Networks

2. Click the network you want to associate with a floating IP pool, then in the Action column, click the
action icon and select Edit.

The Edit Network window for the selected network is displayed; see Figure 102 on page 521.

Figure 102: Edit Network

3. In the Floating IP Pools section, click the Pool Name field, enter a name for your floating IP pool, and
click the + (plus sign) to add the IP pool to the table below the field.

• Multiple floating IP pools can be created at the same time.

521

• A floating IP pool can be associated with multiple projects.

4. Click Save to create the floating IP address pool, or click Cancel to remove your work and start over.

Using Security Groups with Virtual Machines (Instances)

IN THIS SECTION

Security Groups Overview | 522

Creating Security Groups and Adding Rules | 522

Security Groups Overview

A security group is a container for security group rules. Security groups and security group rules allow
administrators to specify the type of traffic that is allowed to pass through a port. When a virtual
machine (VM) is created in a virtual network (VN), a security group can be associated with the VM when
it is launched. If a security group is not specified, a port is associated with a default security group. The
default security group allows both ingress and egress traffic. Security rules can be added to the default
security group to change the traffic behavior.

Creating Security Groups and Adding Rules

A default security group is created for each project. You can add security rules to the default security
group and you can create additional security groups and add rules to them. The security groups are then
associated with a VM, when the VM is launched or at a later date.

To add rules to a security group:

1. From the OpenStack interface, click the Project tab, select Access & Security, and click the Security
Groups tab.

Any existing security groups are listed under the Security Groups tab, including the default security
group; see Figure 103 on page 523.

522

Figure 103: Security Groups

2. Select the default-security-group and click Edit Rules in the Actions column.

The Edit Security Group Rules window is displayed; see Figure 104 on page 523. Any rules already
associated with the security group are listed.

Figure 104: Edit Security Group Rules

3. Click Add Rule to add a new rule; see Figure 105 on page 524.

523

Figure 105: Add Rule

Table 37: Add Rule Fields

Column Description

IP Protocol Select the IP protocol to apply for this rule: TCP, UDP, ICMP.

From Port Select the port from which traffic originates to apply this rule. For TCP and UDP, enter a single
port or a range of ports. For ICMP rules, enter an ICMP type code.

To Port The port to which traffic is destined that applies to this rule, using the same options as in the
From Port field.

524

Table 37: Add Rule Fields (Continued)

Column Description

Source Select the source of traffic to be allowed by this rule. Specify subnet—the CIDR IP address or
address block of the inter-domain source of the traffic that applies to this rule, or you can
choose security group as source. Selecting security group as source allows any other instance in
that security group access to any other instance via this rule.

4. Click Create Security Group to create additional security groups.

The Create Security Group window is displayed; see Figure 106 on page 525.

Each new security group has a unique 32-bit security group ID and an ACL is associated with the
configured rules.

Figure 106: Create Security Group

5. When an instance is launched, there is an opportunity to associate a security group; see Figure 107
on page 526.

In the Security Groups list, select the security group name to associate with the instance.

525

Figure 107: Associate Security Group at Launch Instance

6. You can verify that security groups are attached by viewing the SgListReq and IntfReq associated with
the agent.xml.

Security Policy Enhancements

IN THIS SECTION

Overview of Existing Network Policy and Security Groups in OpenStack and Contrail | 527

Security Policy Enhancements | 527

Using Tags and Configuration Objects to Enhance Security Policy | 528

Configuration Objects | 529

Using the Contrail Web User Interface to Manage Security Policies | 535

526

Overview of Existing Network Policy and Security Groups in OpenStack and Contrail

OpenStack tenant networks are isolated, and by default, cannot communicate with other networks.
Virtual networks within a tenant require a Neutron router for connectivity, which provides a way to
isolate and segment traffic between networks. Each tenant is isolated from other tenants.

Contrail network policy provides security between networks by allowing and denying certain traffic.
Contrail network policy also provides connectivity between virtual networks.

OpenStack security groups allow access between workloads and instances for specified traffic types and
any other types are denied.

A security policy model for any given customer first needs to map to the OpenStack and Contrail
network policy framework and security group constructs.

Customer deployments may contain entities with multiple dimensions, such as multiple deployments,
multiple applications, multiple tiers, and so on. A security policy model might contain many ways of
cross-cutting those dimensions to control traffic among workloads.

A user might want to segregate traffic on different categories, such as the following examples:

• Site---country, city, rack, or region, or all together country/city/rack or another arbitrary way of
dividing place

• OS---a user might want to communicate among same OSs

• Environment---modeling, testing, production

• Application---HR, Salesforce app, oracle ordering app

• Workload type---low sensitivity, financial, or personal identifiable information

• Application Tier---web tier, database tier

• Many more possibilities for needing to segregate traffic.

Additionally, a user might need to cross section between segregation categories, which is hard to
express with existing network policy and security group constructs. As a user requires more and
different ways to segregate traffic, the number of security groups required explodes.

Security Policy Enhancements

As the Contrail environment has grown and become more complex, it has become harder to achieve
desired security results with the existing network policy and security group constructs. The Contrail
network policies have been tied to routing, making it difficult to express security policies for
environments such as cross sectioning between categories, or having a multi-tier application supporting
development and production environment workloads with no cross environment traffic.

527

Contrail 4.1 addresses limitations of the current network policy and security group constructs by
supporting decoupling of routing from security policies, multidimension segmentation, and policy
portability. This release also enhances user visibility and analytics functions for security.

Contrail 4.1 introduces new firewall security policy objects, including the following enhancements:

• Routing and policy decoupling—introducing new firewall policy objects, which decouples policy from
routing.

• Multidimension segmentation—segment traffic and add security features, based on multiple
dimensions of entities, such as application, tier, deployment, site, usergroup, and so on.

• Policy portability—security policies can be ported to different environments, such as ‘from
development to production’, ‘from pci-complaint to production’, ‘to bare metal environment’ and ‘to
container environment’.

• Visibility and analytics

Using Tags and Configuration Objects to Enhance Security Policy

In Contrail 4.1, tags and configuration objects are used to create new firewall policy objects that
decouple routing and network policies, enabling multidimension segmentation and policy portability.

Multidimension traffic segmentation helps you segment traffic based on dimensions such as application,
tier, deployment, site, and usergroup.

You can also port security policies to different environments. Portability of policies are enabled by
providing match conditions for tags. Match tags must be added to the policy rule to match tag values of
source and destination workloads without mentioning tag values. For example, in order for the ‘allow
protocol tcp source application-tier=web destination application-tier=application match application and site’ rule
to take effect, the application and site values must match.

NOTE: Contrail supports up to 32 tag types.

Predefined Tags

You can choose predefined tags based on the environment and deployment requirements.

Predefined tags include:

• application

• application-tier

• deployment

528

• site

• label (a special tag that allows the user to label objects)

Example Tag Usage

application = HRApp application-tier = Web site = USA

Implicit Tags

You can add implicit tags to an existing environment by configuring the tags manually or by adding them
as part of provisioning.

Implicit tags include:

• compute node

• rack

• pod

• cluster

• dc

Tagging Objects

A user can tag the objects project, VN, VM, and VMI with tags and values to map their security
requirements. Tags follow the hierarchy of project, VN, VM and VMI and are inherited in that order. This
gives an option for the user to provide default settings for any tags at any level. Policies can specify their
security in terms of tagged endpoints, in addition to expressing in terms of ip prefix, network, and
address groups endpoints.

Policy Application

Policy application is a new object, implemented by means of the application tag. The user can create a
list of policies per application to be applied during the flow acceptance evaluation. Introducing global
scoped policies and project scoped policies. There are global scoped policies, which can be applied
globally for all projects, and project scoped policies, which are applied to specific projects.

Configuration Objects

The following are the configuration objects for the new security features.

• firewall-policy

529

• firewall-rule

• policy-management

• application-policy

• service-group

• address-group

• tag

• global-application-policy

Configuration Object Tag Object

Each configuration object tag object contains:

• tag—one of the defined tag types, stored as string.

• value—a string

• description—a string to describe the tag

• configuration_id—a 32-bit value: 5 bits for tag types, 27 bits for tag values

Each value entered by the user creates a unique ID that is set in the tag_id field. The system can have up
to 64 million tag values. On average, each tag can have up to 2k values, but there are no restrictions per
tag.

Tags and labels can be attached to any object, for example, project, VN, VM, VMI, and policy, and these
objects have a tag reference list to support multiple tags.

RBAC controls the users allowed to modify or remove attached tags. Some tags (typically facts) are
attached by the system by default or by means of introspection.

Tag APIs

Tag APIs are used to give RBAC per tag in any object (VMI, VM, Project ….).

• REST: HTTP POST to /set_tag_<tag_type>/<obj_uuid>

• Python: set_tag_<tag_type> (object_type, object_uuid, tag_value)

Configuration also supports the following APIs:

• tag query

• tags (policy)

530

• tags (application tag)

• object query

• tags (object)

• tags (type, value)

Label

Label is special tag type, used to assign labels for objects. All of the tag constructs are valid, except that
tag type is ‘label'. One difference from other tags is that an object can have any number of labels. All
other tag types are restricted to one tag per object.

The following APIs are available for labels.

• REST: HTTP POST to /add_tag_label/<obj_uuid>

• REST: HTTP POST to /delete_tag_label/<obj_uuid>

• Python: add_tag_label (object_type, object_uuid, tag_value)

• Python: delete_tag_label (object_type, object_uuid, tag_value)

Local and Global Tags

Tags can be defined globally or locally under a project; tag objects are children of either config-root or a
project. An object can be tagged with a tag in its project or with a globally-scoped tag.

Analytics

When given a tag query with a SQL where clause and select clause, analytics should give out objects.
The query can also contain labels, and the labels can have different operators.

Example:

User might want to know: a list of VMIs where ’site == USA and deployment == Production'

list of VMIs where ’site == USA and deployment == Production has ’

Given tag SQL where clause and select clause, analytics should give out flows.

Control Node

The control node passes the tags, along with route updates, to agents and other control nodes.

531

Agent

Agent gets attached tags along with configuration objects. Agent also gets route updates containing tags
associated with IP route. This process is similar to getting security group IDs along with the route
update.

Address-Group Configuration Object

There are multiple ways to add IP address to address-group.

• Manually add IP prefixes to the address-group by means of configuration.

• Label a work load with the address-group’s specified label. All ports that are labelled with the same
label are considered to be part of that address-group.

• Use introspect workloads, based on certain criteria, to add ip-address to address-group.

Configuration

The address-group object refers to a label object, description, and list of IP prefixes. The label - object is
created using the tag APIs.

Agent

Agent gets address-group and label objects referenced in policy configuration. Agent uses this address
group for matching policy rules.

Analytics

When given address group label, analytics gets all the objects associated with it. Given address group
label, get all the flows associated with it.

Service-Group Configuration Object

Configuration

The service-group contains a list of ports and protocols. The open stack service-group has a list of
service objects; the service object contains attributes: id, name, service group id, protocol, source_port,
destination_port, icmp_code, icmp_type, timeout, tenant id.

Agent

Agent gets service-group object as it is referred to in a policy rule. Agent uses this service group during
policy evaluation.

532

Application-policy-set Configuration Object

The application-policy-set configuration object can refer to a tag of type application, network-policy
objects, and firewall-policy objects. This object can be local (project) or globally scoped.

When an application tag is attached to an application-policy-set object, the policies referred by that
object are automatically applied to the ports that have the same application tag.

Any firewall-policies referred by the application-policy-set objects are ordered using sequence numbers.
If the same application tag is attached to multiple application-policy-sets, all those sets will apply, but
order among those sets is undefined.

One application-policy-set (called default-policy-application-set) is special in that policies referred by it
are applied to all interfaces by default, after applying policies referred to other application-policy-sets.

Upon seeing the application tag for any object, the associated policies are sent to agent. Agent will use
this information to find out the list of policies to be applied and their sequence during flow evaluation.
User can attach application tag to allowed objects (Project, VN, VM or VMI).

Policy-management Configuration Object

Policy-management is a global container object for all policy-related configuration.

Policy-management object contains

• network-policies (NPs)

• firewall-policies (FWPs)

• application-policy-sets

• global-policy objects

• global-policy-apply objects

• NPs - List of contrail networking policy objects

• FWPs - List of new firewall policy objects

• Application-policies - List of Application-policy objects

• Global-policies - List of new firewall policy objects, that are defined for global access

• Global-policy-apply - List of global policies in a sequence, and these policies applied during flow
evaluation.

• Network Policies (NP) references are available, as they are today.

533

Firewall-policy Configuration Object

Firewall-policy is a new policy object that contains a list of firewall-rule-objects and audited flag.
Firewall-policy can be project or global scoped depending on usage. Includes an audited Boolean flag to
indicate that the owner of the policy indicated that the policy is audited. Default is False, and will have
to explicitly be set to True after review. Generates a log event for audited with timestamp and user
details.

Firewall-rule Configuration Object

Firewall-rule is a new rule object, which contains the following fields. The syntax is to give information
about their layout inside the rule.

• <sequence number>
There is a string object sequence number on the link from firewall-policy to firewall-policy-rule
objects. The sequence number decides the order in which the rules are applied.

• [< id >]

uuid

• [name < name >]

Unique name selected by user

• [description < description >]

• public

• {permit | deny}

• [protocol {< protocol-name > | any } destination-port { < port range > | any } [source-port { < port
range > | any}]] | service-group < name >

• endpoint-1 { [ip < prefix >] | [virtual-network < vnname >] | [address-group < group name >] | [tags
T1 == V1 && T2 == V2 … && Tn == Vn && label == label name...] | any}

• { -> | <- | <-> }

Specifies connection direction. All the rules are connection oriented and this option gives the
direction of the connection.

• endpoint-2 { [ip < prefix >] | [virtual-network < vnname >] | [address-group < group name >] | [tags
T1 == V1 && T2 == V2 … && Tn == Vn && label == label name...] | any }

534

Tags at endpoints support an expression of tags. We support only ‘==‘ and ‘&&’ operators. User can
specify labels also as part the expression. Configuration object contains list of tag names (or
global:tag-name in case of global tags) for endpoints.

• [match_tags {T1 …. Tn} | none}]

List of tag types or none. User can specify either match with list of tags or none. Match with list of
tags mean, source and destination tag values should match for the rule to take effect.

• [timer < start-time > < limit >]

• [log| mirror | alert | activate | drop | reject | sdrop]

complex actions

• { enable | disable }

A boolean flag to indicate the rule is enabled or disabled. Facilitates selectively turn off the rules,
without remove the rule from the policy. Default is True.

• filter

Compilation of Rules

Whenever the API server receives a request to create/update a firewall policy rule object, it analyzes the
object data to make sure that all virtual-networks, address-group, tag objects exist. If any of them do not
exist, the request will be rejected. In addition, it will actually create a reference to those objects
mentioned in the two endpoints. This achieves two purposes. First, we don't allow users to name non-
existent objects in the rule and second, the user is not allowed to delete those objects without first
removing them from all rules that are referring to them.

Using the Contrail Web User Interface to Manage Security Policies

Adding Security Policies

1. To add a security policy, go to Configure > Security > Global Policies. Near the upper right, click the
button Firewall Policy Wizard. The Firewall Policy Wizard appears, where you can create your new
firewall policy by adding or selecting an application policy set. See Figure 108 on page 536.

535

Figure 108: Firewall Policy Wizard

2. Click the large + on the Firewall Policy Wizard screen to view the Application Policy Sets window.
The existing application policy sets are displayed. See Figure 109 on page 536.

Figure 109: Application Policy Sets

3. To create a new firewall policy, click the application policy set in the list to which the new firewall
policy will belong. The Edit Application Policy Sets window appears, displaying a field for the
description of the selected policy set and listing firewall policies associated with the set. See Figure
110 on page 537, where the HRPolicySet has been selected.

536

Figure 110: Edit Application Policy Sets

4. To view all firewall policies, click the Application Policy Sets link in the left side.

See Figure 111 on page 537.

Figure 111: All Firewall Policies

5. Select any listed firewall policy to view or edit the rules associated with that policy. See Figure 112
on page 538, where all the rules for the AdminPolicy are listed. Use the dropdown menus in each

537

field to add or change policy rules, and use the +, - icons to the right of each rule to add or delete the
rule.

Figure 112: Firewall Policy Rules

Managing Policy Tags

You can use the Contrail web user interface to create and manage the tags used to provide granularity to
security policies. You can have global tags, applicable to the entire system, or project tags, defined for
specific uses in specific projects.

1. To manage policy tags, go to Configure > Tags > Global Tags. The Tags window appears, listing all of
the tags in use in the system, with the associated virtual networks, ports, and projects for each tag.
Tags are defined first by type, such as application, deployment, site, tier, and so on. See Figure 113 on
page 539.

538

Figure 113: Tags

2. You can click through any listed tag to see the rules to which the tag is applied. See Figure 114 on
page 539, which shows the application tags that are applied to the current application sets. You can
also reach this page from Configure > Security > Global Policies.

Figure 114: View Application Tags

Viewing Global Policies

From Configure > Security > Global Policies, in addition to viewing the policies includes in application
policy sets, you can also view all firewall policies, all service groups policies, and all address groups
policies.

539

1. To view and manage the global firewall policies, from Configure > Security > Global Policies, click the
Firewall Policies tab to view the details for system firewall policies, see Figure 115 on page 540

Figure 115: Firewall Policies

2. To view and manage the service groups policies, from Configure > Security > Global Policies, click the
Service Groups tab to view the details for system policies for service groups, see Figure 116 on page
540.

Figure 116: Service Groups

540

Visualizing Traffic Groups

Use Monitor > Security > Traffic Groups to explore visual representations of how policies are applied to
traffic groups. See Figure 117 on page 541, which is a visual representation of the source and
destination traffic for the past one hour of a traffic group named Traffic Groups. The outer circle
represents traffic tagged with application, deployment, or project. The inner circle represents traffic
tagged with tier. The center of the circle shows the traffic origination and destination.

Figure 117: Traffic Groups

You can click in the right side of the screen to get details of the policy rules that have been matched by
the selected traffic. See Figure 118 on page 542.

541

Figure 118: Traffic Groups, Policy Details

You can click in the right side of the screen to get to the Settings window, where you can change the
type of view and change which items appear in the visual representation. See Figure 119 on page 543.

542

Figure 119: Traffic Groups, Settings

You can click on the name of a policy that has been matched to view the endpoint statistics, including
source tags and remote tags, of the traffic currently represented in the visual. See Figure 120 on page
543.

Figure 120: Traffic Groups, Endpoint Statistics

543

You can click deeper through any linked statistic to view more details about that statistic, see Figure 122
on page 544 and Figure 122 on page 544.

Figure 121: Traffic Groups, Details

Figure 122: Traffic Groups, Details

You can change the settings of what statistics are displayed in each traffic group at the Traffic Groups
Settings screen see Figure 123 on page 545.

544

Figure 123: Traffic Groups Settings

Support for IPv6 Networks in Contrail

IN THIS SECTION

Overview: IPv6 Networks in Contrail | 545

Creating IPv6 Virtual Networks in Contrail | 546

Adding IPv6 Peers | 548

Starting with Contrail Release 2.0, support for IPv6 overlay networks is provided.

Overview: IPv6 Networks in Contrail

The following features are supported for IPv6 networks and overlay. The underlay network must be
IPv4.

• Virtual machines with IPv6 and IPv4 interfaces

545

• Virtual machines with IPv6-only interfaces

• DHCPv6 and neighbor discovery

• Policy and Security groups

• IPv6 flow set up, tear down, and aging

• Flow set up and tear down based on TCP state machine

• Protocol-based flow aging

• Fat flow

• Allowed address pair configuration with IPv6 addresses

• IPv6 service chaining

• Equal Cost Multi-Path (ECMP)

• Connectivity with gateway (MX Series device)

• Virtual Domain Name Services (vDNS), name-to-IPv6 address resolution

• User-Visible Entities (UVEs)

NOT present is support for the following:

• Source Network Address Translation (SNAT)

• Load Balancing as a Service (LBaaS)

• IPv6 fragmentation

• Floating IP

• Link-local and metadata services

• Diagnostics for IPv6

• Contrail Device Manager

• Virtual customer premises equipment (vCPE)

Creating IPv6 Virtual Networks in Contrail

You can create an IPv6 virtual network from the Contrail user interface in the same way you create an
IPv4 virtual network. When you create a new virtual network by selecting Configure > Networking >
Networks, the Edit fields accept IPv6 addresses, as shown in the following image.

546

Address Assignments

When virtual machines are launched with an IPv6 virtual network created in the Contrail user interface,
the virtual machine interfaces get assigned addresses from all the families configured in the virtual
network.

The following is a sample of IPv6 instances with address assignments, as listed in the OpenStack
Horizon user interface.

547

Enabling DHCPv6 In Virtual Machines

To allow IPv6 address assignment using DHCPv6, the virtual machine network interface configuration
must be updated appropriately.

For example, to enable DHCPv6 for Ubuntu-based virtual machines, add the following line in the /etc/
network/interfaces file:

iface eht0 inet6 dhcp

Also, dhclient -6 can be run from within the virtual machine to get IPv6 addresses using DHCPv6.

Adding IPv6 Peers

The procedure to add an IPv6 BGP peer in Contrail is similar to adding an IPv4 peer. Select Configure >
Infrastructure > BGP Peers, include inet6-vpn in the Address Family list to allow advertisement of IPv6
addresses.

A sample is shown in the following.

NOTE: Additional configuration is required on the peer router to allow inet6-vpn peering.

548

Configuring EVPN and VXLAN

IN THIS SECTION

Configuring the VXLAN Identifier Mode | 551

Configuring Forwarding | 553

Configuring the VXLAN Identifier | 554

Configuring Encapsulation Methods | 555

Contrail supports Ethernet VPNs (EVPN) and Virtual Extensible Local Area Networks (VXLAN).

EVPN is a flexible solution that uses Layer 2 overlays to interconnect multiple edges (virtual machines)
within a data center. Traditionally, the data center is built as a flat Layer 2 network with issues such as
flooding, limitations in redundancy and provisioning, and high volumes of MAC address learning, which
cause churn during node failures. EVPNs are designed to address these issues without disturbing flat
MAC connectivity.

In EVPNs, MAC address learning is driven by the control plane, rather than by the data plane, which
helps control learned MAC addresses across virtual forwarders, thus avoiding flooding. The forwarders
advertise locally learned MAC addresses to the controllers. The controllers use MP-BGP to
communicate with peers. The peering of controllers using BGP for EVPN results in better and faster
convergence.

With EVPN, MAC learning is confined to the virtual networks to which the virtual machine belongs, thus
isolating traffic between multiple virtual networks. In this manner, virtual networks can share the same
MAC addresses without any traffic crossover.

Unicast in EVPNs

Unicast forwarding is based on MAC addresses where traffic can terminate on a local endpoint or is
encapsulated to reach the remote endpoint. Encapsulation can be MPLS/UDP, MPLS/GRE, or VXLAN.

BUM Traffic in EVPN

Multicast and broadcast traffic is flooded in a virtual network. The replication tree is built by the control
plane, based on the advertisements of end nodes (virtual machines) sent by forwarders. Each virtual
network has one distribution tree, a method that avoids maintaining multicast states at fabric nodes, so
the nodes are unaffected by multicast. The replication happens at the edge forwarders. Per-group
subscription is not provided. Broadcast, unknown unicast, and multicast (BUM) traffic is handled the
same way, and gets flooded in the virtual network to which the virtual machine belongs.

549

VXLAN

VXLAN is an overlay technology that encapsulates MAC frames into a UDP header at Layer 2.
Communication is established between two virtual tunnel endpoints (VTEPs). VTEPs encapsulate the
virtual machine traffic into a VXLAN header, as well as strip off the encapsulation. Virtual machines can
only communicate with each other when they belong to the same VXLAN segment. A 24-bit virtual
network identifier (VNID) uniquely identifies the VXLAN segment. This enables having the same MAC
frames across multiple VXLAN segments without traffic crossover. Multicast in VXLAN is implemented
as Layer 3 multicast, in which endpoints subscribe to groups.

Design Details of EVPN and VXLAN

In Contrail Release 1.03 and later, EVPN is enabled by default. The supported forwarding modes include:

• Fallback bridging—IPv4 traffic lookup is performed using the IP FIB. All non-IPv4 traffic is directed to
a MAC FIB.

• Layer 2-only— All traffic is forwarded using a MAC FIB lookup.

You can configure the forwarding mode individually on each virtual network.

EVPN is used to share MAC addresses across different control planes in both forwarding models. The
result of a MAC address lookup is a next hop, which, similar to IP forwarding, points to a local virtual
machine or a tunnel to reach the virtual machine on a remote server. The tunnel encapsulation methods
supported for EVPN are MPLSoGRE, MPLSoUDP, and VXLAN. The encapsulation method selected is
based on a user-configured priority.

In VXLAN, the VNID is assigned uniquely for every virtual network carried in the VXLAN header. The
VNID uniquely identifies a virtual network. When the VXLAN header is received from the fabric at a
remote server, the VNID lookup provides the VRF of the virtual machine. This VRF is used for the MAC
lookup from the inner header, which then provides the destination virtual machine.

Non-IP multicast traffic uses the same multicast tree as for IP multicast (255.255.255.255). The
multicast is matched against the all-broadcast prefix in the bridging table (FF:FF:FF:FF:FF:FF). VXLAN is
not supported for IP/non-IP multicast traffic.

The following table summarizes the traffic and encapsulation types supported for EVPN.

Encapsulation

MPLS-GRE MPLS-UDP VXLAN

Traffic Type IP unicast Yes Yes No

550

IP-BUM Yes Yes No

non IP unicast Yes Yes Yes

non IP-BUM Yes Yes No

Configuring the VXLAN Identifier Mode

You can configure the global VXLAN identifier mode to select an auto-generated VNID or a user-
generated VXLAN ID, either through the Contrail Web UI or by modifying a python file.

To configure the global VXLAN identifier mode:

1. From the Contrail Web UI, select Configure > Infrastucture > Global Config.

The Global Config options and values are displayed in the Global Config window.

Figure 124: Global Config Window for VXLAN ID

2. Click the edit icon

.

The Edit Global Config window is displayed as shown in Figure 125 on page 552.

551

Figure 125: Edit Global Config Window for VXLAN Identifier Mode

3. Select one of the following:

• Auto Configured— The VXLAN identifier is automatically assigned for the virtual network.

• User Configured– You must provide the VXLAN identifier for the virtual network.

NOTE: When User Configured is selected, if you do not provide an identifier, then VXLAN
encapsulation is not used and the mode falls back to MPLS.

Alternatively, you can set the VXLAN identifier mode by using Python to modify the /opt/contrail/utils/
encap.py file as follows:

python encap.py <add | update | delete > <username > < password > < tenant_name > < config_node_ip >

552

Configuring Forwarding

In Contrail, the default forwarding mode is enabled for fallback bridging (IP FIB and MAC FIB). The mode
can be changed, either through the Contrail Web UI or by using python provisioning commands.

To change the forwarding mode:

1. From the Contrail Web UI, select Configure > Networking > Networks.

2. Select the virtual network that you want to change the forwarding mode for.

3. Click the gear icon

and select Edit.

The Edit Network window is displayed as shown in Figure 126 on page 553.

Figure 126: Edit Network Window

Under the Advanced Options select the forwarding mode from the following choices:

• Select Default to enable the default forwarding mode.

• Select L2 and L3 to enable IP and MAC FIB (fallback bridging).

• Select L2 Only to enable only MAC FIB.

• Select L3 Only to enable only IP.

553

NOTE: The full list of forwarding modes are only displayed if you change entries in the /usr/src/
contrail/contrail-web-core/config/config.global.js file. For example:

1. To make the L2 selection available locate the following:

config.network = {};
config.network.L2_enable = false;

2. Change the entry to the following:

config.network = {};
config.network.L2_enable = true;

3. To make the other selections available, modify the corresponding entries.

4. Save the file and quit the editor.

5. Restart the Contrail Web user interface process (webui).

Alternatively, you can use the following python provisioning command to change the forwarding mode:

python provisioning_forwarding_mode --project_fq_name 'defaultdomain: admin' --vn_name vn1 --forwarding_mode <
l2_l3| l2 >

Options:

l2_l3 = Enable IP FIB and MAC FIB (fallback bridging)

l2 = Enable MAC FIB only (Layer 2 only)

Configuring the VXLAN Identifier

The VXLAN identifier can be set only if the VXLAN network identifier mode has been set to User
Configured. You can then set the VXLAN ID by either using the Contrail Web UI or by using Python
commands.

To configure the global VXLAN identifier:

1. From the Contrail Web UI, select Configure > Networking > Networks.

2. Select the virtual network that you want to change the forwarding mode for.

554

3. Click the gear icon

and select Edit.

The Edit Network window is displayed. Select the Advanced Options as shown in Figure 127 on page
555.

Figure 127: Edit Network Window for VXLAN Identifier

4. Type the VXLAN identifier.

5. Click Save.

Alternatively, you can use the following Python provisioning command to configure the VXLAN
identifier:

python provisioning_forwarding_mode --project_fq_name 'defaultdomain: admin' --vn_name vn1 --forwarding_mode <
vxlan_id >

Configuring Encapsulation Methods

The default encapsulation mode for EVPN is MPLS over UDP. All packets on the fabric are encapsulated
with the label allocated for the virtual machine interface. The label encoding and decoding is the same as
for IP forwarding. Additional encapsulation methods supported for EVPN include MPLS over GRE and
VXLAN. MPLS over UDP is different from MPLS over GRE only in the method of tunnel header
encapsulation.

555

VXLAN has its own header and uses a VNID label to carry the traffic over the fabric. A VNID is assigned
with every virtual network and is shared by all virtual machines in the virtual network. The VNID is
mapped to the VRF of the virtual network to which it belongs.

The priority order in which to apply encapsulation methods is determined by the sequence of methods
set either from the Contrail Web UI or in the encap.py file.

To configure the global VXLAN identifier mode:

• From the Contrail Web UI, select Configure > Infrastucture > Global Config.

• The Global Config options are displayed.

• Click the edit icon

.

The Edit Global Config window is displayed as shown in Figure 128 on page 557.

556

Figure 128: Edit Global Config Window for Encapsulation Priority Order

Under Encapsulation Priority Order select one of the following:

• MPLS over UDP

• MPLS over GRE

• VxLAN

Click the + plus symbol to the right of the first priority to add a second priority or third priority.

Use the following procedure to change the default encapsulation method to VXLAN by editing the
encap.py file.

NOTE: VXLAN is only supported for EVPN unicast. It is not supported for IP traffic or multicast
traffic. VXLAN priority and presence in the encap.py file or configured in the Web UI is ignored
for traffic not supported by VXLAN.

To set the priority of encapsulation methods to VXLAN:

557

1. Modify the encap.py file found in the /opt/contrail/utils/ directory.

The default encapsulation line is:

encap_obj=EncapsulationPrioritiesType(encapsulation=['MPLSoUDP','M PLSoGRE'])

Modify the line to:

encap_obj=EncapsulationPrioritiesType(encapsulation=['VXLAN', 'MPLSoUDP','MPLSoGRE'])

2. After the status is modified, execute the following script:

python encap_set.py <add|update|delete> <username> <password> <tenant_name> <config_node_ip>

The configuration is applied globally for all virtual networks.

558

CHAPTER 13

Example of Deploying a Multi-Tier Web Application
Using Contrail

IN THIS CHAPTER

Example: Deploying a Multi-Tier Web Application | 559

Sample Network Configuration for Devices for Simple Tiered Web Application | 567

Example: Deploying a Multi-Tier Web Application

IN THIS SECTION

Multi-Tier Web Application Overview | 559

Example: Setting Up Virtual Networks for a Simple Tiered Web Application | 560

Verifying the Multi-Tier Web Application | 563

Sample Addressing Scheme for Simple Tiered Web Application | 563

Sample Physical Topology for Simple Tiered Web Application | 564

Sample Physical Topology Addressing | 565

Multi-Tier Web Application Overview

A common requirement for a cloud tenant is to create a tiered web application in leased cloud space.
The tenant enjoys the favorable economics of a private IT infrastructure within a shared services
environment. The tenant seeks speedy setup and simplified operations.

The following example shows how to set up a simple tiered web application using Contrail. The example
has a web server that a user accesses by means of a public floating IP address. The front-end web server
gets the content it serves to customers from information stored in a SQL database server that resides on
a back-end network. The web server can communicate directly with the database server without going

559

through any gateways. The public (or client) can only communicate to the web server on the front-end
network. The client is not allowed to communicate directly with any other parts of the infrastructure.
See Figure 129 on page 560.

Figure 129: Simple Tiered Web Use Case

Example: Setting Up Virtual Networks for a Simple Tiered Web Application

This example provides basic steps for setting up a simple multi-tier network application. Basic creation
steps are provided, along with links to the full explanation for each of the creation steps. Refer to the
links any time you need more information about completing a step.

1. Working with a system that has the Contrail software installed and provisioned, create a project
named demo.

For more information; see Creating Projects in OpenStack for Configuring Tenants in Contrail.

2. In the demo project, create three virtual networks:

a. A network named public with IP address 10.84.41.0/24

This is a special use virtual network for floating IP addresses— it is assigned an address block from
the public floating address pool that is assigned to each web server. The assigned block is the only
address block advertised outside of the data center to clients that want to reach the web services
provided.

560

b. A network named frontend with IP address 192.168.1.0/24

This network is the location where the web server virtual machine instances are launched and
attached. The virtual machines are identified with private addresses that have been assigned to
this virtual network.

c. A network named backend with IP address 192.168.2.0/24

This network is the location where the database server virtual machines instances are launched
and attached. The virtual machines are identified with private addresses that have been assigned
to this virtual network.

For more information; see Creating a Virtual Network with OpenStack Contrail or Creating a Virtual
Network with Juniper Networks Contrail.

3. Create a floating IP pool named public_pool for the public network within the demo project; see
Figure 130 on page 562.

561

Figure 130: Create Floating IP Pool

4. Allocate the floating IP pool public_pool to the demo project; see Figure 131 on page 562.

Figure 131: Allocate Floating IP

562

5. Verify that the floating IP pool has been allocated; see Configure > Networking > Allocate Floating
IPs.

6. Create a policy that allows any host to talk to any host using any IP address, protocol, and port, and
apply this policy between the frontend network and the backend network.

This now allows communication between the web servers in the front-end network and the database
servers in the back-end network.

7. Launch the virtual machine instances that represent the web server and the database server.

NOTE: Your installation might not include the virtual machines needed for the web server and
the database server. Contact your account team if you need to download the VMs for this
setup.

On the Instances tab for this project, select Launch Instance and for each instance that you launch,
complete the fields to make the following associations:

• Web server VM: select frontend network and the policy created to allow communication between
frontend and backend networks. Apply the floating IP address pool to the web server.

• Database server VM: select backend network and the policy created to allow communication
between frontend and backend networks.

Verifying the Multi-Tier Web Application

Verify your web setup.

• To demonstrate this web application setup, go to the client machine, open a browser, and navigate to
the address in the public network that is assigned to the web server in the frontend network.

The result will display the Contrail interface with various data populated, verifying that the web
server is communicating with the database server in the backend network and retrieving data.

The client machine only has access to the public IP address. Attempts to browse to any of the
addresses assigned to the frontend network or to the backend network should fail.

Sample Addressing Scheme for Simple Tiered Web Application

Use the information in Table 38 on page 564 as a guide for addressing devices in the simple tiered web
example.

563

Table 38: Sample Addressing Scheme for Example

System Name Address Allocation

System001 10.84.11.100

System002 10.84.11.101

System003 10.84.11.102

System004 10.84.11.103

System005 10.84.11.104

MX80-1 10.84.11.253

10.84.45.1 (public connection)

MX80-2 10.84.11.252

10.84.45.2 (public connection)

EX4200 10.84.11.254

10.84.45.254 (public connection)

10.84.63.259 (public connection)

frontend network 192.168.1.0/24

backend network 192.168.2.0/24

public network (floating address) 10.84.41.0/24

Sample Physical Topology for Simple Tiered Web Application

Figure 132 on page 565 provides a guideline diagram for the physical topology for the simple tiered
web application example.

564

Figure 132: Sample Physical Topology for Simple Tiered Web Application

Sample Physical Topology Addressing

Figure 133 on page 566 provides a guideline diagram for addressing the physical topology for the
simple tiered web application example.

565

Figure 133: Sample Physical Topology Addressing

SEE ALSO

Sample Network Configuration for Devices for Simple Tiered Web Application

566

Sample Network Configuration for Devices for Simple Tiered Web
Application

This section shows sample device configurations that can be used to create the Example: Deploying a
Multi-Tier Web Application. Configurations are shown for Juniper Networks devices: two MX80s and
one EX4200.

MX80-1 Configuration

version 12.2R1.3;
system {
 root-authentication {
 encrypted-password "xxxxxxxxxx"; ## SECRET-DATA
 }
 services {
 ssh {
 root-login allow;
 }
 }
 syslog {
 user * {
 any emergency;
 }
 file messages {
 any notice;
 authorization info;
 }
 }
}
chassis {
 fpc 1 {
 pic 0 {
 tunnel-services;
 }
 }
}
interfaces {
 ge-1/0/0 {
 unit 0 {
 family inet {
 address 10.84.11.253/24;

567

 }
 }
 }
 ge-1/1/0 {
 description "IP Fabric interface";
 unit 0 {
 family inet {
 address 10.84.45.1/24;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}
routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.84.45.254;
 }
 route-distinguisher-id 10.84.11.253;
 autonomous-system 64512;
 dynamic-tunnels {
 setup1 {
 source-address 10.84.11.253;
 gre;
 destination-networks {
 10.84.11.0/24;
 }
 }
 }
}
protocols {
 bgp {
 group mx {
 type internal;
 local-address 10.84.11.253;
 family inet-vpn {
 unicast;
 }

568

 neighbor 10.84.11.252;
 }
 group contrail-controller {
 type internal;
 local-address 10.84.11.253;
 family inet-vpn {
 unicast;
 }
 neighbor 10.84.11.101;
 neighbor 10.84.11.102;
 }

 }
}
routing-instances {
 customer-public {
 instance-type vrf;
 interface ge-1/1/0.0;
 vrf-target target:64512:10000;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.84.45.254;
 }
 }
 }
}

MX80-2 Configuration

version 12.2R1.3;
system {
 root-authentication {
 encrypted-password "xxxxxxxxx"; ## SECRET-DATA
 }
 services {
 ssh {
 root-login allow;
 }
 }
 syslog {
 user * {
 any emergency;

569

 }
 file messages {
 any notice;
 authorization info;
 }
 }
}
chassis {
 fpc 1 {
 pic 0 {
 tunnel-services;
 }
 }
}
interfaces {
 ge-1/0/0 {
 unit 0 {
 family inet {
 address 10.84.11.252/24;
 }
 }
 }
 ge-1/1/0 {
 description "IP Fabric interface";
 unit 0 {
 family inet {
 address 10.84.45.2/24;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}
routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.84.45.254;
 }
 route-distinguisher-id 10.84.11.252;

570

 autonomous-system 64512;
 dynamic-tunnels {
 setup1 {
 source-address 10.84.11.252;
 gre;
 destination-networks {
 10.84.11.0/24;
 }
 }
 }
}
protocols {
 bgp {
 group mx {
 type internal;
 local-address 10.84.11.252;
 family inet-vpn {
 unicast;
 }
 neighbor 10.84.11.253;
 }
 group contrail-controller {
 type internal;
 local-address 10.84.11.252;
 family inet-vpn {
 unicast;
 }
 neighbor 10.84.11.101;
 neighbor 10.84.11.102;
 }

 }

}
routing-instances {
 customer-public {
 instance-type vrf;
 interface ge-1/1/0.0;
 vrf-target target:64512:10000;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.84.45.254;
 }

571

 }
 }
}

EX4200 Configuration

system {
 host-name EX4200;
 time-zone America/Los_Angeles;
 root-authentication {
 encrypted-password "xxxxxxxxxxxxx"; ## SECRET-DATA
 }
 login {
 class read {
 permissions [clear interface view view-configuration];
 }
 user admin {
 uid 2000;
 class super-user;
 authentication {
 encrypted-password "xxxxxxxxxxxx"; ## SECRET-DATA
 }
 }
 user user1 {
 uid 2002;
 class read;
 authentication {
 encrypted-password "xxxxxxxxxxxxxx"; ## SECRET-DATA
 }
 }
 }
 services {
 ssh {
 root-login allow;
 }
 telnet;
 netconf {
 ssh;
 }
 web-management {
 http;
 }

572

 }
 syslog {
 user * {
 any emergency;
 }
 file messages {
 any notice;
 authorization info;
 }
 file interactive-commands {
 interactive-commands any;
 }
 }
}
chassis {
 aggregated-devices {
 ethernet {
 device-count 64;
 }
 }
}

573

CHAPTER 14

Configuring Services

IN THIS CHAPTER

Configuring DNS Servers | 574

Distributed Service Resource Allocation with Containerized Contrail | 586

Support for Multicast | 597

Using Static Routes with Services | 600

Configuring Metadata Service | 604

Configuring DNS Servers

IN THIS SECTION

DNS Overview | 574

Defining Multiple Virtual Domain Name Servers | 575

IPAM and Virtual DNS | 576

DNS Record Types | 576

Configuring DNS Using the Interface | 577

Configuring DNS Using Scripts | 585

DNS Overview

Domain Name System (DNS) is the standard protocol for resolving domain names into IP addresses so
that traffic can be routed to its destination. DNS provides the translation between human-readable
domain names and their IP addresses. The domain names are defined in a hierarchical tree, with a root
followed by top-level and next-level domain labels.

574

A DNS server stores the records for a domain name and responds to queries from clients based on these
records. The server is authoritative for the domains for which it is configured to be the name server. For
other domains, the server can act as a caching server, fetching the records by querying other domain
name servers.

The following are the key attributes of domain name service in a virtual world:

• It should be possible to configure multiple domain name servers to provide name resolution service
for the virtual machines spawned in the system.

• It should be possible to configure the domain name servers to form DNS server hierarchies required
by each tenant.

• The hierarchies can be independent and completely isolated from other similar hierarchies present
in the system, or they can provide naming service to other hierarchies present in the system.

• DNS records for the virtual machines spawned in the system should be updated dynamically when a
virtual machine is created or destroyed.

• The service should be scalable to handle an increase in servers and the resulting increased numbers
of virtual machines and DNS queries handled in the system.

Defining Multiple Virtual Domain Name Servers

Contrail provides the flexibility to define multiple virtual domain name servers under each domain in the
system. Each virtual domain name server is an authoritative server for the DNS domain configured.
Figure 134 on page 575 shows examples of virtual DNS servers defined in default-domain, providing
the name service for the DNS domains indicated.

Figure 134: DNS Servers Examples

575

IPAM and Virtual DNS

Each IP address management (IPAM) service in the system can refer to one of the virtual DNS servers
configured. The virtual networks and virtual machines spawned are associated with the DNS domain
specified in the corresponding IPAM. When the VMs are configured with DHCP, they receive the
domain assignment in the DHCP domain-name option. Examples are shown in Figure 135 on page 576

Figure 135: IPAM and Virtual DNS

DNS Record Types

DNS records can be added statically. DNS record types A, CNAME, PTR, and NS are currently supported
in the system. Each record includes the type, class (IN), name, data, and TTL values. See Table 39 on
page 576 for descriptions of the record types.

Table 39: DNS Record Types Supported

DNS Record Type Description

A Used for mapping hostnames to IPv4 addresses. Name refers to the name
of the virtual machine, and data is the IPv4 address of the virtual machine.

CNAME Provides an alias to a name. Name refers to the name of the virtual
machine, and data is the new name (alias) for the virtual machine.

576

Table 39: DNS Record Types Supported (Continued)

DNS Record Type Description

PTR A pointer to a record, it provides reverse mapping from an IP address to a
name. Name refers to the IP address, and data is the name for the virtual
machine. The address in the PTR record should be part of a subnet
configured for a VN within one of the IPAMs referring to this virtual DNS
server.

NS Used to delegate a subdomain to another DNS server. The DNS server
could be another virtual DNS server defined in the system or the IP address
of an external DNS server reachable via the infrastructure. Name refers to
the subdomain being delegated, and data is the name of the virtual DNS
server or IP address of an external server.

Figure 136 on page 577 shows an example usage for the DNS record type of NS.

Figure 136: Example Usage for NS Record Type

Configuring DNS Using the Interface

DNS can be configured by using the user interface or by using scripts. The following procedure shows
how to configure DNS through the Juniper Networks Contrail interface.

1. Access Configure > DNS > Servers to create or delete virtual DNS servers and records.

The Configure DNS Records page appears; see Figure 137 on page 578.

577

Figure 137: Configure DNS Records

2. To add a new DNS server, click the Create button.

Enter DNS server information in the Add DNS window; see Figure 138 on page 579

578

Figure 138: Add DNS

Complete the fields for the new server; see Table 40 on page 579.

Table 40: Add DNS Fields

Field Description

Server Name Enter a name for this server.

Domain Name Enter the name of the domain for this server.

Time To Live Enter the TTL in seconds.

Next DNS Server Select from a list the name of the next DNS server to process DNS requests if they
cannot be processed at this server, or None.

579

Table 40: Add DNS Fields (Continued)

Field Description

Load Balancing
Order

Select the load-balancing order from a list—Random, Fixed, Round Robin. When a
name has multiple records matching, the configured record order determines the
order in which the records are sent in the response. Select Random to have the
records sent in random order. Select Fixed to have records sent in the order of
creation. Select Round Robin to have the record order cycled for each request to the
record.

OK Click OK to create the record.

Cancel Click Cancel to clear the fields and start over.

3. To add a new DNS record, from the Configure DNS Records page, click the Add Record button in the
lower right portion of the screen.

The Add DNS Record window appears; see Figure 139 on page 581.

580

Figure 139: Add DNS Record

4. Complete the fields for the new record; see Table 41 on page 581.

Table 41: Add DNS Record Fields

Field Description

Record Name Enter a name for this record.

Type Select the record type from a list—A, CNAME, PTR, NS.

IP Address Enter the IP address for the location for this record.

Class Select the record class from a list—IN is the default.

Time To Live Enter the TTL in seconds.

OK Click OK to create the record.

581

Table 41: Add DNS Record Fields (Continued)

Field Description

Cancel Click Cancel to clear the fields and start over.

5. To associate an IPAM to a virtual DNS server, from the Configure DNS Records page, select the
Associated IPAMs tab in the lower right portion of the screen and click the Edit button.

The Associate IPAMs to DNS window appears; see Figure 140 on page 582.

Figure 140: Associate IPAMs to DNS

Complete the IPAM associations, using the field descriptions in Table 42 on page 582.

Table 42: Associate IPAMs to DNS Fields

Field Description

Associate to All
IPAMs

Select this box to associate the selected DNS server to all available IPAMs.

582

Table 42: Associate IPAMs to DNS Fields (Continued)

Field Description

Available IPAMs This column displays the currently available IPAMs.

Associated IPAMs This column displays the IPAMs currently associated with the selected DNS server.

>> Use this button to associate an available IPAM to the selected DNS server, by
selecting an available IPAM in the left column and clicking this button to move it to the
Associated IPAMs column. The selected IPAM is now associated with the selected
DNS server.

<< Use this button to disassociate an IPAM from the selected DNS server, by selecting an
associated IPAM in the right column and clicking this button to move it to the left
column (Available IPAMs). The selected IPAM is now disassociated from the selected
DNS server.

OK Click OK to commit the changes indicated in the window.

Cancel Click Cancel to clear all entries and start over.

6. Use the IP Address Management page (Configure > Networking > IP Address Management); see
Figure 141 on page 583) to configure the DNS mode for any DNS server and to associate an IPAM
to DNS servers of any mode or to tenants’ IP addresses.

Figure 141: Configure IP Address Management

7. To associate an IPAM to a virtual DNS server or to tenant’s IP addresses, at the IP Address
Management page, select the network associated with this IPAM, then click the Action button in the
last column, and click Edit.

The Edit IP Address Management window appears; see Figure 142 on page 584.

583

Figure 142: DNS Server

8. In the first field, select the DNS Method from a list (None, Default DNS, Tenant DNS, Virtual DNS;
see Table 43 on page 584.

Table 43: DNS Modes

DNS Mode Description

None Select None when no DNS support is required for the VMs.

Default In default mode, DNS resolution for VMs is performed based on the name server configuration
in the server infrastructure. The subnet default gateway is configured as the DNS server for
the VM, and the DHCP response to the VM has this DNS server option. DNS requests sent by
a VM to the default gateway are sent to the name servers configured on the respective
compute nodes. The responses are sent back to the VM.

584

Table 43: DNS Modes (Continued)

DNS Mode Description

Tenant Configure this mode when a tenant wants to use its own DNS servers. Configure the list of
servers in the IPAM. The server list is sent in the DHCP response to the VM as DNS servers.
DNS requests sent by the VMs are routed the same as any other data packet based on the
available routing information.

Virtual DNS Configure this mode to support virtual DNS servers (VDNS) to resolve the DNS requests from
the VMs. Each IPAM can have a virtual DNS server configured in this mode.

9. Complete the remaining fields on this page, and click OK to commit the changes, or click Cancel to
clear the fields and start over.

Configuring DNS Using Scripts

DNS can be configured via the user interface or by using scripts that are available in the opt/contrail/
utils directory. The scripts are described in Table 44 on page 585.

CAUTION: Be aware of the following cautions when using scripts to configure DNS:

• DNS doesn’t allow special characters in the names, other than - (dash) and . (period).
Any records that include special characters in the name will be discarded by the
system.

• The IPAM DNS mode and association should only be edited when there are no
virtual machine instances in the virtual networks associated with the IPAM.

Table 44: DNS Scripts

Action Script

Add a virtual DNS server Script: add_virtual_dns.py

Sample usage: python add_virtual_dns.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --name vdns1 --domain_name default-domain --dns_domain
juniper.net --dyn_updates --record_order random --ttl 1200 --next_vdns default-
domain:vdns2

585

Table 44: DNS Scripts (Continued)

Action Script

Delete a virtual DNS
server

Script: del_virtual_dns_record.py

Sample usage: python del_virtual_dns.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --fq_name default-domain:vdns1

Add a DNS record Script: add_virtual_dns_record.py

Sample usage: python add_virtual_dns_record.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --name rec1 --vdns_fqname default-domain:vdns1 --rec_name one
--rec_type A --rec_class IN --rec_data 1.2.3.4 --rec_ttl 2400

Delete a DNS record Script: del_virtual_dns_record.py

Sample usage: python del_virtual_dns_record.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --fq_name default-domain:vdns1:rec1

Associate a virtual DNS
server with an IPAM

Script: associate_virtual_dns.py

Sample usage: python associate_virtual_dns.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --ipam_fqname default-domain:demo:ipam1 --vdns_fqname
default-domain:vdns1

Disassociate a virtual DNS
server with an IPAM

Script: disassociate_virtual_dns.py

Sample usage: python disassociate_virtual_dns.py --api_server_ip 10.204.216.21 --
api_server_port 8082 --ipam_fqname default-domain:demo:ipam1 --vdns_fqname
default-domain:vdns1

Distributed Service Resource Allocation with Containerized Contrail

IN THIS SECTION

Replacement of Centralized Discovery Service in Contrail 4.0 | 587

586

New Distributed Resource Allocation Manager | 587

Changes in Configuration Files | 588

Starting with Contrail Release 4.0, the existing centralized Contrail discovery service is replaced with a
distributed method of allocating service resources.

Replacement of Centralized Discovery Service in Contrail 4.0

In Contrail releases prior to Release 4.0, the Contrail discovery service is a centralized service resource
allocation module with high availability, used primarily to automatically load-balance service resources in
the system.

In the previous centralized discovery method, new service resources are registered (published) directly
to the Contrail discovery module and allocated to the requester (subscriber) of the service resource,
without disrupting the running state of the subscribers.

The centralized discovery method requires using a database to:

• synchronize across Contrail discovery nodes.

• maintain the list of publishers, subscribers, and the health of published services across reloads.

• provide a centralized view of the service allocation and health of the services.

This centralized discovery method resulted in unnecessary system churn when services were falsely
marked as down, due to periodic health updates of services made to the database nodes, resulting in
reallocation of healthy services.

Starting with Contrail 4.0, the Contrail discovery services centralized resource allocation manager has
been removed. Its replacement is a distributed resource allocation list of service nodes, maintained in
each module of the system.

New Distributed Resource Allocation Manager

Starting with Contrail Release 4.0, service resources are managed with a distributed allocation manager,
with the following features:

• Each system module is provisioned with a list of service nodes (publishers).

• Each system module randomizes the list of service nodes and uses the resources. The randomized list
is expected to be fairly load-balanced.

587

• When currently-used services are down, the system module detects the down immediately and
reacts with no downtime by selecting another service from the list. This is distinctly different from
the previous model, in which the module would need to contact the discovery service to check for
available services, resulting in a finite time loss for allocation, distribution, and application of a new
set of services.

• When service nodes are added or deleted, the system administrator updates the configuration file of
all daemons using the service type of the service node added or deleted, sending a SIGHUP to the
respective daemons.

• Each daemon randomizes the service list independently and reallocates the resources.

Deprecation of IF-MAP

In Contrail 4.0, the Interface for Metadata Access Points (IF-MAP) methodology has been deprecated.
Contrail 4.0 uses CONFIGDB sections in configuration files instead of IF-MAP sections.

Changes in Configuration Files

Table 45 on page 588 lists configuration files in the Contrail system that have changes to enable the
distributed service resource allocation system, starting with Contrail 4.0. In general, the changes include
removing (deprecating) discovery server sections and subsections, and adding parameters needed to
identify service resources in all modules.

Each daemon randomizes the published service list and uses the resources. Additionally, each daemon
provides a SIGHUP handler to manage the addition or deletion of publishers.

Table 45: Contrail 4.0 Changes in Configuration Files

Configuration File Configuration Parameter Changes

contrail-vrouter-agent.conf [DISCOVERY] Section deprecated

[CONTROL-NODE].servers Provisioned list of control-node
[role=control] service providers in the
format:
ip-address:port ip-address2:port
Example: 10.1.1.1:5269 10.1.1.12:5269

588

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[DNS].servers Provisioned list of DNS [role=control]
service providers in the format:

ip-address:port ip-address2:port
Example: 10.1.1.1:53 10.1.1.2:5

[DEFAULT].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:8086 10.1.1.2:8086

contrail-control.conf [DISCOVERY] Section deprecated

[DEFAULT].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:8086 10.1.1.2:8086

[CONFIGDB].rabbitmq_server_list Provisioned list of config-node
[role=cfgm] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:5672 10.1.1.2:5672

[CONFIGDB].rabbitmq_user guest (default string)

[CONFIGDB].rabbitmq_password guest (default string)

589

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[CONFIGDB].config_db_server_list Provisioned list of Config DB
[role=database] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:9042 10.1.1.2:9042

NOTE: Docker uses 9041 as port

[CONFIGDB].certs_store Deprecated

[CONFIGDB].password Deprecated

[CONFIGDB].server_url Deprecated

[CONFIGDB].user Deprecated

[CONFIGDB].stale_entries_cleanup_t
imeout

Deprecated

[CONFIGDB].end_of_rib_timeout Deprecated

contrail-dns.conf

[DISCOVERY] Deprecated

[DEFAULT].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:8086 10.1.1.2:8086

590

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[CONFIGDB].rabbitmq_server_list Provisioned list of config-node
[role=cfgm] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:5672 10.1.1.2:5672

[CONFIGDB].rabbitmq_user guest (default string)

[CONFIGDB].rabbitmq_password guest (default string)

[CONFIGDB].config_db_server_list Provisioned list of Config DB
[role=database] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:9042 10.1.1.2:9042 NOTE:
Dockers use 9041 as port

[CONFIGDB].certs_store Deprecated

[CONFIGDB].password Deprecated

[CONFIGDB].server_url Deprecated

[CONFIGDB].user Deprecated

[CONFIGDB].stale_entries_cleanup_t
imeout

Deprecated

[CONFIGDB].end_of_rib_timeout Deprecated

contrail-collector.conf [DISCOVERY] Deprecated

591

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[API_SERVER].api_server_list Provisioned list of api-servers
[role=config] in the format:

ip-address:port

Example: 10.1.1.1:8082 10.1.1.2:8082

contrail-alarm-gen.conf [DISCOVERY] Deprecated

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

[API_SERVER].api_server_list Provisioned list of api-servers
[role=config] in the format:

ip-address:port

Example: 10.1.1.1:8082 10.1.1.2:8082

[REDIS].redis_uve_list Provisioned list of redis instances
[role=collector]

Example: 192.168.0.29:6379
192.168.0.30:6379

contrail-analytics-api.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

592

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[REDIS].redis_uve_list Provisioned list of redis instances
[role=collector]

Example: 192.168.0.29:6379
192.168.0.30:6379

contrail-api.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-schema.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in ip-
address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-svc-monitor.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-device-manager.conf [DISCOVERY] Section deprecated

593

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in ip-
address:port ip-address2:port format

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-analytics-
nodemgr.conf

[DISCOVERY] Section deprecated

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:8086 10.1.1.2:8086

contrail-config-nodemgr.conf [DISCOVERY] Section deprecated

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-control-nodemgr.conf [DISCOVERY] Section deprecated

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in ip-
address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-database-nodemgr.conf [DISCOVERY] Section deprecated

594

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-vrouter-nodemgr.conf [DISCOVERY] Section deprecated

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-query-engine.conf [DISCOVERY] Section deprecated

[COLLECTOR].server_list Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

contrail-snmp-collector.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port

Example: 10.1.1.1:8086 10.1.1.2:8086

595

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

[API_SERVER].api_server_list Provisioned list of api-servers
[role=config] in the format:

ip-address:port

Example: 10.1.1.1:8082 10.1.1.2:8082

contrail-topology.conf [DISCOVERY] Section deprecated

[DEFAULTS].collectors Provisioned list of Collector
[role=collector] service providers in the
format:

ip-address:port ip-address2:port Example:
10.1.1.1:8086 10.1.1.2:8086

[API_SERVER].api_server_list Provisioned list of api-servers
[role=config] in ip-address:port

Example: 10.1.1.1:8082 10.1.1.2:8082

Contrail Web UI

config.global.js config.discovery.server Discovery subsection deprecated

config.discovery.port Discovery subsection deprecated

config.cnfg.server_ip Provisioned list of Config [role=cfgm]
service providers as list of ip-address

Example: ['10.1.1.1 10.1.1.2']

config.cnfg.server_port Server port as a string

Example: '8082'

596

Table 45: Contrail 4.0 Changes in Configuration Files (Continued)

Configuration File Configuration Parameter Changes

config.analytics.server_ip Provisioned list of Collector
[role=collector] service providers as a list
of ip-address

Example: ['10.1.1.1 10.1.1.2']

config.analytics.server_port Server port as a string

Example: '8081'

config.dns.server_ip Provisioned list of Controller
[role=control] service providers as a list of
ip-address

Example: ['10.1.1.1 10.1.1.2']

config.dns.server_port Server port as a string

Example: '8092'

Support for Multicast

IN THIS SECTION

Subnet Broadcast | 598

All-Broadcast/Limited-Broadcast and Link-Local Multicast | 598

Host Broadcast | 599

This section describes how the Contrail Controller supports broadcast and multicast.

597

Subnet Broadcast

Multiple subnets can be attached to a virtual network when it is spawned. Each of the subnets has one
subnet broadcast route installed in the unicast routing table assigned to that virtual network. The
recipient list for the subnet broadcast route includes all of the virtual machines that belong to that
subnet. Packets originating from any VM in that subnet are replicated to all members of the recipient
list, except the originator. Because the next hop is the list of recipients, it is called a composite next hop.

If there is no virtual machine spawned under a subnet, the subnet routing entry discards the packets
received. If all of the virtual machines in a subnet are turned off, the routing entry points to discard. If
the IPAM is deleted, the subnet route corresponding to that IPAM is deleted. If the virtual network is
turned off, all of the subnet routes associated with the virtual network are removed.

Subnet Broadcast Example

The following configuration is made:

1. Virtual network name – vn1

2. Unicast routing instance – vn1.uc.inet

3. Subnets (IPAM) allocated – 1.1.1.0/24; 2.2.0.0/16; 3.3.0.0/16

4. Virtual machines spawned – vm1 (1.1.1.253); vm2 (1.1.1.252); vm3 (1.1.1.251); vm4 (3.3.1.253)

The following subnet route additions are made to the routing instance vn1.uc.inet.0:

1. 1.1.1.255 -> forward to NH1 (composite next hop)

2. 2.2.255.255 -> DROP

3. 3.3.255.255 -> forward to NH2

4.

5. The following entries are made to the next-hop table:

6. NH1 – 1.1.1.253; 1.1.1.252; 1.1.1.251

7. NH2 – 3.3.1.253

If traffic originates for 1.1.1.255 from vm1 (1.1.1.253), it will be forwarded to vm2 (1.1.1.252) and vm3
(1.1.1.251). The originator vm1 (1.1.1.253) will not receive the traffic even though it is listed as a recipient
in the next hop.

All-Broadcast/Limited-Broadcast and Link-Local Multicast

The address group 255.255.255.255 is used with all-broadcast (limited-broadcast) and multicast traffic. The
route is installed in the multicast routing instance. The source address is recorded as ANY, so the route is

598

ANY/255.255.255.255 (*,G). It is unique per routing instance, and is associated with its corresponding virtual
network. When a virtual network is spawned, it usually contains multiple subnets, in which virtual
machines are added. All of the virtual machines, regardless of their subnets, are part of the recipient list
for ANY/255.255.255.255. The replication is sent to every recipient except the originator.

Link-local multicast also uses the all-broadcast method for replication. The route is deleted when all
virtual machines in this virtual network are turned off or the virtual network itself is deleted.

All-Broadcast Example

The following configuration is made:

1. Virtual network name – vn1

2. Unicast routing instance – vn1.uc.inet

3. Subnets (IPAM) allocated – 1.1.1.0/24; 2.2.0.0/16; 3.3.0.0/16

4. Virtual machines spawned – vm1 (1.1.1.253); vm2 (1.1.1.252); vm3 (1.1.1.251); vm4 (3.3.1.253)

The following subnet route addition is made to the routing instance vn1.uc.inet.0:

1. 255.255.255.255/* -> NH1

2.

The following entries are made to the next-hop table:

1. NH1 – 1.1.1.253; 1.1.1.252; 1.1.1.251; 3.3.1.253

If traffic originates for 1.1.1.255 from vm1 (1.1.1.253), the traffic is forwarded to vm2 (1.1.1.252), vm3
(1.1.1.251), and vm4 (3.3.1.253). The originator vm1 (1.1.1.253) will not receive the traffic even though it is
listed as a recipient in the next hop.

Host Broadcast

The host broadcast route is present in the host routing instance so that the host operating system can
send a subnet broadcast/all-broadcast (limited-broadcast). This type of broadcast is sent to the fabric by
means of a vhost interface. Additionally, any subnet broadcast/all-broadcast received from the fabric will
be handed over to the host operating system.

599

Using Static Routes with Services

IN THIS SECTION

Static Routes for Service Instances | 600

Configuring Static Routes on a Service Instance | 601

Configuring Static Routes on Service Instance Interfaces | 602

Configuring Static Routes as Host Routes | 603

Static Routes for Service Instances

Static routes can be configured in a virtual network to direct traffic to a service virtual machine.

The following figure shows a virtual network with subnet 10.1.1.0/24. All of the traffic from a virtual
machine that is directed to subnet 11.1.1.0/24 can be configured to be routed by means of a service
machine, by using the static route 11.1.1.252 configured on the service virtual machine interface.

600

Configuring Static Routes on a Service Instance

To configure static routes on a service instance, first enable the static route option in the service
template to be used for the service instance.

To enable the static route option in a service template:

1. Go to Configure > Services > Service Templates and click Create.

2. At Add Service Template, complete the fields for Name, Service Mode, and Image Name.

3. Select the Interface Types to use for the template, then for each interface type that might have a
static route configured, click the check box under the Static Routes column to enable the static route
option for that interface.

The following figure shows a service template in which the left and right interfaces of service
instances have the static routes option enabled. Now a user can configure a static route on a
corresponding interface on a service instance that is based on the service template shown.

601

Configuring Static Routes on Service Instance Interfaces

To configure static routes on a service instance interface:

1. Go to Configure > Services > Service Instances and click Create.

2. At Create Service Instances, complete the fields for Instance Name and Services Template.

3. Select the virtual network for each of the interfaces

4. Click the Static Routes dropdown menu under each interface field for which the static routes option
is enabled to open the Static Routes menu and configure the static routes in the fields provided.

NOTE: If the Auto Configured option is selected, traffic destined to the static route subnet is
load balanced across service instances.

The following figure shows a configuration to apply a service instance between VN1 (10.1.1.0/24) and
VN2 (11.1.1.0/24). The left interface of the service instance is configured with VN1 and the right
interface is configured to be VN2 (11.1.1.0/24). The static route 11.1.1.0/24 is configured on the left
interface, so that all traffic from VN1 that is destined to VN2 reaches the left interface of the service
instance.

602

The following figure shows static route 10.1.1.0/24 configured on the right interface, so that all traffic
from VN2 that is destined to VN1 reaches the right interface of the service virtual machine.

When the static routes are configured for both the left and the right interfaces, all inter-virtual network
traffic is forwarded through the service instance.

Configuring Static Routes as Host Routes

You can also use static routes for host routes for a virtual machine, by using the classless static routes
option in the DHCP server response that is sent to the virtual machine.

The routes to be sent in the DHCP response to the virtual machine can be configured for each virtual
network as it is created.

To configure static routes as host routes:

1. Go to Configure > Network > Networks and click Create.

2. At Create Network, click the Host Routes option and add the host routes to be sent to the virtual
machines.

An example is shown in the following figure.

603

Configuring Metadata Service

OpenStack enables virtual machines to access metadata by sending an HTTP request to the link-local
address 169.254.169.254. The metadata request from the virtual machine is proxied to Nova with
additional HTTP header fields that Nova uses to identify the source instance, then responds with
appropriate metadata.

In Contrail, the vRouter acts as the proxy, by trapping the metadata requests, adding the necessary
header fields, and sending the requests to the Nova API server.

The metadata service is configured by setting the linklocal-services property on the global-vrouter-config
object.

Use the following elements to configure the linklocal-services element for metadata service:

• linklocal-service-name = metadata

• linklocal-service-ip = 169.254.169.254

604

• linklocal-service-port = 80

• ip-fabric-service-ip = [server-ip-address]

• ip-fabric-service-port = [server-port]

The linklocal-services properties can be set from the Contrail UI (Configure > Infrastructure > Link Local
Services) or by using the following command:

python /opt/contrail/utils/provision_linklocal.py --admin_user <user> --admin_password <passwd> --
linklocal_service_name metadata --linklocal_service_ip 169.254.169.254 --linklocal_service_port 80 --
ipfabric_service_ip --ipfabric_service_port 8775

605

CHAPTER 15

Configuring Service Chaining

IN THIS CHAPTER

Service Chaining | 606

Service Chaining MX Series Configuration | 611

ECMP Load Balancing in the Service Chain | 613

Customized Hash Field Selection for ECMP Load Balancing | 614

Service Chain Version 2 with Port Tuple | 619

Using the Contrail Heat Template | 623

Service Chain Route Reorigination | 628

Service Instance Health Checks | 650

Service Chaining

IN THIS SECTION

Service Chaining Basics | 606

Service Chaining Configuration Elements | 608

Contrail Controller supports chaining of various Layer 2 through Layer 7 services such as firewall, NAT,
IDP, and so on.

Service Chaining Basics

Services are offered by instantiating service virtual machines to dynamically apply single or multiple
services to virtual machine (VM) traffic. It is also possible to chain physical appliance-based services.

606

Figure 143 on page 607 shows the basic service chain schema, with a single service. The service VM
spawns the service, using the convention of left interface (left IF) and right interface (right IF). Multiple
services can also be chained together.

Figure 143: Service Chaining

When you create a service chain, the Contrail software creates tunnels across the underlay network that
span through all services in the chain. Figure 144 on page 608 shows two end points and two compute
nodes, each with one service instance and traffic going to and from one end point to the other.

607

Figure 144: Contrail Service Chain

The following are the modes of services that can be configured.

1. Transparent or bridge mode

a. Used for services that do not modify the packet. Also known as bump-in-the-wire or Layer 2
mode. Examples include Layer 2 firewall, IDP, and so on.

2. In-network or routed mode

a. Provides a gateway service where packets are routed between the service instance interfaces.
Examples include NAT, Layer 3 firewall, load balancer, HTTP proxy, and so on.

3. In-network-nat mode

a. Similar to in-network mode, however, return traffic does not need to be routed to the source
network. In-network-nat mode is particularly useful for NAT service.

Service Chaining Configuration Elements

Service chaining requires the following configuration elements in the solution:

• Service template

608

• Service instance

• Service policy

Service Template

Service templates are always configured in the scope of a domain, and the templates can be used on all
projects within a domain. A template can be used to launch multiple service instances in different
projects within a domain.

The following are the parameters to be configured for a service template:

• Service template name

• Domain name

• Service mode

• Transparent

• In-Network

• In-Network NAT

• Image name (for virtual service)

• If the service is a virtual service, then the name of the image to be used must be included in the
service template. In an OpenStack setup, the image must be added to the setup by using Glance.

• Interface list

• Ordered list of interfaces---this determines the order in which Interfaces will be created on the
service instance.

• Most service templates will have management, left, and right interfaces. For service instances
requiring more interfaces, “other” interfaces can be added to the interface list.

• Shared IP attribute, per interface

• Static routes enabled attribute, per interface

• Advanced options

• Service scaling— use this attribute to enable a service instance to have more than one instance of
the service instance virtual machine.

• Flavor—assign an OpenStack flavor to be used while launching the service instance. Flavors are
defined in OpenStack Nova with attributes such as assignments of CPU cores, memory, and disk
space.

609

Service Instance

A service instance is always maintained within the scope of a project. A service instance is launched
using a specified service template from the domain to which the project belongs.

The following are the parameters to be configured for a service instance:

• Service instance name

• Project name

• Service template name

• Number of virtual machines that will be spawned

• Enable service scaling in the service template for multiple virtual machines

• Ordered virtual network list

• Interfaces listed in the order specified in the service template

• Identify virtual network for each interface

• Assign static routes for virtual networks that have static route enabled in the service template for
their interface

• Traffic that matches an assigned static route is directed to the service instance on the interface
created for the corresponding virtual network

Service Policy

The following are the parameters to be configured for a service policy:

• Policy name

• Source network name

• Destination network name

• Other policy match conditions, for example direction and source and destination ports

• Policy configured in “routed/in-network” or “bridged/” mode

• An action type called apply_service is used:

1. Example: 'apply_service’: [DomainName:ProjectName:ServiceInstanceName]

610

RELATED DOCUMENTATION

Example: Creating an In-Network Service Chain by Using Contrail Command

Example: Creating an In-Network-NAT Service Chain by Using Contrail Command

Example: Creating a Transparent Service Chain by Using Contrail Command

ECMP Load Balancing in the Service Chain

Service Chaining MX Series Configuration

This topic shows how to extend service chaining to the MX Series routers.

To configure service chaining for MX Series routers, extend the virtual networks to the MX Series router
and program routes so that traffic generated from a host connected to the router can be routed through
the service.

1. The following configuration snippet for an MX Series router has a left virtual network called enterprise
and a right virtual network called public. The configuration creates two routing instances with
loopback interfaces and route targets.

routing-instances {
 enterprise {
 instance-type vrf;
 interface lo0.1;
 vrf-target target:100:20000;
 }
 public {
 instance-type vrf;
 interface lo0.2;
 vrf-target target:100:10000;
routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.84.20.1
 }
 }
 interface xe-0/0/0.0;
 }
 }

611

https://www.juniper.net/documentation/en_US/contrail/topics/example/example-create-innetwork-service-chain.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/example-create-innetwork-nat-service-chain.html
https://www.juniper.net/documentation/en_US/contrail/topics/example/example-create-transparent-service-chain.html

2. The following configuration snippet shows the configuration for the loopback interfaces.

interfaces {
 lo0 {
 unit 1 {
 family inet {
 address 2.1.1.100/32;
 }
 }
 unit 2 {
 family inet {
 address 200.1.1.1/32;
 }
 }
 }
}

3. The following configuration snippet shows the configuration to enable BGP. The neighbor 10.84.20.39
and neighbor 10.84.20.40 are control nodes.

protocols {
 bgp {
 group demo_contrail {
 type internal;
 description "To Contrail Control Nodes & other MX";
 local-address 10.84.20.252;
 keep all;
 family inet-vpn {
 unicast;
 }
 neighbor 10.84.20.39;
 neighbor 10.84.20.40;
 }
}

4. The final step is to add target:100:10000 to the public virtual network and target:100:20000 to the
enterprise virtual network, using the Contrail Juniper Networks interface.

A full MX Series router configuration for Contrail can be seen in Sample Network Configuration for
Devices for Simple Tiered Web Application.

612

ECMP Load Balancing in the Service Chain

Traffic flowing through a service chain can be load-balanced by distributing traffic streams to multiple
service virtual machines (VMs) that are running identical applications. This is illustrated in Figure 145 on
page 613, where the traffic streams between VM-A and VM-B are distributed between Service VM-1
and Service VM-2. If Service VM-1 goes down, then all streams that are dependent on Service VM-1 will
be moved to Service VM-2.

Figure 145: Load Balancing a Service Chain

The following are the major features of load balancing in the service chain:

• Load balancing can be configured at every level of the service chain.

• Load balancing is supported in routed and bridged service chain modes.

• Load balancing can be used to achieve high availability—if a service VM goes down, the traffic
passing through that service VM can be distributed through another service VM.

• A load balanced traffic stream always follows the same path through the chain of service VM.

RELATED DOCUMENTATION

Service Chaining

613

Customized Hash Field Selection for ECMP Load Balancing

Customized Hash Field Selection for ECMP Load Balancing

IN THIS SECTION

Overview: Custom Hash Feature | 614

Using ECMP Hash Fields Selection | 616

Sample Flows | 617

Overview: Custom Hash Feature

Starting with Contrail Release 3.0, it is possible to configure the set of fields used to hash upon during
equal-cost multipath (ECMP) load balancing.

Earlier versions of Contrail had this set of fields fixed to the standard 5-tuple set of: source L3 address,
destination L3 address, L4 protocol, L4 SourcePort, and L4 DestinationPort.

With the custom hash feature, users can configure an exact subset of fields to hash upon when choosing
the forwarding path among a set of eligible ECMP candidates.

The custom hash configuration can be applied in the following ways:

• globally

• per virtual network (VN)

• per virtual network interface (VNI)

VNI configurations take precedence over VN configurations, and VN configurations take precedence
over global level configuration (if present).

Custom hash is useful whenever packets originating from a particular source and addressed to a
particular destination must go through the same set of service instances during transit. This might be
required if source, destination, or transit nodes maintain a certain state based on the flow, and the state
behavior could also be used for subsequent new flowsl, between the same pair of source and
destination addresses. In such cases, subsequent flows must follow the same set of service nodes
followed by the initial flow.

614

You can use the Contrail UI to identify specific fields in the network upon which to hash at the
Configure > Networking > Network, Create Network window, in the ECMP Hashing Fields section as
shown in the following figure.

If the hashing fields are configured for a virtual network, all traffic destined to that VN will be subject to
the customized hash field selection during forwarding over ECMP paths by vRouters. This may not be
desirable in all cases, as it could potentially skew all traffic to the destination network over a smaller set
of paths across the IP fabric.

A more practical scenario is one in which flows between a source and destination must go through the
same service instance in between, where one could configure customized ECMP fields for the virtual
machine interface (VMI) of the service instance. Then, each service chain route originating from that
VMI would get the desired ECMP field selection applied as its path attribute, and eventually get
propagated to the ingress vRouter node. See the following example.

615

Using ECMP Hash Fields Selection

Custom hash fields selection is most useful in scenarios where multiple ECMP paths exist for a
destination. Typically, the multiple ECMP paths point to ingress service instance nodes, which could be
running anywhere in the Contrail cloud.

Configuring ECMP Hash Fields Over Service Chains

Use the following steps to create customized hash fields with ECMP over service chains.

1. Create the virtual networks needed to interconnect using service chaining, with ECMP load-
balancing.

2. Create a service template and enable scaling.

3. Create a service instance, and using the service template, configure by selecting:

• the desired number of instances for scale-out

• the left and right virtual network to connect

• the shared address space, to make sure that instantiated services come up with the same IP
address for left and right, respectively

This configuration enables ECMP among all those service instances during forwarding.

4. Create a policy, then select the service instance previously created and apply the policy to to the
desired VMIs or VNs.

616

5. After the service VMs are instantiated, the ports of the left and right interfaces are available for
further configuration. At the Contrail UI Ports section under Networking, select the left port (VMI) of
the service instance and apply the desired ECMP hash field configuration.

NOTE: Currently the ECMP field selection configuration for the service instance left or right
interface must be applied by using the Ports (VMIs) section under Networking and explicitly
configuring the ECMP fields selection for each of the instantiated service instances' VMIs.
This must be done for all service interfaces of the group, to ensure the end result is as
expected, because the load balance attribute of only the best path is carried over to the
ingress vRouter. If the load balance attribute is not configured, it is not propagated to the
ingress vRouter, even if other paths have that configuration.

When the configuration is finished, the vRouters get programmed with routing tables with the ECMP
paths to the various service instances. The vRouters are also programmed with the desired ECMP hash
fields to be used during load balancing of the traffic.

Sample Flows

This section provides sample flows with and without ECMP custom hash field selection.

Sample Traffic Flow Path Without Custom ECMP Hash Fields

The following is an example of a traffic flow path without using a customized ECMP hash fields selection
configuration. The flow is configured with standard 5-tuple flow fields.

tcpdump -i eth0 'port 1023 and tcp[tcpflags] & (tcp-syn) != 0 and tcp[tcpflags] & (tcp-ack) == 0'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
14:55:10.115122 IP 2.2.2.5.18337 > 2.2.2.100.1023: Flags [S], seq 2276852196, win 29200, options
[mss 1398,sackOK,TS val 25208882 ecr 0,nop,wscale 7], length 0
14:55:10.132753 IP 2.2.2.4.21193 > 2.2.2.100.1023: Flags [S], seq 4161487314, win 29200, options
[mss 1398,sackOK,TS val 25208886 ecr 0,nop,wscale 7], length 0
14:55:10.152053 IP 2.2.2.5.24230 > 2.2.2.100.1023: Flags [S], seq 2466454857, win 29200, options
[mss 1398,sackOK,TS val 25208892 ecr 0,nop,wscale 7], length 0
14:55:11.146029 IP 2.2.2.5.24230 > 2.2.2.100.1023: Flags [S], seq 2466454857, win 29200, options
[mss 1398,sackOK,TS val 25209142 ecr 0,nop,wscale 7], length 0
14:55:13.147616 IP 2.2.2.5.24230 > 2.2.2.100.1023: Flags [S], seq 2466454857, win 29200, options
[mss 1398,sackOK,TS val 25209643 ecr 0,nop,wscale 7], length 0
14:55:13.164367 IP 2.2.2.3.25582 > 2.2.2.100.1023: Flags [S], seq 2259034580, win 29200, options
[mss 1398,sackOK,TS val 25209644 ecr 0,nop,wscale 7], length 0

617

14:55:13.179939 IP 2.2.2.5.24895 > 2.2.2.100.1023: Flags [S], seq 2174031724, win 29200, options
[mss 1398,sackOK,TS val 25209648 ecr 0,nop,wscale 7], length 0
14:55:14.168282 IP 2.2.2.5.24895 > 2.2.2.100.1023: Flags [S], seq 2174031724, win 29200, options
[mss 1398,sackOK,TS val 25209898 ecr 0,nop,wscale 7], length 0
14:55:16.172384 IP 2.2.2.5.24895 > 2.2.2.100.1023: Flags [S], seq 2174031724, win 29200, options
[mss 1398,sackOK,TS val 25210399 ecr 0,nop,wscale 7], length 0
14:55:16.189864 IP 2.2.2.5.22952 > 2.2.2.100.1023: Flags [S], seq 3099816842, win 29200, options
[mss 1398,sackOK,TS val 25210401 ecr 0,nop,wscale 7], length 0
14:55:16.205142 IP 2.2.2.4.16487 > 2.2.2.100.1023: Flags [S], seq 3961114202, win 29200, options
[mss 1398,sackOK,TS val 25210405 ecr 0,nop,wscale 7], length 0
14:55:17.196763 IP 2.2.2.4.16487 > 2.2.2.100.1023: Flags [S], seq 3961114202, win 29200, options
[mss 1398,sackOK,TS val 25210655 ecr 0,nop,wscale 7], length 0
14:55:19.200623 IP 2.2.2.4.16487 > 2.2.2.100.1023: Flags [S], seq 3961114202, win 29200, options
[mss 1398,sackOK,TS val 25211156 ecr 0,nop,wscale 7], length 0
14:55:19.215809 IP 2.2.2.3.18914 > 2.2.2.100.1023: Flags [S], seq 3157557440, win 29200, options
[mss 1398,sackOK,TS val 25211158 ecr 0,nop,wscale 7], length 0
14:55:19.228405 IP 2.2.2.7.15569 > 2.2.2.100.1023: Flags [S], seq 3850648420, win 29200, options
[mss 1398,sackOK,TS val 25211161 ecr 0,nop,wscale 7], length 0
14:55:20.223482 IP 2.2.2.7.15569 > 2.2.2.100.1023: Flags [S], seq 3850648420, win 29200, options
[mss 1398,sackOK,TS val 25211412 ecr 0,nop,wscale 7], length 0
14:55:22.232068 IP 2.2.2.7.15569 > 2.2.2.100.1023: Flags [S], seq 3850648420, win 29200, options
[mss 1398,sackOK,TS val 25211913 ecr 0,nop,wscale 7], length 0
14:55:22.247325 IP 2.2.2.4.28388 > 2.2.2.100.1023: Flags [S], seq 3609240658, win 29200, options
[mss 1398,sackOK,TS val 25211915 ecr 0,nop,wscale 7], length 0

Sample Traffic Flow Path With Custom ECMP Hash Fields

The following is an example of a traffic flow path using a customized ECMP hash fields selection
configuration, for source-ip and destination-ip only.

tcpdump -i eth0 'port 1023 and tcp[tcpflags] & (tcp-syn) != 0 and tcp[tcpflags] & (tcp-ack) == 0'
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
15:57:18.680853 IP 2.2.2.4.21718 > 2.2.2.100.1023: Flags [S], seq 2052086108, win 29200, options
[mss 1398,sackOK,TS val 26141024 ecr 0,nop,wscale 7], length 0
15:57:18.696114 IP 2.2.2.4.13585 > 2.2.2.100.1023: Flags [S], seq 2039627277, win 29200, options
[mss 1398,sackOK,TS val 26141028 ecr 0,nop,wscale 7], length 0
15:57:18.714846 IP 2.2.2.4.16414 > 2.2.2.100.1023: Flags [S], seq 3252526560, win 29200, options
[mss 1398,sackOK,TS val 26141033 ecr 0,nop,wscale 7], length 0
15:57:18.731281 IP 2.2.2.4.32499 > 2.2.2.100.1023: Flags [S], seq 1389133175, win 29200, options
[mss 1398,sackOK,TS val 26141037 ecr 0,nop,wscale 7], length 0

618

15:57:18.747051 IP 2.2.2.4.6081 > 2.2.2.100.1023: Flags [S], seq 427936299, win 29200, options
[mss 1398,sackOK,TS val 26141041 ecr 0,nop,wscale 7], length 0
15:57:19.740204 IP 2.2.2.4.6081 > 2.2.2.100.1023: Flags [S], seq 427936299, win 29200, options
[mss 1398,sackOK,TS val 26141291 ecr 0,nop,wscale 7], length 0
15:57:21.743951 IP 2.2.2.4.6081 > 2.2.2.100.1023: Flags [S], seq 427936299, win 29200, options
[mss 1398,sackOK,TS val 26141792 ecr 0,nop,wscale 7], length 0
15:57:21.758532 IP 2.2.2.4.13800 > 2.2.2.100.1023: Flags [S], seq 3020971712, win 29200, options
[mss 1398,sackOK,TS val 26141794 ecr 0,nop,wscale 7], length 0
15:57:21.772646 IP 2.2.2.4.23894 > 2.2.2.100.1023: Flags [S], seq 3373734307, win 29200, options
[mss 1398,sackOK,TS val 26141797 ecr 0,nop,wscale 7], length 0
15:57:22.764469 IP 2.2.2.4.23894 > 2.2.2.100.1023: Flags [S], seq 3373734307, win 29200, options
[mss 1398,sackOK,TS val 26142047 ecr 0,nop,wscale 7], length 0
15:57:24.768511 IP 2.2.2.4.23894 > 2.2.2.100.1023: Flags [S], seq 3373734307, win 29200, options
[mss 1398,sackOK,TS val 26142548 ecr 0,nop,wscale 7], length 0
15:57:24.784119 IP 2.2.2.4.21858 > 2.2.2.100.1023: Flags [S], seq 2212369297, win 29200, options
[mss 1398,sackOK,TS val 26142550 ecr 0,nop,wscale 7], length 0
15:57:24.797149 IP 2.2.2.4.29440 > 2.2.2.100.1023: Flags [S], seq 2007897735, win 29200, options
[mss 1398,sackOK,TS val 26142554 ecr 0,nop,wscale 7], length 0
15:57:25.792816 IP 2.2.2.4.29440 > 2.2.2.100.1023: Flags [S], seq 2007897735, win 29200, options
[mss 1398,sackOK,TS val 26142804 ecr 0,nop,wscale 7], length 0
15:57:27.797538 IP 2.2.2.4.29440 > 2.2.2.100.1023: Flags [S], seq 2007897735, win 29200, options
[mss 1398,sackOK,TS val 26143305 ecr 0,nop,wscale 7], length 0
15:57:27.814002 IP 2.2.2.4.23452 > 2.2.2.100.1023: Flags [S], seq 1659332655, win 29200, options
[mss 1398,sackOK,TS val 26143307 ecr 0,nop,wscale 7], length 0

Service Chain Version 2 with Port Tuple

IN THIS SECTION

Overview of Port Tuple | 620

Service Chain Version 2 Sample Workflow | 621

Service Chain with Health Check | 623

Starting with Contrail 3.0, the user can create a port-tuple object for binding service instances to ports.

619

Overview of Port Tuple

In previous versions of Contrail, when a service instance is created for a virtual machine (VM)-based
service, the service monitor creates one or more VM objects and creates a port for each VM object.
Each VM object is a placeholder for binding a service instance to a port. The VM object also acts as a
placeholder for the instance ID when using equal-cost multipath (ECMP).

Using the VM object as a placeholder doesn't add value beyond binding information between the
service instance object and the port objects. By using a port-tuple object, the service instance can be
linked directly to the port objects, eliminating the need to create a VM object. This simplifies the
implementation of service instance objects, and also allows integration with Heat templates.

With a port-tuple object, the user can create ports and pass the port information when creating a
service instance. The ports can be created as part of a VM launch from Nova or without using a VM
launch. The ports are linked to a port-tuple object that is a child of a service instance. This functionality
can also be leveraged in Heat stacks. See Figure 146 on page 620.

Figure 146: Port Tuple Overview

620

Service Chain Version 2 Sample Workflow

With Contrail service templates Version 2, the user can create ports and bind them to a VM-based or
container-based service instance, by means of a port-tuple object. All objects created with the Version 2
service template are visible to the Contrail Heat engine, and are managed by Heat.

The following shows the basic workflow steps for creating a port tuple and service instance that will be
managed by Heat:

1. Create a service template. Select 2 in the Version field.

2. Create a service instance for the service template just created.

3. Create a port-tuple object.

4. Create ports, using Nova VM launch or without a VM launch.

5. Label each port as left, right, mgmt, and so on, and add the ports to the port-tuple object.

Use a unique label for each of the ports in a single port tuple. The labels left and right are used for
forwarding.

6. Link the port tuple to a service instance.

7. Launch the service instance. This creates the necessary objects in the Contrail database.

NOTE: Port-tuple is not supported on transparent service instance, whether active/active,
active/standby, or scale-out.

Service Chain with Equal-Cost Multipath in Active-Active Mode

Equal-cost multipath (ECMP) can be used to distribute traffic across VMs. To support ECMP in the
service chain, create multiple port tuples within the same service instance. The labels should be the
same for the VM ports in each port tuple. For example, if port tuple 1 uses the labels left and right, then
port tuple 2 in the same service instance should also use the labels left and right for its ports.

When there are multiple port tuples, the default mode of operation is active-active.

Service Chain Active-Standby Mode with Allowed Address Pair

To support active-standby mode, you must configure an allowed address pair on the interfaces. The active-
standby is used as the high availability mode in the allowed address pair. The allowed address pair is
configured as part of the service instance for a particular VM port label. For example, if the allowed

621

address pair is configured in a service instance for the port with the label left, then all of the port-tuple
VM ports with the label left will use the allowed address pair high availability mode.

Allowed Address Pair

An allowed address pair extension is an OpenStack feature supported by Contrail.

By default, there is no way to specify additional MAC/IP address pairs that are allowed to pass through
a port in Neutron, because ports are locked down to their MAC address and the fixed IPs associated
with their port for anti-spoofing reasons. This locking can sometimes prevent protocols such as VRRP
from providing a high availability failover strategy. Using the allowed address pair extension enables
additional IP/MAC pairs to be allowed through ports in Neutron.

In Contrail, you can configure allowed address pairs in the service instance configuration, using
Configure > Services > Service Instances > Allowed Address Pair, see Figure 147 on page 622.

Figure 147: Edit Service Instance, Allowed Address Pair

For more information about OpenStack allowed address pairs, see https://specs.openstack.org/
openstack/neutron-specs/specs/api/allowed_address_pairs.html .

622

https://specs.openstack.org/openstack/neutron-specs/specs/api/allowed_address_pairs.html
https://specs.openstack.org/openstack/neutron-specs/specs/api/allowed_address_pairs.html

Service Chain with Static Route Table

The service chain Version 2 also supports static route tables. A static route table is configured similar to
how the allowed address pair is configured, except with using the label right. The route table will be
attached to the correct VM ports of the port tuples, based on the configuration of the port with the
label right.

Service Chain with Health Check

Service chain Version 2 also allows service instance health check configuration on a per interface label.
This is used to monitor the health of the service.

For more information about the service instance health check, see Health Check Object.

RELATED DOCUMENTATION

Health Check Object

Using the Contrail Heat Template

IN THIS SECTION

Introduction to Heat | 623

Heat Architecture | 624

Support for Heat Version 2 Resources | 624

Heat Version 2 with Service Chaining and Port Tuple Sample Workflow | 625

Example: Creating a Service Template Using Heat | 625

Heat is the orchestration engine of the OpenStack program. Heat enables launching multiple cloud
applications based on templates that are comprised of text files.

Introduction to Heat

A Heat template describes the infrastructure for a cloud application, such as networks, servers, floating
IP addresses, and the like, and can be used to manage the entire life cycle of that application.

623

When the application infrastructure changes, the Heat templates can be modified to automatically
reflect those changes. Heat can also delete all application resources if the system is finished with an
application.

Heat templates can record the relationships between resources, for example, which networks are
connected by means of policy enforcements, and consequently call OpenStack REST APIs that create
the necessary infrastructure, in the correct order, needed to launch the application managed by the Heat
template.

Heat Architecture

Heat is implemented by means of Python applications, including the following:

• heat-client—The CLI tool that communicates with the heat-api application to run Heat APIs.

• heat-api—Provides an OpenStack native REST API that processes API requests by sending them to the
Heat engine over remote procedure calls (RPCs).

• heat-engine—Responsible for orchestrating the launch of templates and providing events back to the
API consumer.

Support for Heat Version 2 Resources

Starting with Contrail Release 3.0.2, Contrail Heat resources and templates are autogenerated from the
Contrail schema, using Heat Version 2 resources. Contrail Release 3.0.2 is the minimum required version
for using Heat with Contrail in 3.x releases. The Contrail Heat Version 2 resources are of the following
hierarchy: OS::ContrailV2::<ResourceName>.

The generated resources and templates are part of the Contrail Python package, and are located in the
following directory in the target installation:

/usr/lib/python2.7/dist-packages/vnc_api/gen/heat/

The heat/ directory has the following subdirectories:

• resources/—Contains all the resources for the contrail-heat plugin, which runs in the context of the
Heat engine service.

• templates/—Contains sample templates for each resource. Each sample template presents every
possible parameter in the schema. Use the sample templates as a reference when you build up more
complex templates for your network design.

• env/—Contains the environment for input to each template.

The following contains a list of all the generated plug-in resources that are supported by contrail-heat in
Contrail Release 3.0.2 and greater:

624

https://github.com/Juniper/contrail-heat/tree/master/generated/resources

The following contains a list of new example templates:

https://github.com/Juniper/contrail-heat/tree/master/contrail_heat/new_templates

Deprecation of Heat Version 1 Resources

Heat Version 1 resources within the hierarchy OS::Contrail::<ResourceName> are being deprecated, and you
should not create new service chains using the Heat Version 1 templates.

Heat Version 2 with Service Chaining and Port Tuple Sample Workflow

With Contrail service templates Version 2, the user can create ports and bind them to a virtual machine
(VM)-based service instance, by means of a port-tuple object. All objects created with the Version 2
service template are directly visible to the Contrail Heat engine, and are directly managed by Heat.

The following shows the basic workflow steps for creating a port tuple and service instance that will be
managed by Heat:

1. Create a service template. Select 2 in the Version field.

2. Create a service instance for the service template just created.

3. Create a port-tuple object.

4. Create ports, using Nova VM launch or without a VM launch.

5. Label each port as left, right, mgmt, and so on, and add the ports to the port-tuple object.

Use a unique label for each of the ports in a single port tuple. The labels named left and right are
used for forwarding.

6. Link the port tuple to a service instance.

7. Launch the service instance.

Example: Creating a Service Template Using Heat

The following is an example of how to create a service template using Heat.

1. Define a template to create the service template.

service_template.yaml
heat_template_version: 2013-‐05-‐23
description: >

625

https://github.com/Juniper/contrail-heat/tree/master/generated/resources
https://github.com/Juniper/contrail-heat/tree/master/contrail_heat/new_templates

 HOT template to create a service template
parameters:
 name:
 type: string
 description: Name of service template
 mode:
 type: string
 description: service mode
 type:
 type: string
 description: service type
 image:
 type: string
 description: Name of the image
 flavor:
 type: string
 description: Flavor
 service_interface_type_list:
 type: string
 description: List of interface types
 shared_ip_list:
 type: string
 description: List of shared ip enabled-‐disabled
 static_routes_list:
 type: string
 description: List of static routes enabled-‐disabled

resources:
 service_template:
 type: OS::ContrailV2::ServiceTemplate
 properties:
 name: { get_param: name }
 service_mode: { get_param: mode }
 service_type: { get_param: type }
 image_name: { get_param: image }
 flavor: { get_param: flavor }
 service_interface_type_list: { "Fn::Split" : [",", Ref:
service_interface_type_list] }
 shared_ip_list: { "Fn::Split" : [",", Ref: shared_ip_list] }
 static_routes_list: { "Fn::Split" : [",", Ref: static_routes_list] }
 outputs:
 service_template_fq_name:
 description: FQ name of the service template

626

 value: { get_attr: [service_template, fq_name] }

}

2. Create an environment file to define the values to put in the variables in the template file.

service_template.env

parameters:

 name: contrail_svc_temp

 mode: transparent

 type: firewall

 image: cirros

 flavor: m1.tiny

 service_interface_type_list: management,left,right,other

 shared_ip_list: True,True,False,False

 static_routes_list: False,True,False,False

3. Create the Heat stack by launching the template and the environment file, using the following
command:

heat stack create stack1 –f service_template.yaml –e service_template.env

OR use this command for recent versions of OpenStack

openstack stack create -e <env-file-name> -t <template-file-name> <stack-name>

RELATED DOCUMENTATION

Service Chain Version 2 with Port Tuple | 619

627

Service Chain Route Reorigination

IN THIS SECTION

Overview: Service Chaining in Contrail | 628

Route Aggregation | 629

Routing Policy | 637

Control for Route Reorigination | 647

Overview: Service Chaining in Contrail

In Contrail, the service chaining feature allows the operator to insert dynamic services to control the
traffic between two virtual networks. The service chaining works on a basic rule of next-hop stitching.

In Figure 148 on page 628, the service chain is inserted between the Left VN and the Right VN. The
service chain contains one or more service instances to achieve a required network policy.

In the example, the route for the VM in the Right VN is added to the routing table for the Left VN, with
the next hop modified to ensure that the traffic is sent by means of the left interface of the service
chain. This is an example of route reorigination.

Figure 148: Route Reorigination

628

Using reorigination of routes for service chaining (for example, putting the route for the right network in
the left routing table) requires the following features:

• Route aggregation

For scaling purposes, it is useful to publish an aggregated route as the service chain route, rather than
publishing every route of each VM (/32). This reduces the memory footprint for the route table in the
gateway router and also reduces route exchanges between control nodes and the gateway router.
The route can be aggregated to the default route (0/0), to the VN subnet prefix, or to any arbitrary
route prefix.

• Path attribute modification for reoriginated routes

There are cases where the BgpPath attribute for the service chain route needs to be modified. An
example is the case of service chain failover, in which there are two service chains with identical
services that are connected between the same two VNs. The operator needs to control which service
chain is used for traffic between two networks, in addition to ensuring redundancy and high
availability by providing failover support. Path attribute modification for reoriginated routes is
implemented by means of routing policy, by providing an option to alter the MED (multi-exit
discriminator) or local-pref of the reoriginated service chain route.

• Control to enable and disable reorigination of the route

In some scenarios, the operator needs a control to stop reorigination of the route as the service chain
route, for example, when static routes are configured on service VM interfaces. Control to enable or
disable reorigination of the route is implemented by tagging the routes with the no-reoriginate
community. Routes with the no-reoriginate community tag are skipped for route reorigination.

Route Aggregation

The route aggregation configuration object contains a list of prefixes to aggregate. The next-hop field in
the route aggregate object contains the address of the route whose next hop is stitched as a next hop of
the aggregate route.

Route aggregation is configured on the service instance. The operator can attach multiple route
aggregation objects to a service instance. For example, if routes from the Right VN need to be
aggregated and reoriginated in the route table of the Left VN, the route aggregate object is created with
a prefix of the Right VN’s subnet prefix and attached to the left interface of the service instance.

If the service chain has multiple service instances, the route aggregate object is attached to the left
interface of the left-most service instance and to the right interface of the right-most service instance.

The relationships are shown in Figure 149 on page 630.

629

Figure 149: Route Aggregate Relationships

The schema transformer sets the next-hop field of the route aggregate object to the service chain
interface address. The schema transformer also links the route aggregate object to the internal routing
instance created for the service instance.

Using the configuration as described, the Contrail control service reads the route aggregation object on
the routing instance. When the first, more specific route or contributing route is launched (when the first
VM is launched on the right VN), the aggregate route is published. Similarly, the aggregated route is
deleted when the last, more specific route or contributing route is deleted (when the last VM is deleted
in the right VN). The aggregated route is published when the next hop for the aggregated route gets
resolved.

By default, in BGP or XMPP route exchanges, the control node will not publish contributing routes of an
aggregate route.

630

Schema for Route Aggregation

Route Aggregate Object

The following is the schema for route aggregate objects. Multiple prefixes can be specified in a single
route aggregate object.

<xsd:element name="route-aggregate" type="ifmap:IdentityType"/>
<xsd:complexType name="RouteListType">
 <xsd:element name="route" type="xsd:string" maxOccurs="unbounded"/>
</xsd:complexType>

<xsd:element name='aggregate-route-entries' type='RouteListType'/>
<!--#IFMAP-SEMANTICS-IDL
 Property('aggregate-route-entries', 'route-aggregate') -->

<xsd:element name='aggregate-route-nexthop' type='xsd:string'/>
<!--#IFMAP-SEMANTICS-IDL
 Property('aggregate-route-nexthop', 'route-aggregate') -->

Service Instance Link to Route Aggregate Object

The following is the schema for the service instance link to route aggregation objects. The operator can
link multiple route aggregate objects to a single service interface.

<xsd:element name="route-aggregate" type="ifmap:IdentityType"/>
<xsd:complexType name="RouteListType">
 <xsd:element name="route" type="xsd:string" maxOccurs="unbounded"/>
</xsd:complexType>

<xsd:element name='aggregate-route-entries' type='RouteListType'/>
<!--#IFMAP-SEMANTICS-IDL
 Property('aggregate-route-entries', 'route-aggregate') -->

<xsd:element name='aggregate-route-nexthop' type='xsd:string'/>
<!--#IFMAP-SEMANTICS-IDL
 Property('aggregate-route-nexthop', 'route-aggregate') -->

<xsd:simpleType name="ServiceInterfaceType">

631

 <xsd:restriction base="xsd:string">
 <xsd:pattern value="management|left|right|other[0-9]*"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name='ServiceInterfaceTag'>
 <xsd:element name="interface-type" type="ServiceInterfaceType"/>
</xsd:complexType>

<xsd:element name="route-aggregate-service-instance" type="ServiceInterfaceTag"/>
<!--#IFMAP-SEMANTICS-IDL
 Link('route-aggregate-service-instance',
 'bgp:route-aggregate', 'service-instance', ['ref']) -->

Routing Instance Link to Route Aggregate Object

The following is the schema for the routing instance link to the route aggregation object. A routing
instance can be linked to multiple route aggregate objects to perform route aggregation for multiple
route prefixes.

<xsd:element name="route-aggregate-routing-instance"/>
<!--#IFMAP-SEMANTICS-IDL
 Link('route-aggregate-routing-instance',
 'route-aggregate', 'routing-instance', ['ref']) -->

Configuring and Troubleshooting Route Aggregation

Configure Route Aggregate Object

You can use the Contrail UI, Configure > Networking > Routing > Create >Route Aggregate screen to
name the route aggregate object and identify the routes to aggregate. See Figure 150 on page 633.

632

Figure 150: Create Route Aggregate

Example VNC Script to Create a Route Aggregate Object

You can use a VNC script to create a route aggregate object, as in the following example:

from vnc_api.vnc_api import *
vnc_lib = VncApi("admin", "<password>.", "admin")
project=vnc_lib.project_read(fq_name=["default-domain", "admin"])
route_aggregate=RouteAggregate(name="left_to_right", parent_obj=project)
route_list=RouteListType(["<ip address>"])
route_aggregate.set_aggregate_route_entries(route_list)
vnc_lib.route_aggregate_create(route_aggregate)

Configuring a Service Instance

Create a service instance with the route aggregate object linked to the aggregate left network subnet
prefix in the right virtual network. See the example in Figure 151 on page 634.

633

Figure 151: Create Service Instance

Create a Virtual Network and Network Policy

Create a left and right virtual network with the subnets 1.1.1/24 and 2.2.2/24, respectively. Create a
network policy to apply a service chain between the left VN and the right VN. See the following
example.

Attach the network policy to create the service chain between the left and right VNs. See the following
example.

634

Validate the Route Aggregate Object in the API Server

Validate the route aggregate object in the API server configuration database. Verify the routing instance
reference and the service instance reference for the aggregate object. The aggregate_route_nexthop field in
the route aggregate object is initialized by the schema transformer to the service chain address. See the
following example.

635

Validate the Route Aggregate Object in the Control Node

Validate the instance configurations of the route aggregate by checking the control node introspect for
the service instance internal routing instance. For example:

http://<control-node>:8083/Snh_ShowBgpInstanceConfigReq?search_string=default- domain:admin:right:service-
ace7ae00-56e3-42d1-96ec-7fe77088d97f-default- domain_admin_si-aggregate

See the following example.

To check the state of the route aggregate object on the control node, point your browser to:

636

http://<control-node>:8083/Snh_ShowRouteAggregateReq

See the following example.

You can also check the route table for the aggregate route in the right VN BGP able. For example:

http://<control-node>:8083/Snh_ShowRouteReq?x=default-domain:admin:right:right.inet.0

See the following example.

Routing Policy

Contrail uses routing policy infrastructure to manipulate the route and path attribute dynamically.
Contrail also supports attaching the import routing policy on the service instances.

The routing policy contains list terms. A term can be a terminal rule, meaning that upon a match on the
specified term, no further terms are evaluated and the route is dropped or accepted, based on the action
in that term.

If the term is not a terminal rule, subsequent terms are evaluated for the given route.

The list terms are structured as in the following example.

Policy {
 Term-1
 Term-2
}

637

The matches and actions of the policy term lists operate similarly to the Junos language match and
actions operations. A visual representation is the following.

Each term is represented as in the following:

from {
 match-condition-1
 match-condition-2
 ..
 ..
}
then {
 action
 update-action-1
 update-action-2
 ..
 ..
}

The term should not contain an any match condition, for example, an empty from should not be present.

If an any match condition is present, all routes are considered as matching the term.

However, the then condition can be empty or the action can be unspecified.

Applying Routing Policy

The routing policy evaluation has the following key points:

638

• If the term of a routing policy consists of multiple match conditions, a route must satisfy all match
conditions to apply the action specified in the term.

• If a term in the policy does not specify a match condition, all routes are evaluated against the match.

• If a match occurs but the policy does not specify an accept, reject, or next term action, one of the
following occurs:

• The next term, if present, is evaluated.

• If no other terms are present, the next policy is evaluated.

• If no other policies are present, the route is accepted. The default routing policy action is “accept”.

• If a match does not occur with a term in a policy, and subsequent terms in the same policy exist, the
next term is evaluated.

• If a match does not occur with any terms in a policy, and subsequent policies exist, the next policy is
evaluated.

• If a match does not occur by the end of a policy or all policies, the route is accepted.

A routing policy can consist of multiple terms. Each term consists of match conditions and actions to
apply to matching routes.

Each route is evaluated against the policy as follows:

1. The route is evaluated against the first term. If it matches, the specified action is taken. If the action
is to accept or reject the route, that action is taken and the evaluation of the route ends. If the next
term action is specified or if no action is specified, or if the route does not match, the evaluation
continues as described above to subsequent terms.

2. Upon hitting the last non-terminal term of the given routing policy, the route is evaluated against the
next policy, if present, in the same manner as described in step 1.

Match Condition: From

The match condition from contains a list of match conditions to be satisfied for applying the action
specified in the term. It is possible that the term doesn’t have any match condition. This indicates that all
routes match this term and action is applied according to the action specified in the term.

The following table describes the match conditions supported by Contrail.

639

Match Condition User Input Description

Prefix List of prefixes to match Each prefix in the list is represented as prefix and
match type, where the prefix match type can be:

• exact

• orlonger

• longer

Example: 1.1.0.0/16 orlonger

A route matches this condition if its prefix
matches any of the prefixes in the list.

Community Community string to match Represented as either a well-known community
string with no export or no reoriginate, or a string
representation of a community (64512:11).

Protocol Array of path source or path
protocol to match

BGP | XMPP | StaticRoute | ServiceChain |
Aggregate. A path is considered as matching this
condition if the path protocol is one of protocols
in the list.

Routing Policy Action and Update Action

The policy action contains two parts, action and update action.

The following table describes action as supported by Contrail.

Action Terminal? Description

Reject Yes Reject the route that matches this term. No
more terms are evaluated after hitting this term.

Accept Yes Accept the route that matches this term. No
more terms are evaluated after hitting this term.
The route is updated using the update specified
in the policy action.

640

(Continued)

Action Terminal? Description

Next Term No This is the default action taken upon matching
the policy term. The route is updated according
to the update specified in the policy action. Next
terms present in the routing policy are processed
on the route. If there are no more terms in the
policy, the next routing policy is processed, if
present.

The update action section specifies the route modification to be performed on the matching route.

The following table describes update action as supported by Contrail.

Update Action User Input Description

community List of community As part of the policy update, the following
actions can be taken for community:

• Add a list of community to the
existing community.

• Set a list of community.

• Remove a list of community (if
present) from the existing community.

MED Update the MED of the BgpPath Unsigned integer representing the MED

local-pref Update the local-pref of the
BgpPath

Unsigned integer representing local-pref

Routing Policy Configuration

Routing policy is configured on the service instance. Multiple routing policies can be attached to a single
service instance interface.

641

When the policy is applied on the left interface, the policy is evaluated for all the routes that are
reoriginated in the left VN for routes belonging to the right VN. Similarly, the routing policy attached to
the right interface influences the route reorigination in the right VN, for routes belonging to the left VN.

The following figure illustrates a routing policy configuration.

The policy sequence number specified in the routing policy link data determines the order in which the
routing policy is evaluated. The routing policy link data on the service instance also specifies whether
the policy needs to be applied to the left service interface, to the right service interface, or to both
interfaces.

It is possible to attach the same routing policy to both the left and right interfaces for a service instance,
in a different order of policy evaluation. Consequently, the routing policy link data contains the
sequence number for policy evaluation separately for the left and right interfaces.

The schema transformer links the routing policy object to the internal routing instance created for the
service instance. The transformer also copies the routing policy link data to ensure the same policy
order.

Configuring and Troubleshooting Routing Policy

This section shows how to create a routing policy for service chains and how to validate the policy.

642

Create Routing Policy

First, create the routing policy, Configure > Networking > Routing > Create >Routing Policy. See the
following example.

Configure Service Instance

Create a service instance and attach the routing policy to both the left and right interfaces. The order of
the policy is calculated by the UI, based on the order of the policy specified in the list.

643

Configure the Network Policy for the Service Chain

At Edit Policy, create a policy for the service chain, see the following example.

Using a VNC Script to Create Routing Policy

The following example shows use of a VNC API script to create a routing policy.

from vnc_api.vnc_api import *
vnc_lib = VncApi("admin", "<password>", "admin")
project=vnc_lib.project_read(fq_name=["default-domain", "admin"])
routing_policy=RoutingPolicy(name="vnc_3", parent_obj=project)
policy_term=PolicyTermType()
policy_statement=PolicyStatementType()

match_condition=TermMatchConditionType(protocol=["bgp"], community="22:33")
prefix_match=PrefixMatchType(prefix="1.1.1.0/24", prefix_type="orlonger")
match_condition.set_prefix([prefix_match])

term_action=TermActionListType(action="accept")
action_update=ActionUpdateType(local_pref=101, med=10)
add_community=ActionCommunityType()
comm_list=CommunityListType(["11:22"])
add_community.set_add(comm_list)
action_update.set_community(add_community)
term_action.set_update(action_update)

policy_term.set_term_action_list(term_action)
policy_term.set_term_match_condition(match_condition)

policy_statement.add_term(policy_term)

644

routing_policy.set_routing_policy_entries(policy_statement)
vnc_lib.routing_policy_create(routing_policy)

Verify Routing Policy in API Server

You can verify the service instance references and the routing instance references for the routing policy
by looking in the API server configuration database. See the following example.

645

Verify Routing Policy in the Control Node

You can verify the routing policy in the control node.

Point your browser to:

http://<control-node>:8083/Snh_ShowRoutingPolicyReq?search_string=failover

See the following example.

Verify Routing Policy Configuration in the Control Node

You can verify the routing policy configuration in the control node.

Point your browser to:

http://<control-node>:8083/Snh_ShowBgpRoutingPolicyConfigReq?search_string=failover

See the following example.

Verify Routing Policy Configuration on the Routing Instance

You can verify the routing policy configuration on the internal routing instance.

646

Point your browser to:

http://<control-node>:8083/Snh_ShowBgpInstanceConfigReq?search_string=<name-of-internal-vrf>

See the following example.

You can also verify the routing policy on the routing instance operational object.

Point your browser to:

http://<control-node>:8083/Snh_ShowRoutingInstanceReq?x=<name-of-internal-vrf>

See the following example.

Control for Route Reorigination

The ability to prevent reorigination of interface static routes is typically required when routes are
configured on an interface that belongs to a service VM.

As an example, the following image shows a service chain that has multiple service instances, with an in-
net-nat service instance as the last service VM, also with the right VN as the public VN.

The last service instance performs NAT by using a NAT pool. The right interface of the service VM must
be configured with an interface static route for the NAT pool so that the destination in the right VN
knows how to reach addresses in the NAT pool. However, the NAT pool prefix should not be
reoriginated into the left VN.

647

To prevent route reorigination, the interface static route is tagged with a well-known BGP community
called no-reoriginate.

When the control node is reoriginating the route, it skips the routes that are tagged with the BGP
community.

Configuring and Troubleshooting Reorigination Control

The community attribute on the static routes for the interface static route of the service instance is
specified during creation of the service instance. See the following example.

648

Use the following example to verify that the service instance configuration object in the API server has
the correct community set for the static route. See the following example.

649

Service Instance Health Checks

IN THIS SECTION

Health Check Object | 650

Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces | 655

Bidirectional Forwarding and Detection Health Check for BGPaaS | 655

Health Check of Transparent Service Chain | 656

Service Instance Fate Sharing | 656

In Contrail Release 3.0 and greater, a service instance health check can be used to determine the
liveliness of a service provided by a virtual machine (VM).

Health Check Object

IN THIS SECTION

Health Check Overview | 650

Health Check Object Configuration | 651

Creating a Health Check with the Contrail User Interface | 652

Using the Health Check | 654

Health Check Process | 654

Health Check Overview

The service instance health check is used to determine the liveliness of a service provided by a VM,
checking whether the service is operationally up or down. The vRouter agent uses ping and an HTTP
URL to the link-local address to check the liveliness of the interface.

If the health check determines that a service is no longer operational, it removes the routes for the VM,
thereby disabling packet forwarding to the VM.

The service instance health check is used with service template version 2.

650

Health Check Object Configuration

Table 46 on page 651 shows the configurable properties of the health check object.

Table 46: Health Check Configurable Parameters

Field Description

- enabled Indicates that health check is enabled. The default is False.

- health-check-type Indicates the health check type: link-local, end-to-end, bgp-
as-a-service, and so on.. The default is link-local.

- monitor-type The protocol type to be used: PING or HTTP.

- delay The delay, in seconds, to repeat the health check.

- timeout The number of seconds to wait for a response.

- max-retries The number of retries to attempt before declaring an
instance health down.

- http-method When the monitor protocol is HTTP, the type of HTTP
method used, such as GET, PUT, POST, and so on.

- url-path When the monitor protocol is HTTP, the URL to be used. For
all other cases, such as ICMP, the destination IP address.

- expected-codes When the monitor protocol is HTTP, the expected return
code for HTTP operations.

Health Check Modes

The following modes are supported for the service instance health check:

• link-local—A local check for the service VM on the vRouter where the VM is running. In this case, the
source IP of the packet is the service chain IP.

651

• end-to-end—A remote address or URL is provided for a service health check through a chain of
services. The destination of the health check probe is allowed to be outside the service instance.
However, the health check probe must be reachable through the interface of the service instance
where the health check is attached. The end-to-end health check probe is transmitted all the way to
the actual destination outside the service instance. The response to the health check probe is
received and processed by the service health check to evaluate the status.

Restrictions include:

• This check is applicable for a chain where the services are not scaled out.

• When this mode is configured, a new health check IP is allocated and used as the source IP of the
packet.

• The health check IP is allocated per virtual-machine-interface of the service VM where the health
check is attached.

• The agent relies on the service-health-check-ip flag to use as the source IP.

NOTE: In versions prior to Contrail 4.1, end-to-end health check is not supported on a
transparent service chain. However, a link-local health check is possible on a transparent
service instance if the corresponding service instance interface is configured with its IP
address. Contrail 4.1 supports a segment-based health check for transparent service chain.

Creating a Health Check with the Contrail User Interface

To create a health check with the Contrail Web UI:

1. Navigate to Configure > Services > Health Check Service, and click to open the Create screen. See
Figure 152 on page 653.

652

Figure 152: Create Health Check Screen

2. Complete the fields to define the permissions for the health check, see Table 47 on page 653.

Table 47: Create Health Check Fields

Field Description

Name Enter a name for the health check service you are creating.

Protocol Select from the list the protocol to use for the health check, PING,
HTTP, BFD, and so on.

Monitor Target Select from the list the address of the target to be monitored by the
health check.

Delay (secs) The delay, in seconds, to repeat the health check.

Timeout (secs) The number of seconds to wait for a response.

653

Table 47: Create Health Check Fields (Continued)

Field Description

Retries The number of retries to attempt before declaring an instance health
down.

Health Check Type Select from the list the type of health check—link-local, end-to-end,
segment-based, bgp-as-a-service, and so on.

Using the Health Check

A REST API can be used to create a health check object and define its associated properties, then a link
is added to the VM interface.

The health check object can be linked to multiple VM interfaces. Additionally, a VM interface can be
associated with multiple health check objects. The following is an example:

HealthCheckObject 1 ---------------- VirtualMachineInterface 1 ----------------
HealthCheckObject 2
 |
 |
VirtualMachineInterface 2

Health Check Process

The Contrail vRouter agent is responsible for providing the health check service. The agent spawns a
Python script to monitor the status of a service hosted on a VM on the same compute node, and the
script updates the status to the vRouter agent.

The vRouter agent acts on the status provided by the script to withdraw or restore the exported
interface routes. It is also responsible for providing a link-local metadata IP for allowing the script to
communicate with the destination IP from the underlay network, using appropriate NAT translations. In
a running system, this information is displayed in the vRouter agent introspect at:

http://<compute-node-ip>:8085/Snh_HealthCheckSandeshReq?uuid=

654

NOTE: Running health check creates flow entries to perform translation from underlay to
overlay. Consequently, in a heavily loaded environment with a full flow table, it is possible to
observe false failures.

Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces

Contrail Networking Release 4.1 and later support for BFD-based health checks for VMIs.

Health check for VMIs is already supported as poll-based checks with ping and curl commands. When
enabled, these health checks run periodically, once every few seconds. Consequently, failure detection
times can be quite large, always in seconds.

Health checks based on the BFD protocol provide failure detection and recovery in sub-second intervals,
because applications are notified immediately upon BFD session state changes.

If BFD-based health check is configured, whenever a BFD session status is detected as Up or Down by the
health-checker, corresponding logs are generated.

Logging is enabled in the contrail-vrouter-agent.conf file with the log severity level SYS_NOTICE.

You can view the log file in the location /var/log/contrail/contrail-vrouter-agent.log

Snippet of sample log message related to BFD session events

2019-02-26 Tue 14:38:49:417.479 SYS_NOTICE BFD session Down interface: test-bfd-hc-vmi.st2
vrf: default-domain:admin:VN.hc.st2:VN.hc.st2
2019-02-26 Tue 14:38:49:479.733 PST SYS_NOTICE BFD session Up interface: test-bfd-hc-vmi.st2
vrf: default-domain:admin:VN.hc.st2:VN.hc.st2

Bidirectional Forwarding and Detection Health Check for BGPaaS

Contrail Release 4.1 adds support for BFD-based health check for BGP as a Service (BGPaaS) sessions.

This health check should not be confused with the BFD-based health check over VMIs feature, also
introduced in Release 4.1. The BFD-based health check for VMIs cannot be used for a BGPaaS session,
because the session shares a tenant destination address over a set of VMIs, with only one VMI active at
any given time.

When the BFD-based health check for BGP as a Service (BGPaaS) is configured, any time a BFD-for-
BGP session is detected as down by the health-checker, corresponding logs and alarms are generated.

655

To enable this health check, configure the ServiceHealthCheckType property and associate it with a bgp-as-a-
service configuration object. This can also be accomplished in the Contrail WebUI.

Health Check of Transparent Service Chain

Contrail 4.1 enhances service chain redundancy by implementing an end-to-end health check for the
transparent service chain. The service health check monitors the status of the service chain and if there
is a failure, the control node no longer considers the service chain as a valid next hop, triggering traffic
failover.

A segment-based health check is used to verify the health of a single instance in a transparent service
chain. The user creates a service-health-check object, with type segment-based, and attaches it to either
the left or right interface of the service instance. The service health check packet is injected to the
interface to which it is attached. When the packet comes out of the other interface, a reply packet is
injected on that interface. If health check requests fail after 30-second retries, the service instance is
considered unhealthy and the service VLAN routes of the left and right interfaces are removed. When
the agent receives health check replies successfully, it adds the retracted routes back onto both
interfaces, which triggers the control node to start reoriginating routes to other service instances on that
service chain.

For more information, see https://github.com/Juniper/contrail-specs/blob/master/
transparent_sc_health_check.md

Service Instance Fate Sharing

A service chain contains multiple service instances (SI) and the failure of a single SI can cause a traffic
black hole. In Contrail Release 4.1 and earlier, when an SI fails, the service chain continues to forward
packets and routes reoriginate on both sides of the service chain. The packets are dropped in the SI or
by the vRouter causing a black hole.

Starting in Contrail Release 4.1, segment-based health check type is used to verify the health of a SI in a
service chain. To identify a failure of an SI, segment-based health check is configured either on the
egress or ingress interface of the SI. When SI health check fails, the vRouter agent drops an SI route or a
connected route. A connected route is also dropped if the vRouter agent restarts due to a software
failure, when a compute node reboots, or when long-lived graceful restart (LLGR) is not enabled. You can
detect an SI failure by keeping track of corresponding connected routes of the service chain address.

NOTE: When an SI is scaled out, the connected route for an SI interface goes down only when all
associated VMs have failed.

The control node uses the service-chain-id in ServiceChainInfo to link all SIs in a service chain. When the
control node detects that any SI of the same service-chain-id is down, it stops reoriginating routes in

656

https://github.com/Juniper/contrail-specs/blob/master/transparent_sc_health_check.md
https://github.com/Juniper/contrail-specs/blob/master/transparent_sc_health_check.md

egress and ingress directions for all SIs. The control node reoriginates routes only when the connected
routes of all the SIs are up.

657

CHAPTER 16

Examples: Configuring Service Chaining

IN THIS CHAPTER

Example: Creating an In-Network Service Chain | 658

Example: Creating an In-Network-NAT Service Chain | 672

Example: Creating a Transparent Service Chain | 686

Example: Creating an In-Network Service Chain

IN THIS SECTION

Hardware and Software Requirements | 658

Overview | 659

Configuration | 659

This example provides instructions to create an in-network service chain by using the Contrail user
interface.

Hardware and Software Requirements

The following are the minimum requirements needed:

Hardware

• Processor: 4 core x86

• Memory: 32GB RAM

• Storage: at least 128GB hard disk

Software

658

• Contrail Release 3.2 or later

Overview

A service chain is a set of services that are connected across networks. A service chain consists of
service instances, left and right virtual networks, and a service policy attached to the networks. A service
chain can have in-network services, in-network-nat services, and transparent services.

In an in-network service chain, packets are routed between service instance interfaces. When a packet is
routed through the service chain, the source address of the packet entering the left interface of the
service chain and source address of the packet exiting the right interface is the same. For more
information, see Service Chaining.

Configuration

IN THIS SECTION

Create Virtual Network | 659

Create Virtual Machine | 661

Configure Service Template | 663

Add Service Instance | 665

Create Service Policy | 667

Attach Service Policy | 669

Launch Virtual Machine | 671

These topics provide instructions to create an in-network service chain.

Create Virtual Network

Step-by-Step Procedure

Use the Contrail user interface to create a left virtual network, right virtual network, and management
virtual network.

To create a virtual network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

659

Figure 153: Networks Page

2. Click the add (+) icon to create a network.

The Create page is displayed.

Figure 154: Create Page

3. Enter a name for the network in the Name field.

4. Click Subnets and click add (+) to add subnets.

660

Step-by-Step Procedure

In the row that is displayed,

a. Click the arrow in the IPAM field and select left-ipam for that left virtual network, or select right-
ipam for the right virtual network, or select mgmt-ipam for the management network.

Management network is not used to route packets. This network is used to help troubleshoot
issues with the virtual machine.

NOTE:

Step-by-Step Procedure

You can also create a new IPAM by following these steps:

i. Click Configure>Networking>IP Address Management and click the add (+) icon.

The Create page is displayed.

ii. In the Name field, enter a name for the IPAM.

iii. Click Save.

The IP Address Management page is displayed.

b. In the CIDR field, enter valid IPv4 or IPv6 subnet/mask.

5. Click Save.

The Networks page is displayed. All virtual networks that you created are displayed in the Networks
page.

Create Virtual Machine

Step-by-Step Procedure

You use OpenStack to create virtual machines with left, right, and management interfaces.

Follow these steps to create virtual machines for left, right, and management networks.

1. Click Project>Compute>Instances.

The Instances page is displayed.

661

Figure 155: Instances Page

2. Click Launch Instance to create an instance.

The Details tab of the Launch Instance page is displayed.

Figure 156: Launch Instance

3. Enter a name for the virtual machine in the Instance Name field and click the Source tab.

The Source tab of the Launch Instance page is displayed.

4. Select an image file from the Available list by clicking the add (+) icon next to the image file.

5. Click the Flavor tab. See Figure 156 on page 662.

662

The Flavor tab of the Launch Instance page is displayed.

NOTE: vSRX image with M1.large flavor is recommended for in-network virtual machine.

6. Select a flavor from the Available list by clicking the add (+) icon next to the flavor name.

7. Click the Networks tab. See Figure 156 on page 662.

The Network tab of the Launch Instance page is displayed.

8. Select a network you want to associate with the virtual machine instance by clicking the add (+) icon
next to the network name.

9. Click Launch Instance to launch the virtual machine instance. See Figure 156 on page 662.

The Instances page is displayed.

All virtual machine instances that you created are displayed on the Instances page.

Configure Service Template

Step-by-Step Procedure

Follow these steps to configure a service template:

1. Click Configure>Services>Service Templates.

The Service Templates page is displayed.

2. Click the add (+) icon to create a service template. See Figure 157 on page 664.

The Service Template tab of the Create page is displayed.

Enter the following information as given in Table 48 on page 663:

Table 48: Add Service Template Fields

Field Action

Name Enter a name for the service template.

Version Select v2 as the version type.

NOTE: Starting with Release 3.2, Contrail supports only Service Chain Version 2 (v2).

663

Table 48: Add Service Template Fields (Continued)

Field Action

Virtualization Type Select Virtual Machine as the virtualization type.

Service Mode Select In-Network as the service mode.

Service Type Select Firewall as the service type.

Interface(s) Click the add (+) icon and add the following interfaces:

• management

• left

• right

NOTE: The interfaces created on the virtual machine must follow the same sequence as
that of the interfaces in the service template.

Figure 157: Create Service Template

664

3. Click Save to save the service template.

The Service Templates page is displayed. All service templates that you created are displayed in the
Service Templates page.

Add Service Instance

Step-by-Step Procedure

Follow these steps to add a service instance:

1. Click Configure>Services>Service Instances.

The Service Instances page is displayed.

2. Click the add (+) icon to add a service instance. See Figure 158 on page 666.

The Service Instance tab of the Create page is displayed.

Enter the following information as given in Table 49 on page 665:

Table 49: Add Service Instance Fields

Field Action

Name Enter a name for the service instance.

Service
Template

Select in-network - [in-network (management, left, right)] - v2 as the service template

Virtual
Network

Select the virtual network for each interface type as given below:

• management—Select the management virtual network that you created.

• left—Select the left virtual network that you created.

• right —Select the right virtual network that you created.

665

Table 49: Add Service Instance Fields (Continued)

Field Action

Port Tuples Click Port Tuples and click the add (+) icon to add new port tuples. See Figure 159 on page
667.

Click the arrow next to the newly added port tuple to select the virtual machine instance for
each interface type as given below:

• management—Select the management virtual machine instance that you created.

• left—Select the left virtual machine instance that you created.

• right —Select the right virtual machine instance that you created.

Figure 158: Create Service Instance

666

Figure 159: Create Port Tuples

3. Click Save to save the service instance.

The Service Instances page is displayed. All service instances that you created are displayed in the
Service Instances page.

Create Service Policy

Step-by-Step Procedure

Follow these steps to create a service policy:

1. Click Configure>Networking>Policies.

The Policies page is displayed.

667

Figure 160: Policies Page

2. Click the add (+) icon to add a service policy. See Figure 160 on page 668.

The Policy tab of the Create page is displayed.

Figure 161: Create Policy Page

3. Enter a name for the service policy in the Policy Name field.

4. Click add (+) in the Policy Rule(s) table to add a policy rule.

668

A row is added to the Policy Rule(s) table. See Figure 161 on page 668.

5. In the row that is added:

a. Click the Source column and select Network from the source list.

From the networks list, select the left virtual network that you created.

b. Click the Destination column and select Network from the destination list.

From the networks list, select the right virtual network that you created.

c. Select the Services check box to enable services.

The Service Instance field is enabled.

d. Click the Service Instance field and select in-network from the service instance list.

6. Click Save to add the service policy.

The Policies page is displayed. All policies that you created are displayed in the Policies page.

Attach Service Policy

Step-by-Step Procedure

Follow these steps to attach a service policy to a network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

2. Add service policy to the left and right primary virtual networks.

Step-by-Step Procedure

To add a service policy to a virtual network:

a. Click the settings icon given at the end of the row of the virtual network.

b. In the list that is displayed, click Edit. See Figure 162 on page 670.

The Edit page is displayed. See Figure 163 on page 670.

669

Figure 162: Networks Page

Figure 163: Edit Network Page

c. Click Network Policy(s) and select the network policy you want to add to the virtual network. See
Figure 163 on page 670.

d. Click Save.

The policy is assigned to the network.

Repeat steps a through d to assign policies to other virtual networks.

670

Launch Virtual Machine

Step-by-Step Procedure

You launch virtual machines from OpenStack and test the traffic through the service chain by doing the
following:

1. Launch the left virtual machine in left virtual network. For more information, see "Create Virtual
Machine" on page 661.

2. Launch the right virtual machine in right virtual network. For more information, see "Create Virtual
Machine" on page 661.

3. Ping the right virtual machine IP address from the left virtual machine.

Follow these steps to ping a virtual machine:

a. Click Project > Compute > Instances.

All virtual machine instances that you created are displayed on the Instances page.

b. From the list of virtual machines, click the left virtual machine.

The Instances / Left Instance page is displayed.

c. Click the Console tab.

The Instance Console is displayed.

d. Ping the right virtual machine IP address from the Instance Console.

RELATED DOCUMENTATION

Service Chaining

Example: Creating an In-Network-NAT Service Chain | 672

Example: Creating a Transparent Service Chain | 686

671

Example: Creating an In-Network-NAT Service Chain

IN THIS SECTION

Hardware and Software Requirements | 672

Overview | 672

Configuration | 673

This example provides step-by-step instructions to create an in-network-nat service chain by using the
Contrail user interface.

Hardware and Software Requirements

The following are the minimum requirements needed:

Hardware

• Processor: 4 core x86

• Memory: 32GB RAM

• Storage: at least 128GB hard disk

Software

• Contrail Release 3.2 or later

Overview

A service chain is a set of services that are connected across networks. A service chain consists of
service instances, left and right virtual networks, and a service policy attached to the networks. A service
chain can have in-network services, in-network-nat services, and transparent services.

In an in-network-nat service chain, packets are routed between service instance interfaces. In-network-
nat service chain does not require return traffic to be routed to the source network. When a packet is
routed through the service chain, the source address of the packet entering the left interface of the
service chain is updated and is not the same as the source address of the packet exiting the right
interface. For more information, see Service Chaining.

672

Configuration

IN THIS SECTION

Create Virtual Network | 673

Create Virtual Machine | 675

Configure Service Template | 677

Add Service Instance | 679

Create Service Policy | 681

Attach Service Policy | 683

Launch Virtual Machine | 685

These topics provide instructions to create an in-network-nat service chain.

Create Virtual Network

Step-by-Step Procedure

Use the Contrail user interface to create a left virtual network, right virtual network, and management
virtual network.

To create a virtual network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

673

Figure 164: Networks Page

2. Click the add (+) icon to create a network.

The Create page is displayed.

Figure 165: Create Page

3. Enter a name for the network in the Name field.

4. Click Subnets and click add (+) to add subnets.

674

Step-by-Step Procedure

In the row that is displayed,

a. Click the arrow in the IPAM field and select left-ipam for the left virtual network, or select right-
ipam for the right virtual network, or select mgmt-ipam for the management network.

Management network is not used to route packets. This network is used to help debug issues
with the virtual machine.

NOTE:

Step-by-Step Procedure

You can also create a new IPAM by following these steps:

i. Click Configure>Networking>IP Address Management and click the add (+) icon.

The IPAM tab of the Create page is displayed.

ii. In the Name field, enter a name for the IPAM.

iii. Click Save.

The IP Address Management page is displayed.

b. In the CIDR field, enter valid IPv4 or IPv6 subnet or mask.

5. Click Save.

The Networks page is displayed. All virtual networks that you created are displayed in the Networks
page.

Create Virtual Machine

Step-by-Step Procedure

You use OpenStack to create virtual machines with left, right, and management interfaces.

Follow these steps to create virtual machines for left, right, and management networks.

1. Click Project>Compute>Instances.

The Instances page is displayed.

675

Figure 166: Instances Page

2. Click Launch Instance to create an instance.

The Details tab of the Launch Instance page is displayed.

Figure 167: Launch Instance

3. Enter a name for the virtual machine in the Instance Name field and click the Source tab.

The Source tab of the Launch Instance page is displayed.

4. Select an image file from the Available list by clicking the add (+) icon next to the image file.

5. Click the Flavor tab.

676

The Flavor tab of the Launch Instance page is displayed.

NOTE: vSRX image with M1.large flavor is recommended for in-network-nat virtual machine.

6. Select a flavor from the Available list by clicking the add (+) icon next to the flavor name.

7. Click the Networks tab.

The Network tab of the Launch Instance page is displayed.

8. Select a network you want to associate with the virtual machine instance by clicking the add (+) icon
next to the network name.

9. Click Launch Instance to launch the virtual machine instance.

The Instances page is displayed.

All virtual machine instances that you created are displayed on the Instances page.

Configure Service Template

Step-by-Step Procedure

Follow these steps to configure a service template:

1. Click Configure>Services>Service Templates.

The Service Templates page is displayed.

2. Click the add (+) icon to create a service template. See Figure 168 on page 678.

The Service Template tab of the Create page is displayed.

Enter the following information as given in Table 50 on page 677:

Table 50: Add Service Template Fields

Field Action

Name Enter a name for the service template.

Version Select v2 as the version type.

NOTE: Starting with Release 3.2, Contrail supports only Service Chain Version 2 (v2).

677

Table 50: Add Service Template Fields (Continued)

Field Action

Virtualization Type Select Virtual Machine as the virtualization type.

Service Mode Select In-Network Nat as the service mode.

Service Type Select Firewall as the service type.

Interface(s) Click the add (+) icon and add the following interfaces:

• management

• left

• right

NOTE: The interfaces created on the virtual machine must follow the same sequence as
that of the interfaces in the service template.

Figure 168: Create Service Template

678

3. Click Save to save the service template.

The Service Templates page is displayed. All service templates that you created are displayed in the
Service Templates page.

Add Service Instance

Step-by-Step Procedure

Follow these steps to add a service instance:

1. Click Configure>Services>Service Instances.

The Service Instances page is displayed.

2. Click the add (+) icon to add a service instance. See Figure 169 on page 680.

The Service Instance tab of the Create page is displayed.

Enter the following information as given in Table 51 on page 679:

Table 51: Add Service Instance Fields

Field Action

Name Enter a name for the service instance.

Service
Template

Select in-network-nat - [in-network-nat (management, left, right)] - v2 as the service
template

Virtual
Network

Select the virtual network for each interface type as given below:

• management—Select the management virtual network that you created.

• left—Select the left virtual network that you created.

• right—Select the right virtual network that you created.

679

Table 51: Add Service Instance Fields (Continued)

Field Action

Port Tuples Click Port Tuples and click the add (+) icon to add new port tuples. See Figure 170 on page
681.

Click the arrow next to the newly added port tuple to select the virtual machine intstance
for each interface type as given below:

• management—Select the management virtual machine instance that you created.

• left—Select the left virtual machine instance that you created.

• right—Select the right virtual machine instance that you created.

Figure 169: Create Service Instance

680

Figure 170: Create Port Tuples

3. Click Save to save the service instance.

The Service Instances page is displayed. All service instances that you created are displayed in the
Service Instances page.

Create Service Policy

Step-by-Step Procedure

Follow these steps to create a service policy:

1. Click Configure>Networking>Policies.

The Policies page is displayed.

681

Figure 171: Policies Page

2. Click the add (+) icon to add a service policy. See Figure 171 on page 682.

The Policy tab of the Create page is displayed.

Figure 172: Create Policy Page

3. Enter a name for the service policy in the Policy Name field.

4. Click add (+) in the Policy Rule(s) table to add a policy rule.

682

A row is added to the Policy Rule(s) table. See Figure 172 on page 682.

5. In the row that is added:

a. Click the Source column and select Network from the source list.

From the networks list, select the left virtual network that you created.

b. Click the Destination column and select Network from the destination list.

From the networks list, select the right virtual network that you created.

c. Select the Services check box to enable services.

The Service Instance field is enabled.

d. Click the Service Instance field and select in-network-nat from the service instance list.

6. Click Save to add the service policy.

The Policies page is displayed. All policies that you created are displayed in the Policies page.

Attach Service Policy

Step-by-Step Procedure

Follow these steps to attach a service policy to a network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

2. Add service policy to the left and right virtual networks.

Step-by-Step Procedure

To add a service policy to a virtual network:

a. Click the settings icon given at the end of the row of the virtual network.

b. In the list that is displayed, click Edit. See Figure 173 on page 684.

The Edit page is displayed. See Figure 174 on page 684.

683

Figure 173: Networks Page

Figure 174: Edit Network Page

c. Click Network Policy(s) and select the network policy you want to add to the virtual network. See
Figure 174 on page 684.

d. Click Save.

The policy is assigned to the network.

Repeat steps a through d to assign policies to other virtual networks.

684

Launch Virtual Machine

Step-by-Step Procedure

You can launch virtual machines from OpenStack and test the traffic through the service chain by doing
the following:

1. Launch the left virtual machine in left virtual network. For more information, see "Create Virtual
Machine" on page 675.

2. Launch the right virtual machine in right virtual network. For more information, see "Create Virtual
Machine" on page 675.

3. Ping the right virtual machine IP address from the left virtual machine.

Follow these steps to ping a virtual machine:

a. Click Project > Compute > Instances.

All virtual machine instances that you created are displayed on the Instances page.

b. From the list of virtual machines, click the left virtual machine.

The Instances / Left Instance page is displayed.

c. Click the Console tab.

The Instance Console is displayed.

d. Ping the right virtual machine IP address from the Instance Console.

RELATED DOCUMENTATION

Service Chaining

Example: Creating an In-Network Service Chain | 658

Example: Creating a Transparent Service Chain | 686

685

Example: Creating a Transparent Service Chain

IN THIS SECTION

Hardware and Software Requirements | 686

Overview | 686

Configuration | 686

This example provides step-by-step instructions to create a transparent service chain by using the
Contrail user interface.

Hardware and Software Requirements

The following are the minimum requirements needed:

Hardware

• Processor: 4 core x86

• Memory: 32GB RAM

• Storage: at least 128GB hard disk

Software

• Contrail Release 3.2 or later

Overview

A service chain is a set of services that are connected across networks. A service chain consists of
service instances, left and right virtual networks, and a service policy attached to the networks. A service
chain can have in-network services, in-network-nat services, and transparent services. A transparent
service chain is used for services that do not modify packets that are bridged between service instance
interfaces. For more information, see Service Chaining.

Configuration

IN THIS SECTION

Create Primary Virtual Network | 687

686

Create Secondary Virtual Network | 689

Create Virtual Machine | 690

Configure Service Template | 691

Add Service Instance | 693

Create Service Policy | 696

Attach Service Policy | 698

Launch Virtual Machine | 699

These topics provide instructions to create a transparent service chain.

Create Primary Virtual Network

Step-by-Step Procedure

Use the Contrail user interface to create three primary virtual networks-–left virtual network, right
virtual network, and management virtual network. You attach service policies to the primary virtual
networks that you create.

To create a virtual network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

687

Figure 175: Networks Page

2. Click the add (+) icon to create a network.

The Network tab of the Create page is displayed.

Figure 176: Create Page

3. Enter a name for the network in the Name field.

4. Click Subnets and click add (+) to add subnets.

688

Step-by-Step Procedure

In the row that is displayed:

a. Click the arrow in the IPAM field and select the left-ipam that you created for that left virtual
network, or select the right-ipam that you created for the right virtual network, or select the
mgmt-ipam that you created for the management network.

Management network is not used to route packets. This network is used to help debug issues
with the virtual machine.

NOTE: You can also create a new IPAM by following the steps given below:

Step-by-Step Procedure

i. Click Configure>Networking>IP Address Management and click the add (+) icon.

The IPAM tab of the Create page is displayed.

ii. In the Name field, enter a name for the IPAM.

iii. Click Save.

The IP Address Management page is displayed.

b. In the CIDR field, enter valid IPv4 or IPv6 subnet or mask.

5. Click Save.

The Networks page is displayed. All virtual networks that you created are displayed in the Networks
page.

Create Secondary Virtual Network

Step-by-Step Procedure

Use the Contrail user interface to create three secondary virtual networks-–left virtual network, right
virtual network, and management virtual network. You associate the secondary virtual network to the
transparent service instance that you create. For more information on creating virtual networks, see
"Create Primary Virtual Network" on page 687.

689

Create Virtual Machine

Step-by-Step Procedure

You use OpenStack to create virtual machines with left, right, and management interfaces.

Follow these steps to create virtual machines for left, right, and management networks.

1. Click Project>Compute>Instances.

The Instances page is displayed.

Figure 177: Instances Page

2. Click Launch Instance to create an instance.

The Details tab of the Launch Instance page is displayed.

690

Figure 178: Launch Instance

3. Enter a name for the virtual machine in the Instance Name field and click the Source tab.

The Source tab of the Launch Instance page is displayed.

4. Select an image file from the Available list by clicking the add (+) icon next to the image file.

5. Click the Flavor tab. See Figure 178 on page 691.

The Flavor tab of the Launch Instance page is displayed.

6. Select a flavor from the Available list by clicking the add (+) icon next to the flavor name.

7. Click the Networks tab. See Figure 178 on page 691.

The Network tab of the Launch Instance page is displayed.

8. Select the secondary network you want to associate with the virtual machine instance by clicking the
add (+) icon next to the network name.

9. Click Launch Instance to launch the virtual machine instance. See Figure 178 on page 691.

The Instances page is displayed.

All virtual machine instances that you created are displayed on the Instances page.

Configure Service Template

Step-by-Step Procedure

Follow these steps to configure a service template:

691

1. Click Configure>Services>Service Templates.

The Service Templates page is displayed.

2. Click the add (+) icon to create a service template. See Figure 179 on page 693.

The Service Template tab of the Create page is displayed.

Enter the following information as given in Table 52 on page 692:

Table 52: Add Service Template Fields

Field Action

Name Enter a name for the service template.

Version Select v2 as the version type.

NOTE: Starting with Release 3.2, Contrail supports only Service Chain Version 2 (v2).

Virtualization Type Select Virtual Machine as the virtualization type.

Service Mode Select Transparent as the service mode.

Service Type Select Firewall as the service type.

Interface(s) Click the add (+) icon and add the following interfaces:

• management

• left

• right

NOTE: The interfaces created on the virtual machine must follow the same sequence as
that of the interfaces in the service template.

692

Figure 179: Create Service Template

3. Click Save to save the service template.

The Service Templates page is displayed. All service templates that you created are displayed in the
Service Templates page.

Add Service Instance

Step-by-Step Procedure

Follow these steps to add a service instance:

1. Click Configure>Services>Service Instances.

The Service Instances page is displayed.

2. Click the add (+) icon to add a service instance. See Figure 180 on page 695.

The Service Instance tab of the Create page is displayed.

Enter the following information as given in Table 53 on page 694:

693

Table 53: Add Service Instance Fields

Field Action

Name Enter a name for the service instance.

Service
Template

Select transparent - [transparent (management, left, right)] - v2 as the service template.

Virtual
Network

Select the virtual network for each interface type as given below:

• management—Select the secondary management virtual network that you created.

• left—Select the secondary left virtual network that you created.

• right—Select the secondary right virtual network that you created.

Port Tuples Click Port Tuples and click the add (+) icon to add new port tuples. See Figure 181 on page
695.

Click the arrow next to the newly added port tuple to select the virtual machine instance for
each interface type as given below:

• management —Select the management virtual machine instance that you created.

• left—Select the left virtual machine instance that you created.

• right—Select the right virtual machine instance that you created.

694

Figure 180: Create Service Instance

Figure 181: Create Port Tuples

3. Click Save to save the service instance.

695

The Service Instances page is displayed. All service instances that you created are displayed in the
Service Instances page.

Create Service Policy

Step-by-Step Procedure

Follow these steps to create a service policy:

1. Click Configure>Networking>Policies.

The Policies page is displayed.

Figure 182: Policies Page

2. Click the add (+) icon to add a service policy. See Figure 182 on page 696.

The Policy tab of the Create page is displayed.

696

Figure 183: Create Policy Page

3. Enter a name for the service policy in the Policy Name field.

4. Click add (+) in the Policy Rule(s) table to add a policy rule.

A row is added to the Policy Rule(s) table. See Figure 183 on page 697.

5. In the row that is added:

a. Click the Source column and select Network from the source list.

From the networks list, select the primary left virtual network that you created.

b. Click the Destination column and select Network from the destination list.

From the networks list, select the primary right virtual network that you created.

c. Select the Services check box to enable services.

The Service Instance field is enabled.

d. Click the Service Instance field and select transparent from the service instance list.

6. Click Save to add the service policy.

The Policies page is displayed. All policies that you created are displayed in the Policies page.

697

Attach Service Policy

Step-by-Step Procedure

Follow these steps to attach a service policy to a network:

1. Click Configure>Networking>Networks.

The Networks page is displayed.

2. Add service policy to the left and right primary virtual networks.

Step-by-Step Procedure

To add a service policy to a virtual network:

a. Click the settings icon given at the end of the row of the virtual network.

b. In the list that is displayed, click Edit. See Figure 184 on page 698.

The Edit page is displayed. See Figure 185 on page 699.

Figure 184: Networks Page

698

Figure 185: Edit Network Page

c. Click Network Policy(s) and select the network policy you want to add to the virtual network. See
Figure 185 on page 699.

d. Click Save.

The policy is assigned to the network.

Repeat steps a through d to assign policies to other virtual networks.

Launch Virtual Machine

Step-by-Step Procedure

You can launch virtual machines from OpenStack and test the traffic through the service chain by doing
the following:

1. Launch the left virtual machine in the primary left virtual network. For more information, see "Create
Virtual Machine" on page 690.

2. Launch the right virtual machine in the primary right virtual network. For more information, see
"Create Virtual Machine" on page 690.

3. Ping the right virtual machine IP address from the left virtual machine.

Follow these steps to ping a virtual machine:

699

a. Click Project > Compute > Instances.

All virtual machine instances that you created are displayed on the Instances page.

b. From the list of virtual machines, click the left virtual machine.

The Instances / Left Instance page is displayed.

c. Click the Console tab.

The Instance Console is displayed.

d. Ping the right virtual machine IP address from the Instance Console.

RELATED DOCUMENTATION

Service Chaining

Example: Creating an In-Network-NAT Service Chain | 672

Example: Creating an In-Network Service Chain | 658

700

CHAPTER 17

Adding Physical Network Functions in Service
Chains

IN THIS CHAPTER

Using Physical Network Functions in Contrail Service Chains | 701

Example: Adding a Physical Network Function Device to a Service Chain | 703

Using Physical Network Functions in Contrail Service Chains

IN THIS SECTION

PNF Service Chaining Objects | 701

Prerequisites and Assumptions | 702

Contrail Release 3.0 and greater supports service appliance-based physical network functions devices
(PNFs) in service chains, enabling the creation of service chains that include a combination of virtual
network functions (VNFs) and PNFs. The PNFs are also supported with Contrail Device Manager.

PNF Service Chaining Objects

As of Contrail Release 3.0, Contrail has objects used to support PNFs in service chains, including:

• service appliance (SA)—represents a single physical appliance

• service appliance set (SA set)—represents a collection of functionally equivalent SAs, all running the
same software with the same capabilities

A service appliance is associated with a physical router that has physical interfaces for the left, right,
management, or other interfaces.

701

There can be more than one service appliance and associated physical router and physical interface
objects representing it.

A physical appliance can host more than one service appliance through a logical system or other
virtualization capability.

The service template object supports a physical network function service template (PNF-ST). The PNF-
ST is associated with a service appliance set, which represents a pool of service appliances that can be
used when the PNF-ST is instantiated.

Only the transparent service mode is supported for PNF-STs.

Prerequisites and Assumptions

The following are the prerequisites for implementing a service appliance with a Contrail controller.

• Before the controller can use a PNF SA, the controller must be connected to a service control
gateway (SCG) router, such as an MX Series router.

• The Contrail Device Manager must manage the SCG router.

• The PNF SA must be configured, and it must be configured to operate as an Ethernet bridge. The
Contrail controller does not automatically implement PNF SA configuration.

• Infrastructure interfaces (physical interfaces or aggregated Ethernet interfaces) on the SCG facing the
SA must be preconfigured. The interfaces must be able to support VLAN-based units.

• Layer 2 VPNs as supported by the Contrail Device Manager are only available with Juniper Networks
Junos Release 14.2R4 or greater. If an earlier version of Junos is used, you must mark the virtual
networks in Contrail with the forwarding mode “L3 only.”

• Logical interfaces for connecting the service gateway VRFs to the customer and the Internet must be
preconfigured.

RELATED DOCUMENTATION

Example: Adding a Physical Network Function Device to a Service Chain | 703

702

Example: Adding a Physical Network Function Device to a Service Chain

IN THIS SECTION

Prerequisites for Adding a PNF to a Service Chain | 703

Beginning with Contrail 3.0, it is possible to add a physical network function (PNF) device to a service
chain. This section provides an example of creating a service chain that includes a PNF.

Prerequisites for Adding a PNF to a Service Chain

Prerequisites

The following are the minimum requirements needed before you can add a PNF to a service chain using
the procedure shown in the example included in this topic:

• at least one MX Series device

• at least one PNF to connect to the MX device

• Juniper Networks Junos version that includes the feature accept-local-nexthop

NOTE: The Junos feature accept-local-nexthop is available starting with Junos Release 14.1X55.
The Contrail service chain with PNF has been tested on Junos 14.1X55. Contact your Juniper
Networks customer service representative for more information.

The prerequisite minimum topology is shown in the following figure.

703

The following must be preconfigured on the MX Series device.

interfaces {
 ge-1/3/7 {
 unit 0 {
 family inet {
 address 10.227.5.115/24;
 }
 family mpls;
 }
 }
 ge-1/3/9 {
 vlan-tagging;
 }
 ge-1/3/8 {
 vlan-tagging;
 }
}
protocols {
 bgp {
 family inet-vpn {
 unicast {
 accept-local-nexthop;
 }
 }
 }
}

If the MX is a service control gateway (SCG), the following configuration must also be present to support
the service subscriptions:

firewall {
 family inet {
 filter skip_tdf_service {
 term term1 {
 then {
 skip-services;
 accept;
 }
 }
 }

704

 }
}
routing-instances {
 <*-sc-entry-point> {
 forwarding-options {
 family inet {
 filter {
 input skip_tdf_service;
 }
 }
 }
 }
}

Procedure: Adding a PNF to a Service Chain

1. At the Contrail UI, Configure > Infrastructure > BGP Routers, create a BGP router, with the Contrail
controller as a peer, the address family you need, and a minimum configuration of the route-target,
inet, and the inet-vpn. The following figure provides an example.

2. Create two virtual networks. Select Configure > Networking > Networks and create a network
named IN and a network named OUT. The following figure provides an example.

705

3. Create a physical router associated with the BGP router. Select Configure > Physical Devices>
Physical Routers and create a physical router. The VTEP address of the physical router should be
same as the BGP router’s IP address. Associate the physical router with the BGP router created
previously, and select for Virtual Networks the networks created for this example (IN and OUT).
The following figure provides an example.

4. While still on the Add Physical Router window, use the slider to scroll down to the Netconf Settings
section and add the appropriate NETCONF information for your system. The following figure
provides an example.

706

5. Add the physical interfaces that connect to the PNF device. Go to Configure > Physical Devices>
Interfaces and select the PNF to get to the Add Interfaces window, where you enter the name and
type for each interface. The following figure provides an example.

6. Add a service appliance set. Go to Configure > Infrastructure> Service Appliance Sets to get to the
Create Service Appliance Set window, where you enter the name of the service appliance set. The
following figure provides an example.

707

7. Configure a service template, Configure > Services > Service Templates and click the Create button
on Service Templates to get to Add Service Template. Ensure that the Virtualization Type is set to
Physical Device, and that the template is associated to the service appliance set previously created.
The following figure provides an example.

8. Add a physical router that represents the PNF device. Go to Configure > Physical Devices >
Physical Routers to get to the Add Physical Router window, where you enter a name for the
physical router. The following figure provides an example.

708

9. Create two interfaces for the PNF. The interfaces should connect to the interfaces already created
in this example, and should connect in the manner illustrated in the topology diagram. The
interfaces for the other PR should be available from the selection field. The following figure
provides an example.

10. Add a service appliance in the service appliance set. Go to Configure > Infrastructure> Service
Appliances to get to the Create Service Appliance window, where you enter the name of the
service appliance set and the IP address. Also add the left and right interfaces previously created.
The following figure provides an example.

709

The remaining steps are the same as the steps to create a Contrail service chain, and are
summarized in the following steps.

For more details about service chains, see:

• Service Chaining

• Example: Creating a Transparent Service Chain

11. Create a PNF service instance, go to Configure > Services > Service Instances, and click Create,
then select the template to use and select the corresponding left, right, or management networks.
When using a transparent service chain, the VN for the interfaces can be automatic.

12. Add a network policy to connect the virtual networks created for this example, go to Configure >
Networking > Policies.

13. Associate the policy to both the left VN and the right VN (IN and OUT in this example). Navigate to
Configure > Networking > Network.

RELATED DOCUMENTATION

Service Chaining

Example: Creating a Transparent Service Chain

Using Physical Network Functions in Contrail Service Chains | 701

710

CHAPTER 18

Configuring High Availability

IN THIS CHAPTER

Juniper OpenStack High Availability | 711

High Availability Support Options | 719

High Availability for Containerized Contrail | 723

Juniper OpenStack High Availability

IN THIS SECTION

Introduction | 712

Contrail High Availability | 712

OpenStack High Availability | 712

Supported Platforms | 712

Juniper OpenStack High Availability Architecture | 713

Juniper OpenStack Objectives | 713

Limitations | 714

Solution Components | 714

Virtual IP with Load Balancing | 714

Failure Handling | 715

Deployment | 716

Minimum Hardware Requirement | 716

Compute | 716

Network | 716

Installation | 717

711

Introduction

The Juniper Networks software-defined network (SDN) controller has two major components:
OpenStack and Contrail. High availability (HA) of the controller requires that both OpenStack and
Contrail are resistant to failures. Failures can range from a service instance failure, node failure, link
failure, to all nodes down due to a power outage. The basic expectation from a highly available SDN
controller is that when failures occur, already provisioned workloads continue to work as expected
without any traffic drop, and the controller is available to perform operations on the cluster. Juniper
Networks OpenStack is a distribution from Juniper Networks that combines OpenStack and Contrail
into one product.

Contrail High Availability

Contrail has high availability already built into various components, including support for the Active-
Active model of high availability, which works by deploying the Contrail node component with an
appropriate required level of redundancy.

The Contrail control node runs BGP and maintains adjacency with the vRouter module in the compute
nodes. Additionally, every vRouter maintains a connection with all available control nodes.

Contrail uses Cassandra as the database. Cassandra inherently supports fault tolerance and replicates
data across the nodes participating in the cluster.

A highly available deployment of Contrail, at minimum, requires at least:

• two control nodes

• three config nodes (including analytics and webui)

• three database nodes

OpenStack High Availability

High availability of OpenStack is supported by deploying the OpenStack controller nodes in a redundant
manner on multiple nodes. Previous releases of Contrail supported only a single instance of the
OpenStack controller, and multiple instances of OpenStack posed new problems that needed to solved,
including:

• State synchronization of stateful services (e.g. MySQL) across multiple instances.

• Load-balancing of requests across the multiple instances of services.

Supported Platforms

Juniper OpenStack Controller has tested high availability on the following platforms:

• Linux — Ubuntu 12.04 with kernel version 3.13.0-34

712

• Ubuntu Server 16.04 LTS (Xenial Xerus)

For a list of all operating system versions and the corresponding Linux or Ubuntu kernel versions
supported by Contrail Release 4.1, see Supported Platforms Contrail 4.1.

Juniper OpenStack High Availability Architecture

A typical cloud infrastructure deployment consists of a pool of resources of compute, storage, and
networking infrastructure, all managed by a cluster of controller nodes.

The following figure illustrates a high-level reference architecture of a high availability deployment using
Juniper OpenStack deployed as a cluster of controller nodes.

Juniper OpenStack Objectives

The main objectives and requirements for Juniper OpenStack high availability are:

• 99.999% availability for tenant traffic.

• Anytime availability for cloud operations.

• Provide VIP-based access to the API and UI services.

• Load balance network operations across the cluster.

713

• Management and orchestration elasticity.

• Failure detection and recovery.

Limitations

The following are limitations of Juniper OpenStack high availability:

• Only one failure is supported.

• During failover, a REST API call may fail. The application or user must reattempt the call.

• Although zero packet drop is the objective, in a distributed system such as Contrail, a few packets
may drop during ungraceful failures.

• Juniper OpenStack high availability is not tested with any third party load balancing solution other
than HAProxy.

Solution Components

Juniper Openstack's high availability active-active model provides scale out of the infrastructure and
orchestration services. The model makes it very easy to introduce new services in the controller and in
the orchestration layer.

Virtual IP with Load Balancing

HAProxy is run on all nodes to load balance the connections across multiple instances of the services. To
provide a Virtual IP (VIP), Keepalived (open source health check framework and hot standby protocol)
runs and elects a master based on VRRP protocol. The VRRP master owns the VIP. If the master node
fails, the VIP moves to a new master elected by VRRP.

The following figure shows OpenStack services provisioned to work with HAProxy and Keepalived, with
HAProxy at the front of OpenStack services in a multiple operating system node deployment. The
OpenStack database is deployed in clustered mode and uses Galera for replicating data across the
cluster. RabbitMQ has clustering enabled as part of a multinode Contrail deployment. The RabbitMQ
configuration is further tuned to support high availability.

714

Failure Handling

This section describes how various types of failures are handled, including:

• Service failures

• Node failures

• Networking failures

Service Failures

When an instance of a service fails, HAProxy detects the failure and load balances any subsquent
requests across other active instances of the service. The supervisord process monitors for service
failures and brings up the failed instances. As long as there is one instance of a service operational, the
Juniper OpenStack controller continues to operate. This is true for both stateful and stateless services
across Contrail and OpenStack.

Node Failures

The Juniper OpenStack controller supports single node failures involving both graceful shutdown or
reboots and ungraceful power failures. When a node that is the VIP master fails, the VIP moves to the
next active node, as it is elected to be the VRRP master. HAProxy on the new VIP master sprays the
connections over to the active service instances as before, while the failed down node is brought back
online. Stateful services (MySQL, Galera, Zookeeper, and so on) require a quorum to be maintained
when a node fails. As long as a quorum is maintained, the controller cluster continues to work without

715

problems. Data integrity is also inherently preserved by Galera, Rabbit, and other stateful components in
use.

Network Failures

A connectivity break, especially in the control data network causes the controller cluster to partition into
two. As long as the caveat of minimum number of nodes is maintained for one of the partitions, the
controller cluster continues to work. Stateful services detect the partitioning and reorganize their cluster
around the reachable nodes. Existing workloads continue to function and pass traffic and new
workloads can be provisioned. When the connectivity is restored, the joining node becomes part of the
working cluster and the system gets restored to its original state.

Deployment

Minimum Hardware Requirement

A minimum of 3 servers (physical or virtual machines) are required to deploy a highly available Juniper
OpenStack Controller. In Active-Active mode, the controller cluster uses Quorum-based consistency
management for guaranteeing transaction integrity across its distributed nodes. This translates to the
requirement of deploying 2n+1 nodes to tolerate n failures.

The Juniper OpenStack Controller offers a variety of deployment choices. Depending on the use case,
the roles can be deployed either independently or in some combined manner. The type of deployment
determines the sizing of the infrastructure. The numbers below present minimum requirements across
compute, storage, and network.

Compute

• Quad core Intel(R) Xeon 2.5 Gz or higher

• 32 GB or higher RAM for the controller hosts (increases with number of hypervisors being
supported)

• Minimum 1 TB disk, SSD, HDD

Network

A typical deployment separates control data traffic from the management traffic.

• Dual 10 GE that is bonded (using LAG 802.3ad) for redundant control data connection.

• Dual 1 GE bonded (using LAG 802.3 ad) for redundant management connection.

• Single 10G and 1G can be used if link redundancy is not desired.

The deployment needs virtual IP (VIP) addresses from the networks in which the NICs participate,
external VIP on the management network and internal VIP on the control data network. External facing

716

services are load balanced using the external VIP and the internal VIP is used for communication
between other services.

Packaging

High availability support requires new components in the Contrail OpenStack deployment, which are
packaged in contrail-openstack-ha, including HAProxy, Keepalived, Galera, and their requisite
dependencies.

Installation

Installation is supported through provisioning. The provisioning file has parameters specifying external
and internal VIPs. If OpenStack and Contrail roles are co-located on the nodes, only one set of external
and internal VIPs is needed.

Install also supports separating OpenStack and Contrail roles on physically different servers. In this case,
the external and internal VIPs specified are used for the OpenStack controller, and a separate set of
VIPs, contrail_external_vip and contrail_internal_vip, are used for the Contrail controller nodes. It is also
possible to specify separate RabbitMQs for OpenStack and Contrail controllers.

The following services are configured during high availability-enabled provisioning:

• Keepalived —- Configures VRRP and VIP using keepalived package

• high availability proxy — Configured to load balance among services running on different nodes

• Galera — Openstack MySQL clustering to achieve high availability

• Glance — Support NFS server storage for glance images

Starting with Contrail Release 4.0, provisioning scripts use VIPs instead of the physical IP of the node in
all OpenStack and Contrail configuration files. The following figure shows a typical three-node
deployment, where Openstack and Contrail roles are co-located on three servers.

717

RELATED DOCUMENTATION

High Availability Support Options | 719

718

High Availability Support Options

IN THIS SECTION

Contrail High Availability Features | 719

Configuration Options for Enabling Contrail High Availability | 719

Supported Cluster Topologies for High Availability | 720

Deploying OpenStack and Contrail on the Same Highly Available Nodes | 721

Deploying OpenStack and Contrail on Different High Available Nodes | 721

Deploying Contrail Only on High Available Nodes | 722

This section describes how to set up Contrail options for high availability support.

Contrail High Availability Features

The Contrail OpenStack high availability design and implementation provides:

• A high availability active-active implementation for scale-out of the cloud operation and for flexibility
to expand the controller nodes to service the compute fabric.

• Anytime availability of the cloud for operations, monitoring, and workload monitoring and
management.

• Self-healing of the service and states.

• VIP-based access to the cloud operations API provides an easy way to introduce new controllers and
an API to the cluster with zero downtime. Improved capital efficiencies compared with dedicated
hardware implementations, by using nodes assigned to controllers and making them a federated
node in the cluster.

• Operational load distribution across the nodes in the cluster.

For more details about high availability implementation in Contrail, see "Juniper OpenStack High
Availability " on page 711.

Configuration Options for Enabling Contrail High Availability

The following are options available to configure high availability within the Contrail configuration file
(testbed.py).

719

Option Description

internal_vip The virtual IP of the OpenStack high availability nodes in the control data
network. In a single interface setup, the internal_vip will be in the
management data control network.

external_vip The virtual IP of the OpenStack high availability nodes in the management
network. In a single interface setup, the external_vip is not required.

contrail_internal_vip The virtual IP of the Contrail high availability nodes in the control data
network. In a single interface setup, the contrail_internal_vip will be in the
management data control network.

contrail_external_vip The virtual IP of the Contrail high availability nodes in the management
network. In a single interface setup, the contrail_external_vip is not
required.

nfs_server The IP address of the NFS server that will be mounted to /var/lib/glance/
images fof the openstack node. The default is to env.roledefs['compute']
[0] .

nfs_glance_path The NFS server path to save images. The default is to /var/tmp/glance-
images/ .

openstack_manage_amqp A flag to indicate the node on which rabbitmq is set up. True indicates
rabbitmq is setup on OpenStack nodes. False indicates rabbitmq is set up on
OpenStack nodes and the controller container.

Supported Cluster Topologies for High Availability

This section describes configurations for the cluster topologies supported, including:

• OpenStack and Contrail on the same highly available nodes

• OpenStack and Contrail on different highly available nodes

• Contrail only on highly available nodes

720

Deploying OpenStack and Contrail on the Same Highly Available Nodes

OpenStack and Contrail services can be deployed in the same set of highly available nodes by setting the
internal_vip parameter in the cluster configuration.

Because the high available nodes are shared by both OpenStack and Contrail services, it is sufficient to
specify only internal_vip. However, if the nodes have multiple interfaces with management and data
control traffic separated by provisioning multiple interfaces, then the external_vip also needs to be set in
the cluster configuration.

Example

env.ha = {

 ‘internal_vip’ : ‘an-ip-in-control-data-network’,

 ‘external_vip’ : ‘an-ip-in-management-network’,

}

Deploying OpenStack and Contrail on Different High Available Nodes

OpenStack and Contrail services can be deployed on different high available nodes by setting the
internal_vip and the contrail_internal_vip parameter in the cluster configuration.

Because the OpenStack and Contrail services use different high available nodes, it is required to
separately specify internal_vip for OpenStack high available nodes and contrail_internal_vip for Contrail
high available nodes. If the nodes have multiple interfaces, with management and data control traffic
separated by provisioning multiple interfaces, then the external_vip and contrail_external_vip options also
must be set in the cluster configuration.

Example

env.ha = {

 ‘internal_vip’ : ‘an-ip-in-control-data-network’,

 ‘external_vip’ : ‘an-ip-in-management-network’,

 ‘contrail_internal_vip’ : ‘another-ip-in-control-data-network’,

 ‘contrail_external_vip’ : ‘another-ip-in-management-network’,

721

}

By default, the rabbitmq cluster is configured on OpenStack nodes. To manage a separate rabbitmq cluster
for Contrail services, set the openstack_manage_amqp to false in the cluster configuration. In this case,
OpenStack services use the rabbitmq cluster on OpenStack nodes and Contrail services use rabbitmq
cluster on controller containers.

Example:

"openstack":{
 "openstack_manage_amqp": false
 }

Deploying Contrail Only on High Available Nodes

Contrail services can be deployed only on a set of high available nodes by setting the contrail_internal_vip
parameter in the cluster configuration.

Because the high available nodes are used by only Contrail services, it is sufficient to specify only
contrail_internal_vip. If the nodes have multiple interfaces with management and data control traffic are
separated by provisioning multiple interfaces, the contrail_external_vip also needs to be set in the cluster
configuration.

Example

env.ha = {

 ‘contrail_internal_vip’ : ‘an-ip-in-control-data-network’,

 ‘contrail_external_vip’ : ‘an-ip-in-management-network’,

}

By default, the rabbitmq cluster is configured on OpenStack nodes. To manage a separate rabbitmq cluster
for Contrail services, set the openstack_manage_amqp to false in the cluster configuration. In this case,
OpenStack services use the rabbitmq cluster on OpenStack nodes and Contrail services use rabbitmq
cluster on controller containers.

722

Example:

"openstack":{
 "openstack_manage_amqp": false
 }

RELATED DOCUMENTATION

Juniper OpenStack High Availability | 711

High Availability for Containerized Contrail

IN THIS SECTION

Containers for High Availability | 723

How High Availability is Handled in Contrail Containers | 724

Starting with Contrail 4.0, some modules of Contrail have been grouped by function and packaged in
Docker containers. This document describes the Contrail container subsystems that can be deployed in
high availability mode.

Containers for High Availability

The following Contrail container subsystems can be deployed in high availability mode:

• contrail-lb

• contrail-controller

• contrail-analytics

• contrail-analyticsdb

723

How High Availability is Handled in Contrail Containers

This section describes the mechanisms for accomplishing high availability in each of the Contrail
containers.

contrail-lb

The Contrail load balancer container contrail-lb runs HAProxy, a de facto standard open source load
balancer, and the BIRD protocol internet routing daemon.

• HAProxy is used to load balance across mulitple instances of Contrail services.

• BIRD is used to deploy contrail-lb in high availability mode.

Although the contrail-lb containers are expected to be deployed in different hosts, they can also be
deployed in the same hosts where contrail-controller containers are deployed.

For more information about BIRD, see BIRD Babel protocol documentation.

High Availability for contrail-controller Container

The contrail-controller container runs the following services that can be scaled or clustered.

• contrail-api—Can be scaled up. It is load-balanced by HAProxy running in the contrail-lb containers.
All clients can connect to the load-balancer IP to communicate with contrail-lb.

• cassandra—Clustered. The cassandra and client libraries have built-in load-balancing and failure
detection mechanisms, and there is no need for cassandra to be behind HAProxy. However, multiple
instances are clustered during deployment of the contrail-controller containers. All clients connect to
the list of contrail-controller container IPs to communicate with cassandra.

• zookeeper—Clustered. The zookeeper and client libraries have a built-in high availability using leader-
follower architecture, and there is no need for zookeeper to be behind HAProxy. However, multiple
instances are clustered during deployment of the contrail-controller containers. All clients connect to
the list of contrail-controller container IPs to communicate with zookeeper.

• rabbitmq—Clustered. The rabbitmq and client libraries can handle multiple rabbitmq instances.
However, multiple instances are clustered and mirrored in queues during deployment of the contrail-
controller containers. All clients connect to the list of contrail-controller container IPs to
communicate with rabbitmq.

724

http://bird.network.cz/?get_doc&f=bird-6.html

NOTE: Only an odd number of contrail-controllers are supported, due to a limitation with
zookeeper for leader-follower election.

contrail-analytics

The contrail-analytics container runs the following services that can be scaled or clustered.

• contrail-analytics-api—Can be scaled up. It is load-balanced by HAProxy running in the contrail-lb
containers. All clients connect to the load-balancer IP to communicate with contrail-analytics-api.

contrail-analyticsdb

The contrail-analyticsdb container runs the following services that can be scaled or clustered.

• cassandra—Clustered. The cassandra and client libraries have built-in load-balancing and failure
detection mechanisms, and there is no need for cassandra to be behind HAProxy. However, multiple
instances are clustered during deployment of the contrail-controller containers. All clients connect to
the list of contrail-analyticsdbr container IPs to communicate with cassandra.

• kafka—Clustered. Kafka uses a zookeeper cluster running in the contrail-controller containers.
Multiple instances of kafka are clustered during deployment of contrail-analyticsdb containers. All
clients connect to the list of the contrail-analyticsdb container IPs to communicate with kafka.

RELATED DOCUMENTATION

Juniper OpenStack High Availability | 711

725

CHAPTER 19

QoS Support in Contrail

IN THIS CHAPTER

Quality of Service in Contrail | 726

Configuring Network QoS Parameters | 735

BGP as a Service | 737

Quality of Service in Contrail

IN THIS SECTION

Overview: Quality of Service | 726

Contrail QoS Model | 727

QoS Configuration Parameters for Provisioning | 727

Queuing Implementation | 729

Contrail QoS Configuration Objects | 729

Example: Mapping Traffic to Forwarding Classes | 731

QoS Configuration Object Marking on the Packet | 732

Queuing | 733

Queue Selection in Datapath | 733

Parameters for QoS Scheduling Configuration | 734

Overview: Quality of Service

Quality of service (QoS) in networking provides the ability to control reliability, bandwidth, latency, and
other traffic management features. Network traffic can be marked with QoS bits (DSCP, 802.1p, and
MPLS EXP) that intermediate network switches and routers can use to provide service guarantees.

726

Contrail QoS Model

The Contrail QoS model has the following features:

• All packet forwarding devices, such as vRouter and the gateway, combine to form a system.

• Interfaces to the system are the ports from which the system sends and receives packets, such as tap
interfaces and physical ports.

• Fabric interfaces are where the overlay traffic is tunneled.

• QoS is applied at the ingress to the system, for example, upon traffic from the interfaces to the fabric.

• At egress, packets are stripped of their tunnel headers and sent to interface queues, based on the
forwarding class. No marking from the outer packet to the inner packet is considered at this time.

Features of Fabric Interfaces

Fabric interfaces, unlike other interfaces, are always shared. Therefore, fabric interfaces are common
property. Consequently, traffic classes and QoS marking on the fabric must be controlled by the system
administrator. The administrator might choose to provision different classes of service on the fabric.

In Contrail, classes of service are determined by both of the following:

• Queueing on the fabric interface, including queues, scheduling of queues, and drop policies, and

• forwarding class, a method of marking that controls how packets are sent to the fabric, including
marking and identifying which queue to use.

Tenants can define which forwarding class their traffic can use, deciding which packets use which
forwarding class. The Contrail QoS configuration object has a mapping table, mapping the incoming
DSCP or 802.1p value to the forwarding class mapping.

The QoS configuration can also be applied to a virtual network, an interface, or a network policy.

QoS Configuration Parameters for Provisioning

Testbed.py Parameters

Testbed.py can be used for provisioning Contrail through Releases 3.x.x. Starting with Contrail 4.0,
testbed.py can only be used if you are provsioning with SM-Lite. Use parameters in this section if you are
using testbed.py for provisioning.

For QoS, the hardware queues (NIC queues) are mapped to logical queues in the agent, using the
following keys:

727

• hardware_q_id—Identifier for the hardware queue.

• logical_queue— Defines the logical queues to map to each hardware queue.

• default—Defines the default hardware queue for QoS when set to True.

Options to define a default hardware queue:

• Set the queue as default, without any logical queue mapping.

{'hardware_q_id': '1', 'default': 'True'}

• Set the hardware queue as default with logical queue mapping.

{'hardware_q_id': '6', 'logical_queue':['17-20'], 'default': 'True'}

 env.qos = {host4: [{'hardware_q_id': '3', 'logical_queue':['1', '6-10', '12-15']},
 {'hardware_q_id': '5', 'logical_queue':['2']},
 {'hardware_q_id': '8', 'logical_queue':['3-5']},
 {'hardware_q_id': '1', 'default': 'True'}],
 host5: [{'hardware_q_id': '2', 'logical_queue':['1', '3-8', '10-15']},
 {'hardware_q_id': '6', 'logical_queue':['17-20'], 'default': 'True'}]
 }

The following are the keys for defining QoS priority groups.

• priority_id—Priority group for QoS.

• scheduling—Defines the scheduling algorithm used for the priority group, strict or roundrobin (rr).

• bandwidth—Total hardware queue bandwidth used by priority group.

Bandwidth cannot be specified if strict scheduling is used for priority group, so set it to 0.

Example: QoS Priority Group

env.qos_niantic = {host4:[
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},
 { 'priority_id': '2', 'scheduling': 'rr', 'bandwidth': '20'},
 { 'priority_id': '3', 'scheduling': 'rr', 'bandwidth': '10'}],
 host5:[
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},
 { 'priority_id': '1', 'scheduling': 'rr', 'bandwidth': '30'}]
 }

728

Queuing Implementation

Starting with Contrail 3.2, queuing is added. The vRouter provides the infrastructure to use queues
supplied by the network interface, a method that is also called hardware queueing. Network interface
cards (NICs) that implement hardware queueing have their own set of scheduling algorithms associated
with the queues. The Contrail implementation is designed to work with most NICs, however, the
method is tested only on an Intel-based 10G NIC, also called Niantic.

QoS Features by Release

QoS features are introduced in the following Contrail releases:

• 3.1—QoS configuration and forwarding classes

• 3.2—queuing

• Not planned—egress marking and queuing

Contrail QoS Configuration Objects

Contrail QoS configuration objects include the:

• forwarding class

• QoS configuration object (qos-config)

The forwarding class object specifies parameters for marking and queuing, including:

• The DSCP, 802.1p, and MPLS EXP values to be written on packets.

• The queue index to be used for the packet.

The QoS configuration object specifies a mapping from DSCP, 802.1p, and MPLS EXP values to the
corresponding forwarding class.

The QoS configuration has an option to specify the default forwarding class ID to use to select the
forwarding class for all unspecified DSCP, 802.1p, and MPLS EXP values.

If the default forwarding class ID is not specified by the user, it defaults to the forwarding class with ID
0.

Processing of QoS marked packets to look up the corresponding forwarding class to be applied works as
follows:

• For an IP packet, the DSCP map is used .

• For a Layer 2 packet, the 802.1p map is used.

729

• For an MPLS-tunneled packet with MPLS EXP values specified, the EXP bit value is used with the
MPLS EXP map.

• If the QoS configuration is untrusted, only the default forwarding class is specified, and all incoming
values of the DSCP, 802.1p, and EXP bits in the packet are mapped to the same default forwarding
class.

Figure 186 on page 730 shows the processing of QoS packets.

Figure 186: Processing of QoS Packets

A virtual machine interface, virtual network, and network policy can refer to the QoS configuration
object. The QoS configuration object can be specified on the vhost so that underlay traffic can also be
subjected to marking and queuing. See Figure 187 on page 731.

730

Figure 187: Referring to the QoS Object

Example: Mapping Traffic to Forwarding Classes

This example shows how traffic forwarding classes are defined and how the QoS configuration object is
defined to map the QoS bits to forwarding classes.

Table 54 on page 731 shows two forwarding class objects defined. FC1 marks the traffic with high
priority values and queues it to Queue 0. FC2 marks the traffic as best effort and queues the traffic to
Queue 1.

Table 54: Forwarding Class Mapping

Name ID DSCP 802.1p MPLS EXP Queue

FC1 1 10 7 7 0

FC2 2 38 0 0 1

In Table 55 on page 732, the QoS configuration object DSCP values of 10, 18, and 26 are mapped to a
forwarding class with ID 1, which is forwarding class FC1. All other IP packets are mapped to the
forwarding class with ID 2, which is FC2. All traffic with an 802.1p value of 6 or 7 are mapped to
forwarding class FC1, and the remaining traffic is mapped to FC2.

731

Table 55: QoS Configuration Object Mapping

DSCP Forwarding Class ID 802.1p Forwarding Class ID MPLS EXP Forwarding Class ID

10 1 6 1 5 1

18 1 7 1 7 1

26 1 * 2 * 1

* 2

QoS Configuration Object Marking on the Packet

The following describes how QoS configuration object marking is handled in various circumstances.

Traffic Originated by a Virtual Machine Interface

• If a VM interface sends an IP packet to another VM in a remote compute node, the DSCP value in
the IP header is used to look into the qos-config table, and the tunnel header is marked with DSCP,
802.1p, and MPLS EXP bits as specified by the forwarding class.

• If a VM sends a Layer 2 non-IP packet with an 802.1p value, the 802.1p value is used to look into the
qos-config table, and the corresponding forwarding class DSCP, 802.1p, and MPLS EXP value is
written to the tunnel header.

• If a VM sends an IP packet to a VM in the same compute node, the DSCP value in the IP header is
matched in the qos-config table, and the corresponding forwarding class is used to overwrite the IP
header with new DSCP and 802.1p values.

Traffic Destined to a Virtual Machine Interface

For traffic destined to a VMI, if a tunneled packet is received, the tunnel headers are stripped off and the
packet is sent to the interface. No marking is done from the outer packet to inner packet.

732

Traffic from a vhost Interface

The QoS configuration can be applied on IP traffic coming from a vhost interface. The DSCP value in the
packet is used to look into the qos-config object specified on the vhost, and the corresponding
forwarding class DSCP and 802.1p values are overwritten on the packet.

Traffic from fabric interface

The QoS configuration can be applied while receiving the packet on an Ethernet interface of a compute
node, and the corresponding forwarding class DSCP and 802.1p values are overwritten on the packet.

QoS Configuration Priority by Level

The QoS configuration can be specified at different levels.

The levels that can be configured with QoS and their order of priority:

1. in policy

2. on virtual-network

3. on virtual-machine-interface

Queuing

Contrail Release 3.2 adds QoS support for queuing.

This section provides an overview of the queuing features available starting with Contrail 3.2.

For more details about any of these topics, see: https://github.com/Juniper/contrail-controller/wiki/
QoS .

The queue to which a packet is sent is specified by the forwarding class.

Queue Selection in Datapath

In vRouter, in the data path, the forwarding class number specifies the actual physical hardware queue
to which the packet needs to be sent, not to a logical selection as in other parts of Contrail. There is a
mapping table in the vRouter configuration file, to translate the physical queue number from the logical
queue number.

733

https://github.com/Juniper/contrail-controller/wiki/QoS
https://github.com/Juniper/contrail-controller/wiki/QoS

Hardware Queueing in Linux kernel based vRouter

If Xmit-Packet-Steering (XPS) is enabled, the kernel chooses the queue, from those available in a list of
queues. If the kernel selects the queue, packets will not be sent to the vRouter-specified queue.

To disable this mapping:

• have a kernel without CONFIG_XPS option

• write zeros to the mapping file in /sys/class/net//queues/tx-X/xps_cpus .

When this mapping is disabled, the kernel will send packets to the specific hardware queue.

To verify:

See individual queue statistics in the output of 'ethtool -S ' command.

Parameters for QoS Scheduling Configuration

The following shows sample scheduling configuration for hardware queues on the compute node.

The priority group ID and the corresponding scheduling algorithm and bandwidth to be used by the
priority group can be configured.

Possible values for the scheduling algorithm include:

• strict

• rr (round-robin)

When round-robin scheduling is used, the percentage of total hardware queue bandwidth that can be
used by the priority group is specified in the bandwidth parameter.

The following configuration and provisioning is applicable only for compute nodes running Niantic NICs
and running kernel based vrouter.

qos_niantic = {
 ‘compute1': [
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},
 { 'priority_id': '2', 'scheduling': 'rr', 'bandwidth': '20'},
 { 'priority_id': '3', 'scheduling': 'rr', 'bandwidth': '10’}
],
 ‘compute2' :[
 { 'priority_id': '1', 'scheduling': 'strict', 'bandwidth': '0'},
 { 'priority_id': '1', 'scheduling': 'rr', 'bandwidth': '30’}

734

]
}

RELATED DOCUMENTATION

Configuring Network QoS Parameters | 735

https://github.com/Juniper/contrail-controller/wiki/QoS .

Configuring Network QoS Parameters

IN THIS SECTION

Overview | 735

QoS Configuration Examples | 735

Limitations | 737

Overview

You can use the OpenStack Nova command-line interface (CLI) to specify a quality of service (QoS)
setting for a virtual machine’s network interface, by setting the quota of a Nova flavor. Any virtual
machine created with that Nova flavor will inherit all of the specified QoS settings. Additionally, if the
virtual machine that was created with the QoS settings has multiple interfaces in different virtual
networks, the same QoS settings will be applied to all of the network interfaces associated with the
virtual machine. The QoS settings can be specified in unidirectional or bidirectional mode.

The quota driver in Neutron converts QoS parameters into libvirt network settings of the virtual
machine.

The QoS parameters available in the quota driver only cover rate limiting the network interface. There
are no specifications available for policy-based QoS at this time.

QoS Configuration Examples

Although the QoS setting can be specified in quota by using either Horizon or CLI, quota creation using
CLI is more robust and stable, therefore, creating by CLI is the recommended method.

Example

735

https://github.com/Juniper/contrail-controller/wiki/QoS

CLI for Nova flavor has the following format:

nova flavor-key <flavor_name> set quota:vif_<direction> _<param_name> = value

where:

<flavor_name> is the name of an existing Nova flavor.

vif_<direction>_<param_name> is the inbound or outbound QoS data name.

QoS vif types include the following:

• vif_inbound_average lets you specify the average rate of inbound (receive) traffic, in kilobytes/sec.

• vif_outbound_average lets you specify the average rate of outbound (transmit) traffic, in kilobytes/sec.

• Optional: vif_inbound_peak and vif_outbound_peak specify the maximum rate of inbound and outbound
traffic, respectively, in kilobytes/sec.

• Optional: vif_inbound_burst and vif_outbound_peak specify the amount of kilobytes that can be received
or transmitted, respectively, in a single burst at the peak rate.

Details for various QoS parameters for libvirt can be found at http://libvirt.org/formatnetwork.html.

The following example shows an inbound average of 800 kilobytes/sec, a peak of 1000 kilobytes/sec,
and a burst amount of 30 kilobytes.

nova flavor-key m1.small set quota:vif_inbound_average=800
nova flavor-key m1.small set quota:vif_inbound_peak=1000
nova flavor-key m1.small set quota:vif_inbound_burst=30

The following is an example of specified outbound parameters:

nova flavor-key m1.small set quota:vif_outbound_average=800
nova flavor-key m1.small set quota:vif_outbound_peak=1000
nova flavor-key m1.small set quota:vif_outbound_burst=30

After the Nova flavor is configured for QoS, a virtual machine instance can be created, using either
Horizon or CLI. The instance will have network settings corresponding to the nova flavor-key, as in the
following:

<interface type="ethernet">
 <mac address="02:a3:a0:87:7f:61"/>

736

http://libvirt.org/formatnetwork.html

 <model type="virtio"/>
 <script path=""/>
 <target dev="tapa3a0877f-61"/>
 <bandwidth>
 <inbound average="800" peak="1000" burst="30"/>
 <outbound average="800" peak="1000" burst="30"/>
 </bandwidth>
 </interface>

Limitations

• The stock libvirt does not support rate limiting of ethernet interface types. Consequently, settings like
those in the example for the guest interface will not result in any tc qdisc settings for the
corresponding tap device in the host. For more details, refer to issue #1367095 in Launchpad.net,
where you can find patches and instructions to make libvirt work for network rate limiting of virtual
machine interfaces.

• The nova flavor-key rxtx_factor takes a float as an input and acts as a scaling factor for receive
(inbound) and transmit (outbound) throughputs. This key is only available to Neutron extensions
(private extensions). The Contrail Neutron plugin doesn’t implement this private extension.
Consequently, setting the nova flavor-key rxtx_factor will not have any effect on the QoS setting of the
network interface(s) of any virtual machine created with that nova flavor.

• The outbound rate limits of a virtual machine interface are not strictly achieved. The outbound
throughput of a virtual machine network interface is always less than the average outbound limit
specified in the virtual machine's libvirt configuration file. The same behavior is also seen when using
a Linux bridge.

RELATED DOCUMENTATION

Quality of Service in Contrail | 726

BGP as a Service

IN THIS SECTION

Contrail BGPaaS Features | 738

737

https://bugs.launchpad.net/juniperopenstack/bug/1367095
https://bugs.launchpad.net/

BGPaaS Customer Use Cases | 739

Configuring BGPaaS | 740

The BGP as a Service (BGPaaS) feature allows a guest virtual machine (VM) to place routes in its own
virtual routing and forwarding (VRF) instance using BGP.

Contrail BGPaaS Features

Using BGPaaS with Contrail requires the guest VM to have connectivity to the control node and to be
able to advertise routes into the VRF instance.

With the BGPaaS feature:

• The vRouter agent is able to accept BGP connections from the VMs and proxy them to the control
node.

• The vRouter agent always selects one of the control nodes that it is using as an XMPP server.

Starting with Contrail Release 3.0, the following features have been added to BGPaaS:

• All BGPaaS sessions are configured to have bidirectional exchange of routes.

• If inet6 routes are being advertised to the tenant VM, they are advertised with the IPv6 subnet's
default gateway address as the BGP next hop.

• If multiple tenant VMs in the same virtual network have BGPaaS sessions and they use eBGP,
standard loop prevention rules prevent routes advertised by one tenant VM from being advertised to
other tenant VMs

A second BGP session for high availability can also be configured appropriately using one more BGP
router object in the Contrail configuration and the peering session (from the VNF’s point of view) to the
DNS IP address (reserved by Contrail).

The following are caveats:

• BGP sessions must use IPv4 transport.

• The VNF must support RFC 2545, Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain
Routing, to carry IPv6 routes over the IPv4 peer.

• Only IPv4 (inet) and IPv6 (inet6) address families are supported.

The initial implementation of BGPaaS Version 1, supported in Contrail Release 3.0, allowed a tenant VM
to establish BGP sessions to the default gateway and DNS server in the VM’s subnet. A limitation of this

738

implementation was that the tenant VM could advertise routes into the virtual network to which the
VM belonged, however, the VM could not receive any routes. The tenant VM was required to use a
static default route, with the subnet's default gateway as the next hop.

Contrail Release 3.1 eliminates the previous limitation and provides route export functionality for
BGPaaS sessions. The next hop for all routes advertised to the tenant VM is set to the default gateway
address of the subnet of the tenant VM. This allows the tenant BGP implementation to be relatively
simple, by not requiring support for recursive resolution of BGP next hops.

The BGPaaS object is associated with a virtual machine interface (VMI), not just a virtual machine (VM),
which enables a tenant VM to have BGP sessions in multiple virtual networks, if required.

Starting with Contrail Release 3.1, the following features and properties have been added to BGPaaS:

• By default, all BGPaaS sessions are configured to have bidirectional exchange of routes. The Boolean
property bgpaas-suppress-route-advertisement ensures no advertisement of routes to the tenant VM.

• If inet6 routes are being advertised to the tenant VM, they are advertised with the IPv6 subnet's
default gateway address as the BGP next hop. A Boolean property, bgpaas-ipv4-mapped-ipv6-nexthop,
causes the IPv4 subnet's default gateway, in IPv4-mapped IPv6 format, to be used instead as the
next hop.

• If multiple tenant VMs in the same virtual network have BGPaaS sessions and they use eBGP, the
standard BGP AS path loop prevention rules prevent routes advertised by one tenant VM from being
advertised to the other tenant VMs. The as-override field, added to the existing BgpSessionAttributes in
the BGPaaS object, causes the control node to replace the AS number of the tenant VM with it's own
AS number, when advertising routes learned from a tenant VM to another tenant VM in the same
virtual network. The tenant VM does not need to implement any new functionality.

BGPaaS Customer Use Cases

This section provides example scenarios for implementing BGPaaS with Contrail.

Dynamic Tunnel Insertion Within a Tenant Overlay

Various applications need to insert dynamic tunnels into virtual networks. Virtual network functions
(VNFs) provide the function of tunnel termination. Tunnel termination types vary across application
types, such as business VPN, mobility small site backhaul, VPC, and the like. The key requirement is that
tunnels need to insert dynamically new network reachability information into the virtual network. The
predominant methods of tunnel network reachability insertion use BGP.

BGPaaS allows the migration of brownfield VNFs into Contrail, preserving the application behavior and
requirement for BGP, without rewriting the application.

739

The following figure is a generic example showing the need to insert a dynamic tunnel into a virtual
network.

Dynamic Network Reachability of Applications

The Domain Name System (DNS) is a widespread application that uses BGP as a mechanism to tune
reachability of its services, based on metrics such as load, maintenance, availability, and the like. As DNS
services are migrated to environments using overlays, a mechanism to preserve the existing application
behavior and requirements is needed, including the ability to announce and withdraw reachability to the
available application.

This requirement is not limited to DNS. Other applications, such as virtualized evolved packet core
(vEPC) and others, use BGP as a mechanism for network reachability based on availability and load.

Liveness Detection for High Availability

Various keepalive mechanisms for tenant reachability have been provided by network components such
as BGP, OSPF, PING, VRRP, BFD, or application-specific mechanisms. With BGP on the vRouter agent,
BGP can be used to provide a liveness detection mechanism between the tenant on the local compute
node and the services that the specific tenant VM is providing.

Configuring BGPaaS

The following are methods for configuring BGPaaS:

740

Configuring BGPaaS Using VNC API

To use VNC APIs to configure BGPaaS:

1. Access the default project.

default_project = self._vnc_lib.project_read(fq_name=[u'default-domain', ‘bgpaas-tenant’])

2. Create a BGPaaS object.

bgpaas_obj = BgpAsAService(name=‘bgpaas_1’, parent_obj=default_project)

3. Attach the BGP object to a precreated VMI.

bgpaas_obj.add_virtual_machine_interface(vmi)

4. Set the ASN. It must be an eBGP session.

bgpaas_obj.set_autonomous_system('65000')

If the ASN is not set, the primary instance IP will be chosen.

bgpaas_obj.set_bgpaas_ip_address(u’10.1.1.5’)

5. Set session attributes.

bgp_addr_fams = AddressFamilies(['inet’, ‘inet6’]) bgp_sess_attrs =
BgpSessionAttributes(address_families=bgp_addr_fams,hold_time=60)
bgpaas_obj.set_bgpaas_session_attributes(bgp_sess_attrs) self._vnc_lib.bgp_as_a_service_create(bgpaas_obj)

Deleting a BGPaaS Object

To delete a BGPaaS object:

fq_name=[u'default-domain', ‘bgpaas-tenant’, ‘bgpaas_1’] bgpaas_obj =
self._vnc_lib.bgp_as_a_service_read(fq_name=fq_name) bgpaas_obj.del_virtual_machine_interface(vmi)
self._vnc_lib.bgp_as_a_service_update(bgpaas_obj) self._vnc_lib.bgp_as_a_service_delete(id=bgpaas_obj.get_uuid())

Using the Contrail User Interface to Configure BGPaaS

To configure BGPaaS within a tenant:

1. Within a tenant in Contrail, navigate to Configure > Services > BGP as a Service. Select the + icon to
access the window Create BGP as a Service.

741

2. Enter the relevant information at the Create BGP as a Service window, including ASN, address family,
and VMI identification.

3. Click Save to create the BGP object.

742

CHAPTER 20

Load Balancers

IN THIS CHAPTER

Using Load Balancers in Contrail | 743

Support for OpenStack LBaaS Version 2.0 APIs | 758

Configuring Load Balancing as a Service in Contrail | 760

Using Load Balancers in Contrail

IN THIS SECTION

Invoking LBaaS Drivers | 743

Using a Service Appliance Set as the LBaaS Provider | 746

Understanding the Load Balancer Agent | 747

F5 Networks Load Balancer Integration in Contrail | 748

Example: Creating a Load Balancer | 751

Using the Avi Networks Load Balancer for Contrail | 752

As of Contrail Release 3.0, load balancer LBaaS features are available. This topic includes:

Invoking LBaaS Drivers

The provider field specified in the pool configuration determines which load balancer drivers are
selected. The load balancer driver selected is responsible for configuring the external hardware or virtual
machine load balancer.

Supported load balancer drivers include:

• HAProxy

743

• A10 Networks

• F5 Networks

• Avi Networks

Starting with Contrail 3.0, the Neutron LBaaS plugin creates required configuration objects (such as pool,
VIP, members, and monitor) in the Contrail API server, instead of within the Neutron plugin context, as in
previous releases.

This method of configuration has the following benefits:

• Configuration objects can be created in multiple ways: from Neutron, from virtual controller APIs, or
from the Contrail UI.

• The load balancer driver can make inline calls, such as REST or SUDS, to configure the external load
balancer device.

• The load balancer driver can use Contrail service monitor infrastructure, such as database, logging,
and API server.

Figure 188 on page 745 provides an overview of the Contrail LBaaS components.

744

Figure 188: Contrail LBaaS Components

745

Using a Service Appliance Set as the LBaaS Provider

In OpenStack Neutron, the load balancer provider is statically configured in neutron.conf, which requires
restart of the Neutron server when configuring a new provider. The following is an example of the
service provider configuration in neutron.conf.

[service_providers]
service_provider = LOADBALANCER:Opencontrail:neutron_plugin_contrail.plugins.opencontrail.
loadbalancer.driver.OpencontrailLoadbalancerDriver:default

In Contrail Release 3.0 and greater, the Neutron LBaaS provider is configured by using the object service-
appliance-set. All of the configuration parameters of the LBaaS driver are populated to the service-
appliance-set object and passed to the driver.

During initialization, the service monitor creates a default service appliance set with a default LBaaS
provider, which uses an HAProxy-based load balancer. The service appliance set consists of individual
service appliances for load balancing the traffic. The service appliances can be physical devices or virtual
machines.

Sample Configuration: Service Appliance Set

The following is a sample configuration of the service appliance set for the LBaaS provider:

{
 "service-appliance-set": {
 "fq_name": [
 "default-global-system-config",
 "f5"
],
 "service_appliance_driver":
"svc_monitor.services.loadbalancer.drivers.f5.f5_driver.OpencontrailF5LoadbalancerDriver",
 "parent_type": "global-system-config",
 "service_appliance_set_properties": {
 "key_value_pair": [
 {
 "key": "sync_mode",
 "value": "replication"
 },
 {
 "key": "global_routed_mode",
 "value": "True"
 }

746

]
 },
 "name": "f5"
 }
}

Sample Configuration: Single Service Appliance

The following is a sample configuration of a single service appliance:

{
 "service-appliance": {
 "fq_name": [
 "default-global-system-config",
 "f5",
 "bigip"
],
 "parent_type": "service-appliance-set",
 "service_appliance_ip_address": "<ip address>",
 "service_appliance_user_credentials": {
 "username": "admin",
 "password": "<password>"
 },
 "name": "bigip"
 }
}

Understanding the Load Balancer Agent

The load balancer agent is a module in the service monitor. The service monitor listens on the RabbitMQ
configuration messaging queue (vnc_config.object-update) to get configuration objects. The dependency
tracker triggers changes to all related objects, based on configuration updates.

The dependency tracker is informed to notify the pool object whenever the VIP, member, or health
monitor object is modified.

Whenever there is an update to the pool object, either directly due to a pool update or due to a
dependency update, the load balancer agent in the service monitor is notified.

The load balancer agent module handles the following:

• Loading and unloading LBaaS driver-based service appliance set configuration.

747

• Providing the abstract driver class for the load balancer driver.

• Invoking the LBaaS driver.

• Load balancer-related configuration.

F5 Networks Load Balancer Integration in Contrail

This section details use of the F5 load balancer driver with Contrail.

Contrail Release 3.0 implements an LBaaS driver that supports a physical or virtual F5 Networks load
balancer, using the abstract load balancer driver class, ContrailLoadBalancerAbstractDriver.

This driver is invoked from the load balancer agent of the contrail-svc-monitor. The driver makes a BIG-IP
interface call to configure the F5 Networks device. All of the configuration parameters used to tune the
driver are configured in the service-appliance-set object and passed to the driver by the load balancer
agent while loading the driver.

The F5 load balancer driver uses the BIG-IP interface version V1.0.6, which is a Python package
extracted from the load balancer plugin provided by F5 Networks. The driver uses either a SOAP API or
a REST API.

F5 Load Balancer Global Routed Mode

The F5 load balancer driver is programmed in global routed mode using a property of the service-appliance-
set.

This section describes the features and requirements of the F5 load balancer driver configured in global
routed mode.

The following are features of the global routed mode.

• All virtual IP addresses (VIPs) are assumed to be routable from clients and all members are routable
from the F5 device.

• All access to and from the F5 device is assumed to be globally routed, with no segregation between
tenant services on the F5 device. Consequently, do NOT configure overlapping addresses across
tenants and networks.

• The F5 device can be attached to the corporate network or to the IP fabric.

The following are requirements to support global routed mode of an F5 device used with LBaaS:

• The entire configuration of the F5 device for Layer 2 and Layer 3 is preprovisioned.

• All tenant networks and all IP fabrics are in the same namespace as the corporate network.

748

• All VIPs are in the same namespace as the tenant and corporate networks.

Traffic Flow in Global Routed Mode

This section describes and illustrates the behavior of traffic flow in global routed mode.

The information in this section is based on a model that includes the following network topology:

Corporate Network --- DC Gateway (MX device) --- IP Fabric --- Compute nodes

The Corporate Network, the IP Fabric and all tenant networks use IP addresses from a single
namespace, there is no overlap of the addresses in the networks. The F5 devices can be attached to the
Corporate Network or to the IP Fabric, and are configured to use the global routed mode.

The role of the MX Series device is to route post-proxy traffic, coming from the F5 device in the
underlay, to the pool members in the overlay. In the reverse direction, the MX device takes traffic
coming from the pool members in the overlay and routes it back to the F5 device in the underlay.

The MX device is preprovisioned with the following:

• VRF connected to pool network 2

• ability to route traffic from inet.0 to the pool network

The MX routes the traffic from inet.0 to public VRF and sends traffic to the compute node where the
pool member is instantiated.

The F5 device is preprovisioned with the following:

• publish route to attract VIP traffic

• pool network subnet route that points to the MX device

The F5 device is responsible for attracting traffic destined to all the VIPs, by advertising a subnet route
that covers all VIPs using IGP.

The F5 device load balances among different pool members and sends traffic to the chosen member.

Figure 189 on page 750 shows the global routed traffic flow.

749

Figure 189: Global Routed Traffic Flow

A similar result can also be achieved on the switch to which the F5 is attached, by publishing the VIP
subnet in IGP and using a static route to point the VIP traffic to the F5 device.

The MX should attract the reverse traffic from the pool members going back to the F5.

Routing Traffic to Pool Members

For post load balancing traffic going from the F5 device to the pool members, the MX Series device
needs to attract traffic for all the tenant networks.

Routing Reverse Traffic from Pool Members to the F5 Device

The MX should attract the reverse traffic from the pool members going back to the F5.

Initial Configuration on an F5 Device

• The operator is responsible for ensuring that the F5 device attracts traffic to all VIP subnets by
injecting the route for the VIP subnet into IGP. Alternately, the switch to which F5 is connected can
advertise the VIP subnet route and use the static route to send VIP traffic to the F5 device.

750

• In the global routed mode, the F5 uses AutoMap SNAT for all VIP traffic.

Initial Configuration on an MX Series Device Used as DC Gateway

• The operator must identify a super-net that contains all tenant network subnets (pool members
across multiple pools) and advertise its route into corporate and fabric networks, using IGP
(preferred) or static routes.

• The operator must add a static route for the super-net into inet.0 with a next-hop of public.inet.0.

• The operator must create a public VRF and get its default route imported into the VRF. This is to
attract the return traffic from pool members to the F5 device (VIP destination).

Configuration on MX Device for Each Pool Member

• For each member virtual network, the operator adds a policy to connect the member pool virtual
network to the public virtual network.

• As new member virtual networks are connected to the public virtual network by policy,
corresponding targets are imported by the public VRF on MX. The Contrail Device Manager
generates the configuration of import, export targets for public VRF on the MX device.

• The operator must ensure that security group rules for the member virtual network ports allow traffic
coming from the F5 device.

Example: Creating a Load Balancer

Use the following steps to create a load balancer in Contrail Release 3.0 and greater.

1. To configure a service appliance set, use the script in /opt/contrail/utils to create a load balancer
provider. With the script, you specify the driver and name of the selected provider. Additional
configuration can be performed using the key-value pair property configuration.

/opt/contrail/utils/service_appliance_set.py --api_server_ip <ip address>--api_server_port 8082 --oper add --
admin_user admin --admin_password <password> --admin_tenant_name admin --name f5 --driver
"svc_monitor.services.loadbalancer.drivers.f5.f5_driver.OpencontrailF5LoadbalancerDriver" --properties
'{"use_snat": "True", "num_snat": "1", "global_routed_mode":"True", "sync_mode": "replication", "vip_vlan":
"trial2"}'

2. Add the actual device information of the load balancer.

/opt/contrail/utils/service_appliance.py --api_server_ip <ip address>--api_server_port 8082 --oper add --
admin_user admin --admin_password <password> --admin_tenant_name admin --name bigip --service_appliance_set f5
--device_ip 10.204.216.113 --user_credential '{"user": "admin", "password": "<password>"}'

751

3. Refer to the load balancer provider while configuring the pool.

neutron lb-pool-create --lb-method ROUND_ROBIN --name web_service --protocol HTTP --provider "f5" --subnet-id
<subnet id>

4. Add members to the load balancer pool. Both bare metal webserver and overlay webserver are
allowed as pool members. The F5 device can load balance the traffic among all pool members.

neutron lb-member-create --address <ip address>--protocol-port 8080 --weight 3 web_service

neutron lb-member-create --address <ip address> --protocol-port 8080 --weight 2 web_service

5. Create a VIP for the load balancer pool.

neutron lb-vip-create --name httpserver --protocol-port 80 --protocol HTTP web_service --subnet-id <subnet id>

6. Create the health monitor and associate it with the load balancer pool.

neutron lb-healthmonitor-create --delay 3 --type HTTP --max-retries 3 --timeout 3

neutron lb-healthmonitor-associate <nnnnn-nnnnn-nnnn-> web_service

Using the Avi Networks Load Balancer for Contrail

If you are using the Avi LBaaS driver in an OpenStack Contrail environment, there are two possible
modes that are mutually-exclusive. The Avi Vantage cloud configuration is exactly the same in both
modes:

• Neutron-based Avi LBaaS driver
In this mode, the Avi LBaaS driver derives from Neutron and resides in the Neutron server process.
This mode enables coexistence of multiple Neutron LBaaS providers.

• Contrail-based Avi LBaaS driver
In this mode, the Avi LBaaS driver derives from Contrail and resides in the service-monitor process.
This mode enables coexistence of multiple Contrail LBaaS providers.

NOTE: In a Contrail environment, you cannot have a mix of Contrail LBaaS and Neutron
LBaaS. You must select a mode that is compatible with the current environment.

Installing the Avi LBaaS Neutron Driver

Use the following procedure to install the Avi Networks LBaaS load balancer driver for the Neutron
server for Contrail.

The following steps are performed on the Neutron server host.

752

1. Determine the installed version of the Contrail Neutron plugin.

$ contrail-version neutron-plugin-contrail
Package Version
------------------------- ------------
neutron-plugin-contrail 3.0.2.0-51

2. Adjust the neutron.conf database connection URL.

$ vi /etc/neutron/neutron.conf
if using mysql
connection = mysql+pymysql://neutron:c0ntrail123@127.0.0.1/neutron

3. Populate and upgrade the Neutron database schema.

to upgrade to head
$ neutron-db-manage upgrade head
to upgrade to a specific version
$ neutron-db-manage --config-file /etc/neutron/neutron.conf upgrade liberty

4. Drop foreign key constraints.

obtain current mysql token
$ cat /etc/contrail/mysql.token
fabe17d9dd5ae798f7ea

$ mysql -u root -p
Enter password: fabe17d9dd5ae798f7ea

mysql> use neutron;

mysql> show create table vips;
CONSTRAINT `vips_ibfk_1` FOREIGN KEY (`port_id`) REFERENCES `ports` (`id`) - ports table is
not used by Contrail
mysql> alter table vips drop FOREIGN KEY vips_ibfk_1;

mysql> show create table lbaas_loadbalancers;
CONSTRAINT `fk_lbaas_loadbalancers_ports_id` FOREIGN KEY (`vip_port_id`) REFERENCES `ports`

753

(`id`)
mysql> alter table lbaas_loadbalancers drop FOREIGN KEY fk_lbaas_loadbalancers_ports_id;

5. To install the Avi LBaaS plugin, continue with steps from the readme file that downloads with the Avi
LBaaS software. You can perform either a local installation or a manual installation. The following are
sample installation steps.

• For a local installation:

LBaaS v1 driver
$./install.sh --aname avi_adc --aip

 <controller_ip|controller_vip>
 --auser

 --apass

LBaaS v2 driver
$./install.sh --aname avi_adc_v2 --aip
 <controller_ip|controller_vip>
 --auser

 --apass

 --v2

• For a manual installation:

LBaaS v1 driver
$ vi /etc/neutron/neutron.conf
#service_plugins =
neutron_plugin_contrail.plugins.opencontrail.loadbalancer.plugin.LoadBalancerPlugin
service_plugins = neutron_lbaas.services.loadbalancer.plugin.LoadBalancerPlugin
[service_providers]
service_provider =
LOADBALANCER:Avi_ADC:neutron_lbaas.services.loadbalancer.drivers.avi.avi_driver.AviLbaaSDri
ver

[avi_adc]
address=10.1.11.4
user=admin

754

password=avi123
cloud=jcos

LBaaS v2 driver
$ vi /etc/neutron/neutron.conf
#service_plugins =
neutron_plugin_contrail.plugins.opencontrail.loadbalancer.plugin.LoadBalancerPlugin
service_plugins = neutron_lbaas.services.loadbalancer.plugin.LoadBalancerPluginv2
[service_providers]
service_provider = LOADBALANCERV2:avi_adc_v2:neutron_lbaas.drivers.avi.driver.AviDriver

[avi_adc_v2]
controller_ip=10.1.11.3
username=admin
password=avi123

$ service neutron-server restart
$ neutron service-provider-list

Installing the Avi LBaaS Contrail Driver

Use the following procedure to install the Avi Networks LBaaS load balancer driver for Contrail.

The following steps are performed on the Contrail api-server host.

1. Determine the installed version of the Contrail Neutron plugin.

$ contrail-version neutron-plugin-contrail
Package Version
------------------------- ------------
neutron-plugin-contrail 3.0.2.0-51

2. Install the Avi driver.

LBaaS v2 driver
$./install.sh --aname ocavi_adc_v2 --aip

 <controller_ip|controller_vip>
 --auser

 --apass

755

 --v2 --no-restart --no-confmodify

3. Set up the service appliance set.

NOTE: If neutron_lbaas doesn’t exist on the api-server node, adjust the driver path to the correct
path location for neutron_lbaas.

$ /opt/contrail/utils/service_appliance_set.py --api_server_ip 10.xx.xx.100 --api_server_port 8082 --oper add
--admin_user admin --admin_password <password> --admin_tenant_name admin --name ocavi_adc_v2 --driver
"neutron_lbaas.drivers.avi.avi_ocdriver.OpencontrailAviLoadbalancerDriver" --properties '{"address":
"10.1.xx.3", "user": "admin", "password": "avi123", "cloud": "Default-Cloud"}'

4. To delete the service appliance set.

$ /opt/contrail/utils/service_appliance_set.py --api_server_ip 10.xx.xx.100 --api_server_port 8082 --oper del
--admin_user admin --admin_password <password> --admin_tenant_name admin --name ocavi_adc_v2

Configuring the Avi Controller

1. If OpenStack endpoints are private IPs and Contrail provides a public front-end IP to those endpoints,
use iptables to DNAT. On the AviController only, perform iptable NAT to reach the private IPs.

$ iptables -t nat -I OUTPUT --dest 17x.xx.xx.50 -j DNAT --to-dest 10.xx.xx.100

2. To configure the Avi controller during cloud configuration, select the “Integration with Contrail”
checkbox and provide the endpoint URL of the Contrail VNC api-server. Use the Keystone
credentials from the OpenStack configuration to authenticate with the api-server service.

Example Configuration Settings

: > show cloud jcos
 +---------------------------+--+
 | Field | Value |
 +---------------------------+--+
 | uuid | cloud-104bb7e6-a9d2-4b34-a4c5-d94be659bb91 |
 | name | jcos |
 | vtype | CLOUD_OPENSTACK |
 | openstack_configuration | |
 | username | admin |
 | admin_tenant | demo |
 | keystone_host | 17x.xx.xx.50 |

756

 | mgmt_network_name | mgmtnw |
 | privilege | WRITE_ACCESS |
 | use_keystone_auth | True |
 | region | RegionOne |
 | hypervisor | KVM |
 | tenant_se | True |
 | import_keystone_tenants | True |
 | anti_affinity | True |
 | port_security | False |
 | security_groups | True |
 | allowed_address_pairs | True |
 | free_floatingips | True |
 | img_format | OS_IMG_FMT_AUTO |
 | use_admin_url | True |
 | use_internal_endpoints | False |
 | config_drive | True |
 | insecure | True |
 | intf_sec_ips | False |
 | external_networks | False |
 | neutron_rbac | True |
 | nuage_port | 8443 |
 | contrail_endpoint | http://10.10.10.100:8082 |
 | apic_mode | False |
 | dhcp_enabled | True |
 | mtu | 1500 bytes |
 | prefer_static_routes | False |
 | enable_vip_static_routes | False |
 | license_type | LIC_CORES |
 | tenant_ref | admin |
 +---------------------------+--+

RELATED DOCUMENTATION

Configuring Load Balancing as a Service in Contrail | 760

Support for OpenStack LBaaS Version 2.0 APIs | 758

757

Support for OpenStack LBaaS Version 2.0 APIs

IN THIS SECTION

Platform Support | 758

Using OpenStack LBaaS Version 2.0 | 758

Support for Multiple Certificates per Listener | 759

Neutron Load-Balancer Creation | 759

Starting with Release 3.1, Contrail provides support for the OpenStack Load Balancer as a Service
(LBaaS) Version 2.0 APIs in the Liberty release of OpenStack.

Platform Support

Table 56 on page 758 shows which Contrail with OpenStack release combinations support which
version of OpenStack LBaaS APIs.

Table 56: Contrail OpenStack Platform Support for LBaaS Versions

Contrail OpenStack Platform LBaaS Support

Contrail-3.1-Liberty (and subsequent OS releases) Only LBaaS v2 is supported.

Contrail-3.0-Liberty (and subsequent OS releases) LBaaS v1 is default. LBaaS v2 is Beta.

<Contrail-any-release>-Kilo (and previous OS releases) Only LBaaS v1 is supported.

Using OpenStack LBaaS Version 2.0

The OpenStack LBaaS Version 2.0 extension enables tenants to manage load balancers for VMs, for
example, load-balancing client traffic from a network to application services, such as VMs, on the same
network. The LBaaS Version 2.0 extension is used to create and manage load balancers, listeners, pools,
members of a pool, and health monitors, and to view the status of a resource.

758

For LBaaS v2.0, the Contrail controller aggregates the configuration by provider. For example, if haproxy is
the provider, the controller generates the configuration for haproxy and eliminates the need to send all of
the load-balancer resources to the vrouter-agent; only the generated configuration is sent, as part of the
service instance.

For more information about OpenStack v2.0 APIs, refer to the section LBaaS 2.0 (STABLE) (lbaas,
loadbalancers, listeners, health_monitors, pools, members), at http://developer.openstack.org/api-ref-
networking-v2-ext.html.

LBaaS v2.0 also allows users to listen to multiple ports for the same virtual IP, by decoupling the virtual
IP address from the port.

The object model has the following resources:

• Load balancer—Holds the virtual IP address

• Listeners—One or many listeners with different ports, protocols, and so on

• Pools

• Members

• Health monitors

Support for Multiple Certificates per Listener

Multiple certificates per listener are supported, with OpenStack Barbican as the storage for certificates.
OpenStack Barbican is a REST API designed for the secure storage, provisioning, and management of
secrets such as passwords, encryption keys, and X.509 certificates.

The following is an example CLI to store certificates in Barbican:

- barbican --os-identity-api-version 2.0 secret store --payload-content-type='text/plain' --name='certificate' --
payload="$(cat server.crt)"

For more information about OpenStack Barbican, see: https://wiki.openstack.org/wiki/Barbican.

Neutron Load-Balancer Creation

The following is an example of Neutron load-balancer creation:

- neutron net-create private-net

- neutron subnet-create --name private-subnet private-net 10.30.30.0/24

- neutron lbaas-loadbalancer-create $(neutron subnet-list | awk '/ private-subnet / {print $2}')

759

http://developer.openstack.org/api-ref-networking-v2-ext.html
http://developer.openstack.org/api-ref-networking-v2-ext.html
https://wiki.openstack.org/wiki/Barbican

--name lb1

- neutron lbaas-listener-create --loadbalancer lb1 --protocol-port 443 --protocol
TERMINATED_HTTPS --name listener1 --default-tls-container=$(barbican --os-identity-api-version
2.0 container list | awk '/ tls_container / {print $2}')

- neutron lbaas-pool-create --name pool1 --protocol HTTP --listener listener1 --lb-algorithm
ROUND_ROBIN

- neutron lbaas-member-create --subnet private-subnet --address 30.30.30.10 --protocol-port 80
mypool

- neutron lbaas-member-create --subnet private-subnet --address 30.30.30.11 --protocol-port 80
mypool

RELATED DOCUMENTATION

https://wiki.openstack.org/wiki/Barbican

http://developer.openstack.org/api-ref-networking-v2-ext.html

Using Load Balancers in Contrail | 743

Configuring Load Balancing as a Service in Contrail | 760

Configuring Load Balancing as a Service in Contrail

IN THIS SECTION

Overview: Load Balancing as a Service | 761

Contrail LBaaS Implementation | 762

Configuring LBaaS Using CLI | 763

760

https://wiki.openstack.org/wiki/Barbican
http://developer.openstack.org/api-ref-networking-v2-ext.html

Overview: Load Balancing as a Service

Load Balancing as a Service (LBaaS) is a feature available through OpenStack Neutron. Contrail Release
1.20 and greater allows the use of the Neutron API for LBaaS to apply open source load balancing
technologies to provision a load balancer in the Contrail system.

The LBaaS load balancer enables the creation of a pool of virtual machines serving applications, all front-
ended by a virtual-ip. The LBaaS implementation has the following features:

• Load balancing of traffic from clients to a pool of backend servers. The load balancer proxies all
connections to its virtual IP.

• Provides load balancing for HTTP, TCP, and HTTPS.

• Provides health monitoring capabilities for applications, including HTTP, TCP, and ping.

• Enables floating IP association to virtual-ip for public access to the backend pool.

In the following figure, the load balancer is launched with the virtual IP address 20.1.1.1. The backend
pool of virtual machine applications (App Pool) is on the subnet 30.1.1.0/24. Each of the application
virtual machines gets an IP address (virtual-ip) from the pool subnet. When a client connects to the
virtual-ip for accessing the application, the load balancer proxies the TCP connection on its virtual-ip,
then creates a new TCP connection to one of the virtual machines in the pool.

The pool member is selected using one of following methods:

• weighted round robin (WRR), based on the weight assignment

• least connection, selects the member with the fewest connections

• source IP selects based on the source-ip of the packet

761

Additionally, the load balancer monitors the health of each pool member using the following methods:

• Monitors TCP by creating a TCP connection at intervals.

• Monitors HTTP by creating a TCP connection and issuing an HTTP request at intervals.

• Monitors ping by checking if a member can be reached by pinging.

Contrail LBaaS Implementation

Contrail supports the OpenStack LBaaS Neutron APIs and creates relevant objects for LBaaS, including
virtual-ip, loadbalancer-pool, loadbalancer-member, and loadbalancer-healthmonitor. Contrail creates a service
instance when a loadbalancer-pool is associated with a virtual-ip object. The service scheduler then
launches a namespace on a randomly selected virtual router and spawns HAProxy into that namespace.
The configuration for HAProxy is picked up from the load balancer objects. Contrail supports high
availability of namespaces and HAProxy by spawning active and standby on two different vrouters.

A Note on Installation

To use the LBaaS feature, HAProxy, version 1.5 or greater and iproute2, version 3.10.0 or greater must
both be installed on the Contrail compute nodes.

If you are using fab commands for installation, the haproxy and iproute2 packages will be installed
automatically with LBaaS if you set the following:

env.enable_lbaas=True

Use the following to check the version of the iproute2 package on your system:

root@nodeh5:/var/log# ip -V
ip utility, iproute2-ss130716
root@nodeh5:/var/log#

Limitations

LBaaS currently has these limitations:

• A pool should not be deleted before deleting the VIP.

• Multiple VIPs cannot be associated with the same pool. If pool needs to be reused, create another
pool with the same members and bind it to the second VIP.

• Members cannot be moved from one pool to another. If needed, first delete the members from one
pool, then add to a different pool.

• In case of active-standby failover, namespaces might not get cleaned up when the agent restarts.

762

• The floating-ip association needs to select the VIP port and not the service ports.

Configuring LBaaS Using CLI

The LBaaS feature is enabled on Contrail through Neutron API calls. The following procedure shows how
to create a pool network and a VIP network using CLI. The VIP network is created in the public network
and members are added in the pool network.

Creating a Load Balancer

Use the following steps to create a load balancer in Contrail.

1. Create a VIP network.

neutron net-create vipnet

neutron subnet-create –-name vipsubnet vipnet 20.1.1.0/24

2. Create a pool network.

neutron net-create poolnet

neutron subnet-create --name poolsubnet poolnet 10.1.1.0/24

3. Create a pool for HTTP.

neutron lb-pool-create --lb-method ROUND_ROBIN --name mypool --protocol HTTP --subnet-id poolsubnet

4. Add members to the pool.

neutron lb-member-create --address 10.1.1.2 --protocol-port 80 mypool

neutron lb-member-create --address 10.1.1.3 --protocol-port 80 mypool

5. Create a VIP for HTTP and associate it to the pool.

neutron lb-vip-create --name myvip --protocol-port 80 --protocol HTTP--subnet-id vipsubnet mypool

Deleting a Load Balancer

Use the following steps to delete a load balancer in Contrail.

1. Delete the VIP.

neutron lb-vip-delete <vip-uuid>

763

2. Delete members from the pool.

neutron lb-member-delete <member-uuid>

3. Delete the pool.

neutron lb-pool-delete <pool-uuid>

Managing Healthmonitor for Load Balancer

Use the following commands to create a healthmonitor, associate a healthmonitor to a pool, disassociate
a healthmonitor, and delete a healthmonitor.

1. Create a healthmonitor.

neutron lb-healthmonitor-create --delay 20 --timeout 10 --max-retries 3 --type HTTP

2. Associate a healthmonitor to a pool.

neutron lb-healthmonitor-associate <healthmonitor-uuid> mypool

3. Disassociate a healthmonitor from a pool.

neutron lb-healthmonitor-disassociate <healthmonitor-uuid> mypool

Configuring an SSL VIP with an HTTP Backend Pool

Use the following steps to configure an SSL VIP with an HTTP backend pool.

1. Copy an SSL certificate to all compute nodes.

scp ssl_certificate.pem <compute-node-ip> <certificate-path>

2. Update the information in /etc/contrail/contrail-vrouter-agent.conf.

SSL certificate path haproxy

haproxy_ssl_cert_path=<certificate-path>

3. Restart contrail-vrouter-agent.

service contrail-vrouter-agent restart

4. Create a VIP for port 443 (SSL).

764

neutron lb-vip-create --name myvip --protocol-port 443 --protocol HTTP --subnet-id vipsubnet mypool

RELATED DOCUMENTATION

Using Load Balancers in Contrail | 743

Support for OpenStack LBaaS Version 2.0 APIs | 758

765

CHAPTER 21

Optimizing Contrail

IN THIS CHAPTER

Route Target Filtering | 766

Source Network Address Translation (SNAT) | 769

Multiqueue Virtio Interfaces in Virtual Machines | 772

vRouter Command Line Utilities | 774

Route Target Filtering

IN THIS SECTION

Introduction | 766

Debugging and Troubleshooting Route Target Filtering | 767

RTF Limitations in Contrail 1.10 | 768

Introduction

BGP route target filtering (RTF) is a method for limiting the distribution of VPN routes to only those
systems in the network for which the routes are necessary. If RTF is not active, the Contrail control node
advertises all VPN routes to all of its VPN peers, which are either other control nodes or gateway
routers such as an MX Series router. On the receiving side, the control node stores all VPN routes it
receives from peers in the VPN table (for example, bgp.l3vpn.0). Any routes that do not include a route
target extended community that is referenced by the local vrf-import policies are discarded by Junos.

The control node must send all route updates to its peers, even for unnecessary routes that are
discarded. Continuous route updates are both CPU- and memory-intensive. The only routes that are
necessary to advertise to gateway routers are those that belong to the virtual networks that are

766

configured for public access. It is not necessary to advertise VM routes belonging to other virtual
networks to gateway routers.

If a datacenter has more than two control nodes, the vrouter-agent only subscribes to two of the control
nodes, indicated by the discovery service. When a VM is initially launched in a virtual network, it sends
an XMPP subscribe request for the virtual network VRF and publishes the VM route to the connected
control node. It is not necessary to advertise routes belonging to this type of VRF to control nodes that
don’t have the vrouter-agent subscribed in that VRF.

RTF is used to optimize the route distribution among control nodes and to the gateway routers to avoid
unwanted route updates. If the BGP peer has not advertised or configured with RTF address family, then
all routes belonging to the VPN table will be advetised.

RTF implementation in the control node does not support advertising and receiving of default route
targets.

Constrained route distribution using route target reachability information is defined in RFC 4684,
“Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/
MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)“.

Debugging and Troubleshooting Route Target Filtering

Use the tips in this section to troubleshoot issues with RTF. Use various http introspect commands to
reveal details about BGP neighbors for RTF. The following is a sample portion of an http introspect page.

When you access an introspect page, only the first panel of detail columns appears. Use a scroll bar or
arrow keys to reveal more columns to the right, and vice versa.

• Use the following http introspect URL to display the details of each peer:

http://(your_node_name):8083/Snh_BgpNeighborReq

767

For BGP peers, verify the configured and negotiated capability and the BGP table registration.

For XMPP peers, look at the routing_instances column to get details about the VRF to which the
displayed vrouter-agent has subscribed and to see the import rtargets of the VRFs.

• Use the following http introspect URL to dump the bgp.rtarget.0 table to display the RTargetRoutes:

http://(your_node_name):8083/Snh_ShowRouteReq?x=bgp.rtarget.0

• Use the following http introspect URL to dump the details for each of the route targets configured on
the control node:

http://(your_node_name):8083/Snh_ShowRtGroupReq?

For any given route target, this introspect displays the BGP table that imports and exports the route,
the BGP peers that have shown interest in this route, and all dependent routes (when this route
target has the extended community BGP attribute).

RTF Limitations in Contrail 1.10

The following are RTF limitations in Contrail 1.10.

• The control node does not support advertising a default route target, which is an rtarget route with
target:0:0 or 0/0 as the prefix. This type of rtarget route enables a BGP peer to receive all VPN routes
without rtarget filtering.

• The control node does not support receiving a default route target. If rtarget routes with a default
rtarget prefix are received, they are silently ignored.

• A keep all configuration, typical for BGP peering for a control node on an MX Series router, does not
have impact, because all VPN routes with an extended community route target, for which the MX
has advertised the rtarget route, are sent to the MX. An example of this type of typical configuration
is the following:

set protocols bgp group contrail-control-nodes type internal
set protocols bgp group contrail-control-nodes local-address 10.204.216.253
set protocols bgp group contrail-control-nodes keep all
set protocols bgp group contrail-control-nodes family inet-vpn unicast
set protocols bgp group contrail-control-nodes family route-target
set protocols bgp group contrail-control-nodes neighbor 10.204.216.16

768

Source Network Address Translation (SNAT)

IN THIS SECTION

Overview | 769

Neutron APIs for Routers | 770

Network Namespace | 770

Using the Web UI to Configure Routers with SNAT | 771

Overview

Source Network Address Translation (source-nat or SNAT) allows traffic from a private network to go
out to the internet. Virtual machines launched on a private network can get to the internet by going
through a gateway capable of performing SNAT. The gateway has one arm on the public network and as
part of SNAT, it replaces the source IP of the originating packet with its own public side IP. As part of
SNAT, the source port is also updated so that multiple VMs can reach the public network through a
single gateway public IP.

The following diagram shows a virtual network with the private subnet of 10.1.1.0/24. The default route
for the virtual network points to the SNAT gateway. The gateway replaces the source-ip from
10.1.1.0/24 and uses its public address 172.21.1.1 for outgoing packets. To maintain unique NAT
sessions the source port of the traffic also needs to be replaced.

Figure 190: Virtual Network With a Private Subnet

769

Neutron APIs for Routers

OpenStack supports SNAT gateway implementation through its Neutron APIs for routers. The SNAT
flag can be enabled or disabled on the external gateway of the router. The default is True (enabled).

The OpenContrail plugin supports the Neutron APIs for routers and creates the relevant service-
template and service-instance objects in the API server. The service scheduler in OpenContrail
instantiates the gateway on a randomly-selected virtual router. OpenContrail uses network namespace
to support this feature.

Example Configuration: SNAT for Contrail

The SNAT feature is enabled on OpenContrail through Neutron API calls.

The following configuration example shows how to create a test network and a public network, allowing
the test network to reach the public domain through the SNAT gateway.

1. Create the public network and set the router external flag.

neutron net-create public

neutron subnet-create public 172.21.1.0/24

neutron net-update public -- --router:external=True

2. Create the test network.

neutron net-create test

neutron subnet-create --name test-subnet test 10.1.1.0/24

3. Create the router with one interface in test.

neutron router-create r1

neutron router-interface-add r1 test-subnet

4. Set the external gateway for the router.

neutron router-gateway-set r1 public

Network Namespace

Setting the external gateway is the trigger for OpenContrail to set up the Linux network namespace for
SNAT.

The network namespace can be cleared by issuing the following Neutron command:

neutron router-gateway-clear r1

770

Using the Web UI to Configure Routers with SNAT

You can use the Contrail user interface to configure routers for SNAT and to check the SNAT status of
routers.

To enable SNAT for a router, go to Configure > Networking > Routers. In the list of routers, select the
router for which SNAT should be enabled. Click the Edit cog to reveal the Edit Routers window. Click
the check box for SNAT to enable SNAT on the router.

The following shows a router for which SNAT has been Enabled.

Figure 191: Edit Router Window to Enable SNAT

When a router has been Enabled for SNAT, the configuration can be seen by selecting Configure >
Networking > Routers. In the list of routers, click open the router of interest. In the list of features for
that router, the status of SNAT is listed. The following shows a router that has been opened in the list.
The status of the router shows that SNAT is Enabled.

771

Figure 192: Router Status for SNAT

You can view the real time status of a router with SNAT by viewing the instance console, as in the
following.

Figure 193: Instance Details Window

Multiqueue Virtio Interfaces in Virtual Machines

IN THIS SECTION

Multiqueue Virtio Overview | 773

772

Requirements and Setup for Multiqueue Virtio Interfaces | 773

Contrail 3.2 adds support for multiqueue for the DPDK-based vrouter.

Contrail 3.1 supports multiqueue virtio interfaces for Ubuntu kernel-based router, only.

Multiqueue Virtio Overview

OpenStack Liberty supports the ability to create VMs with multiple queues on their virtio interfaces.
Virtio is a Linux platform for I/O virtualization, providing a common set of I/O virtualization drivers.
Multiqueue virtio is an approach that enables the processing of packet sending and receiving to be
scaled to the number of available virtual CPUs (vCPUs) of a guest, through the use of multiple queues.

Requirements and Setup for Multiqueue Virtio Interfaces

To use multiqueue virtio interfaces, ensure your system meets the following requirements:

• The OpenStack version must be Liberty or greater.

• The maximum number of queues in the VM interface is set to the same value as the number of
vCPUs in the guest.

• The VM image metadata property is set to enable multiple queues inside the VM.

Setting Virtual Machine Metadata for Multiple Queues

Use the following command on the OpenStack node to enable multiple queues on a VM:

source /etc/contrail/openstackrc
nova image-meta <image_name> set hw_vif_multiqueue_enabled="true"

After the VM is spawned, use the following command on the virtio interface in the guest to enable
multiple queues inside the VM:

ethtool –L <interface_name> combined <#queues>

Packets will now be forwarded on all queues in the VM to and from the vRouter running on the host.

773

NOTE: Multiple queues in the VM are only supported with the kernel mode vRouter in Contrail
3.1.

Contrail 3.2 adds support for multiple queues with the DPDK-based vrouter, using OpenStack
Mitaka. The DPDK vrouter has the same setup requirements as the kernel mode vrouter.
However, in the ethtool –L setup command, the number of queues cannot be higher than the
number of CPU cores assigned to vrouter in the testbed file.

vRouter Command Line Utilities

IN THIS SECTION

Overview | 774

vif Command | 775

flow Command | 779

vrfstats Command | 781

rt Command | 782

dropstats Command | 783

mpls Command | 787

mirror Command | 789

vxlan Command | 791

nh Command | 793

Overview

This section describes the shell prompt utilities available for examining the state of the vrouter kernel
module in Contrail.

The most useful commands for inspecting the Contrail vrouter module are summarized in the following
table.

774

Command Description

vif Inspect vrouter interfaces associated with the vrouter module.

flow Display active flows in a system.

vrfstats Display next hop statistics for a particular VRF.

rt Display routes in a VRF.

dropstats Inspect packet drop counters in the vrouter.

mpls Display the input label map programmed into the vrouter.

mirror Display the mirror table entries.

vxlan Display the vxlan table entries.

nh Display the next hops that the vrouter knows.

--help Display all command options available for the current command.

The following sections describe each of the vrouter utilities in detail.

vif Command

The vrouter requires vrouter interfaces (vif) to forward traffic. Use the vif command to see the
interfaces that are known by the vrouter.

NOTE: Having interfaces only in the OS (Linux) is not sufficient for forwarding. The relevant
interfaces must be added to vrouter. Typically, the set up of interfaces is handled by components
like nova-compute or vrouter agent.

775

Example: vif --list

vif –-list
vif0/0 OS: pkt0
 Type:Agent HWaddr:00:00:5e:00:01:00 IPaddr:0
 Vrf:65535 Flags:L3 MTU:1514 Ref:2
 RX packets:6591 bytes:648577 errors:0
 TX packets:12150 bytes:1974451 errors:0
vif0/1 OS: vhost0
 Type:Host HWaddr:00:25:90:c3:08:68 IPaddr:0
 Vrf:0 Flags:L3 MTU:1514 Ref:3
 RX packets:3446598 bytes:4478599344 errors:0
 TX packets:851770 bytes:1337017154 errors:0
vif0/2 OS: p1p0p0 (Speed 1000, Duplex 1)
 Type:Physical HWaddr:00:25:90:c3:08:68 IPaddr:0
 Vrf:0 Flags:L3 MTU:1514 Ref:22
 RX packets:1643238 bytes:1391655366 errors:2812
 TX packets:3523278 bytes:6806058059 errors:0
vif0/18 OS: tap3214fc7e-88
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0
 Vrf:13 Flags:PL3L2 MTU:9160 Ref:6
 RX packets:60 bytes:4873 errors:0
 TX packets:21 bytes:2158 errors:0

Table 57: vif Fields

vif Output Field Description

vif0/X The vrouter assigned name, where 0 is the router id and X is the index allocated
to the interface within the vrouter.

OS: pkt0 The pkt0 (in this case) is the name of the actual OS (Linux) visible interface name.
For physical interfaces, the speed and the duplex settings are also displayed.

776

Table 57: vif Fields (Continued)

vif Output Field Description

Type:xxxxx Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0

The type of interface and its IP address, as defined by vrouter. The values can be
different from what is seen in the OS. Types defined by vrouter include:

• Virtual – Interface of a virtual machine (VM).

• Physical – Physical interface (NIC) in the system.

• Host – An interface toward the host.

• Agent – An interface used to trap packets to the vrouter agent when
decisions need to be made for the forwarding path.

Vrf:xxxxx Vrf:65535 Flags:L3 MTU:1514 Ref:2

The identifier of the vrf to which the interface is assigned, the flags set on the
interface, the MTU as understood by vrouter, and a reference count of how
many individual entities actually hold reference to the interface (mainly of
debugging value).

Flag options identify that the following are enabled for the interface:

• P - Policy

• L3 - Layer 3 forwarding

• L2 - Layer 2 bridging

• X - Cross connect mode, only set on physical and host interfaces, indicating
that packets are moved between physical and host directly, with minimal
intervention by vrouter. Typically set when the agent is not alive or not in
good shape.

• Mt - Mirroring transmit direction

• Mr - Mirroring receive direction

• Tc - Checksum offload on the transmit side. Valid only on the physical
interface.

777

Table 57: vif Fields (Continued)

vif Output Field Description

Rx RX packets:60 bytes:4873 errors:0

Packets received by vrouter from this interface.

Tx TX packets:21 bytes:2158 errors:0

Packets transmitted out by vrouter on this interface.

vif Options

Use vif –-help to display all options available for the vif command. Following os a brief description of
each option.

NOTE: It is not recommended to use the following options unless you are very experienced with
the system utilities.

vif --help
Usage: vif [--create <intf_name> --mac <mac>]
 [--add <intf_name> --mac <mac> --vrf <vrf>
 --type [vhost|agent|physical|virtual][--policy, --mode <mode:x>]]
 [--delete <intf_id>]
 [--get <intf_id>][--kernel]
 [--set <intf_id> --vlan <vlan_id> --vrf <vrf_id>]
 [--list]
 [--help]

Option Description

--create Creates a ‘Host’ interface with name <intf_name> and mac <mac> on the host
kernel. The ‘vhost0’ interface that you see on Linux is a typical example of
invocation of this command.

778

(Continued)

Option Description

--add Adds the existing interfaces in the host OS to vrouter, with type and flag
options.

--delete Deletes the interface from vrouter. The <intf_id> is the vrouter interface id as
given by vif0/X, where X is the iID

--get Displays a specific interface. The <intf_id> is the vrouter interface id, unless
the command is appended by the ‘—kernel’ option, in which case the ID can be
the kernel ID.

--set Set working parameters of an interface. The only ones supported are the vlan
id and the vrf. The vlan id as understood by vrouter differs from what one
typically expects, and is relevant as of now only for interfaces of service
instances.

--list Display all of the interfaces of which the vrouter is aware.

--help Display all options available for the current command.

flow Command

Use the flow command to display all active flows in a system.

Example: flow -l

Use -l to list everything in the flow table. The -l is the only relevant debugging option.

 # flow –l
Flow table
 Index Source:Port Destination:Port Proto(V)

 263484 1.1.1.252:1203 1.1.1.253:0 1 (3)
 (Action:F, S(nh):91, Statistics:22/1848)

779

 379480 1.1.1.253:1203 1.1.1.252:0 1 (3)
 (Action:F, S(nh):75, Statistics:22/1848)

Each record in the flow table listing displays the index of the record, the source ip: source port, the
destination ip: destination port, the inet protocol, and the source vrf to which the flow belongs.

Each new flow has to be approved by the vrouter agent. The agent does this by setting actions for each
flow. There are three main actions associated with a flow table entry: Forward (‘F’), Drop (‘D’), and Nat
(‘N’).

For NAT, there are additional flags indicating the type of NAT to which the flow is subject, including:
SNAT (S), DNAT (D), source port translation (Ps), and destination port translation (Pd).

S(nh) indicates the source nexthop index used for the RPF check to validate that the traffic is from a
known source. If the packet must go to an ECMP destination, E:X is also displayed, where ‘X’ indicates
the destination to be used through the index within the ECMP next hop.

The Statistics field indicates the Packets/Bytes that hit this flow entry.

There is a Mirror Index field if the traffic is mirrored, listing the indices into the mirror table (which can
be dumped by using mirror –-dump).

If there is an explicit association between the forward and the reverse flows, as is the case with NAT,
you will see a double arrow in each of the records with either side of the arrow displaying the flow index
for that direction.

Example: flow -r

Use -r to view all of the flow setup rates.

flow –r
New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 548 ms
New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 543 ms
New = -2, Flow setup rate = -3 flows/sec, Flow rate = -3 flows/sec, for last 541 ms
New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 544 ms
New = -2, Flow setup rate = -3 flows/sec, Flow rate = -3 flows/sec, for last 542 ms

Example: flow --help

Use --help to display all options available for the flow command.

flow –-help
Usage:flow [-f flow_index][-d flow_index][-i flow_index]
 [--mirror=mirror table index]
 [-l]

780

 -f <flow_index> Set forward action for flow at flow_index <flow_index>
 -d <flow_index> Set drop action for flow at flow_index <flow_index>
 -i <flow_index> Invalidate flow at flow_index <flow_index>
 --mirror mirror index to mirror to
 -l List all flows
 -r Start dumping flow setup rate
 --help Print this help

vrfstats Command

Use vrfstats to display statistics per next hop for a vrf. It is typically used to determine if packets are
hitting the expected next hop.

Example: vrfstats --dump

The —dump option displays the statistics for all vrfs that have seen traffic. In the following example, there
was traffic only in Vrf 0 (the public vrf). Receives shows the number of packets that came in the fabric
destined to this location. Encaps shows the number of packets destined to the fabric.

If there is VM traffic going out on the fabric, the respective tunnel counters will increment.

 # vrfstats --dump
 Vrf: 0
 Discards 414, Resolves 3, Receives 165334
 Ecmp Composites 0, L3 Mcast Composites 0, L2 Mcast Composites 0, Fabric Composites 0, Multi
Proto Composites 0
 Udp Tunnels 0, Udp Mpls Tunnels 0, Gre Mpls Tunnels 0
 L2 Encaps 0, Encaps 130955

Example: vrfstats --get 0

Use --get 0 to retrieve statistics for a particular vrf.

 # vrfstats --get 0
 Vrf: 0
 Discards 418, Resolves 3, Receives 166929
 Ecmp Composites 0, L3 Mcast Composites 0, L2 Mcast Composites 0, Fabric Composites 0, Multi
Proto Composites 0
 Udp Tunnels 0, Udp Mpls Tunnels 0, Gre Mpls Tunnels 0
 L2 Encaps 0, Encaps 132179

781

Example: vrfstats --help

Usage: vrfstats --get <vrf>
 --dump
 --help

--get <vrf> Displays packet statistics for the vrf <vrf>

--dump Displays packet statistics for all vrfs

--help Displays this help message

rt Command

Use the rt command to display all routes in a vrf.

Example: rt --dump

The following example displays inet family routes for vrf 0.

rt --dump 0

Kernel IP routing table 0/0/unicast

Destination PPL Flags Label Nexthop

0.0.0.0/8 0 - 5

1.0.0.0/8 0 - 5

2.0.0.0/8 0 - 5

3.0.0.0/8 0 - 5

4.0.0.0/8 0 - 5

5.0.0.0/8 0 - 5

In this example output, the first line displays the routing table that is being dumped. In 0/0/unicast, the
first 0 is for the router id, the next 0 is for the vrf id, and unicast identifies the unicast table. The vrouter
maintains separate tables for unicast and multicast routes. By default, if the —table option is not
specified, only the unicast table is dumped.

782

Each record in the table output specifies the destination prefix length, the parent route prefix length
from which this route has been expanded, the flags for the route, the MPLS label if the destination is a
VM in another location, and the next hop id. To understand the second field “PPL”, it is good to keep in
mind that the unicast routing table is internally implemented as an ‘mtrie’.

The Flags field can have two values. L indicates that the label field is valid, and H indicates that vroute
should proxy arp for this IP.

The Nexthop field indicates the next hop ID to which the route points.

Example: rt --dump --table mcst

To dump the multicast table, use the —table option with mcst as the argument.

rt --dump 0 --table mcst

Kernel IP routing table 0/0/multicast

(Src,Group) Nexthop

0.0.0.0,255.255.255.255

dropstats Command

Use the dropstats command to see packet drop counters in vrouter.

Example: dropstats

dropstats

GARP 0

ARP notme 12904

Invalid ARPs 0

Invalid IF 0

Trap No IF 0

IF TX Discard 0

783

IF Drop 49

IF RX Discard 0

Flow Unusable 0

Flow No Memory 0

Flow Table Full 0

Flow NAT no rflow 0

Flow Action Drop 0

Flow Action Invalid 0

Flow Invalid Protocol 0

Flow Queue Limit Exceeded 0

Discards 34

TTL Exceeded 0

Mcast Clone Fail 0

Cloned Original 0

Invalid NH 2

Invalid Label 0

Invalid Protocol 0

Rewrite Fail 0

Invalid Mcast Source 0

Push Fails 0

784

Pull Fails 0

Duplicated 0

Head Alloc Fails 0

Head Space Reserve Fails 0

PCOW fails 0

 Invalid Packet 0

Misc 0

Nowhere to go 0

Checksum errors 0

No Fmd 0

Ivalid VNID 0

Fragment errors 0

Invalid Source 0

dropstats ARP Block

GARP packets from VMs are dropped by vrouter, an expected behavior. In the example output, the first
counter GARP indicates how many packets were dropped.

ARP requests that are not handled by vrouter are dropped, for example, requests for a system that is not
a host. These drops are counted by ARP notme counters.

The Invalid ARPs counter is incremented when the Ethernet protocol is ARP, but the ARP operation was
neither a request nor a response.

dropstats Interface Block

785

Invalid IF counters are incremented normally during transient conditions, and should not be a concern.

Trap No IF counters are incremented when vrouter is not able to find the interface to trap the packets to
vrouter agent, and should not happen in a working system.

IF TX Discard and IF RX Discard counters are incremented when vrouter is not in a state to transmit and
receive packets, and typically happens when vrouter goes through a reset state or when the module is
unloaded.

IF Drop counters indicate packets that are dropped in the interface layer. The increase can typically
happen when interface settings are wrong.

dropstats Flow Block

When packets go through flow processing, the first packet in a flow is cached and the vrouter agent is
notified so it can take actions on the packet according to the policies configured. If more packets arrive
after the first packet but before the agent makes a decision on the first packet, then those new packets
are dropped. The dropped packets are tracked by the Flow unusable counter.

The Flow No Memory counter increments when the flow block doesn't have enough memory to perform
internal operations.

The Flow Table Full counter increments when the vrouter cannot install a new flow due to lack of
available slots. A particular flow can only go in certain slots, and if all those slots are occupied, packets
are dropped. It is possible that the flow table is not full, but the counter might increment.

The Flow NAT no rflow counter tracks packets that are dropped when there is no reverse flow associated
with a forward flow that had action set as NAT. For NAT, the vrouter needs both forward and reverse
flows to be set properly. If they are not set, packets are dropped.

The Flow Action Drop counter tracks packets that are dropped due to policies that prohibit a flow.

The Flow Action Invalid counter usually does not increment in the normal course of time, and can be
ignored.

The Flow Invalid Protocol usually does not increment in the normal course of time, and can be ignored.

The Flow Queue Limit Exceeded usually does not increment in the normal course of time, and can be ignored.

dropstats Miscellaneous Operational Block

The Discard counter tracks packets that hit a discard next hop. For various reasons interpreted by the
agent and during some transient conditions, a route can point to a discard next hop. When packets hit
that route, they are dropped.

786

The TTL Exceeded counter increments when the MPLS time-to-live goes to zero.

The Mcast Clone Fail happens when the vrouter is not able to replicate a packet for flooding.

The Cloned Original is an internal tracking counter. It is harmless and can be ignored.

The Invalid NH counter tracks the number of packets that hit a next hop that was not in a state to be
used (usually in transient conditions) or a next hop that was not expected, or no next hops when there
was a next hop expected. Such increments happen rarely, and should not continuously increment.

The Invalid Label counter tracks packets with an MPLS label unusable by vrouter because the value is
not in the expected range.

The Invalid Protocol typically increments when the IP header is corrupt.

The Rewrite Fail counter tracks the number of times vrouter was not able to write next hop rewrite data
to the packet.

The Invalid Mcast Source tracks the multicast packets that came from an unknown or unexpected source
and thus were dropped.

The Duplicated counter tracks the number of duplicate packets that are created after dropping the original
packets. An original packet is duplicated when generic send offload (GSO) is enabled in the vRouter or
the original packet is unable to include the header information of the vRouter agent.

The Invalid Source counter tracks the number of packets that came from an invalid or unexpected source
and thus were dropped.

The remaining counters are of value only to developers.

mpls Command

The mpls utility command displays the input label map that has been programmed in the vrouter.

Example: mpls --dump

The —dump command dumps the complete label map. The output is divided into two columns. The first
field is the label and the second is the next hop corresponding to the label. When an MPLS packet with
the specified label arrives in the vrouter, it uses the next hop corresponding to the label to forward the
packet.

mpls –dump

MPLS Input Label Map

787

 Label NextHop

 16 9

 17 11

You can inspect the operation on nh 9 as follows:

nh --get 9

Id:009 Type:Encap Fmly: AF_INET Flags:Valid, Policy, Rid:0 Ref_cnt:4

 EncapFmly:0806 Oif:3 Len:14 Data:02 d0 60 aa 50 57 00 25 90 c3 08 69 08 00

The nh output shows that the next hop directs the packet to go out on the interface with index 3 (Oif:3)
with the given rewrite data.

To check the index of 3, use the following:

vif –get 3

vif0/3 OS: tapd060aa50-57

 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0

 Vrf:1 Flags:PL3L2 MTU:9160 Ref:6

 RX packets:1056 bytes:103471 errors:0

 TX packets:1041 bytes:102372 errors:0

The -get 3 output shows that the index of 3 corresponds to a tap interface that goes to a VM.

You can also dump individual entries in the map using the —get option, as follows:

mpls –get 16

788

MPLS Input Label Map

 Label NextHop

 16 9

Example: mpls -help

mpls –help

Usage: mpls --dump

 mpls --get <label>

 mpls --help

--dump Dumps the mpls incoming label map

--get Dumps the entry corresponding to label <label>
 in the label map

--help Prints this help message

mirror Command

Use the mirror command to dump the mirror table entries.

Example: Inspect Mirroring

The following example inspects a mirror configuration where traffic is mirrored from network vn1
(1.1.1.0/24) to network vn2 (2.2.2.0/24). A ping is run from 1.1.1.253 to 2.2.2.253, where both IPs are
valid VM IPs, then the flow table is listed:

flow -l

Flow table

789

Index Source:Port Destination:Port Proto(V)

135024 2.2.2.253:1208 1.1.1.253:0 1 (1)

 (Action:F, S(nh):17, Statistics:208/17472 Mirror Index : 0)

387324 1.1.1.253:1208 2.2.2.253:0 1 (1)

 (Action:F, S(nh):8, Statistics:208/17472 Mirror Index : 0)

In the example output, Mirror Index:0 is listed, it is the index to the mirror table. The mirror table can be
dumped with the —dump option, as follows:

mirror --dump

Mirror Table

Index NextHop Flags References

--

 0 18 3

The mirror table entries point to next hops. In the example, the index 0 points to next hop 18. The
References indicate the number of flow entries that point to this entry.

A next hop get operation on ID 18 is performed as follows:

nh --get 18

Id:018 Type:Tunnel Fmly: AF_INET Flags:Valid, Udp, Rid:0 Ref_cnt:2

 Oif:0 Len:14 Flags Valid, Udp, Data:00 00 00 00 00 00 00 25 90 c3 08 69 08 00

 Vrf:-1 Sip:192.168.1.10 Dip:250.250.2.253

 Sport:58818 Dport:8099

790

The nh --get output shows that mirrored packets go to a system with IP 250.250.2.253. The packets are
tunneled as a UDP datagram and sent to the destination. Vrf:-1 indicates that a lookup has to be done in
the source Vrf for the destination.

You can also get an individual mirror table entry using the —get option, as follows:

mirror --get 10

Mirror Table

Index NextHop Flags References

 10 1 1

Example: mirror --help

mirror --help

Usage: mirror --dump

 mirror --get <index>

 mirror --help

--dump Dumps the mirror table

--get Dumps the mirror entry corresponding to index <index>

--help Prints this help message

vxlan Command

The vxlan command can be used to dump the vxlan table. The vxlan table maps a network ID to a next
hop, similar to an MPLS table.

If a packet comes with a vxlan header and if the VNID is one of those in the table, the vrouter will use
the next hop identified to forward the packet.

791

Example: vxlan --dump

vxlan --dump

VXLAN Table

VNID NextHop

 4 16

 5 16

Example: vxlan --get

You can use the —get option to dump a specific entry, as follows:

vxlan --get 4

VXLAN Table

 VNID NextHop

 4 16

Example: vxlan --help

vxlan --help

Usage: vxlan --dump

 vxlan --get <vnid>

 vxlan --help

--dump Dumps the vxlan table

--get Dumps the entry corresponding to <vnid>

792

--help Prints this help message

nh Command

The nh command enables you to inspect the next hops that are known by the vrouter. Next hops tell the
vrouter the next location to send a packet in the path to its final destination. The processing of the
packet differs based on the type of the next hop. The next hop types are described in the following
table.

Next Hop Type Description

Receive Indicates that the packet is destined for itself and the vrouter should
perform Layer 4 protocol processing. As an example, all packets
destined to the host IP will hit the receive next hop in the default VRF.
Similarly, all traffic destined to the VMs hosted by the server and
tunneled inside a GRE will hit the receive next hop in the default VRF
first, because the outer packet that carries the traffic to the VM is that
of the server.

Encap (Interface) Used only to determine the outgoing interface and the Layer 2
information. As an example, when two VMs on the same server
communicate with each other, the routes for each of them point to an
encap next hop, because the only information needed is the Layer 2
information to send the packet to the tap interface of the destination
VM. A packet destined to a VM hosted on one server from a VM on a
different server will also hit an encap next hop, after tunnel
processing.

Tunnel Encapsulates VM traffic in a tunnel and sends it to the server that
hosts the destination VM. There are different types of tunnel next
hops, based on the type of tunnels used. Vrouter supports two main
tunnel types for Layer 3 traffic: MPLSoGRE and MPLSoUDP. For Layer
2 traffic, a VXLAN tunnel is used. A typical tunnel next hop indicates
the kind of tunnel, the rewrite information, the outgoing interface, and
the source and destination server IPs.

Discard A catch-all next hop. If there is no route for a destination, the packet
hits the discard next hop, which drops the packet.

Resolve Used by the agent to lazy install Layer 2 rewrite information.

793

(Continued)

Next Hop Type Description

Composite Groups a set of next hops, called component next hops or sub next
hops. Typically used when multi-destination distribution is needed, for
example for multicast, ECMP, and so on.

Vxlan A VXLAN tunnel is used for Layer 2 traffic. A typical tunnel next hop
indicates the kind of tunnel, the rewrite information, the outgoing
interface, and the source and destination server IPs.

Example: nh --list

Id:000 Type:Drop Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:1781

Id:001 Type:Resolve Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:244

Id:004 Type:Receive Fmly: AF_INET Flags:Valid, Policy, Rid:0

 Ref_cnt:2 Oif:1

Id:007 Type:Encap Fmly: AF_INET Flags:Valid, Multicast, Rid:0 Ref_cnt:3

 EncapFmly:0806 Oif:3 Len:14 Data:ff ff ff ff ff ff 00 25 90 c4 82 2c 08 00

Id:010 Type:Encap Fmly:AF_BRIDGE Flags:Valid, L2, Rid:0 Ref_cnt:3

 EncapFmly:0000 Oif:3 Len:0 Data:

Id:012 Type:Vxlan Vrf Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:2

 Vrf:1

Id:013 Type:Composite Fmly: AF_INET Flags:Valid, Fabric, Rid:0 Ref_cnt:3

 Sub NH(label): 19(1027)

Id:014 Type:Composite Fmly: AF_INET Flags:Valid, Multicast, L3, Rid:0 Ref_cnt:3

794

 Sub NH(label): 13(0) 7(0)

Id:015 Type:Composite Fmly:AF_BRIDGE Flags:Valid, Multicast, L2, Rid:0 Ref_cnt:3

 Sub NH(label): 13(0) 10(0)

Id:016 Type:Tunnel Fmly: AF_INET Flags:Valid, MPLSoGRE, Rid:0 Ref_cnt:1

 Oif:2 Len:14 Flags Valid, MPLSoGRE, Data:00 25 90 aa 09 a6 00 25 90 c4 82 2c 08 00

 Vrf:0 Sip:10.204.216.72 Dip:10.204.216.21

Id:019 Type:Tunnel Fmly: AF_INET Flags:Valid, MPLSoUDP, Rid:0 Ref_cnt:7

 Oif:2 Len:14 Flags Valid, MPLSoUDP, Data:00 25 90 aa 09 a6 00 25 90 c4 82 2c 08 00

 Vrf:0 Sip:10.204.216.72 Dip:10.204.216.21

Id:020 Type:Composite Fmly:AF_UNSPEC Flags:Valid, Multi Proto, Rid:0 Ref_cnt:2

 Sub NH(label): 14(0) 15(0)

Example: nh --get

Use the --get option to display information for a single next hop.

nh –get 9

Id:009 Type:Encap Fmly:AF_BRIDGE Flags:Valid, L2, Rid:0 Ref_cnt:4

 EncapFmly:0000 Oif:3 Len:0 Data:

Example: nh --help

nh –help

Usage: nh --list

 nh --get <nh_id>

 nh --help

795

--list Lists All Nexthops

--get <nh_id> Displays nexthop corresponding to <nh_id>

--help Displays this help message

796

4
PART

Monitoring and Troubleshooting
Contrail

Configuring Traffic Mirroring to Monitor Network Traffic | 798

Understanding Contrail Analytics | 819

Configuring Contrail Analytics | 847

Using Contrail Analytics to Monitor and Troubleshoot the Network | 880

Common Support Answers | 970

CHAPTER 22

Configuring Traffic Mirroring to Monitor Network
Traffic

IN THIS CHAPTER

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

Configuring Interface Monitoring and Mirroring | 811

Analyzer Service Virtual Machine | 812

Mirroring Enhancements | 816

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

Configuring Traffic Analyzers and Packet Capture for Mirroring

IN THIS SECTION

Traffic Analyzer Images | 799

Configuring Traffic Analyzers | 799

Setting Up Traffic Mirroring Using Monitor > Debug > Packet Capture | 799

Setting Up Traffic Mirroring Using Configure > Networking > Services | 804

Contrail provides traffic mirroring so you can mirror specified traffic to a traffic analyzer where you can
perform deep traffic inspection. Traffic mirroring enables you to designate certain traffic flows to be
mirrored to a traffic analyzer, where you can view traffic flows in great detail.

Use Monitor > Debug > Packet Capture to configure packets to be captured and “mirrored” to a virtual
machine configured as a traffic analyzer. The packet activity can then be inspected for monitoring and
troubleshooting purposes. This section demonstrates how to set up packet capture to mirror traffic
packets to an analyzer.

798

Traffic Analyzer Images

Before using the Contrail interface to configure traffic analyzers and packet capture for mirroring, make
sure that the following analyzer images are available in the VM image list for your system. The traffic
analyzer images are enhanced for viewing details of captured packets in Wireshark. When creating a
policy for the traffic analyzer, the traffic analyzer instance should always have the Mirror to field
selected in the policy, do not select the Apply Service field for a traffic analyzer.

• analyzer-vm-console-qcow2—Standard traffic analyzer; should be named analyzer in the image list.
This type of traffic analyzer is always configured with a single interface, and the interface should be a
Left interface.

• analyzer-vm-console-two-if qcow2—This type of traffic analyzer has two interfaces, Left and
Management. This traffic analyzer can have any name except the name analyzer, which is reserved
for the single interface analyzer.

NOTE: The analyzer-vm images are valid for all versions of Contrail. Download the images from the
Contrail 1.0 software download page: https://www.juniper.net/support/downloads/?
p=contrail#sw .

Configuring Traffic Analyzers

In Contrail Controller, you use a two-part configuration to mirror captured packet traffic to a traffic
analyzer, where the traffic details can be inspected. The configuration has the following steps:

1. Configure analyzer(s) on the host.

2. Set up rules for packet capture.

Additionally, there are two ways to configure the packet capture for the analyzers from within the
Contrail interface:

• Configure from Monitor > Debug > Packet Capture

• Configure from Configure > Networking > Services

Setting Up Traffic Mirroring Using Monitor > Debug > Packet Capture

The following are the steps needed to set up packet capture in order to “mirror” the traffic to an analyzer
VM for the purpose of reviewing various aspects of packet traffic moving through the system.

1. Select Monitor > Debug > Packet Capture. The Packet Capture screen appears; see Figure 194 on
page 800.

799

https://www.juniper.net/support/downloads/?p=contrail#sw
https://www.juniper.net/support/downloads/?p=contrail#sw

Figure 194: Packet Capture

2. Click Create to add an analyzer; see Figure 195 on page 800.

Figure 195: Create Analyzer

3. In the Analyzer Name field, enter a name for the analyzer and in the Virtual Network field, select
Automatic or select a specific virtual network from the drop-down list of available networks; click
Save when finished.

4. To create rules for the analyzer, in the lower portion of the Create Analyzer screen, click the + button
to add a rule.

The Analyzer Rules fields appear; see Figure 196 on page 801.

800

Figure 196: Analyzer Rules

5. Select the rules to apply to determine which packets should be “mirrored”—sent to the analyzer for
monitoring.

See Table 58 on page 801 for guidelines for completing the rule fields.

Table 58: Analyzer Rule Fields

Field Description

IP Protocol Select from a list to define from which protocol packets are to be captured:

• ANY

• TCP

• UDP

• ICMP

801

Table 58: Analyzer Rule Fields (Continued)

Field Description

Source Network Select from a list the source network from which packets are to be captured:

• any

• local

• domain:network 1

• domain:network 2

• domain:network

Source Ports If you want to capture only those packets that originate from a specific port number,
enter the port number.

Direction Select the direction of flow for the packets to be captured:

• Bidirectional

• Unidirectional

Destination
Network

Select from a list the destination network for the packets to be captured:

• any

• local

• domain:network 1

• domain:network 2

• domain:network

Destination Ports If you want to capture only those packets that are destined to a specific port number,
enter the port number.

Cancel, Save When finished, click Save to commit your selections, or click Cancel to clear the
entries and start over.

802

6. To associate virtual networks with the analyzer, click the Associate Networks field in the center
portion of the screen. Select from a drop-down list of available networks the networks to associate
with this analyzer; see Figure 197 on page 803.

Figure 197: Create Analyzer Associate Networks

NOTE: If there is already a network policy attached to the virtual network selected, any
conflicting rules configured for the analyzer will not take effect.

7. View the analyzer activity from Monitor > Debug > Packet Capture. For the selected analyzer, click in
the Action column and select View Analyzer; see Figure 198 on page 803.

Figure 198: Launch Analyzer VM

8. The Wireshark Packet Capture Display appears; see Figure 199 on page 804.

803

Figure 199: Packet Capture Display

Setting Up Traffic Mirroring Using Configure > Networking > Services

You can set up packet capture for mirroring to an analyzer within a service chain utilizing more than one
interface by starting with a service template. The following procedure provides the steps needed.

1. Access Configure > Services > Service Templates.

The Service Templates screen appears; see Figure 200 on page 804.

Figure 200: Service Templates

804

2. To create a new service template, click the + icon.

The Create window appears. Select the Service Template tab; see Figure 201 on page 805.

Figure 201: Create Service Template

3. Complete the fields by using the guidelines in Table 59 on page 805.

Table 59: Create Service Template Fields

Field Description

Name Enter a descriptive text name for this service template.

Version Select v2 from the drop-down list to indicate that this service template is based on
templates version 2, valid for Contrail 3.0 and later.

Virtualization Type Select Virtual Machine from the drop-down list to indicate the virtualization type for
mirroring for this template.

805

Table 59: Create Service Template Fields (Continued)

Field Description

Service Mode Select Transparent from the drop-down list to indicate that this service template is for
transparent mirroring.

Service Type Select Analyzer from the drop-down list to indicate that this service template is for a
traffic analyzer.

Interface(s) From the drop-down list, click the check boxes to indicate which interface types are
used for this analyzer service template:

• Left

• Right

• Management

Save When finished, click OK to commit the changes

Cancel Click Cancel to clear the fields and start over.

4. Create a service instance by clicking the Service Instances link and clicking the + icon.

The Create window appears; make sure the Service Instance tab is selected. See Figure 202 on
page 807.

806

Figure 202: Create Service Instances

5. Complete the fields by using the guidelines in Table 60 on page 807.

Table 60: Create Service Instances Fields

Field Description

Name Enter a text name for this service instance.

Service Template Select from a drop-down list of available service templates the
template to use for this service instance, analyzer-service-
template in this example.

Interface Type Each interface configured in the service template for this
instance appears in a list.

Virtual Network Select from a drop-down list of available virtual networks the
network for each interface that is configured for the instance.

807

Table 60: Create Service Instances Fields (Continued)

Field Description

Save Click Save to commit your changes.

Cancel Click Cancel to clear your changes and start over.

6. To create a network policy rule for this service instance, click Configure > Networking > Policies.
The Policies window appears. Click the + icon to get to the Create window; see Figure 203 on page
808.

Figure 203: Create Policy

7.

8. Enter a name for the policy, then click the + icon in the lower portion of the screen to configure
rules for the policy, see Figure 204 on page 809.

808

Figure 204: Create Policy Rules

9. To add policy rules, complete the fields, using the guidelines in Table 61 on page 809.

NOTE: When there is a network policy attached to the virtual network, any conflicting rules
configured for the analyzer will not take effect.

Table 61: Add Rule Fields

Field Description

Action Select PASS or DENY as the rule action.

Protocol Select the protocol for the policy rule, or select ANY.

Source Select from multiple drop-down lists the source for this rule,
including options under CIDR, Network, Policy, or Security
Group.

Ports Select from a drop-down list the source ports for the rule.

Direction Select the direction of flow for the packets to be captured:

• <> (bidirectional)

• > (unidirectional)

809

Table 61: Add Rule Fields (Continued)

Field Description

Destination Select from multiple drop-down lists the destination for this rule,
including options under CIDR, Network, Policy, or Security
Group.

Ports Select from a list the destination ports for the packets to be
captured.

check boxes Check any box that applies to this rule: Log, Services, Mirror,
QoS.

Save Click Save to commit your changes.

Cancel Click Cancel to clear your changes and start over.

10. When finished, click Save.

11. To verify packet capture, at Configure > Services > Service Instances, select the analyzer service
instance and click View Console.

The packet capture displays; see Figure 205 on page 810. The analyzer service VM launches the
Contrail-enhanced Wireshark as it starts and captures the mirrored packets destined to this service.

Figure 205: Service Instances View Console

RELATED DOCUMENTATION

Configuring Interface Monitoring and Mirroring | 811

810

Mirroring Enhancements | 816

Analyzer Service Virtual Machine | 812

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

Configuring Interface Monitoring and Mirroring

Contrail supports user monitoring of traffic on any guest virtual machine interface when using the
Juniper Contrail user interface.

When interface monitoring (packet capture) is selected, a default analyzer is created and all traffic from
the selected interface is mirrored and sent to the default analyzer. If a mirroring instance is already
launched, the traffic will be redirected to the selected instance. The interface traffic is only mirrored
during the time that the monitor packet capture interface is in use. When the capture screen is closed,
interface mirroring stops.

To configure interface mirroring:

1. Select Monitor > Infrastructure > Virtual Routers, then select the vRouter that has the interface to
mirror.

2. In the list of attributes for the vRouter, select Interfaces; see Figure 206 on page 811.

Figure 206: Individual vRouter

811

A list of interfaces for that vRouter appears.

3. For the interface to mirror, click the Action icon in the last column and select the option Packet
Capture; see Figure 207 on page 812.

Figure 207: Interfaces

The mirror packet capture starts and displays at this screen.

The mirror packet capture stops when you exit this screen.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

Mirroring Enhancements | 816

Analyzer Service Virtual Machine | 812

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

Analyzer Service Virtual Machine

IN THIS SECTION

Packet Format for Analyzer | 813

Metadata Format | 813

Wireshark Changes | 814

Troubleshooting Packet Display | 815

812

The analyzer service virtual machine (analyzer-vm-console.qcow2) launches a Contrail-enhanced version of
the network protocol analyzer Wireshark as the analyzer starts capturing mirror packets destined to the
analyzer service.

Packet Format for Analyzer

The analyzer uses the PCAP format, which has these parts:

• Global header

• PCAP packet header

• Packet data (original packet data)

The global header is added by the analyzer service by means of the Wireshark instance. The vRouter DP
uses the configured UDP session to send mirrored packets to the analyzer, adding the PCAP packet
header to the packet data as it sends it over the UDP socket to the analyzer.

The following additional information is also added to the packet data as metadata:

• Captured host (IP address)

• Ingress or egress

• Action (Pass/Deny/...)

• Source VN (fully qualified name)

• Destination VN (fully qualified name)

In the existing PCAP, a network ID is added in the global header. The metadata (additional flow
information) is added in front of the existing packet as follows.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+

| Global header | Packet header| Meta data |Packet data| Packet header| Meta data |Packet data|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+

Metadata Format

The metadata is in type-length-value (TLV) format as follows.

1. Type: 1 Byte

2. Length: 1 Byte

3. Value: up to length

813

Type

1. 1 – Captured host IPv4 address

2. 2 - Action field

3. 3 – Source VN

4. 4 – Destination VN

5. 255 – TLV end

Captured host address

Length is 4 or 16 bytes based on IP address type

Action field

Length is 2 bytes. Multiple bits might be turned on, if there are more actions. Ingress or egress bit will be
present in the Action field.

Source VN or Destination VN

Length is variable and up to 256 characters

TLV end

A special type 255 (0xFF) is used to identify the end of TLV entries. The TLV end must be last, at the end
of the metadata.

Wireshark Changes

A plugin is added to the Wireshark code. The plugin parses the metadata and displays the packet fields;
see example in Figure 208 on page 815.

814

Figure 208: Wireshark Packet Display

Troubleshooting Packet Display

Follow these steps if the packets are not displaying:

1. Use tcpdump on the tap interfaces to see if packets are going towards the analyzer VM.

2. Check introspect to see whether the flow action has mirror activity in it or not.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

Configuring Interface Monitoring and Mirroring | 811

Mirroring Enhancements | 816

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

815

Mirroring Enhancements

IN THIS SECTION

Mirroring Specified Traffic | 816

Configuring Headers and Next Hops | 816

How Mirroring is Implemented | 817

Mirroring Specified Traffic

Specific traffic can be mirrored to a traffic analyzer in Contrail by:

• Configuring rules to identify the flows to be mirrored, and

• Specifying the analyzer to which the traffic is mirrored

Additionally, mirroring can be configured on virtual machine (VM) interfaces to send all the traffic to and
from the interface to the specified analyzer.

Configuring Headers and Next Hops

When a packet is mirrored, a Juniper header is added to provide additional information in the analyzer,
then the packet is encapsulated and sent to the destination.

Starting with Contrail 3.x releases, mirroring is enhanced with the following options:

• Option to control addition of the Juniper header in the mirrored packet.

• When disabled, the Juniper header is not added to the mirrored packet.

• Option to control whether the next hop used is dynamic or static.

• If dynamic is selected, the next hop based on the destination is used. Packets are forwarded to
the destination based on the encapsulation priority.

• If static is chosen, the next hop is created for the specified destination with VxLAN encapsulation
using the configured VNI, destination VTEP, and MAC to transmit the mirrored packets.

The following combinations are supported:

• Dynamic next hop with Juniper header added

816

The default combination and the only supported case up to Release 3.0.2

• Dynamic next hop, without Juniper header

• Static next hop, without Juniper header, with the original Layer 2 packet

How Mirroring is Implemented

The Contrail vrouter agent adds a mirror entry in the vrouter and points to the next hop to be used. The
data for the Juniper header is taken from the flow entry. For interface mirroring, the Juniper header has
a TLV in the metadata to use the interface name instead of providing a destination VN.

For more information about implementation details, see https://github.com/Juniper/contrail-controller/
wiki/Mirroring.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

Configuring Interface Monitoring and Mirroring | 811

Analyzer Service Virtual Machine | 812

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 817

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted
Mirroring)

When mirroring is enabled, the vRouter throughput reduces because of the additional packet handling
overhead caused by cloning the packet to be mirrored, encapsulating it in the required header, and
forwarding it to the mirror destination. Impact to throughput increases in proportion to the amount of
traffic that needs to be mirrored.

A solution to avoid impact on throughput due to mirroring is to use the mirroring capabilities of an
installed Network Interface Card (NIC).

Contrail Release 4.0 has the ability to mirror specific traffic to a traffic analyzer or to a physical probe
using the Network interface card (NIC) instead of the vRouter to mirror packets. When NIC-assisted
mirroring is enabled, ingress packets to be mirrored sent from a VM are routed to the NIC with a
configured VLAN tag. The NIC is configured for VLAN port-mirroring and mirrors any packet with the
VLAN tag.

817

https://github.com/Juniper/contrail-controller/wiki/Mirroring
https://github.com/Juniper/contrail-controller/wiki/Mirroring

In this approach, the vRouter doesn’t mirror the packets. When NIC-assisted mirroring is enabled, the
ingress packets coming from the VM that are to be mirrored are sent to the NIC with a configured VLAN
tag.

The NIC is programmed to do VLAN port mirroring, so that iany packet with the configured VLAN is
mirrored additionally by the NIC. This change in vRouter is only for traffic coming from the VMs. Traffic
coming from the fabric is directly mirrored from the NIC itself and there is no additional mirroring need
in vRouter. The programming of the NIC itself for appropriate mirroring is outside the scope of the
current activity. An example is the Niantic 82599 10G NIC, which supports VLAN port mirroring
options.

The following are cautions to observe when using NIC-assisted mirroring:

• VM traffic sent to another VM running on the same compute node will not be mirrored when NIC-
assisted mirroring is selected.

• Traffic coming in from the fabric interface will not be mirrored.

• When a VLAN interface is used as the fabric interface, traffic will be tagged first with the NIC-
assisted mirroring VLAN, followed by the VLAN tag on the fabric interface. The NIC-assisted
mirroring VLAN will be the inner tag and the fabric interface VLAN will be the outer tag.

The NIC must be programmed for VLAN port mirroring. While configuring mirroring in Contrail, the user
can indicate NIC-assisted mirroring with the VLAN tag. The Contrail UI supports NIC-assisted mirroring
configuration in the Ports page and in the Policies page with an additional flag for NIC-assisted mirroring
and the VLAN tag to be used.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 798

Configuring Interface Monitoring and Mirroring | 811

Mirroring Enhancements | 816

Analyzer Service Virtual Machine | 812

818

CHAPTER 23

Understanding Contrail Analytics

IN THIS CHAPTER

Understanding Contrail Analytics | 819

Contrail Alerts | 820

Underlay Overlay Mapping in Contrail | 824

Understanding Contrail Analytics

Contrail is a distributed system of compute nodes, control nodes, configuration nodes, database nodes,
web UI nodes, and analytics nodes.

The analytics nodes are responsible for the collection of system state information, usage statistics, and
debug information from all of the software modules across all of the nodes of the system. The analytics
nodes store the data gathered across the system in a database that is based on the Apache Cassandra
open source distributed database management system. The database is queried by means of an SQL-like
language and representational state transfer (REST) APIs.

System state information collected by the analytics nodes is aggregated across all of the nodes, and
comprehensive graphical views allow the user to get up-to-date system usage information easily.

Debug information collected by the analytics nodes includes the following types:

• System log (syslog) messages—informational and debug messages generated by system software
components.

• Object log messages—records of changes made to system objects such as virtual machines, virtual
networks, service instances, virtual routers, BGP peers, routing instances, and the like.

• Trace messages—records of activities collected locally by software components and sent to analytics
nodes only on demand.

Statistics information related to flows, CPU and memory usage, and the like is also collected by the
analytics nodes and can be queried at the user interface to provide historical analytics and time-series
information. The queries are performed using REST APIs.

819

Analytics data is written to a database in Contrail. The data expires after the default time-to-live (TTL)
period of 48 hours. This default TTL time can be changed as needed by changing the value of the
database_ttl value in the cluster configuration.

RELATED DOCUMENTATION

Contrail Alerts

Analytics Scalability

High Availability for Analytics

Ceilometer Support in a Contrail Cloud

Underlay Overlay Mapping in Contrail

Monitoring the System

Debugging Processes Using the Contrail Introspect Feature

Monitor > Infrastructure > Dashboard

Monitor > Infrastructure > Control Nodes

Monitor > Infrastructure > Virtual Routers

Monitor > Infrastructure > Analytics Nodes

Monitor > Infrastructure > Config Nodes

Monitor > Networking

Understanding Flow Sampling | 959

Query > Flows

Query > Logs

System Log Receiver in Contrail Analytics

Example: Debugging Connectivity Using Monitoring for Troubleshooting

Contrail Alerts

IN THIS SECTION

Alert API Format | 821

Analytics APIs for Alerts | 822

Analytics APIs for SSE Streaming | 823

820

Built-in Node Alerts | 823

Starting with Contrail 3.0 and greater, Contrail alerts are provided on a per-user visible entity (UVE)
basis.

Contrail analytics raise or clear alerts using Python-coded rules that examine the contents of the UVE
and the configuration of the object. Some rules are built in. Others can be added using Python stevedore
plugins.

This topic describes Contrail alerts capabilities.

Alert API Format

The Contrail alert analytics API provides the following:

• Read access to the alerts as part of the UVE GET APIs.

• Alert acknowledgement using POST requests.

• UVE and alert streaming using server-sent events (SSEs).

For example:

GET http://<analytics-ip>:8081/analytics/uves/control-node/a6s40?flat

{
 NodeStatus: {…},
 ControlCpuState: {…},
 UVEAlarms: {
 alarms: [
 {
 description: [
 {
 value: "0 != 2",
 rule: "BgpRouterState.num_up_bgp_peer != BgpRouterState.num_bgp_peer"
 }
],
 ack: false,
 timestamp: 1442995349253178,
 token: "eyJ0aW1lc3RhbXAiOiAxNDQyOTk1MzQ5MjUzMTc4LCAiaHR0cF9wb3J0Ijog
NTk5NSwgImhvc3RfaXAiOiAiMTAuODQuMTMuNDAifQ==",

821

 type: "BgpConnectivity",
 severity: 4
 }
]
 },
 BgpRouterState: {…}
}

In the example:

• Alerts are raised on a per-UVE basis and can be retrieved by a GET on a UVE.

• An ack indicates if the alert has been acknowledged or not.

• A token is used by clients when requesting acknowledgements

Analytics APIs for Alerts

The following examples show the API to use to display alerts and alarms and to acknowledge alarms.

• To retrieve a list of alerts raised against the control node named aXXsYY.

GET http://<analytics-ip>:<rest-api-port>/analytics/uves/control-node/aXXsYY&cfilt=UVEAlarms

This is available for all UVE table types.

• To retrieve a list of all alarms in the system.

GET http://<analytics-ip>:<rest-api-port>/analytics/alarms

• To acknowledge an alarm.

POST http://<analytics-ip>:<rest-api-port>/analytics/alarms/acknowledge
Body: {“table”: <object-type>,“name”: <key>, “type”: <alarm type>, “token”: <token>}

Acknowledged and unacknowledged alarms can be queried specifically using the following URL
query parameters along with the GET operations listed previously.

ackFilt=True
ackFilt=False

822

Analytics APIs for SSE Streaming

The following examples show the API to use to retrieve all or portions of SE streams.

• To retrieve an SSE-based stream of UVE updates for the control node alarms.

GET http://<analytics-ip>:<rest-api-port>/analytics/uve-stream?tablefilt=control-node

This is available for all UVE table types. If the tablefilt URL query parameter is not provided, all UVEs
are retrieved.

• To retrieve only the alerts portion of the SSE-based stream of UVE updates instead of the entire
content.

GET http://<analytics-ip>:<rest-api-port>/analytics/alarm-stream?tablefilt=control-node

This is available for all UVE table types. If the tablefilt URL query parameter is not provided, all UVEs
are retrieved.

Built-in Node Alerts

The following built-in node alerts can be retrieved using the APIs listed in Analytics APIs for Alerts.

control‐node: {
PartialSysinfoControl: "Basic System Information is absent for this node in
BgpRouterState.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
XmppConnectivity: "Not enough XMPP peers are up in BgpRouterState.num_up_bgp_peer",
BgpConnectivity: "Not enough BGP peers are up in BgpRouterState.num_up_bgp_peer",
AddressMismatch: “Mismatch between configured IP Address and operational IP Address",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

vrouter: {
PartialSysinfoCompute: "Basic System Information is absent for this node in
VrouterAgent.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status",
VrouterInterface: "VrouterAgent has interfaces in error state in VrouterAgent.error_intf_list”,

823

VrouterConfigAbsent: “Vrouter is not present in Configuration”,
},

config‐node: {
PartialSysinfoConfig: "Basic System Information is absent for this node in
ModuleCpuState.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

analytics‐node: {
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info"
PartialSysinfoAnalytics: "Basic System Information is absent for this node in
CollectorState.build_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

database‐node: {
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

Underlay Overlay Mapping in Contrail

IN THIS SECTION

Overview: Underlay Overlay Mapping using Contrail Analytics | 825

Underlay Overlay Analytics Available in Contrail | 825

Architecture and Data Collection | 826

New Processes/Services for Underlay Overlay Mapping | 826

External Interfaces Configuration for Underlay Overlay Mapping | 827

Physical Topology | 827

SNMP Configuration | 828

824

Link Layer Discovery Protocol (LLDP) Configuration | 828

IPFIX and sFlow Configuration | 828

Sending pRouter Information to the SNMP Collector in Contrail | 831

pRouter UVEs | 831

Contrail User Interface for Underlay Overlay Analytics | 833

Enabling Physical Topology on the Web UI | 834

Viewing Topology to the Virtual Machine Level | 834

Viewing the Traffic of any Link | 834

Trace Flows | 835

Search Flows and Map Flows | 836

Overlay to Underlay Flow Map Schemas | 837

Module Operations for Overlay Underlay Mapping | 840

SNMP Collector Operation | 840

Topology Module Operation | 842

IPFIX and sFlow Collector Operation | 843

Troubleshooting Underlay Overlay Mapping | 844

Script to add pRouter Objects | 844

Overview: Underlay Overlay Mapping using Contrail Analytics

Today’s cloud data centers consist of large collections of interconnected servers that provide computing
and storage capacity to run a variety of applications. The servers are connected with redundant TOR
switches, which in turn, are connected to spine routers. The cloud deployment is typically shared by
multiple tenants, each of whom usually needs multiple isolated networks. Multiple isolated networks
can be provided by overlay networks that are created by forming tunnels (for example, gre, ip-in-ip, mac-
in-mac) over the underlay or physical connectivity.

As data flows in the overlay network, Contrail can provide statistics and visualization of the traffic in the
underlay network.

Underlay Overlay Analytics Available in Contrail

Starting with Contrail Release 2.20, you can view a variety of analytics related to underlay and overlay
traffic in the Contrail Web user interface. The following are some of the analytics that Contrail provides
for statistics and visualization of overlay underlay traffic.

• View the topology of the underlay network.

825

A user interface view of the physical underlay network with a drill down mechanism to show
connected servers (contrail computes) and virtual machines on the servers.

• View the details of any element in the topology.

You can view details of a pRouter, vRouter, or virtual machine link between two elements. You can
also view traffic statistics in a graphical view corresponding to the selected element.

• View the underlay path of an overlay flow.

Given an overlay flow, you can get the underlay path used for that flow and map the path in the
topology view.

Architecture and Data Collection

Accumulation of the data to map an overlay flow to its underlay path is performed in several steps
across Contrail modules.

The following outlines the essential steps:

1. The SNMP collector module polls physical routers.

The SNMP collector module receives the authorizations and configurations of the physical routers
from the Contrail config module, and polls all of the physical routers, using SNMP protocol. The
collector uploads the data to the Contrail analytics collectors. The SNMP information is stored in the
pRouter UVEs (physical router user visible entities).

2. IPFIX and sFlow protocols are used to collect the flow statistics.

The physical router is configured to send flow statistics to the collector, using one of the collection
protocols: Internet Protocol Flow Information Export (IPFIX) or sFlow (an industry standard for
sampled flow of packet export at Layer 2).

3. The topology module reads the SNMP information.

The Contrail topology module reads SNMP information from the pRouter UVEs from the analytics
API, computes the neighbor list, and writes the neighbor information into the pRouter UVEs. This
neighbor list is used by the Contrail WebUI to display the physical topology.

4. The Contrail user interface reads and displays the topology and statistics.

The Contrail user interface module reads the topology information from the Contrail analytics and
displays the physical topology. It also uses information stored in the analytics to display graphs for
link statistics, and to show the map of the overlay flows on the underlay network.

New Processes/Services for Underlay Overlay Mapping

The contrail-snmp-collector and the contrail-topology are new daemons that are both added to the contrail-
analytics node. The contrail-analytics package contains these new features and their associated files. The
contrail-status displays the new services.

Example: contrail-status

826

The following is an example of using contrail-status to show the status of the new process and service
for underlay overlay mapping.

user@host:~# contrail-status

== Contrail Control ==

supervisor-control: active

contrail-control active

…

== Contrail Analytics ==

supervisor-analytics: active

…

contrail-query-engine active

contrail-snmp-collector active

contrail-topology active

Example: Service Command

The service command can be used to start, stop, and restart the new services. See the following example.

user@host:~# service contrail-snmp-collector status

contrail-snmp-collector RUNNING pid 12179, uptime 1 day, 14:59:11

External Interfaces Configuration for Underlay Overlay Mapping

This section outlines the external interface configurations necessary for successful underlay overlay
mapping for Contrail analytics.

Physical Topology

The typical physical topology includes:

827

• Servers connected to the ToR switches.

• ToR switches connected to spine switches.

• Spine switches connected to core switches.

The following is an example of how the topology is depicted in the Contrail WebUI analytics.

Figure 209: Analytics Topology

SNMP Configuration

Configure SNMP on the physical devices so that the contrail-snmp-collector can read SNMP data.

The following shows an example SNMP configuration from a Juniper Networks device.

set snmp community public authorization read-only

Link Layer Discovery Protocol (LLDP) Configuration

Configure LLDP on the physical device so that the contrail-snmp-collector can read the neighbor
information of the routers.

The following is an example of LLDP configuration on a Juniper Networks device.

set protocols lldp interface all

set protocols lldp-med interface all

IPFIX and sFlow Configuration

Flow samples are sent to the contrail-collector by the physical devices. Because the contrail-collector
supports the sFlow and IPFIX protocols for receiving flow samples, the physical devices, such as MX
Series devices or ToR switches, must be configured to send samples using one of those protocols.

828

Example: sFlow Configuration

The following shows a sample sFlow configuration. In the sample, the IP variable <source ip>refers to
the loopback or IP that can be reachable of the device that acts as an sflow source, and the other IP
variable <collector_IP_data> is the address of the collector device.

root@host> show configuration protocols sflow | display set

set protocols sflow polling-interval 0

set protocols sflow sample-rate ingress 10

set protocols sflow source-ip <source ip>4

set protocols sflow collector <collector_IP_data> udp-port 6343

set protocols sflow interfaces ge-0/0/0.0

set protocols sflow interfaces ge-0/0/1.0

set protocols sflow interfaces ge-0/0/2.0

set protocols sflow interfaces ge-0/0/3.0

set protocols sflow interfaces ge-0/0/4.0

Example: IPFIX Configuration

The following is a sample IPFIX configuration from a Juniper Networks device. The IP address variable
<ip_sflow collector> represents the sflow collector (control-collector analytics node) and <source ip>
represents the source (outgoing) interface on the router/switch device used for sending flow data to the
collector. This could also be the lo0 address, if it s reachable from the Contrail cluster.

root@host> show configuration chassis | display set

set chassis tfeb slot 0 sampling-instance sample-ins1

set chassis network-services

root@host> show configuration chassis tfeb | display set

829

set chassis tfeb slot 0 sampling-instance sample-ins1

root@host > show configuration services flow-monitoring | display set

set services flow-monitoring version-ipfix template t1 flow-active-timeout 30

set services flow-monitoring version-ipfix template t1 flow-inactive-timeout 30

set services flow-monitoring version-ipfix template t1 template-refresh-rate packets 10

set services flow-monitoring version-ipfix template t1 ipv4-template

root@host > show configuration interfaces | display set | match sampling

set interfaces ge-1/0/0 unit 0 family inet sampling input

set interfaces ge-1/0/1 unit 0 family inet sampling input

root@host> show configuration forwarding-options sampling | display set

set forwarding-options sampling instance sample-ins1 input rate 1

set forwarding-options sampling instance sample-ins1 family inet output flow-server <ip_sflow
collector> port 4739

set forwarding-options sampling instance sample-ins1 family inet output flow-server <ip_sflow
collector> version-ipfix template t1

set forwarding-options sampling instance sample-ins1 family inet output inline-jflow source-
address <source ip>

830

Sending pRouter Information to the SNMP Collector in Contrail

Information about the physical devices must be sent to the SNMP collector before the full analytics
information can be read and displayed. Typically, the pRouter information is taken from the contrail-
config file.

SNMP collector getting pRouter information from contrail-config file

The physical routers are added to the contrail-config by using the Contrail user interface or by using
direct API, by means of provisioning or other scripts. Once the configuration is in the contrail-config, the
contrail-snmp-collector gets the physical router information from contrail-config. The SNMP collector uses
this list and the other configuration parameters to perform SNMP queries and to populate pRouter
UVEs.

Figure 210: Add Physical Router Window

pRouter UVEs

pRouter UVEs are accessed from the REST APIs on your system from contrail-analytics-api, using a URL
of the form:

http://<host ip>:8081/analytics/uves/prouters

The following is sample output from a pRouter REST API:

831

Figure 211: Sample Output From a pRouter REST API

Details of a pRouter UVE can be obtained from your system, using a URL of the following form:

http://<host ip>:8081/analytics/uves/prouter/a7-ex3?flat

The following is sample output of a pRouter UVE.

832

Figure 212: Sample Output From a pRouter UVE

Contrail User Interface for Underlay Overlay Analytics

The topology view and related functionality is accessed from the Contrail Web user interface, Monitor >
Physical Topology.

833

Enabling Physical Topology on the Web UI

To enable the Physical Topology section in the Contrail Web UI:

1. Add the following lines to the /etc/contrail/config.global.js file of all the contrail-webui nodes:

config.optFeatureList = {};
config.optFeatureList.mon_infra_underlay = true;

2. Restart webui supervisor.

service supervisor-webui restart

The Physical Topology section is now available on the Contrail Web UI.

Viewing Topology to the Virtual Machine Level

In the Contrail user interface, it is possible to drill down through displayed topology to the virtual
machine level. The following diagram shows the virtual machines instantiated on a7s36 vRouter and the
full physical topology related to each.

Figure 213: Physical Topology Related to a vRouter

Viewing the Traffic of any Link

At Monitor > Physical Topology, double click any link on the topology to display the traffic statistics
graph for that link. The following is an example.

834

Figure 214: Traffic Statistics Graph

Trace Flows

Click the Trace Flows tab to see a list of active flows. To see the path of a flow, click a flow in the active
flows list, then click the Trace Flow button. The path taken in the underlay by the selected flow displays.
The following is an example.

835

Figure 215: List of Active Flows

Limitations of Trace Flow Feature

Because the Trace Flow feature uses ip traceroute to determine the path between the two vRouters
involved in the flow, it has the same limitations as the ip traceroute, including that Layer 2 routers in the
path are not listed, and therefore do not appear in the topology.

Search Flows and Map Flows

Click the Search Flows tab to open a search dialog, then click the Search button to list the flows that
match the search criteria. You can select a flow from the list and click Map Flow to display the underlay
path taken by the selected flow in the topology. The following is an example.

836

Figure 216: Underlay Path

Overlay to Underlay Flow Map Schemas

The schema to query the underlay mapping information for an overlay flow is obtained from a REST API,
which can be accessed on your system using a URL of the following form:

http://<host ip>:8081/analytics/table/OverlayToUnderlayFlowMap/schema

Example: Overlay to Underlay Flow Map Schema

{"type": "FLOW",

"columns": [

{"datatype": "string", "index": true, "name": "o_svn", "select": false, "suffixes": ["o_sip"]},

{"datatype": "string", "index": false, "name": "o_sip", "select": false, "suffixes": null},

{"datatype": "string", "index": true, "name": "o_dvn", "select": false, "suffixes": ["o_dip"]},

{"datatype": "string", "index": false, "name": "o_dip", "select": false, "suffixes": null},

837

{"datatype": "int", "index": false, "name": "o_sport", "select": false, "suffixes": null},

{"datatype": "int", "index": false, "name": "o_dport", "select": false, "suffixes": null},

{"datatype": "int", "index": true, "name": "o_protocol", "select": false, "suffixes":
["o_sport", "o_dport"]},

{"datatype": "string", "index": true, "name": "o_vrouter", "select": false, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_prouter", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_pifindex", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_vlan", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_sip", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_dip", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_sport", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_dport", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_protocol", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_flowtype", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_otherinfo", "select": null, "suffixes": null}]}

The schema for underlay data across pRouters is defined in the Contrail installation at:

http://<host ip>:8081/analytics/table/StatTable.UFlowData.flow/schema

Example: Flow Data Schema for Underlay

{"type": "STAT",

"columns": [

{"datatype": "string", "index": true, "name": "Source", "suffixes": null},

{"datatype": "int", "index": false, "name": "T", "suffixes": null},

838

{"datatype": "int", "index": false, "name": "CLASS(T)", "suffixes": null},

{"datatype": "int", "index": false, "name": "T=", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(T=)", "suffixes": null},

{"datatype": "uuid", "index": false, "name": "UUID", "suffixes": null},

{"datatype": "int", "index": false, "name": "COUNT(flow)", "suffixes": null},

{"datatype": "string", "index": true, "name": "name", "suffixes": ["flow.pifindex"]},

{"datatype": "int", "index": false, "name": "flow.pifindex", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.pifindex)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.pifindex)", "suffixes": null},

{"datatype": "int", "index": false, "name": "flow.sport", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.sport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.sport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "flow.dport", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.dport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.dport)", "suffixes": null},

{"datatype": "int", "index": true, "name": "flow.protocol", "suffixes": ["flow.sport",
"flow.dport"]},

{"datatype": "int", "index": false, "name": "SUM(flow.protocol)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.protocol)", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.sip", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.dip", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.vlan", "suffixes": null},

839

{"datatype": "string", "index": false, "name": "flow.flowtype", "suffixes": null},

{"datatype": "string", "index": false, "name": "flow.otherinfo", "suffixes": null}]}

Example: Typical Query for Flow Map

The following is a typical query. Internally, the analytics-api performs a query into the FlowRecordTable, then
into the StatTable.UFlowData.flow, to return list of (prouter, pifindex) pairs that give the underlay path taken
for the given overlay flow.

FROM

OverlayToUnderlayFlowMap

SELECT

prouter, pifindex

WHERE

o_svn, o_sip, o_dvn, o_dip, o_sport, o_dport, o_protocol = <overlay flow>

Module Operations for Overlay Underlay Mapping

SNMP Collector Operation

The Contrail SNMP collector uses a Net-SNMP library to talk to a physical router or any SNMP agent.
Upon receiving SNMP packets, the data is translated to the Python dictionary, and corresponding UVE
objects are created. The UVE objects are then posted to the SNMP collector.

The SNMP module sleeps for some configurable period, then forks a collector process and waits for the
process to complete. The collector process goes through a list of devices to be queried. For each device,
it forks a greenlet task (Python coroutine), accumulates SNMP data, writes the summary to a JSON file,
and exits. The parent process then reads the JSON file, creates UVEs, sends the UVEs to the collector,
then goes to sleep again.

The pRouter UVE sent by the SNMP collector carries only the raw MIB information.

Example: pRouter Entry Carried in pRouter UVE

The definition below shows the pRouterEntry carried in the pRouterUVE. Additionally, an example LldpTable
definition is shown.

840

The following create a virtual table as defined by:

http://<host ip>:8081/analytics/table/StatTable.UFlowData.flow/schema

struct LldpTable {

 1: LldpLocalSystemData lldpLocalSystemData

 2: optional list<LldpRemoteSystemsData> lldpRemoteSystemsData

}

struct PRouterEntry {

 1: string name (key="ObjectPRouter")

 2: optional bool deleted

 3: optional LldpTable lldpTable

 4: optional list<ArpTable> arpTable

 5: optional list<IfTable> ifTable

 6: optional list<IfXTable> ifXTable

 7: optional list<IfStats> ifStats (tags="name:.ifIndex")

 8: optional list<IpMib> ipMib

}

uve sandesh PRouterUVE {

 1: PRouterEntry data

}

841

Topology Module Operation

The topology module reads UVEs posted by the SNMP collector and computes the neighbor table,
populating the table with remote system name, local and remote interface names, the remote type
(pRouter or vRouter) and local and remote ifindices. The topology module sleeps for a while, reads UVEs,
then computes the neighbor table and posts the UVE to the collector.

The pRouter UVE sent by the topology module carries the neighbor list, so the clients can put together
all of the pRouter neighbor lists to compute the full topology.

The corresponding pRouter UVE definition is the following.

struct LinkEntry {

 1: string remote_system_name

 2: string local_interface_name

 3: string remote_interface_name

 4: RemoteType type

 5: i32 local_interface_index

 6: i32 remote_interface_index

}

struct PRouterLinkEntry {

 1: string name (key="ObjectPRouter")

 2: optional bool deleted

 3: optional list<LinkEntry> link_table

}

uve sandesh PRouterLinkUVE {

 1: PRouterLinkEntry data

}

842

IPFIX and sFlow Collector Operation

An IPFIX and sFlow collector has been implemented in the Contrail collector. The collector receives the
IPFIX and sFlow samples and stores them as statistics samples in the analytics database.

Example: IPFIX sFlow Collector Data

The following definition shows the data stored for the statistics samples and the indices that can be
used to perform queries.

struct UFlowSample {

 1: u64 pifindex

 2: string sip

 3: string dip

 4: u16 sport

 5: u16 dport

 6: u16 protocol

 7: u16 vlan

 8: string flowtype

 9: string otherinfo

}

struct UFlowData {

 1: string name (key="ObjectPRouterIP")

 2: optional bool deleted

 3: optional list<UFlowSample> flow

843

(tags="name:.pifindex, .sip, .dip, .protocol:.sport, .protocol:.dport, .vlan")

}

Troubleshooting Underlay Overlay Mapping

This section provides a variety of links where you can research errors that may occur with underlay
overlay mapping.

System Logs

Logs for contrail-snmp-collector and contrail-topology are in the following locations on an installed Contrail
system:

/var/log/contrail/contrail-snmp-collector-stdout.log

/var/log/contrail/contrail-topology.log

Introspect Utility

Use URLs of the following forms on your Contrail system to access the introspect utilities for SNMP
data and for topology data.

• SNMP data introspect

http://<host ip>:5920/Snh_SandeshUVECacheReq?x=PRouterEntry

• Topology data introspect

http://<host ip>:5921/Snh_SandeshUVECacheReq?x=PRouterLinkEntry

Script to add pRouter Objects

The usual mechanism for adding pRouter objects to contrail-config is through Contrail UI. But you also
have the ability to add these objects using the Contrail vnc-api. To add one pRouter, save the file with the
name cfg-snmp.py, and then execute the command as shown:

python cfg-snmp.py

844

Example: Content for cfg-snmp.py

#!python

from vnc_api import vnc_api

from vnc_api.gen.resource_xsd import SNMPCredentials

vnc = vnc_api.VncApi('admin', 'abcde123', 'admin')

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-mx80-1')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip(''ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-mx80-2')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip('ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-ex3')

apr.set_physical_router_management_ip('source_ip')

apr.set_physical_router_dataplane_ip('source_ip'')

845

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-ex2')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip('ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

RELATED DOCUMENTATION

Understanding Contrail Analytics

Contrail Alerts

846

CHAPTER 24

Configuring Contrail Analytics

IN THIS CHAPTER

Analytics Scalability | 847

High Availability for Analytics | 849

Role-Based Access Control for Analytics | 849

System Log Receiver in Contrail Analytics | 851

Sending Flow Messages to the Contrail System Log | 852

More Efficient Flow Queries | 853

Ceilometer Support in a Contrail Cloud | 853

User Configuration for Analytics Alarms and Log Statistics | 860

Alarms History | 870

Node Memory and CPU Information | 872

Role- and Resource-Based Access Control for the Contrail Analytics API | 873

Configuring Analytics as a Standalone Solution | 874

Configuring Secure Sandesh and Introspect for Contrail Analytics | 877

Analytics Scalability

The Contrail monitoring and analytics services (collector role) collect and store data generated by
various system components and provide the data to the Contrail interface by means of representational
state transfer (REST) application program interface (API) queries.

The Contrail components are horizontally scalable to ensure consistent performance as the system
grows. Scalability is provided for the generator components (control and compute roles) and for the
REST API users (webui role).

This section provides a brief description of the recommended configuration of analytics in Contrail to
achieve horizontal scalability.

847

The following is the recommended locations for the various component roles of the Contrail system for
a 5-node configuration.

• Node 1 —config role, web-ui role

• Node 2 —control role, analytics role, database role

• Node 3 —control role, analytics role, database role

• Node 4 —compute role

• Node 5 —compute role

Figure 217 on page 848 illustrates scalable connections for analytics in a 5-node system, with the
nodes configured for roles as recommended above. The analytics load is distributed between the two
analytics nodes. This configuration can be extended to any number of analytics nodes.

Figure 217: Analytics Scalability

The analytics nodes collect and store data and provide this data through various REST API queries.
Scalability is provided for the control nodes, the compute nodes, and the REST API users, with the API
output displayed in the Contrail user interface. As the number of control and compute nodes increase in
the system, the analytics nodes can also be increased.

848

High Availability for Analytics

Contrail supports multiple instances of analytics for high availability and load balancing.

Contrail analytics provides two broad areas of functionality:

• contrail-collector —Receives status, logs, and flow information from all Contrail processing elements
(for example, generators) and records them.

Every generator is connected to one of the contrail-collector instances at any given time. If an
instance fails (or is shut down), all the generators that are connected to it are automatically moved to
another functioning instance, typically in a few seconds or less. Some messages may be lost during
this movement. UVEs are resilient to message loss, so the state shown in a UVE is kept consistent to
the state in the generator.

• contrail-opserver —Provides an external API to report UVEs and to query logs and flows.

Each analytics component exposes a northbound REST API represented by the contrail-opserver
service (port 8081) so that the failure of one analytics component or one contrail-opserver service
should not impact the operation of other instances.

These are the ways to manage connectivity to the contrail-opserver endpoints:

• Periodically poll the contrail-opserver service on a set of analytics nodes to determine the list of
functioning endpoints, then make API requests from one or more of the functioning endpoints.

• The Contrail user interface makes use of the same northbound REST API to present dashboards,
and reacts to any contrail-opserver high availability event automatically.

Role-Based Access Control for Analytics

The analytics API uses role-based access control (RBAC) to provide the ability to access UVE and query
information based on the permissions of the user for the UVE or queried object.

Contrail Release 4.1 extends authenticated access so that tenants can view network monitoring
information about the networks for which they have read permissions. RBAC for anaytics is a Beta
feature in Contrail Release 4.1.

The analytics API can map query and UVE objects to configuration objects on which RBAC rules are
applied, so that read permissions can be verified using the VNC API.

RBAC is applied to analytics in the following ways:

849

• For statistics queries, annotations are added to the Sandesh file so that indices and tags on statistics
queries can be associated with objects and UVEs. These are used by the contrail-analytics-api to
determine the object level read permissions.

• For flow and log queries, the object read permissions are evaluated for each AND term in the where
query.

• For UVEs list queries (e.g. analytics/uve/virtual-networks/), the contrail-analytics-api gets a list of
UVEs that have read permissions for a given token. For a UVE query for a specific resource (e.g.
analytics/uves/virtual-network/vn1), contrail-analytics-api checks the object level read permissions
using VNC API.

Tenants cannot view system logs and flow logs, those logs are displayed for cloud-admin roles only.

A non-admin user can see only non-global UVEs, including:

• virtual_network

• virtual_machine

• virtual_machine_interface

• service_instance

• service_chain

• tag

• firewall_policy

• firewall_rule

• address_group

• service_group

• aaplication_policy_set

In /etc/contrail/contrail-analytics-api.conf, in the section DEFAULTS, the parameter aaa_mode now supports rbac
as one of the values.

850

System Log Receiver in Contrail Analytics

IN THIS SECTION

Overview | 851

Redirecting System Logs to Contrail Collector | 851

Exporting Logs from Contrail Analytics | 851

Overview

The contrail-collector process on the Contrail Analytics node can act as a system log receiver.

Redirecting System Logs to Contrail Collector

You can enable the contrail-collector to receive system logs by giving a valid syslog_port as a command
line option:

--DEFAULT.syslog_port <arg>

or by adding syslog_port in the DEFAULT section of the configuration file at /etc/contrail/contrail-
collector.conf .

For nodes to send system logs to the contrail-collector, the system log configuration for the node should
be set up to direct the system logs to contrail-collector.

Example

Add the following line in /etc/rsyslog.d/50-default.conf on an Ubuntu system to redirect the system logs to
contrail-collector.

. @<collector_ip>:<collector_syslog_port> :: @ for udp, @@ for tcp

The logs can be retrieved by using Contrail tool, either by using the contrail-logs utility on the analytics
node or by using the Contrail user interface on the system log query page.

Exporting Logs from Contrail Analytics

You can also export logs stored in Contrail analytics to another system log receiver by using the contrail-
logs utility.

851

The contrail-logs utility can take these options: --send-syslog, --syslog-server, --syslog-port, to query
Contrail analytics, then send the results as system logs to a system log server. This is an on-demand
command, one can write a cron job or a job that continuously invokes contrail-logs to achieve continuous
sending of logs to another system log server.

Sending Flow Messages to the Contrail System Log

The contrail-vrouter-agent can be configured to send flow messages and other messages to the system
log (syslog). To send flow messages to syslog, configure the following parameters in /etc/contrail/contrail-
vrouter-agent.conf.

The following parameters are under the section DEFAULT:

• log_flow=1—Enables logging of all flow messages.

• use_syslog=1—Enables sending of all messages, including flow messages, to syslog.

• syslog_facility=LOG_LOCAL0—Enables sending messages from the contrail-vrouter-agent to the syslog,
using the facility LOCAL0. You can configure LOCAL0 to your required facility.

• log_level=SYS_INFO—Changes the logging level of contrail-vrouter-agent to INFO.

If syslog is enabled, flow messages are not sent to Contrail Analytics because the two destinations are
mutually exclusive.

Flow log sampling settings apply regardless of the flow log destination specified. If sampling is enabled,
the syslog messages will be sampled using the same rules that would apply to Contrail Analytics. If non-
sampled flow data is required, sampling must be disabled by means of configuration settings.

Flow events for termination will include both the appropriate tear-down fields and the appropriate setup
fields.

The flow messages will be sent to the syslog with a severity of INFO.

The user can configure the remote system log (rsyslog) on the compute node to send syslog messages
with facility LOCAL0, severity of INFO (and lower), to the remote syslog server. Messages with a higher
severity than INFO can be logged to a local file to allow for debugging.

Flow messages appear in the syslog in a format similar to the following log example:

May 24 14:40:13 a7s10 contrail-vrouter-agent[29930]: 2016-05-24 Tue 14:40:13:921.098 PDT a7s10 [Thread
139724471654144, Pid 29930]: [SYS_INFO]: FlowLogDataObject: flowdata= [[[flowuuid = 7ea8bf8f-b827-496e-
b93e-7622a0c8eeea direction_ing = 1 sourcevn = default-domain:mock-gen-test:vn8 sourceip = 1.0.0.9 destvn =
default-domain:mock-gen-test:vn58 destip = 1.0.0.59 protocol = 1 sport = -29520 dport = 20315 setup_time =
1464125225556930 bytes = 1035611592 packets = 2024830 diff_bytes = 27240 diff_packets = 40],]]

852

NOTE: Several individual flow messages might be packed into a single syslog message for
improved efficiency.

More Efficient Flow Queries

Flow queries are now analyzed on a 7-tuple basis, enabling more efficient flow queries by focusing on
elements more important for analysis, and de-emphasizing lesser elements. More efficient queries
enable load reduction and allow application of security policy.

An enhanced security framework is implemented to manage connectivity between workloads, or VMIs.
Each VMI is tagged with the attributes of Deployment, App, Tier, and Site, and the user specifies
security policies for VMIs using the values of these tags. Contrail can analyze the traffic flow between
groups of VMI, where groups are categorized according to one or more values of the tags.

The existing FlowLogData is replaced by SessionEndpointData, which is a combination of the local VMI
tags and VNs, the security policy and security rule, and route attributes for the remote endpoint. A
SessionAggregate map and counts both enable traffic analysis within and across security policies by
means of session sampling and session aggregate counts.

The flow export feature is disabled by default. Until the session_export_rate is set explicitly, flow queries
will not return any results regardless of the traffic. To use this feature, set the session export rate in the
Contrail WebUI at Config->Global Config->Forwarding Options.

Ceilometer Support in a Contrail Cloud

IN THIS SECTION

Overview | 854

Ceilometer Details | 854

Verification of Ceilometer Operation | 855

Contrail Ceilometer Plugin | 857

Ceilometer Installation and Provisioning | 860

853

Ceilometer is an OpenStack feature that provides an infrastructure for collecting SDN metrics from
OpenStack projects. The metrics can be used by various rating engines to transform events into billable
items. The Ceilometer collection process is sometimes referred to as “metering”. The Ceilometer service
provides data that can be used by platforms that provide metering, tracking, billing, and similar services.
This topic describes how to configure the Ceilometer service for Contrail.

Overview

Contrail Release 2.20 and later supports the OpenStack Ceilometer service, on the OpenStack Juno
release on Ubuntu 14.04.1 LTS.

The prerequisites for installing Ceilometer are:

• Contrail Cloud installation

• Provisioned using enable_ceilometer = True in the provisioning file.

NOTE: Ceilometer services are only installed on the first OpenStack controller node and do not
support high availability in Contrail Release 2.20.

Ceilometer Details

Ceilometer is used to reliably collect measurements of the utilization of the physical and virtual
resources comprising deployed clouds, persist these data for subsequent retrieval and analysis, and
trigger actions when defined criteria are met.

The Ceilometer architecture consists of:

Polling agent Agent designed to poll OpenStack services and build meters. The polling agents are
also run on the compute nodes in addition to the OpenStack controller.

Notification
agent

Agent designed to listen to notifications on message queue and convert them to
events and samples.

Collector Gathers and records event and metering data created by the notification and polling
agents.

API server Provides a REST API to query and view data recorded by the collector service.

Alarms Daemons to evaluate and notify based on defined alarming rules.

Database Stores the metering data, notifications, and alarms. The supported databases are
MongoDB, SQL-based databases compatible with SQLAlchemy, and HBase. The

854

recommended database is MongoDB, which has been thoroughly tested with
Contrail and deployed on a production scale.

Verification of Ceilometer Operation

The Ceilometer services are named slightly differently on the Ubuntu and RHEL Server 7.0.

On Ubuntu, the service names are:

Polling agent ceilometer-agent-central and ceilometer-agent-compute

Notification agent ceilometer-agent-notification

Collector ceilometer-collector

API Server ceilometer-api

Alarms ceilometer-alarm-evaluator and ceilometer-alarm-notifier

On RHEL Server 7.0, the service names are:

Polling agent openstack-ceilometer-central and openstack-ceilometer-compute

Notification agent openstack-ceilometer-notification

Collector openstack-ceilometer-collector

API server openstack-ceilometer-api

Alarms openstack-ceilometer-alarm-evaluator and openstack-ceilometer-alarm-notifier

To verify the Ceilometer installation, users can verify that the Ceilometer services are up and running by
using the openstack-status command.

For example, using the openstack-status command on an all-in-one node running Ubuntu 14.04.1 LTS
with release 2.2 of Contrail installed shows the following Ceilometer services as active:

== Ceilometer services ==
ceilometer-api: active
ceilometer-agent-central: active
ceilometer-agent-compute: active
ceilometer-collector: active
ceilometer-alarm-notifier: active

855

ceilometer-alarm-evaluator: active
ceilometer-agent-notification:active

You can issue the ceilometer meter-list command on the OpenStack controller node to verify that meters
are being collected, stored, and reported via the REST API. The following is an example of the output:

user@host:~# (source /etc/contrail/openstackrc; ceilometer meter-list)
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+
| Name | Type | Unit | Resource ID |
User ID | Project ID |
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+
| ip.floating.receive.bytes | cumulative | B | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| ip.floating.receive.packets | cumulative | packet | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| ip.floating.transmit.bytes | cumulative | B | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| ip.floating.transmit.packets | cumulative | packet | a726f93a-65fa-4cad-828b-54dbfcf4a119 |
None | None |
| network | gauge | network | 7fa6796b-756e-4320-9e73-87d4c52ecc83 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | 9408e287-d3e7-41e2-89f0-5c691c9ca450 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | b3b72b98-f61e-4e1f-9a9b-84f4f3ddec0b |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network | gauge | network | cb829abd-e6a3-42e9-a82f-0742db55d329 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | 7fa6796b-756e-4320-9e73-87d4c52ecc83 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | 9408e287-d3e7-41e2-89f0-5c691c9ca450 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | b3b72b98-f61e-4e1f-9a9b-84f4f3ddec0b |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| network.create | delta | network | cb829abd-e6a3-42e9-a82f-0742db55d329 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| port | gauge | port | 0d401d96-c2bf-4672-abf2-880eecf25ceb |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port | gauge | port | 211b94a4-581d-45d0-8710-c6c69df15709 |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port | gauge | port | 2287ce25-4eef-4212-b77f-3cf590943d36 |

856

01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.create | delta | port | f62f3732-222e-4c40-8783-5bcbc1fd6a1c |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.create | delta | port | f8c89218-3cad-48e2-8bd8-46c1bc33e752 |
01edcedd989f43b3a2d6121d424b254d | 82ab961f88994e168217ddd746fdd826 |
| port.update | delta | port | 43ed422d-b073-489f-877f-515a3cc0b8c4 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet | gauge | subnet | 09105ed1-1654-4b5f-8c12-f0f2666fa304 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet | gauge | subnet | 4bf00aac-407c-4266-a048-6ff52721ad82 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet.create | delta | subnet | 09105ed1-1654-4b5f-8c12-f0f2666fa304 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
| subnet.create | delta | subnet | 4bf00aac-407c-4266-a048-6ff52721ad82 |
15c0240142084d16b3127d6f844adbd9 | ded208991de34fe4bb7dd725097f1c7e |
+------------------------------+------------+---------+--------------------------------------
+----------------------------------+----------------------------------+

NOTE: The ceilometer meter-list command lists the meters only if images have been created, or
instances have been launched, or if subnet, port, floating IP addresses have been created,
otherwise the meter list is empty. You also need to source the /etc/contrail/openstackrc file
when executing the command.

Contrail Ceilometer Plugin

The Contrail Ceilometer plugin adds the capability to meter the traffic statistics of floating IP addresses
in Ceilometer. The following meters for each floating IP resource are added by the plugin in Ceilometer.

ip.floating.receive.bytes
ip.floating.receive.packets
ip.floating.transmit.bytes
ip.floating.transmit.packets

The Contrail Ceilometer plugin configuration is done in the /etc/ceilometer/pipeline.yaml file when
Contrail is installed by the Fabric provisioning scripts.

The following example shows the configuration that is added to the file:

sources:
 - name: contrail_source

857

 interval: 600
 meters:
 - "ip.floating.receive.packets"
 - "ip.floating.transmit.packets"
 - "ip.floating.receive.bytes"
 - "ip.floating.transmit.bytes"
 resources:
 - contrail://<IP-address-of-Contrail-Analytics-Node>:8081
 sinks:
 - contrail_sink
sinks:
 - name: contrail_sink
 publishers:
 - rpc://
 transformers:

The following example shows the Ceilometer meter list output for the floating IP meters:

+-------------------------------+------------+-----------
+---
+----------------------------------+----------------------------------+
| Name | Type | Unit | Resource
ID | User ID
| Project ID |
+-------------------------------+------------+-----------
+---
+----------------------------------+----------------------------------+
| ip.floating.receive.bytes | cumulative | B | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.receive.bytes | cumulative | B | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.receive.packets | cumulative | packet | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.receive.packets | cumulative | packet | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.transmit.bytes | cumulative | B | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |

858

| ip.floating.transmit.bytes | cumulative | B | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |
| ip.floating.transmit.packets | cumulative | packet | 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 | None
| None |
| ip.floating.transmit.packets | cumulative | packet | 9cf76844-8f09-4518-a09e-
e2b8832bf894 | None |
None |

In the meter -list output, the Resource ID refers to the floating IP.

The following example shows the output from the ceilometer resource-show -r 451c93eb-
e728-4ba1-8665-6e7c7a8b49e2 command:

+-------------+---+
| Property | Value |
+-------------+---+
metadata	{u'router_id': u'None', u'status': u'ACTIVE', u'tenant_id':
	u'ceed483222f9453ab1d7bcdd353971bc', u'floating_network_id':
	u'6d0cca50-4be4-4b49-856a-6848133eb970', u'fixed_ip_address':
	u'2.2.2.4', u'floating_ip_address': u'3.3.3.4', u'port_id': u'c6ce2abf-
	ad98-4e56-ae65-ab7c62a67355', u'id':
	u'451c93eb-e728-4ba1-8665-6e7c7a8b49e2', u'device_id':
	u'00953f62-df11-4b05-97ca-30c3f6735ffd'}
project_id	None
resource_id	451c93eb-e728-4ba1-8665-6e7c7a8b49e2
source	openstack
user_id	None
+-------------+---+

The following example shows the output from the ceilometer statistics command and the ceilometer
sample-list command for the ip.floating.receive.packets meter:

+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+
| Period | Period Start | Period End | Count | Min | Max |
Sum | Avg | Duration | Duration Start | Duration End |
+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+

859

| 0 | 2015-02-13T19:50:40.795000 | 2015-02-13T19:50:40.795000 | 2892 | 0.0 | 325.0 |
1066.0 | 0.368603042877 | 439069.674 | 2015-02-13T19:50:40.795000 | 2015-02-18T21:48:30.469000 |
+--------+----------------------------+----------------------------+-------+-----+-------
+--------+----------------+------------+----------------------------+----------------------------
+

+--------------------------------------+-----------------------------+------------+--------
+--------+----------------------------+
| Resource ID | Name | Type | Volume |
Unit | Timestamp |
+--------------------------------------+-----------------------------+------------+--------
+--------+----------------------------+
| 9cf76844-8f09-4518-a09e-e2b8832bf894 | ip.floating.receive.packets | cumulative | 208.0 |
packet | 2015-02-18T21:48:30.469000 |
| 451c93eb-e728-4ba1-8665-6e7c7a8b49e2 | ip.floating.receive.packets | cumulative | 325.0 |
packet | 2015-02-18T21:48:28.354000 |
| 9cf76844-8f09-4518-a09e-e2b8832bf894 | ip.floating.receive.packets | cumulative | 0.0 |
packet | 2015-02-18T21:38:30.350000 |

Ceilometer Installation and Provisioning

There are two scenarios possible for Contrail Ceilometer plugin installation.

1. If you install your own OpenStack distribution, you can install the Contrail Ceilometer plugin on the
OpenStack controller node.

2. When using Contrail Cloud services, the Ceilometer controller services are installed and provisioned
as part of the OpenStack controller node and the compute agent service is installed as part of the
compute node when enable_ceilometer is set as True in the cluster config or testbed files.

User Configuration for Analytics Alarms and Log Statistics

IN THIS SECTION

Configuring Alarms Based on User-Visible Entities Data | 861

Examples: Detecting Anomalies | 863

Configuring the User-Defined Log Statistic | 864

Implementing the User-Defined Log Statistic | 867

860

Configuring Alarms Based on User-Visible Entities Data

Starting with Contrail 3.1, users can dynamically configure alarms based on the user-visible entities
(UVE) data. An alarm configuration object is created based on the alarm configuration XSD schema. The
alarm configuration object is added to the Contrail configuration database, using the Contrail API server
REST API interface.

An alarm configuration object can be anchored in the configuration data model under global-system-config
or project, depending on the alarm type. Under global-system-config, you should configure virtual network
system-wide alarms, such as those for the analytics node, the config node, and so on. Under project, you
should configure alarms related to project objects, such as virtual networks and similar objects.

To configure and monitor alarms using the Contrail UI:

1. Navigate to Configure > Alarms> Project, and select the desired project to access the Alarm Rules
page.

2. Click the Gear icon to add a new alarm configuration or to edit an existing alarm configuration. Use
the Edit screen to define descriptions and to set up alarm rules. See Table 62 on page 862 for field
descriptions.

861

Table 62: Alarm Rules Fields

Field Description

Name Enter a name for the alarm.

Severity Select the severity level of the alarm from the list.

UVE Keys Select the list of UVE types to apply to this alarm.

Description Enter a description of the alarm.

Rule Set up the alarm rules. Alarm rules are expressed as OR of AND terms.
Each term has operand1, operand2, and the operation. Operand1 is the
UVE attribute. Operand2 can be either another UVE attribute or a JSON
value. The rules are evaluated in the contrail-alarm-gen service and an
alarm is raised or cleared as needed on respective conditions.

3. To monitor alarms, navigate to Monitor > Alarms> Dashboard. The Dashboard screen lists the active
alarms in the system.

862

Examples: Detecting Anomalies

The purpose of anomaly detection in Contrail is to identify a condition in which a metric deviates from
its expected value, within given parameters.

Contrail uses a statistical process control model for time-series anomaly detection that can be computed
online, in real-time. Raw metrics are sent as statistics by Sandesh generators embedded inside the UVEs.
The model uses the running average and running standard deviation for a given raw metric. The model
does not account for seasonality and linear trends in the metric.

The following example represents part of the UVE sent by the vRouter to the collector. The raw metrics
are phy_band_in_bps and phy_band_out_bps.

The derived statistics are in in_bps_ewm and out_bps_ewm, which are generated when the model’s EWM
algorithm is applied to the raw metrics. The raw metrics and the derived statistics are part of the UVE
and are sent to the collector.

struct EWMResult {
 3: u64 samples
 6: double mean
 7: double stddev
}

struct VrouterStatsAgent { // Agent stats

1: string name (key="ObjectVRouter")

2: optional bool deleted …

/** @display_name:Vrouter Physical Interface Input bandwidth Statistics*/

863

50: optional map<string,u64> phy_band_in_bps (tags="name:.__key")

/** @display_name:Vrouter Physical Interface Output bandwidth Statistics*/

51: optional map<string,u64> phy_band_out_bps (tags="name:.__key")

52: optional map<string,derived_stats_results.EWMResult> in_bps_ewm
(mstats="phy_band_in_bps:DSEWM:0.2")

53: optional map<string,derived_stats_results.EWMResult> out_bps_ewm
(mstats="phy_band_out_bps:DSEWM:0.2")
}

The following shows part of the UVE that lists the raw metric phy_band_out_bps and the derived statistic
out_bps_ewm. The user can define an alarm based on the values in sigma or in stddev.

Configuring the User-Defined Log Statistic

Any deployment of Contrail cloud over an orchestration system requires tools for monitoring and
troubleshooting the entire cloud deployment. Cloud data centers are built with a large collection of
interconnected servers that provide computing and storage capacity for a variety of applications. The
monitoring of the cloud and its infrastructure requires monitoring logs and messages sent to a variety of
servers from many micro services.

Contrail analytics stores all of the monitored messages in the Contrail database node, and the analytics
generates a large amount of useful information that aids in monitoring and troubleshooting the network.

Starting with Contrail Release 3.1, the user-defined log statistic feature provides additional abilities for
monitoring and troubleshooting by enabling the user to set a counter on any regular Perl-type

864

expression. Each time the pattern is found in any system logs, UVEs, or object logs, the counter is
incremented.

The user-defined log statistic can be configured from the Contrail UI or from the command line, using
vnc_api.

To configure the user-defined log statistic from the Contrail UI:

1. Navigate to Configure > Infrastructure > Global Config and select Log Statistic.

2. To create a log statistic, click the plus (+) icon to access the Create Log Statistic screen. Enter a name
for the user-defined log statistic, and in the RegExp Pattern field, enter the Perl-type expression to
look for and count.

3. To edit an existing log statistic, select the name of the statistic and click the Gear icon, then select
Edit to access the Edit Log Statistic screen.

865

4. To delete a log statistic, select the name of the statistic and click the gear icon, then select the Delete
option.

To configure the user-defined statistic from the vnc_api:

user@host:~# python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.

>> from vnc_api import vnc_api
>> from vnc_api.gen.resource_xsd import UserDefinedLogStat
>> from vnc_api.gen.resource_client import GlobalSystemConfig
>> vnc = vnc_api.VncApi('<username>', '<password>', '<tenant>')
>> gsc_uuid = vnc.global_system_configs_list()['global-system-configs'][0]['uuid']
>> gsc = vnc.global_system_config_read(id=gsc_uuid)

866

To list the counters:

>> [(x.name, x.pattern) for x in gsc.user_defined_log_statistics.statlist]

[('HostnameCounter', 'dummy'), ('MyIp', '10.84.14.38')]

To add a counter:

>> g=GlobalSystemConfig()
>> g.add_user_defined_counter(UserDefinedLogStat('Foo', 'Ba.*r'))
>> vnc.global_system_config_update(g)

To verify an addition:

>> gsc = vnc.global_system_config_read(id=gsc_uuid)
>> [(x.name, x.pattern) for x in gsc.user_defined_log_statistics.statlist]

[('HostnameCounter', 'dummy'), ('MyIp', '10.84.14.38'), ('Foo', 'Ba.*r')]

Implementing the User-Defined Log Statistic

The statistics are sent as a counter that has been aggregated over a time period of 60 seconds.

A current sample from your system can be obtained from the UVE at:

http://<analytics-ip>:8081/analytics/uves/user-defined-log-statistic/<name>

You can also use the statistics table UserDefinedLogStatTable to get historical data with all supported
aggregations such as SUM, AVG, and the like.

The schema for the table is at the following location:

http://<ip>:8081/analytics/table/StatTable.UserDefinedCounter.count/schema

Schema for User-Defined Statistics Table

The following is the schema for the user-defined statistic table:

{
 "type": "STAT",
 "columns": [
 {

867

 "datatype": "string",
 "index": true,
 "name": "Source",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "T",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(T)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "T=",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(T=)",
 "suffixes": null
},
 {
 "datatype": "uuid",
 "index": false,
 "name": "UUID",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "COUNT(count)",
 "suffixes": null
},
 {
 "datatype": "int",

868

 "index": false,
 "name": "count.previous",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "SUM(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "MAX(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "MIN(count.previous)",
 "suffixes": null
},
 {
 "datatype": "percentiles",
 "index": false,
 "name": "PERCENTILES(count.previous)",
 "suffixes": null
},
 {
 "datatype": "avg",
 "index": false,
 "name": "AVG(count.previous)",
 "suffixes": null
},
 {
 "datatype": "string",
 "index": true,

869

 "name": "name",
 "suffixes": null
}
]
}

Alarms History

IN THIS SECTION

Viewing Alarms History | 870

Starting with Contrail Release 4.0, you can view a history of alarms that were raised or reset. You can
also view a history of user-visible entities (UVEs) that have been changed.

Viewing Alarms History

In the Contrail Web user interface, new fields at Monitor > Alarms > Dashboard > Alarms History now
display alarms history, including alarms that were set or reset. Figure 218 on page 871 shows the
alarms history, identifying the volume and types of alarms by time and the node types in which events
are occurring. The right side panel lists by name the nodes in which active events are occurring.

You can also use a contrail-status query to view the alarms history. Additionally, the contrail-status
displays a history of added, updated, and removed information for UVEs in Contrail.

870

Figure 218: Alarms History Page

Tooltips are available on the Alarms History page. In the Events area, you can click on any node type
listed to display a tooltip showing details of the events that have been added and cleared in that node,
see Figure 219 on page 871.

Figure 219: Events Log Tooltip

871

You can expand the event log in the right side panel to display a detailed event log. Click the name of
any node in the list in the right panel, and the details of the current alarms are visible in the expanded
view, see Figure 220 on page 872.

Figure 220: Detailed Event Log

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 860

Node Memory and CPU Information

To help in monitoring and debugging, the following statistics have been added for all node types. The
statistics are updated every 60 seconds.

• System CPU info

• System memory and CPU usage

872

• Memory and CPU usage of all processes

You can see a current sample from the UVE in your system at:

http://<analytics-ip>:8081/analytics/uves/<node-type>/<hostname>?flat

You can also use the statistics tables to get historical data with all supported aggregations, such as SUM,
AVG, and so on:

• NodeStatus.process_mem_cpu_usage

• NodeStatus.system_mem_cpu_usage

The schema for the tables are at the following locations on your system:

http://<analytics-ip>:8081/analytics/table/StatTable.NodeStatus.process_mem_cpu_usage/schema

http://<analytics-ip>:8081/analytics/table/StatTable.NodeStatus.system_mem_cpu_usage/schema

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 860

Role- and Resource-Based Access Control for the Contrail Analytics API

In previous releases of Contrail, any user can access the Contrail analytics API by using queries to get
historical information and by using UVEs to get state information.

Starting with Contrail Release 3.1, it is possible to restrict access such that only the cloud-admin user can
access the Contrail analytics API.

Implementation details are as follows:

• An external user makes a REST API call to contrail-analytics-api, passing a token representing the user
with the HTTP header X-Auth-Token.

• Based on the user role, contrail-analytics-api will only allow access for the cloud-admin user and reject
the request (HTTPUnauthorized) for other users.

To set the cloud_admin user, use the following fields in /etc/contrail/contrail-analytics-api.conf:

• aaa_mode—Takes one of these values:

• no-auth

873

• cloud-admin

• cloud_admin_role—The user with this role has full access to everything. By default, this is set to "admin".
This role must be configured in Keystone.

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 860

Configuring Analytics as a Standalone Solution

IN THIS SECTION

Overview: Contrail Analytics as a Standalone Solution | 874

Configuration Examples for Standalone | 875

Starting with Contrail 4.0, it is possible to configure Contrail Analytics as a standalone solution.

Overview: Contrail Analytics as a Standalone Solution

Starting with Contrail 4.0 (containerized Contrail), Contrail Analytics can be configured as a standalone
solution.

The following services are necessary for a standalone solution:

• config

• webui

• analytics

• analyticsdb

A standalone Contrail Analytics solution consists of the following containers:

• controller container with only config and webui services enabled

• analytics container

874

• analyticsdb container

Configuration Examples for Standalone

The following are examples of default inventory file configurations for the controller container for
standalone Contrail analytics.

Examples: Inventory File Controller Components

The following are example analytics standalone solution inventory file configurations for Contrail
controller container components.

Single Node Cluster

[contrail-controllers]
10.xx.32.10 controller_components=['config','webui']

[contrail-analyticsdb]
10.xx.32.10

[contrail-analytics]
10.xx.32.10

Multi-Node Cluster

[contrail-controllers]
10.xx.32.10 controller_components=['config','webui']
10.xx.32.11 controller_components=['config','webui']
10.xx.32.12 controller_components=['config','webui']

[contrail-analyticsdb]
10.xx.32.10
10.xx.32.11
10.xx.32.12

[contrail-analytics]
10.xx.32.10

875

10.xx.32.11
10.xx.32.12

JSON Configuration Examples

The following are example JSON file configurations for (server.json) for Contrail analytics standalone
solution.

Example: JSON Single Node Cluster

{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server1",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
}

Example: JSON Multi-Node Cluster

{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server1",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
},
{
 "cluster_id": "cluster1",

876

 "domain": "sm-domain.com",
 "id": "server2",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
},
{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server3",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
}

RELATED DOCUMENTATION

Configuring Secure Sandesh and Introspect for Contrail Analytics | 877

Understanding Contrail Analytics

Configuring Secure Sandesh and Introspect for Contrail Analytics

IN THIS SECTION

Configuring Secure Sandesh Connection | 878

Configuring Secure Introspect Connection | 878

877

Configuring Secure Sandesh Connection

All Contrail services use Sandesh, a southbound interface protocol based on Apache Thrift, to send
analytics data such as system logs, object logs, UVEs, flow logs, and the like, to the collector service in
the Contrail Analytics node. The Transport Layer Security (TLS) protocol is used for certificate exchange,
mutual authentication, and negotiating ciphers to secure the Sandesh connection from potential
tampering and eavesdropping.

To configure a secure Sandesh connection, configure the following parameters in all Contrail services
that connect to the collector (Sandesh clients) and the Sandesh server.

Parameter Description Default

[SANDESH].sandesh_keyfile Path to the node's private key /etc/contrail/ssl/private/server-
privkey.pem

[SANDESH].sandesh_certfile Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

[SANDESH].sandesh_ca_cert Path to the CA certificate /etc/contrail/ssl/certs/ca-cert.pem

[SANDESH].sandesh_ssl_enable Enable or disable secure Sandesh
connection

false

Configuring Secure Introspect Connection

All Contrail services are embedded with a web server that can be used to query the internal state of the
data structures, view trace messages, and perform other extensive debugging. The Transport Layer
Security (TLS) protocol is used for certificate exchange, mutual authentication, and negotiating ciphers
to secure the introspect connection from potential tampering and eavesdropping.

To configure a secure introspect connection, configure the following parameters in the Contrail service,
see Table 63 on page 879.

878

Table 63: Secure Introspect Parameters

Parameter Description Default

[SANDESH].sandesh_keyfile Path to the node's private key /etc/contrail/ssl/private/server-
privkey.pem

[SANDESH].sandesh_certfile Path to the node's public
certificate

/etc/contrail/ssl/certs/server.pem

[SANDESH].sandesh_ca_cert Path to the CA certificate /etc/contrail/ssl/certs/ca-cert.pem

[SANDESH].introspect_ssl_enable Enable or disable secure introspect
connection

false

879

CHAPTER 25

Using Contrail Analytics to Monitor and
Troubleshoot the Network

IN THIS CHAPTER

Monitoring the System | 880

Debugging Processes Using the Contrail Introspect Feature | 884

Monitor > Infrastructure > Dashboard | 889

Monitor > Infrastructure > Control Nodes | 893

Monitor > Infrastructure > Virtual Routers | 904

Monitor > Infrastructure > Analytics Nodes | 918

Monitor > Infrastructure > Config Nodes | 926

Monitor > Networking | 930

Query > Flows | 942

Query > Logs | 952

Understanding Flow Sampling | 959

Example: Debugging Connectivity Using Monitoring for Troubleshooting | 962

Monitoring the System

The Monitor icon on the Contrail Controller provides numerous options so you can view and analyze
usage and other activity associated with all nodes of the system, through the use of reports, charts, and
detailed lists of configurations and system activities.

Monitor pages support monitoring of infrastructure components—control nodes, virtual routers,
analytics nodes, and config nodes. Additionally, users can monitor networking and debug components.

Use the menu options available from the Monitor icon to configure and view the statistics you need for
better understanding of the activities in your system. See Figure 221 on page 881

880

Figure 221: Monitor Menu

See Table 64 on page 881 for descriptions of the items available under each of the menu options from
the Monitor icon.

Table 64: Monitor Menu Options

Option Description

Infrastructure > Dashboard Shows “at-a-glance” status view of the infrastructure components,
including the numbers of virtual routers, control nodes, analytics nodes,
and config nodes currently operational, and a bubble chart of virtual
routers showing the CPU and memory utilization, log messages, system
information, and alerts. See Monitor > Infrastructure > Dashboard.

881

Table 64: Monitor Menu Options (Continued)

Option Description

Infrastructure > Control Nodes View a summary for all control nodes in the system, and for each control
node, view:

• Graphical reports of memory usage and average CPU load.

• Console information for a specified time period.

• A list of all peers with details about type, ASN, and the like.

• A list of all routes, including next hop, source, local preference, and
the like.

See Monitor > Infrastructure > Control Nodes.

Infrastructure > Virtual Routers View a summary of all vRouters in the system, and for each vRouter,
view:

• Graphical reports of memory usage and average CPU load.

• Console information for a specified time period.

• A list of all interfaces with details such as label, status, associated
network, IP address, and the like.

• A list of all associated networks with their ACLs and VRFs.

• A list of all active flows with source and destination details, size, and
time.

See Monitor > Infrastructure > Virtual Routers.

Infrastructure > Analytics Nodes View activity for the analytics nodes, including memory and CPU usage,
analytics host names, IP address, status, and more. See Monitor >
Infrastructure > Analytics Nodes.

Infrastructure > Config Nodes View activity for the config nodes, including memory and CPU usage,
config host names, IP address, status, and more. See Monitor >
Infrastructure > Config Nodes.

882

Table 64: Monitor Menu Options (Continued)

Option Description

Networking > Networks For all virtual networks for all projects in the system, view graphical
traffic statistics, including:

• Total traffic in and out.

• Inter VN traffic in and out.

• The most active ports, peers, and flows for a specified duration.

• All traffic ingress and egress from connected networks, including
their attached policies.

See Monitor > Networking.

Networking > Dashboard For all virtual networks for all projects in the system, view graphical
traffic statistics, including:

• Total traffic in and out.

• Inter VN traffic in and out.

You can view the statistics in varying levels of granularity, for example,
for a whole project, or for a single network. See Monitor > Networking.

Networking > Projects View essential information about projects in the system including name,
associated networks, and traffic in and out.

Networking > Networks View essential information about networks in the system including name
and traffic in and out.

Networking > Instances View essential information about instances in the system including
name, associated networks, interfaces, vRouters, and traffic in and out.

883

Table 64: Monitor Menu Options (Continued)

Option Description

Debug > Packet Capture • Add and manage packet analyzers.

• Attach packet captures and configure their details.

• View a list of all packet analyzers in the system and the details of
their configurations, including source and destination networks,
ports, and IP addresses.

RELATED DOCUMENTATION

Monitor > Infrastructure > Dashboard

Monitor > Infrastructure > Control Nodes

Monitor > Infrastructure > Virtual Routers

Monitor > Networking

Query > Logs

Query > Flows

Debugging Processes Using the Contrail Introspect Feature

This topic describes how to use the Sandesh infrastructure and the Contrail Introspect feature to debug
processes.

Introspect is a mechanism for taking a program object and querying information about it.

Sandesh is the name of a unified infrastructure in the Contrail Virtual Networking solution.

Sandesh is a way for the Contrail daemons to provide a request-response mechanism. Requests and
responses are defined in Sandesh format and the Sandesh compiler generates code to process the
requests and send responses.

Sandesh also provides a way to use a Web browser to send Sandesh requests to a Contrail daemon and
get the Sandesh responses. This feature is used to debug processes by looking into the operational
status of the daemons.

Each Contrail daemon starts an HTTP server, with the following page types:

884

• The main index.html listing all Sandesh modules and the links to them.

• Sandesh module pages that present HTML forms for each Sandesh request.

• XML-based dynamically-generated pages that display Sandesh responses.

• An automatically generated page that shows all code needed for rendering and all HTTP server-client
interactions.

You can display the HTTP introspect of a Contrail daemon directly by accessing the following Introspect
ports:

• <controller-ip>:8083. This port displays the contrail-control introspect port.

• <compute-ip>:8085 This port displays the contrail-vrouter-agent introspect port.

Another way to launch the Introspect page is by browsing to a particular node page using the Contrail
Web user interface.

Figure 222 on page 886 shows the contrail-control infrastructure page. Notice the Introspect link at
the bottom of the Control Nodes Details tab window.

885

Figure 222: Control Nodes Details Tab Window

The following are the Sandesh modules for the Contrail control process (contrail-control) Introspect port.

• bgp_peer.xml

• control_node.xml

• cpuinfo.xml

• discovery_client_stats.xml

• ifmap_log.xml

• ifmap_server_show.xml

• rtarget_group.xml

886

• sandesh_trace.xml

• sandesh_uve.xml

• service_chaining.xml

• static_route.xml

• task.xml

• xmpp_server.xml

Figure 223 on page 887 shows the Controller Introspect window.

Figure 223: Controller Introspect Window

Figure 224 on page 887 shows an example of the BGP Peer (bgp_peer.xml) Introspect page.

Figure 224: BGP Peer Introspect Page

887

Figure 225 on page 888 shows an example of the BGP Neighbor Summary Introspect page.

Figure 225: BGP Neighbor Summary Introspect Page

The following are the Sandesh modules for the Contrail vRouter agent (contrail-vrouter-agent)
Introspect port.

• agent.xml

• agent_stats_interval.xml

• cfg.xml

• controller.xml

• cpuinfo.xml

• diag.xml

• discovery_client_stats.xml

• flow_stats_interval.xml

• ifmap_agent.xml

• kstate.xml

• multicast.xml

• pkt.xml

• port_ipc.xml

• sandesh_trace.xml

888

• sandesh_uve.xml

• services.xml

• stats_interval.xml

• task.xml

• xmpp_server.xml

Figure 226 on page 889 shows an example of the Agent (agent.xml) Introspect page.

Figure 226: Agent Introspect Page

Monitor > Infrastructure > Dashboard

IN THIS SECTION

Monitor Dashboard | 890

Monitor Individual Details from the Dashboard | 890

Using Bubble Charts | 891

Color-Coding of Bubble Charts | 892

889

Use Monitor > Infrastructure > Dashboard to get an “at-a-glance” view of the system infrastructure
components, including the numbers of virtual routers, control nodes, analytics nodes, and config nodes
currently operational, a bubble chart of virtual routers showing the CPU and memory utilization, log
messages, system information, and alerts.

Monitor Dashboard

Click Monitor > Infrastructure > Dashboard on the left to view the Dashboard. See Figure 227 on page
890.

Figure 227: Monitor > Infrastructure > Dashboard

Monitor Individual Details from the Dashboard

Across the top of the Dashboard screen are summary boxes representing the components of the system
that are shown in the statistics. See Figure 228 on page 891. Any of the control nodes, virtual routers,
analytics nodes, and config nodes can be monitored individually and in detail from the Dashboard by
clicking an associated box, and drilling down for more detail.

890

Figure 228: Dashboard Summary Boxes

Detailed information about monitoring each of the areas represented by the boxes is provided in the
links in Table 65 on page 891.

Table 65: Dashboard Summary Boxes

Box For More Information

vRouters Monitor > Infrastructure > Virtual Routers

Control Nodes Monitor > Infrastructure > Control Nodes

Analytics Nodes Monitor > Infrastructure > Analytics Nodes

Config Nodes Monitor > Infrastructure > Config Nodes

Using Bubble Charts

Bubble charts show the CPU and memory utilization of components contributing to the current
analytics display, including vRouters, control nodes, config nodes, and the like. You can hover over any
bubble to get summary information about the component it represents; see Figure 229 on page 892.
You can click through the summary information to get more details about the component.

891

Figure 229: Bubble Summary Information

Color-Coding of Bubble Charts

Bubble charts use the following color-coding scheme:

Control Nodes

• Blue—working as configured.

• Red—error, at least one configured peer is down.

vRouters

• Blue—working, but no instance is launched.

• Green—working with at least one instance launched.

• Red—error, there is a problem with connectivity or a vRouter is in a failed state.

RELATED DOCUMENTATION

Monitor > Infrastructure > Virtual Routers

Monitor > Infrastructure > Control Nodes

Monitor > Infrastructure > Analytics Nodes

Monitor > Infrastructure > Config Nodes

892

Monitor > Infrastructure > Control Nodes

IN THIS SECTION

Monitor Control Nodes Summary | 893

Monitor Individual Control Node Details | 894

Monitor Individual Control Node Console | 896

Monitor Individual Control Node Peers | 899

Monitor Individual Control Node Routes | 901

Use Monitor > Infrastructure > Control Nodes to gain insight into usage statistics for control nodes.

Monitor Control Nodes Summary

Select Monitor > Infrastructure > Control Nodes to see a graphical chart of average memory usage
versus average CPU percentage usage for all control nodes in the system. Also on this screen is a list of
all control nodes in the system. See Figure 230 on page 893. See Table 66 on page 894 for
descriptions of the fields on this screen.

Figure 230: Control Nodes Summary

893

Table 66: Control Nodes Summary Fields

Field Description

Host name The name of the control node.

IP Address The IP address of the control node.

Version The software version number that is installed on the control node.

Status The current operational status of the control node — Up or Down.

CPU (%) The CPU percentage currently in use by the selected control node.

Memory The memory in MB currently in use and the total memory available for this control
node.

Total Peers The total number of peers for this control node.

Established in Sync Peers The total number of peers in sync for this control node.

Established in Sync vRouters The total number of vRouters in sync for this control node.

Monitor Individual Control Node Details

Click the name of any control nodes listed under the Control Nodes title to view an array of graphical
reports of usage and numerous details about that node. There are several tabs available to help you
probe into more details about the selected control node. The first tab is the Details tab; see Figure 231
on page 895.

894

Figure 231: Individual Control Node—Details Tab

The Details tab provides a summary of the status and activity on the selected node, and presents
graphical displays of CPU and memory usage. See Table 67 on page 895 for descriptions of the fields
on this tab.

Table 67: Individual Control Node—Details Tab Fields

Field Description

Hostname The host name defined for this control node.

IP Address The IP address of the selected node.

Status The operational status of the control node.

Control Node Manager The operational status of the control node manager.

895

Table 67: Individual Control Node—Details Tab Fields (Continued)

Field Description

Config Node The IP address of the configuration node associated with this control node.

Analytics Node The IP address of the node from which analytics (monitor) information is derived.

Analytics Messages The total number of analytics messages in and out from this node.

Peers The total number of peers established for this control node and how many are in
sync and of what type.

CPU The average percent of CPU load incurred by this control node.

Memory The average memory usage incurred by this control node.

Last Log The date and time of the last log message issued about this control node.

Control Node CPU/
Memory Utilization

A graphic display x, y chart of the average CPU load and memory usage incurred by
this control node over time.

Monitor Individual Control Node Console

Click the Console tab for an individual control node to display system logging information for a defined
time period, with the last 5 minutes of information as the default display. See Figure 232 on page 897.

896

Figure 232: Individual Control Node—Console Tab

See Table 68 on page 897 for descriptions of the fields on the Console tab screen.

Table 68: Control Node: Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are 11
options, ranging from the Last 5 mins through to the Last 24 hrs. The default display is for the
Last 5 mins.

Log Category Select a log category to display:

1. All

2. _default_

3. XMPP

4. TCP

897

Table 68: Control Node: Console Tab Fields (Continued)

Field Description

Log Type Select a log type to display.

Log Level Select a log severity level to display:

1. SYS_EMERG

2. SYS_ALERT

3. SYS_CRIT

4. SYS_ERR

5. SYS_WARN

6. SYS_NOTICE

7. SYS_INFO

8. SYS_DEBUG

Search Enter any text string to search and display logs containing that string.

Limit Select from a list an amount to limit the number of messages displayed:

1. No Limit

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

898

Table 68: Control Node: Console Tab Fields (Continued)

Field Description

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

Monitor Individual Control Node Peers

The Peers tab displays the peers for an individual control node and their peering state. Click the
expansion arrow next to the address of any peer to reveal more details. See Figure 233 on page 900.

899

Figure 233: Individual Control Node—Peers Tab

See Table 69 on page 900 for descriptions of the fields on the Peers tab screen.

Table 69: Control Node: Peers Tab Fields

Field Description

Peer The hostname of the peer.

Peer Type The type of peer.

Peer ASN The autonomous system number of the peer.

Status The current status of the peer.

900

Table 69: Control Node: Peers Tab Fields (Continued)

Field Description

Last flap The last flap detected for this peer.

Messages (Recv/Sent) The number of messages sent and received from this peer.

Monitor Individual Control Node Routes

The Routes tab displays active routes for this control node and lets you query the results. Use horizontal
and vertical scroll bars to view more results. Click the expansion icon next to a routing table name to
reveal more details about the selected route. See Figure 234 on page 901.

Figure 234: Individual Control Node—Routes Tab

See Table 70 on page 902 for descriptions of the fields on the Routes tab screen.

901

Table 70: Control Node: Routes Tab Fields

Field Description

Routing Instance You can select a single routing instance from a list of all instances for which to display the
active routes.

Address Family Select an address family for which to display the active routes:

1. All (default)

2. l3vpn

3. inet

4. inetmcast

(Limit Field) Select to limit the display of active routes:

1. Limit 10 Routes

2. Limit 50 Routes

3. Limit 100 Routes

4. Limit 200 Routes

Peer Source Select from a list of available peers the peer for which to display the active routes, or select
All.

Prefix Enter a route prefix to limit the display of active routes to only those with the designated
prefix.

Protocol Select a protocol for which to display the active routes:

1. All (default)

2. XMPP

3. BGP

4. ServiceChain

5. Static

902

Table 70: Control Node: Routes Tab Fields (Continued)

Field Description

Display Routes Click this button to refresh the display of routes after selecting different display criteria.

Reset Click this button to clear any selected criteria and return the display to default values.

Column Description

Routing Table The name of the routing table that stores this route.

Prefix The route prefix for each active route displayed.

Protocol The protocol used by the route.

Source The host source for each active route displayed.

Next hop The IP address of the next hop for each active route displayed.

Label The label for each active route displayed.

Security The security value for each active route displayed.

Origin VN The virtual network from which the route originates.

AS Path The AS path for each active route displayed.

903

Monitor > Infrastructure > Virtual Routers

IN THIS SECTION

Monitor vRouters Summary | 904

Monitor Individual vRouters Tabs | 906

Monitor Individual vRouter Details Tab | 906

Monitor Individual vRouters Interfaces Tab | 908

Monitor Individual vRouters Networks Tab | 910

Monitor Individual vRouters ACL Tab | 911

Monitor Individual vRouters Flows Tab | 913

Monitor Individual vRouters Routes Tab | 914

Monitor Individual vRouter Console Tab | 915

Monitor vRouters Summary

Click Monitor > Infrastructure > Virtual Routers to view the vRouters summary screen. See Figure 235
on page 905.

904

Figure 235: vRouters Summary

See Table 71 on page 905 for descriptions of the fields on the vRouters Summary screen.

Table 71: vRouters Summary Fields

Field Description

Host name The name of the vRouter. Click the name of any vRouter to reveal more details.

IP Address The IP address of the vRouter.

Version The version of software installed on the system.

Status The current operational status of the vRouter — Up or Down.

CPU (%) The CPU percentage currently in use by the selected vRouter.

905

Table 71: vRouters Summary Fields (Continued)

Field Description

Memory (MB) The memory currently in use and the total memory available for this vRouter.

Networks The total number of networks for this vRouter.

Instances The total number of instances for this vRouter.

Interfaces The total number of interfaces for this vRouter.

Monitor Individual vRouters Tabs

Click the name of any vRouter to view details about performance and activities for that vRouter. Each
individual vRouters screen has the following tabs.

• Details—similar display of information as on individual control nodes Details tab. See Figure 236 on
page 907.

• Console—similar display of information as on individual control nodes Console tab. See Figure 242 on
page 916.

• Interfaces—details about associated interfaces. See Figure 237 on page 909.

• Networks—details about associated networks. See Figure 238 on page 910.

• ACL—details about access control lists. See Figure 239 on page 912.

• Flows—details about associated traffic flows. See Figure 240 on page 913.

• Routes—details about associated routes. See Figure 241 on page 915.

Monitor Individual vRouter Details Tab

The Details tab provides a summary of the status and activity on the selected node, and presents
graphical displays of CPU and memory usage; see Figure 236 on page 907. SeeTable 72 on page 907
for descriptions of the fields on this tab.

906

Figure 236: Individual vRouters—Details Tab

Table 72: vRouters Details Tab Fields

Field Description

Hostname The hostname of the vRouter.

IP Address The IP address of the selected vRouter.

Status The operational status of the vRouter.

vRouter Node Manager The operational status of the vRouter node manager.

Analytics Node The IP address of the node from which analytics (monitor) information is derived.

Control Nodes The IP address of the configuration node associated with this vRouter.

Analytics Messages The total number of analytics messages in and out from this node.

XMPP Messages The total number of XMPP messages that have gone in and out of this vRouter.

Flow The number of active flows and the total flows for this vRouter.

907

Table 72: vRouters Details Tab Fields (Continued)

Field Description

Networks The number of networks associated with this vRouter.

Interfaces The number of interfaces associated with this vRouter.

Instances The number of instances associated with this vRouter.

Last Log The date and time of the last log message issued about this vRouter.

vRouter CPU/Memory
Utilization

Graphs (x, y) displaying CPU and memory utilization averages over time for this
vRouter, in comparison to system utilization averages.

Monitor Individual vRouters Interfaces Tab

The Interfaces tab displays details about the interfaces associated with an individual vRouter. Click the
expansion arrow next to any interface name to reveal more details. Use horizontal and vertical scroll
bars to access all portions of the screen. See Figure 237 on page 909. See Table 73 on page 909 for
descriptions of the fields on the Interfaces tab screen.

908

Figure 237: Individual vRouters—Interfaces Tab

Table 73: vRouters: Interfaces Tab Fields

Field Description

Name The name of the interface.

Label The label for the interface.

Status The current status of the interface.

Network The network associated with the interface.

IP Address The IP address of the interface.

Floating IP Displays any floating IP addresses associated with the interface.

909

Table 73: vRouters: Interfaces Tab Fields (Continued)

Field Description

Instance The name of any instance associated with the interface.

Monitor Individual vRouters Networks Tab

The Networks tab displays details about the networks associated with an individual vRouter. Click the
expansion arrow at the name of any network to reveal more details. See Figure 238 on page 910. See
Table 74 on page 911 for descriptions of the fields on the Networks tab screen.

Figure 238: Individual vRouters—Networks Tab

910

Table 74: vRouters: Networks Tab Fields

Field Description

Name The name of each network associated with this vRouter.

ACLs The name of the access control list associated with the listed network.

VRF The identifier of the VRF associated with the listed network.

Action Click the icon to select the action: Edit, Delete

Monitor Individual vRouters ACL Tab

The ACL tab displays details about the access control lists (ACLs) associated with an individual vRouter.
Click the expansion arrow next to the UUID of any ACL to reveal more details. See Figure 239 on page
912. See Table 75 on page 912 for descriptions of the fields on the ACL tab screen.

911

Figure 239: Individual vRouters—ACL Tab

Table 75: vRouters: ACL Tab Fields

Field Description

UUID The universal unique identifier (UUID) associated with the listed ACL.

Flows The flows associated with the listed ACL.

Action The traffic action defined by the listed ACL.

Protocol The protocol associated with the listed ACL.

Source Network or Prefix The name or prefix of the source network associated with the listed ACL.

Source Port The source port associated with the listed ACL.

912

Table 75: vRouters: ACL Tab Fields (Continued)

Field Description

Destination Network or Prefix The name or prefix of the destination network associated with the listed ACL.

Destination Port The destination port associated with the listed ACL.

ACE Id The ACE ID associated with the listed ACL.

Monitor Individual vRouters Flows Tab

The Flows tab displays details about the flows associated with an individual vRouter. Click the expansion
arrrow next to any ACL/SG UUID to reveal more details. Use the horizontal and vertical scroll bars to
access all portions of the screen. See Figure 240 on page 913. See Table 76 on page 914 for
descriptions of the fields on the Flows tab screen.

Figure 240: Individual vRouters—Flows Tab

913

Table 76: vRouters: Flows Tab Fields

Field Description

ACL UUID The default is to show All flows, however, you can select from a drop down list any single flow
to view its details.

ACL / SG UUID The universal unique identifier (UUID) associated with the listed ACL or SG.

Protocol The protocol associated with the listed flow.

Src Network The name of the source network associated with the listed flow.

Src IP The source IP address associated with the listed flow.

Src Port The source port of the listed flow.

Dest Network The name of the destination network associated with the listed flow.

Dest IP The destination IP address associated with the listed flow.

Dest Port The destination port associated with the listed flow.

Bytes/Pkts The number of bytes and packets associated with the listed flow.

Setup Time The setup time associated with the listed flow.

Monitor Individual vRouters Routes Tab

The Routes tab displays details about unicast and multicast routes in specific VRFs for an individual
vRouter. Click the expansion arrow next to the route prefix to reveal more details. See Figure 241 on
page 915. See Table 77 on page 915 for descriptions of the fields on the Routes tab screen.

914

Figure 241: Individual vRouters—Routes Tab

Table 77: vRouters: Routes Tab Fields

Field Description

VRF Select from a drop down list the virtual routing and forwarding (VRF) to view.

Show Routes Select to show the route type: Unicast or Multicast.

Prefix The IP address prefix of a route.

Next hop The next hop method for this route.

Next hop details The next hop details for this route.

Monitor Individual vRouter Console Tab

Click the Console tab for an individual vRouter to display system logging information for a defined time
period, with the last 5 minutes of information as the default display. See Figure 242 on page 916. See
Table 78 on page 916 for descriptions of the fields on the Console tab screen.

915

Figure 242: Individual vRouter—Console Tab

Table 78: Control Node: Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are
several options, ranging from Last 5 mins through to the Last 24 hrs, plus a Custom time range.

From Time If you select Custom in Time Range, enter the start time.

To Time If you select Custom in Time Range, enter the end time.

Log Category Select a log category to display:

• All

• _default_

• XMPP

• TCP

Log Type Select a log type to display.

916

Table 78: Control Node: Console Tab Fields (Continued)

Field Description

Log Level Select a log severity level to display:

• SYS_EMERG

• SYS_ALERT

• SYS_CRIT

• SYS_ERR

• SYS_WARN

• SYS_NOTICE

• SYS_INFO

• SYS_DEBUG

Limit Select from a list an amount to limit the number of messages displayed:

• No Limit

• Limit 10 messages

• Limit 50 messages

• Limit 100 messages

• Limit 200 messages

• Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Columns

917

Table 78: Control Node: Console Tab Fields (Continued)

Field Description

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

Monitor > Infrastructure > Analytics Nodes

IN THIS SECTION

Monitor Analytics Nodes | 918

Monitor Analytics Individual Node Details Tab | 920

Monitor Analytics Individual Node Generators Tab | 921

Monitor Analytics Individual Node QE Queries Tab | 922

Monitor Analytics Individual Node Console Tab | 923

Select Monitor > Infrastructure > Analytics Nodes to view the console logs, generators, and query
expansion (QE) queries of the analytics nodes.

Monitor Analytics Nodes

Select Monitor > Infrastructure > Analytics Nodes to view a summary of activities for the analytics
nodes; see Figure 243 on page 919. See Table 79 on page 919 for descriptions of the fields on the
analytics summary.

918

Figure 243: Analytics Nodes Summary

Table 79: Fields on Analytics Nodes Summary

Field Description

Host name The name of this node.

IP address The IP address of this node.

Version The version of software installed on the system.

Status The current operational status of the node — Up or Down — and the length of time it is in that
state.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage for this node.

Generators The total number of generators for this node.

919

Monitor Analytics Individual Node Details Tab

Click the name of any analytics node displayed on the analytics summary to view the Details tab for that
node. See Figure 244 on page 920.

See Table 80 on page 920 for descriptions of the fields on this screen.

Figure 244: Monitor Analytics Individual Node Details Tab

Table 80: Monitor Analytics Individual Node Details Tab Fields

Field Description

Hostname The name of this node.

IP Address The IP address of this node.

Version The installed version of the software.

Overall Node Status The current operational status of the node — Up or Down — and the length of time in this
state.

Processes The current status of each analytics process, including Collector, Query Engine, and
OpServer.

920

Table 80: Monitor Analytics Individual Node Details Tab Fields (Continued)

Field Description

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage of this node.

Messages The total number of messages for this node.

Generators The total number of generators associated with this node.

Last Log The date and time of the last log message issued about this node.

Monitor Analytics Individual Node Generators Tab

The Generators tab displays information about the generators for an individual analytics node; see
Figure 245 on page 921. Click the expansion arrow next to any generator name to reveal more details.
See Table 81 on page 922 for descriptions of the fields on the Peers tab screen.

Figure 245: Individual Analytics Node—Generators Tab

921

Table 81: Monitor Analytics Individual Node Generators Tab Fields

Field Description

Name The host name of the generator.

Status The current status of the peer— Up or Down — and the length of time in that state.

Messages The number of messages sent and received from this peer.

Bytes The total message size in bytes.

Monitor Analytics Individual Node QE Queries Tab

The QE Queries tab displays the number of query expansion (QE) messages that are in the queue for
this analytics node. See Figure 246 on page 922.

See Table 82 on page 922 for descriptions of the fields on the QE Queries tab screen.

Figure 246: Individual Analytics Node—QE QueriesTab

Table 82: Analytics Node QE Queries Tab Fields

Field Description

Enqueue Time The length of time this message has been in the queue waiting to be delivered.

Query The query message.

922

Table 82: Analytics Node QE Queries Tab Fields (Continued)

Field Description

Progress (%) The percentage progress for the message delivery.

Monitor Analytics Individual Node Console Tab

Click the Console tab for an individual analytics node to display system logging information for a defined
time period. See Figure 247 on page 923. See Table 83 on page 923 for descriptions of the fields on
the Console tab screen.

Figure 247: Analytics Individual Node—Console Tab

Table 83: Monitor Analytics Individual Node Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are 11
options, ranging from the Last 5 mins through to the Last 24 hrs. The default display is for the
Last 5 mins.

923

Table 83: Monitor Analytics Individual Node Console Tab Fields (Continued)

Field Description

Log Category Select a log category to display:

1. All

2. _default_

3. XMPP

4. TCP

Log Type Select a log type to display.

Log Level Select a log severity level to display:

1. SYS_EMERG

2. SYS_ALERT

3. SYS_CRIT

4. SYS_ERR

5. SYS_WARN

6. SYS_NOTICE

7. SYS_INFO

8. SYS_DEBUG

Keywords Enter any text string to search for and display logs containing that string.

924

Table 83: Monitor Analytics Individual Node Console Tab Fields (Continued)

Field Description

(Limit field) Select the number of messages to display:

1. No Limit

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

925

Monitor > Infrastructure > Config Nodes

IN THIS SECTION

Monitor Config Nodes | 926

Monitor Individual Config Node Details | 927

Monitor Individual Config Node Console | 928

Select Monitor > Infrastructure > Config Nodes to view the information about the system config nodes.

Monitor Config Nodes

Select Monitor > Infrastructure > Config Nodes to view a summary of activities for the analytics nodes.
See Figure 248 on page 926.

Figure 248: Config Nodes Summary

Table 84 on page 926 describes the fields in the Config Nodes summary.

Table 84: Config Nodes Summary Fields

Field Description

Host name The name of this node.

926

Table 84: Config Nodes Summary Fields (Continued)

Field Description

IP address The IP address of this node.

Version The version of software installed on the system.

Status The current operational status of the node — Up or Down — and the length of time it is in that
state.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage for this node.

Monitor Individual Config Node Details

Click the name of any config node displayed on the config nodes summary to view the Details tab for
that node; see Figure 249 on page 927.

Figure 249: Individual Config Nodes— Details Tab

Table 85 on page 928 describes the fields on the Details screen.

927

Table 85: Individual Config Nodes— Details Tab Fields

Field Description

Hostname The name of the config node.

IP Address The IP address of this node.

Version The installed version of the software.

Overall Node Status The current operational status of the node — Up or Down — and the length of time it is in
this state.

Processes The current operational status of the processes associated with the config node, including
AI Server, Schema Transformer, Service Monitor, and the like.

Analytics Node The analytics node associated with this node.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage by this node.

Monitor Individual Config Node Console

Click the Console tab for an individual config node to display system logging information for a defined
time period. See Figure 250 on page 929.

928

Figure 250: Individual Config Node—Console Tab

See Table 86 on page 929 for descriptions of the fields on the Console tab screen.

Table 86: Individual Config Node-Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. Use the drop
down calendar in the fields From Time and To Time to select the date and times to include in the
time range for viewing.

Log Category Select from the drop down menu a log category to display. The option to view All is also
available.

Log Type Select a log type to display.

Log Level Select a log severity level to display:

Limit Select from a list an amount to limit the number of messages displayed:

1. All

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

929

Table 86: Individual Config Node-Console Tab Fields (Continued)

Field Description

Keywords Enter any key words by which to filter the log messages displayed.

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Monitor > Networking

IN THIS SECTION

Monitor > Networking Menu Options | 930

Monitor -> Networking -> Dashboard | 931

Monitor > Networking > Projects | 933

Monitor Projects Detail | 934

Monitor > Networking > Networks | 937

The Monitor -> Networking pages give an overview of the networking traffic statistics and health of
domains, projects within domains, virtual networks within projects, and virtual machines within virtual
networks.

Monitor > Networking Menu Options

Figure 251 on page 931 shows the menu options available under Monitor > Networking.

930

Figure 251: Monitor Networking Menu Options

Monitor -> Networking -> Dashboard

Select Monitor -> Networking -> Dashboard to gain insight into usage statistics for domains, virtual
networks, projects, and virtual machines. When you select this option, the Traffic Statistics for Domain
window is displayed as shown in Figure 252 on page 932.

931

Figure 252: Traffic Statistics for Domain Window

Table 87 on page 932 describes the fields in the Traffic Statistics for Domain window.

Table 87: Projects Summary Fields

Field Description

Total Traffic In The volume of traffic into this domain

Total Traffic Out The volume of traffic out of this domain.

Inter VN Traffic In The volume of inter-virtual network traffic into this domain.

Inter VN Traffic Out The volume of inter-virtual network traffic out of this domain.

932

Table 87: Projects Summary Fields (Continued)

Field Description

Projects This chart displays the networks and interfaces for projects with the most throughput over
the past 30 minutes. Click Projects then select Monitor > Networking > Projects, to display
more detailed statistics.

Networks This chart displays the networks for projects with the most throughput over the past 30
minutes. Click Networks then select Monitor > Networking > Networks, to display more
detailed statistics.

Monitor > Networking > Projects

Select Monitor > Networking > Projects to see information about projects in the system. See Figure 253
on page 933.

Figure 253: Monitor > Networking > Projects

See Table 88 on page 934 for descriptions of the fields on this screen.

933

Table 88: Projects Summary Fields

Field Description

Projects The name of the project. You can click the name to access details about connectivity for this project.

Networks The volume of inter-virtual network traffic out of this domain.

Traffic In The volume of traffic into this domain.

Traffic Out The volume of traffic out of this domain.

Monitor Projects Detail

You can click any of the projects listed on the Projects Summary to get details about connectivity, source
and destination port distribution, and instances. When you click an individual project, the Summary tab
for Connectivity Details is displayed as shown in Figure 254 on page 934. Hover over any of the
connections to get more details.

Figure 254: Monitor Projects Connectivity Details

In the Connectivity Details window you can click the links between the virtual networks to view the
traffic statistics between the virtual networks.

934

The Traffic Statistics information is also available when you select Monitor > Networking > Networks as
shown in Figure 255 on page 935.

Figure 255: Traffic Statistics Between Networks

In the Connectivity Details window you can click the Instances tab to get a summary of details for each
of the instances in this project.

Figure 256: Projects Instances Summary

See Table 3 for a description of the fields on this screen.

935

Table 89: Projects Instances Summary Fields

Field Description

Instance The name of the instance. Click the name then select Monitor > Networking > Instances to
display details about the traffic statistics for this instance.

Virtual Network The virtual network associated with this instance.

Interfaces The number of interfaces associated with this instance.

vRouter The name of the vRouter associated with this instance.

IP Address Any IP addresses associated with this instance.

Floating IP Any floating IP addresses associated with this instance.

Traffic (In/Out) The volume of traffic in KB or MB that is passing in and out of this instance.

Select Monitor > Networking > Instances to display instance traffic statistics as shown in Figure 257 on
page 937.

936

Figure 257: Instance Traffic Statistics

Monitor > Networking > Networks

Select Monitor > Networking > Networks to view a summary of the virtual networks in your system. See
Figure 258 on page 937.

Figure 258: Network Summary

937

Table 90: Network Summary Fields

Field Description

Network The domain and network name of the virtual network. Click the arrow next to the name to
display more information about the network, including the number of ingress and egress
flows, the number of ACL rules, the number of interfaces, and the total traffic in and out.

Instances The number of instances launched in this network.

Traffic (In/Out) The volume of inter-virtual network traffic in and out of this network.

Throughput (In/Out) The throughput of inter-virtual network traffic in and out of this network.

At Monitor > Networking > Networks you can click on the name of any of the listed networks to get
details about the network connectivity, traffic statistics, port distribution, instances, and other details, by
clicking the tabs across the top of the page.

Figure 259 on page 938 shows the Summary tab for an individual network, which displays connectivity
details and traffic statistics for the selected network.

Figure 259: Individual Network Connectivity Details—Summary Tab

938

Figure 260 on page 939 shows the Port Map tab for an individual network, which displays the relative
distribution of traffic for this network by protocol, by port.

Figure 260: Individual Network-– Port Map Tab

Figure 261 on page 940 shows the Port Distribution tab for an individual network, which displays the
relative distribution of traffic in and out by source port and destination port.

939

Figure 261: Individual Network-– Port Distribution Tab

Figure 262 on page 941 shows the Instances tab for an individual network, which displays details for
each instance associated with this network, including the number of interfaces, the associated vRouter,
the instance IP address, and the volume of traffic in and out.

Additionally, you can click the arrow near the instance name to reveal even more details about the
instance—the interfaces and their addresses, UUID, CPU (usage), and memory used of the total amount
available.

940

Figure 262: Individual Network Instances Tab

Figure 263 on page 942 shows the Details tab for an individual network, which displays the code used
to define this network -–the User Virtual Environment (UVE) code.

941

Figure 263: Individual Network Details Tab

Query > Flows

IN THIS SECTION

Query > Flows > Flow Series | 943

Example: Query Flow Series | 946

Query > Flow Records | 948

Query > Flows > Query Queue | 951

942

Select Query > Flows to perform rich and complex SQL-like queries on flows in the Contrail Controller.
You can use the query results for such things as gaining insight into the operation of applications in a
virtual network, performing historical analysis of flow issues, and pinpointing problem areas with flows.

Query > Flows > Flow Series

Select Query > Flows > Flow Series to create queries of the flow series table. The results are in the form
of time series data for flow series. See Figure 264 on page 943

Figure 264: Query Flow Series Window

The query fields available on the screen for the Flow Series tab are described in Table 91 on page 944.
Enter query data into the fields to create a SQL-like query to display and analyze flows.

943

Table 91: Query Flow Series Fields

Field Description

Time Range Select a range of time to display the flow series:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specific custom time range in two fields: From Time and To Time.

Select Click the edit button (pencil icon) to open a Select window (Figure 265 on page 945), where
you can click one or more boxes to select the fields to display from the flow series, such as
Source VN, Dest VN, Bytes, Packets, and more.

Where Click the edit button (pencil icon) to open a query-writing window, where you can specify query
values for variables such as sourcevn, sourceip, destvn, destip, protocol, sport, dport.

Direction Select the desired flow direction: INGRESS or EGRESS.

Filter Click the edit button (pencil icon) to open a Filter window (Figure 266 on page 946), where
you can select filter items to sort by, the sort order, and limits to the number of results
returned.

Run Query Click Run Query to retrieve the flows that match the query you created. The flows are listed on
the lower portion of the screen in a box with columns identifying the selected fields for each
flow.

(graph buttons) When Time Granularity is selected, you have the option to view results in graph or flowchart
form. Graph buttons appear on the screen above the Export button. Click a graph button to
transform the tabular results into a graphical chart display.

944

Table 91: Query Flow Series Fields (Continued)

Field Description

Export The Export button is displayed after you click Run Query. This allows you to export the list of
flows to a text .csv file.

The Select window allows you to select one or more attributes of a flow series by clicking the check box
for each attribute desired, see Figure 265 on page 945. The upper section of the Select window
includes field names, and the lower portion lets you select units. Select Time Granularity and then select
SUM(Bytes) or SUM(Packets) to aggregate bytes and packets in intervals.

Figure 265: Flow Series Select

Use the Filter window to refine the display of query results for flows, by defining an attribute by which
to sort the results, the sort order of the results, and any limit needed to restrict the number of results.
See Figure 266 on page 946.

945

Figure 266: Flow Series Filter

Example: Query Flow Series

The following is an example flow series query that returns the time series of the summation traffic in
bytes for all combinations of source VN and destination VN for the last 10 minutes, with the bytes
aggregated in 10 second intervals. See Figure 267 on page 946.

Figure 267: Example: Query Flow Series

946

The query returns tabular time series data, see Figure 268 on page 947, for the following combinations
of Source VN and Dest VN:

1. Flow Class 1: Source VN = default-domain:demo:front-end, Dest VN=__UNKNOWN__

2. Flow Class 2: Source VN = default-domain:demo:front-end, Dest VN=default-domain:demo:back-end

Figure 268: Query Flow Series Tabular Results

Because Time Granularity is selected, the results can also be displayed as graphical charts. Click the
graph button on the right side of the tabular results. The results are displayed in a graphical flow chart.
See Figure 269 on page 948.

947

Figure 269: Query Flow Series Graphical Results

Query > Flow Records

Select Query > Flow Records to create queries of individual flow records for detailed debugging of
connectivity issues between applications and virtual machines. Queries at this level return records of the
active flows within a given time period.

Figure 270: Flow Records

The query fields available on the screen for the Flow Records tab are described in Table 92 on page
949. Enter query data into the fields to create an SQL-like query to display and analyze flows.

948

Table 92: Query Flow Records Fields

Field Description

Time Range Select a range of time for the flow records:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specified custom time range in two fields: From Time and To Time.

Select Click the edit button (pencil icon) to open a Select window (Figure 271 on page 950), where you
can click one or more boxes to select attributes to display for the flow records, including Setup
Time, Teardown Time, Aggregate Bytes, and Aggregate Packets.

Where Click the edit button (pencil icon) to open a query-writing window where you can specify query
values for sourcevn, sourceip, destvn, destip, protocol, sport, dport. .

Direction Select the desired flow direction: INGRESS or EGRESS.

Run Query Click Run Query to retrieve the flow records that match the query you created. The records are
listed on the lower portion of the screen in a box with columns identifying the fields for each flow.

Export The Export button is displayed after you click Run Query, allowing you to export the list of flows to
a text .csv file.

The Select window allows you to select one or more attributes to display for the flow records selected,
see Figure 271 on page 950.

949

Figure 271: Flow Records Select Window

You can restrict the query to a particular source VN and destination VN combination using the Where
section.

The Where Clause supports logical AND and logical OR operations, and is modeled as a logical OR of
multiple AND terms. For example: ((term1 AND term2 AND term3..) OR (term4 AND term5) OR…).

Each term is a single variable expression such as Source VN = VN1.

950

Figure 272: Where Clause Window

Query > Flows > Query Queue

Select Query > Flows > Query Queue to display queries that are in the queue waiting to be performed
on the data. See Figure 273 on page 951.

Figure 273: Flows Query Queue

951

The query fields available on the screen for the Flow Records tab are described in Table 93 on page
952. Enter query data into the fields to create an SQL-like query to display and analyze flows.

Table 93: Query Flow Records Fields

Field Description

Date The date and time the query was started.

Query A display of the parameters set for the query.

Progress The percentage completion of the query to date.

Records The number of records matching the query to date.

Status The status of the query, such as completed.

Time Taken The amount of time in seconds it has taken the query to return the matching records.

(Action icon) Click the Action icon and select View Results to view a list of the records that match the query, or
click Delete to remove the query from the queue.

RELATED DOCUMENTATION

Understanding Flow Sampling | 959

Query > Logs

IN THIS SECTION

Query > Logs Menu Options | 953

Query > Logs > System Logs | 953

Sample Query for System Logs | 955

952

Query > Logs > Object Logs | 957

The Query > Logs option allows you to access the system log and object log activity of any Contrail
Controller component from one central location.

Query > Logs Menu Options

Click Query > Logs to access the Query Logs menu, where you can select System Logs to view system
log activity, Object Logs to view object logs activity, and Query Queue to create custom queries of log
activity; see Figure 274 on page 953.

Figure 274: Query > Logs

Query > Logs > System Logs

Click Query > Logs > System Logs to access the Query System Logs menu, where you can view system
logs according to criteria that you determine. See Figure 275 on page 954.

953

Figure 275: Query > Logs > System Logs

The query fields available on the Query System Logs screen are described in Table 94 on page 954.

Table 94: Query System Logs Fields

Field Description

Time Range Select a range of time for which to see the system logs:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

If you click Custom, enter a desired time range in two new fields: From Time and To Time.

Where Click the edit button (pencil icon) to open a query-writing window, where you can specify query
values for variables such as Source, Module, MessageType, and the like, in order to retrieve specific
information.

954

Table 94: Query System Logs Fields (Continued)

Field Description

Level Select the message severity level to view:

• SYS_NOTICE

• SYS_EMERG

• SYS_ALERT

• SYS_CRIT

• SYS_ERR

• SYS_WARN

• SYS_INFO

• SYS_DEBUG

Run Query Click this button to retrieve the system logs that match the query. The logs are listed in a box with
columns showing the Time, Source, Module Id, Category, Log Type, and Log message.

Export This button appears after you click Run Query, allowing you to export the list of system messages
to a text/csv file.

Sample Query for System Logs

This section shows a sample system logs query designed to show all System Logs from ModuleId =
VRouterAgent on Source = b1s16 and filtered by Level = SYS_DEBUG.

1. At the Query System Logs screen, click in the Where field to access the Where query screen and
enter information defining the location to query in the Edit Where Clause section and click OK; see
Figure 276 on page 956.

955

Figure 276: Edit Where Clause

2. The information you defined at the Where screen displays on the Query System Logs. Enter any
more defining information needed; see Figure 277 on page 957. When finished, click Run Query to
display the results.

956

Figure 277: Sample Query System Logs

Query > Logs > Object Logs

Object logs allow you to search for logs associated with a particular object, for example, all logs for a
specified virtual network. Object logs record information related to modifications made to objects,
including creation, deletion, and other modifications; see Figure 278 on page 957.

Figure 278: Query > Logs > Object Logs

The query fields available on the Object Logs screen are described in Table 95 on page 958.

957

Table 95: Object Logs Query Fields

Field Description

Time Range Select a range of time for which to see the logs:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

If you click Custom, enter a desired time range in two new fields: From Time and To Time.

Object Type Select the object type for which to show logs:

• Virtual Network

• Virtual Machine

• Virtual Router

• BGP Peer

• Routing Instance

• XMPP Connection

Object Id Select from a list of available identifiers the name of the object you wish to use.

Select Click the edit button (pencil icon) to open a window where you can select searchable types by
clicking a checkbox:

• ObjectLog

• SystemLog

958

Table 95: Object Logs Query Fields (Continued)

Field Description

Where Click the edit button (pencil icon) to open the query-writing window, where you can specify query
values for variables such as Source, ModuleId, and MessageType, in order to retrieve information
as specific as you wish.

Run Query Click this button to retrieve the system logs that match the query. The logs are listed in a box with
columns showing the Time, Source, Module Id, Category, Log Type, and Log message.

Export This button appears after you click Run Query, allowing you to export the list of system messages
to a text/csv file.

Understanding Flow Sampling

IN THIS SECTION

Flow Sampling | 959

Flow Handling | 960

Flow Aging | 961

TCP State-Based Flow Handling and Aging | 961

This topic describes how flow records are sampled and exported to the Contrail collector, flow handling,
and flow aging.

Flow Sampling

The Contrail vRouter agent exports flow records to the Contrail collector when a flow is created or
deleted. It also updates flow statistics at regular intervals.

If all flow records are exported from the agent, depending on the scale of flows, some of the exported
flows might be dropped due to queue overflow.

959

In Contrail Release 2.22 and later, to reduce queue overflow, flow records are sampled and exported to
the Contrail Collector based on sampling.

The flows that are exported are selected based on the following parameters used in the algorithm:

• The configured flow export rate. This is configured as part of the global-vrouter-config object.

• The actual flow export rate.

• The sampling threshold. This is a dynamic value calculated internally. If the flow statistics in a flow
sample are above this threshold, the flow record is exported.

Each flow is subjected to the following algorithm at regular intervals. The algorithm determines whether
to export the sample or not.

• Flows with traffic that is greater than or equal to the sampling threshold are always exported. The
byte and packet counts are reported without modification.

• Flows with traffic that is less than the sampling threshold are exported according to the probability.
The byte and packet counts are adjusted upwards according to the probability.

The probability is calculated as (bytes during the interval) / (sampling threshold).

• The system generates a random number less than the sampling threshold. If the byte count during
the interval is less than the random number, then the flow sample is not exported.

• If none of these conditions are met, the flow sample is exported after normalizing the byte count and
packet count during the interval. Normalization is done by dividing the byte count and packet count
during the interval by the probability. This normalization is used as a heuristic to account for statistics
of flow samples that are dropped.

The actual flow export rate is close to the configured export rate. If there is a large deviation, the
sampling threshold is adjusted to bring the actual flow export rate close to the configured flow export
rate.

Flow Handling

When a virtual machine sends or receives IP traffic, forward and reverse flow entries are set up. When
the first packet arrives, a flow key is used to hash into a flow table (identify a hash bucket). The flow key
is based on five-tuples consisting of source and destination IP addresses, ports, and the IP protocol.

A flow entry is created and the packet is sent to the Contrail vRouter agent. Configured policies are
applied and the flow action is updated. The agent also creates a flow entry for the reverse direction
where relevant. Subsequent packets match the established flow entries and are forwarded, dropped,
NAT translated, and so on, based on the flow action.

960

When the hash bucket is full, entries are created in an overflow table. In releases earlier than Contrail
Release 2.22, the overflow table was a global table, which is searched sequentially. In Contrail Release
2.22 and later, the overflow entries are maintained as a list against the hash bucket.

By default, the maximum number of flow table and overflow table entries are 512,000 and 8000
respectively. These can be modified by configuring them as vRouter module parameters, for example:
vr_flow_entries and vr_oflow_entries.

For more information about the vRouter module parameters, see https://github.com/Juniper/contrail-
controller/wiki/Vrouter-Module-Parameters.

Flow Aging

Flows are aged out based on inactivity for a specified period of time. By default, the timeout value is
180 seconds. This can be modified by configuring the flow_cache_timeout parameter under the DEFAULT
section in the /etc/contrail/contrail-vrouter-agent.conf file.

TCP State-Based Flow Handling and Aging

TCP State-Based Flow Handling

In Contrail Release 2.22 and later, the Contrail vRouter monitors TCP flows to identify entries that can
be reused without going through the standard aging cycle.

All flow entries that match TCP flows that have experienced a connection teardown, either through the
standard TCP closure cycle (FIN/ACK-FIN/ACK) or the RST indicator, are torn down by the vRouter and
are immediately available for use by new qualified flows.

The vRouter also keeps track of connection establishment cycles and exports the necessary information
to the vRouter agent, such as SYN/ACK and a digested established flag. This allows the vRouter agent to
tear down flows that do not experience a full connection cycle.

Flows that the vRouter identifies as reuse candidates, or eviction candidates, are marked as such in the
flow entry. Flows are in the evicted state when they become available for other new flows to be reused.

This two-step transition is used so that the flow entry remains valid until the packet reaches the
destination, preventing the flow from getting remapped to another flow entry in the interim.

Protocol-Based Flow Aging

Although TCP flows are deleted based on TCP state, you are sometimes required to age out specific
protocol flows more aggressively. One example is when a DNS server is run in one VM. In this case,
multiple flows are set up for DNS. A pair of flows are set up to serve each query. Because the flows are

961

https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters
https://github.com/Juniper/contrail-controller/wiki/Vrouter-Module-Parameters

no longer required after the query is served, the timeout can be lower for these flows. To handle these
cases, protocol-based flow aging is used.

With protocol-based flow aging, the aging timeout can be configured per protocol. All other protocols
continue to use the default aging timeout.

Protocol-based flow aging is supported in Contrail Release 2.22 and later.

The configuration for protocol-based flow aging can be done in the global-vrouter-config object. For
example, to have all DNS flows aged out in five seconds, use the following entry: protocol = udp, port = 53
will be set an aging timeout of 5 seconds.

Fat Flow

Contrail supports optimization to reduce the number of flows set up by reusing a flow. Consequently, a
single flow pair (fat flow) can be used for any number of sessions between two endpoints for the same
application protocol.

Any number of DNS sessions from a client to the server can use a single flow pair. The effect is that the
flow hash key is reduced from five-tuples to four-tuples, consisting of source and destination IP
addresses, the server port, and the IP protocol. The client port is not used in the flow key

This feature can be configured by specifying the list of fat-flow protocols on a virtual machine interface
(VMI). For each such application protocol, the list contains the protocol and port pairs. If you want to
enable the fat flow feature on the client side, the configuration must be applied on the client VMI as
well.

RELATED DOCUMENTATION

Query > Flows

Example: Debugging Connectivity Using Monitoring for Troubleshooting

IN THIS SECTION

Using Monitoring to Debug Connectivity | 963

962

Using Monitoring to Debug Connectivity

This example shows how you can use monitoring to debug connectivity in your Contrail system. You can
use the demo setup in Contrail to use these steps on your own.

1. Navigate to Monitor -> Networking -> Networks -> default-domain:demo:vn0, Instance
ed6abd16-250e-4ec5-a382-5cbc458fb0ca with IP address 192.168.0.252 in the virtual network vn0; see Figure
279 on page 963

Figure 279: Navigate to Instance

2. Click the instance to view Traffic Statistics for Instance. see Figure 280 on page 963.

Figure 280: Traffic Statistics for Instance

3. Instance d26c0b31-c795-400e-b8be-4d3e6de77dcf with IP address 192.168.0.253 in the virtual network vn16.
see Figure 281 on page 964 and Figure 282 on page 964.

963

Figure 281: Navigate to Instance

Figure 282: Traffic Statistics for Instance

4. From Monitor->Infrastructure->Virtual Routers->a3s18->Interfaces, we can see that Instance
ed6abd16-250e-4ec5-a382-5cbc458fb0ca is hosted on Virtual Router a3s18; see Figure 283 on page 964.

Figure 283: Navigate to a3s18 Interfaces

5. From Monitor->Infrastructure->Virtual Routers->a3s19->Interfaces, we can see that Instance
d26c0b31-c795-400e-b8be-4d3e6de77dcf is hosted on Virtual Router a3s19; see Figure 284 on page 965.

964

Figure 284: Navigate to a3s19 Interfaces

6. Virtual Routers a3s18 and a3s19 have the ACL entries to allow connectivity between default-
domain:demo:vn0 and default-domain:demo:vn16 networks; see Figure 285 on page 965 and Figure 286
on page 965.

Figure 285: ACL Connectivity a3s18

Figure 286: ACL Connectivity a3s19

7. Next, verify the routes on the control node for routing instances default-domain:demo:vn0:vn0 and
default-domain:demo:vn16:vn16; see Figure 287 on page 966 and Figure 288 on page 966.

965

Figure 287: Routes default-domain:demo:vn0:vn0

Figure 288: Routes default-domain:demo:vn16:vn16

8. We can see that VRF default-domain:demo:vn0:vn0 on Virtual Router a3s18 has the appropriate route and
next hop to reach VRF default-domain:demo:front-end on Virtual Router a3s19; see Figure 289 on page
967.

966

Figure 289: Verify Route and Next Hop a3s18

9. We can see that VRF default-domain:demo:vn16:vn16 on Virtual Router a3s19 has the appropriate route
and next hop to reach VRF default-domain:demo:vn0:vn0 on Virtual Router a3s18; see Figure 290 on
page 968.

967

Figure 290: Verify Route and Next Hop a3s19

10. Finally, flows between instances (IPs 192.168.0.252 and 192.168.16.253) can be verified on Virtual
Routers a3s18 and a3s19; see Figure 291 on page 968 and Figure 292 on page 969.

Figure 291: Flows for a3s18

968

Figure 292: Flows for a3s19

969

CHAPTER 26

Common Support Answers

IN THIS CHAPTER

Debugging Ping Failures for Policy-Connected Networks | 970

Debugging BGP Peering and Route Exchange in Contrail | 978

Troubleshooting the Floating IP Address Pool in Contrail | 996

Removing Stale Virtual Machines and Virtual Machine Interfaces | 1025

Troubleshooting Link-Local Services in Contrail | 1030

Debugging Ping Failures for Policy-Connected Networks

This topic presents troubleshooting scenarios and steps for resolving reachability issues (ping failures)
when working with policy-connected virtual networks.

These are the methods used to configure reachability for a virtual network or virtual machine:

• Use network policy to exchange virtual network routes.

• Use a floating IP address pool to associate an IP address from a destination virtual network to virtual
machine(s) in the source virtual network.

• Use an ASN/RT configuration to exchange virtual network routes with an MX Series router gateway.

• Use a service instance static route configuration to route between service instances in two virtual
networks.

This topic focuses on troubleshooting reachability for the first method --- using network policy to
exchange routes between virtual networks.

Troubleshooting Procedure for Policy-Connected Network

1. Check the state of the virtual machine and interface.

Before doing anything else, check the status of the source and destination virtual machines.

• Is the Status of each virtual machine Up?

970

• Are the corresponding tap interfaces Active?

Check the virtual machine status in the Contrail UI:

Figure 293: Virtual Machine Status Window

Check the tap interface status in the http agent introspect, for example: http://
nodef1.englab.juniper.net:8085/Snh_ItfReq?name=

Figure 294: Tap Interface Status Window

When the virtual machine status is verified Up, and the tap interface is Active, you can focus on
other factors that affect traffic, including routing, network policy, security policy, and service
instances with static routes.

2. Check reachability and routing.

Use the following troubleshooting guidelines whenever you are experiencing ping failures on virtual
network routes that are connected by means of network policy.

Check the network policy configuration:

• Verify that the policy is attached to each of the virtual networks.

• Each attached policy should have either an explicit rule allowing traffic from one virtual network
to the other, or an allow all traffic rule.

• Verify that the order of the actions in the policy rules is correct, because the actions are applied in
the order in which they are listed.

• If there are multiple policies attached to a virtual network, verify that the policies are attached in a
logical order. The first policy listed is applied first, and its rules are applied first, then the next
policy is applied.

971

http://nodef1.englab.juniper.net:8085/Snh_ItfReq?name=
http://nodef1.englab.juniper.net:8085/Snh_ItfReq?name=

• Finally, if either of the virtual networks does not have an explicit rule to allow traffic from the
other virtual network, the traffic flow will be treated as an UNRESOLVED or SHORT flow and all
packets will be dropped.

Use the following sequence in the Contrail UI to check policies, attachments, and traffic rules:

Check VN1-VN2 ACL information from the compute node:

Figure 295: Policies, Attachments, and Traffic Rule Status Window

Check the virtual network policy configuration with route information:

Figure 296: Virtual Network Policy Configuration Window

Check the VN1 route information for VN2 routes:

972

Figure 297: Virtual Network Route Information Window

If a route is missing, ping fails. Flow inspection in the compute node displays Action: D(rop).

Repeated dropstats commands confirms the drop by incrementing the Flow Action Drop counter
with each iteration of dropstats.

Flow and dropstats commands issued at the compute node:

Figure 298: Flow and Dropstats Command List

973

To help in debugging flows, you can use the detailed flow query from the agent introspect page for
the compute node.

Fields of interest include:

• Inputs [from flow –l output]: src/dest ip, src/dest ports, protocol, and vrf

• Output from detailed flow query: short_flow, src_vn, action_str->action

Flow command output:

Figure 299: Flow Command Output Window

Fetching details of a single flow:

974

Figure 300: Fetch Flow Record Window

Output from FetchFlowRecord shows unresolved IP addresses:

Figure 301: Unresolved IP Address Window

You can also retrieve information about unresolved flows from the Contrail UI, as shown in the
following:

975

Figure 302: Unresolved Flow Details Window

3. Check for protocol-specific network policy action.

If you are still experiencing reachability issues, troubleshoot any protocol-specific action, where
routes are exchanged, but only specific protocols are allowed.

The following shows a sample query on a protocol-specific flow in the agent introspect:

Figure 303: Protocol-Specific Flow Sample

The following shows that although the virtual networks are resolved (not __UNKNOWN__), and not a
short flow (the flow entry exists for a defined aging time), the policy action clearly displays deny as
the action.

976

Figure 304: Protocol-Specific Flow Sample With Deny Action

Summary

This topic explores one area —debugging for policy-based routing. However, in a complex system, a
virtual network might have one or more configuration methods combined that influence reachability and
routing.

For example, an environment might have a virtual network VN-X configured with policy-based routing
to another virtual network VN-Y. At the same time, there are a few virtual machines in VN-X that have a
floating IP to another virtual network VN-Z, which is connected to VN-XX via a NAT service instance.
This is a complex scenario, and you need to debug step-by-step, taking into account all of the features
working together.

Additionally, there are other considerations beyond routing and reachability that can affect traffic flow.
For example, the rules of network policies and security groups can affect traffic to the destination. Also,
if multi-path is involved, then ECMP and RPF need to be taken into account while debugging.

977

Debugging BGP Peering and Route Exchange in Contrail

IN THIS SECTION

Example Cluster | 978

Verifying the BGP Routers | 978

Verifying the Route Exchange | 982

Debugging Route Exchange with Policies | 984

Debugging Peering with an MX Series Router | 986

Debugging a BGP Peer Down Error with Incorrect Family | 988

Configuring MX Peering (iBGP) | 990

Checking Route Exchange with an MX Series Peer | 992

Checking the Route in the MX Series Router | 994

Use the troubleshooting steps and guidelines in this topic when you have errors with Contrail BGP
peering and route exchange.

Example Cluster

Examples in this document refer to a virtual cluster that is set up as follows:

Config Nodes : [‘nodea22’, ‘nodea20’]

Control Nodes : [‘nodea22’, ‘nodea20’]

Compute Nodes : [‘nodea22’, ‘nodea20’]

Collector : [‘nodea22’]

WebU : nodea22

Openstack : nodea22

Verifying the BGP Routers

Use this procedure to launch various introspects to verify the setup of the BGP routers in your system.

978

Use this procedure to launch various introspects to verify the setup of the BGP routers in your system.

1. Verify the BGP routers.

All of the configured control nodes and external BGP routers are visible from the following location,
shown using the sample node setup.

http: //<host ip address>:8082/bgp-routers

NOTE: Throughout this procedure, replace <host ip address> with the correct location for your
system to see the setup in your system.

Figure 305: Sample Output, BGP Routers:

2. Verify the BGP peering.

The following statement is entered to check the bgp_router_refs object on the API server to validate
the peering on the sample setup.

http: //<host ip address>:8082/bgp-router/1da579c5-0907-4c98-a7ad-37671f00cf60

979

Figure 306: Sample Output, BGP Router References:

3. Verify the command line arguments that are passed to the control-node.

On the control-node, use ps aux | grep control-node to see the arguments that are passed to the
control-node.

Example

/usr/bin/control-node --map-user <ip address> --map-password <ip address>--hostname nodea22 --
host-ip <ip address> --bgp-port 179 --discovery-server <ip address>

The hostname is the bgp-router name. Ensure that the bgp-router config can be found for the
hostname, using the procedure in Step 1.

4. Validate the BGP neighbor config and the BGP peering config object.

http: //<host ip address>:8083/Snh_ShowBgpNeighborConfigReq?

980

Figure 307: Sample Output, BGP Neighbor Config:

http: //<host ip address>:8083/Snh_ShowBgpPeeringConfigReq?

Figure 308: Sample Output, BGP Peering Config:

5. Check the BGP neighbor states on the sample setup.

http: //<host ip address>:8083/Snh_BgpNeighborReq?ip_address=&domain=

Figure 309: Sample Output, BGP Neighbor States:

If the peer is not in an established state, check the last_error and the flap_count. Debug the BGP
state machine by using information displayed in the output, such as last_state and last_event.

981

NOTE: The image displayed is truncated to fit this page. On the console screen you can scroll
horizontally to see more columns and data.

Verifying the Route Exchange

The following two virtual networks are used in the sample debugging session for route exchange.

 vn1 -> 1.1.1.0/24

 vn2 -> 2.2.2.0/24

Example Procedure for Verifying Route Exchange

1. Validate the presence of the routing instance for each virtual network in the sample system.

http ://<host ip address>:8083/Snh_ShowRoutingInstanceReq?name=

NOTE: Throughout this example, replace <host ip address> with the correct location for the
control node on your system.

Figure 310: Sample Output, Show Routing Instance:

In the sample output, you can see the import_target and the export_target configured on the routing
instance. Also shown are the xmpp peers (vroutes) registered to the table.

The user can click on the inet table of the required routing instance to display the routes that belong
to the instance.

Use the information in Step 2 to validate a route.

2. Validate a route in a given routing instance in the sample setup:

982

http ://<host ip address>:8083/Snh_ShowRouteReq?x=default-domain:demo:vn1:vn1.inet.0

In the following sample output (truncated), the user can validate the BGP paths for the protocol and
for the source of the route to verify which XMPP agent or vRouter has pushed the route. If the path
source is BGP, the route is imported to the VRF table from a BGP peer, either another control-node
or an external bgp router such as an MX Series router. BGP paths are displayed in the order of path
selection.

Figure 311: Sample Output, Validate Route:

3. Validate the l3vpn table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Figure 312: Sample Output, Validate L3vpn Table:

983

The following sample output has been scrolled horizontally to display the BGP path attributes of
each route. policies.

The extended community (communities column), determines the VRF table to which this VPN route
is imported. The origin_vn shows the virtual network where this route was created, information
useful for applying ACL

The label (MPLS) and tunnel encap columns can be used for debugging data path issues.

Figure 313: Sample Output, Validate L3vpn Table, Scrolled:

Debugging Route Exchange with Policies

This section uses the sample output and the sample vn1 and vn2 to demonstrate methods of debugging
route exchange with policies.

1. Create a network policy to allow vn1 and vn2 traffic and associate the policy to the virtual networks.

984

Figure 314: Create Policy Window

2. Validate that the routing instances have the correct import_target configuration.

http: //<host ip address>:8083/Snh_ShowRoutingInstanceReq?name=

Figure 315: Sample Output, Validate Import Target:

3. Validate that the routes are imported from VRF.

Use the BGP path attribute to check the replication status of the path. The route from the
destination VRF should be replicated and validate the origin-vn.

985

Figure 316: Sample Output, Route Import:

Debugging Peering with an MX Series Router

This section sets up an example BGP MX Series peer and provides some troubleshooting scenarios.

1. Set the Global AS number of the control-node for an MX Series BGP peer, using the Contrail WebUI
(eBGP).

Figure 317: Edit Global ASN Window

2. Configure the eBGP peer for the MX Series router. Use the Contrail Web UI or Python provisioning.

986

Figure 318: Create BGP Peer Window

Configuring the MX Series BGP peer with the Python provision utility:

python ./provision_mx.py --router_name mx --router_ip <ip address> --router_asn 12345 --
api_server_ip <ip address> --api_server_port 8082 --oper add --admin_user admin --
admin_password <password> --admin_tenant_name admin

3. Configure a control-node peer on the MX Series router, using Junos CLI:

set protocols bgp group contrail-control-nodes type external

set protocols bgp group contrail-control-nodes local-address <ip address>

set protocols bgp group contrail-control-nodes keep all

set protocols bgp group contrail-control-nodes peer-as 54321

set protocols bgp group contrail-control-nodes local-as 12345

set protocols bgp group contrail-control-nodes neighbor <ip address>

987

Debugging a BGP Peer Down Error with Incorrect Family

Use this procedure to identify and resolve errors that arise from families mismatched configurations.

NOTE: This example uses locations at http: //<host ip address>:. Be sure to replace <host ip
address> with the correct address for your environment.

1. Check the BGP peer UVE.

http: //<host ip address>:8081/analytics/uves/bgp-peers

2. Search for the MX Series BGP peer by name in the list.

In the sample output, families is the family advertised by the peer and configured_families is what is
provisioned. In the sample output, the families configured on the peer has a mismatch, thus the peer
doesn’t move to an established state. You can verify it in the peer UVE.

Figure 319: Sample BGP Peer UVE

3. Fix the families mismatch in the sample by updating the configuration on the MX Series router, using
Junos CLI:

set protocols bgp group contrail-control-nodes family inet-vpn unicast

4. After committing the CLI configuration, the peer comes up. Verify this with UVE.

http: //<host ip address>:8081/analytics/uves/bgp-peers

988

Figure 320: Sample Established BGP Peer UVE

5. Verify the peer status on the MX Series router, using Junos CLI:

run show bgp neighbor <ip address>
Peer: <ip address> AS 54321 Local: <ip address> AS 12345

 Type: External State: Established Flags: <ImportEval Sync>

 Last State: OpenConfirm Last Event: RecvKeepAlive

 Last Error: None

 Options: <Preference LocalAddress KeepAll AddressFamily PeerAS LocalAS Rib-group Refresh>

 Address families configured: inet-vpn-unicast

 Local Address: <ip address> Holdtime: 90 Preference: 170 Local AS: 12345 Local System AS:
64512

 Number of flaps: 0

 Error: 'Cease' Sent: 0 Recv: 2

989

 Peer ID: <ip address> Local ID: <ip address> Active Holdtime: 90

 Keepalive Interval: 30 Group index: 1 Peer index: 0

 BFD: disabled, down

 Local Interface: ge-1/0/2.0

 NLRI for restart configured on peer: inet-vpn-unicast

 NLRI advertised by peer: inet-vpn-unicast

 NLRI for this session: inet-vpn-unicast

 Peer does not support Refresh capability

 Stale routes from peer are kept for: 300

 Peer does not support Restarter functionality

 Peer does not support Receiver functionality

 Peer does not support 4 byte AS extension

 Peer does not support Addpath

Configuring MX Peering (iBGP)

1. Edit the Global ASN.

990

Figure 321: Edit Global ASN Window

2. Configure the MX Series IBGP peer, using Contrail WebUI or Python provisioning.

Figure 322: Create BGP Peer Window

Configuring the MX Series BGP peer with the Python provision utility:

python ./provision_mx.py --router_name mx--router_ip <ip address> --router_asn 64512 --api_server_ip <ip
address> --api_server_port 8082 --oper add --admin_user admin --admin_password <password> --admin_tenant_name
admin

3. Verify the peer from UVE.

http ://<host ip address>:8081/analytics/uves/bgp-peers

991

Figure 323: Sample Established IBGP Peer UVE

4. You can verify the same information at the HTTP introspect page of the control node (8443 in this
example).

http: //<host ip address>:8083/Snh_BgpNeighborReq?ip_address=&domain=

Figure 324: Sample Established IBGP Peer Introspect Window

Checking Route Exchange with an MX Series Peer

1. Check the route table in the bgp.l3vpn.0 table.

992

Figure 325: Routing Instance Route Table

2. Configure a public virtual network.

Figure 326: Routing Instance Route Table

3. Verify the routes in the public.inet.0 table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=default-domain:admin:public:public.inet.0

Figure 327: Routing Instance Public IPv4 Route Table

4. Launch a virtual machine in the public network and verify the route in the public.inet.0 table.

993

http: //<host ip address>:8083/ Snh_ShowRouteReq?x=default-domain:admin:public:public.inet.0

Figure 328: Virtual Machine Routing Instance Public IPv4 Route Table

5. Verify the route in the bgp.l3vpn.0 table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Figure 329: BGP Routing Instance Route Table

Checking the Route in the MX Series Router

Use Junos CLI show commands from the router to check the route.

run show route table public.inet.0

public.inet.0: 5 destinations, 6 routes (5 active, 0 holddown, 0 hidden)

994

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 15w6d 08:50:34

 > to <ip address> via ge-1/0/1.0

<ip address> *[Direct/0] 15w6d 08:50:35

 > via ge-1/0/1.0

<ip address> *[Local/0] 15w6d 08:50:51

 Local via ge-1/0/1.0

<ip address> *[BGP/170] 01:13:34, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32771, Push 16

 [BGP/170] 01:13:34, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32771, Push 16

<ip address> *[BGP/170] 00:03:20, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32769, Push 16

run show route table bgp.l3vpn.0 receive-protocol bgp <ip address> detail

bgp.l3vpn.0: 92 destinations, 130 routes (92 active, 0 holddown, 0 hidden)

* <ip address> (1 entry, 0 announced)

 Import Accepted

995

 Route Distinguisher: <ip address>

 VPN Label: 16

 Nexthop: <ip address>

 Localpref: 100

 AS path: ?

 Communities: target:64512:1 target:64512:10003 unknown iana 30c unknown iana 30c unknown
type 8004 value fc00:1 unknown type 8071 value fc00:4

Troubleshooting the Floating IP Address Pool in Contrail

IN THIS SECTION

Example Cluster | 997

Example | 998

Example: MX80 Configuration for the Gateway | 999

Ping the Floating IP from the Public Network | 1002

Troubleshooting Details | 1003

Get the UUID of the Virtual Network | 1003

View the Floating IP Object in the API Server | 1004

View floating-ips in floating-ip-pools in the API Server | 1008

Check Floating IP Objects in the Virtual Machine Interface | 1011

View the BGP Peer Status on the Control Node | 1015

Querying Routes in the Public Virtual Network | 1016

Verification from the MX80 Gateway | 1018

Viewing the Compute Node Vnsw Agent | 1020

Advanced Troubleshooting | 1022

996

This document provides troubleshooting methods to use when you have errors with the floating IP
address pool when using Contrail.

Example Cluster

Examples in this document refer to a virtual cluster that is set up as follows:

Config Nodes : ['nodec6', 'nodec7', 'nodec8']

Control Nodes : [‘nodec7', 'nodec8']

Compute Nodes : ['nodec9', 'nodec10']

Collector : ['nodec6', 'nodec8']

WebUI : nodec7

Openstack : nodec6

The following virtual networks are used in the examples in this document:

Public virtual network:

• Virtual network name: public_vn

• Public addresses range: 10.204.219.32 to 10.204.219.37

• Route Target: 64512:10003

• Floating IP pool name: public_pool

Private virtual network:

• Virtual network name: vn1

• Subnet: 10.1.1.0/24

997

Example

A virtual machine is created in the virtual network VN1 with the name VN1_VM1 and with the IP
address 10.1.1.253. A floating IP address of 10.204.219.37 is associated to the VN1_VM1 instance.

An MX80 router is configured as a gateway to peer with control nodes nodec7 and nodec8.

998

Example: MX80 Configuration for the Gateway

The following is the Junos OS configuration for the MX80 gateway. The route 10.204.218.254 is the
route to the external world.

chassis {

 fpc 1 {

 pic 0 {

 tunnel-services;

 }

 }

}

interfaces {

 ge-1/0/1 {

 unit 0 {

999

 family inet {

 address 10.204.218.1/24;

 }

 }

 }

 ge-1/0/2 {

 unit 0 {

 family inet {

 address 10.204.216.253/24;

 }

 }

 }

}

routing-options {

 static {

 route 0.0.0.0/0 next-hop 10.204.216.254;

 }

 router-id 10.204.216.253;

 route-distinguisher-id 10.204.216.253;

 autonomous-system 64512;

 dynamic-tunnels {

 tun1 {

1000

 source-address 10.204.216.253;

 gre;

 destination-networks {

 10.204.216.0/24;

 10.204.217.0/24;

 }

 }

 }

}

protocols {

 bgp {

 group control-nodes {

 type internal;

 local-address 10.204.216.253;

 keep all;

 family inet-vpn {

 unicast;

 }

 neighbor 10.204.216.64;

 neighbor 10.204.216.65;

 }

1001

 }

}

routing-instances {

 public {

 instance-type vrf;

 interface ge-1/0/1.0;

 vrf-target target:64512:10003;

 vrf-table-label;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop 10.204.218.254;

 }

 }

 }

}

Ping the Floating IP from the Public Network

From the public network, ping the floating IP 10.204.219.37.

user1-test:~ user1$ ping 10.204.219.37

PING 10.204.219.37 (10.204.219.37): 56 data bytes

64 bytes from 10.204.219.37: icmp_seq=0 ttl=54 time=62.439 ms

64 bytes from 10.204.219.37: icmp_seq=1 ttl=54 time=56.018 ms

1002

64 bytes from 10.204.219.37: icmp_seq=2 ttl=54 time=55.915 ms

64 bytes from 10.204.219.37: icmp_seq=3 ttl=54 time=57.755 ms

^C

--- 10.204.219.37 ping statistics ---

5 packets transmitted, 4 packets received, 20.0% packet loss

round-trip min/avg/max/stddev = 55.915/58.032/62.439/2.647 ms

Troubleshooting Details

The following sections show details of ways to get related information, view, troubleshoot, and validate
floating IP addresses in a Contrail system.

Get the UUID of the Virtual Network

Use the following to get the universal unique identifier (UUID) of the virtual network.

[root@nodec6 ~]# (source /etc/contrail/openstackrc; quantum net-list -F id -F name) 2>/dev/null

+--------------------------------------+-------------------------+

| id | name |

+--------------------------------------+-------------------------+

| 43707766-75f3-4d48-80d9-1b7240fb161d | public_vn |

| 2ab7ea04-8f5f-4b8d-acbf-a7c29c9b4112 | VN1 |

| 1c59ded0-38e8-4168-b91f-4c51aba10d30 | default-virtual-network |

| 5b0a1040-91e4-47ff-bd4c-0a81e1901a1f | ip-fabric |

| 7efddf64-ff3c-44d2-aeb2-45d7472b7a64 | __link_local__ |

+--------------------------------------+-------------------------+

1003

View the Floating IP Object in the API Server

Use the following to view the floating IP pool information in the API server. API server requests can be
made on http port 8082.

The Contrail API servers have the virtual-network public_vn object that contains floating IP pool
information. Use the following to view the floating-ip-pools object information.

curl http://<API-Server_IP>:8082/virtual-network/<UUID_of_VN>

Example

root@nodec6 ~]# curl http://nodec6:8082/virtual-network/43707766-75f3-4d48-80d9-1b7240fb161d |
python -m json.tool

{

 "virtual-network": {

 "floating_ip_pools": [

 {

 "href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-
bdb6c225e3c3",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool"

],

 "uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3"

 }

1004

],

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn"

],

 "href": "http://127.0.0.1:8095/virtual-network/43707766-75f3-4d48-80d9-1b7240fb161d",

 "id_perms": {

 "created": "2014-02-07T08:58:40.892803",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T10:06:42.234423",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 9284482284331406877,

 "uuid_mslong": 4859515279882014024

1005

 }

 },

 "name": "public_vn",

 "network_ipam_refs": [

 {

 "attr": {

 "ipam_subnets": [

 {

 "default_gateway": "10.204.219.38",

 "subnet": {

 "ip_prefix": "10.204.219.32",

 "ip_prefix_len": 29

 }

 }

]

 },

 "href": "http://127.0.0.1:8095/network-ipam/39b0e8da-
fcd4-4b35-856c-8d18570b1483",

 "to": [

 "default-domain",

 "default-project",

 "default-network-ipam"

1006

],

 "uuid": "39b0e8da-fcd4-4b35-856c-8d18570b1483"

 }

],

 "parent_href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "parent_type": "project",

 "parent_uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "route_target_list": {

 "route_target": [

 "target:64512:10003"

]

 },

 "routing_instances": [

 {

 "href": "http://127.0.0.1:8095/routing-instance/3c6254ac-cfde-417e-916d-
e7a1c0efad92",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_vn"

],

1007

 "uuid": "3c6254ac-cfde-417e-916d-e7a1c0efad92"

 }

],

 "uuid": "43707766-75f3-4d48-80d9-1b7240fb161d",

 "virtual_network_properties": {

 "extend_to_external_routers": null,

 "forwarding_mode": "l2_l3",

 "network_id": 4,

 "vxlan_network_identifier": null

 }

 }

}

View floating-ips in floating-ip-pools in the API Server

Once you have located the floating-ip-pools object, use the following to review its floating-ips object.

The floating-ips object should display the floating IP that is shown in the Contrail UI. The floating IP
should have a reference to the virtual machine interface (VMI) object that is bound to the floating IP.

Example

[root@nodec6 ~]# curlhttp://nodec6:8082/floating-ip-pool/663737c1-f3ab-40ff-9442-bdb6c225e3c3 |
python -m json.tool

{

1008

 "floating-ip-pool": {

 "floating_ips": [

 {

 "href": "http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool",

 "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

],

 "uuid": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

 }

],

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool"

],

 "href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-bdb6c225e3c3",

 "id_perms": {

1009

 "created": "2014-02-07T08:58:41.136572",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T08:58:41.136572",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 10683309858715198403,

 "uuid_mslong": 7365417021744038143

 }

 },

 "name": "public_pool",

 "parent_href": "http://127.0.0.1:8095/virtual-network/
43707766-75f3-4d48-80d9-1b7240fb161d",

 "parent_type": "virtual-network",

 "parent_uuid": "43707766-75f3-4d48-80d9-1b7240fb161d",

 "project_back_refs": [

1010

 {

 "attr": {},

 "href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "to": [

 "default-domain",

 "admin"

],

 "uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f"

 }

],

 "uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3"

 }

}

Check Floating IP Objects in the Virtual Machine Interface

Use the following to retrieve the virtual machine interface of the virtual machine from either the
quantum port-list command or from the Contrail UI. Then get the virtual machine interface identifier and
check its floating IP object associations.

• Using quantum port-list to get the virtual machine interface:

Example

[root@nodec6 ~]# quantum port-list -F id -F fixed_ips

+--------------------------------------
+---+

| id |

1011

fixed_ips |

+--------------------------------------
+---+

| cdca35ce-84ad-45da-9331-7bc67b7fcca6 | {"subnet_id":
"e80f480b-98d4-43cc-847c-711e637295db", "ip_address": "10.1.1.253"} |

+--------------------------------------
+---+

• Using Contrail UI to get the virtual machine interface:

Checking Floating IP Objects on the Virtual Machine Interface

Once you have obtained the virtual machine interface identifier, check the floating-ip objects that are
associated with the virtual machine interface.

[root@nodec6 ~]# curl http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0 |
python -m json.tool

1012

{

 "floating-ip": {

 "floating_ip_address": "10.204.219.37",

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool",

 "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

],

 "href": "http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "id_perms": {

 "created": "2014-02-07T10:07:05.869899",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T10:36:36.820926",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

1013

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 12173378905373109408,

 "uuid_mslong": 17577202821367744163

 }

 },

 "name": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "parent_href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-
bdb6c225e3c3",

 "parent_type": "floating-ip-pool",

 "parent_uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3",

 "project_refs": [

 {

 "attr": null,

 "href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "to": [

 "default-domain",

 "admin"

],

 "uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f"

 }

1014

],

 "uuid": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "virtual_machine_interface_refs": [

 {

 "attr": null,

 "href": "http://127.0.0.1:8095/virtual-machine-interface/
cdca35ce-84ad-45da-9331-7bc67b7fcca6",

 "to": [

 "54bb44e1-50e4-43d7-addd-44be809f1e40",

 "cdca35ce-84ad-45da-9331-7bc67b7fcca6"

],

 "uuid": "cdca35ce-84ad-45da-9331-7bc67b7fcca6"

 }

]

 }

}

View the BGP Peer Status on the Control Node

Use the Contrail UI or the control node http introspect on port 8083 to view the BGP peer status. In the
following example, the control nodes are nodec7 and nodec8.

Ensure that the BGP peering state is displayed as Established for the control nodes and the gateway
MX.

Example

• Using the Contrail UI:

1015

• Using the control-node Introspect:

http://nodec7:8083/Snh_BgpNeighborReq?ip_address=&domain=

http://nodec8:8083/Snh_BgpNeighborReq?ip_address=&domain=

Querying Routes in the Public Virtual Network

On each control-node, a query on the routes in the public_vn lists the routes that are pushed by the MX
gateway, which in the following example are 0.0.0.0/0 and 10.204.218.0/24.

In the following results, the floating IP route of 10.204.217.32 is installed by the compute node
(nodec10) that hosts that virtual machine.

Example

• Using the Contrail UI:

• Using the http Introspect:

Following is the format for using an introspect query.

http://<nodename/ip>:8083/Snh_ShowRouteReq?x=<RoutingInstance of public VN>.inet.0

Example

1016

http://nodec8:8083/Snh_BgpNeighborReq?ip_address=&domain=

View Corresponding BGP LL3VPN Routes

Use the Contrail UI or the http introspect to view the public route’s corresponding BGP L3VPN routes,
as in the following.

Example

• Using the Contrail UI:

• Using the control-node Introspect:

http://nodec7:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

1017

http://nodec8:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Verification from the MX80 Gateway

This section provides options for verifying floating IP pools from the MX80 gateway.

Verify BGP Sessions are Established

Use the following commands from the gateway to verify that BGP sessions are established with the
control nodes nodec7 and nodec8:

root@mx-host> show bgp neighbor 10.204.216.64

Peer: 10.204.216.64+59287 AS 64512 Local: 10.204.216.253+179 AS 64512

 Type: Internal State: Established Flags: <Sync>

 Last State: OpenConfirm Last Event: RecvKeepAlive

 Last Error: Hold Timer Expired Error

 Options: <Preference LocalAddress KeepAll AddressFamily Rib-group Refresh>

 Address families configured: inet-vpn-unicast

 Local Address: 10.204.216.253 Holdtime: 90 Preference: 170

 Number of flaps: 216

 Last flap event: HoldTime

 Error: 'Hold Timer Expired Error' Sent: 68 Recv: 0

 Error: 'Cease' Sent: 0 Recv: 43

 Peer ID: 10.204.216.64 Local ID: 10.204.216.253 Active Holdtime: 90

 Keepalive Interval: 30 Group index: 0 Peer index: 3

 BFD: disabled, down

 NLRI for restart configured on peer: inet-vpn-unicast

1018

 NLRI advertised by peer: inet-vpn-unicast

 NLRI for this session: inet-vpn-unicast

 Peer does not support Refresh capability

 Stale routes from peer are kept for: 300

 Peer does not support Restarter functionality

 Peer does not support Receiver functionality

 Peer does not support 4 byte AS extension

 Peer does not support Addpath

Show Routes Learned from Control Nodes

From the MX80, use show route to display the routes for the virtual machine 10.204.219.37 that are
learned from both control-nodes.

In the following example, the routes learned are 10.204.216.64 and 10.204.216.65, pointing to a
dynamic GRE tunnel next hop with a label of 16 (of the virtual machine).

public.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 10w6d 18:47:50

 > to 10.204.218.254 via ge-1/0/1.0

10.204.218.0/24 *[Direct/0] 10w6d 18:47:51

 > via ge-1/0/1.0

10.204.218.1/32 *[Local/0] 10w6d 18:48:07

 Local via ge-1/0/1.0

1019

10.204.219.37/32 *[BGP/170] 09:42:43, localpref 100, from 10.204.216.64

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32779, Push 16

 [BGP/170] 09:42:43, localpref 100, from 10.204.216.65

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32779, Push 16

Viewing the Compute Node Vnsw Agent

The compute node introspect can be accessed from port 8085. In the following examples, the compute
nodes are nodec9 and nodec10.

View Routing Instance Next Hops

On the routing instance of VN1, the routes 0.0.0.0/0 and 10.204.218.0/24 should have the next hop
pointing to the MX gateway (10.204.216.253).

Example

1. Using the Contrail UI:

Using the Unicast Route Table Index to View Next Hops

Alternatively, from the agent introspect, you can view the next hops at the unicast route table.

First, use the following to get the unicast route table index (ucindex) for the routing instance default-
domain:admin:public_vn:public_vn.

1020

http://nodec10:8085/Snh_VrfListReq?x=default-domain:admin:public_vn:public_vn

Example

1. In the following example, the unicast route table index is 2.

Next, perform a route request query on ucindex 2, as shown in the following. The tunnel detail indicates
the source and destination endpoints of the tunnel and the MPLS label 16 (the label of the virtual
machine).

The query should also show a route for 10.204.219.37 with an interface next hop of tap-interface.
http://nodec10:8085/Snh_Inet4UcRouteReq?x=2

1021

A ping from the MX gateway to the virtual machine’s floating IP in the public routing-instance should
work.

Advanced Troubleshooting

If you still have reachability problems after performing all of the tests in this article, for example, a ping
between the virtual machine and the MX IP or to public addresses is failing, try the following:

• Validate that all the required Contrail processes are running by using the contrail-status command on
all of the nodes.

• On the compute node where the virtual machine is present (nodec10 in this example), perform a
tcpdump on the tap interface (tcpdump –ni tapcdca35ce-84). The output should show the incoming
packets from the virtual machine.

• Check to see if any packet drops occur in the kernel vrouter module:

http://nodec10:8085/Snh_KDropStatsReq?

In the output, scroll down to find any drops. Note: You can ignore any ds_invalid_arp increments.

• On the physical interface where packets transmit onto the compute-node, perform a tcpdump
matching the host IP of the MX to show the GRE encapsulated packets, as in the following.

[root@nodec10 ~]# cat /etc/contrail/agent.conf |grep -A 1 eth-port

 <eth-port>

1022

 <name>p1p0p0</name>

 </eth-port>

 <metadata-proxy>

[root@nodec10 ~]# tcpdump -ni p1p0p0 host 10.204.216.253 -vv

tcpdump: WARNING: p1p0p0: no IPv4 address assigned

tcpdump: listening on p1p0p0, link-type EN10MB (Ethernet), capture size 65535 bytes

02:06:51.729941 IP (tos 0x0, ttl 64, id 57430, offset 0, flags [DF], proto GRE (47), length
112)

 10.204.216.253 > 10.204.216.67: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 54)

 IP (tos 0x0, ttl 54, id 35986, offset 0, flags [none], proto ICMP (1), length 84)

 172.29.227.6 > 10.204.219.37: ICMP echo request, id 53240, seq 242, length 64

02:06:51.730052 IP (tos 0x0, ttl 64, id 324, offset 0, flags [none], proto GRE (47), length
112)

 10.204.216.67 > 10.204.216.253: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 64)

 IP (tos 0x0, ttl 64, id 33909, offset 0, flags [none], proto ICMP (1), length 84)

 10.204.219.37 > 172.29.227.6: ICMP echo reply, id 53240, seq 242, length 64

02:06:52.732283 IP (tos 0x0, ttl 64, id 12675, offset 0, flags [DF], proto GRE (47), length
112)

 10.204.216.253 > 10.204.216.67: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 54)

1023

 IP (tos 0x0, ttl 54, id 54155, offset 0, flags [none], proto ICMP (1), length 84)

 172.29.227.6 > 10.204.219.37: ICMP echo request, id 53240, seq 243, length 64

02:06:52.732355 IP (tos 0x0, ttl 64, id 325, offset 0, flags [none], proto GRE (47), length
112)

 10.204.216.67 > 10.204.216.253: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 64)

 IP (tos 0x0, ttl 64, id 33910, offset 0, flags [none], proto ICMP (1), length 84)

 10.204.219.37 > 172.29.227.6: ICMP echo reply, id 53240, seq 243, length 64

^C

4 packets captured

5 packets received by filter

0 packets dropped by kernel

[root@nodec10 ~]#

• On the MX gateway, use the following to inspect the GRE tunnel rx/tx (received/transmitted) packet
count:

root@mx-host> show interfaces gr-1/0/0.32779 |grep packets

 Input packets : 542

 Output packets: 559

root@blr-mx1> show interfaces gr-1/0/0.32779 |grep packets

 Input packets : 544

1024

 Output packets: 561

• Look for any packet drops in the FPC, as in the following:

show pfe statistics traffic fpc <id>

• Also inspect the dynamic tunnels, using the following:

show dynamic-tunnels database

Removing Stale Virtual Machines and Virtual Machine Interfaces

IN THIS SECTION

Problem Example | 1025

Show Virtual Machines | 1027

Show Virtual Machines Using Python API | 1028

Delete Methods | 1030

This topic gives examples for removing stale VMs (virtual machines) and VMIs (virtual machine
interfaces). Before you can remove a stale VM or VMI, you must first remove any back references
associated to the VM or VMI.

Problem Example

The troubleshooting examples in this topic are based on the following problem example. A net-delete of
the virtual machine 2a8120ec-bd18-49f4-aca0-acfc6e8fe74f returned the following messages that
there are two VMIs that still have back-references to the stale VM.

The two VMIs must be deleted first, then the Neutron net-delete <vm_ID> command will complete without
errors.

From neutron.log:

2014-03-10 14:18:05.208

1025

DEBUG [urllib3.connectionpool]

"DELETE/virtual-network/2a8120ec-bd18-49f4-aca0-acfc6e8fe74f HTTP/1.1" 409 203

2014-03-10 14:18:05.278

ERROR [neutron.api.v2.resource] delete failed

Traceback (most recent call last):

 File "/usr/lib/python2.7/dist-packages/neutron/api/v2/resource.py", line

84, in resource

 result = method(request=request, **args)

 File "/usr/lib/python2.7/dist-packages/neutron/api/v2/base.py", line

432, in delete

 obj_deleter(request.context, id, **kwargs)

 File

"/usr/lib/python2.7/dist-packages/neutron/plugins/juniper/contrail/contrail

plugin.py", line 294, in delete_network

 raise e

RefsExistError: Back-References from

http: //127.0.0.1:8082/virtual-machine-interface/51daf6f4-7366-4463-a819-bd1

17fe3a8c8,

http: //127.0.0.1:8082/virtual-machine-interface/30882e66-e175-4fbb-862e-354

bb700b579 still exist

1026

Show Virtual Machines

Use the following command to show all of the virtual machines known to the Contrail API server.
Replace the variable <config-node-IP> shown in the example with the IP address of the config-node in your
setup.

http://<config-node-IP>:8082/virtual-machines

Example

In the following example, 03443891-99cc-4784-89bb-9d1e045f8aa6 is a stale VM that needs to be
removed.

virtual-machines:

 [

 {

 href:"http: //example-node:8082/virtual-machine/
03443891-99cc-4784-89bb-9d1e045f8aa6",

 fq_name:

 [

 "03443891-99cc-4784-89bb-9d1e045f8aa6"

],

 uuid:"03443891-99cc-4784-89bb-9d1e045f8aa6"

 },

When the user attempts to delete the stale VM, a message displays that children to the VM still exist:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
127.0.0.1:8082/virtual-machine/03443891-99cc-4784-89bb-9d1e045f8aa6
Children http: //127.0.0.1:8082/virtual-machine-interface/0c32a82a-7bd3-46c7-b262-6d85b9911a0d
still exist
root@example-node:~#

1027

The user opens http: //example-node:8082/virtual-machine/
03443891-99cc-4784-89bb-9d1e045f8aa6, and sees a virtual-machine-interface (VMI) attached to it. The
VMI must be removed before the VM can be removed.

However, when the user attempts to delete the VMI from the stale VM, they get a message that there is
still a back-reference:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
<example-IP>:8082/virtual-machine-interface/0c32a82a-7bd3-46c7-b262-6d85b9911a0d

Back-References from http: //<example-IP>:8082/instance-ip/6ffa29a1-023f-462b-b205-353da8e3a2a4
still exist

root@example-node:~#

Because there is a back-reference from an instance-ip object still present, the instance-ip object must first
be deleted, as follows:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
<example-IP>:8082/instance-ip/6ffa29a1-023f-462b-b205-353da8e3a2a4

root@example-node:~#

When the instance-ip is deleted, then the VMI and the VM can be deleted.

NOTE: To prevent inconsistency, be certain that the VM is not present in the Nova database
before deleting the VM.

Show Virtual Machines Using Python API

The following example shows how to view virtual machines using a Python API. This example shows
virtual machines and back-references. Once you identify back-references and existing children, you can
delete them first, then delete the stale VM.

root@example-node:~# source /opt/contrail/api-venv/bin/activate

File "<stdin>", line 1, in <module>

 File "/opt/contrail/api-venv/lib/python2.7/site-packages/vnc_api/gen/vnc_api_client_gen.py",
line 3793, in virtual_machine_interface_delete

1028

 content = self._request_server(rest.OP_DELETE, uri)

 File "/opt/contrail/api-venv/lib/python2.7/site-packages/vnc_api/vnc_api.py", line 342, in
_request_server

 raise RefsExistError(content)

cfgm_common.exceptions.RefsExistError: Back-References from http: // <example-IP>:8082/instance-
ip/6ffa29a1-023f-462b-b205-353da8e3a2a4 still exist

>>> (api-venv)root@example-node:~# python

Python 2.7.5 (default, Mar 10 2014, 03:55:35)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from vnc_api.vnc_api import VncApi

>>> vh=VncApi()

>>> vh.virtual_machine_interface_delete(id='0c32a82a-7bd3-46c7-b262-6d85b9911a0d')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

 File "/opt/contrail/api-venv/lib/python2.7/site-packages/vnc_api/gen/vnc_api_client_gen.py",
line 3793, in virtual_machine_interface_delete

 content = self._request_server(rest.OP_DELETE, uri)

 File "/opt/contrail/api-venv/lib/python2.7/site-packages/vnc_api/vnc_api.py", line 342, in
_request_server

 raise RefsExistError(content)

cfgm_common.exceptions.RefsExistError: Back-References from http: // <example-IP>:8082/instance-
ip/6ffa29a1-023f-462b-b205-353da8e3a2a4 still exist

1029

>>>

Delete Methods

Use help (vh) to show all delete methods supported.

Typical commands for deleting VMs and VMIs include:

• virtual_machine_delete() to delete a virtual machine

• instance_ip_delete() to delete an instance-ip.

Troubleshooting Link-Local Services in Contrail

IN THIS SECTION

Overview of Link-Local Services | 1030

Troubleshooting Procedure for Link-Local Services | 1031

Metadata Service | 1032

Troubleshooting Procedure for Link-Local Metadata Service | 1032

Use the troubleshooting steps and guidelines in this topic when you have errors with Contrail link-local
services.

Overview of Link-Local Services

Virtual machines might be set up to access specific services hosted on the fabric infrastructure. For
example, a virtual machine might be a Nova client that requires access to the Nova API service running
in the fabric network. Access to services hosted on the fabric network can be provided by configuring
the services as link-local services.

A link-local address and a service port is chosen for the specific service running on a TCP / UDP port on
a server in the fabric. With the link-local service configured, virtual machines can access the service
using the link-local address. For link-local services, Contrail uses the address range 169.254.169.x.

Link-local service can be configured using the Contrail WebUI: Configure > Infrastructure > Link Local
Services.

1030

Troubleshooting Procedure for Link-Local Services

Use the following steps when you are troubleshooting link-local services errors.

1. Verify the reachability of the fabric server that is hosting the link-local service from the compute
node.

2. Check the state of the virtual machine and the interface:

• Is the Status of virtual machine Up?

• Is the corresponding tap interface Active?

Checking the virtual machine status in the Contrail UI:

Checking the tap interface status in the http agent introspect:

http://<compute-node-ip>:8085/Snh_ItfReq?name=

3. Check the link-local configuration in the vrouter agent. Make sure the configured link-local service is
displayed.

http://<compute-node-ip>:8085/Snh_LinkLocalServiceInfo?

1031

4. Validate the BGP neighbor config and the BGP peering config object. When the virtual machine
communicates with the configured link-local service, a forward and reverse flow for the
communication is set up. Check that the flow for this communication is created and the flow action is
NAT.

http://<compute-node-ip>:8085/Snh_KFlowReq?flow_idx=

Check that all flow entries display NAT action programmed and display flags for the fields (source or
destination IP and ports) that have NAT programmed. Also shown are the number of packets and
bytes transmitted in the respective flows.

The forward flow displays the source IP of the virtual machine and the destination IP of the link-local
service. The reverse flow displays the source IP of the fabric host and the destination IP of the
compute node’s vhost interface. If the service is hosted on the same compute node, the destination
address of the reverse flow displays the metadata address allocated to the virtual machine.

Note that the index and rflow index for the two flows are reversed.

You can also view similar information in the vrouter agent introspect page, where you can see the
policy and security group for the flow. Check that the flow actions display as pass.

http://<compute-node-ip>:8085/Snh_FetchAllFlowRecords?

Metadata Service

OpenStack allows virtual instances to access metadata by sending an HTTP request to the link-local
address 169.254.169.254. The metadata request from the instance is proxied to Nova, with additional
HTTP header fields added, which Nova uses to identify the source instance. Then Nova responds with
appropriate metadata.

The Contrail vrouter acts as the proxy, trapping the metadata requests, adding the necessary header
fields, and sending the requests to the Nova API server.

Troubleshooting Procedure for Link-Local Metadata Service

Metadata service is also a link-local service, with a fixed service name (metadata), a fixed service address
(169.254.169.254:80), and a fabric address pointing to the server where the OpenStack Nova API server

1032

is running. All of the configuration and troubleshooting procedures for Contrail link-local services also
apply to the metadata service.

However, for metadata service, the flow is always set up to the compute node, so the vrouter agent will
update and proxy the HTTP request. The vrouter agent listens on a local port to receive the metadata
requests. Consequently, the reverse flow has the compute node as the source IP, the local port on which
the agent is listening is the source port, and the instance’s metadata IP is the destination IP address.

After performing all of the troubleshooting procedures for link-local services, the following additional
steps can be used to further troubleshoot metadata service.

1. Check the metadata statistics for: the number of metadata requests received by the vrouter agent,
the number of proxy sessions set up with the Nova API server, and number of internal errors
encountered.

http://<compute-node-ip>:8085/Snh_MetadataInfo?

The port on which the vrouter agent listens for metadata requests is also displayed.

2. Check the metadata trace messages, which show the trail of metadata requests and responses.

http://<compute-node-ip>:8085/Snh_SandeshTraceRequest?x=Metadata
3. Check the Nova configuration. On the server running the OpenStack service, inspect the nova.conf
file.

• Ensure that the metadata proxy is enabled, as follows:

service_neutron_metadata_proxy = True

service_quantum_metadata_proxy = True (on older installations)

• Check to see if the metadata proxy shared secret is set:

1033

neutron_metadata_proxy_shared_secret

quantum_metadata_proxy_shared_secret (on older installations)

If the shared secret is set in nova.conf, the same secret must be configured on each compute node
in the file /etc/contrail/contrail-vrouter-agent.conf, and the same shared secret must be updated in
the METADATA section as metadata_proxy_secret=<secret>.

4. Restart the vrouter agent after modifying the shared secret:

service contrail-vrouter restart

1034

5
PART

Contrail Commands and APIs

Contrail Commands | 1036

Contrail Application Programming Interfaces (APIs) | 1066

CHAPTER 27

Contrail Commands

IN THIS CHAPTER

Getting Contrail Node Status | 1036

contrail-logs (Accessing Log File Messages) | 1048

contrail-status (Viewing Node Status) | 1051

contrail-version (Viewing Version Information | 1053

service (Managing Services) | 1056

Backing Up Contrail Databases Using JSON Format | 1058

Getting Contrail Node Status

IN THIS SECTION

Overview | 1036

UVE for NodeStatus | 1037

Node Status Features | 1037

Using Introspect to Get Process Status | 1044

contrail-status script | 1046

Overview

This topic describes how to view the status of a Contrail node on a physical server. Contrail nodes
include config, control, analytics, compute, and so on.

1036

UVE for NodeStatus

The User-Visible Entity (UVE) mechanism is used to aggregate and send the status information. All node
types send a NodeStatus structure in their respective node UVEs. The following is a control node UVE
of NodeStatus:

struct NodeStatus {

 1: string name (key="ObjectBgpRouter")

 2: optional bool deleted

 3: optional string status

 // Sent by process

 4: optional list<process_info.ProcessStatus> process_status (aggtype="union")

 // Sent by node manager

 5: optional list<process_info.ProcessInfo> process_info (aggtype="union")

 6: optional string description

}

uve sandesh NodeStatusUVE {

 1: NodeStatus data

}

Node Status Features

The most important features of NodeStatus include:

ProcessStatus

ProcessInfo

ProcessStatus

1037

Also process_status, is sent by the processes corresponding to the virtual node, and displays the status
of the process and an aggregate state indicating if the process is functional or non-functional. The
process_status includes the state of the process connections (ConnectionInfo) to important services and
other information necessary for the process to be functional. Each process sends its NodeStatus
information, which is aggregated as union (aggtype="union") at the analytics node. The following is the
ProcessStatus structure:

1. struct ProcessStatus {

2. 1: string module_id

3. 2: string instance_id

4. 3: string state

5. 4: optional list<ConnectionInfo> connection_infos

6. 5: optional string description

7. }

8.

9. struct ConnectionInfo {

10. 1: string type

11. 2: string name

12. 3: optional list<string> server_addrs

13. 4: string status

14. 5: optional string description

15. }

ProcessInfo

1038

Sent by the node manager, /usr/bin/contrail-nodemgr. Node manager is a monitor process per contrail
virtual node that tracks the running state of the processes. The following is the ProcessInfo structure:

16. struct ProcessInfo {

17. 1: string process_name

18. 2: string process_state

19. 3: u32 start_count

20. 4: u32 stop_count

21. 5: u32 exit_count

22. // time when the process last entered running stage

23. 6: optional string last_start_time

24. 7: optional string last_stop_time

25. 8: optional string last_exit_time

26. 9: optional list<string> core_file_list

27. }

Example: NodeStatus

The following is an example output of NodeStatus obtained from the Rest API:

http://:8081/analytics/uves/control-...ilt=NodeStatus .

{

 NodeStatus:
{

 process_info:
[

1039

{

 process_name: "contrail-control",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002143776558",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

 },

{

 process_name: "contrail-control-nodemgr",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002141773481",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

1040

 },

{

 process_name: "contrail-dns",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002145778383",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

 },

{

 process_name: "contrail-named",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002147780118",

 stop_count: 0,

 last_exit_time: null,

1041

 exit_count: 0

 }

],

 process_status:
[

{

 instance_id: "0",

 module_id: "ControlNode",

 state: "Functional",

 description: null,

 connection_infos:
[

{

 server_addrs:
[

 "10.84.13.45:8443"

],

{

 server_addrs:
[

 "10.84.13.45:8086"

],

1042

 status: "Up",

 type: "Collector",

 name: null,

 description: "Established"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

 type: "Discovery",

 name: "Collector",

 description: "SubscribeResponse"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

1043

 type: "Discovery",

 name: "IfmapServer",

 description: "SubscribeResponse"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

 type: "Discovery",

 name: "xmpp-server",

 description: "Publish Response - HeartBeat"

 }

]

 }

]

 }

}

Using Introspect to Get Process Status

The user can also view the state of a specific process by using the introspect mechanism.

Example: Introspect of NodeStatus

1044

The following is an example of the process state of contrail-control that is obtained by using

http://server-ip:8083/Snh_SandeshUVECacheReq?x=NodeStatus

NOTE: The example output is the ProcessStatus of only one process of contrail-control. It does
not show the full aggregated status of the control node through its UVE (as in the previous
example).

root@a6s45:~# curl http://10.84.13.45:8083/Snh_SandeshU...q?x=NodeStatus

<?xml-stylesheet type="text/xsl" href="/universal_parse.xsl"?><__NodeStatusUVE_list
type="slist"><NodeStatusUVE type="sandesh"><data type="struct" identifier="1"><NodeStatus><name
type="string" identifier="1" key="ObjectBgpRouter">a6s45</name><process_status type="list"
identifier="4" aggtype="union"><list type="struct" size="1"><ProcessStatus><module_id
type="string" identifier="1">ControlNode</module_id><instance_id type="string" identifier="2">0</
instance_id><state type="string" identifier="3">Functional</state><connection_infos type="list"
identifier="4"><list type="struct" size="5"><ConnectionInfo><type type="string"
identifier="1">IFMap</type><name type="string" identifier="2">IFMapServer</name><server_addrs
type="list" identifier="3"><list type="string" size="1"><element>10.84.13.45:8443</element></
list></server_addrs><status type="string" identifier="4">Up</status><description type="string"
identifier="5">Connection with IFMap Server (irond)</description></
ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Collector</type><name
type="string" identifier="2"></name><server_addrs type="list" identifier="3"><list type="string"
size="1"><element>10.84.13.45:8086</element></list></server_addrs><status type="string"
identifier="4">Up</status><description type="string" identifier="5">Established</description></
ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Discovery</type><name
type="string" identifier="2">Collector</name><server_addrs type="list" identifier="3"><list
type="string" size="1"><element>10.84.13.45:5998</element></list></server_addrs><status
type="string" identifier="4">Up</status><description type="string"
identifier="5">SubscribeResponse</description></ConnectionInfo><ConnectionInfo><type
type="string" identifier="1">Discovery</type><name type="string" identifier="2">IfmapServer</
name><server_addrs type="list" identifier="3"><list type="string"
size="1"><element>10.84.13.45:5998</element></list></server_addrs><status type="string"
identifier="4">Up</status><description type="string" identifier="5">SubscribeResponse</
description></ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Discovery</
type><name type="string" identifier="2">xmpp-server</name><server_addrs type="list"
identifier="3"><list type="string" size="1"><element>10.84.13.45:5998</element></list></
server_addrs><status type="string" identifier="4">Up</status><description type="string"
identifier="5">Publish Response - HeartBeat</description></ConnectionInfo></list></
connection_infos><description type="string" identifier="5"></description></ProcessStatus></
list></process_status></NodeStatus></data></NodeStatusUVE><SandeshUVECacheResp

1045

type="sandesh"><returned type="u32" identifier="1">1</returned><more type="bool"
identifier="0">false</more></SandeshUVECacheResp></__NodeStatusUVE_list>

contrail-status script

The contrail-status script is used to give the status of the Contrail processes on a server.

The contrail-status script first checks if a process is running, and if it is, performs introspect into the
process to get its functionality status, then outputs the aggregate status.

The possible states to display include:

• active - the process is running and functional; the internal state is good

• inactive - not started or stopped by user

• failed – the process exited too quickly and has not restarted

• initializing - the process is running, but the internal state is not yet functional.

Example Output: Contrail-Status Script

The following is an example output from the contrail-status script.

root@a6s45:~# contrail-status

== Contrail vRouter ==

supervisor-vrouter: active

contrail-vrouter-agent active

contrail-vrouter-nodemgr active

== Contrail Control ==

supervisor-control: active

contrail-control active

contrail-control-nodemgr active

contrail-dns active

1046

contrail-named active

== Contrail Analytics ==

supervisor-analytics: active

contrail-analytics-api active

contrail-analytics-nodemgr active

contrail-collector active

contrail-query-engine active

== Contrail Config ==

supervisor-config: active

contrail-api:0 active

contrail-config-nodemgr active

contrail-schema active

contrail-svc-monitor active

rabbitmq-server active

== Contrail Web UI ==

supervisor-webui: active

contrail-webui active

contrail-webui-middleware active

1047

redis-webui active

== Contrail Database ==

supervisord-contrail-database:active

contrail-database active

contrail-database-nodemgr active

contrail-logs (Accessing Log File Messages)

IN THIS SECTION

Command-Line Options for Contrail-Logs | 1048

Option Descriptions | 1049

Example Uses | 1050

A command-line utility, contrail-logs, uses REST APIs to retrieve system log messages, object log
messages, and trace messages.

Command-Line Options for Contrail-Logs

The command-line utility for accessing log file information is contrail-logs in the analytics node. The
following are the options supported at the command line for contrail-logs, as viewed using the -–help
option.

[root@host]# contrail-logs --help
usage: contrail-logs [-h]
 [--opserver-ip OPSERVER_IP]
 [--opserver-port OPSERVER_PORT]

1048

 [--start-time START_TIME]
 [--end-time END_TIME]
 [--last LAST]
 [--source SOURCE]
 [--module {ControlNode, VRouterAgent, ApiServer, Schema, OpServer,
Collector, QueryEngine, ServiceMonitor, DnsAgent}]
 [--category CATEGORY]
 [--level LEVEL]
 [--message-type MESSAGE_TYPE]
 [--reverse]
 [--verbose]
 [--all]
 [--object {ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter,
ObjectBgpPeer, ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection,
ObjectCollectorInfo, ObjectGeneratorInfo, ObjectConfigNode}]
 [--object-id OBJECT_ID]
 [--object-select-field {ObjectLog,SystemLog}]
 [--trace TRACE]

Option Descriptions

The following are the descriptions for each of the option arguments available for contrail-logs.

optional arguments:
 -h, --help
 show this help message and exit
 --opserver-ip OPSERVER_IP
 IP address of OpServer (default: 127.0.0.1)
 --opserver-port OPSERVER_PORT
 Port of OpServer (default: 8081)
 --start-time START_TIME
 Logs start time (format now-10m, now-1h) (default: now-10m)
 --end-time END_TIME
 Logs end time (default: now)
 --last LAST
 Logs from last time period (format 10m, 1d) (default: None)
 --source SOURCE
 Logs from source address (default: None)
 --module {ControlNode, VRouterAgent, ApiServer, Schema, OpServer, Collector, QueryEngine,
ServiceMonitor, DnsAgent}

1049

 Logs from module (default: None)
 --category CATEGORY
 Logs of category (default: None)
 --level LEVEL
 Logs of level (default: None)
 --message-type MESSAGE_TYPE
 Logs of message type (default: None)
 --reverse
 Show logs in reverse chronological order (default: False)
 --verbose
 Show internal information (default: True)
 --all
 Show all logs (default: False)
 --object {ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter, ObjectBgpPeer,
ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection, ObjectCollectorInfo,
ObjectGeneratorInfo, ObjectConfigNode}
 Logs of object type (default: None)
 --object-id OBJECT_ID
 Logs of object name (default: None)
 --object-select-field {ObjectLog,SystemLog}
 Select field to filter the log (default: None)
 --trace TRACE
 Dump trace buffer (default: None)

Example Uses

The following examples show how you can use the option arguments available for contrail-logs to
retrieve the information you specify.

1. View only the system log messages from all boxes for the last 10 minutes.

contrail-logs

2. View all log messages (systemlog, objectlog, uve, ...) from all boxes for the last 10 minutes.

contrail-logs --all

3. View only the control node system log messagess from all boxes for the last 10 minutes.

contrail-logs --module ControlNode

--module accepts the following values - ControlNode, VRouterAgent, ApiServer, Schema, ServiceMonitor,
Collector, OpServer, QueryEngine, DnsAgent

1050

4. View the control node system log messages from source a6s23.contrail.juniper.net for the last 10
minutes.

contrail-logs --module ControlNode --source a6s23.contrail.juniper.net

5. View the XMPP category system log messages from all modules on all boxes for the last 10 minutes.

contrail-logs --category XMPP

6. View the system log messages from all the boxes from the last hour.

contrail-logs --last 1h

7. View the system log messages from the VN object named demo:admin:vn1 from all boxes for the last 10
minutes.

contrail-logs --object ObjectVNTable --object-id demo:admin:vn1

--object accepts the following values - ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter,
ObjectBgpPeer, ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection, ObjectCollectorInfo

8. View the system log messages from all boxes for the last 10 minutes in reverse chronological order:

contrail-logs --reverse

9. View the system log messages from a specific time interval and display them in a specified date
format.

contrail-logs --start-time "2013 May 12 18:30:27.0" --end-time "2013 May 12 18:31:27.0"

contrail-status (Viewing Node Status)

IN THIS SECTION

Syntax | 1052

Description | 1052

Required Privilege Level | 1052

Sample Output | 1052

Release Information | 1053

1051

Syntax

[root@host ~]# contrail-status

Description

Display a list of all components of a Contrail server node (such as control, configuration, database, Web-
UI, analytics, or vrouter) and report their current status of active or inactive.

Required Privilege Level

admin

Sample Output

The following example usage displays on a server that is configured for the roles of vrouter, controller,
analytics, configuration, web-ui, and database.

Sample Output

root@host:~# contrail-status
== Contrail vRouter ==
supervisor-vrouter: active
contrail-vrouter-agent active
contrail-vrouter-nodemgr active

== Contrail Control ==
supervisor-control: active
contrail-control active
contrail-control-nodemgr active
contrail-dns active
contrail-named active

== Contrail Analytics ==
supervisor-analytics: active
contrail-analytics-api active
contrail-analytics-nodemgr active
contrail-collector active
contrail-query-engine active

1052

== Contrail Config ==
supervisor-config: active
contrail-api:0 active
contrail-config-nodemgr active
contrail-discovery:0 active
contrail-schema active
contrail-svc-monitor active
ifmap active
rabbitmq-server active

== Contrail Web UI ==
supervisor-webui: active
contrail-webui active
contrail-webui-middleware active
redis-webui active

== Contrail Database ==
supervisord-contrail-database:active
contrail-database active
contrail-database-nodemgr active

Release Information

Command introduced in Contrail Release 1.0.

contrail-version (Viewing Version Information

IN THIS SECTION

Syntax | 1054

Description | 1054

Required Privilege Level | 1054

Sample Output | 1054

Sample Output | 1055

Release Information | 1055

1053

Syntax

[root@host]# contrail-version

Description

Display a list of all installed components with their version and build numbers.

Required Privilege Level

admin

Sample Output

The following example shows version and build information for all installed components.

Sample Output

root@host> contrail-version
Package Version Build-ID | Repo | RPM Name
-------------------------------------- ----------------------- ----------------------------------
contrail-analytics 1-1309090026.el6 141
contrail-analytics-venv 0.1-1309062310.el6 141
contrail-api 0.1-1309090026.el6 141
contrail-api-lib 0.1-1309090026.el6 141
contrail-api-venv 0.1-1309080539.el6 141
contrail-control 2012.0-1309090026.el6 141
contrail-database 0.1-1309050028 141
contrail-dns 1-1309090026.el6 141
contrail-fabric-utils 1-1309090026 141
contrail-libs 1-1309090026.el6 141
contrail-nodejs 0.8.15-1309090026.el6 141
contrail-openstack-analytics 0.1-1309090026.el6 141
contrail-openstack-cfgm 0.1-1309090026.el6 141
contrail-openstack-control 0.1-1309090026.el6 141

1054

Sample Output

The following example shows version and build information for only the installed contrail components.

Sample Output

root@host> contrail-version | grep contrail
Package Version Build-ID | Repo | RPM Name
-------------------------------------- ----------------------- ----------------------------------
contrail-analytics 1-1309090026.el6 141
contrail-analytics-venv 0.1-1309062310.el6 141
contrail-api 0.1-1309090026.el6 141
contrail-api-lib 0.1-1309090026.el6 141
contrail-api-venv 0.1-1309080539.el6 141
contrail-control 2012.0-1309090026.el6 141
contrail-database 0.1-1309050028 141
contrail-dns 1-1309090026.el6 141
contrail-fabric-utils 1-1309090026 141
contrail-libs 1-1309090026.el6 141
contrail-nodejs 0.8.15-1309090026.el6 141
contrail-openstack-analytics 0.1-1309090026.el6 141
contrail-openstack-cfgm 0.1-1309090026.el6 141
contrail-openstack-control 0.1-1309090026.el6 141
contrail-openstack-database 0.1-1309090026.el6 141
contrail-openstack-webui 0.1-1309090026.el6 141
contrail-setup 1-1309090026.el6 141
contrail-webui 1-1309090026 141
openstack-quantum-contrail 2013.2-1309090026 141

Release Information

Command introduced in Contrail Release 1.0.

1055

service (Managing Services)

IN THIS SECTION

Syntax | 1056

Description | 1056

Options | 1056

Required Privilege Level | 1057

Sample Output | 1057

Release Information | 1057

Syntax

service contrail-service (start | stop | restart | status)

Description

Start, stop, or restart a Contrail service. Display the status of a Contrail service.

All contrail services are managed by the process supervisord, which is open source software written in
Python. Each Contrail node type, such as compute, control, and so on, has an instance of supervisord that,
when running, launches Contrail services as child processes. All supervisord instances display in contrail-
status output with the prefix supervisor. If the supervisord instance of a particular node type is not up, none
of the services for that node type are up. For more details about the open source supervisord process, see
http://www.supervisord.org.

Options

• start—start a named service.

• stop—stop a named service.

• restart—stop and restart a named service.

• status—display the status of a named service.

1056

http://www.supervisord.org

Required Privilege Level

admin

Sample Output

The following examples show usage for the contrail-collector service, which is only configured on nodes
that have the roles of analytics, configuration, web-ui, or database.

Sample Output

[root@hostservice supervisor-analytics status
supervisord (pid 32116) is running... [
[root@host]# service contrail-collector restart

contrail-collector: stopped
contrail-collector: started

[root@host]# service contrail-collector stop

contrail-collector: stopped

[root@host]# service contrail-collector start

contrail-collector: started

[root@host]# service contrail-collector status

contrail-collector RUNNING pid 20071, uptime 0:00:04

Release Information

Standard Linux command used for managing and viewing services in Contrail Controller Release 1.0.

1057

Backing Up Contrail Databases Using JSON Format

IN THIS SECTION

Preliminary Cautions | 1058

Simple Backup Using JSON Format | 1058

Restore Simple Database Backup | 1059

Example Backup and Restore With JSON | 1060

This document shows how to backup Contrail databases (Cassandra and Zookeeper) using a JSON
format. Instructions are given for both non-containerized and containerized versions of Contrail, starting
with Contrail 4.0.

Preliminary Cautions

CAUTION: Because the state of the Contrail database is associated with other system
databases, such as OpenStack databases, database backups must be consistent across
all systems and database changes associated with northbound APIs must be stopped on
all systems before performing any backup operation. For example, you might block the
external VIP for northbound APIs at the load balancer level, such as HAproxy.

Simple Backup Using JSON Format

Perform a simple backup (database dump). Working from a controller node, use db_json_exim.py, located
at /usr/lib/python2.7/dist-packages/cfgm_common.

NOTE: The controller node for non-containerized Contrail is a virtual machine (VM).

The controller node for containerized Contrail is a controller container.

cd /usr/lib/python2.7/dist-packages/cfgm_common

python db_json_exim.py --export-to db-dump.json

• To see a cleaner version of the dump.

cat db-dump.json | python -m json.tool | less

1058

• To omit keyspace in the dump, for example, to share with Juniper.

python db_json_exim.py --export-to db-dump.json --omit-keyspace dm_keyspace

Restore Simple Database Backup

Use the following steps to restore a system from a simple backup.

1. Stop supervisor-config on all controllers, if present, or ensure it is already stopped.

service supervisor-config stop

2. Stop Cassandra on all config-db controllers or ensure it is already stopped.

service cassandra stop

3. Stop Zookeeper on all controllers or ensure it is already stopped.

service zookeeper stop

4. Stop Kafka on all controllers. Be sure to check analytics controllers.

service kafka stop

5. Stop contrail-hamon on all controllers, if it is running on controllers.

service contrail-hamon stop

6. Backup the Zookeeper data directory on all controllers.

cd /var/lib/zookeeper/

cp -R version-2/ version-2-save

7. Backup the Cassandra data directory on all controllers.

cd /var/lib/

cp -R cassandra cassandra-save

8. Wipe out the Zookeeper data directory contents on all controllers.

rm -rf /var/lib/zookeeper/version-2/*

9. Wipe out the Cassandra data directory contents on all controllers.

rm -rf /var/lib/cassandra/*

10. Start Zookeeper on all controllers.

service zookeeper start

1059

11. Start Cassandra on all controllers.

service cassandra start

12. Run python db_json_exim.py --import-from db-dump.json on any one controller.

cd /usr/lib/python2.7/dist-packages/cfgm_common

python db_json_exim.py --import-from db-dump.json

13. Start supervisor-config on all controllers (if present).

service supervisor-config start

14. Start Kafka on all controllers (check in analytics controllers).

service kafka start

15. Start contrail-hamonon all controllers, if previously stopped.

service contrail-hamon start

Example Backup and Restore With JSON

This section provides an example of a simple database backup and restore of a system that has three
controllers with config-db and separate IPs with the following host IDs:

• 5b5s42

• 5b5s43

• 5b5s44

Example: Perform Simple Backup

root@5b5s42:~# python db_json_exim.py --export-to db-dump.json
root@5b5s42:~# cat db-dump.json | python -m json.tool | less
 {
 "cassandra": {
 "config_db_uuid": {
 "obj_fq_name_table": {
 "access_control_list": {

 <snip>

1060

Example: Perform Restore

1. Stop supervisor-config on all controllers, if present.

Non-Containerized Version: root@5b5s42:~# service supervisor-config stop
supervisor-config stop/waiting
root@5b5s42:~#
root@5b5s43:~# service supervisor-config stop
supervisor-config stop/waiting
root@5b5s43:~#
root@5b5s44:~# service supervisor-config stop
supervisor-config stop/waiting
root@5b5s44:~#

Containerized Version:
root@host-4.1:~# docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS PORTS NAMES
8802395bc033 172.30.109.59:5100/contrail410-contrail-analytics:mainline "/lib/
systemd/syst..." 7 weeks ago Up 2 weeks analytics
f5aed0a2efc3 172.30.109.59:5100/contrail410-contrail-analyticsdb:mainline "/lib/
systemd/syst..." 7 weeks ago Up 2 weeks analyticsdb
0ff200b12112 172.30.109.59:5100/contrail410-contrail-controller:mainline "/lib/
systemd/syst..." 7 weeks ago Up 2 weeks controller
6fec888f8145 registry:2 "/
entrypoint.sh /e..." 7 weeks ago Up 2 weeks registry
root@host-4.1:~# docker exec -it 0ff200b12112 /bin/bash

2. Stop Cassandra on all controllers.

root@5b5s42:~# service cassandra stop
root@5b5s42:~#
root@5b5s43:~# service cassandra stop
root@5b5s43:~#
root@5b5s44:~# service cassandra stop
root@5b5s44:~#

1061

3. Stop Zookeeper on all controllers.

root@5b5s42:~# service zookeeper stop
zookeeper stop/waiting
root@5b5s42:~#
root@5b5s43:~# service zookeeper stop
zookeeper stop/waiting
root@5b5s43:~#
root@5b5s44:~# service zookeeper stop
zookeeper stop/waiting
root@5b5s44:~#

4. Stop Kafka on all controllers.

root@5b5s42:~# service kafka stop
kafka: stopped
root@5b5s42:~#
root@5b5s43:~# service kafka stop
kafka: stopped
root@5b5s43:~#
root@5b5s44:~# service kafka stop
kafka: stopped
root@5b5s44:~#

5. Stop contrail-hamon on all controllers, if present.

root@5b5s42:~# service contrail-hamon stop
contrail-hamon stop/waiting
root@5b5s43:~# service contrail-hamon stop
contrail-hamon stop/waiting
root@5b5s44:~# service contrail-hamon stop
contrail-hamon stop/waiting

6. Backup the Zookeeper data directory on all controllers.

root@5b5s42:~# cd /var/lib/zookeeper/
root@5b5s42:/var/lib/zookeeper# cp -R version-2/ version-2-save
root@5b5s42:/var/lib/zookeeper#
root@5b5s43:~# cd /var/lib/zookeeper/

1062

root@5b5s43:/var/lib/zookeeper# cp -R version-2/ version-2-save
root@5b5s43:/var/lib/zookeeper#
root@5b5s44:~# cd /var/lib/zookeeper/
root@5b5s44:/var/lib/zookeeper# cp -R version-2/ version-2-save
root@5b5s44:/var/lib/zookeeper#

7. Backup the Cassandra data directory on all controllers.

root@5b5s42:~# cd /var/lib/
root@5b5s42:/var/lib# cp -R cassandra cassandra-save
root@5b5s42:/var/lib#
root@5b5s43:~# cd /var/lib/
root@5b5s43:/var/lib# cp -R cassandra cassandra-save
root@5b5s43:/var/lib#
root@5b5s44:~# cd /var/lib/
root@5b5s44:/var/lib# cp -R cassandra/ cassandra-save
root@5b5s44:/var/lib#

8. Wipe out the Zookeeper data directory contents on all controllers.

root@5b5s42:~# rm -rf /var/lib/zookeeper/version-2/*
root@5b5s42:~#
root@5b5s43:~# rm -rf /var/lib/zookeeper/version-2/*
root@5b5s43:~#
root@5b5s44:~# rm -rf /var/lib/zookeeper/version-2/*
root@5b5s44:~#

9. Wipe out the Cassandra data directory contents on all controllers.

root@5b5s42:~# rm -rf /var/lib/cassandra/*
root@5b5s42:~#
root@5b5s43:~# rm -rf /var/lib/cassandra/*
root@5b5s43:~#
root@5b5s44:~# rm -rf /var/lib/cassandra/*
root@5b5s44:~#

1063

10. Start Zookeeper on all controllers.

root@5b5s42:~# service zookeeper start
zookeeper start/running, process 14180
root@5b5s42:~#
root@5b5s43:~# service zookeeper start
zookeeper start/running, process 11635
root@5b5s43:~#
root@5b5s44:~# service zookeeper start
zookeeper start/running, process 28040
root@5b5s44:~#

11. Start Cassandra on all controllers.

 root@5b5s42:~# service cassandra start
 root@5b5s42:~#
 root@5b5s43:~# service cassandra start
 root@5b5s43:~#
 root@5b5s44:~# service cassandra start
 root@5b5s44:~#

12. Run python db_json_exim.py --import-from db-dump.json on any one controller.

root@5b5s42:~# python db_json_exim.py --import-from db-dump.json
 root@5b5s42:~#

13. Start supervisor-config on all controllers, if present.

root@5b5s42:~# service supervisor-config start
 supervisor-config start/running, process 19286
 root@5b5s42:~#
 root@5b5s43:~# service supervisor-config start
 supervisor-config start/running, process 28937
 root@5b5s43:~#
 root@5b5s44:~# service supervisor-config start
 supervisor-config start/running, process 21242
 root@5b5s44:~#

1064

14. Start Kafka on all controllers.

root@5b5s42:~# service kafka start
kafka: started
root@5b5s42:~#
root@5b5s43:~# service kafka start
kafka: started
root@5b5s43:~#
root@5b5s44:~# service kafka start
kafka: started
root@5b5s44:~#

15. Start contrail-hamonon all controllers, if present.

root@5b5s42:~# service contrail-hamon start
contrail-hamon start/running, process 1379
root@5b5s42:~#
root@5b5s43:~# service contrail-hamon start
contrail-hamon start/running, process 1230
root@5b5s43:~#
root@5b5s44:~# service contrail-hamon start
contrail-hamon start/running, process 26843
root@5b5s44:~#

1065

CHAPTER 28

Contrail Application Programming Interfaces (APIs)

IN THIS CHAPTER

Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs) | 1066

Log and Flow Information APIs | 1080

Working with Neutron | 1088

Support for Amazon VPC APIs on Contrail OpenStack | 1092

Contrail Analytics Application Programming Interfaces (APIs) and User-
Visible Entities (UVEs)

IN THIS SECTION

User-Visible Entities | 1067

Common UVEs in Contrail | 1068

Virtual Network UVE | 1068

Virtual Machine UVE | 1069

vRouter UVE | 1069

UVEs for Contrail Nodes | 1070

Wild Card Query of UVEs | 1070

Filtering UVE Information | 1070

The Contrail analytics-api server provides a REST API interface to extract the operational state of the
Contrail system.

APIs are used by the Contrail Web user interface to present the operational state to users. Other
applications might also use the server's REST APIs for analytics or other uses.

1066

This section describes some of the more common APIs and their uses. To see all of the available APIs,
navigate the URL tree at the REST interface, starting at the root http://<ip>:<analytics-api-port> .You
can also view Contrail API information at: http://configuration-schema-documentation.s3-website-us-
west-1.amazonaws.com/R3.2/ .

User-Visible Entities

In Contrail, a User-Visible Entity (UVE) is an object entity that might span multiple components in
Contrail and might require aggregation before the complete information of the UVE is presented.
Examples of UVEs in Contrail are virtual network, virtual machine, vRouter, and similar objects.
Complete operational information for a virtual network might span multiple vRouters, config nodes,
control nodes, and the like. The analytics-api server aggregates all of this information through REST
APIs.

To get information about a UVE, you must have the UVE type and the UVE key. In Contrail, UVEs are
identified by type, such as virtual network, virtual machine, vRouter, and so on. A system-wide unique
key is associated with each UVE. The key type could be different, based on the UVE type. For example,
perhaps a virtual network uses its name as its UVE key, and in the same system, a virtual machine uses
its UUID as its key.

The URL /analytics/uves shows the list of all UVE types available in the system.

The following is sample output from /analytics/uves:

[
{
href: "http://<system IP>:8081/analytics/uves/xmpp-peers",
name: "xmpp-peers"
},
{
href: "http://<system IP>:8081/analytics/uves/service-instances",
name: "service-instances"
},
{
href: "http://<system IP>:8081/analytics/uves/config-nodes",
name: "config-nodes"
},
{
href: "http://<system IP>:8081/analytics/uves/virtual-machines",
name: "virtual-machines"
},
{
href: "http://<system IP>:8081/analytics/uves/bgp-routers",
name: "bgp-routers"

1067

http://configuration-schema-documentation.s3-website-us-west-1.amazonaws.com/R3.2/
http://configuration-schema-documentation.s3-website-us-west-1.amazonaws.com/R3.2/

},
{
href: "http://<system IP>:8081/analytics/uves/collectors",
name: "collectors"
},
{
href: "http://<system IP>:8081/analytics/uves/service-chains",
name: "service-chains"
},
{
href: "http://<system IP>:8081/analytics/uves/generators",
name: "generators"
},
{
href: "http://<system IP>:8081/analytics/uves/bgp-peers",
name: "bgp-peers"
},
{
href: "http://<system IP>:8081/analytics/uves/virtual-networks",
name: "virtual-networks"
},
{
href: "http://<system IP>:8081/analytics/uves/vrouters",
name: "vrouters"
},
{
href: "http://<system IP>:8081/analytics/uves/dns-nodes",
name: "dns-nodes"
}
]

Common UVEs in Contrail

This section presents descriptions of some common UVEs in Contrail.

Virtual Network UVE

This UVE provides information associated with a virtual network, such as:

• list of networks connected to this network

• list of virtual machines spawned in this network

• list of access control lists (ACLs) associated with this virtual network

1068

• global input and output statistics

• input and output statistics per virtual network pair

The REST API to get a UVE for a specific virtual network is through HTTP GET, using the URL:

/analytics/uves/virtual-network/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/virtual-networks

Virtual Machine UVE

This UVE provides information associated with a virtual machine, such as:

• list of interfaces in this virtual machine

• list of floating IPs associated with each interface

• input and output statistics

The REST API to get a UVE for a specific virtual machine is through HTTP GET, using the URL:

/analytics/uves/virtual-machine/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/virtual-machines

vRouter UVE

This UVE provides information associated with a vRouter, such as:

• virtual networks present on this vRouter

• virtual machines spawned on the server of this vRouter

• statistics of the traffic flowing through this vRouter

The REST API to get a UVE for a specific vRouter is through HTTP GET, using the URL:

/analytics/uves/vrouter/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/vrouters

1069

UVEs for Contrail Nodes

There are multiple node types in Contrail (including the node type vRouter previously described). Other
node types include control node, config node, analytics node, and compute node.

There is a UVE for each node type. The common information associated with each node UVE includes:

• the IP address of the node

• a list of processes running on the node

• the CPU and memory utilization of the running processes

Each UVE also has node-specific information, such as:

• the control node UVE has information about its connectivity to the vRouter and other control nodes

• the analytics node UVE has information about the number of generators connected

The REST API to get a UVE for a specific config node is through HTTP GET, using the URL:

/analytics/uves/config-node/<key>

The REST API to get UVEs for all config nodes is through HTTP GET, using the URL:

/analytics/uves/config-nodes

NOTE: Use similar syntax to get UVES for each of the different types of nodes, substituting the
node type that you want in place of config-node.

Wild Card Query of UVEs

You can use wildcard queries when you want to get multiple UVEs at the same time. Example queries
are the following:

The following HTTP GET with wildcard retrieves all virtual network UVEs:

/analytics/uves/virtual-network/*

The following HTTP GET with wildcard retrieves all virtual network UVEs with name starting with
project1:

/analytics/uves/virtual-network/project1*

Filtering UVE Information

It is possible to retrieve filtered UVE information. The following flags enable you to retrieve partial,
filtered information about UVEs.

1070

Supported filter flags include:

1. sfilt : filter by source (usually the hostname of the generator)

2. mfilt : filter by module (the module name of the generator)

3. cfilt : filter by content, useful when only part of a UVE needs to be retrieved

4. kfilt : filter by UVE keys, useful to get multiple, but not all, UVEs of a particular type

Examples

The following HTTP GET with filter retrieves information about virtual network vn1 as provided by the
source src1:

/analytics/uves/virtual-network/vn1?sfilt=src1

The following HTTP GET with filter retrieves information about virtual network vn1 as provided by all
ApiServer modules:

/analytics/uves/virtual-network/vn1?mfilt=ApiServer

Example Output: Virtual Network UVE

Example output for a virtual network UVE:

[user@host ~]# curl <system IP>:8081/analytics/virtual-network/default-domain:demo:front-end |
python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 2576 100 2576 0 0 152k 0 --:--:-- --:--:-- --:--:-- 157k
{
 "UveVirtualNetworkAgent": {
 "acl": [
 [
 {
 "@type": "string"
 },
 "a3s18:VRouterAgent"
]
],
 "in_bytes": {
 "#text": "2232972057",
 "@aggtype": "counter",

1071

 "@type": "i64"
 },
 "in_stats": {
 "@aggtype": "append",
 "@type": "list",
 "list": {
 "@size": "3",
 "@type": "struct",
 "UveInterVnStats": [
 {
 "bytes": {
 "#text": "2114516371",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "5122001",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "1152123",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__FABRIC__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "11323",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "8192",
 "@type": "i64"

1072

 },
 "other_vn": {
 "#text": "default-domain:demo:front-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "50",
 "@type": "i64"
 }
 }
]
 }
 },
 "in_tpkts": {
 "#text": "5156342",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "interface_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "tap2158f77c-ec"
]
 }
 },
 "out_bytes": {
 "#text": "2187615961",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "out_stats": {
 "@aggtype": "append",
 "@type": "list",
 "list": {
 "@size": "4",
 "@type": "struct",
 "UveInterVnStats": [
 {

1073

 "bytes": {
 "#text": "2159083215",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "5143693",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "1603041",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__FABRIC__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "9595",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "24608",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__UNKNOWN__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "408",
 "@type": "i64"
 }

1074

 },
 {
 "bytes": {
 "#text": "8192",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:front-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "50",
 "@type": "i64"
 }
 }
]
 }
 },
 "out_tpkts": {
 "#text": "5134830",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "virtualmachine_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "dd09f8c3-32a8-456f-b8cc-fab15189f50f"
]
 } }
 },
 "UveVirtualNetworkConfig": {
 "connected_networks": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [

1075

 "default-domain:demo:back-end"
]
 }
 },
 "routing_instance_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "front-end"
]
 }
 },
 "total_acl_rules": [
 [
 {
 "#text": "3",
 "@type": "i32"
 },
 ":",
 "a3s14:Schema"
]
]
 }
}

Example Output: Virtual Machine UVE

Example output for a virtual machine UVE:

[user@host ~]# curl <system IP>:8081/analytics/virtual-machine/
f38eb47e-63d2-4b39-80de-8fe68e6af1e4 | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 736 100 736 0 0 160k 0 --:--:-- --:--:-- --:--:-- 179k
{
 "UveVirtualMachineAgent": {
 "interface_list": [
 [
 {

1076

 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "struct",
 "VmInterfaceAgent": [
 {
 "in_bytes": {
 "#text": "2188895907",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "in_pkts": {
 "#text": "5130901",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "ip_address": {
 "#text": "192.168.2.253",
 "@type": "string"
 },
 "name": {
 "#text": "f38eb47e-63d2-4b39-80de-8fe68e6af1e4:ccb085a0-
c994-4034-be0f-6fd5ad08ce83",
 "@type": "string"
 },
 "out_bytes": {
 "#text": "2201821626",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "out_pkts": {
 "#text": "5153526",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "virtual_network": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 }
 }
]
 }

1077

 },
 "a3s19:VRouterAgent"
]
]
 }
}

Example Output: vRouter UVE

Example output for a vRouter UVE:

[user@host ~]# curl <system IP>:8081/analytics/vrouter/a3s18 | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 706 100 706 0 0 142k 0 --:--:-- --:--:-- --:--:-- 172k
{
 "VrouterAgent": {
 "collector": [
 [
 {
 "#text": "10.xx.17.1",
 "@type": "string"
 },
 "a3s18:VRouterAgent"
]
],
 "connected_networks": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "default-domain:demo:front-end"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "interface_list": [

1078

 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "tap2158f77c-ec"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "virtual_machine_list": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "dd09f8c3-32a8-456f-b8cc-fab15189f50f"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "xmpp_peer_list": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "2",
 "@type": "string",
 "element": [
 "10.xx.17.2",
 "10.xx.17.3"
]
 }
 },
 "a3s18:VRouterAgent"

1079

]
]
 }
}

RELATED DOCUMENTATION

Juniper Contrail Configuration API Server Documentation

Log and Flow Information APIs | 1080

Log and Flow Information APIs

IN THIS SECTION

HTTP GET APIs | 1080

HTTP POST API | 1081

POST Data Format Example | 1081

Query Types | 1083

Examining Query Status | 1083

Examining Query Chunks | 1084

Example Queries for Log and Flow Data | 1084

In Contrail, log and flow analytics information is collected and stored using a horizontally scalable
Contrail collector and NoSQL database. The analytics-api server provides REST APIs to extract this
information using queries. The queries use well-known SQL syntax, hiding the underlying complexity of
the NoSQL tables.

HTTP GET APIs

Use the following GET APIs to identify tables and APIs available for querying.

/analytics/tables -- lists the SQL-type tables available for querying, including the hrefs for each of the
tables

1080

http://configuration-schema-documentation.s3-website-us-west-1.amazonaws.com/index.html

/analytics/table/<table> -- lists the APIs available to get information for a given table

/analytics/table/<table>/schema -- lists the schema for a given table

HTTP POST API

Use the following POST API information to extract data from a table.

/analytics/query -- format your query using the following SQL syntax:

1. SELECT field1, field2 ...

2. FROM table1

3. WHERE field1 = value1 AND field2 = value2 ...

4. FILTER BY ...

5. SORT BY ...

6. LIMIT n

Additionally, it is mandatory to include the start time and the end time for the data range to define the
time period for the query data. The parameters of the query are passed through POST data, using the
following fields:

1. start_time — the start of the time period

2. end_time — the end of the time period

3. table — the table from which to extract data

4. select_fields — the columns to display in the extracted data

5. where — the list of match conditions

POST Data Format Example

The POST data is in JSON format, stored in an idl file. A sample file is displayed in the following.

NOTE: The result of the query API is also in JSON format.

/*
* Copyright (c) 2013 Juniper Networks, Inc. All rights reserved.
*/

1081

/*
* query_rest.idl
*
* IDL definitions for query engine REST API
*
* PLEASE NOTE: After updating this file, do update json_parse.h
*
*/

enum match_op {
 EQUAL = 1,
 NOT_EQUAL = 2,
 IN_RANGE = 3,
 NOT_IN_RANGE = 4, // not supported currently
 // following are only for numerical column fields
 LEQ = 5, // column value is less than or equal to filter value
 GEQ = 6, // column value is greater than or equal to filter value
 PREFIX = 7, // column value has the "value" field as prefix
 REGEX_MATCH = 8 // for filters only
}

enum sort_op {
 ASCENDING = 1,
 DESCENDING = 2,
}

struct match {
 1: string name;
 2: string value;
 3: match_op op;
 4: optional string value2; // this is for only RANGE match
}

typedef list<match> term; (AND of match)

enum flow_dir_t {
 EGRESS = 0,
 INGRESS = 1
}
struct query {
 1: string table; // Table to query (FlowSeriesTable, MessageTable, ObjectVNTable,
ObjectVMTable, FlowRecordTable)
 2: i64 start_time; // Microseconds in UTC since Epoch

1082

 3: i64 end_time; // Microseconds in UTC since Epoch
 4: list<string>> select_fields; // List of SELECT fields
 5: list<term> where; // WHERE (OR of terms)
 6: optional sort_op sort;
 7: optional list<string> sort_fields;
 8: optional i32 limit;
 9: optional flow_dir_t dir; // direction of flows being queried
 10: optional list<match> filter; // filter the processed result by value
}

struct flow_series_result_entry {
 1: optional i64 T; // Timestamp of the flow record
 2: optional string sourcevn;
 3: optional string sourceip;
 4: optional string destvn;
 5: optional string destip;
 6: optional i32 protocol;
 7: optional i32 sport;
 8: optional i32 dport;
 9: optional flow_dir_t direction_ing;
 10: optional i64 packets; // mutually exclusive to 12,13
 11: optional i64 bytes; // mutually exclusive to 12,13
 12: optional i64 sum_packets; // represented as "sum(packets)" in JSON
 13: optional i64 sum_bytes; // represented as "sum(bytes)" in JSON
};
typedef list<flow_series_result_entry> flow_series_result;

Query Types

The analytics-api supports two types of queries. Both types use the same POST parameters as described
in POST API.

• sync — Default query mode. The results are sent inline with the query processing.

• async — To execute a query in async mode, attach the following header to the POST request: Expect:
202-accepted.

Examining Query Status

For an asynchronous query, the analytics-api responds with the code: 202 Accepted. The response contents
are a status entity href URL of the form: /analytics/query/<QueryID>. The QueryID is assigned by the
analytics-api. To view the response contents, poll the status entity by performing a GET action on the
URL. The status entity has a variable named progress, with a number between 0 and 100, representing

1083

the approximate percentage completion of the query. When progress is 100, the query processing is
complete.

Examining Query Chunks

The status entity has an element named chunks that lists portions (chunks) of query results. Each element
of this list has three fields: start_time, end_time, href. The analytics-api determines how many chunks to
list to represent the query data. A chunk can include an empty string ("") to indicate that the data query
is not yet available. If a partial result is available, the chunk href is of the form: /analytics/query/<QueryID>/
chunk-partial/<chunk number>. When the final result of a chunk is available, the href is of the form: /
analytics/query/<QueryID>/chunk-final/<chunk number>.

Example Queries for Log and Flow Data

The following example query lists the tables available for query.

[root@host ~]# curl 127.0.0.1:8081/analytics/tables | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 846 100 846 0 0 509k 0 --:--:-- --:--:-- --:--:-- 826k
[
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable",
 "name": "MessageTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVNTable",
 "name": "ObjectVNTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVMTable",
 "name": "ObjectVMTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVRouter",
 "name": "ObjectVRouter"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectBgpPeer",
 "name": "ObjectBgpPeer"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectRoutingInstance",

1084

 "name": "ObjectRoutingInstance"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectXmppConnection",
 "name": "ObjectXmppConnection"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/FlowRecordTable",
 "name": "FlowRecordTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/FlowSeriesTable",
 "name": "FlowSeriesTable"
 }
]

The following example query lists details for the table named MessageTable.

[root@host ~]# curl 127.0.0.1:8081/analytics/table/MessageTable | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 192 100 192 0 0 102k 0 --:--:-- --:--:-- --:--:-- 187k
[
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable/schema",
 "name": "schema"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable/column-values",
 "name": "column-values"
 }
]

The following example query lists the schema for the table named MessageTable.

[root@host ~]# curl 127.0.0.1:8081/analytics/table/MessageTable/schema | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 630 100 630 0 0 275k 0 --:--:-- --:--:-- --:--:-- 307k
{
 "columns": [

1085

 {
 "datatype": "int",
 "index": "False",
 "name": "MessageTS"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Source"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "ModuleId"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Category"
 },
 {
 "datatype": "int",
 "index": "True",
 "name": "Level"
 },
 {
 "datatype": "int",
 "index": "False",
 "name": "Type"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Messagetype"
 },
 {
 "datatype": "int",
 "index": "False",
 "name": "SequenceNum"
 },
 {
 "datatype": "string",
 "index": "False",

1086

 "name": "Context"
 },
 {
 "datatype": "string",
 "index": "False",
 "name": "Xmlmessage"
 }
],
 "type": "LOG"
}

The following set of example queries explore a message table.

root@a6s45:~# cat filename
{ "end_time": "now" , "select_fields": ["MessageTS", "Source", "ModuleId", "Category",
"Messagetype", "SequenceNum", "Xmlmessage", "Type", "Level", "NodeType", "InstanceId"] , "sort":
1 , "sort_fields": ["MessageTS"] , "start_time": "now-10m" , "table": "MessageTable" , "where":
{"name": "ModuleId", "value": "contrail-control", "op": 1, "suffix": null, "value2": null},
{"name": "Messagetype", "value": "BGPRouterInfo", "op": 1, "suffix": null, "value2": null} }

root@a6s45:~#
root@a6s45:~# curl -X POST --data @filename 127.0.0.1:8081/analytics/query --header "Content-
Type:application/json" | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 9765 0 9297 100 468 9168 461 0:00:01 0:00:01 --:--:-- 9177
{
 "value": [
 {
 "Category": null,
 "InstanceId": "0",
 "Level": 2147483647,
 "MessageTS": 1428442589947392,
 "Messagetype": "BGPRouterInfo",
 "ModuleId": "contrail-control",
 "NodeType": "Control",
 "SequenceNum": 1302,
 "Source": "a6s45",
 "Type": 6,
 "Xmlmessage": "<BGPRouterInfo type=""><data type=""><BgpRouterState><name type=""
>a6s45</name><cpu_info type=""><CpuLoadInfo><num_cpu type="">4</num_cpu

1087

><meminfo type=""><MemInfo><virt type="">438436</virt><peakvirt type=""
>561048</peakvirt><res type="">12016</res></MemInfo></meminfo><cpu_share
type="">0.0416667</cpu_share></CpuLoadInfo></cpu_info><cpu_share type=""
>0.0416667</cpu_share></BgpRouterState></data></BGPRouterInfo>" },
 {
 "Category": null,
 "InstanceId": "0",
 "Level": 2147483647,

...

Working with Neutron

IN THIS SECTION

Data Structure | 1088

Network Sharing in Neutron | 1089

Commands for Neutron Network Sharing | 1090

Support for Neutron APIs | 1090

Contrail Neutron Plugin | 1091

DHCP Options | 1091

Incompatibilities | 1092

OpenStack’s networking solution, Neutron, has representative elements for Contrail elements for
Network (VirtualNetwork), Port (VirtualMachineInterface), Subnet (IpamSubnets), and Security-Group.
The Neutron plugin translates the elements from one representation to another.

Data Structure

Although the actual data between Neutron and Contrail is similar, the listings of the elements differs
significantly. In the Contrail API, the networking elements list is a summary, containing only the UUID,
FQ name, and an href, however, in Neutron, all details of each resource are included in the list.

The Neutron plugin has an inefficient list retrieval operation, especially at scale, because it:

• reads a list of resources (for example. GET /virtual-networks), then

1088

• iterates and reads in the details of the resource (GET /virtual-network/<uuid>).

As a result, the API server spends most of the time in this type of GET operation just waiting for results
from the Cassandra database.

The following features in Contrail improve performance with Neutron:

• An optional detail query parameter is added in the GET of collections so that the API server returns
details of all the resources in the list, instead of just a summary. This is accompanied by changes in
the Contrail API library so that a caller gets returned a list of the objects.

• The existing Contrail list API takes in an optional parent_id query parameter to return information
about the resource anchored by the parent.

• The Contrail API server reads objects from Cassandra in a multiget format into obj_uuid_cf, where
object contents are stored, instead of reading in an xget/get format. This reduces the number of
round-trips to and from the Cassandra database.

Network Sharing in Neutron

Using Neutron, a deployer can make a network accessible to other tenants or projects by using one of
two attributes on a network:

• set the shared attribute to allow sharing

• set the router:external attribute, when the plugin supports an external_net extension

Using the Shared Attribute

When a network has the shared attribute set, users in other tenants or projects, including non-admin
users, can access that network, using:

neutron net-list --shared

Users can also launch a virtual machine directly on that network, using:

nova boot <other-parameters> –nic net-id=<shared-net-id>

Using the Router:External Attribute

When a network has the router:external attribute set, users in other tenants or projects, including non-
admin users, can use that network for allocating floating IPs, using:

neutron floatingip-create <router-external-net-id>

then associating the IP address pool with their instances.

1089

NOTE: The VN hosting the FIP pool should be marked shared and external.

Commands for Neutron Network Sharing

The following table summarizes the most common Neutron commands used with Contrail.

Action Command

List all shared networks. neutron net-list --shared

Create a network that has the shared attribute. neutron net-create <net-name> –shared

Set the shared attribute on an existing network. neutron net-update <net-name> -shared

List all router:external networks. neutron net-list --router:external

Create a network that has the router:externalattribute. neutron net-create <net-name> -router:external

Set the router:external attribute on an existing network. neutron net-update <net-name> -router:external

Support for Neutron APIs

The OpenStack Neutron project provides virtual networking services among devices that are managed
by the OpenStack compute service. Software developers create applications by using the OpenStack
Networking API v2.0 (Neutron).

Contrail provides the following features to increase support for OpenStack Neutron:

• Create a port independently of a virtual machine.

• Support for more than one subnet on a virtual network.

• Support for allocation pools on a subnet.

• Per tenant quotas.

• Enabling DHCP on a subnet.

• External router can be used for floating IPs.

1090

For more information about using OpenStack Networking API v2.0 (Neutron), refer to: http://
docs.openstack.org/api/openstack-network/2.0/content/ and the OpenStack Neutron Wiki at: http://
wiki.openstack.org/wiki/Neutron .

Contrail Neutron Plugin

The Contrail Neutron plugin provides an implementation for the following core resources:

• Network

• Subnet

• Port

It also implements the following standard and upstreamed Neutron extensions:

• Security group

• Router IP and floating IP

• Per-tenant quota

• Allowed address pair

The following Contrail-specific extensions are implemented:

• Network IPAM

• Network policy

• VPC table and route table

• Floating IP pools

The plugin does not implement native bulk, pagination, or sort operations and relies on emulation
provided by the Neutron common code.

DHCP Options

In Neutron commands, DHCP options can be configured using extra-dhcp-options in port-create.

Example

neutron port-create net1 --extra-dhcp-opt opt_name=<dhcp_option_name>,opt_value=<value>

The opt_name and opt_value pairs that can be used are maintained in GitHub: https://github.com/
Juniper/contrail-controller/wiki/Extra-DHCP-Options .

1091

http://docs.openstack.org/api/openstack-network/2.0/content/​
http://docs.openstack.org/api/openstack-network/2.0/content/​
http://wiki.openstack.org/wiki/Neutron
http://wiki.openstack.org/wiki/Neutron
https://github.com/Juniper/contrail-controller/wiki/Extra-DHCP-Options
https://github.com/Juniper/contrail-controller/wiki/Extra-DHCP-Options

Incompatibilities

In the Contrail architecture, the following are known incompatibilities with the Neutron API.

• Filtering based on any arbitrary key in the resource is not supported. The only supported filtering is
by id, name, and tenant_id.

• To use a floating IP, it is not necessary to connect the public subnet and the private subnet to a
Neutro n router. Marking a public network with router:external is sufficient for a floating IP to be
created and associated, and packet forwarding to it will work.

• The default values for quotas are sourced from /etc/contrail/contrail-api.conf and not from /etc/
neutron/neutron.conf.

Support for Amazon VPC APIs on Contrail OpenStack

IN THIS SECTION

Overview of Amazon Virtual Private Cloud | 1093

Mapping Amazon VPC Features to OpenStack Contrail Features | 1093

VPC and Subnets Example | 1094

Euca2ools CLI for VPC and Subnets | 1095

Security in VPC: Network ACLs Example | 1095

Euca2ools CLI for Network ACLs | 1097

Security in VPC: Security Groups Example | 1097

Euca2ools CLI for Security Groups | 1098

Elastic IPs in VPC | 1099

Euca2ools CLI for Elastic IPs | 1099

Euca2ools CLI for Route Tables | 1100

Supported Next Hops | 1100

Internet Gateway Next Hop Euca2ools CLI | 1101

NAT Instance Next Hop Euca2ools CLI | 1101

Example: Creating a NAT Instance with Euca2ools CLI | 1101

1092

Overview of Amazon Virtual Private Cloud

The current Grizzly release of OpenStack supports Elastic Compute Cloud (EC2) API translation to
OpenStack Nova, Quantum, and Keystone calls. EC2 APIs are used in Amazon Web Services (AWS) and
virtual private clouds (VPCs) to launch virtual machines, assign IP addresses to virtual machines, and so
on. A VPC provides a container where applications can be launched and resources can be accessed over
the networking services provided by the VPC.

Contrail enhances its use of EC2 APIs to support the Amazon VPC APIs.

The Amazon VPC supports networking constructs such as: subnets, DHCP options, elastic IP addresses,
network ACLs, security groups, and route tables. The Amazon VPC APIs are now supported on the
Openstack Contrail distribution, so users of the Amazon EC2 APIs for their VPC can use the same
scripts to move to an Openstack Contrail solution.

Euca2ools are command-line tools for interacting with Amazon Web Services (AWS) and other AWS-
compatible web services, such as OpenStack. Euca2ools have been extended in OpenStack Contrail to
add support for the Amazon VPC, similar to the support that already exists for the Amazon EC2 CLI.

For more information about Amazon VPC and AWS EC2, see:

• Amazon VPC documentation: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
VPC_Introduction.html

• Amazon VPC API list: http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html

Mapping Amazon VPC Features to OpenStack Contrail Features

The following table compares Amazon VPC features to their equivalent features in OpenStack Contrail.

Table 96: Amazon VPC and OpenStack Contrail Feature Comparison

Amazon VPC Feature OpenStack Contrail Feature

VPC Project

Subnets Networks (Virtual Networks)

DHCP options IPAM

Elastic IP Floating IP

Network ACLs Network ACLs

1093

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html

Table 96: Amazon VPC and OpenStack Contrail Feature Comparison (Continued)

Amazon VPC Feature OpenStack Contrail Feature

Security Groups Security Groups

Route Table Route Table

VPC and Subnets Example

When creating a new VPC, the user must provide a classless inter-domain routing (CIDR) block of which
all subnets in this VPC will be part.

In the following example, a VPC is created with a CIDR block of 10.1.0.0/16. A subnet is created within
the VPC CIDR block, with a CIDR block of 10.1.1.0/24. The VPC has a default network ACL named acl-
default.

All subnets created in the VPC are automatically associated to the default network ACL. This association
can be changed when a new network ACL is created. The last command in the list below creates a
virtual machine using the image ami-00000003 and launches with an interface in subnet-5eb34ed2.

euca-create-vpc 10.1.0.0/16
VPC VPC:vpc-8352aa59 created

euca-describe-vpcs
VpcId CidrBlock DhcpOptions
----- --------- -----------
vpc-8352aa59 10.1.0.0/16 None

euca-create-subnet -c 10.1.1.0/24 vpc-8352aa59
Subnet: subnet-5eb34ed2 created

euca-describe-subnets
Subnet-id Vpc-id CidrBlock
--------- ------ ---------
subnet-5eb34ed2 vpc-8352aa59 10.1.1.0/24

euca-describe-network-acls
AclId

acl-default(def)

1094

vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-default

euca-run-instances -s subnet-5eb34ed2 ami-00000003

Euca2ools CLI for VPC and Subnets

The following euca2ools CLI commands are used to create, define, and delete VPCs and subnets:

• euca-create-vpc

• euca-delete-vpc

• euca-describe-vpcs

• euca-create-subnet

• euca-delete-subnet

• euca-describe-subnets

Security in VPC: Network ACLs Example

Network ACLs support ingress and egress rules for traffic classification and filtering. The network ACLs
are applied at a subnet level.

In the following example, a new ACL, acl-ba7158, is created and an existing subnet is associated to the
new ACL.

euca-create-network-acl vpc-8352aa59
acl-ba7158c

euca-describe-network-acls
AclId

1095

acl-default(def)
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-default
AclId

acl-ba7158c
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

euca-replace-network-acl-association -a aclassoc-0c549d66 acl-ba7158c
aclassoc-0c549d66

euca-describe-network-acls
AclId

acl-default(def)
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId

1096

 ---------- -------- ------------

AclId

acl-ba7158c
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-ba7158c

Euca2ools CLI for Network ACLs

The following euca2ools CLI commands are used to create, define, and delete VPCs and subnets:

• euca-create-network-acl

• euca-delete-network-acl

• euca-replace-network-acl-association

• euca-describe-network-acls

• euca-create-network-acl-entry

• euca-delete-network-acl-entry

• euca-replace-network-acl-entry

Security in VPC: Security Groups Example

Security groups provide virtual machine level ingress/egress controls. Security groups are applied to
virtual machine interfaces.

In the following example, a new security group is created. The rules can be added or removed for the
security group based on the commands listed for euca2ools. The last line launches a virtual machine using
the newly created security group.

euca-describe-security-groups

1097

GroupId VpcId Name Description
------- ----- ---- -----------
sg-6d89d7e2 vpc-8352aa59 default

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Ingress any 0 65535 [0.0.0.0/0]
 Egress any 0 65535 [0.0.0.0/0]

euca-create-security-group -d "TestGroup" -v vpc-8352aa59 testgroup
GROUP sg-c5b9d22a testgroup TestGroup

euca-describe-security-groups

GroupId VpcId Name Description
------- ----- ---- -----------
sg-6d89d7e2 vpc-8352aa59 default

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Ingress any 0 65535 [0.0.0.0/0]
 Egress any 0 65535 [0.0.0.0/0]

GroupId VpcId Name Description
------- ----- ---- -----------
sg-c5b9d22a vpc-8352aa59 testgroup TestGroup

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Egress any 0 65535 [0.0.0.0/0]

euca-run-instances -s subnet-5eb34ed2 -g testgroup ami-00000003

Euca2ools CLI for Security Groups

The following euca2ools CLI commands are used to create, define, and delete security groups:

• euca-create-security-group

1098

• euca-delete-security-group

• euca-describe-security-groups

• euca-authorize-security-group-egress

• euca-authorize-security-group-ingress

• euca-revoke-security-group-egress

• euca-revoke-security-group-ingress

Elastic IPs in VPC

Elastic IPs in VPCs are equivalent to the floating IPs in the Contrail Openstack solution.

In the following example, a floating IP is requested from the system and assigned to a particular virtual
machine. The prerequisite is that the provider or Contrail administrator has provisioned a network
named “public” and allocated a floating IP pool to it. This “public” floating IP pool is then internally used
by the tenants to request public IP addresses that they can use and attach to virtual machines.

euca-allocate-address --domain vpc
ADDRESS 10.84.14.253 eipalloc-78d9a8c9

euca-describe-addresses --filter domain=vpc
Address Domain AllocationId InstanceId(AssociationId)
------- ------ ------------ -------------------------
10.84.14.253 vpc eipalloc-78d9a8c9

euca-associate-address -a eipalloc-78d9a8c9 i-00000008
ADDRESS eipassoc-78d9a8c9

euca-describe-addresses --filter domain=vpc
Address Domain AllocationId InstanceId(AssociationId)
------- ------ ------------ -------------------------
10.84.14.253 vpc eipalloc-78d9a8c9 i-00000008(eipassoc-78d9a8c9)

Euca2ools CLI for Elastic IPs

The following euca2ools CLI commands are used to create, define, and delete elastic IPs:

• euca-allocate-address

• euca-release-address

1099

• euca-describe-addresses

• euca-associate-address

• euca-disassociate-address

Euca2ools CLI for Route Tables

Route tables can be created in an Amazon VPC and associated with subnets. Traffic exiting a subnet is
then looked up in the route table and, based on the route lookup result, the next hop is chosen.

The following euca2ools CLI commands are used to create, define, and delete route tables:

• euca-create-route-table

• euca-delete-route-table

• euca-describe-route-tables

• euca-associate-route-table

• euca-disassociate-route-table

• euca-replace-route-table-association

• euca-create-route

• euca-delete-route

• euca-replace-route

Supported Next Hops

The supported next hops for the current release are:

• Local Next Hop

Designating local next hop indicates that all subnets in the VPC are reachable for the destination
prefix.

• Internet Gateway Next Hop

This next hop is used for traffic destined to the Internet. All virtual machines using the Internet
gateway next hop are required to use an Elastic IP to reach the Internet, because the subnet IPs are
private IPs.

• NAT instance

To create this next hop, the user needs to launch a virtual machine that provides network address
translation (NAT) service. The virtual machine has two interfaces: one internal and one external, both

1100

of which are automatically created. The only requirement here is that a “public” network should have
been provisioned by the admin, because the second interface of the virtual machine is created in the
“public” network.

Internet Gateway Next Hop Euca2ools CLI

The following euca2ools CLI commands are used to create, define, and delete Internet gateway next hop:

• euca-attach-internet-gateway

• euca-create-internet-gateway

• euca-delete-internet-gateway

• euca-describe-internet-gateways

• euca-detach-internet-gateway

NAT Instance Next Hop Euca2ools CLI

The following euca2ools CLI commands are used to create, define, and delete NAT instance next hops:

• euca-run-instances

• euca-terminate-instances

Example: Creating a NAT Instance with Euca2ools CLI

The following example creates a NAT instance and creates a default route pointing to the NAT instance.

euca-describe-route-tables
RouteTableId Main VpcId AssociationId SubnetId
------------ ---- ----- ------------- --------
rtb-default yes vpc-8352aa59 rtbassoc-0c549d66 subnet-5eb34ed2

 Prefix NextHop
 ------ -------
 10.1.0.0/16 local

euca-describe-images
IMAGE ami-00000003 None (ubuntu) 2c88a895fdea4461a81e9b2c35542130
IMAGE ami-00000005 None (nat-service) 2c88a895fdea4461a81e9b2c35542130

euca-run-instances ami-00000005

euca-create-route --cidr 0.0.0.0/0 -i i-00000006 rtb-default

1101

euca-describe-route-tables
RouteTableId Main VpcId AssociationId SubnetId
------------ ---- ----- ------------- --------
rtb-default yes vpc-8352aa59 rtbassoc-0c549d66 subnet-5eb34ed2

 Prefix NextHop
 ------ -------
 10.1.0.0/16 local
 0.0.0.0/0 i-00000006

1102

	Table of Contents
	Overview
	Understanding Contrail Controller
	Contrail Overview
	Contrail Description
	Contrail Installation Overview

	Installing and Upgrading Contrail
	Supported Platforms and Server Requirements
	Supported Platforms Contrail 4.1
	Server Requirements
	Contrail Node Roles, Processes, and Ports

	Installing Contrail and Provisioning Roles
	Introduction to Containerized Contrail Modules
	Downloading Installation Software
	Installing the Operating System and Contrail Packages
	Installing Containerized Contrail Clusters Using Server Manager
	Installing Containerized Contrail Using Server Manager Lite (SM-Lite)
	Supporting Multiple Interfaces on Servers and Nodes
	Configuring the Control Node with BGP
	Adding a New Node to an Existing Containerized Contrail Cluster
	Using contrailctl to Configure Services Within Containers
	Contrail Global Controller
	Role and Resource-Based Access Control

	Installation and Configuration Scenarios
	Setting Up and Using a Simple Virtual Gateway with Contrail 4.0
	Introduction to the Simple Gateway
	How the Simple Gateway Works
	Setup Without Simple Gateway
	Setup With a Simple Gateway
	Simple Gateway Configuration Features
	Packet Flows with the Simple Gateway
	Packet Flow Process From the Virtual Network to the Public Network
	Packet Flow Process From the Public Network to the Virtual Network
	Methods for Configuring the Simple Gateway
	Using the vRouter Configuration File to Configure the Simple Gateway
	Using Thrift Messages to Dynamically Configure the Simple Gateway
	How to Dynamically Create a Virtual Gateway
	How to Dynamically Delete a Virtual Gateway
	Using Devstack to Configure the Simple Gateway

	Common Issues with Simple Gateway Configuration

	Simple Underlay Connectivity without Gateway
	Configuring MD5 Authentication for BGP Sessions
	Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter
	Configuring Single Root I/O Virtualization (SR-IOV)
	Provisioning DPDK SRIOV with Server Manager
	Configuring Virtual Networks for Hub-and-Spoke Topology
	Route Targets for Virtual Networks in Hub-and-Spoke Topology
	Example: Configuring Hub-and-Spoke Virtual Networks
	Troubleshooting Hub-and-Spoke Topology

	Configuring Transport Layer Security-Based XMPP in Contrail
	Configuring Graceful Restart and Long-lived Graceful Restart

	Using Contrail with Kubernetes
	Contrail Integration with Kubernetes
	Installing and Provisioning Containerized Contrail Controller for Kubernetes
	Viewing Configuration for CNI for Kubernetes
	View Pod Name and IP Address
	Verify Reachability of Pods
	Verify If Isolated Namespace-Pods Are Not Reachable
	Verify If Non-Isolated Namespace-Pods Are Reachable
	Verify If a Namespace is Isolated

	Provisioning Contrail CNI for Kubernetes
	Requirements
	Overview
	Configuration
	Troubleshooting

	Using Kubernetes Helm to Provision Contrail
	Requirements
	Overview
	Configuration
	Troubleshooting

	Using VMware vCenter with Containerized Contrail, Release 4.0.1 and Greater
	Installing and Provisioning VMware vCenter with Containerized Contrail
	Overview: Integrating Contrail 4.0.1 and Greater with vCenter Server
	Different Modes of vCenter Integration with Contrail
	vCenter-Only Mode
	vCenter-as-Compute Mode
	Preparing the Installation Environment
	Installation for vCenter-Only Mode
	Installing the vCenter-Only Components
	Installation of vCenter-as-Compute Mode
	Installing the vCenter-as-Compute Components
	Verification
	Adding Hosts or Nodes
	Adding an ESXi Host to an Existing vCenter Cluster
	Adding a vCenter Cluster to vCenter-as-Compute

	Underlay Network Configuration for Containerized ContrailVM
	Standard Switch Setup
	Distributed Switch Setup
	PCI Pass-Through Setup
	SR-IOV Setup

	Sample JSON Configuration Files for vCenter with Containerized Contrail 4.0.1 and Greater
	Sample Image JSON for vCenter-Only Mode
	Sample Cluster JSON for vCenter-Only Mode
	Sample Server JSON for vCenter-Only Mode
	Sample JSON for vCenter-only with High Availability
	Sample Image JSON for vCenter-as-Compute Mode
	Sample Cluster JSON for vCenter-as-Compute Mode
	Sample Server JSON for vCenter-as-Compute Mode

	Using the Contrail and VMWare vCenter User Interfaces to Manage the Network

	Using Contrail with Red Hat
	Deploying Contrail with Red Hat OpenStack Platform Director 10
	Installing Red Hat OpenShift Container Platform with Contrail Networking
	Launch Instances (Azure, AWS, or Baremetal)
	Host Registration
	Install Base Packages
	Install OpenShift with Contrail Networking
	Installing a Contrail System on an Existing OpenShift Setup

	Upgrade Procedure for RHOSP-based Contrail 3.2.x to Contrail 4.1
	Upgrade Procedure for RHOSP-based Contrail 4.1.1 to Contrail 4.1.2
	Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3
	Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4
	Restoring Contrail Nodes in a RHOSP-based Environment
	Prerequisites
	Verify the Controller Node Status and Rebuild the Node
	Finish Rebuilding One or Two Contrail Controller Nodes
	Finish the Rebuilding of all Contrail Controller Nodes
	Rebuilding Contrail Analytics And Analytics Database Nodes
	Finish Rebuilding the Analytics Nodes

	Using Server Manager to Automate Provisioning
	Installing Server Manager
	Using Server Manager to Automate Provisioning
	Overview of Server Manager
	Server Manager Requirements and Assumptions
	Server Manager Component Interactions
	Configuring Server Manager
	Configuring the Cobbler DHCP Template
	User-Defined Tags for Server Manager
	Server Manager Client Configuration File
	Restart Services
	Accessing Server Manager
	Communicating with the Server Manager Client
	Server Manager Commands for Configuring Servers
	Server Manager Commands Common Options
	Add New Servers or Update Existing Servers
	Delete Servers
	Display Server Configuration
	Server Manager Commands for Managing Clusters
	Create a New Cluster or Update an Existing Cluster
	Delete a Cluster
	Display Cluster Configuration

	Server Manager Commands for Managing Tags
	Create a New Tag or Update an Existing Tag
	Display Tag Configuration

	Server Manager Commands for Managing Images
	Creating New Images or Updating Existing Images
	Add an Image
	Upload an Image
	Delete an Image
	Display Image Configuration

	Server Manager Operational Commands for Managing Servers
	Reimaging Server(s)
	Provisioning and Configuring Roles on Servers
	Restarting Server(s)
	Show Status of Server(s)
	Show Status of Provision

	Server Manager REST API Calls
	REST APIs for Server Manager Configuration Database Entries
	API: Add a Server
	API: Delete Servers
	API: Retrieve Server Configuration
	API: Add an Image
	API: Upload an Image
	API: Get Image Information
	API: Delete an Image
	API: Add or Modify a Cluster
	API: Delete a Cluster
	API: Get Cluster Configuration
	API: Get All Server Manager Configurations
	API: Reimage Servers
	API: Provision Servers
	API: Restart Servers

	Example: Reimaging and Provisioning a Server

	Using the Server Manager Web User Interface
	Log In to Server Manager
	Create a Cluster for Server Manager
	Edit a Cluster through Edit JSON
	Working with Servers in the Server Manager User Interface
	Add a Server
	Edit Tags for Servers
	Using the Edit Config Option for Multiple Servers
	Edit a Server through Server Manager, Edit JSON
	Filter Servers by Tag
	Viewing Server Details
	Configuring Images and Packages
	Add New Image or Package
	Selecting Server Manager Actions for Clusters
	Reimage a Cluster
	Provision a Cluster

	Installing and Using Server Manager Lite

	Extending Contrail to Physical Routers, Bare Metal Servers, Switches, and Interfaces
	Using ToR Switches and OVSDB to Extend the Contrail Cluster to Other Instances
	Configuring High Availability for the Contrail OVSDB ToR Agent
	Using Device Manager to Manage Physical Routers
	SR-IOV VF as the Physical Interface of vRouter
	Using Gateway Mode to Support Remote Instances
	REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical Interfaces

	Installing and Using Contrail Storage
	Installing and Using Contrail Storage
	Overview of the Contrail Storage Solution
	Basic Storage Functionality with Contrail
	Ceph Block and Object Storage Functionality
	Using the Contrail Storage User Interface
	Hardware Specifications
	Contrail Storage Provisioning

	Upgrading Contrail Software
	Upgrading Contrail 4.0 to 4.1
	Upgrade Procedure for RHOSP-based Contrail 4.1.2 to Contrail 4.1.3
	Upgrade Procedure for Ubuntu-based Contrail 4.1.3 to Contrail 4.1.4 Using Juju with Netronome SmartNIC
	Upgrade Procedure for RHOSP-based Contrail 4.1.3 to Contrail 4.1.4
	Dynamic Kernel Module Support (DKMS) for vRouter
	Backup and Restore Contrail Configuration Database
	Backup config database
	Restore config database

	Configuring Contrail
	Configuring Virtual Networks
	Creating Projects in OpenStack for Configuring Tenants in Contrail
	Creating a Virtual Network with Juniper Networks Contrail
	Creating a Virtual Network with OpenStack Contrail
	Creating an Image for a Project in OpenStack Contrail
	Creating a Floating IP Address Pool
	Using Security Groups with Virtual Machines (Instances)
	Security Groups Overview
	Creating Security Groups and Adding Rules

	Security Policy Enhancements
	Support for IPv6 Networks in Contrail
	Configuring EVPN and VXLAN
	Configuring the VXLAN Identifier Mode
	Configuring Forwarding
	Configuring the VXLAN Identifier
	Configuring Encapsulation Methods

	Example of Deploying a Multi-Tier Web Application Using Contrail
	Example: Deploying a Multi-Tier Web Application
	Multi-Tier Web Application Overview
	Example: Setting Up Virtual Networks for a Simple Tiered Web Application
	Verifying the Multi-Tier Web Application
	Sample Addressing Scheme for Simple Tiered Web Application
	Sample Physical Topology for Simple Tiered Web Application
	Sample Physical Topology Addressing

	Sample Network Configuration for Devices for Simple Tiered Web Application

	Configuring Services
	Configuring DNS Servers
	DNS Overview
	Defining Multiple Virtual Domain Name Servers
	IPAM and Virtual DNS
	DNS Record Types
	Configuring DNS Using the Interface
	Configuring DNS Using Scripts

	Distributed Service Resource Allocation with Containerized Contrail
	Support for Multicast
	Subnet Broadcast
	All-Broadcast/Limited-Broadcast and Link-Local Multicast
	Host Broadcast

	Using Static Routes with Services
	Static Routes for Service Instances
	Configuring Static Routes on a Service Instance
	Configuring Static Routes on Service Instance Interfaces
	Configuring Static Routes as Host Routes

	Configuring Metadata Service

	Configuring Service Chaining
	Service Chaining
	Service Chaining Basics
	Service Chaining Configuration Elements

	Service Chaining MX Series Configuration
	ECMP Load Balancing in the Service Chain
	Customized Hash Field Selection for ECMP Load Balancing
	Service Chain Version 2 with Port Tuple
	Using the Contrail Heat Template
	Service Chain Route Reorigination
	Service Instance Health Checks
	Health Check Object
	Bidirectional Forwarding and Detection Health Check over Virtual Machine Interfaces
	Bidirectional Forwarding and Detection Health Check for BGPaaS
	Health Check of Transparent Service Chain
	Service Instance Fate Sharing

	Examples: Configuring Service Chaining
	Example: Creating an In-Network Service Chain
	Hardware and Software Requirements
	Overview
	Configuration

	Example: Creating an In-Network-NAT Service Chain
	Hardware and Software Requirements
	Overview
	Configuration

	Example: Creating a Transparent Service Chain
	Hardware and Software Requirements
	Overview
	Configuration

	Adding Physical Network Functions in Service Chains
	Using Physical Network Functions in Contrail Service Chains
	PNF Service Chaining Objects
	Prerequisites and Assumptions

	Example: Adding a Physical Network Function Device to a Service Chain

	Configuring High Availability
	Juniper OpenStack High Availability
	Introduction
	Contrail High Availability
	OpenStack High Availability
	Supported Platforms
	Juniper OpenStack High Availability Architecture
	Juniper OpenStack Objectives
	Limitations
	Solution Components
	Virtual IP with Load Balancing
	Failure Handling
	Deployment
	Minimum Hardware Requirement
	Compute
	Network
	Installation

	High Availability Support Options
	High Availability for Containerized Contrail

	QoS Support in Contrail
	Quality of Service in Contrail
	Configuring Network QoS Parameters
	Overview
	QoS Configuration Examples
	Limitations

	BGP as a Service

	Load Balancers
	Using Load Balancers in Contrail
	Support for OpenStack LBaaS Version 2.0 APIs
	Configuring Load Balancing as a Service in Contrail
	Overview: Load Balancing as a Service
	Contrail LBaaS Implementation
	Configuring LBaaS Using CLI

	Optimizing Contrail
	Route Target Filtering
	Introduction
	Debugging and Troubleshooting Route Target Filtering
	RTF Limitations in Contrail 1.10

	Source Network Address Translation (SNAT)
	Overview
	Neutron APIs for Routers
	Network Namespace
	Using the Web UI to Configure Routers with SNAT

	Multiqueue Virtio Interfaces in Virtual Machines
	vRouter Command Line Utilities
	Overview
	vif Command
	flow Command
	vrfstats Command
	rt Command
	dropstats Command
	mpls Command
	mirror Command
	vxlan Command
	nh Command

	Monitoring and Troubleshooting Contrail
	Configuring Traffic Mirroring to Monitor Network Traffic
	Configuring Traffic Analyzers and Packet Capture for Mirroring
	Traffic Analyzer Images
	Configuring Traffic Analyzers
	Setting Up Traffic Mirroring Using Monitor > Debug > Packet Capture
	Setting Up Traffic Mirroring Using Configure > Networking > Services

	Configuring Interface Monitoring and Mirroring
	Analyzer Service Virtual Machine
	Mirroring Enhancements
	Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring)

	Understanding Contrail Analytics
	Understanding Contrail Analytics
	Contrail Alerts
	Underlay Overlay Mapping in Contrail
	Overview: Underlay Overlay Mapping using Contrail Analytics
	Underlay Overlay Analytics Available in Contrail
	Architecture and Data Collection
	New Processes/Services for Underlay Overlay Mapping
	External Interfaces Configuration for Underlay Overlay Mapping
	Physical Topology
	SNMP Configuration
	Link Layer Discovery Protocol (LLDP) Configuration
	IPFIX and sFlow Configuration
	Sending pRouter Information to the SNMP Collector in Contrail
	pRouter UVEs
	Contrail User Interface for Underlay Overlay Analytics
	Enabling Physical Topology on the Web UI
	Viewing Topology to the Virtual Machine Level
	Viewing the Traffic of any Link
	Trace Flows
	Search Flows and Map Flows
	Overlay to Underlay Flow Map Schemas
	Module Operations for Overlay Underlay Mapping
	SNMP Collector Operation
	Topology Module Operation
	IPFIX and sFlow Collector Operation
	Troubleshooting Underlay Overlay Mapping
	Script to add pRouter Objects

	Configuring Contrail Analytics
	Analytics Scalability
	High Availability for Analytics
	Role-Based Access Control for Analytics
	System Log Receiver in Contrail Analytics
	Overview
	Redirecting System Logs to Contrail Collector
	Exporting Logs from Contrail Analytics

	Sending Flow Messages to the Contrail System Log
	More Efficient Flow Queries
	Ceilometer Support in a Contrail Cloud
	Overview
	Ceilometer Details
	Verification of Ceilometer Operation
	Contrail Ceilometer Plugin
	Ceilometer Installation and Provisioning

	User Configuration for Analytics Alarms and Log Statistics
	Configuring Alarms Based on User-Visible Entities Data
	Examples: Detecting Anomalies
	Configuring the User-Defined Log Statistic
	Implementing the User-Defined Log Statistic

	Alarms History
	Node Memory and CPU Information
	Role- and Resource-Based Access Control for the Contrail Analytics API
	Configuring Analytics as a Standalone Solution
	Configuring Secure Sandesh and Introspect for Contrail Analytics

	Using Contrail Analytics to Monitor and Troubleshoot the Network
	Monitoring the System
	Debugging Processes Using the Contrail Introspect Feature
	Monitor > Infrastructure > Dashboard
	Monitor Dashboard
	Monitor Individual Details from the Dashboard
	Using Bubble Charts
	Color-Coding of Bubble Charts

	Monitor > Infrastructure > Control Nodes
	Monitor Control Nodes Summary
	Monitor Individual Control Node Details
	Monitor Individual Control Node Console
	Monitor Individual Control Node Peers
	Monitor Individual Control Node Routes

	Monitor > Infrastructure > Virtual Routers
	Monitor vRouters Summary
	Monitor Individual vRouters Tabs
	Monitor Individual vRouter Details Tab
	Monitor Individual vRouters Interfaces Tab
	Monitor Individual vRouters Networks Tab
	Monitor Individual vRouters ACL Tab
	Monitor Individual vRouters Flows Tab
	Monitor Individual vRouters Routes Tab
	Monitor Individual vRouter Console Tab

	Monitor > Infrastructure > Analytics Nodes
	Monitor Analytics Nodes
	Monitor Analytics Individual Node Details Tab
	Monitor Analytics Individual Node Generators Tab
	Monitor Analytics Individual Node QE Queries Tab
	Monitor Analytics Individual Node Console Tab

	Monitor > Infrastructure > Config Nodes
	Monitor Config Nodes
	Monitor Individual Config Node Details
	Monitor Individual Config Node Console

	Monitor > Networking
	Monitor > Networking Menu Options
	Monitor -> Networking -> Dashboard
	Monitor > Networking > Projects
	Monitor Projects Detail
	Monitor > Networking > Networks

	Query > Flows
	Query > Flows > Flow Series
	Example: Query Flow Series
	Query > Flow Records
	Query > Flows > Query Queue

	Query > Logs
	Query > Logs Menu Options
	Query > Logs > System Logs
	Sample Query for System Logs
	Query > Logs > Object Logs

	Understanding Flow Sampling
	Example: Debugging Connectivity Using Monitoring for Troubleshooting
	Using Monitoring to Debug Connectivity

	Common Support Answers
	Debugging Ping Failures for Policy-Connected Networks
	Debugging BGP Peering and Route Exchange in Contrail
	Example Cluster
	Verifying the BGP Routers
	Verifying the Route Exchange
	Debugging Route Exchange with Policies
	Debugging Peering with an MX Series Router
	Debugging a BGP Peer Down Error with Incorrect Family
	Configuring MX Peering (iBGP)
	Checking Route Exchange with an MX Series Peer
	Checking the Route in the MX Series Router

	Troubleshooting the Floating IP Address Pool in Contrail
	Example Cluster
	Example
	Example: MX80 Configuration for the Gateway
	Ping the Floating IP from the Public Network
	Troubleshooting Details
	Get the UUID of the Virtual Network
	View the Floating IP Object in the API Server
	View floating-ips in floating-ip-pools in the API Server
	Check Floating IP Objects in the Virtual Machine Interface
	View the BGP Peer Status on the Control Node
	Querying Routes in the Public Virtual Network
	Verification from the MX80 Gateway
	Viewing the Compute Node Vnsw Agent
	Advanced Troubleshooting

	Removing Stale Virtual Machines and Virtual Machine Interfaces
	Problem Example
	Show Virtual Machines
	Show Virtual Machines Using Python API
	Delete Methods

	Troubleshooting Link-Local Services in Contrail
	Overview of Link-Local Services
	Troubleshooting Procedure for Link-Local Services
	Metadata Service
	Troubleshooting Procedure for Link-Local Metadata Service

	Contrail Commands and APIs
	Contrail Commands
	Getting Contrail Node Status
	Overview
	UVE for NodeStatus
	Node Status Features
	Using Introspect to Get Process Status
	contrail-status script

	contrail-logs (Accessing Log File Messages)
	contrail-status (Viewing Node Status)
	contrail-version (Viewing Version Information
	service (Managing Services)
	Backing Up Contrail Databases Using JSON Format

	Contrail Application Programming Interfaces (APIs)
	Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs)
	User-Visible Entities
	Common UVEs in Contrail
	Virtual Network UVE
	Virtual Machine UVE
	vRouter UVE
	UVEs for Contrail Nodes
	Wild Card Query of UVEs
	Filtering UVE Information

	Log and Flow Information APIs
	HTTP GET APIs
	HTTP POST API
	POST Data Format Example
	Query Types
	Examining Query Status
	Examining Query Chunks
	Example Queries for Log and Flow Data

	Working with Neutron
	Data Structure
	Network Sharing in Neutron
	Commands for Neutron Network Sharing
	Support for Neutron APIs
	Contrail Neutron Plugin
	DHCP Options
	Incompatibilities

	Support for Amazon VPC APIs on Contrail OpenStack
	Overview of Amazon Virtual Private Cloud
	Mapping Amazon VPC Features to OpenStack Contrail Features
	VPC and Subnets Example
	Euca2ools CLI for VPC and Subnets
	Security in VPC: Network ACLs Example
	Euca2ools CLI for Network ACLs
	Security in VPC: Security Groups Example
	Euca2ools CLI for Security Groups
	Elastic IPs in VPC
	Euca2ools CLI for Elastic IPs
	Euca2ools CLI for Route Tables
	Supported Next Hops
	Internet Gateway Next Hop Euca2ools CLI
	NAT Instance Next Hop Euca2ools CLI
	Example: Creating a NAT Instance with Euca2ools CLI

