JUDLR@! | Engineering

Simplicity

cSRX Container Firewall Deployment
Guide for Private and Public Cloud
Platforms

Published
2026-02-09

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Container Firewall Deployment Guide for Private and Public Cloud Platforms
Copyright © 2026 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Introduction to cSRX Container Firewall

Overview | 2
Requirements for cSRX Container Firewall | 6

Configure cSRX Using Junos OS CLI | 24

2 cSRX Container Firewall Deployment with Kubernetes

cSRX Container Firewall with Kubernetes | 28

Deploy and Configure cSRX in Kubernetes | 31

Requirements for Deploying cSRX in Kubernetes | 31
cSRX Environment Variables | 32
Download cSRX Software | 36

Automate Initial Configuration Load with Kubernetes ConfigMap | 38

Load Initial Configuration with Kubernetes ConfigMap | 38

cSRX Pods With External Network | 41

Know About cSRX Pods with External Network | 41
Connect cSRX to External Network | 42
Configure Nodeport Service for cSRX Pods | 46

cSRX Pods With Internal Network | 47

cSRX Deployment in Kubernetes | 51

Install cSRX in Kubernetes Linux Server | 51

Deploy cSRX Pods in Kubernetes Linux Server | 52
Upgrade cSRX Image Using Deployment Rollout | 56
cSRX Image Rollback | 57

Scale cSRX Deployment | 57

cSRX Image with Packaged Preinstalled Signatures | 58

What Are Preinstalled Signatures? | 58

Repackage cSRX Image with Preinstalled Signatures | 58
Download Juniper Signature Pack | 60

Download Juniper Signature Pack Through Proxy Server | 60

cSRX Service with Load Balancing | 62
Know About cSRX as Kubernetes Service with Load Balancing Support | 62
Configure Ingress Service for cSRX Pods | 65

cSRX Container Firewall Deployment in AWS

cSRX Deployment in AWS Using Elastic Kubernetes Service (EKS) | 68

cSRX with Kubernetes Orchestration in AWS | 68
Amazon EKS | 69

Deploy and Manage cSRX in AWS | 73
Deployment of cSRX in AWS Using EKS for Orchestration | 73

Deploy cSRX in AWS Using EKS | 73
Sample File for cSRX Deployment | 75

cSRX as a Service with Ingress Controller in Amazon EKS | 77

Microsegmentation with cSRX in AWS | 78

cSRX License in AWS Marketplace | 79

cSRX Container Firewall Deployment in Contrail Host-Based Firewall
cSRX in Contrail Host-Based Firewall | 81

Junos OS Features Supported in cSRX for Contrail HBF | 86

Requirements to Deploy cSRX on Contrail vRouter | 89

Deploy and Configure cSRX Container Firewall into a Contrail Network | 91

cSRX Pod Deployment on Contrail vRouter with Kubernetes | 91

Debug cSRX Container Firewall in Contrail Network | 91
Stop a cSRX Pod | 92
Verify Network Name | 92
Verify Logs | 92

cSRX Container Firewall Deployment in Bare-Metal Linux Server

cSRX in Bare-Metal Linux Server | 94

Requirements for Deploying cSRX in Bare-Metal Linux Server | 101

Deploy cSRX Container Firewall in Bare-Metal Linux Server | 105
Install cSRX in Bare-Metal Linux Server | 105

Before You Deploy | 105

Confirm Docker Installation | 106

Load the cSRX Image | 107

Create Linux Bridge Network for cSRX | 109

Launch cSRX in Bare-Metal Linux Server | 109

Configure and Manage cSRX Container Firewall in Bare-Metal Linux Server | 113
cSRX Environment Variables Overview | 113

Change the Size of cSRX | 116

Configure Traffic Forwarding on ¢SRX | 117

Configure Routing Mode | 118
Configure Secure-Wire Mode | 122

Configure CPU Affinity on cSRX | 123
Enable Persistent Log File Storage to a Linux Host Directory | 123

Manage cSRX in Bare-Metal Linux Server | 124

Pause or Resume Processes Within cSRX | 124
View Processes on a Running cSRX Container | 124

Remove a cSRX Container or Image | 125

cSRX Configuration and Management Tools | 126

About This Guide

cSRX Container Firewall is the containerized form of the Juniper Networks next-generation firewall. It is
positioned for use in a containerized or cloud environment where it can protect and secure east-west
and north-south traffic. This guide provides you details on deployment of cSRX Container Firewall on
various private and public cloud platforms.

This guide also includes basic cSRX Container Firewall configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further security feature configuration.

Introduction to cSRX Container

Firewall

Overview | 2
Requirements for cSRX Container Firewall | 6

Configure cSRX Using Junos OS CLI | 24

Overview

SUMMARY IN THIS SECTION

In this topic you learn about cSRX Container Firewall cSRX Container Firewall | 2

and its benefits. Benefits of cSRX Container Firewall | 4
Use Cases | 4

Container Overview | 5

License for cSRX Container Firewall | 6

cSRX Container Firewall

The Containerized SRX (cSRX) Container Firewall is a containerized version of the Juniper Networks ®
SRX Series Firewall built based on a Docker container, delivering agile, elastic, and cost-saving security
services. Integrated into many networking services, the cSRX virtual security solution provides advanced
security services, including AppSecure, and Content Security in the form of a container.

The use of a Docker container substantially reduces the overhead as each container shares the Linux
host’s OS kernel. Regardless of the number of containers a Linux server hosts, only one OS instance can
be in use.

With its small footprint and Docker as a container management system, the cSRX enables deployment of
agile, high-density security services.

The cSRX runs on Linux bare-metal server as the hosting platform for the Docker container
environment. The cSRX package comprises all the dependent processes (or daemons) and libraries to
support the different Linux host distribution methods (Ubuntu, Red Hat Enterprise Linux, or CentOS).

Figure 1: cSRX Container Firewall Architecture

Linux Host

User Space cSRX Instance

Ubuntu 22.04 Base Image (GNU/Linux Libraries, Binaries, Files) + Junos Libraries

64-bit Jrestartd Process

64-bit srxpfe Process

Advanced Services

Other

Processes

32-bit

Junos Contol Daemons
(mgd, nsd, idpd, utmd...)

Other
Processes

Flow Processing
Packet Forwarding
Container Other Linux daemons

Management (sshd, rsyslogd...)
System

Data Plane Development Kit (DPDK)

Kernel Space

When the cSRX is active, several processes (or daemons) inside the docker container launch
automatically. Some daemons support Linux features, providing the same service that they provide
when running on a Linux host (for example, sshd, rsyslogd, and monit). You can port and compile other
daemons from Junos OS to perform configuration and control jobs for security service (for example,
mgd, nsd, Content Security, IDP, and ApplID). The SRX PFE is the data plane daemon that receives and
sends packets from the revenue ports of a cSRX. The cSRX uses SRX PFE for Layer 2 to Layer 3
forwarding functions and for Layer 4 through Layer 7 network security services.

jn-001092

The cSRX solution provides the following capabilities:

e Layer 7 security services such as firewall, intrusion prevention system (IPS), and AppSecure
e Automated service provisioning and orchestration

e Distributed and multitenant traffic securing

e Centralized management with Junos Space® Security Director, including dynamic policy and address
update, remote log collections, and security events monitoring

e Scalable security services with small footprints

For more information on building containers with docker, see Day One: Building Containers with cSRX

https://www.juniper.net/documentation/us/en/software/nce/do-building-container-docker-csrx/day-one-building-containers-with-docker-csrx.pdf

Benefits of cSRX Container Firewall

The cSRX has many benefits that demonstrate its value in securing containerized workloads and
ensuring robust protection against cybersecurity threats in dynamic container environments.

o Efficient resource utilization-Avoids the need for separate guest OS instances that significantly
reduces memory and CPU usage, allowing more applications to run on the same hardware.

e Content Security and threat prevention-Offers robust protection against a wide array of network
threats, enhancing the overall security posture of the environment with integrated Layer 7 security
services such as firewall, intrusion prevention system (IPS), and AppSecure.

¢ Enhanced security and isolation-Provides a secure environment where multiple applications can run
independently, reducing the risk of interference and security breaches.

¢ Simplified dependency management- Different containers with conflicting dependencies run
concurrently on the same host, streamlining application management.

¢ Optimized for High-Density Environments-With small footprint and efficient resource utilization
enables higher density deployments, which is particularly advantageous for environments with
limited resources. Also, provides security services deployment without significant hardware
investments.

¢ Rapid deployment and upgrades-Faster spin-up time compared to traditional virtual machines,
enabling quick deployment and seamless upgrades of applications.

¢ Cost savings-Optimized resource usage translates to reduced hardware and energy costs, making
container virtualization a cost-effective solution for running multiple applications.

¢ Scalability and flexibility-Rapid scale up and down makes cSRX highly suitable for dynamic
environments, including public, private, and hybrid clouds.

Use Cases

With the cSRX, extending security to workloads running in containers is just another benefit provided by
Juniper Connected Security that safeguards users, applications, and cloud workloads to all connection
points throughout the network.

e You can apply the cSRX in use cases such as microsegmentation that provides threat detection for
east-west traffic within a Kubernetes cluster.

e You can deploy cSRX as an application protection gateway for north-south traffic; this controls the
applications that are allowed to interact with the apps running in the container.

The cSRX offers easy, flexible, and scalable deployment options. These options address various
customer use cases such as application protection, microsegmentation, and secure lol deployments
as an edge gateway through a Docker container management solution.

The cSRX supports Software-defined networking (SDN) through Contrail® Enterprise Multicloud,
OpenContrail, and other third-party solutions. The cSRX also integrates with other next-generation
cloud orchestration tools such as Kubernetes.

You can configure and manage the cSRX centrally through Security Director from the CLI with the
same Junos OS syntax or using Network Configuration Protocol (NETCONF). Like other Juniper
firewalls, the cSRX follows zero-trust principles, where traffic is not allowed to pass through unless
explicitly permitted by a configured policy.

Container Overview

A container provides an OS-level virtualization approach for an application and associated dependencies

that allow the application to run on a specific platform. Containers are not VMs, rather they are isolated

virtual environments with dedicated CPU, memory, I/O, and networking.

A container image is a lightweight, standalone, executable package of a piece of software that includes

everything required to run it: code, runtime, system tools, system libraries, settings, and so on. Also,

because of the light weight of the containers, a server can host many more container instances than that

by virtual machines (VMs), yielding tremendous improvements in utilization.

The main features of containers are:

Includes all dependencies for an application, multiple containers with conflicting dependencies can
run on the same Linux distribution.

Use the host OS Linux kernel features, such as groups and namespace isolation, to allow multiple
containers to run in isolation on the same Linux host OS.

An application in a container can have a small memory footprint because the container does not
require a guest OS, which is required with VMs, because it shares the kernel of its Linux host’s OS.

Have a high spin-up speed and can take much less time to boot up as compared to VMs. This enables
you to install, run, and upgrade applications quickly and efficiently.

License for cSRX Container Firewall

The cSRX software features require a license to activate the feature. To understand more about cSRX
licenses, see Supported Features on cSRX, Juniper Agile Licensing Guide, and Managing cSRX Licenses.

Requirements for cSRX Container Firewall

IN THIS SECTION

Supported SRX Series Firewall Features on cSRX Container Firewall | 6
SRX Series Firewall Features Not Supported on cSRX Container Firewall | 15

Supported Nlcs and Interfaces on cSRX Container Firewall | 21

This section presents an overview of requirements for deploying a cSRX Container Firewall instance and
the Junos OS feature support on cSRX.

Supported SRX Series Firewall Features on cSRX Container Firewall

Table 1 on page 6 provides a high-level summary of the feature categories supported on cSRX and
any feature considerations.

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the
right software release and hardware platform for your network. See Feature Explorer.

Table 1: SRX Series Firewall Features Supported on cSRX Container Firewall

Feature Considerations
Application Firewall (AppFW) Application Firewall Overview

Application Identification (ApplD) Understanding Application Identification Techniques

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html
https://pathfinder.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html

Table 1: SRX Series Firewall Features Supported on cSRX Container Firewall (Continued))

Feature

Application Tracking (AppTrack)

Basic firewall policy

Brute force attack mitigation

Central management

DDoS protection

DoS protection

Interfaces

Intrusion Detection and
Prevention (IDP)

IPv4 and IPvé

Jumbo frames

Malformed packet protection

Considerations

Understanding AppTrack

Understanding Security Basics

Intrusion Detection and Prevention User Guide

CLI only. No J-Web support.

DoS Attack Overview

DoS Attack Overview

A cSRX container supports 17 interfaces:

e 1 Out-of-band management Interface (ethO)
e 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Network Interfaces

For SRX Series Firewall IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX Series Firewall

Understanding IPv4 Addressing

Understanding IPv6 Address Space

Understanding Jumbo Frames Support for Ethernet Interfaces

Understanding IDS Screens for Network Attack Protection

https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/us/en/software/junos/idp-policy/index.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/interface-security-network.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-next-gen-services/topics/concept/ids-screens-usf.html

Table 1: SRX Series Firewall Features Supported on cSRX Container Firewall (Continued))

Feature Considerations
Network Address Translation Includes support for all NAT functionality on the cSRX platform, such as:
(NAT)

e Source NAT

e Destination NAT

e Static NAT

e Persistent NAT and NAT64
o NAT hairpinning

e NAT for multicast flows

For SRX Series Firewall NAT configuration details, see:

Introduction to NAT

Routing Basic Layer 3 forwarding with VLANSs.

Layer 2 through 3 forwarding functions: secure-wire forwarding or static

routing forwarding

SYN cookie protection Understanding SYN Cookie Protection

System Logs and Real-Time Logs Starting in Junos OS Release 20.1R1, you can monitor traffic using system
logs and RTlogs.

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-nat.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html

Table 1: SRX Series Firewall Features Supported on cSRX Container Firewall (Continued))

Feature Considerations
User Firewall Includes support for all user firewall functionality on the cSRX platform,
such as:

e Policy enforcement with matching source identity criteria
e logging with source identity information

o Integrated user firewall with active directory

e Local authentication

For SRX Series Firewall user firewall configuration details, see:

Overview of Integrated User Firewall
Content Security Includes support for all Content Security functionality on the cSRX
platform, such as:
e Antispam
e Sophos Antivirus
e Web filtering
e Content filtering
For SRX Series Firewall Content Security configuration details, see:

Content Security Overview

For SRX Series Firewall Content Security antispam configuration details,

see:

Antispam Filtering Overview

Zones and zone-based IP spoofing | Understanding IP Spoofing

ATP Cloud Juniper Advanced Threat Prevention Cloud (ATP Cloud)

SSL Proxy SSL Proxy

https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html
https://www.juniper.net/documentation/product/us/en/juniper-sky-advanced-threat-prevention/
https://www.juniper.net/documentation/us/en/software/junos/application-identification/topics/topic-map/security-ssl-proxy.html

Table 1: SRX Series Firewall Features Supported on cSRX Container Firewall (Continued))

Feature Considerations

Security Intelligence (Seclntel), Security Intelligence Overview
Domain Name System (DNS), and
ETI Understanding and Configuring DNS

Security Director

Juniper Identity Management Juniper Identity Management Service User Guide
Service (JIMS)

Table 2: IKE and IPsec features

Feature Supported on cSRX
IKE Features Pre-shared key Yes

Certificate authentication Yes

IKEv1 (main mode/aggressive No

mode)

IKEv2 Yes

Route-based VPN Yes

Site-to-site VPN Yes

Auto VPN Yes

Dynamic endpoint VPN Yes

Point-to-point tunnel interfaces Yes

https://www.juniper.net/documentation/us/en/software/sd-cloud/sd-cloud/topics/concept/sd-cloud-secintel-overview.html
https://www.juniper.net/documentation/us/en/software/junos/system-mgmt-monitoring/junos-getting-started/topics/topic-map/dns-system-management.html
https://www.juniper.net/documentation/product/us/en/security-director/
https://www.juniper.net/documentation/us/en/software/jims/JIMS/index.html

Table 2: IKE and IPsec features (Continued)

Feature Supported on cSRX
Point-to-multipoint tunnel No
interfaces
Numbered tunnel interfaces No
Unnumbered tunnel interface Yes
Hub-and-spoke scenario for site- Yes
to-site VPNs
Unicast static and dynamic (RIP, No
OSPF, BGP) routing overt stO
interface
Virtual router No
IKED crash recovery Yes
Chassis Cluster No
HA Link Encryption No
Local address selection Yes
Loopback address termination No

DNS name as IKE gateway address = Yes

NAT-Traversal (NAT-T) for IPv4 IKE = Yes
peers

Dead Peer Detection (DPD) Yes

Table 2: IKE and IPsec features (Continued)

Feature Supported on cSRX

Generic proposals and policies for Yes

IPv4 and IPvé6

General IKE ID Yes
Single proxy ID pairs No
Multiple traffic selector pairs Yes

Dual-stack (parallel IPv4 and IPv6 Yes
tunnels) over a single physical
interface

Authentication Algorithms - md5, Yes
shal, sha-256, sha-384, sha-512

Encryption Algorithms - des-cbc, Yes
3des-cbc, aes-128-cbc, aes-128-

gcm, aes-192-cbc, aes-256-chc,
aes-256-gcm

IKE Proposal Sets - basic, Yes
compatible, standard, prime-128,
prime-256, suiteb-gcm-128, suiteb-
gcm-256

DH groups - Yes
1,2,5,14,15,16,19,20,21,24

Local Identity - distinguished-name, @ Yes
hostname, ipv4/vé address, user-
at-hostname, key-id

Table 2: IKE and IPsec features (Continued)

Feature Supported on cSRX

Remote Identity - distinguished- Yes
name, hostname, ipv4/vé6 address,
user-at-hostname, key-id

IKE Reauthentication (initiator and Yes

responder)

Configuration payload No
EAP No
Remote Access - NCP/Licensing No

Tunnel establishment - immediately, = Yes
on-traffic, responder-only and
responder-only-no-rekey mode

Distribution-Profile No
Tunnel re-distribution No
IKEv2 Fragmentation Yes
SNMP MIB No
Statistics, logs, per-tunnel Yes
debugging

IKE termination on |00 interface No

IPsec and Dataplane Features ESP and AH tunnel modes Yes

Table 2: IKE and IPsec features (Continued)

Feature Supported on cSRX
Extended sequence number Yes
Lifetime of IKE or IPsec SA, in Yes
seconds

Encryption Algorithms - des-cbc, Yes
3des-cbc, aes-128-cbc, aes-192-

cbc, aes-256-cbc, aes-gcm-128,
aes-gcm-256 Yes

Authentication-algorithm - hmac- Yes
shal-96, hmac-md5-96, hmac-
sha-256-128, hmac-sha-384,
hmac-sha-512

Don't Fragment bit Yes
IPvé6 extension headers Yes
IPsec fragmentation and Yes
reassembly

Session affinity No
Power mode IPsec Yes
Configurable anti-replay window Yes
DSCP Copy Yes
Configurable delay installation of Yes

rekeyed outbound SAs

Table 2: IKE and IPsec features (Continued)

Feature

Cos on stO

Supported on cSRX

No

SRX Series Firewall Features Not Supported on cSRX Container Firewall

Table 3 on page 15 lists SRX Series Firewall features that are not applicable in a containerized

environment, that are not currently supported, or that have qualified support on cSRX.

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall

SRX Series Firewall Feature

Application Layer Gateways

Authentication with IC Series Devices

Class of Service

Data Plane Security Log Messages (Stream Mode)

Diagnostics Tools

DNS Proxy

cSRX Container Firewall Notes

Avaya H.323

Layer 2 enforcement in UAC deployments

NOTE: UAC-IDP and UAC-Content Security also are

not supported.

High-priority queue on SPC

Tunnels

TLS protocol

Flow monitoring cflowd version 9

Ping Ethernet (CFM)

Traceroute Ethernet (CFM)

Dynamic DNS

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature ¢SRX Container Firewall Notes

Ethernet Link Aggregation LACP in standalone or chassis cluster mode

Layer 3 LAG on routed ports

Static LAG in standalone or chassis cluster mode

Ethernet Link Fault Management Physical interface (encapsulations)

ethernet-ccc

ethernet-tcc

extended-vlan-ccc
extended-vlan-tcc

Interface family

cce, tec

ethernet-switching

Flow-Based and Packet-Based Processing End-to-end packet debugging

Network processor bundling

Services offloading

Interfaces Aggregated Ethernet interface

IEEE 802.1X dynamic VLAN assignment

IEEE 802.1X MAC bypass

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature

VPNs

IPv6 Support

Log File Formats for System (Control Plane) Logs

Miscellaneous

¢SRX Container Firewall Notes

IEEE 802.1X port-based authentication control with
multisupplicant support

Interleaving using MLFR

PoE

PPP interface

PPPoE-based radio-to-router protocol

PPPoE interface

Promiscuous mode on interfaces

Acadia - Clientless VPN

DVPN

Multicast for AutoVPN

DS-Lite concentrator (also known as AFTR)

DS-Lite initiator (also known as B4)

Binary format (binary)

WELF

AppQoS

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature ¢SRX Container Firewall Notes

Chassis cluster

GPRS

Hardware acceleration

High availability

J-Web

Logical systems

MPLS

Outbound SSH

Remote instance access

RESTCONF

SNMP

Spotlight Secure integration

USB modem

Wireless LAN

MPLS CCCand TCC

Layer 2 VPNs for Ethernet connections

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature ¢SRX Container Firewall Notes
Network Address Translation Maximize persistent NAT bindings
Packet Capture Packet capture

NOTE: Only supported on physical interfaces and
tunnel interfaces, such as gr, ijp, and stO. Packet
capture is not supported on a redundant Ethernet
interface (reth).

Routing BGP extensions for IPvé

BGP Flowspec

BGP route reflector

Bidirectional Forwarding Detection (BFD) for BGP

CRTP

Switching Layer 3 Q-in-Q VLAN tagging

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature

Unsupported System Logs and Real-Time log functions

Transparent Mode

Content Security

Upgrading and Rebooting

User Interfaces

¢SRX Container Firewall Notes

cSRX does not support all the log functions supported
on other SRX Series Firewalls or vSRX Virtual Firewall
instances due to limited CPU power and disk capacity.

Unsupported system logs and real-time log functions
on cSRX are:

e The binary log
e On box logs (the LLMD daemon is not ported.)
e On box reports (the LLMD daemon is not ported.)

e TLS is not supported for sending stream mode

security log to remote log server.

e |SYS and Tenant related functions.

Content Security

Express AV

Kaspersky AV

Autorecovery

Boot instance configuration

Boot instance recovery

Dual-root partitioning

OS rollback

NSM

Table 3: SRX Series Firewall Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Firewall Feature ¢SRX Container Firewall Notes

SRC application
Junos Space Virtual Director

Multinode High Availability Not supported

cSRX DPDK driver supports the following NICs

Supported Nlcs and Interfaces on cSRX Container Firewall

Table 4: NIC and Interface Support on cSRX

NICs and Interfaces Specification Supported Junos OS Release
cSRX DPDK driver supports the SR-IOV over Intel 82599 series Junos OS Release 23.2R1
following NICs

SR-I0OV over Intel X710/XL710

PCl pass though over Intel 82599
series

PCI pass though over Intel X710/
XL710 series

Table 4: NIC and Interface Support on cSRX (Continued))

NICs and Interfaces

cSRX poll mode supports the
following interface types

Specification

Intel

e E810-C

e E810-XXV82599ES
e X710-DA4

e XXV710-DA2

e XL710-QDA2

Veth

Driver modes
e Poll

e interrupt

e 82599 (ixgbe)
e SR-IOV over Intel XL/XL710
(i40e)

SR-10V on SmartNICs using DPDK
poll mode drivers on x86 and ARM
platforms

Kernel bridge interfaces

Supported Junos OS Release

Junos OS Release 24.4R1

Junos OS Release 25.4R1

Table 4: NIC and Interface Support on cSRX (Continued))

NICs and Interfaces

DPDK 23.11 version

Specification

cSRX sizes/flavors supported:

e CSRX-2CPU-4G (2 vCPU / 4
GB RAM)

e CSRX-4CPU-8G (4 vCPU / 8
GB RAM

e CSRX-6CPU-12G (6 vCPU / 12
GB RAM)

e CSRX-8CPU-16G (8 vCPU / 16
GB RAM)

e CSRX-12CPU-24G (12 vCPU /
24 GB RAM)

e CSRX-16CPU-32G (16 vCPU /
32 GB RAM)

e CSRX-20CPU-48G (20 vCPU /
48 GB RAM)

e CSRX-32CPU-64G (32 vCPU /
64 GB RAM)

Operating System (OS) Supported
e Fedora 38

e FreeBSD 13.2

e Red Hat Enterprise Linux Server
release 8.7

e Red Hat Enterprise Linux Server
release 9.2

e SUSE Linux Enterprise Server
15 SP5

e Ubuntu 22.04.3 (Wind River
Linux LTS22 OS version)

Supported Junos OS Release

Junos OS Release 24.4R1

Configure c¢SRX Using Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX Container Firewall

containers. For more details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX container using the Junos OS CLI:

1.

Launch the cSRX container. Use the docker run command to launch the cSRX container. You include
the mgt_bridge management bridge to connect the cSRX to a network.

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=<csrx-
container-name> hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX software image csrx:18.21R1.9 enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=csrx2
hub.juniper.net/security/csrx:18.2R1.9

@ NOTE: You must include the --privileged flag in the docker run command to enable the
cSRX container to run in privileged mode.

Log in to the cSRX container using SSH which is accessed by cSRX exposed service port.

root@csrx-ubuntu3:~/csrx#ssh -p 30122 root@192.168.42.81

Start the CLI as root user.

root#cli
root@

Verify the interfaces.

root@ show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up

Interface index: 100

Link-level type: Ethernet, MTU: 1514

Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02
Physical interface: ge-0/0/0, Enabled, Physical link is Up

Interface index: 200

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

Link-level type: Ethernet, MTU: 1514
Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

5. Enter configuration mode

configure
[edit]
root@#

6. Set the root authentication password by entering a cleartext password, an encrypted password, or
an SSH public key string (DSA or RSA).

[edit]
root@# set system root-authentication plain-text-password
New password: password

Retype new password: password

7. Configure the hostname.

[edit]
root@# set system host-name host-name

8. Configure the two traffic interfaces.

[edit]
root@# set interfaces ge-0/0/0 unit @ family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit @ family inet address 192.168.10.2/24

9. Configure basic security zones for the public and private interfaces and bind them to traffic

interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0
root@# set security zones security-zone trust interfaces ge-0/0/1.0

root@# set security policies default-policy permit-all

10. Verify the configuration.

[edit]
root@ commit check

configuration check succeeds
11. Commit the configuration to activate it on the cSRX instance.
[edit]

root@# commit

commit complete

12. (Optional) Use the show command to display the configuration for verification.

RELATED DOCUMENTATION

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

26

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

cSRX Container Firewall Deployment

with Kubernetes

cSRX Container Firewall with Kubernetes | 28
Deploy and Configure cSRX in Kubernetes | 31

cSRX Container Firewall with Kubernetes

IN THIS SECTION

Overview | 28

Benefits | 30

Overview

Containerized SRX (cSRX) Container Firewall is a virtual security solution based on CRI-O or Podman
container to deliver agile, elastic and cost-saving security services for comprehensive L7 security
protection.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of
containerized applications. It groups containers that make up an application into logical units for easy
management and discovery. With Kubernetes support, cSRX can scale out in a cluster running as elastic
firewall service with smaller footprint when compared to virtual machines.

Figure 2: ¢cSRX Container Firewall Service in Kubernetes on Linux

Containerized SRX firewall (cSRX) is designed to run in container orchestration environments like
Kubernetes, originally based on Docker containers. However, as Kubernetes is deprecating Docker
support starting from version 1.22, we now support deploying cSRX using container runtimes
compatible with Kubernetes such as CRI-O or Podman. These runtimes are compatible with platforms
like OpenShift 4 and RHEL 8, ensuring that cSRX continues to function seamlessly. Also, maintains
compatibility and security functionality in Kubernetes environments without Docker.

The cSRX provides advanced Layer 4 through Layer 7 security services in a container form factor,
enabling microsegmentation, application protection, and threat detection within Kubernetes clusters. It
integrates with Kubernetes networking through CNiIs like Flannel and Weave and supports management
through Junos OS CLI, NETCONF, and Security Director. This containerized firewall offers a small
footprint, scalability, and automation benefits suitable for dynamic cloud-native deployments.

29

Ingress Controller Kubernetes Cluster
Scale Out / In Request

K8s Master

API Server

Scheduler

Container Linux Platform CNI Container Linux Platform CNI
Runtime Runtime

Master Node Worker Node 1 Worker Node N

N/
B & B
g @ [

Database Web App
Servers Servers Servers

8301054

In a Kubernetes deployment, you can use Multus with both flannel and Weave Container Network
Interfaces (CNIs).

To support the Kubernetes node port or the ingress controller with the cSRX, the environment variable
CSRX_MGMT_PORT_REORDER allows the cSRX to use a container management interface. The
Kubernetes node port or the ingress controller feature with cSRX is only supported with Flannel/Weave
CNI. With CSRX_MGMT_PORT_REORDER set to yes, you can explicitly control the reconfiguration of
the management port behavior. For example, you can control access to the cSRX shell or SD discovery
on to the interface attached to the cSRX using Multus CNI.

For example, if you bring up cSRX with ethO, eth1, or eth2 with CSRX_MGMT_PORT_REORDER=yes,
you can use eth2 as the new management interface.

@ NOTE: The traffic forwarding to this eth2 has to be done through the iptables rules
defined explicitly by you.

Kubernetes defines a set of building objects that collectively provide mechanisms that orchestrate
containerized applications across a distributed cluster of nodes, based on system resources (CPU,

memory, or other custom metrics). Kubernetes masks the complexity of managing a group of containers
by providing REST APIs for the required functionalities.

A node refers to a logical unit in a cluster, like a server, which can either be physical or virtual. In context
of Kubernetes clusters, a node usually refers specifically to a worker node. Kubernetes nodes in a cluster
are the machines that run the end user applications.

There are two type of nodes in a Kubernetes cluster, and each one runs a well-defined set of processes:

e Head node: also called primary, or primary node, it is the head and brain that does all the thinking
and makes all the decisions; all of the intelligence is located here.

e Worker node: also called node, or minion, it's the hands and feet that conducts the workforce.

The nodes are controlled by the primary in most cases. The interfaces between the cluster and you is
the command-line tool kubectl. It is installed as a client application, either in the same primary node or in
a separate machine.

Kubernetes'’s objects are Pod, Service, Volume, Namespace, Replication, Controller, ReplicaSet,
Deployment, StatefulSet, DaemonSet, and Job

See Junos OS Feature Supported on cSRX Container Firewall for a summary of the features supported
on cSRX.

Benefits

A cSRX running in a Kubernetes cluster provides the following benefits:
e Operates services with a reduced footprint.
e Facilitates quicker scale out and sacle in of the cSRX.

e Automates management and regulation of workflow processes.

What is a Container?

Kubernetes Concepts

https://www.juniper.net/documentation/us/en/software/csrx/csrx-consolidated-deployment-guide/topics/concept/security-csrx-docker-feature-support.html
https://www.docker.com/what-container
https://kubernetes.io/docs/concepts/

CHAPTER 1

Deploy and Configure cSRX in Kubernetes

IN THIS CHAPTER

Requirements for Deploying cSRX in Kubernetes | 31

cSRX Environment Variables | 32

Download cSRX Software | 36

Automate Initial Configuration Load with Kubernetes ConfigMap | 38
cSRX Pods With External Network | 41

cSRX Pods With Internal Network | 47

cSRX Deployment in Kubernetes | 51

cSRX Image with Packaged Preinstalled Signatures | 58

cSRX Service with Load Balancing | 62

Requirements for Deploying cSRX in Kubernetes

IN THIS SECTION

Platform and Server Requirements | 31

This section presents an overview of requirements for deploying a cSRX container on Kubernetes:

Platform and Server Requirements

Table 5 on page 32 lists the requirements for deploying a cSRX container in a Kubernetes (Primary and
Worker) node.

Table 5: Primary and Worker Node Specifications

Component Specification

CRI-O or Podman Compatible with platforms like OpenShift 4 and RHEL 8
vCPUs 2

Memory 4 GB

Disk space 50 GB hard drive

Interfaces 16

The environment variable CSRX_PORT_NUM is set to=17.

Kubernetes 1.16to 1.18

cSRX Environment Variables

IN THIS SECTION

Adding License key File | 35

Setting Root Password | 36

CRI-O or Podman runtimes allow you to store data such as configuration settings as environment
variables. At runtime, the environment variables are exposed to the application inside the container. You
can set any number of parameters to take effect when the cSRX image launches. You can pass
configuration settings in the YAML file or environment variables to the cSRX when it launches at boot
time.

Table 6 on page 33 summarizes the list of available cSRX environment variables.

Table 6: Summary of cSRX Container Firewall Environment Variables

Environment Variable

CSRX_AUTO_ASSIGN_IP

CSRX_MGMT_PORT_REORDER

CSRX_TCP_CKSUM_CALC

CSRX_LICENSE_FILE

CSRX_JUNOS_CONFIG

CSRX_SD_HOST

CSRX_SD_USER

CSRX_SD_DEVICE_IP

CSRX_SD_DEVICE_PORT

CSRX_FORWARD_MODE

Mandatory = Description

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Automatically configure cSRX ge-0/0/x IP address based on IP
address of cSRX container when the cSRX works in routing
mode.

Multus CNI is supports to create more Pod interfaces in
Kubernetes. If set to yes, the Pod interface IP address is
automatically assigned to cSRX revenue port.

If set to yes, the last Pod interface is changed to management
interface. Else, the first Pod interface is management interface.

If set to yes, cSRX re-compute to correct TCP checksum in
packets.

If set, license file is loaded through ConfigMap.

If set, initial configuration of cSRX is loaded through ConfigMap.

It is used to define Security Director (SD) server IP address or
FQDN address.

It is used to define Security Director server login account name.

It is used to define cSRX management IP address, which is used
by Security Director to connect to cSRX. Else it uses Port IP
address.

It is used to define cSRX management port, which is used by
Security Director to connect to cSRX. Otherwise it uses the
default port number 22.

It is used in traffic forwarding mode.

"routing" | "wire"

Table 6: Summary of cSRX Container Firewall Environment Variables (Continued)

Environment Variable

CSRX_PACKET_DRIVER

CSRX_CTRL_CPU

CSRX_DATA_CPU

CSRX_ARP_TIMEOUT

CSRX_NDP_TIMEOUT

CSRX_PORT_NUM

Mandatory = Description

Optional

Optional

Optional

Optional

Optional

Optional

It is used in Packet |/O driver.

"poll" | "interrupt"

CPU mask, indicating which CPU is running the cSRX control
plane daemons (such as nsd, mgd, nstraced, utmd, and so on).

No CPU affinity

hex value

CPU mask, indicating which CPU is running the cSRX data plane
daemon (srxpfe).

No CPU affinity

hex value

ARP entry timeout value for the control plane ARP learning or
response.

decimal value

Same as the Linux host

NDP entry timeout value for the control plane NDP learning or
response.

decimal value

Same as the Linux host

Number of interfaces you need to add to container.

Default is 3, maximum is 17 (which means 1 management
interfaces and 16 data interfaces)

Adding License key File

You can import saved local license key file to cSRX Pod using environment variable CSRX_LICENSE_FILE using
Kubernetes ConfigMaps.

1. Save the license key file in a text file.
2. Create ConfigMap in Kubernetes.

root@kubernetes-master: ~#kubectl create configmap csrxconfigmap --from-file=<file path>/var/tmp/
csrxlicensing

3. Create cSRX using ConfigMaps to import the user defined configuration

deployment.spec.template.spec.containers.
env:
- name: CSRX_LICENSE_FILE
value: "/var/local/config/.csrxlicense"
volumeMounts:
- name: lic
mountPath: "/var/local/config"
deployment.spec.template. spec.
volumes:
- name: lic
configMap:
name: csrxconfigmap
items:
- key: csrxlicensing

path: csrxlicensing

4. Run the following command to create cSRX deployment using yaml file.
root@kubernetes-master:~tkubectl apply -f csrx.yaml

5. Login to cSRX pods to verify the license installed
root@kubernetes-master: ~tkubectl exec -it csrx bash
root@csrx: ~#cli

root@csrx>show system license

Setting Root Password

You can set root password using Kubernetes secrets.
1. Create a generic secret in Kubernetes cSRX home namespce.

root@kubernetes-master: ~tkubectl create secret generic csrxrootpasswd --fromliteral=
CSRX_ROOT_PASSWORD=XXXXX

2. Run the following command to verify the password is created.
root@kubernetes-master: ~tkubectl describe secret csrxrootpasswd

3. Run the following command to use Kubernetes Secrets to save root password in cSRX deployment
yaml file.

deployment.spec.template.spec.containers.
env:

- name: CSRX_ROOT_PASSWORD

valueFrom:

secretKeyRef:

name: csrxrootpasswd

key: CSRX_ROOT_PASSWORD

4. Run the following command to create cSRX deployment using yaml file.

root@kubernetes-master:~tkubectl apply -f csrx.yaml

Download cSRX Software

To download the cSRX software:

1. Download the cSRX software image from the Juniper Networks website. The filename of the
downloaded cSRX software image must not be changed to continue with the installation.

2. You can either download the cSRX image file using the browser or use the URL to download the
image directly on your device as in the following example:

Run the following command to downloaded images to a local registry using curl command or any
other http utility. The syntax for curl commands is:

root@csrx-ubuntu3: ~csrx# curl -o <file destination path> <Download link url>

https://www.juniper.net/support/downloads/?p=csrx#sw

root@csrx-ubuntu3:/var/tmp# curl -o /var/tmp/images/junos-csrx-docker-20.3R1.10.img “https:/
cdn.juniper.net/software/csrx/20.2R1.10/junos-csrx-docker-20.3R1.10.img?
SM_USER=user&__gda__=1595350694_5dbf6e62442de6bf14079d05a72464d4”

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 160M 100 160M 0 0 1090k 0 0:02:30 0:02:30 --:--:-- 1230k

3. Locate the cSRX image by using the 1s Linux shell command.
root@csrx-ubuntu3:/var/tmp/images# Is

4. Load the downloaded cSRX image from the download site to the local registry using the following
command.

root@csrx-ubuntu3:/var/tmp/images# podman image load -i /var/tmp/images/junos-csrx-
docker-20.2R1.10.img

€758932b9168: Loading layer [>] 263MB/
263MB

23f7a9961879: Loading layer [>] 14.51MB/
14.51MB

1e4139e6fa81: Loading layer [>] 270.3MB/
270.3MB

10334b424f86: Loading layer [>] 16.9kB/
16.9kB

202ebb2f1137: Loading layer [>] 2.56kB/
2.56kB

bc4al16173327: Loading layer [>] 1.536kB/
1.536kB

8f9a9945544a: Loading layer [>] 2.048kB/
2.048kB

Loaded image: csrx:20.2R1.10

5. After the cSRX image loads, confirm that it is listed in the repository of podman container runtime
images.

root@csrx-ubuntu3:/var/tmp/images# podman images

REPOSITORY TAG IMAGE ID CREATED
SIZE
csrx 20.2R1.10 88597d2d4940 2 weeks ago

534MB

Automate Initial Configuration Load with Kubernetes ConfigMap

IN THIS SECTION

Load Initial Configuration with Kubernetes ConfigMap | 38

Load Initial Configuration with Kubernetes ConfigMap
ConfigMap is Kubernetes standard specification.

ConfigMaps allow you to decouple configuration artifacts from image content to keep containerized
applications portable. The cSRX uses ConfigMaps to load initial configuration file at cSRX container
startup.

You can also add license from license key file using the steps similar to loading the initial configuration
file in kubernetes.

To create cSRX ConfigMap according to cSRX initial configurations:

1. Create the cSRX.yaml file on Kubernetes-master and add the text content to deploy cSRX Pod with
ConfigMap:

apiVersion: vilkind: ConfigMap
metadata:

name: csrx-config-map

data: csrx_config: | interfaces { ge-0/0/0 { unit 0; } ge-0/0/1 { unit @; } } security
{ policies { default-policy { permit-all; } } zones { security-zone trust { host-inbound-
traffic { system-services { all; } protocols { all; } } interfaces { ge-0/0/0.0; } } security-
zone untrust { host-inbound-traffic { system-services { all; } protocols { all; } }
interfaces { ge-0/0/1.0; } } } }

root@kubernetes-master: ~tkubectl create -f pod_with_configmap.txt

apiVersion: vi
kind: Pod
spec:
containers:
- name: csrx
securityContext:
privileged: true

image: csrx-image:20.3

env:
- name: CSRX_HUGEPAGES
value: "no"

- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "routing"
volumeMounts:
- name: disk
mountPath: "/dev"
- name: config
mountPath: "/var/jail"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory
- name: config
configMap:
name: csrx-config-map
items:
- key: csrx_config

path: csrx_config------------------

. Run the following command to create cSRX using yaml file.
root@kubernetes-master: ~¥kubectl apply -f csrx.yaml
. Run the following command to start cSRX in CLI mode

root@kubernetes-master: ~#kubectl exec -it csrx bash

root@csrx: ~#cli

root@csrx#configure

Entering configuration mode

4. After the cSRX Pod startup, you can check the initial configuration from cSRX CLI.

root@srx> show

Last changed: 2019-10-18 01:53:36 UTC
version "20190926.093332_rbu-builder.r1057567 [rbu-builder]";
interfaces {
ge-0/0/0 {
unit 0 {
family inet {
address 20.0.0.11/24;

}
ge-0/0/1 {
unit @ {
family inet {
address 30.0.0.11/24;

}
security {
policies {
default-policy {
permit-all;

}
zones {
security-zone trust {
host-inbound-traffic {
system-services {

all;

}

protocols {
all;

}

interfaces {
ge-0/0/0.0;

}

security-zone untrust {
host-inbound-traffic {

system-services {

all;
}
protocols {
all;
}
}
interfaces {
ge-0/0/1.0;
}

cSRX Pods With External Network

IN THIS SECTION

Know About cSRX Pods with External Network | 41
Connect cSRX to External Network | 42

Configure Nodeport Service for cSRX Pods | 46

Know About cSRX Pods with External Network

You can connect cSRX Container Firewall with external network with two additional interfaces. Both
interfaces are attached into srxpfe and handled by FLOW.

cSRX can leverage Linux native CNI to connect to external network.

cSRX use Multus plugin to support multiple interfaces connect to the external network. Applications
which monitor network traffic are directly connected to the physical network. You can use the macvlan

network driver to assign a MAC address to each container’s virtual network interface, making it appear
to be a physical network interface directly connected to the physical network. In this case, you need to
designate a physical interface on your container runtime host to use for the macvlan, as well as the subnet
and gateway of the macvlan. You can even isolate your macvlan networks using different physical network
interfaces.

Connect cSRX to External Network

macvlan functions like a switch that is already connected to the host interface. A host interface gets
enslaved with the virtual interfaces sharing the physical device but having distinct MAC addresses. Since
each macvlan interface has its own MAC address, it makes it easy to use with existing DHCP servers
already present on the network.

To connect cSRX with external network using macvlan:

Figure 3: Connecting cSRX Container Firewall to External Network with Macvlan Plugin

K8s Management Network

Contrail / Ubuntu 18.04 Server

! 0 etho -

: (W I

E 55%,3 CSRX I

: K8s Pod |
net1:20.0.0.11 net2:30.0.0.11

1 1
1 1
: Contrail/Linux CNI Contrail/Linux CNI :
l :
! 1

Contrail / Linux Plugin

ethl eth2

eth1:20.0.0.3 eth2:30.0.0.3

301194

External Server 1 External Server 1

42

Figure 4: cSRX Container Firewall in External Network

Cluster

POD

VM1
cSRX

VM2

1. Create the network-conf-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {
"type": "static",
"addresses": [
{
"address": "20.0.0.10/24",
"gateway": "20.0.0.2"

[P
"routes": [
{ "dst": "0.0.0.0/0" },
{ "dst": "30.0.0.0/24", "gw": "20.0.0.11" }

301151

2. Create the network-conf-1-1.yaml file and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {
"type": "static",
"addresses": [
{
"address": "20.0.0.11/24",
"gateway": "20.0.0.2"

1,
"routes": [
{ "dst": "0.0.0.0/0" }

}
} 1

3. Create the network-conf-2-1.yaml and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-2-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth2",
"mode": "bridge",
"ipam": {
"type": "static",
"addresses": [

{

"address": "30.0.0.11/24",
"gateway": "30.0.0.2"

}
[P
"routes": [

{ "dst": "0.0.0.0/0" }
]

3
} 1

4. Create the network-conf-2.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-2
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth2",
"mode": "bridge",
"ipam": {
"type": "static",

"addresses": [

{
"address": "30.0.0.10/24",
"gateway": "30.0.0.2"
}
I
"routes": [
{ "dst": "0.0.0.0/0" },
{ "dst": "20.0.0.0/24", "gw": "30.0.0.11" }
]

3
} 1

5. Create the cSRX.yaml file and add the text content.
apiVersion: vi

kind: Pod

metadata:

name: csrx
annotations:
k8s.v1.cni.cncf.io/networks: network-conf-1@eth1,network-conf-1-1@eth2
spec:
containers:
- name: csrx
securityContext:
privileged: true

image: csrx-images:20.2

env:
- name: CSRX_HUGEPAGES
value: "no"

- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "routing"
volumeMounts:
- name: disk
mountPath: "/dev"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory

Configure Nodeport Service for cSRX Pods

You can deploy cSRX with Nodeport service type. All the traffic is forwarded to worker node by
Kubernetes in the external network.

To create a NodePort service:

1. Create the cSRX Pod yaml file and expose it as service on NodePort.

------------------ apiVersion: vi1
kind: Service
metadata:

name: csrx]
spec:

selector:

app: csrxl
ports:

- name: ssh

port: 22
nodePort: 30122
type: NodePort

2. To access cSRX:
root@kubernetes-master:~#ssh -p 30122 root@192.168.42.81

cSRX Pods With Internal Network

With bridge plugin, all containers on the same host are plugged into a bridge (virtual switch) that resides
in the host network name space. The containers receive one end of the veth pair with the other end
connected to the bridge. An IP address is only assigned to one end of the veth pair in the container. The
bridge itself can also be assigned an IP address, turning it into a gateway for the containers.
Alternatively, the bridge can function in L2 mode and must be bridged to the host network interface (if
other than container-to-container communication on the same host is desired). The network
configuration specifies the name of the bridge to be used.

To connect cSRX with external network using bridge:

Figure 5: Connecting cSRX Container Firewall to Internal Network with Bridge Plugin

K8s Management Network

Ubuntu 18.04 Server

[} ;
ooo
oo
O
U

eth1:20.0.0.3

1
i
1
cSRX :
1
1
1

Contrail/Linux CNI Contrail/Linux CNI

Linux Plugin

eth2:20.0.0.5

srvpodl srvpod2

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "bridge",
"bridge": "south-bridge",
"promiscMode": true,
"ipam": {
"type": "static",
"addresses": [

{

1. Create the network-conf-1-1.yaml file and add the text content.

"address": "20.0.0.20/24",
"gateway": "20.0.0.1"

2301195

48

1,
"routes": [
{ "dst": "0.0.0.0/0" }

}
} 1

2. Create the network-conf-2-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-2-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "bridge",
"bridge": "north-bridge",
"promiscMode": true,
"ipam": {
"type": "static",
"addresses": [
{
"address": "20.0.0.30/24",
"gateway": "20.0.0.1"

A
"routes": [
{ "dst": "0.0.0.0/0" }

3
} 1

3. Create the srv-pod-1.yaml file and add the text content.

apiVersion: vi
kind: Pod
metadata:
name: srv-pod-1
annotations:
k8s.v1.cni.cncf.io/networks: network-conf-1-1@north@
spec:

containers:
- name: srv-pod-1
securityContext:
privileged: true
image: docker.io/centos/tools:latest
command:
- /sbin/init

4. Create the cSRX.yaml file and add the text content.

apiVersion: vi
kind: Pod
metadata:
name: csrx
annotations:
k8s.v1.cni.cncf.io/networks: network-conf-1-1@eth1,network-conf-2-1@eth2
spec:
containers:
- name: csrx
securityContext:
privileged: true

image: csrx-images:20.2

env:
- name: CSRX_HUGEPAGES
value: "no"

- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "wire"
volumeMounts:
- name: disk
mountPath: "/dev"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory

5. Create the srv-pod-3.yaml file and add the text content.

apiVersion: vi
kind: Pod

metadata:
name: srv-pod-3
annotations:
k8s.v1.cni.cncf.io/networks: network-conf-2-1@north@
spec:
containers:
- name: srv-pod-3
image: docker.io/centos/tools:latest
command:
- /sbin/init

cSRX Deployment in Kubernetes

IN THIS SECTION

Install cSRX in Kubernetes Linux Server | 51

Deploy cSRX Pods in Kubernetes Linux Server | 52
Upgrade cSRX Image Using Deployment Rollout | 56
cSRX Image Rollback | 57

Scale cSRX Deployment | 57

Install cSRX in Kubernetes Linux Server
Prerequisites

Following are the prerequisites required for installing cSRX Container Firewall on one primary node
and 'n’ number of worker nodes. Before you begin the installation:

¢ Install kubeadm tool on both primary and worker nodes to create a cluster. See Install Kubeadm

e Install and configure CRI-O or Podman runtime on Linux host platform to implement the Linux
container environment.

o Verify the system requirement specifications for the Linux server to deploy the cSRX Container
Firewall, see "Requirements for Deploying cSRX in Kubernetes" on page 31.

e Download cSRX Container Firewall software, see "Download cSRX Software" on page 36.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

Deploy cSRX Pods in Kubernetes Linux Server

You can create cSRX Container Firewall as a Pod in routing mode and secure-wire mode to send traffic
from one virtual machine to another virtual machine. You can define multiple virtual networks and
connect cSRX Container Firewall interfaces to those virtual networks.

The network attachment definition is created with plugin ipam type as host-local which allocates IPv4 and
IPvé6 addresses out of a specified address range to ensure the uniqueness of IP addresses on a single
host. The ipam type as static assigns IPv4 and IPvé addresses statically to container.

To deploy cSRX Container Firewall with Kubernetes:

Figure 6: Deploying cSRX Container Firewall

Cluster

POD

VM1 VM2
cSRX

301151

1. Create network attachment definition for cSRX Container Firewall-eth1, cSRX Container Firewall-
eth2 with type: bridge . For details on type: bridge and type: macvlan networks, see "cSRX Pods With
External Network" on page 41.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "bridge",
"bridge": "br-1",
"isDefaultGateway": true,
"promiscMode": true,
"ipam": {
"type": "host-local",

"ranges": [

L
{
"subnet": "10.10.0.0/16",
"rangeStart": "10.10.1.20",
"rangeEnd": "10.10.3.50"
}
]
1,
"routes": [

{ "dst": "0.0.0.0/0" }

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "bridge",
"bridge": "br-2",
"isDefaultGateway": true,
"promiscMode": true,
"ipam": {

"type": "host-local",

"ranges": [
[
{
"subnet": "55.0.0.0/16",
"rangeStart": "55.0.0.11",
"rangeEnd": "55.0.0.21"
}
]
1
"routes": [

{ "dst": "0.0.0.0/0" }

To create network interfaces with type:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-1-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth1",
"mode": "bridge",
"ipam": {
"type": "static",
"addresses": [

{

macvlan.

"address": "20.0.0.11/24",
"gateway": "20.0.0.2"

])
"routes": [
{ "dst": "0.0.0.0/0" }

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: network-conf-2-1
spec:
config: '{
"cniVersion": "0.3.0",
"type": "macvlan",
"master": "eth2",
"mode": "bridge",

"ipam": {

"type": "static",
"addresses": [

{
"address": "30.0.0.11/24",
"gateway": "30.0.0.2"
}
1
"routes": [
{ "dst": "0.0.0.0/0" }
]

}
} 1

. Create the cSRX Container Firewall-deployment.yaml file on Kubernetes-master using kind:
Deployment. cSRX Container Firewall as kind: Deployment is used to create ReplicaSet, Scaling, Rollout,
Rollback in Kubernetes in this topic.

apiVersion: apps/v1
kind: Deployment
metadata:
name: csrx-deployment
labels:
app: firewall
spec:
replicas: 5
selector:
matchLabels:
app: firewall
template:
metadata:
labels:
app: firewall
annotations:
k8s.v1.cni.cncf.io/networks:
network-conf-1@eth1, network-conf-1-1@eth2
spec:
containers:
- name: CSrx
securityContext:
privileged: true

image: csrx-images:20.2

env:
- name: CSRX_SIZE
value: "CSRX-2CPU-4G"
- name: CSRX_HUGEPAGES
value: "no"
- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "routing"
volumeMounts:
- name: disk
mountPath: "/dev"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory

3. View the cSRX Container Firewall deployment:

root@kubernetes-master: ~tkubectl get deployment csrx-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
csrx-deployment 5/5 5 5 119m

Upgrade cSRX Image Using Deployment Rollout
You can upgrade the cSRX Container Firewall software image using Kubernetes Deployment rollout.

1. Run the following command to upgrade cSRX Container Firewall image using Kubernetes
Deployment name in the cSRX Container Firewall Pod:

root@kubernetes-master:~#kubectl set image deployment csrx-deployment csrx=<new-csrx-image>
NAME READY UP-TO-DATE AVAILABLE AGE
csrx-deployment 5/5 5 5 119m

2. Run the following command to monitor rollout status:

root@kubernetes-master:~#kubectl rollout history deployment csrx-deployment

root@kubernetes-master: ~tkubectl rollout status -w deployment csrx-deployment

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are pending

termination. ..

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are pending
termination. ..

deployment "csrx-deployment" successfully rolled out

You can verify the upgraded image version by logging into the newly created cSRX Container Firewall

Pods.

cSRX Image Rollback

The cSRX Container Firewall image can be rolled back to previous version using Kubernetes Deployment

rollout components.

1.

Rollack cSRX Container Firewall image using Kubernetes Deployment rollout undo:
root@kubernetes-master: ~#kubectl rollout history deployment csrx-deploy

Rollback to previous Deployment.

root@kubernetes-master: ~tkubectl rollout undo deployment csrx-deploy

Rollback to a specified version.

root@kubernetes-master: ~#kubectl rollout undo deployment csrx-deploy --to-version=2

Monitor the old cSRX Container Firewall Pods are terminated and new cSRX Container Firewall Pods
are created.

root@kubernetes-master: ~#kubectl rollout history deployment csrx-deploy
root@kubernetes-master: ~#kubectl rollout status -w deployment csrx-deploy

You can verify the image version that has been rolled back by logging into the newly created cSRX
Container Firewall Pod.

Scale cSRX Deployment

To scale the cSRX Container Firewall deployment:

1.

Ensure to have cSRX Container Firewall Pods created in kind: deployment running in Kubernetes
cluster.

root@kubernetes-master: ~#kubectl describe deployment csrx-deployment

. Scale up or down by changing the replicas number:

root@kubernetes-master: ~#kubectl scale deployment csrx-deployment --replicas=2

View the pods:

root@kubernetes-master: ~#kubectl get pod

NAME READY STATUS RESTARTS AGE
csrx-deployment-547fcf68dd-7hl7r 1/1 Running @ 8m8s
csrx-deployment-547fcf68dd-xbgdb 1/1 Running 0 35s

cSRX Image with Packaged Preinstalled Signatures

IN THIS SECTION

What Are Preinstalled Signatures? | 58
Repackage cSRX Image with Preinstalled Signatures | 58
Download Juniper Signature Pack | 60

Download Juniper Signature Pack Through Proxy Server | 60

What Are Preinstalled Signatures?

To support pre-installed signatures package in cSRX Container Firewall image, a Docker file is placed in
localhost repository to help user compile cSRX Container Firewall with installed signatures. With the
new image, you can launch cSRX Container Firewall Pod, that protects workload immediately after
container is launched.

The supported functions for signature packaging are:
e Intrusion Detection and Prevention (IDP)
e Application Identification (AppID)

e Content Security

Repackage cSRX Image with Preinstalled Signatures

e Ensure to have the cSRX Container Firewall image placed in the local repository or any other Docker
registry.

e Ensure to include license file together with Docker file.

To repackage cSRX Container Firewall image with signatures:

1. Create DockerFile.

root@host# cat Dockerfile

FROM localhost:5000/csrx

ARG CSRX_BUILD_WITH_SIG=yes

ENV CSRX_LICENSE_FILE=/var/local/.csrx_license
COPY csrx.lic $CSRX_LICENSE_FILE

RUN ["/etc/rc_build.local"]

CMD ["/etc/rc.local","init"]

The ARG CSRX_BUILD_WITH_SIG=yes triggers for APPID and IDP signature auto installation.

The optional ENV CSRX_LICENSE_FILE=/var/local/.csrx_license and COPY csrx.lic $CSRX_LICENSE_FILE commands
are used to install owned license to cSRX Container Firewall container.

2. Repackage image to include APPID and IDP signature.
root@host# docker build -t localhost:5000/csrx-sig
3. Push the image to the registry.

root@host# docker push localhost:5000/csrx-sig

The new cSRX Container Firewall image localhost:5000/csrx-sig:latest is ready for use.
4. Change the mode to CLI.

root@host# ke -it csrx-sig -- bash

root@csrx-sig:/# cli
5. View the APPID status.

root@csrx-sig> show services application-identification status

Application Identification

Status Enabled
Sessions under app detection 0
Max TCP session packet memory 0
Force packet plugin Disabled
Force stream plugin Disabled

Statistics collection interval 1440 (in minutes)

Application System Cache
Status Enabled
Cache lookup security-services Disabled
Cache lookup miscellaneous-services Enabled
Max Number of entries in cache 0

Cache timeout 3600 (in seconds)

Protocol Bundle
Download Server https://signatures.juniper.net/cgi-bin/index.cgi
AutoUpdate Disabled

Proxy Details

Proxy Profile Not Configured
Slot 1:

Application package version 0

Status Free

PB Version N/A

Engine version 0

Micro-App Version 0

Sessions 0

Rollback version details:

Application package version 0

PB Version N/A
Engine version N/A
Micro-App Version N/A

6. View IDP package version.

root@csrx-sig> show security idp security-package-version

Attack database version:N/A(N/A)
Detector version :12.6.130180509

Policy template version :N/A

Download Juniper Signature Pack

You can download the signature pack from the Juniper Signature Repository directly when cSRX
Container Firewall doesn’t have a preinstalled signature pack.

To download the signature pack from Juniper Signature Repository:

root@host> request services application-identification download

root@host> request security idp security-package download

Download Juniper Signature Pack Through Proxy Server

You can download the signature pack through a proxy server. ApplDD and IDPD processes first
connects to the configured proxy server. The proxy server then communicates with the signature pack
download server and provides the response to the process running on the device.

https://www.juniper.net/documentation/us/en/software/junos/application-identification/topics/topic-map/security-application-identification-predefined-signatures.html#downloading-and-installing-the-junos-os-application-signature-package-as-part-of-the-idp-security-package
https://www.juniper.net/documentation/us/en/software/junos/application-identification/topics/topic-map/security-application-identification-predefined-signatures.html#downloading-and-installing-the-junos-os-application-signature-package-as-part-of-the-idp-security-package

To download the signature pack through the proxy server:

1. Configure the proxy server so that the IP address of the proxy server is reachable from cSRX
Container Firewall.

2. Run the following command to enter the configuration mode from the CLI.

root@host> configure

Entering configuration mode

[edit]

root@host#

3. Configure the proxy server profile on cSRX Container Firewall using the IP address and port of the
proxy server.

root@host#set services proxy profile appid_sigpack_proxy protocol http host 4.0.0.1

root@host#set services proxy profile appid_sigpack_proxy protocol http port 3128
4. Attach the profile to AppID and IDP.

root@hosti#set services application-identification download proxy-profile appid_sigpack_proxy

root@host#set security idp security-package proxy-profile appid_sigpack_proxy
5. Commit the configuration.

root@host#commit and-quit

commit complete

Exiting configuration mode

6. Download the IDP and APPID signature pack through proxy server.

root@host>request services application-identification download
root@host>request security idp security-package download
To verify that the download is happening through the proxy server:
1. Verify the logs in the proxy server.

[root@srxdpi-1nx39 squid]# cat /var/log/squid/access.log

1593697174.470 1168 4.0.0.254 TCP_TUNNEL/200 5994 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697175.704 1225 4.0.0.254 TCP_TUNNEL/200 11125 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -

1593697176.950 1232 4.0.0.254 TCP_TUNNEL/200 5978 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697178.195 1236 4.0.0.254 TCP_TUNNEL/200 11188 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697198.337 1243 4.0.0.254 TCP_TUNNEL/200 6125 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -

In cSRX Container Firewall, the TLS protocol is used and traffic the through proxy server is
encrypted.

cSRX Service with Load Balancing

IN THIS SECTION

Know About cSRX as Kubernetes Service with Load Balancing Support | 62

Configure Ingress Service for cSRX Pods | 65

Know About cSRX as Kubernetes Service with Load Balancing Support

cSRX Container Firewall Pod is identified with predefined selectors and exposed with supported load
balancer to distribute traffic among different cSRX Pods. The standard load balancer is ingress controller,
external load balancer or cluster IP.

A Service enables network access to a set of Pods in Kubernetes. Services select Pods based on their
labels. When a network request is made to the service, it selects all Pods in the cluster matching the
service's selector, chooses one of them, and forwards the network request to it. A deployment is
responsible for keeping a set of pods running.

63

Figure 7: Services and Labels

..

’ Service B 10.10.9.2 3

! 10.10.10.2 10.10.10.4 10.10.10.3 :

H] O 0, | € Label
N o oA O ik

s:app=A Label Selector
Service A 10.10.9.1
10.10.10.1
O
A app-A
o s:app=A

g301120

Service is to group a set of Pod endpoints into a single resource. By default, clients inside the cluster can
access Pods in the Service using cluster IP address. A client sends a request to the IP address, and the
request is routed to one of the Pods in the Service. The types of Services are Cluster|P (default),
NodePort, LoadBalancer, and ExternalName.

Figure 8: NodePort

Kubernetes

Node ."
Port

Service

2301119

When you set a service's type to NodePort, that service starts to listen on a static port on every node in
the cluster. So, you can reach the service through any node’s IP address and the assigned port.

64

Figure 9: LoadBalancer

Kubernetes

Load Balancer

2301118

When you set a service'’s type to Load Balancer, it exposes the service externally. However, to use it, you
need to have an external load balancer. The external load balancer needs to be connected to the internal
Kubernetes network on one end and opened to public-facing traffic on the other in order to route
incoming requests.

Figure 10: Ingress Controller

Kubernetes

Ingress Controller

............

2301117

An Ingress Controller watches for new services within the cluster and dynamically creates routing rules
for them. An Ingress object is an independent resource, apart from Service objects that configures
external access to service’s pods. You can define the Ingress, after the Service has been deployed, to
connect it to external traffic. This way, you can isolate service definitions from the logic of how clients
connect to them. L7 routing is one of the core features of Ingress, allowing incoming requests to be
routed to the exact pods that can serve them based on HTTP characteristics such as the requested URL
path. Other features include terminating TLS, using multiple domains, and load balancing traffic.

Nginx ingress controller is supported to view the traffic distribution among different cSRX Pods. For
more details, see Set Up Ingress on Kubernetes Using Nginx Controller.

Configure Ingress Service for cSRX Pods

Service is used by cSRX to connect application with cSRX Pods. cSRX Service is standard Kubernetes
service, in which, the load is balanced to different cSRX Pods, and the Pods are located at different work
nodes. It also monitors the backend cSRX Pod and selects working cSRX Pod according to Kubernetes
Pod labels. You can use YAML file to create a cSRX service.

To create a cSRX service:

1. Create the yaml file and add the following text content:

------------------ apiVersion: vi1
kind: Service
metadata:

labels:
app: firewall

name: firewall

spec:

selector:
app: firewall

ports:

- name: port-1
port: 80
protocol: TCP
targetPort: 80

2. Define routing for cSRX Pods. Ingress co-operates with Ingress controller to route outside traffic into
cSRX service, then into cSRX Pods. Create a file named ingress.yaml.

apiVersion: networking.k8s.io/vi1betal
kind: Ingress
metadata:
name: web-ingress
namespace: default
spec:
rules:
- host: foo.bar
http:
paths:
- path: /

https://devopscube.com/setup-ingress-kubernetes-nginx-controller/

backend:

se

se

Traffic routes
3. View the cSR

rviceName: firewall

rvicePort: 80

to cSRX interface on ge-0/0/0.

X service.

root@kubernetes-master:~tkubectl get svc -A

NAMESPACE
PORT(S)
default

TCP

default

TCP

default

TCP

default

TCP
kube-system
TCP,9153/TC

4. View the Pod

NAME TYPE CLUSTER-IP
AGE
csrx-service ClusterIP 10.102.115.211
13d
kubernetes ClusterIP 10.96.0.1
75d
nginx NodePort 10.110.8.221
18d
test-service ClusterIP 10.108.236.26
11d
kube-dns ClusterIP 10.96.0.10
P 75d

root@kubernetes-master:~#kubectl get pod -A

NAMESPACE
RESTARTS
default

0

default

0

NAME
AGE

csrx-deployment-86f49b8dcf-7zzq9
11d

csrx-deployment-86f49b8dcf-dménv
11d

EXTERNAL-IP

<none>

<none>

<none>

<none>

<none>

80/

443/

80:31454/

80/

53/UDP, 53/

READY STATUS

11 Running

11 Running

cSRX Container Firewall Deployment
in AWS

cSRX Deployment in AWS Using Elastic Kubernetes Service (EKS) | 68
Deploy and Manage cSRX in AWS | 73

cSRX Deployment in AWS Using Elastic Kubernetes
Service (EKS)

SUMMARY IN THIS SECTION

This topic provides you an overview of cSRX c¢SRX with Kubernetes Orchestration in
Container Firewall Kubernetes orchestration in AWS AWS | 68

Cloud using AWS Elastic Kubernetes Service (EKS). Amazon EKS | 69

cSRX with Kubernetes Orchestration in AWS

IN THIS SECTION

Benefits | 69

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of
containerized applications. With Kubernetes support, the cSRX scales out in a cluster running as an

elastic firewall service with smaller footprint when compared to virtual machines (VMs). Kubernetes
groups containers that make up an application into logical units for easy management and discovery.

Kubernetes defines a set of building objects that collectively provide mechanisms that orchestrate
containerized applications across a distributed cluster of nodes, based on system resources (CPU,
memory, or other custom metrics). Kubernetes masks the complexity of managing a group of containers
by providing REST APIs for the required functionalities.

For more information, see cSRX Container Firewall with Kubernetes.

AWS provides managed Kubernetes for services as part of their offerings. The orchestration and
management of the cSRX in a Kubernetes environment using the Multus Container Network Interface
(CNI) is already supported. With Kubernetes support, you can deploy, manage, and orchestrate, scale out
and scale in the cSRX in a cluster that provides an elastic firewall service to application containers along
with other container workloads in the AWS environment. You can deploy cSRX as Kubernetes Service or
Pods.

https://www.juniper.net/documentation/us/en/software/csrx/csrx-consolidated-deployment-guide/csrx-kubernetes-deployment/topics/concept/security-csrx-kubernetes-overview.html

AWS provides two orchestration services for containers: Amazon Elastic Container Service (ECS) and
Amazon Elastic Kubernetes Service (EKS).

Amazon Elastic Kubernetes Service (EKS): This is a fully managed Kubernetes service. An open source
Kubernetes adaptation and fully supports the open source version. EKS is Amazon managed service that
helps in running Kubernetes application on AWS cloud. EKS helps in setting up Kubernetes control plane
on multiple zones providing high-availability, EKS has the capability to detect and replace unhealthy
control plane instances with automated version upgrades and patches as when required. EKS is fully
integrated with Elastic Container Registry (ECR) which holds container images, Identity and Access
Management (IAM) roles for authentication, AWS VPC for network isolation and Elastic Load Balancing
for load distribution.

You can deploy and manage cSRX in the AWS cloud using EKS orchestration for cluster management
with the bring your own license (BYOL) licensing model.

Benefits

o The managed Kubernetes services reduce the dependencies on setting up and operating the
Kubernetes environment.

e Automated service provisioning and orchestration
e Distributed and multitenancy traffic securing

e Scalable security services with small footprints

Amazon EKS

IN THIS SECTION

Overview | 69

Benefits | 71

Overview

Amazon Elastic Kubernetes Service (Amazon EKS) gives you the flexibility to start, run, and scale
Kubernetes applications in the AWS cloud or on-premises. Amazon EKS helps you provide highly

available and secure clusters and automates key tasks such as patching, node provisioning, and running
updates.

EKS runs upstream Kubernetes and is certified Kubernetes conformant for a predictable experience. You
can easily migrate any standard Kubernetes application to EKS without needing to refactor your code.

EKS makes it easy to standardize operations across environments. You can run fully managed EKS
clusters on AWS. You can have an open source, proven distribution of Kubernetes wherever you want
for consistent operations with Amazon EKS. You can host and operate your Kubernetes clusters on-
premises and at the edge and have a consistent cluster management experience with Amazon EKS.

You can completely utilize the open-source Kubernetes functionality with its Elastic Kubernetes Service
(EKS) on the AWS cloud. All latest Kubernetes updates are available in the EKS framework.

cSRX is supported only on EKS with EC2 instances. EKS is fully integrated with Amazon cloud watch,
Autoscaling groups, AWS Identity and Access Management (IAM) and Amazon Virtual Private Cloud
(VPC) enabling seamless environment to monitor and load balance the cloud application.

AWS with EKS provides a highly scalable control plane that runs on two different zones to provide high
availability support. EKS is completely compatible with open-source Kubernetes, and you can easily
migrate any standard Kubernetes application to EKS.

Figure 11 on page 71 illustrates AWS EKS abstraction architecture.

Figure 11: AWS EKS Abstraction Architecture

kubectl l

AWS EKS
Cluster

Amazon VPC

cSRX cSRX

EKS worker Node 1 EKS worker Node 2 EKS worker Node 3

2301525

AWS proprietary Multus with flannel CNI is supported for EKS cluster deployments.
The cSRX also integrates with other next-generation cloud orchestration tools such as Kubernetes.

The cSRX adds security enforcement points where none have existed before, offering the most
comprehensive network security for Kubernetes deployments.

Benefits

e Provides faster boot time.

e Supports small footprint to deliver highly agile, advanced security services in a container form factor.

cSRX supports easy, flexible, and highly scalable deployment options covering various customer use
cases, including application protection, and microsegmentation through a Docker container
management solution.

The cSRX deployed as a service in a deployment object, allows scale-up and scale down of the cSRX
on demand. It functions as a firewall, protecting workloads deployed in the cluster with the
configuration of rich advanced services.

71

Some deployments require highly agile and lightweight security virtual network functions (VNFs) that
can scale massively. For such deployments, a VM-based VNF is not a scalable solution and requires a
container-based security VNF.

Supports network function service chains, allowing high availability as well as containerized security
that scales in individual network functions as needed.

Provides management flexibility with NETCONF and Junos Space(R) Security Director to support
integration with third-party management and cloud orchestration tools such as Kubernetes. Junos
Space(R)

Also, with EKS, the latest security patches are applied to your cluster’s control plane to ensure
security of your cluster.

CHAPTER 2

Deploy and Manage cSRX in AWS

IN THIS CHAPTER

Deployment of cSRX in AWS Using EKS for Orchestration | 73
cSRX as a Service with Ingress Controller in Amazon EKS | 77
Microsegmentation with cSRX in AWS | 78

cSRX License in AWS Marketplace | 79

Deployment of cSRX in AWS Using EKS for Orchestration

SUMMARY IN THIS SECTION

cSRX Container Firewall deployment on AWS can be Deploy cSRX in AWS Using EKS | 73
achieved as plain docker container on EC2 instance
using Amazon Elastic Kubernetes Service (Amazon
EKS). The cluster management is done by
Kubernetes, assisted by AWS and all Kubernetes
commands work as is in case of EKS for container
creation and management. This topic provides you
details on how you can deploy cSRX on AWS cloud
using Elastic Kubernetes Services (EKS) for
Orchestration.

Sample File for cSRX Deployment | 75

Deploy cSRX in AWS Using EKS
This topic provides you details to deploy the cSRX on AWS cloud.

1. As a prerequisite, install AWS CLI, eksctl, and kubectl packages. For more information, see Getting
started with Amazon EKS.

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

2. Create cluster on EKS using the following CLI command:

eksctl create cluster --name <cluster_name> --version 1.17 --region us-west-2 --nodegroup-

name

<node_group_name> --node-type t3.medium --nodes 2 --nodes-min 1 --nodes-max 3 --ssh-access --
ssh-public-key ~/.ssh/id_rsa.pub --managed --asg-access

3. Monitor the cluster status using the eksctl commands listed below:

ubuntu@ip-172-31-0-168:~$% eksctl get cluster
NAME REGION

csrx-eks-cluster us-west-2

4. Verify the cluster created. Cluster with instance type of t3.medium and 2 worker nodes is created.

kubectl get nodes

NAME STATUS ROLES AGE VERSION
ip-192-168-10-52.us-west-2.compute.internal Ready <none> 7d21h v1.17.9
ip-192-168-33-89.us-west-2.compute.internal Ready <none> 7d21h v1.17.9

5. Start a ¢SRX pod on the EKS cluster using the following .yaml file. Use this yaml file as reference and
run the kubectl command to deploy cSRX pod. Use the cSRX image available on AWS marketplace to
spawn cSRX containers.

kubectl create -f csrx.yaml
6. Verify the deployment using the kubectl command below:
kubectl get deployment csrx

NAME READY UP-TO-DATE AVAILABLE AGE
csrx5 1/1 1 1 2m

Sample File for cSRX Deployment

This topic provides you sample file for deploying cSRX in AWS cloud using AWS EKS orchestration.

vim csrx.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: csrx-byol
labels:
app: csrx-byol
spec:
replicas: 2
selector:
matchLabels:
app: csrx-byol
template:
metadata:
name: csrx-byol
labels:
app: csrx-byol
annotations:
k8s.v1.cni.cncf.io/networks: br-51@eth1, br-52@eth2
spec:
serviceAccountName: csrxpod
containers:
- name: csrx-byol
securityContext:
privileged: true
image: <csrx-image> ## replace image name with repo:tag
ports:
- containerPort: 80
env:
- name: CSRX_SIZE
value: "large"
- name: CSRX_HUGEPAGES
value: "no"
- name: CSRX_PACKET_DRIVER
value: "interrupt"
- name: CSRX_FORWARD_MODE
value: "routing"
- name: CSRX_AUTO_ASSIGN_IP

value: "yes
- name: CSRX_MGMT_PORT_REORDER

value: "yes"
- name: CSRX_TCP_CKSUM_CALC
value: "yes"

- name: CSRX_JUNOS_CONFIG
value: "/var/jail/csrx_config"
- name: CSRX_LICENSE_FILE
value: "/var/jail/.csrx_license"
volumeMounts:
- name: disk
mountPath: "/dev"
- name: config
mountPath: "/var/jail"
volumes:
- name: disk
hostPath:
path: /dev
type: Directory
- name: config
configMap:
name: cm-byol
items:
- key: csrx_config
path: csrx_config
- key: csrx_license
path: .csrx_license
apiVersion: vi1
kind: Service
metadata:
labels:
app: csrx-byol
name: csrx-byol
spec:
selector:
app: csrx-byol
ports:
- protocol: TCP
port: 80
targetPort: 80

77

I cSRX as a Service with Ingress Controller in Amazon EKS

The cSRX Container Firewall can be deployed as a service using a Network Load Balancer with NGINX
Ingress Controller on Amazon EKS. The cSRX deployed as a service in a deployment object allows you to
scale up and scale down by distributing the traffic among different cSRX PODs. Also, cSRX functions as
a firewall, protecting workloads deployed in the cluster with rich advanced security services.

Figure 12 on page 77 illustrates Amazon EKS ingress controller.

Figure 12: Amazon EKS Ingress Controller

Incoming request

EC2 Worker Node ..e

- POD Ingress controller

Amazon VPC

4

—/ — —
i HH i HH i HH
WEB Servers WEB Servers WERB Servers

2301526

To deploy the cSRX as Ingress controller on Amazon EKS:

1. Define and deploy cSRX as K8s POD or as ReplicaSet. This type of deployment is the standard K8s to
define and to manage resource. Also, allows you to deploy cSRX container on specified work nodes,
update or rollback based on your request.

78

2. Use Kubectl and YAML templates to define and to deploy cSRX related resource on command line.
K8s API server can process the request from other applications.

3. Expose cSRX as K8s service with load balancing. Amazon EKS supports Kubernetes Network Load
Balancer (NLB) and Amazon EKS specific Application Load Balancer (ALB).

4. The cSRX POD is identified with predefined selectors and exposed with supported load balancer. The
load balancer is the NGINX ingress controller and AWS NLB as external load balancer.

5. Connect cSRX container to the external network using Multus with flannel CNI. ¢cSRX requires at
least three interfaces (1 management port and 2 revenue ports).

Microsegmentation with cSRX in AWS

With micro-segmentation (East and the West firewall) application interacting in the same EKS, VPC is
secured with the supported application layer security provided by cSRX Container Firewall. Multus-CNI
and flannel is used to support multiple interfaces per POD for micro-segmentation. Multus-CNI and
flannel leverages the Linux native CNI support of bridge and the MAC VLAN to connect to external
interfaces.

Figure 13 on page 78 illustrates AWS EKS microsegmentation with cSRX in AWS.

Figure 13: AWS EKS Microsegmentation

EC2 Worker Node
AWS EKS

Cluster

B o x

Amazon VPC

vSwitch vSwitch
Front-End p— p—
Web —— | CSRX —— Database
Service — —

2301527

cSRX License in AWS Marketplace

e cSRX Container Firewall is available with 60 days free trial eval license (S-cSRX-A1 SKU). The eval
license in cSRX expires after 60 days.

e AWS supports Bring Your Own License (BYOL) licensing model. The BYOL license model allows you
to customize your license, subscription and support to fit your needs. You can purchase BYOL from
Juniper Networks or Juniper Networks authorized reseller.

e The cSRX software features require a license to activate the feature. To understand more about cSRX
licenses, see

e Supported Features on cSRX.
e Juniper Agile Licensing Guide.
o Flex Software License for cSRX.

e To add, delete, and manage licenses, see Managing cSRX Licenses.

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/concept/flex-licenses-for-csrx.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html

cSRX Container Firewall Deployment

in Contrail Host-Based Firewall

cSRX in Contrail Host-Based Firewall | 81
Junos OS Features Supported in cSRX for Contrail HBF | 86
Requirements to Deploy cSRX on Contrail vRouter | 89

Deploy and Configure cSRX Container Firewall into a Contrail Network |
91

cSRX in Contrail Host-Based Firewall

IN THIS SECTION

cSRX Container Firewall on Contrail Host-Based Firewall Overview | 81
cSRX Container Firewall Deployment Modes | 84

License for cSRX Container Firewall | 86

Containerized SRX (cSRX Container Firewall) is a virtual security solution, which is integrated into a
Contrail networking as distributed host-based firewall (HBF) service. cSRX is built based on Docker
container to deliver agile, elastic, and cost-saving security services.

cSRX Container Firewall on Contrail Host-Based Firewall Overview

The cSRX deploys as a single container on a Docker Engine compute node running in a Contrail cluster.
The cSRX runs on a Linux bare-metal server as the hosting platform for the Docker container
environment. The cSRX container packages all the dependent processes and libraries to support the
different Linux host distribution methods (Ubuntu, Red Hat Enterprise Linux, or CentOS).

Several processes inside the Docker container launch automatically when the cSRX becomes active.
Some processes support Linux features, providing the same service that they provide when running on a
Linux host (for example, sshd, rsyslogd, and monit). Other processes are compiled and ported from Junos
OS to perform configuration and control jobs for the security service. For example, MGD, NSD, Content
Security, IDP, and AppID). srxpfe is the data plane daemon that receives and sends packets from the
revenue ports of a cSRX container. cSRX uses srxpfe for Layer 2 (L2) to Layer 3 (L3) forwarding functions
as well as for Layer 4 through Layer 7 network security services.

The distributed software security solution is built on top of Contrail Networking using Contrail
Controller and Contrail vRouter to prevent threats in a customer’s multicloud environment.

When cSRX acts as distributed firewall service on Contrail, Kubernetes is used to orchestrate cSRX
instances on compute nodes. The Kubernetes API server can respond to Contrail Controller after you've
configured host-based firewall (HBF) policies on the Contrail user interface. A cSRX image is pulled from
the Docker registry to compute nodes after the instances are provisioned.

82

You can deploy the cSRX as Contrail microsegmentation-Within a Contrail environment running mixed
workloads of VMs and containers, cSRX can provide security for Layer 4 through 7 traffic, managed by

Security Director.

Figure 14: cSRX Container Firewall on Contrail Host-Based Firewall

Contrail XXMP
@ Controller || vRouter Host Agent

Kubelet
Kubernetes / Kubect! _—

!

Docker Engine

Docker Registry

cSRX
Image
Pull

)

VRouter
Forwarding Plane

cSRX Docker Instance
nsd/mgd/...

- — [

vif

L4-7 Security Policies /
Dynamic Addresses / Logs

vif

cSRX Docker Instance

1
1
1
nsd/mgd/... |
1
1

vif vif

i

Contrail Tenant

m

Contrail Tenant

2300978

This figure illustrates the integration of cSRX with the Contrail HBF using a Docker container. Contrail
Security includes an integrated virtual router (vRouter) that acts as a distributed element on every host
where a cSRX application is created. The vRouter enforces security at Layers 4 through 7 by monitoring

traffic flows and redirecting suspicious traffic to next-generation firewalls.

After you provision the cSRX instances:

e Three vRouter interfaces (VIFs) connect the cSRX instance to the vRouter.

o The management interface is connected to the management virtual network.

e Two secure data interfaces are connected to the left and right virtual networks, receiving packets
steered from the vRouter and sending packets to vRouter after security check.

e Security Director updates L7 security policies and dynamic addresses to the cSRX instances.

e The cSRX instances send security logs to Security Director.

e Each tenant that needs the HBF service starts a private cSRX instance on the compute node.

With Contrail Security, you can define policies and automatically distribute them across all deployments.
You can also monitor and troubleshoot traffic flows inside each cSRX instance and across cSRX
instances.

Contrail HBF supports the cSRX only in secure-wire mode. The secure-wire mode enables advanced
security at the network edge in a multitenant virtualized environment. The cSRX provides Layer 4
through Layer 7 advanced security features such as firewall, IPS, and AppSecure. The cSRX container
also provides an additional interface to manage the cSRX. When the cSRX operates in Layer 2 mode, the
incoming Layer 2 frames from one interface go through Layer 4-Layer 7 processing based on the
configured cSRX services. The cSRX then sends the frames out of the other interface. The cSRX
container either allows the frames to pass through unaltered or drops the frames, based on the
configured security policies.

Figure 15 on page 83 illustrates the cSRX operating in secure-wire mode.

Figure 15: cSRX Container Firewall in Secure-Wire Mode

Docker cSRX Instance
srxpfe Process
L4-7 Services (NAT/UTM/...)

Secure-wire Mode

5 o
Interface
Pair
ge-0/0/0' ge-0/0/1'}
v v
) L]
ethl l!] eth2 @

Virtual
Ethernet

Virtual
Ethernet

ethl-br eth2-br

S
N>

8200094

ethl eth2

84

I cSRX Container Firewall Deployment Modes

Secure Traffic Inside Compute Node
When the cSRX secures traffic inside a compute node, the vRouter steers the traffic that matches the
HBF filter to the cSRX. Flow sessions are created for the traffic sent from the vRouter to the cSRX. After

the cSRX completes the L7 security check, it sends the traffic back to the vRouter, which then forwards
the traffic to the destination as shown in Figure 16 on page 84.

Figure 16: Secure Traffic Inside Compute Node

Flow Session Table

A<>BTCP...
: cSRX Docker Instance :
1 1
B nsd/mgd/utmd/... [
Virtual Machine : : Virtual Machine
1 1
I I
1 1
1 1

1

vif vif vif vif vif

= .

Contrail vRouter

2301003

Secure Traffic Cross Compute Nodes

In this mode, the cSRX works in the same way as when it is securing the traffic inside the compute node.
However, in this case the difference is, vRouter needs to guarantee that traffic is steered to the same
cSRX instance when traffic is crossing different compute nodes. This mode ensures that the cSRX flow
sessions are created and matched in the same cSRX instance in both directions.

Figure 17: Secure Traffic Cross Compute Nodes

Flow Session Table

Virtual Machine

Contrail vRouter Contrail vRouter

Multitenant Support

For supporting multitenancy, there is separate cSRX instance started for each tenant on same compute
node.

Figure 18 on page 86 shows the multitenancy support.

8301004

85

Figure 18: Multitenancy Support

Virtual Machine Virtual Machine

@ Contrail vRouter Contrail vRouter

2301002

I License for cSRX Container Firewall

You need a license to activate the cSRX software features. To understand more about cSRX software
feature licenses, see cSRX Flex Software Subscription Model.

Junos OS Features Supported in cSRX for Contrail
HBF

cSRX Container Firewall provides Layer 4 through 7 secure services for a Contrail HBF in a containerized
environment.Table 7 on page 87 provides a high-level summary of the security features supported on
cSRX.

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the
right software release and hardware platform for your network. See Feature Explorer.

86

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html#jd0e614
https://apps.juniper.net/feature-explorer/

Table 7: Security Features Supported on cSRX Container Firewall HBF

Security Features

Application Tracking (AppTrack)

Application Firewall (AppFW)

Application Identification (AppID)

Basic Firewall Policy

Brute force attack mitigation

DoS/DDoS protection

Intrusion Prevention System (IPS)

IPv4

Interfaces

Jumbo Frames

SYN cookie protection

Malformed packet protection

Routing

Considerations

Understanding AppTrack

Application Firewall Overview

Understanding Application Identification Techniques

Understanding Security Basics

DoS Attack Overview

DoS Attack Overview

For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX

Series

Understanding IPv4 Addressing

Supports two revenue (ge) interfaces.
Out-of-band management Interface (ethO

In-band interfaces (ge-0/0/0 to ge-0/0/1)

Understanding Jumbo Frames Support for Ethernet Interfaces

Understanding SYN Cookie Protection

Supports secure-wire mode forwarding only.

87

https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html

Table 7: Security Features Supported on cSRX Container Firewall HBF (Continued)

Security Features

Content Security

User Firewall

Zones and Zone based IP spoofing

Considerations

Includes support for all Content Security functionality on the
cSRX platform, such as:

e Antispam

e Sophos Antivirus

o Web filtering

o Content filtering

For SRX Series Content Security configuration details, see:

Unified Threat Management Overview

For SRX Series Content Security antispam configuration details,
see:

Antispam Filtering Overview

Includes support for all user firewall functionality on the cSRX
platform, such as:

e Policy enforcement with matching source identity criteria
e |Logging with source identity information

e |Integrated user firewall with active directory

e |local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

Understanding IP Spoofing

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

Requirements to Deploy cSRX on Contrail vRouter

IN THIS SECTION

Contrail Requirements | 89
cSRX Container Firewall Container Interfaces | 90

cSRX Container Firewall Basic Configuration Settings | 90

This topic discusses the requirements for integrating cSRX Container Firewall into Contrail cluster.

Contrail Requirements

Table 8 on page 89 lists the supported platforms and server requirements.

Table 8: Supported Platforms and Server Requirements

Component Specification Release

Contrail Networking 2005

Ubuntu 14.04 and newer
CentOS 6.5 and newer
Redhat 7.0 and newer
vCPU 2 CPU cores

Memory 8 GB

Disk space 40 GB

Table 8: Supported Platforms and Server Requirements (Continued))

Component Specification Release

Network Interfaces 2 Revenue Interfaces

cSRX Container Firewall Container Interfaces

Table 9 on page 90 lists the cSRX container interfaces.

Table 9: cSRX Container Firewall Container Interfaces

Interfaces Purpose Created By
ethO Management Interface Orchestrator
ethl ge-0/0/0 Orchestrator
eth2 ge-0/0/1 Orchestrator
lo Loopback Docker Engine

cSRX Container Firewall Basic Configuration Settings

The cSRX container requires the following basic configuration settings:

e Interfaces must be bound to security zones.

e Policies must be configured between zones to permit or deny traffic.

CHAPTER 3

Deploy and Configure cSRX Container Firewall into a
Contrail Network

IN THIS CHAPTER

cSRX Pod Deployment on Contrail vRouter with Kubernetes | 91

Debug cSRX Container Firewall in Contrail Network | 91

cSRX Pod Deployment on Contrail vRouter with Kubernetes

Before you deploy the cSRX Container Firewall as an advanced security service in the Contrail
Networking cloud environment, ensure that you:

e Review "Requirements to Deploy cSRX on Contrail vRouter" on page 89 for deploying a cSRX
container in a compute node.

Kubernetes is enhanced to support multiple interfaces all supported by a single Contrail Container
Network Interface (CNI) (Network Provider). The cSRX container can be orchestrated on compute nodes
and attached to multiple virtual networks. For a single cSRX container, those virtual networks are either
attached for management purposes or used to collect traffic from vRouter. A cSRX POD can be
deployed with a YAML template in Kubernetes.

To deploy a cSRX POD, see Host-Based Firewalls on a compute node.

Debug cSRX Container Firewall in Contrail Network

IN THIS SECTION

Stop a cSRX Pod | 92

Verify Network Name | 92

https://www.juniper.net/documentation/en_US/contrail20/topics/topic-map/host-based-firewalls.html#jd0e19

Verify Logs | 92

Stop a ¢SRX Pod

By default, cSRX Container Firewall does not mount any external volumes from compute node. When a
new cSRX instance is started, then that instance synchronizes the configuration from Security Director.
Any syslog and security logs are posted to Security Director as well. So cSRX POD can be stopped and

destroyed directly by Contrail Service Orchestration (CSO).

To stop the cSRX POD:
e Run the Docker command to stop cSRX.
kubectl delete -f <csrx-yaml-file>

After the cSRX POD is stopped and destroyed, compute and storage resources of this cSRX POD are
released.

kubectl delete -f <csrx-yaml-file>

Verify Network Name

To verify the network name:

Run the following command to check the network name:
kubectl get network-attachment-definitions -n
Verify Logs

To view and verify logs:

1. Run the following command to access the path for log details:
cat /var/log/contrail/
2. Run the following command to view the logs:

kubectl describe pods -n

cSRX Container Firewall Deployment

In Bare-Metal Linux Server

cSRX in Bare-Metal Linux Server | 94
Requirements for Deploying cSRX in Bare-Metal Linux Server | 101
Deploy cSRX Container Firewall in Bare-Metal Linux Server | 105

Configure and Manage cSRX Container Firewall in Bare-Metal Linux Server
| 113

cSRX in Bare-Metal Linux Server

IN THIS SECTION

Overview | 94
cSRX Container Firewall Benefits and Uses | 98
Docker Overview | 99

cSRX Container Firewall Scale-Up Performance | 99

The cSRX Container Firewall is a containerized version of the SRX Series Firewall with a low memory
footprint. cSRX is built on the the Junos® operating system (Junos OS) and delivers networking and
security features similar to those available on the software releases for the SRX Series. cSRX provides
advanced security services, including content security, AppSecure, and Content Security in a container
form factor. A bare-metal Linux server uses a Docker container to allow the cSRX Container Firewall to
substantially reduce overhead. This efficiency occurs because each container shares the Linux host's OS
kernel. Regardless of the number of containers a Linux server hosts, only one OS instance can be in use.
Also, because of the light weight of the containers, a server can host many more container instances
than that by virtual machines (VMs), yielding tremendous improvements in utilization. With its small
footprint and Docker as a container management system, the cSRX enables deployment of agile, high-
density security service.

The cSRX enables you to quickly introduce new firewall services, customize services as per your
requirements, and scale security services based on dynamic needs. The cSRX differs from VMs in several
aspects. The cSRX does not require a guest OS to operate. It has a notably smaller memory footprint and
is easier to migrate or download. The cSRX does not require a guest OS to operate. It has a notably
smaller memory footprint and is easier to migrate or download. The boot time is reduced from several
minutes with a VM-based environment to less than a few seconds with the cSRX container. The cSRX is
ideal for public, private, and hybrid cloud environments.

Overview

The cSRX runs as a single container on a Linux bare-metal server which serves as the hosting platform
for the Docker container environment. The cSRX container packages comprises all of the dependent
processes (daemons) and libraries to support the different Linux host distribution methods (Ubuntu, Red

Hat Enterprise Linux, or CentOS). You can use standard Docker commands to manage the cSRX
container.

When the cSRX becomes active, several daemons inside the Docker container launch automatically.
Some daemons support Linux features, providing the same services that they provide when running on a
Linux host (for example,sshd, rsyslogd, and monit). You can compile and port other daemons from Junos
OS to perform configuration and control jobs for security service (for example, and so on). SRX PFE is
the data-plane daemon that receives and sends packets from the revenue ports of a cSRX container. The
cSRX uses srxpfe for Layer 2 to Layer 3 forwarding functions (secure-wire forwarding or static routing
forwarding) as well as for Layer 4 through Layer7 network security services.

The cSRX enables advanced security at the network edge in a multitenant virtualized environment. cSRX
provides Layer 4 through Layer 7 advanced security features such as firewall, IPS and AppSecure. When
cSRX in Layer 2 secure wire mode, incoming Layer 2 frames from one interface go through Layer 4
through Layer 7 processing based on the configured cSRX services. cSRX then sends the frames out of
the other interface.

Launch the cSRX instance in secure-wire mode using the following command:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

@ NOTE: As part of your Docker container configuration, you must connect the cSRX
container to three virtual networks: one virtual network for out-of-band management
sessions and two to receive and transmit data traffic. See "Install cSRX in Bare-Metal
Linux Server" on page 105.

Figure 19 on page 96 illustrates the cSRX operation in a secure-wire mode. It is an example of how a
cSRX container is bridged with an external network. In this illustration, cSRX eth1 is bridged with host
physical NIC eth1 and cSRX eth2 is bridged with host physical NIC eth2.

Figure 19: cSRX in Secure-Wire Mode

Docker cSRX Instance
srxpfe Process
L4-7 Services (NAT/UTM/...)

Secure-wire Mode

5 q
Interface
Pair
ge-0/0/0 ge-0/0/1';
v v
[z} [}
ethl L.J eth2 L._J

Virtual Virtual

Ethernet Ethernet
(4 e (D

ethl er eth2 brga
ethl eth2

QY

Figure 20 on page 97 illustrates the cSRX operating in routing mode.

8200094

96

Figure 20: cSRX Container Firewall Container in Routing Mode

USER SPACE
Docker cSRX Instance
Other Linux @ Dependent Libraries/Binaries/Files
Daemons...
Junos Control Daemons srxpfe Process
(mgd/nsd/idpd/utmd...) L4-7 Services (NAT/UTMV...)
Linux Daemons Static Routing
(sshd/rsyslogd/...) I N N
: : Interface :
Docker Engine . - . Pair . .
ge-0/0/0 % ge-0/0/1} ge-0/0/2% ge-0/0/3} ge-0/0/15!
v v v v v
(] [~ [~ (] (] D_
] L] L]] L] L]
ethO EJ ethl EJ eth2 EJ eth3 EJ eth4 E] eee th16 G
Virtual Virtual Virtual Virtual Virtual Virtual
Ethernet Ethernet Ethernet Ethernet Ethernet Ethernet
KERNEL SPACE
ethO-br @ ethl-br @ eth2-br @ eth3-br @ eth4-br @ eth16-br @
ethO ethl eth2 eth4 eth3 eth16
L] L] L] il i) L]
| | | i (i i) ‘_

Starting in Junos OS Release 19.2R1, in routing mode, with the increase in the number of supported

interfaces, the mapping of ge interfaces are reordered as:

Prior to Junos OS Release 19.2R1, in routing mode, ethO was mapped as out-of-band management

interface—eth1 as ge-0/0/1 and eth2 as ge-0/0/0.

8043639

Starting in Junos OS Release 19.2R1, in routing mode, the default number of interfaces supported are 3
and the maximum number of interfaces supported are 17 (1 management interface and 16 data
interfaces). With this increase in the number of interfaces supported, the mapping of ge interfaces is

reordered as:

e ethO - out-of-band management interface
e ethl - ge-0/0/0

e eth2-ge-0/0/1

o eth3-ge-0/0/2

e eth4 - ge-0/0/3 and so on

97

cSRX Container Firewall Benefits and Uses

Some of the key benefits of cSRX Container Firewall in a containerized private or public cloud
multitenant environment include:

Stateful firewall protection at the tenant edge.
Faster deployment of containerized firewall services into new sites.

With a small footprint and minimum resource reservation requirements, the cSRX can easily scale to
keep up with customers’ peak demand.

Provides significantly higher density without requiring resource reservation on the host than what is
offered by VM-based firewall solutions.

Flexibility to run on a bare-metal Linux server or Juniper Networks Contrail.

¢ In the Contrail Networking cloud platform, cSRX can be used to provide differentiated Layer 4
through 7 security services for multiple tenants as part of a service chain.

o With the Contrail orchestrator, cSRX can be deployed as a large scale security service.
Application security features (including IPS and AppSecure).
Content Security features (including antispam, Sophos Antivirus, web filtering, and content filtering).

Authentication and integrated user firewall features.

@ NOTE: While the security services features between cSRX and vSRX Virtual Firewall are
similar, there are scenarios in which each product is the optimal option in your
environment. For example, the cSRX does not support routing instances and protocols,
switching features, MPLS LSPs and MPLS applications, chassis cluster, and software
upgrade features. For environments that require routing or switching, a vSRX Virtual
Firewall VM provides the best feature set. For environments focused on security services
in a Docker containerized deployment, cSRX is a better fit.

See Supported SRX Series Firewall Features on cSRX Container Firewall for a summary
of the feature categories supported on cSRX, and also for a summary of features not
supported on cSRX.

You can deploy the cSRX in the following scenarios:

Cloud CPE-For service providers (SPs) and managed security service providers (MSSPs) where there
is a large subscriber base of branch offices or residential subscribers. MSSPs can offer differentiated
services to individual subscribers.

https://www.juniper.net/documentation/us/en/software/csrx/csrx-consolidated-deployment-guide/topics/concept/security-csrx-docker-feature-support.html

99

e Contrail microsegmentation-Within a Contrail environment running mixed workloads of VMs and
containers, cSRX can provide security for Layer 4 through 7 traffic, managed by Security Director.

e Private clouds-cSRX can provide security services in a private cloud running containerized workloads
and can include Contrail integration.

I Docker Overview

Docker is an open-source software platform that simplifies the creation, management, and teardown of
a virtual container that can run on any Linux server. A Docker container packages applications in
“containers” making them portable among any system running the Linux OS.

Figure 21 on page 99 provides an overview of a typical Docker container environment.

Figure 21: Docker Container Environment

Containers
—> App1 App 2 App 3 App 3 App 3 ’

Containers are
isolated, but share
bins and libraries
where possible to
improve efficiency.

Containers are Bins / Bins / i ibrari

created with Linux, Libraries Libraries S/

but share a kernel
with almost any
type of host OS.

Docker Engine

Host Operating System

Server

200100

cSRX Container Firewall Scale-Up Performance

You can scale the performance and capacity of a cSRX Container Firewall container by increasing the
allocated amount of virtual memory or the number of flow sessions. Table 10 on page 100 shows the

cSRX scale-up performance applied to a cSRX container based on its supported sizes. The default size
for a cSRX container is large.

@ NOTE: See Changing the Size of a cSRX Container for the procedure on how to scale the
performance and capacity of a cSRX container by changing the container size.

Table 10: cSRX Container Firewall Scale Up Performance

cSRX Container Firewall Size Specification Junos OS Release Introduced
vCPUs/Memory 2 vCPU /4 GB RAM Junos OS Release 23.2R1

4 vCPU / 8 GB RAM

6 vCPU / 12 GB RAM

8 vCPU / 16 GB RAM

12 vCPU / 24 GB RAM

16 vCPU / 32 GB RAM

20 vCPU / 48 GB RAM

32 vCPU / 64 GB RAM

Docker Overview
What is Docker?
What is a Container?

Get Started With Docker

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-csrx-size.html
https://docs.docker.com/engine/docker-overview/
https://www.docker.com/what-docker
https://www.docker.com/what-container
https://docs.docker.com/get-started/

Requirements for Deploying cSRX in Bare-Metal
Linux Server

IN THIS SECTION

Host Requirements | 101
cSRX Container Firewall Basic Configuration Settings | 102

Interface Naming and Mapping | 102

This section presents an overview of requirements for deploying a cSRX Container Firewall container on
a bare-metal Linux server:
Host Requirements

Table 11 on page 101 lists the Linux host requirement specifications for deploying a cSRX container on a
bare-metal Linux server.

@ NOTE: The cSRX can run either on a physical server or virtual machine. For scalability
and availability reasons, we recommended using a physical server to deploy the cSRX
container.

Table 11: Host Requirement Specifications for cSRX Container Firewall

Component Specification Release Introduced
Linux OS support CentOS 6.5 or later Junos OS Release 18.1R1
Red Hat Enterprise Linux (RHEL) 7.0 or later

Ubuntu 14.04.2 or later

Table 11: Host Requirement Specifications for cSRX Container Firewall (Continued))

Component Specification

Docker Engine Docker Engine 1.9 or later installed on a Linux host

Contrail Cloud Platform | Contrail 3.2 with OpenStack Liberty or OpenStack Mitaka

vCPUs 2 CPU cores

Memory 4 GB

Disk space 40 GB hard drive

Host processor type x86_64 multicore CPU
Network interface 1 Ethernet port (minimum)

cSRX Container Firewall Basic Configuration Settings

The cSRX container requires the following basic configuration settings:

e Interfaces must be assigned IP addresses.

e Policies must be configured between zones to permit or deny traffic.

Interface Naming and Mapping

A cSRX container supports 17 interfaces:
e 1 Out-of-band management Interface (ethO)

e 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Table 12 on page 103 lists the cSRX interface assignments with Docker.

Release Introduced

Table 12: ¢cSRX Container Firewall Interface Assignment

Interface
Number

10

11

12

13

14

15

16

cSRX Interfaces

ethO

ge-0/0/0

ge-0/0/1

ge-0/0/2

ge-0/0/4

ge-0/0/5

ge-0/0/6

ge-0/0/7

ge-0/0/8

ge-0/0/9

ge-0/0/10

ge-0/0/11

ge-0/0/12

ge-0/0/13

ge-0/0/14

Docker Interfaces

ethO

ethl

eth2

eth3

eth5

ethé

eth7

eth8

eth9

eth10

eth11

eth12

eth13

eth14

eth15

Table 12: cSRX Container Firewall Interface Assignment (Continued)

Interface cSRX Interfaces Docker Interfaces
Number

17 ge-0/0/15 eth1é

CHAPTER 4

Deploy cSRX Container Firewall in Bare-Metal Linux
Server

IN THIS CHAPTER

Install cSRX in Bare-Metal Linux Server | 105

Launch cSRX in Bare-Metal Linux Server | 109

Install cSRX in Bare-Metal Linux Server

IN THIS SECTION

Before You Deploy | 105
Confirm Docker Installation | 106
Load the cSRX Image | 107

Create Linux Bridge Network for cSRX | 109

This section outlines the steps to install the cSRX Container Firewall container in a Linux bare-metal
server environment that is running Ubuntu, Red Hat Enterprise Linux (RHEL) , or CentOS. The cSRX
container is packaged in a Docker image and runs in the Docker Engine on the Linux host.

This section includes the following topics:
Before You Deploy

Before you deploy the cSRX as an advanced security service in a Linux container environment, ensure
that you:

e Review "Requirements for Deploying cSRX in Bare-Metal Linux Server" on page 101 to verify the
system software requirement specifications for the Linux server required to deploy the cSRX
container.

¢ Install and configure Docker on your Linux host platform to implement the Linux container
environment. Docker installation requirements vary based on the platform and the host OS (Ubuntu,
Red Hat Enterprise Linux (RHEL), or CentOS). Install Docker. You can also use the script at: https:/
get.docker.com/ to install docker easily. You need to execute this script on shell.

For docker installation instructions on the different supported Linux host operating systems, see:
e Centos/Redhat—https:/docs.docker.com/install/linux/docker-ce/centos/

e Debian—https://docs.docker.com/install/linux/docker-ce/debian/

e Fedora—https:/docs.docker.com/install/linux/docker-ce/fedora/

e Ubuntu—https:/docs.docker.com/install/linux/docker-ce/ubuntu/

Confirm Docker Installation

Before you load the cSRX image, confirm that Docker is properly installed on the Linux host and that the
Docker Engine is running.

To confirm Docker installation:

1. Confirm that Docker is installed and running on the Linux server by using the service docker status
command.

root@csrx-ubuntu3:~# service docker status
docker start/running, process 701
You should also be able to run docker run hello-world and see a similar response.

root@csrx-ubuntu3:~# docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working correctly.

e |f Docker is not installed, see Install Docker for installation instructions.

o If Docker is not running, see Configure and troubleshoot the Docker daemon.

2. Verify the installed Docker Engine version by using the docker version command.

https://docs.docker.com/engine/installation/
https://get.docker.com/
https://get.docker.com/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/admin/

@ NOTE: Ensure that Docker version 1.9.0 or later is installed on the Linux host.

root@csrx-ubuntu3:~# docker version
Client:

Docker version 17.05.0-ce-rc1, build 2878a85
API Version: 1.30

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

0S/Arch: linux/amd64

Server:

Docker version 17.05.0-ce-rc1, build 2878a85
API Version: 1.30 (minimum version 1.12)

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

0S/Arch: linux/amd64

Experimental: False

Load the cSRX Image

Once the Docker Engine has been installed on the host, perform the following to download and start
using the cSRX image:

1. Download the cSRX software image from the Juniper Networks website. The filename of the
downloaded cSRX software image must not be changed to continue with the installation.

2. You can either download the cSRX image file normally using the browser or use the URL to download
the image directly on your device as in the following example:

Run the following command to downloaded images to a local registry using curl command or any
other http utility. The syntax for curl commands is:

root@csrx-ubuntu3:~csrx# curl -o <file destination path> <Download link url>

https://www.juniper.net/support/downloads/?p=csrx#sw

root@csrx-ubuntu3:/var/tmp# curl -o /var/tmp/images/junos-csrx-docker-20.2R1.10.img “https:/
cdn.juniper.net/software/csrx/20.2R1.10/junos-csrx-docker-20.2R1.10.img?SM_USER=user
=1595350694_5dbf6e62442de6bf14079d05a72464d4”

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 160M 100 160M 0 0 1090k 0 0:02:30 0:02:30 --:--:-- 1230k

3. Locate the cSRX image by using the 1s Linux shell command.
root@csrx-ubuntu3:/var/tmp/images# Is
4. Load the downloaded cSRX image to the local registry.

root@csrx-ubuntu3:/var/tmp/images# docker image load -i /var/tmp/images/junos-csrx-
docker-20.2R1.10.img

€758932b9168: Loading layer [>] 263MB/
263MB

23f7a9961879: Loading layer [>] 14.51MB/
14.51MB

1e4139e6fa81: Loading layer [>] 270.3MB/
270.3MB

10334b424f86: Loading layer [>] 16.9kB/
16.9kB

202ebb2f1137: Loading layer [>] 2.56kB/
2.56kB

bc4a16173327: Loading layer [>] 1.536kB/
1.536kB

8f9a9945544a: Loading layer [>] 2.048kB/
2.048kB

Loaded image: csrx:20.2R1.10

5. After the cSRX image loads, confirm that it is listed in the repository of Docker images.

root@csrx-ubuntu3:/var/tmp/images# docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE
csrx 20.2R1.10 88597d2d4940 2 weeks ago

534MB

Create Linux Bridge Network for cSRX

A Linux bridge is a virtual switch implemented as a kernel module. This Linux bridge is used within a
Linux host to emulate a hardware bridge. Docker allows you to create a Linux bridge network and
connect the cSRX container to this network to implement management and data processing sessions.
The interfaces are created with the Linux VETH driver and are used to communicate with the Linux
kernel.

This procedure describes how to create a three-bridge network for the cSRX container that includes:
mgt_bridge (eth0), left_bridge (eth1), and right_bridge (eth2). The mgt_bridge is used by the cSRX for
out-of-band management to accept management sessions and traffic, and the left_bridge and
right_bridge are both used by the cSRX as the revenue ports to process in-band data traffic.

@ NOTE: Docker automatically connects the management interface (ethO) to the Linux
bridge and assigns an IP address. Interfaces eth1 and eth2 are for the inband traffic.
cSRX must be bound with the Linux bridge to pass traffic.

To create a three-bridge network for a cSRX in the Linux host:

1. Create the management bridge in the network.

root@csrx-ubuntu3: :~/csrx# docker network create --driver bridge mgt_bridge

3228844986eae1d1a8d367b34b54b31b130842be@72b9dcdf 7da3601c95b7130
2. Create the left bridge in the network (untrusted interface (eth1)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge left_bridge

£1324b0a9072c55ababbcc51d83¢83658084b67513811e13829172cccbcd8e5d
3. Create the right bridge in the network (trusted interface (eth2)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge right_bridge

196bd039f7c2401df4c117ea684114548a3df0b9d406cf3cf8f17338fab96774

Docker commands

Launch cSRX in Bare-Metal Linux Server

You are now ready to launch the cSRX Container Firewall container that is running in Docker on the
Linux bare-metal server. When you start the cSRX image, you have a running container of the image.

https://docs.docker.com/engine/reference/commandline/docker/

You can stop and restart the cSRX container (see "Manage cSRX in Bare-Metal Linux Server" on page
124), and the container retains all the settings and file system changes unless those changes are
explicitly deleted. However, the cSRX looses anything in memory and all processes are restarted.

You have a series of cSRX environment variables that enable you to modify operating characteristics of
the cSRX container when it is launched. You can modify:

When you deploy cSRX you must enable the SSH service and SSH option for root-login. SSH service
is not enabled by default.

To enable SSH service run the set system services ssh command and for root user login run the set
system services ssh root-login allow command.

Traffic forwarding mode (static route or secure-wire)

cSRX container size

Packet I/O driver (polled or interrupt)

CPU affinity for cSRX control and data daemons

Address Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) entry timeout values

Number of interfaces you need to add to container. Default is 3 and maximum is 17 (which means 1
management interfaces and 16 data interfaces).

@ NOTE: Specification of an environment variable is not mandatory when launching the
cSRX container; most environment variables have a default value as shown in "cSRX
Environment Variables Overview" on page 113. You can launch the cSRX using the
default environment variable settings.

To launch the cSRX container:

1.

Use the docker run command to launch the cSRX container. You include the mgt_bridge management
bridge to connect the cSRX to a network.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=<csrx-
container-name> hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX software image csrx:18.21R1.9 enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=csrx2
hub.juniper.net/security/csrx:18.2R1.9

@ NOTE: You must include the --privileged flag in the docker run command to enable the
cSRX container to run in privileged mode.

2. Connect the left and right bridges to the Docker network.

root@csrx-ubuntu3:~/csrx# docker network connect left_bridge csrx2
root@csrx-ubuntu3:~/csrx#
root@csrx-ubuntu3:~/csrx# docker network connect right_bridge csrx2

root@csrx-ubuntu3:~/csrxi#
3. Confirm that the three-bridge network has been created for the cSRX container.

root@csrx-ubuntu3:~/csrx# docker network Is
NETWORK ID NAME DRIVER SCOPE

80bea9207560 bridge bridge local

619da6736359 host host local

112ab00aabla left_bridge bridge local
1484998f41bb mgt_bridge bridge local
daf7a5a477bd none null local

e409a4f54237 right_bridge bridge local
4. Confirm that the cSRX container is listed as a running Docker container.

root@csrx-ubuntu3: ~/csrx# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

35e33e8aadaf csrx "/etc/rc.local init" 7 minutes ago Up 7 minutes 22/tcp, 830/tcp csrx2

5. Confirm that the cSRX container is up and running. You should see the expected Junos OS processes,
such as nsd, srxpfe, and mgd.

root@csrx-ubuntu3:~/csrx# docker top csrx2

UID PID PPID C

STIME TTY TIME CMD

root 318 305 0

09:13 pts/1 00:00:00 bash

root 27423 27407 0

Mar30 pts/0 00:00:00 /bin/bash -e /etc/rc.local init
root 27867 27423 0

Mar30 ? 00:08:16 /usr/sbin/rsyslogd -M/usr/lib/
rsyslog

root 27880 27423 0

Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30

27882

27907

27963

pts/0

27979

27989

28023

28040

28048

28126

28186

28348

00:00:

27423

00:00:

27423

00:00:

27423

00:34:

27423

00:01:

27423

00:00:

27423

00:00:

27423

00:09:

27423

00:52:

27423

1-05:21:47

27423

00:01:

27423

00:02:

00

00

08

50

02

21

21

50

37

44

/usr/sbin/sshd

0
/usr/sbin/nstraced
0

/usr/sbin/mgd

0

/usr/bin/monit -I

0

/usr/sbin/nsd

0

/usr/sbin/appidd -N
0

/usr/sbin/idpd -N

0

/usr/sbin/wmic -N

0

/usr/sbin/useridd -N
2

/usr/sbin/srxpfe -a -d
0

/usr/sbin/utmd -N

0

/usr/sbin/kmd

6. Confirm the IP address of the management interface of the cSRX container.

root@csrx-ubuntu3: ~/csrx# docker inspect csrx2 | grep IPAddress

"SecondaryIPAddresses": null,

"IPAddress":

"IPAddress":
"IPAddress":
"IPAddress":

Docker commands

"172.19.0.2",
"172.18.0.2",
"172.20.0.2",

https://docs.docker.com/engine/reference/commandline/docker/

CHAPTER 5

Configure and Manage cSRX Container Firewall in
Bare-Metal Linux Server

IN THIS CHAPTER

cSRX Environment Variables Overview | 113

Change the Size of cSRX | 116

Configure Traffic Forwarding on cSRX | 117

Configure CPU Affinity on cSRX | 123

Enable Persistent Log File Storage to a Linux Host Directory | 123
Manage cSRX in Bare-Metal Linux Server | 124

cSRX Configuration and Management Tools | 126

cSRX Environment Variables Overview

Docker allows you to store data for example configuration settings, as environment variables. At
runtime, the environment variables are exposed to the application inside the container. You can set any
number of parameters to take effect when the cSRX Container Firewall image launches. You can set an
environment variable by specifying the docker run -e VARIABLE=VALUE ... key.

A series of cSRX environment variables enables you to modify the characteristics of the cSRX instance
when it is launched. The specification of an environment variable is not mandatory; most environment
variables have a default value as shown in Table 13 on page 114. If desired, you can launch the cSRX
using the default environment variable settings.

For example, to launch a cSRX instance in secure-wire forwarding mode using the CSRX-2CPU-4G size
cSRX configuration:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

@ NOTE: You must include the --privileged flag in the docker run command to enable the
cSRX container to run in privileged mode.

Table 13 on page 114 summarizes the list of available cSRX environment variables along with a link to
the topic that outlines its usage.

Table 13: Summary of cSRX Container Firewall Environment Variables

Variable Description Values Default Topic
CSRX_FORWARD_MODE = Traffic forwarding mode "routing" | "wire" "routing" "Configure
Traffic
Forwarding
on cSRX"
on page
117
CSRX_PACKET_DRIVER | Packet I/O driver "poll" | "dpdk" | "poll" Specifying
"interrupt" the Packet
I/O Driver
NOTE: The for a cSRX
"interrupt" and Container
"poll" modes are
only supported

for cSRX size as
CSRX-2CPU-4G,
otherwise only
"dpdk" mode is
supported for

any cSRX size
larger than that.

CSRX_CTRL_CPU CPU mask, indicating which CPU hex value No CPU affinity Configuring
is running the cSRX control plane CPU
daemons (such as nsd, mgd, Affinity for
nstraced, utmd, and so on) a cSRX

Container

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html

Table 13: Summary of cSRX Container Firewall Environment Variables (Continued)

Variable

CSRX_DATA_CPU

CSRX_ARP_TIMEOUT

CSRX_NDP_TIMEOUT

CSRX_PORT_NUM

Description

CPU mask, indicating which CPU
is running the cSRX data plane
daemon (srxpfe)

ARP entry timeout value for the
control plane ARP learning or
response

NDP entry timeout value for the
control plane NDP learning or
response

Number of interfaces you need to
add to the container

Example: docker run -d --
privileged --net=none -e
CSRX_PORT_NUM=17e
CSRX_HUGEPAGES=no -e
CSRX_PACKET_DRIVER=interrupt
-e

CSRX_FORWARD_MODE=routing

--name=<cSRX-container-name>
<cSRX-image-name>

Values Default

hex value No CPU affinity

decimal value Same as the Linux
host

decimal value Same as the Linux
host

Default is 3, 3

maximum is 17 (1
management
interface and 16
data interfaces)

Topic

Configuring
CPU
Affinity for
a cSRX
Container

"Configure
Traffic
Forwarding
on cSRX"
on page
117

"Configure
Traffic
Forwarding
on cSRX"
on page
117

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html

Table 13: Summary of cSRX Container Firewall Environment Variables (Continued)

Variable Description Values Default Topic

CSRX_HUGEPAGES You can set this env variable to It is important to

NOTE: This note that cSRX only
variable must be supports 1G

hugepages. For

"yes" or "no" to enable or disable
using hugepages in cSRX. By
default, cSRX will set
CSRX_HUGEPAGES to "no"

set to "yes" for
any size larger
than
CSRX-2CPU-4G.

some flavors of
cSRX, it is required
to set
CSRX_HUGEPAGES
="yes".

Change the Size of cSRX

IN THIS SECTION

cSRX Container Firewall Scale-Up Performance | 117

Based on your specific cSRX Container Firewall deployment requirements, scale requirements, and
resource availability, you can scale the performance and capacity of a cSRX instance by specifying a
specific size. Each cSRX size has certain characteristics and can be applicable to certain deployments. By
default, the cSRX container launches using the CSRX_SIZE="CSRX-2CPU-4G" size configuration.

To assign a specific size for a cSRX instance, include the CSRX_SIZE environment variable in the docker run

command.

For example, to launch a cSRX instance using the CSRX-2CPU-4G size configuration to scale
performance and capacity:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_SIZE="CSRX-2CPU-4G" --name=<csrx-container-name> <csrx-image-name>

cSRX Container Firewall Scale-Up Performance

You can scale the performance and capacity of a cSRX Container Firewall container by increasing the
allocated amount of virtual memory or the number of flow sessions. Table below shows the cSRX scale-
up performance applied to a cSRX container based on its supported sizes. By default, the cSRX container
launches using the CSRX-2CPU-4G (2 vCPU / 4 GB RAM) size configuration.

@ NOTE: See Changing the Size of a cSRX Container for the procedure on how to scale the
performance and capacity of a cSRX container by changing the container size.

Table 14: cSRX Container Firewall Scale Up Performance

cSRX Container Firewall Size = Specification Junos OS Release Introduced

vCPUs/Memory cSRX sizes/flavors supported: Junos OS Release 23.2R1

e CSRX-2CPU-4G (2 vCPU / 4 GB RAM)

e (CSRX-4CPU-8G (4 vCPU / 8 GB RAM

e (CSRX-6CPU-12G (6 vCPU / 12 GB RAM)

e CSRX-8CPU-16G (8 vCPU / 16 GB RAM)

e CSRX-12CPU-24G (12 vCPU / 24 GB RAM)

e CSRX-16CPU-32G (16 vCPU / 32 GB RAM)

e CSRX-20CPU-48G (20 vCPU / 48 GB RAM)

e CSRX-32CPU-64G (32 vCPU / 64 GB RAM)

Configure Traffic Forwarding on cSRX

IN THIS SECTION

Configure Routing Mode | 118
Configure Secure-Wire Mode | 122

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-csrx-size.html

You can change the traffic forwarding mode of the cSRX Container Firewall container as a means to
facilitate security service provisioning when running the cSRX. For example, if you deploy a cSRX
container inline of protected segments, the cSRX should be transparent to avoid changing the virtual
network topology. In other deployments, the cSRX container should be able to specify the next-hop
address of egress traffic. To address variations in cSRX network deployment, you can configure the
traffic forwarding mode of the cSRX to operate in routing mode (static routing only) or secure-wire
mode.

@ NOTE: The cSRX uses routing as the default environment variable for traffic forwarding
mode.

This section includes the following topics:

Configure Routing Mode

When running the cSRX container in routing mode, the cSRX uses a static route to forward traffic for
routes destined to interfaces ge-0/0/0 and ge-0/0/1. You must create a static route and specify the
next-hop address.

When you start the cSRX container, you need to specify port number in the environment using the
variable CSRX_PORT_NUM to define the number of interfaces you need to add to container in routing
mode.

For example, to launch cSRX instance in routing mode with 17 interfaces:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --net=none -e CSRX_PORT_NUM=17
CSRX_SIZE=large -e CSRX_HUGEPAGES=no -e CSRX_PACKET_DRIVER=interrupt -e
CSRX_FORWARD_MODE-=routing --name=<srx-container-name> <csrx-image-name>

@ NOTE: The interfaces specified in the CSRX_PORT_NUM environment variable (default
value is 3) must be added to a network after instantiation of the cSRX. Unless all the
interfaces are added to the bridge or the macvlan networks, the PFE does not launch on
the cSRX, and the ge-x/y/z interfaces remains down.

Include the -e CSRX_FORWARD_MODE=routing environment variable in the docker run command to instruct the
cSRX to run in static route forwarding mode.
To configure the cSRX container to run in static routing mode:

1. Launch the cSRX container in routing forwarding mode:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" --name=<csrx-container-name> <csrx-image-name>

2. Loginto cSRX instance and start configuration mode.

root@csrx# cli
root@csrx> configure
[edit]

3. Configure interfaces.

Starting from 19.2R1.8, each cSRX can be configured with up to 15 revenue inter-faces: ethl, eth2,
and so on, until eth15. The number of interfaces can be predefined while booting up a cSRX. Usually,
management IP on a cSRX is assigned by docker based on network settings while spinning the
cSRX(--network=mgt_bridge). If you don't specify this variable, docker is going to assign IP from
default docker network bridge.

The ethO is used by the cSRX for out-of-band management to the accept management sessions and
traffic, and eth1 and eth2 are both used by the cSRX as the two revenue ports to process in-band
data traffic (the ge-0/0/0 and ge-0/0/1 interfaces).

For this example, assume that the docker default or the custom network management bridge is
172.31.21.0/24, docker assigns one IP address from this network. If your cSRX is the first container
on the system, then cSRX is assigned with 172.31.21.2 and default gateway for the cSRX
management plane is assigned with 172.31.21.1.

Table 15: IP Address Assignment for Interfaces

Interface IP Address
Management Interface ethO (fxp0) 172.31.21.1
Default gateway for the cSRX management plane 172.31.21.2
Eth1 (ge-0/0/0) 172.19.0.2/24
Eth2 (ge-0/0/1) 172.20.0.2/24
External Server 10.10.10.0

root@csrx# show | display set
root@csrx# set interfaces ge-0/0/0 unit O family inet address 172.19.0.2/24

root@csrx# set interfaces ge-0/0/1 unit O family inet address 172.20.0.2/24

4. Configure static routes.

Configure static route and specify next-hop address.

root@csrx# set routing-options static route 0.0.0.0/0 next-hop 172.19.0.2/24
5. View the forwarding table to verify the static routes.

root@csrx> show route forwarding-table

Routing table: default.inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif
0.0.0.0 perm 0 dscd 517 1
172.19.0.2 perm 0 172.19.0.10 locl 2006 1
172.19.0.10 perm 0 172.19.0.10 ucast 5501 1
1.255.255.255 perm 0 bcst 2007 1

1/8 perm 0 rslv 2009 1172.20.0.2
perm 0 172.20.0.2 locl 2001 1

172.20.0.10 perm 0 172.20.0.10 ucast 5500 1
2.255.255.255 perm 0 bcst 2002 1

2/8 perm 0 rslv 2004 1
224.0.0.1 perm 0 mcst 515 1

224/4 perm 0 mdsc 516 1
172.31.21.2/28 perm 0 172.20.0.10 ucast 5501 1
Routing table: default.inet6

Internet6:

Destination Type RtRef Next hop Type Index NhRef Netif
38 perm 0 dscd 527 1
ffeo::/8 perm 0 mdsc 526 1
ff02::1 perm 0 mcst 525 1

6. Specify a route for the management interface. Static routes can only configure routes destined for
interfaces ge-0/0/0 and ge-0/0/1. The route destined for the management interfaces (ethO) must be
added by using the Linux route shell command.

root@csrx% route add -net 10.10.10.0/24 gw 172.31.21.1

root@csrx% route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 0.0.0.0 0.0.0.0 U 0 0 0 pfe_tun

172.19.0.2 0.0.0.0 255.0.0.0 u 0 0 0 tapl

172.20.0.2 0.0.0.0 255.0.0.0 u 0 0 0 tapo
172.31.21.2 1.0.0.10 255.255.255.240 UG 0 0 0 tapl
10.10.10.0 172.31.21.1 255.255.255.0 UG 0 0 0 ethe
172.21.0.0 0.0.0.0 255.255.0.0 U 0 0 0 etho

7. If required for your network environment, you can configure an IPvé static route for the cSRX using
the set routing-options rib inet6.0 static route command.

[edit routing-options]

root@csrx# set routing-options rib ineté6.0 static route 3000::0/64 next-hop 1000::10/128
[edit interfaces]

root@csrx# commit

root@srx# show routing-options rib inet6.0

static {

route 3000::0/64 next-hop 1000::10/128;

}

8. Under routing mode, the control plane ARP/NDP learning/response is provided by the Linux kernel
through the TAP 0 and TAP 1 interfaces created to host the traffic for eth1 and eth2 through srxpfe.
You can view ARP entries by using the Linux arp shell command.

@ NOTE: While there are multiple interfaces created inside the cSRX container, only two
interfaces, ge-0/0/0 and ge-0/0/1, are visible in srxpfe.

root@csrx% arp -a

? (2.0.0.10) at 6e:81:38:41:5e:0e [ether] on tap®
? (1.0.0.10) at 96:33:66:a1:e5:03 [ether] on tapl
? (172.31.12.1) at 02:c4:39:fa:0a:0d [ether] on eth@

The default ARP/NDP entries timeout is set to 1200 seconds. You can adjust this value by modifying
either the ARP_TIMEOUT or NDP_TIMEOUT environment variable when launching the cSRX container. For
example:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_ARP_TIMEOUT=<seconds> -e
CSRX_NDP_TIMEOUT=<seconds> --name=<csrx-container-name> <csrx-image-name>

The maximum ARP entry number is controlled by the Linux host kernel. If there are a large number of
neighbors, you might need to adjust the ARP or NDP entry limitations on the Linux host. There are
options in the sysctl command on the Linux host to adjust the ARP or NDP entry limitations.

For example, to adjust the maximum ARP entries to 4096:
sysctl -w net.ipv4.neigh.default.gc_thresh1=1024
sysctl -w net.ipv4.neigh.default.gc_thresh2=2048
sysctl -w net.ipv4.neigh.default.gc_thresh3=4096
For example, to adjust the maximum NDP entries to 4096:
sysctl -w net.ipvé.neigh.default.gc_thresh1=1024
sysctl -w net.ipvé.neigh.default.gc_thresh1=2048

sysctl -w net.ipvé.neigh.default.gc_thresh1=4096

Configure Secure-Wire Mode

When operating in secure-wire mode, all traffic that arrives on a specific interface, ge-0/0/0 or
ge-0/0/1, is forwarded unchanged through the interface. This mapping of interfaces, called secure wire,
allows the cSRX to be deployed in the path of network traffic without requiring a change to routing
tables or a reconfiguration of neighboring devices. A cross-connection is set up between interface pairs
ge-0/0/0 and ge-0/0/1 to steer traffic from one port to the other port based on the Interworking and
Interoperability Function (lIF) as the input key.

Include the -e CSRX_FORWARD_MODE=wire environment variable in the docker run command to instruct the cSRX
to run in secure-wire forwarding mode.

@ NOTE: When you launch the cSRX container in secure-wire mode, the cSRX instance
automatically creates a default secure-wire named csrx_swin the srxpfe process, and the
ge-0/0/0 and ge-0/0/1 interface pair are added into the secure-wire.

Launch the cSRX instance in secure-wire mode using the following command:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

Configure CPU Affinity on cSRX

A cSRX Container Firewall instance requires two CPU cores in the Linux server. To help schedule the
Linux server tasks and adjust performance of the cSRX running on a Linux host, you can launch the cSRX
container and assign its control and data processes (or daemons) to a specific CPU. In a ¢SRX container,
srxpfe is the data plane daemon and all other daemons (such as nsd, mgd, nstraced, utmd, and so on) are
control plane daemons.

CPU affinity ensures that the cSRX control and data plane daemons are pinned to a specific physical
CPU, which can improve the cSRX container performance by using the CPU cache efficiently. By default,
there is not a defined CPU affinity for the cSRX control and data plane daemons; the CPU on which the
control and data plane daemons run depends on Linux kernel scheduling.

To assign cSRX container control and data daemons to a specific CPU, include the environment variables
CSRX_CTRL_CPU and CSRX_DATA_CPU in the docker run command.

For example, to configure the cSRX container to launch the control plane daemons on CPU 1 and the
data plane daemon on CPU 2:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e CSRX_CTRL_CPU="0x1" -e
CSRX_DATA_CPU="0x2" --name=<csrx-container-name> <csrx-image-name>

Enable Persistent Log File Storage to a Linux Host Directory

In a cSRX Container Firewall container, log files are stored in the /var/log directory. By default, if there
are no external volumes mounted for the /var/log directory, the log files are maintained only for this
cSRX Firewall container. If, in future, the cSRX container is deleted, those log files are lost. You can
enable persistent log file storage to a Linux host directory as a means to directly mount a directory from
a Linux host to the cSRX container when the cSRX is launched.

To configure the cSRX container to enable persistent log file storage to a Linux host directory, use the
following command.

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_PACKET_DRIVER="poll" -e CSRX_CTRL_CPU="0x1" -e
CSRX_DATA_CPU="0x6" -v <path-log-directory-on-host>:/var/log --name=<csrx-container-name>
<csrx-image-name>

Manage cSRX in Bare-Metal Linux Server

IN THIS SECTION

Pause or Resume Processes Within cSRX | 124
View Processes on a Running cSRX Container | 124

Remove a cSRX Container or Image | 125

This section outlines basic Docker commands that you can use with a running cSRX Container Firewall
container. It includes the following topics:

Pause or Resume Processes Within cSRX

You can suspend or resume all processes within one or more cSRX containers. On Linux, this task is
performed using the cgroups freezer process.

To pause and restart a cSRX container:

1. Use the docker pause command to suspend all processes in a cSRX container.

host0S# docker pause <csrx-container-name>

2. Use the docker unpause command to resume all processes in the cSRX container.

host0S# docker unpause <csrx-container-name>

View Processes on a Running cSRX Container

Use the docker exec command to view the details of the processes (applications, services and status)
running on a cSRX container.

host0S# docker exec <csrx-container-name> ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 18048 1648 pts/8 Ss Mayl5 0:00 /bin/bash -e /etc/rc.local init
root 78 0.0 0.0 260072 968 ? Ssl May15 0:09 /usr/sbin/rsyslogd -M/usr/lib/

rsyslog

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root

Remove a c¢SRX Container or Image

97
118
124
133
135
141
147
153
170
211
222
250
256
267
301
324

S ©O O © O W OO O O 0O OO 0O oo
S © © © & U © © © © O OO o oo & <o

S © O © O - OO © O O O OO oo o

61376
108552
723392
734084

4440
752132
4440
730520

1001088 12528 ?

1304
1304
1516
4388
644
21184
652
2768

?
?

728448 2104 ?

3943936 152920 ?

4440
725092
731556

18160
853708

648
3880
2472

1916 pts/8

3324

To remove a cSRX container or image:

@

?
?

?

?

May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15
May15

1. Use the docker stop command to stop the cSRX container.

host0S# docker stop <csrx-container-name>

2. Use the docker rm command to remove the cSRX container.

host0S# docker rm <csrx-container-name>

0:
34:

0:
:18
100
:02
100
:25
29:

0:

1

0
0
0
0

00
12
00

22
o7

/usr/sbin/sshd

/usr/bin/monit
/usr/sbin/nstraced

/usr/sbin/nsd

/bin/sh /etc/init.d/appidd start
/usr/sbin/appidd -N &

/bin/sh /etc/init.d/idpd start
/usr/sbin/idpd -N &
/usr/sbin/useridd -N
/usr/sbin/mgd

1416:22 /usr/sbin/srxpfe -a -d
0:00 /bin/sh /etc/init.d/utmd start
1:36 /usr/sbin/utmd -N &
2:39 /usr/sbin/kmd
0:00 /bin/bash
6:13 /usr/sbin/wmic -N

NOTE: You must first stop and remove a cSRX container before you can remove a cSRX
image.

@ NOTE: Include --force to force the removal of a running cSRX container.

3. Use the docker rmi command to remove one or more cSRX images from the Docker Engine.

@ NOTE: Include --force to force the removal a cSRX image.

host0S# docker rmi <csrx-container-name>

SEE ALSO

Docker Engine User Guide

Docker commands

cSRX Configuration and Management Tools

IN THIS SECTION

Understanding the Junos OS CLI and Junos Scripts | 126

Understanding cSRX Container Firewall with Contrail and Openstack Orchestration | 126

Understanding the Junos OS CLI and Junos Scripts

The Junos operating system command-line interface (Junos OS CLI) is a Juniper Networks specific
command shell that runs on top of a UNIX-based operating system kernel.

Built into Junos OS, Junos script automation is an onboard toolset available on all Junos OS platforms,
including routers, switches, and security instances.

You can use the Junos OS CLI and the Junos OS scripts to configure, manage, administer, and
troubleshoot the cSRX Container Firewall container.

Understanding cSRX Container Firewall with Contrail and Openstack Orchestration

The cSRX Container Firewall Container Firewall can provide security services in a software-defined
networking (SDN) environment. Juniper Networks Contrail is an open, standards-based software-
defined networking (SDN) platform that delivers network virtualization and service automation for
federated cloud networks. You use the Contrail Cloud Platform with open cloud orchestration systems

https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/reference/commandline/docker/

such as OpenStack or CloudStack to instantiate instances of cSRX Container Firewall in a containerized
environment. Contrail Cloud Platform automates the orchestration of compute, storage, and networking
resources to create and scale open, intelligent, and reliable OpenStack clouds that seamlessly merge and
hybridize through highly intelligent secure networks.

cSRX Container Firewall can be deployed as a dedicated firewall compute node in a Contrail Cloud
platform environment to provide differentiated Layer 4 through 7 security services for multiple tenants
as part of a service chain in the Contrail cloud platform. In the Contrail networking environment, you can
deploy the cSRX Container Firewall container as a large-scale security service in a multicloud
environment, and configure the cSRX Container Firewall to steer traffic from a vRouter with vRouter
interface (VIF). Traffic and health statistics are monitored by the Contrail service orchestrator.

See cSRX in Contrail Host-Based Firewall for details on using cSRX Container Firewall with Juniper
Networks Contrail.

Introducing the Junos OS Command-Line Interface
Contrail Networks

Mastering Junos Automation Programming

https://www.juniper.net/documentation/us/en/software/csrx/csrx-consolidated-deployment-guide/csrx-contrail-vrouter/topics/concept/security-csrx-contrail-hbf.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/information-products/pathway-pages/index.html
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/mastering-junos-automation/

	Table of Contents
	About This Guide
	Introduction to cSRX Container Firewall
	Overview
	Requirements for cSRX Container Firewall
	Configure cSRX Using Junos OS CLI

	cSRX Container Firewall Deployment with Kubernetes
	cSRX Container Firewall with Kubernetes
	Deploy and Configure cSRX in Kubernetes
	Requirements for Deploying cSRX in Kubernetes
	cSRX Environment Variables
	Download cSRX Software
	Automate Initial Configuration Load with Kubernetes ConfigMap
	Load Initial Configuration with Kubernetes ConfigMap

	cSRX Pods With External Network
	Know About cSRX Pods with External Network
	Connect cSRX to External Network
	Configure Nodeport Service for cSRX Pods

	cSRX Pods With Internal Network
	cSRX Deployment in Kubernetes
	Install cSRX in Kubernetes Linux Server
	Deploy cSRX Pods in Kubernetes Linux Server
	Upgrade cSRX Image Using Deployment Rollout
	cSRX Image Rollback
	Scale cSRX Deployment

	cSRX Image with Packaged Preinstalled Signatures
	What Are Preinstalled Signatures?
	Repackage cSRX Image with Preinstalled Signatures
	Download Juniper Signature Pack
	Download Juniper Signature Pack Through Proxy Server

	cSRX Service with Load Balancing
	Know About cSRX as Kubernetes Service with Load Balancing Support
	Configure Ingress Service for cSRX Pods

	cSRX Container Firewall Deployment in AWS
	cSRX Deployment in AWS Using Elastic Kubernetes Service (EKS)
	cSRX with Kubernetes Orchestration in AWS
	Amazon EKS

	Deploy and Manage cSRX in AWS
	Deployment of cSRX in AWS Using EKS for Orchestration
	Deploy cSRX in AWS Using EKS
	Sample File for cSRX Deployment

	cSRX as a Service with Ingress Controller in Amazon EKS
	Microsegmentation with cSRX in AWS
	cSRX License in AWS Marketplace

	cSRX Container Firewall Deployment in Contrail Host-Based Firewall
	cSRX in Contrail Host-Based Firewall
	Junos OS Features Supported in cSRX for Contrail HBF
	Requirements to Deploy cSRX on Contrail vRouter
	Deploy and Configure cSRX Container Firewall into a Contrail Network
	cSRX Pod Deployment on Contrail vRouter with Kubernetes
	Debug cSRX Container Firewall in Contrail Network
	Stop a cSRX Pod
	Verify Network Name
	Verify Logs

	cSRX Container Firewall Deployment in Bare-Metal Linux Server
	cSRX in Bare-Metal Linux Server
	Requirements for Deploying cSRX in Bare-Metal Linux Server
	Deploy cSRX Container Firewall in Bare-Metal Linux Server
	Install cSRX in Bare-Metal Linux Server
	Before You Deploy
	Confirm Docker Installation
	Load the cSRX Image
	Create Linux Bridge Network for cSRX

	Launch cSRX in Bare-Metal Linux Server

	Configure and Manage cSRX Container Firewall in Bare-Metal Linux Server
	cSRX Environment Variables Overview
	Change the Size of cSRX
	Configure Traffic Forwarding on cSRX
	Configure Routing Mode
	Configure Secure-Wire Mode

	Configure CPU Affinity on cSRX
	Enable Persistent Log File Storage to a Linux Host Directory
	Manage cSRX in Bare-Metal Linux Server
	Pause or Resume Processes Within cSRX
	View Processes on a Running cSRX Container
	Remove a cSRX Container or Image

	cSRX Configuration and Management Tools

