- play_arrow Overview
- play_arrow Understanding Contrail Controller
-
- play_arrow Installing and Upgrading Contrail
- play_arrow Supported Platforms and Server Requirements
- play_arrow Installing Contrail and Provisioning Roles
- Introduction to Containerized Contrail Modules
- Introduction to Contrail Microservices Architecture
- Downloading Installation Software
- Overview of contrail-ansible-deployer used in Contrail Command for Installing Contrail with Microservices Architecture
- Installing Contrail with OpenStack and Kolla Ansible
- Configuring the Control Node with BGP
- Contrail Global Controller
- Role and Resource-Based Access Control
- play_arrow Installation and Configuration Scenarios
- Setting Up and Using a Simple Virtual Gateway with Contrail 4.0
- Configuring MD5 Authentication for BGP Sessions
- Configuring the Data Plane Development Kit (DPDK) Integrated with Contrail vRouter
- Configuring Contrail DPDK vRouter to Run in a Docker Container
- Configuring Single Root I/O Virtualization (SR-IOV)
- Configuring Virtual Networks for Hub-and-Spoke Topology
- Configuring Transport Layer Security-Based XMPP in Contrail
- Configuring Graceful Restart and Long-lived Graceful Restart
- Remote Compute
- Dynamic Kernel Module Support (DKMS) for vRouter
- play_arrow Upgrading Contrail Software
- play_arrow Backup and Restore Contrail Software
- play_arrow Multicloud Contrail
- play_arrow Using Contrail with Kubernetes
- Contrail Integration with Kubernetes
- Installing and Managing Contrail 5.0 Microservices Architecture Using Helm Charts
- Provisioning of Kubernetes Clusters
- Using Helm Charts to Provision Multinode Contrail OpenStack Ocata with High Availability
- Using Helm Charts to Provision All-in-One Contrail with OpenStack Ocata
- Accessing a Contrail OpenStack Helm Cluster
- Frequently Asked Questions About Contrail and Helm Charts
- Contrail Deployment with Helm
- Verifying Configuration for CNI for Kubernetes
- Kubernetes Updates to IP Fabric
- Implementation of Kubernetes Network Policy with Contrail Firewall Policy
- play_arrow Using VMware vCenter with Containerized Contrail
- vCenter Integration for Contrail Release 5.0
- vCenter Integration for Contrail Release 5.0.1
- vCenter Integration for Contrail Release 5.0.2
- Underlay Network Configuration for ContrailVM
- Using the Contrail and VMware vCenter User Interfaces to Manage the Network For Contrail Releases 5.0 and 5.0.1
- Using the Contrail and VMware vCenter User Interfaces to Manage the Network For Contrail Release 5.0.2
- Integrating Contrail Release 5.0.X with VMware vRealize Orchestrator
- Installing and Provisioning Contrail VMware vRealize Orchestrator Plugin
- play_arrow Using Contrail with Red Hat
- play_arrow Contrail and AppFormix Kolla/Ocata OpenStack Deployment
- Contrail and AppFormix Deployment Requirements
- Preparing for the Installation
- Run the Playbooks
- Accessing Contrail in AppFormix Management Infrastructure in UI
- Notes and Caveats
- Example Instances.yml for Contrail and AppFormix OpenStack Deployment
- Installing AppFormix for OpenStack
- Installing AppFormix for OpenStack in HA
- play_arrow Using Contrail with Juju Charms
- play_arrow Contrail Command
- play_arrow Extending Contrail to Physical Routers, Bare Metal Servers, Switches, and Interfaces
- Understanding Bare Metal Server Management
- Configuring High Availability for the Contrail OVSDB ToR Agent
- Using Device Manager to Manage Physical Routers
- SR-IOV VF as the Physical Interface of vRouter
- Using Gateway Mode to Support Remote Instances
- REST APIs for Extending the Contrail Cluster to Physical Routers, and Physical and Logical Interfaces
- play_arrow Contrail for Data Center Automation and Fabric Management
-
- play_arrow Configuring Contrail
- play_arrow Configuring Virtual Networks
- Creating Projects in OpenStack for Configuring Tenants in Contrail
- Creating a Virtual Network with Juniper Networks Contrail
- Creating a Virtual Network with OpenStack Contrail
- Creating an Image for a Project in OpenStack Contrail
- Creating a Floating IP Address Pool
- Using Security Groups with Virtual Machines (Instances)
- Support for IPv6 Networks in Contrail
- Configuring EVPN and VXLAN
- Support for EVPN Route Type 5
- play_arrow Example of Deploying a Multi-Tier Web Application Using Contrail
- play_arrow Configuring Services
- play_arrow Configuring Service Chaining
- play_arrow Examples: Configuring Service Chaining
- play_arrow Adding Physical Network Functions in Service Chains
- play_arrow QoS Support in Contrail
- play_arrow BGP as a Service
- play_arrow Load Balancers
- play_arrow Optimizing Contrail
-
- play_arrow Contrail Security
- play_arrow Contrail Security
-
- play_arrow Contrail Commands and APIs
- play_arrow Contrail Commands
- play_arrow Contrail Application Programming Interfaces (APIs)
-
Mirroring Enhancements
Mirroring Specified Traffic
Specific traffic can be mirrored to a traffic analyzer in Contrail by:
Configuring rules to identify the flows to be mirrored, and
Specifying the analyzer to which the traffic is mirrored
Additionally, mirroring can be configured on virtual machine (VM) interfaces to send all the traffic to and from the interface to the specified analyzer.
Configuring Headers and Next Hops
When a packet is mirrored, a Juniper header is added to provide additional information in the analyzer, then the packet is encapsulated and sent to the destination.
Starting with Contrail 3.x releases, mirroring is enhanced with the following options:
Option to control addition of the Juniper header in the mirrored packet.
When disabled, the Juniper header is not added to the mirrored packet.
Option to control whether the next hop used is dynamic or static.
If dynamic is selected, the next hop based on the destination is used. Packets are forwarded to the destination based on the encapsulation priority.
If static is chosen, the next hop is created for the specified destination with VxLAN encapsulation using the configured VNI, destination VTEP, and MAC to transmit the mirrored packets.
The following combinations are supported:
Dynamic next hop with Juniper header added
The default combination and the only supported case up to Release 3.0.2
Dynamic next hop, without Juniper header
Static next hop, without Juniper header, with the original Layer 2 packet
How Mirroring is Implemented
The Contrail vrouter agent adds a mirror entry in the vrouter and points to the next hop to be used. The data for the Juniper header is taken from the flow entry. For interface mirroring, the Juniper header has a TLV in the metadata to use the interface name instead of providing a destination VN.
For more information about implementation details, see https://github.com/Juniper/contrail-controller/wiki/Mirroring.