JUDLR@! | Engineering

Simplicity

cSRX Container Firewall Deployment
Guide for Bare-Metal Linux Server

Published
2024-06-16

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Container Firewall Deployment Guide for Bare-Metal Linux Server
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | v
1 Overview
Understanding cSRX Container Firewall with a Bare-Metal Linux Server | 2
Junos OS Features Supported on cSRX Container Firewall | 9
2 Installing cSRX Container Firewall
Requirements for Deploying cSRX Container Firewall on a Bare-Metal Linux Server | 26

Installing cSRX Container Firewall in a Bare-Metal Linux Server | 29

Before You Deploy | 29
Confirming Docker Installation | 30

Loading the cSRX Container Firewall Image | 31

Creating the Linux Bridge Network for the cSRX Container Firewall | 33
Launching the cSRX Container Firewall Container | 34

3 cSRX Managing Container Firewall Containers
cSRX Container Firewall Environment Variables Overview | 39
Changing the Size of a cSRX Container Firewall Container | 41

Configuring Traffic Forwarding on a cSRX Container Firewall Container | 42

Configuring Routing Mode | 43

Configuring Secure-Wire Mode | 47
Configuring CPU Affinity for a cSRX Container Firewall Container | 48
Enabling Persistent Log File Storage to a Linux Host Directory | 48

Managing cSRX Container Firewall Containers | 49

Pausing/Resuming Processes within a cSRX Container Firewall Container | 49

Viewing Container Processes on a Running cSRX Container Firewall Container | 50

Removing a cSRX Container Firewall Container or Image | 50
Configuring cSRX Container Firewall

cSRX Container Firewall Configuration and Management Tools | 53

Configuring cSRX Container Firewall Using the Junos OS CLI | 54

About This Guide

Use this guide to install the cSRX Container Firewall Container Firewall in a Linux bare-metal server
environment that is running Ubuntu, Red Hat Enterprise Linux (RHEL), or CentOS. This guide also
includes basic cSRX Container Firewall container configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further software configuration.

CHAPTER

Overview

Understanding cSRX Container Firewall with a Bare-Metal Linux Server | 2

Junos OS Features Supported on cSRX Container Firewall | 9

Understanding cSRX Container Firewall with a Bare-
Metal Linux Server

IN THIS SECTION

cSRX Container Firewall Overview | 2
cSRX Container Firewall Benefits and Uses | 6
Docker Overview | 7

cSRX Container Firewall Scale-Up Performance | 8

The cSRX Container Firewall Container Firewall is a containerized version of the SRX Series Services
Gateway with a low memory footprint. cSRX Container Firewall provides advanced security services,
including content security, AppSecure, and Content Security in a container form factor. By using a
Docker container in a bare-metal Linux server, the cSRX Container Firewall can substantially reduce
overhead because each container shares the Linux host's OS kernel. Regardless of how many containers
a Linux server hosts, only one OS instance is in use. And because of the containers’ lightweight quality, a
server can host many more container instances than it can virtual machines (VMs), yielding tremendous
improvements in utilization. With its small footprint and Docker as a container management system, the
cSRX Container Firewall Container Firewall enables agile, high-density security service deployment.

This section includes the following topics:

cSRX Container Firewall Overview

The cSRX Container Firewall Container Firewall runs as a single container on a Linux bare-metal server.
It uses a Linux bare-metal server as the hosting platform for the Docker container environment. The
cSRX Container Firewall container packages all of the dependent processes (daemons) and libraries to
support the different Linux host distribution methods (Ubuntu, Red Hat Enterprise Linux, or CentOS).
You use standard Docker commands to manage the cSRX Container Firewall container. cSRX Container
Firewall is built on the Junos operating system (Junos OS) and delivers networking and security features
similar to those available on the software releases for the SRX Series.

When the cSRX Container Firewall container runs, there are several daemons inside the Docker
container that launch automatically when the cSRX Container Firewall becomes active. Some daemons
support Linux features, providing the same service as if they are running on a Linux host (for example,

sshd, rsyslogd, monit, and so on). Other daemons are compiled and ported from Junos OS to perform
configuration and control jobs for security service (for example, MGD, NSD, Content Security, IDP,
ApplD, and so on). srxpfe is the data-plane daemon that receives and sends packets from the revenue
ports of a cSRX Container Firewall container. The cSRX Container Firewall uses srxpfe for Layer 2
through 3 forwarding functions (secure-wire forwarding or static routing forwarding) as well as for Layer
4 through 7 network security services.

The cSRX Container Firewall Container Firewall enables advanced security at the network edge in a
multitenant virtualized environment. cSRX Container Firewall provides Layer 4 through 7 advanced
security features such as firewall, IPS, and AppSecure. The cSRX Container Firewall container also
provides an additional interface to manage the cSRX Container Firewall. When cSRX Container Firewall
is operating in Layer 2 secure wire mode, incoming Layer 2 frames from one interface go through Layer
4 through 7 processing based on the configured cSRX Container Firewall services. cSRX Container
Firewall then sends the frames out of the other interface.

Launch the cSRX Container Firewall instance in secure-wire mode using the following command:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

NOTE: As part of your Docker container configuration, you must connect the cSRX Container
Firewall container to three virtual networks: one virtual network for out-of-band management
sessions, the other two virtual networks to receive and transmit data traffic. See "Installing cSRX
Container Firewall in a Bare-Metal Linux Server" on page 29.

Figure 1 on page 4 illustrates the cSRX Container Firewall operating in secure-wire mode. It is an
example of how a cSRX Container Firewall container is bridged with an external network. In this
illustration, cSRX Container Firewall eth1 is bridged with host physical NIC eth1 and cSRX Container
Firewall eth2 is bridged with host physical NIC eth2.

Figure 1: cSRX Container Firewall in Secure-Wire Mode

Docker cSRX Instance
srxpfe Process
L4-7 Services (NAT/UTM/...)

Secure-wire Mode

5 q
Interface
Pair
ge-0/0/0 ge-0/0/1';
v v
[z} [}
ethi l_.J eth2 L._J

Virtual Virtual
Ethernet Ethernet
or (B b (2
ethl-br () eth2 brga
ethl eth2

Figure 2 on page 5 illustrates the cSRX Container Firewall operating in routing mode.

1
3

8200094

Figure 2: cSRX Container Firewall Container in Routing Mode

USER SPACE
Docker cSRX Instance
Other Linux @ Dependent Libraries/Binaries/Files
Daemons...

rxpfe Pr
Junos Control Daemons STXpTe Frocess

(mgd/nsd/idpd/utmdy/...)

Linux Daemons Static Routing

L4-7 Services (NAT/UTM/...)

KERNEL SPACE

ethO-br ethl-br eth2-br eth3-br

ethO ethl eth2 eth4

eth4-br

eth3

(sshd/rsyslogd/...) I N N
: : Interface :
Docker Engine . - . Pair . .
ge-0/0/0 % ge-0/0/1} ge-0/0/2% ge-0/0/3} ge-0/0/15!
v v v v v
(] [~ [~ (] (]
] L] L]] L] L]
ethO EJ ethl EJ eth2 EJ eth3 EJ eth4 l!] eee th16 G
Virtual Virtual Virtual Virtual Virtual Virtual
Ethernet Ethernet Ethernet Ethernet Ethernet Ethernet

eth16-br

ethl6

B
B
B
B—®

[B—®

B

Starting in Junos OS Release 19.2R1, in routing mode, the default number of interfaces supported are

three and maximum of 17 interfaces (1 management and 16 data interfaces).

Prior to Junos OS Release 19.2R1, in routing mode, ethO was mapped as out of band management

interface, eth1 as ge-0/0/1, and eth2 as ge-0/0/0.

Starting in Junos OS Release 19.2R1, in routing mode, with this increase in the number of supported

interfaces, the mapping of ge interfaces are reordered as:
e ethO - out of band management interface

e ethl - ge-0/0/0

e eth2-ge-0/0/1

o eth3-ge-0/0/2

e eth4 - ge-0/0/3 and so on

8043639

cSRX Container Firewall Benefits and Uses

The cSRX Container Firewall Container Firewall enables you to quickly introduce new firewall services,
deliver customized services to customers, and scale security services based on dynamic needs. The cSRX
Container Firewall container differs from VMs in several important ways. It runs with no guest OS
overhead, has a notably smaller footprint, and is easier to migrate or download. The cSRX Container
Firewall container uses less memory, and its spin-up time measures in subseconds—all leading to higher
density at a lower cost. The boot time is reduced from several minutes with a VM-based environment to
less than a few seconds for the cSRX Container Firewall container. The cSRX Container Firewall is ideal
for public, private, and hybrid cloud environments.

Some of the key benefits of cSRX Container Firewall in a containerized private or public cloud
multitenant environment include:

o Stateful firewall protection at the tenant edge.
e Faster deployment of containerized firewall services into new sites.

e With a small footprint and minimum resource reservation requirements, the cSRX Container Firewall
can easily scale to keep up with customers’ peak demand.

e Provides significantly higher density without requiring resource reservation on the host than what is
offered by VM-based firewall solutions.

o Flexibility to run on a bare-metal Linux server or Juniper Networks Contrail.

e In the Contrail Networking cloud platform, cSRX Container Firewall can be used to provide
differentiated Layer 4 through 7 security services for multiple tenants as part of a service chain.

e With the Contrail orchestrator, cSRX Container Firewall can be deployed as a large scale security
service.

e Application security features (including IPS and AppSecure).

e Content Security content security features (including antispam, Sophos Antivirus, web filtering, and
content filtering).

e Authentication and integrated user firewall features.

NOTE: While the security services features between cSRX Container Firewall and vSRX Virtual
Firewall are similar, there are scenarios in which each product is the optimal option in your
environment. For example, the cSRX Container Firewall does not support routing instances and
protocols, switching features, MPLS LSPs and MPLS applications, chassis cluster, and software
upgrade features. For environments that require routing or switching, a vSRX Virtual Firewall VM

provides the best feature set. For environments focused on security services in a Docker
containerized deployment, cSRX Container Firewall is a better fit.

See "Junos OS Features Supported on cSRX Container Firewall" on page 9 for a summary of

the feature categories supported on cSRX Container Firewall, and also for a summary of features
not supported on cSRX Container Firewall.

You can deploy the cSRX Container Firewall Container Firewall in the following scenarios:

e Cloud CPE-For service providers (SPs) and managed security service providers (MSSPs) where there
is a large subscriber base of branch offices or residential subscribers. MSSPs can offer differentiated
services to individual subscribers.

e Contrail microsegmentation-Within a Contrail environment running mixed workloads of VMs and
containers, cSRX Container Firewall can provide security for Layer 4 through 7 traffic, managed by
Security Director.

e Private clouds-cSRX Container Firewall can provide security services in a private cloud running
containerized workloads and can include Contrail integration.

Docker Overview

Docker is an open source software platform that simplifies the creation, management, and teardown of a
virtual container that can run on any Linux server. A Docker container is an open source software
development platform, with its main benefit being to package applications in “containers” to allow them
to be portable among any system running the Linux operating system (OS). A container provides an OS-
level virtualization approach for an application and associated dependencies that allow the application
to run on a specific platform. Containers are not VMs, rather they are isolated virtual environments with
dedicated CPU, memory, I/O, and networking.

A container image is a lightweight, standalone, executable package of a piece of software that includes
everything required to run it: code, runtime, system tools, system libraries, settings, and so on. Because
containers include all dependencies for an application, multiple containers with conflicting dependencies
can run on the same Linux distribution. Containers use the host OS Linux kernel features, such as groups
and namespace isolation, to allow multiple containers to run in isolation on the same Linux host OS. An
application in a container can have a small memory footprint because the container does not require a
guest OS, which is required with VMs, because it shares the kernel of its Linux host’s OS.

Containers have a high spin-up speed and can take much less time to boot up as compared to VMs. This
enables you to install, run, and upgrade applications quickly and efficiently.

Figure 3 on page 8 provides an overview of a typical Docker container environment.

Figure 3: Docker Container Environment

Containers
—» Appl App 2 App 3 App 3 App 3 :

Containers are
isolated, but share
bins and libraries
where possible to
improve efficiency.

Containers are Bins / Bins / ins /Librari

created with Linux, Libraries Libraries s AIBEiIES

but share a kernel
with almost any
type of host OS.

Docker Engine

Host Operating System

8200100

I cSRX Container Firewall Scale-Up Performance

You can scale the performance and capacity of a cSRX Container Firewall container by increasing the
allocated amount of virtual memory or the number of flow sessions. Table 1 on page 8 shows the

cSRX Container Firewall scale-up performance applied to a cSRX Container Firewall container based on
its supported sizes: small, medium, and large. The default size for a cSRX Container Firewall container is
large.

NOTE: See Changing the Size of a cSRX Container for the procedure on how to scale the
performance and capacity of a cSRX Container Firewall container by changing the container size.

Table 1: cSRX Container Firewall Scale Up Performance

cSRX Container Firewall Physical Memory Number of Flow Sessions = Release Introduced
Size Overhead

Small 256M 8K Junos OS Release 18.1R1

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-csrx-size.html

Table 1: ¢cSRX Container Firewall Scale Up Performance (Continued)

cSRX Container Firewall Physical Memory Number of Flow Sessions = Release Introduced
Size Overhead

Medium 1G 64K

Large 4G 512K

Docker Overview
What is Docker?

What is a Container?

Get Started With Docker

Junos OS Features Supported on cSRX Container

Firewall

IN THIS SECTION

Supported SRX Series Features on cSRX Container Firewall | 10

SRX Series Features Not Supported on cSRX Container Firewall | 17

cSRX Container Firewall provides Layer 4 through 7 secure services in a containerized environment.

This section presents an overview of the Junos OS features on cSRX Container Firewall.

https://docs.docker.com/engine/docker-overview/
https://www.docker.com/what-docker
https://www.docker.com/what-container
https://docs.docker.com/get-started/

Supported SRX Series Features on cSRX Container Firewall

Table 2 on page 10 provides a high-level summary of the feature categories supported on cSRX
Container Firewall and any feature considerations.

To determine the Junos OS features supported on cSRX Container Firewall, use the Juniper Networks
Feature Explorer, a Web-based application that helps you to explore and compare Junos OS feature
information to find the right software release and hardware platform for your network. See Feature
Explorer.

Table 2: SRX Series Features Supported on cSRX Container Firewall

Feature Considerations

Application Firewall (AppFW) Application Firewall Overview

Application Identification (ApplD) Understanding Application Identification Techniques
Application Tracking (AppTrack) Understanding AppTrack

Basic firewall policy Understanding Security Basics

Brute force attack mitigation

Central management CLI only. No J-Web support.

DDoS protection DoS Attack Overview

DoS protection DoS Attack Overview

Interfaces A cSRX Container Firewall container supports 17 interfaces:

e 1 Out-of-band management Interface (ethO)
e 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Network Interfaces

https://pathfinder.juniper.net/feature-explorer/
https://pathfinder.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/interface-security-network.html

Table 2: SRX Series Features Supported on cSRX Container Firewall (Continued))

Feature

Intrusion Detection and
Prevention (IDP)

IPv4 and IPvé

Jumbo frames

Malformed packet protection

Network Address Translation
(NAT)

Routing

SYN cookie protection

Considerations

For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX Series

Understanding IPv4 Addressing

Understanding IPvé Address Space

Understanding Jumbo Frames Support for Ethernet Interfaces

Includes support for all NAT functionality on the cSRX Container Firewall
platform, such as:

e Source NAT

e Destination NAT

e Static NAT

e Persistent NAT and NAT64
o NAT hairpinning

e NAT for multicast flows

For SRX Series NAT configuration details, see:

Introduction to NAT
Basic Layer 3 forwarding with VLANSs.
Layer 2 through 3 forwarding functions: secure-wire forwarding or static

routing forwarding

Understanding SYN Cookie Protection

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-nat.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html

Table 2: SRX Series Features Supported on cSRX Container Firewall (Continued))

Feature Considerations

System Logs and Real-Time Logs Starting in Junos OS Release 20.1R1, you can monitor traffic using system
logs and RTlogs.

User Firewall Includes support for all user firewall functionality on the cSRX Container
Firewall platform, such as:

e Policy enforcement with matching source identity criteria
e logging with source identity information

e Integrated user firewall with active directory

e local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

Content Security Includes support for all Content Security functionality on the cSRX
Container Firewall platform, such as:

e Antispam

e Sophos Antivirus
o Web filtering

e Content filtering

For SRX Series Content Security configuration details, see:
Unified Threat Management Overview
For SRX Series Content Security antispam configuration details, see:

Antispam Filtering Overview

Zones and zone-based IP spoofing | Understanding IP Spoofing

https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

Table 3: IKE and IPsec features

Feature

IKE Features

Pre-shared key

Certificate authentication

IKEv1 (main mode/aggressive
mode)

IKEv2

Route-based VPN

Site-to-site VPN

Auto VPN

Dynamic endpoint VPN

Point-to-point tunnel interfaces

Point-to-multipoint tunnel
interfaces

Numbered tunnel interfaces

Unnumbered tunnel interface

Hub-and-spoke scenario for site-
to-site VPNs

Unicast static and dynamic (RIP,
OSPF, BGP) routing overt stO
interface

Supported on cSRX

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

No

Table 3: IKE and IPsec features (Continued)

Feature Supported on cSRX
Virtual router No
IKED crash recovery Yes
Chassis Cluster No
HA Link Encryption No
Local address selection Yes
Loopback address termination No

DNS name as IKE gateway address = Yes

NAT-Traversal (NAT-T) for IPv4 IKE = Yes
peers

Dead Peer Detection (DPD) Yes

Generic proposals and policies for Yes

IPv4 and IPvé6

General IKE ID Yes
Single proxy ID pairs No
Multiple traffic selector pairs Yes

Dual-stack (parallel IPv4 and IPv6 Yes
tunnels) over a single physical
interface

Table 3: IKE and IPsec features (Continued)

Feature Supported on cSRX

Authentication Algorithms - md5, Yes
shal, sha-256, sha-384, sha-512

Encryption Algorithms - des-cbc, Yes
3des-cbc, aes-128-cbc, aes-128-

gcm, aes-192-cbc, aes-256-chc,
aes-256-gcm

IKE Proposal Sets - basic, Yes
compatible, standard, prime-128,
prime-256, suiteb-gcm-128, suiteb-
gcm-256

DH groups - Yes
1,2,5,14,15,16,19,20,21,24

Local Identity - distinguished-name, = Yes
hostname, ipv4/vé address, user-
at-hostname, key-id

Remote Identity - distinguished- Yes
name, hostname, ipv4/v6 address,
user-at-hostname, key-id

IKE Reauthentication (initiator and Yes

responder)
Configuration payload No
EAP No

Remote Access - NCP/Licensing No

Table 3: IKE and IPsec features (Continued)

Feature

IPsec/Dataplane Features

Tunnel establishment - immediately,

on-traffic, responder-only and
responder-only-no-rekey mode

Distribution-Profile

Tunnel re-distribution

IKEv2 Fragmentation

SNMP MIB

Statistics, logs, per-tunnel
debugging

IKE termination on lo0 interface

ESP and AH tunnel modes

Extended sequence number

Lifetime of IKE or IPsec SA, in
seconds

Encryption Algorithms - des-cbc,
3des-cbc, aes-128-cbc, aes-192-
cbc, aes-256-cbc, aes-gcm-128,
aes-gcm-256 Yes

Supported on cSRX

Yes

No

No

Yes

No

Yes

No

Yes

Yes

Yes

Yes

Table 3: IKE and IPsec features (Continued)

Feature Supported on cSRX

Authentication-algorithm - hmac- Yes
shal-96, hmac-md5-96, hmac-
sha-256-128, hmac-sha-384,
hmac-sha-512

Don't Fragment bit Yes
IPvé6 extension headers Yes
IPsec fragmentation and Yes
reassembly

Session affinity No
Power mode IPsec Yes
Configurable anti-replay window Yes
DSCP Copy Yes
Configurable delay installation of Yes

rekeyed outbound SAs

Cos on st0 No

SRX Series Features Not Supported on cSRX Container Firewall

Table 4 on page 18 lists SRX Series features that are not applicable in a containerized environment, that
are not currently supported, or that have qualified support on cSRX Container Firewall.

Table 4: SRX Series Features Not Supported on cSRX Container Firewall

Application Layer Gateways

Authentication with IC Series Devices

Class of Service

Data Plane Security Log Messages (Stream Mode)

Diagnostics Tools

DNS Proxy

Ethernet Link Aggregation

SRX Series Feature

Avaya H.323

Layer 2 enforcement in UAC deployments

NOTE: UAC-IDP and UAC-Content Security also are
not supported.

High-priority queue on SPC

Tunnels

TLS protocol

Flow monitoring cflowd version 9

Ping Ethernet (CFM)

Traceroute Ethernet (CFM)

Dynamic DNS

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Feature

LACP in standalone or chassis cluster mode

Layer 3 LAG on routed ports

Static LAG in standalone or chassis cluster mode

Ethernet Link Fault Management

Physical interface (encapsulations)

ethernet-ccc
ethernet-tcc

extended-vlan-ccc
extended-vlan-tcc

Interface family

cc, tec

ethernet-switching

Flow-Based and Packet-Based Processing

End-to-end packet debugging

Network processor bundling

Services offloading

Interfaces

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Feature

Aggregated Ethernet interface

IEEE 802.1X dynamic VLAN assignment

IEEE 802.1X MAC bypass

IEEE 802.1X port-based authentication control with
multisupplicant support

Interleaving using MLFR

PoE

PPP interface

PPPoE-based radio-to-router protocol

PPPoE interface

Promiscuous mode on interfaces

VPNs

Acadia - Clientless VPN

DVPN

Multicast for AutoVPN

IPv6 Support

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Feature

DS-Lite concentrator (also known as AFTR)

DS-Lite initiator (also known as B4)

Log File Formats for System (Control Plane) Logs

Binary format (binary)

WELF

Miscellaneous

AppQoS

Chassis cluster

GPRS

Hardware acceleration

High availability

J-Web

Logical systems

MPLS

Outbound SSH

Remote instance access

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

MPLS

Network Address Translation

Packet Capture

Routing

SRX Series Feature

RESTCONF

ATP Cloud

SNMP

Spotlight Secure integration

USB modem

Wireless LAN

CCCand TCC

Layer 2 VPNs for Ethernet connections

Maximize persistent NAT bindings

Packet capture

NOTE: Only supported on physical interfaces and
tunnel interfaces, such as gr; ip, and st0. Packet capture
is not supported on a redundant Ethernet interface
(reth).

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

Switching

Unsupported System Logs and Real-Time log functions

Transparent Mode

SRX Series Feature

BGP extensions for IPvé

BGP Flowspec

BGP route reflector

Bidirectional Forwarding Detection (BFD) for BGP

CRTP

Layer 3 Q-in-Q VLAN tagging

cSRX Container Firewall does not support all the log
functions supported on other SRX Series Firewalls or
VvSRX Virtual Firewall instances due to limited CPU
power and disk capacity.

Unsupported system logs and real-time log functions
on cSRX Container Firewall are:

e The binary log
e On box logs (the LLMD daemon is not ported.)
e On box reports (the LLMD daemon is not ported.)

e TLS is not supported for sending stream mode
security log to remote log server.

e LSYS and Tenant related functions.

Content Security

Table 4: SRX Series Features Not Supported on cSRX Container Firewall (Continued)

SRX Series Feature

Content Security
Express AV
Kaspersky AV
Upgrading and Rebooting
Autorecovery

Boot instance configuration

Boot instance recovery

Dual-root partitioning

OS rollback

User Interfaces

NSM

SRC application

Junos Space Virtual Director

Application Security

SSL proxy

CHAPTER

Installing cSRX Container Firewall

Requirements for Deploying cSRX Container Firewall on a Bare-Metal Linux
Server | 26

Installing cSRX Container Firewall in a Bare-Metal Linux Server | 29

Launching the cSRX Container Firewall Container | 34

Requirements for Deploying cSRX Container
Firewall on a Bare-Metal Linux Server

IN THIS SECTION

Host Requirements | 26
cSRX Container Firewall Basic Configuration Settings | 27

Interface Naming and Mapping | 27

This section presents an overview of requirements for deploying a cSRX Container Firewall container on
a bare-metal Linux server:
Host Requirements

Table 5 on page 26 lists the Linux host requirement specifications for deploying a cSRX Container
Firewall container on a bare-metal Linux server.

NOTE: The cSRX Container Firewall can run either on a physical server or virtual machine. For
scalability and availability reasons, we recommended using a physical server to deploy the cSRX
Container Firewall container.

Table 5: Host Requirement Specifications for cSRX Container Firewall
Component Specification Release Introduced
Linux OS support CentOS 6.5 or later Junos OS Release 18.1R1

Red Hat Enterprise Linux (RHEL) 7.0 or later

Ubuntu 14.04.2 or later

Table 5: Host Requirement Specifications for cSRX Container Firewall (Continued))

Component Specification Release Introduced

Docker Engine Docker Engine 1.9 or later installed on a Linux host

Contrail Cloud Platform | Contrail 3.2 with OpenStack Liberty or OpenStack Mitaka

vCPUs 2 CPU cores

Memory 4 GB

Disk space 40 GB hard drive

Host processor type x86_64 multicore CPU
Network interface 1 Ethernet port (minimum)

cSRX Container Firewall Basic Configuration Settings

The cSRX Container Firewall container requires the following basic configuration settings:
e Interfaces must be assigned IP addresses.

e Policies must be configured between zones to permit or deny traffic.

Interface Naming and Mapping

A cSRX Container Firewall container supports 17 interfaces:
e 1 Out-of-band management Interface (ethO)
e 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Table 6 on page 28 lists the cSRX Container Firewall interface assignments with Docker.

Table 6: cSRX Container Firewall Interface Assignment

Interface
Number

10

11

12

13

14

15

16

cSRX Container Firewall Interfaces

ethO

ge-0/0/0

ge-0/0/1

ge-0/0/2

ge-0/0/4

ge-0/0/5

ge-0/0/6

ge-0/0/7

ge-0/0/8

ge-0/0/9

ge-0/0/10

ge-0/0/11

ge-0/0/12

ge-0/0/13

ge-0/0/14

Docker Interfaces

ethO

ethl

eth2

eth3

eth5

ethé

eth7

eth8

eth9

eth10

eth11

eth12

eth13

eth14

eth15

Table 6: cSRX Container Firewall Interface Assignment (Continued)

Interface cSRX Container Firewall Interfaces Docker Interfaces
Number
17 ge-0/0/15 eth16

Installing cSRX Container Firewall in a Bare-Metal
Linux Server

IN THIS SECTION

Before You Deploy | 29
Confirming Docker Installation | 30
Loading the cSRX Container Firewall Image | 31

Creating the Linux Bridge Network for the cSRX Container Firewall | 33

This section outlines the steps to install the cSRX Container Firewall container in a Linux bare-metal
server environment that is running Ubuntu, Red Hat Enterprise Linux (RHEL) , or CentOS. The cSRX

Container Firewall container is packaged in a Docker image and runs in the Docker Engine on the Linux
host.

This section includes the following topics:

Before You Deploy

Before you deploy the cSRX Container Firewall Container Firewall as an advanced security service in a
Linux container environment, ensure that you:

e Review "Requirements for Deploying cSRX Container Firewall on a Bare-Metal Linux Server" on page
26 to verify the system software requirement specifications for the Linux server required to deploy
the cSRX Container Firewall container.

¢ Install and configure Docker on your Linux host platform to implement the Linux container
environment. Docker installation requirements vary based on the platform and the host OS (Ubuntu,
Red Hat Enterprise Linux (RHEL), or CentOS). Install Docker. You can also use the script at: https:/
get.docker.com/ to install docker easily. You need to execute this script on shell.

For docker installation instructions on the different supported Linux host operating systems, see:
e Centos/Redhat—https:/docs.docker.com/install/linux/docker-ce/centos/

e Debian—https://docs.docker.com/install/linux/docker-ce/debian/

e Fedora—https:/docs.docker.com/install/linux/docker-ce/fedora/

e Ubuntu—https:/docs.docker.com/install/linux/docker-ce/ubuntu/

Confirming Docker Installation

Before you load the cSRX Container Firewall image, confirm that Docker is properly installed on the
Linux host and that the Docker Engine is running.

To confirm Docker installation:

1. Confirm that Docker is installed and running on the Linux server by using the service docker status
command.

root@csrx-ubuntu3: ~# service docker status
docker start/running, process 701
You should also be able to run docker run hello-world and see a similar response.

root@csrx-ubuntu3:~# docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working correctly.

e |f Docker is not installed, see Install Docker for installation instructions.

e If Docker is not running, see Configure and troubleshoot the Docker daemon.

2. Verify the installed Docker Engine version by using the docker version command.

https://docs.docker.com/engine/installation/
https://get.docker.com/
https://get.docker.com/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/admin/

NOTE: Ensure that Docker version 1.9.0 or later is installed on the Linux host.

root@csrx-ubuntu3:~# docker version
Client:

Docker version 17.05.0-ce-rc1, build 2878a85
API Version: 1.30

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

0S/Arch: linux/amd64

Server:

Docker version 17.05.0-ce-rc1, build 2878a85
API Version: 1.30 (minimum version 1.12)

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

0S/Arch: linux/amd64

Experimental: False

Loading the cSRX Container Firewall Image

Once the Docker Engine has been installed on the host, perform the following to download and start
using the cSRX Container Firewall image:

1. Download the cSRX Container Firewall software image from the Juniper Networks website. The
filename of the downloaded cSRX Container Firewall software image must not be changed to
continue with the installation.

2. You can either download the cSRX Container Firewall image file normally using the browser or use
the URL to download the image directly on your device as in the following example:

https://www.juniper.net/support/downloads/?p=csrx#sw

Run the following command to downloaded images to a local registry using curl command or any
other http utility. The syntax for curl commands is:

root@csrx-ubuntu3: ~csrx# curl -o <file destination path> <Download link url>

root@csrx-ubuntu3:/var/tmp# curl -o /var/tmp/images/junos-csrx-docker-20.2R1.10.img “https:/
cdn.juniper.net/software/csrx/20.2R1.10/junos-csrx-docker-20.2R1.10.img?SM_USER=user
=1595350694_5dbf6e62442de6bf14079d05a72464d4"

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 160M 100 160M 0 0 1090k 0 0:02:30 0:02:30 --:--:-- 1230k

3. Locate the cSRX Container Firewall image by using the 1s Linux shell command.
root@csrx-ubuntu3:/var/tmp/images# Is
4. Load the downloaded cSRX Container Firewall image to the local registry.

root@csrx-ubuntu3:/var/tmp/images# docker image load -i /var/tmp/images/junos-csrx-
docker-20.2R1.10.img

€758932b9168: Loading layer [>] 263MB/
263MB

23f7a9961879: Loading layer [>] 14.51MB/
14.51MB

1e4139e6fa81: Loading layer [>] 270.3MB/
270.3MB

10334b424f86: Loading layer [>] 16.9kB/
16.9kB

202ebb2f1137: Loading layer [>] 2.56kB/
2.56kB

bc4al16173327: Loading layer [>] 1.536kB/
1.536kB

8f9a9945544a: Loading layer [>] 2.048kB/
2.048kB

Loaded image: csrx:20.2R1.10

5. After the cSRX Container Firewall image loads, confirm that it is listed in the repository of Docker
images.

root@csrx-ubuntu3:/var/tmp/images# docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE

csrx 20.2R1.10 88597d2d4940 2 weeks ago
534MB

Creating the Linux Bridge Network for the cSRX Container Firewall

A Linux bridge is a virtual switch implemented as a kernel module. This Linux bridge is used within a
Linux host to emulate a hardware bridge. Docker allows you to create a Linux bridge network and
connect the cSRX Container Firewall container to this network to implement management and data
processing sessions. The interfaces are created with the Linux VETH driver and are used to
communicate with the Linux kernel.

This procedure describes how to create a three-bridge network for the cSRX Container Firewall
container that includes: mgt_bridge (eth0), left_bridge (eth1), and right_bridge (eth2). The mgt_bridge is
used by the cSRX Container Firewall for out-of-band management to accept management sessions and
traffic, and the left_bridge and right_bridge are both used by the cSRX Container Firewall as the revenue
ports to process in-band data traffic.

NOTE: Docker automatically connects the management interface (ethO) to the Linux bridge and
assigns an IP address. Interfaces eth1 and eth2 are for the inband traffic. cSRX Container Firewall
must be bound with the Linux bridge to pass traffic.

To create a three-bridge network for a cSRX Container Firewall in the Linux host:

1. Create the management bridge in the network.

root@csrx-ubuntu3: :~/csrx# docker network create --driver bridge mgt_bridge

3228844986eae1d1a8d367b34b54b31b130842be072b9dcdf7da3601c95b7130
2. Create the left bridge in the network (untrusted interface (eth1)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge left_bridge

£1324b0a9072c55ababbcc51d83¢83658084b67513811e13829172cccbcd8e5d
3. Create the right bridge in the network (trusted interface (eth2)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge right_bridge

196bd039f7c2401df4c117ea684114548a3df0b9d406cf3cf8f17338fab96774

‘ Docker commands

Launching the cSRX Container Firewall Container

You are now ready to launch the cSRX Container Firewall container that is running in Docker on the
Linux bare-metal server. When you start the cSRX Container Firewall image, you have a running
container of the image. You can stop and restart the cSRX Container Firewall container (see "Managing
cSRX Container Firewall Containers" on page 49), and the container will retain all settings and file
system changes unless those changes are explicitly deleted. However, the cSRX Container Firewall will
lose anything in memory and all processes will be restarted.

You have a series of cSRX Container Firewall environment variables that enable you to modify operating
characteristics of the cSRX Container Firewall container when it is launched. You can modify:

¢ When you deploy cSRX Container Firewall you must enable the SSH service and SSH option for root-
login. SSH service is not enabled by default.

To enable SSH service run the set system services ssh command and for root user login run the set
system services ssh root-login allow command.

e Traffic forwarding mode (static route or secure-wire)

e cSRX Container Firewall container size (small, medium, or large)

e Packet |/O driver (polled or interrupt)

¢ CPU affinity for cSRX Container Firewall control and data daemons

e Address Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) entry timeout values

e Number of interfaces you need to add to container. Default is 3 and maximum is 17 (which means 1
management interfaces and 16 data interfaces).

NOTE: Specification of an environment variable is not mandatory when launching the cSRX
Container Firewall container; most environment variables have a default value as shown in "cSRX
Container Firewall Environment Variables Overview" on page 39. You can launch the cSRX
Container Firewall using the default environment variable settings.

To launch the cSRX Container Firewall container:

https://docs.docker.com/engine/reference/commandline/docker/

. Use the docker run command to launch the cSRX Container Firewall container. You include the
mgt_bridge management bridge to connect the cSRX Container Firewall to a network.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=<csrx-
container-name> hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX Container Firewall software image csrx:18.21R1.9 enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=csrx2
hub.juniper.net/security/csrx:18.2R1.9

NOTE: You must include the --privileged flag in the docker run command to enable the cSRX
Container Firewall container to run in privileged mode.

. Connect the left and right bridges to the Docker network.

root@csrx-ubuntu3: ~/csrx# docker network connect left_bridge csrx2
root@csrx-ubuntu3:~/csrxi
root@csrx-ubuntu3:~/csrx# docker network connect right_bridge csrx2

root@csrx-ubuntu3:~/csrx#
. Confirm that the three-bridge network has been created for the cSRX Container Firewall container.

root@csrx-ubuntu3:~/csrx# docker network Is
NETWORK ID NAME DRIVER SCOPE

80bead207560 bridge bridge local

619da6736359 host host local

112ab00aabla left_bridge bridge local
1484998f41bb mgt_bridge bridge local
daf7a5a477bd none null local

e409a4f54237 right_bridge bridge local
. Confirm that the cSRX Container Firewall container is listed as a running Docker container.

root@csrx-ubuntu3:~/csrx# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

35e33e8aadaf csrx "/etc/rc.local init" 7 minutes ago Up 7 minutes 22/tcp, 830/tcp csrx2

. Confirm that the cSRX Container Firewall container is up and running. You should see the expected
Junos OS processes, such as nsd, srxpfe, and mgd.

root@csrx-ubuntu3:~/csrx# docker top csrx2

UID
STIME
root
09:13
root
Mar30
root
Mar30
rsyslog
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30
root
Mar30

PID

TTY

318

pts/1
27423
pts/0
27867
27880
27882
27907
27963
pts/0
27979
27989
28023
28040
28048
28126

28186

28348

PPID
TIME
305

00:00:

27407

00:00:

27423

00:08:

27423

00:00:

27423

00:00:

27423

00:00:

27423

00:34:

27423

00:01:

27423

00:00:

27423

00:00:

27423

00:09:

27423

00:52:

27423

1-05:21:47

27423

00:01:

27423

00:02:

00

00

00

00

08

50

02

21

21

50

37

44

CMD

0

bash

0

/bin/bash -e /etc/rc.local init
0

/usr/sbin/rsyslogd -M/usr/lib/

0

/usr/sbin/sshd

0
/usr/sbin/nstraced
0

/usr/sbin/mgd

0

/usr/bin/monit -I

0

/usr/sbin/nsd

0

/usr/sbin/appidd -N
0

/usr/sbin/idpd -N

0

/usr/sbin/wmic -N

0

/usr/sbin/useridd -N
2

/usr/sbin/srxpfe -a -d
0

/usr/sbin/utmd -N

0

/usr/sbin/kmd

6. Confirm the IP address of the management interface of the cSRX Container Firewall container.

root@csrx-ubuntu3:~/csrx# docker inspect csrx2 | grep IPAddress

"SecondaryIPAddresses": null,
"IPAddress": "",
"IPAddress": "172.19.0.2",
"IPAddress": "172.18.0.2",
"IPAddress": "172.20.0.2",

RELATED DOCUMENTATION

Docker commands

37

https://docs.docker.com/engine/reference/commandline/docker/

CHAPTER

cSRX Managing Container Firewall

Containers

cSRX Container Firewall Environment Variables Overview | 39

Changing the Size of a cSRX Container Firewall Container | 41

Configuring Traffic Forwarding on a cSRX Container Firewall Container | 42
Configuring CPU Affinity for a cSRX Container Firewall Container | 48
Enabling Persistent Log File Storage to a Linux Host Directory | 48

Managing cSRX Container Firewall Containers | 49

cSRX Container Firewall Environment Variables
Overview

Docker allows you to store data such as configuration settings as environment variables. At runtime, the
environment variables are exposed to the application inside the container. You can set any number of
parameters to take effect when the cSRX Container Firewall image launches. You set an environment
variable by specifying the docker run -e VARIABLE=VALUE ... key.

A series of cSRX Container Firewall environment variables enables you to modify the characteristics of
the cSRX Container Firewall instance when it is launched. The specification of an environment variable is
not mandatory; most environment variables have a default value as shown in Table 7 on page 39. If
desired, you can launch the cSRX Container Firewall using the default environment variable settings.

For example, to launch a cSRX Container Firewall instance in secure-wire forwarding mode, and using
the middle size cSRX Container Firewall configuration:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

NOTE: You must include the --privileged flag in the docker run command to enable the cSRX
Container Firewall container to run in privileged mode.

Table 7 on page 39 summarizes the list of available cSRX Container Firewall environment variables
along with a link to the topic that outlines its usage.

Table 7: Summary of cSRX Container Firewall Environment Variables

Variable Description Values Default Topic
CSRX_FORWARD_MODE | Traffic forwarding mode. "routing" | "routing' | "Configuring
"wire" Traffic

Forwarding on a
cSRX Container
Firewall
Container" on
page 42

Table 7: Summary of cSRX Container Firewall Environment Variables (Continued)

Variable

CSRX_PACKET_DRIVER

CSRX_CTRL_CPU

CSRX_DATA_CPU

CSRX_ARP_TIMEOUT

CSRX_NDP_TIMEOUT

Description

Packet 1/O driver.

CPU mask, indicating which CPU is
running the cSRX Container Firewall
control plane daemons (such as nsd, mgd,

nstraced, utmd, and so on).

CPU mask, indicating which CPU is
running the cSRX Container Firewall data

plane daemon (srxpfe).

ARP entry timeout value for the control
plane ARP learning or response.

NDP entry timeout value for the control
plane NDP learning or response.

Values

"pO].]." |

"interrupt"

hex value

hex value

decimal value

decimal value

Default

Ilpoll n

No CPU
affinity

No CPU
affinity

Same as
the Linux
host

Same as
the Linux
host

40

Topic

Specifying the
Packet 1/0
Driver for a
cSRX Container

Configuring
CPU Affinity for
a cSRX
Container

Configuring
CPU Affinity for
a cSRX
Container

"Configuring
Traffic
Forwarding on a
cSRX Container
Firewall
Container" on
page 42

"Configuring
Traffic
Forwarding on a
cSRX Container
Firewall
Container" on
page 42

https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-packet_io_driver.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html
https://www.juniper.net/documentation/en_US/csrx/topics/task/multi-task/security-csrx-linux-server-docker-cpu-affinity.html

Table 7: Summary of cSRX Container Firewall Environment Variables (Continued)

Variable Description Values Default Topic
CSRX_PORT_NUM Number of interfaces you need to add to = Default is 3, 3
container. maximum is 17

(which means
Example: docker run -d --privileged --

net=none -e CSRX_PORT_NUM=17 e interfaces and
CSRX_HUGEPAGES=no -e 16 data
CSRX_PACKET_DRIVER=interrupt -e
CSRX_FORWARD_MODE-=routing --
name=<cSRX Container Firewall-

1 management

interfaces)

container-name> <cSRX Container
Firewall-image-name>

Changing the Size of a cSRX Container Firewall
Container

Based on your specific cSRX Container Firewall deployment requirements, scale requirements, and
resource availability, you can scale the performance and capacity of a cSRX Container Firewall instance
by specifying a specific size (small, middle, or large). Each cSRX Container Firewall size has certain
characteristics and can be applicable to certain deployments. By default, the cSRX Container Firewall

container launches using the large size configuration.

Table 8 on page 41 compares the scale requirements of a cSRX Container Firewall instance depending
on the specified size.

Table 8: cSRX Container Firewall Size Comparison

Specification cSRX Container Firewall: cSRX Container Firewall: cSRX Container Firewall:
Small Size Middle Size Large Size (Default)
Physical Memory 256M 1G 4G

Overhead

Table 8: cSRX Container Firewall Size Comparison (Continued)|)

Specification cSRX Container Firewall: cSRX Container Firewall: cSRX Container Firewall:
Small Size Middle Size Large Size (Default)

Number of Flow 8K 64K 512K

Sessions

To assign a specific size for a cSRX Container Firewall instance, include the CSRX_SIZE environment
variable in the docker run command.

For example, to launch a cSRX Container Firewall instance using the middle size configuration to scale
performance and capacity:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e CSRX_SIZE="middle" --
name=<csrx-container-name> <csrx-image-name>

Configuring Traffic Forwarding on a c¢SRX Container
Firewall Container

IN THIS SECTION

Configuring Routing Mode | 43

Configuring Secure-Wire Mode | 47

You can change the traffic forwarding mode of the cSRX Container Firewall container as a means to
facilitate security service provisioning when running the cSRX Container Firewall. For example, if you
deploy a cSRX Container Firewall container inline of protected segments, the cSRX Container Firewall
should be transparent to avoid changing the virtual network topology. In other deployments, the cSRX
Container Firewall container should be able to specify the next-hop address of egress traffic. To address
variations in cSRX Container Firewall network deployment, you can configure the traffic forwarding

mode of the cSRX Container Firewall to operate in routing mode (static routing only) or secure-wire
mode.

NOTE: The cSRX Container Firewall uses routing as the default environment variable for traffic
forwarding mode.

This section includes the following topics:

Configuring Routing Mode

When running the ¢SRX Container Firewall container in routing mode, the cSRX Container Firewall uses
a static route to forward traffic for routes destined to interfaces ge-0/0/0 and ge-0/0/1. You will need
to create a static route and specify the next-hop address.

When you start the cSRX Container Firewall container, you need to specify port number in the
environment using the variable CSRX_PORT_NUM to define the number of interfaces you need to add
to container in routing mode.

For example, to launch cSRX Container Firewall instance in routing mode with 17 interfaces:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --net=none -e CSRX_PORT_NUM=17
CSRX_SIZE=large -e CSRX_HUGEPAGES=no -e CSRX_PACKET_DRIVER=interrupt -e
CSRX_FORWARD_MODE-=routing --name=<srx-container-name> <csrx-image-name>

NOTE: The interfaces specified in the CSRX_PORT_NUM environment variable (default value is

3) must be added to a network after instantiation of the cSRX Container Firewall. Unless all the

interfaces are added to the bridge or the macvlan networks, the PFE will not be launched on the
cSRX Container Firewall, and the ge-x/y/z interfaces will remain down.

Include the -e CSRX_FORWARD_MODE=routing environment variable in the docker run command to instruct the
cSRX Container Firewall to run in static route forwarding mode.

To configure the cSRX Container Firewall container to run in static routing mode:

1. Launch the cSRX Container Firewall container in routing forwarding mode:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE-="routing" --name=<csrx-container-name> <csrx-image-name>

2. Log into cSRX Container Firewall instance and start configuration mode.

root@csrx# cli
root@csrx> configure
[edit]

3. Configure interfaces.

Starting from 19.2R1.8, each cSRX Container Firewall can be configured with up to 15 revenue inter-
faces: eth1, eth2, and so on, until eth15. The number of interfaces can be predefined while booting
up a cSRX Container Firewall. Usually, management IP on a cSRX Container Firewall is assigned by
docker based on network settings while spinning the cSRX Container Firewall(--
network=mgt_bridge). If you don'’t specify this variable, docker is going to assign IP from default
docker network bridge.

The ethO is used by the cSRX Container Firewall for out-of-band management to the accept
management sessions and traffic, and eth1 and eth2 are both used by the cSRX Container Firewall as
the two revenue ports to process in-band data traffic (the ge-0/0/0 and ge-0/0/1 interfaces).

For this example, assume that the docker default or the custom network management bridge is
172.31.21.0/24, docker assigns one IP address from this network. If your cSRX Container Firewall is
the first container on the system, cSRX Container Firewall will get assigned with 172.31.21.2 and
default gateway for the cSRX Container Firewall management plane going to be 172.31.21.1.

Table 9: IP Address Assignment for Interfaces

Interface IP Address
Management Interface ethO (fxp0) 172.31.21.1
Default gateway for the cSRX Container Firewall 172.31.21.2

management plane

Eth1 (ge-0/0/0) 172.19.0.2/24
Eth2 (ge-0/0/1) 172.20.0.2/24
External Server 10.10.10.0

root@csrx# show | display set

root@csrx# set interfaces ge-0/0/0 unit O family inet address 172.19.0.2/24

root@csrx# set interfaces ge-0/0/1 unit O family inet address 172.20.0.2/24
4. Configure static routes.

Configure static route and specify next-hop address.

root@csrx# set routing-options static route 0.0.0.0/0 next-hop 172.19.0.2/24
5. View the forwarding table to verify the static routes.

root@csrx> show route forwarding-table

Routing table: default.inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif
0.0.0.0 perm 0 dscd 517 1
172.19.0.2 perm 0 172.19.0.70 locl 2006 1
172.19.0.10 perm 0 172.19.0.10 ucast 5501 1
1.255.255.255 perm 0 bcst 2007 1

1/8 perm 0 rslv 2009 1172.20.0.2
perm 0 172.20.0.2 locl 2001 1

172.20.0.10 perm 0 172.20.0.10 ucast 5500 1
2.255.255.255 perm 0 bcst 2002 1

2/8 perm 0 rslv 2004 1
224.0.0.1 perm 0 mcst 515 1

224/4 perm 0 mdsc 516 1
172.31.21.2/28 perm 0 172.20.0.10 ucast 5501 1
Routing table: default.inet6

Internet6:

Destination Type RtRef Next hop Type Index NhRef Netif
i perm 0 dscd 527 1
ffoo::/8 perm 0 mdsc 526 1
ffo2::1 perm 0 mcst 525 1

6. Specify a route for the management interface. Static routes can only configure routes destined for
interfaces ge-0/0/0 and ge-0/0/1. The route destined for the management interfaces (ethO) must be
added by using the Linux route shell command.

root@csrx% route add -net 10.10.10.0/24 gw 172.31.21.1

root@csrx% route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 0.0.0.0 0.0.0.0 U 0 0 0 pfe_tun

172.19.0.2 0.0.0.0 255.0.0.0 u 0 0 0 tapl
172.20.0.2 0.0.0.0 255.0.0.0 u 0 0 0 tapo
172.31.21.2 1.0.0.10 255.255.255.240 UG 0 0 0 tapl
10.10.10.0 172.31.21.1 255.255.255.0 UG 0 0 0 etho
172.21.0.0 0.0.0.0 255.255.0.0 U 0 0 0 ethe

7. If required for your network environment, you can configure an IPvé static route for the cSRX
Container Firewall using the set routing-options rib inet6.0 static route command.

[edit routing-options]

root@srx# set routing-options rib inet6.0 static route 3000::0/64 next-hop 1000::10/128
[edit interfaces]

root@srx# commit

root@csrx# show routing-options rib inet6.0

static {

route 3000::0/64 next-hop 1000::10/128;

}

8. Under routing mode, the control plane ARP/NDP learning/response is provided by the Linux kernel
through the TAP 0 and TAP 1 interfaces created to host the traffic for eth1 and eth2 through srxpfe.
You can view ARP entries by using the Linux arp shell command.

NOTE: While there are multiple interfaces created inside the cSRX Container Firewall
container, only two interfaces, ge-0/0/0 and ge-0/0/1, are visible in srxpfe.

root@csrx% arp -a

? (2.0.0.10) at 6e:81:38:41:5e:0e [ether] on tap@
? (1.0.0.10) at 96:33:66:a1:e5:03 [ether] on tapl
? (172.31.12.1) at 02:c4:39:fa:0a:0d [ether] on eth@

The default ARP/NDP entries timeout is set to 1200 seconds. You can adjust this value by modifying
either the ARP_TIMEOUT or NDP_TIMEOUT environment variable when launching the cSRX Container Firewall
container. For example:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_ARP_TIMEOUT=<seconds> -e
CSRX_NDP_TIMEOUT=<seconds> --name=<csrx-container-name> <csrx-image-name>

The maximum ARP entry number is controlled by the Linux host kernel. If there are a large number of
neighbors, you might need to adjust the ARP or NDP entry limitations on the Linux host. There are
options in the sysctl command on the Linux host to adjust the ARP or NDP entry limitations.

For example, to adjust the maximum ARP entries to 4096:
sysctl -w net.ipv4.neigh.default.gc_thresh1=1024
sysctl -w net.ipv4.neigh.default.gc_thresh2=2048
sysctl -w net.ipv4.neigh.default.gc_thresh3=4096
For example, to adjust the maximum NDP entries to 4096:
sysctl -w net.ipvé.neigh.default.gc_thresh1=1024
sysctl -w net.ipvé.neigh.default.gc_thresh1=2048

sysctl -w net.ipvé.neigh.default.gc_thresh1=4096

Configuring Secure-Wire Mode

When operating in secure-wire mode, all traffic that arrives on a specific interface, ge-0/0/0 or
ge-0/0/1, will be forwarded unchanged through the interface. This mapping of interfaces, called secure
wire, allows the cSRX Container Firewall to be deployed in the path of network traffic without requiring
a change to routing tables or a reconfiguration of neighboring devices. A cross-connection is set up
between interface pairs ge-0/0/0 and ge-0/0/1 to steer traffic from one port to the other port based on
the Interworking and Interoperability Function (IIF) as the input key.

Include the -e CSRX_FORWARD_MODE=wire environment variable in the docker run command to instruct the cSRX
Container Firewall to run in secure-wire forwarding mode.

NOTE: When you launch the cSRX Container Firewall container in secure-wire mode, the cSRX
Container Firewall instance automatically creates a default secure-wire named csrx_swin the
srxpfe process, and the ge-0/0/0 and ge-0/0/1 interface pair are added into the secure-wire.

Launch the cSRX Container Firewall instance in secure-wire mode using the following command:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

Configuring CPU Affinity for a cSRX Container
Firewall Container

A cSRX Container Firewall instance requires two CPU cores in the Linux server. To help schedule the
Linux server tasks and adjust performance of the cSRX Container Firewall container running on a Linux
host, you can launch the cSRX Container Firewall container and assign its control and data processes (or
daemons) to a specific CPU. In a ¢cSRX Container Firewall container, srxpfe is the data plane daemon and
all other daemons (such as nsd, mgd, nstraced, utmd, and so on) are control plane daemons.

CPU affinity ensures that the cSRX Container Firewall control and data plane daemons are pinned to a
specific physical CPU, which can improve the cSRX Container Firewall container performance by using
the CPU cache efficiently. By default, there is not a defined CPU affinity for the cSRX Container Firewall
control and data plane daemons; the CPU on which the control and data plane daemons run depends on
Linux kernel scheduling.

To assign cSRX Container Firewall container control and data daemons to a specific CPU, include the
environment variables CSRX_CTRL_CPU and CSRX_DATA_CPU in the docker run command.

For example, to configure the cSRX Container Firewall container to launch the control plane daemons on
CPU 1 and the data plane daemon on CPU 2:

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e CSRX_CTRL_CPU="0x1" -e
CSRX_DATA_CPU="0x2" --name=<csrx-container-name> <csrx-image-name>

Enabling Persistent Log File Storage to a Linux Host
Directory

In a cSRX Container Firewall container, log files are stored in the /var/log directory. By default, if there
are no external volumes mounted for the /var/log directory, the log files will be maintained only for this
cSRX Container Firewall container. If, at a future point, the cSRX Container Firewall container is deleted,
those log files will be lost. You can enable persistent log file storage to a Linux host directory as a means
to directly mount a directory from a Linux host to the cSRX Container Firewall container when the cSRX
Container Firewall is launched.

To configure the cSRX Container Firewall container to enable persistent log file storage to a Linux host
directory, use the following command.

root@csrx-ubuntu3: ~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_PACKET_DRIVER="poll" -e CSRX_CTRL_CPU="0x1" -e
CSRX_DATA_CPU="0x6" -v <path-log-directory-on-host>:/var/log --name=<csrx-container-name>
<csrx-image-name>

Managing cSRX Container Firewall Containers

IN THIS SECTION

Pausing/Resuming Processes within a cSRX Container Firewall Container | 49
Viewing Container Processes on a Running cSRX Container Firewall Container | 50

Removing a cSRX Container Firewall Container or Image | 50

This section outlines basic Docker commands that you can use with a running cSRX Container Firewall
container. It includes the following topics:

Pausing/Resuming Processes within a cSRX Container Firewall Container

You can suspend or resume all processes within one or more cSRX Container Firewall containers. On
Linux, this task is performed using the cgroups freezer process.

To pause and restart a cSRX Container Firewall container:

1. Use the docker pause command to suspend all processes in a cSRX Container Firewall container.

host0S# docker pause <csrx-container-name>

2. Use the docker unpause command to resume all processes in the cSRX Container Firewall container.

host0S# docker unpause <csrx-container-name>

Viewing Container Processes on a Running cSRX Container Firewall
Container

Use the docker exec command to view the details of the processes (applications, services and status)
running on a cSRX Container Firewall container.

host0S# docker exec <csrx-container-name> ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 18048 1648 pts/8 Ss Mayl5 0:00 /bin/bash -e /etc/rc.local init
root 78 0.0 0.0 260072 968 ? Ssl Mayl15 0:09 /usr/sbin/rsyslogd -M/usr/lib/
rsyslog

root 97 0.0 0.0 61376 1304 ? Ss Mayl5 0:00 /usr/sbin/sshd

root 118 0.0 0.0 108552 1304 ? S1 Mayl15 34:12 /usr/bin/monit

root 124 0.0 0.0 723392 1516 ? Ss Mayl5 0:00 /usr/sbin/nstraced

root 133 0.0 0.0 734084 4388 ? Ss Mayl15 1:18 /usr/sbin/nsd

root 135 0.0 0.0 4440 644 ? S May15 0:00 /bin/sh /etc/init.d/appidd start
root 141 0.0 0.2 752132 21184 ? S1 Mayl5 0:02 /usr/sbin/appidd -N &

root 147 0.0 0.0 4440 652 ? S Mayl5 0:00 /bin/sh /etc/init.d/idpd start
root 153 0.0 0.0 730520 2768 ? S May15 0:25 /usr/sbin/idpd -N &

root 170 0.0 0.1 1001088 12528 ? S1 Mayl15 29:22 /usr/sbin/useridd -N

root 211 0.0 0.0 728448 2104 ? Ss Mayl5 0:07 /usr/sbin/mgd

root 222 3.5 1.8 3943936 152920 ? S1 May15 1416:22 /usr/sbin/srxpfe -a -d

root 250 0.0 0.0 4440 648 ? S May15 0:00 /bin/sh /etc/init.d/utmd start
root 256 0.0 0.0 725092 3880 ? S May15 1:36 /usr/sbin/utmd -N &

root 267 0.0 0.0 731556 2472 ? Ss Mayl15 2:39 /usr/sbin/kmd

root 301 0.0 0.0 18160 1916 pts/8 S+ Mayl5 0:00 /bin/bash

root 324 0.0 0.0 853708 3324 ? S1 Mayl5 6:13 /usr/sbin/wmic -N

Removing a ¢cSRX Container Firewall Container or Image

To remove a cSRX Container Firewall container or image:

NOTE: You must first stop and remove a cSRX Container Firewall container before you can
remove a cSRX Container Firewall image.

1. Use the docker stop command to stop the cSRX Container Firewall container.

host0S# docker stop <csrx-container-name>

2. Use the docker rm command to remove the cSRX Container Firewall container.

host0S# docker rm <csrx-container-name>

NOTE: Include --force to force the removal of a running cSRX Container Firewall container.

3. Use the docker rmi command to remove one or more cSRX Container Firewall images from the Docker
Engine.

NOTE: Include --force to force the removal a cSRX Container Firewall image.

host0S# docker rmi <csrx-container-name>

Docker Engine User Guide

Docker commands

https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/reference/commandline/docker/

CHAPTER

Configuring cSRX Container Firewall

cSRX Container Firewall Configuration and Management Tools | 53

Configuring cSRX Container Firewall Using the Junos OS CLI | 54

cSRX Container Firewall Configuration and
Management Tools

IN THIS SECTION

Understanding the Junos OS CLI and Junos Scripts | 53

Understanding cSRX Container Firewall with Contrail and Openstack Orchestration | 53

Understanding the Junos OS CLI and Junos Scripts

The Junos operating system command-line interface (Junos OS CLI) is a Juniper Networks specific
command shell that runs on top of a UNIX-based operating system kernel.

Built into Junos OS, Junos script automation is an onboard toolset available on all Junos OS platforms,
including routers, switches, and security instances.

You can use the Junos OS CLI and the Junos OS scripts to configure, manage, administer, and
troubleshoot the cSRX Container Firewall container.

Understanding cSRX Container Firewall with Contrail and Openstack
Orchestration

The cSRX Container Firewall Container Firewall can provide security services in a software-defined
networking (SDN) environment. Juniper Networks Contrail is an open, standards-based software-
defined networking (SDN) platform that delivers network virtualization and service automation for
federated cloud networks. You use the Contrail Cloud Platform with open cloud orchestration systems
such as OpenStack or CloudStack to instantiate instances of cSRX Container Firewall in a containerized
environment. Contrail Cloud Platform automates the orchestration of compute, storage, and networking
resources to create and scale open, intelligent, and reliable OpenStack clouds that seamlessly merge and
hybridize through highly intelligent secure networks.

cSRX Container Firewall can be deployed as a dedicated firewall compute node in a Contrail Cloud
platform environment to provide differentiated Layer 4 through 7 security services for multiple tenants
as part of a service chain in the Contrail cloud platform. In the Contrail networking environment, you can

deploy the cSRX Container Firewall container as a large-scale security service in a multicloud
environment, and configure the cSRX Container Firewall to steer traffic from a vRouter with vRouter
interface (VIF). Traffic and health statistics are monitored by the Contrail service orchestrator.

See cSRX Guide for Contrail for details on using cSRX Container Firewall with Juniper Networks
Contrail.

Introducing the Junos OS Command-Line Interface
Contrail Networks

Mastering Junos Automation Programming

Configuring cSRX Container Firewall Using the
Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX Container Firewall
containers. For more details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX Container Firewall container using the Junos OS CLI:

1. Launch the cSRX Container Firewall container. Use the docker run command to launch the cSRX
Container Firewall container. You include the mgt_bridge management bridge to connect the cSRX
Container Firewall to a network.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=<csrx-
container-name> hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX Container Firewall software image csrx:18.21R1.9 enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=csrx2
hub.juniper.net/security/csrx:18.2R1.9

NOTE: You must include the --privileged flag in the docker run command to enable the cSRX
Container Firewall container to run in privileged mode.

https://www.juniper.net/documentation/test/en_US/csrx/information-products/pathway-pages/security-csrx-contrail-guide-pwp.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/information-products/pathway-pages/index.html
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/mastering-junos-automation/
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

2. Login to the cSRX Container Firewall container using SSH which is accessed by cSRX Container
Firewall exposed service port.

root@csrx-ubuntu3:~/csrx#ssh -p 30122 root@192.168.42.81

3. Start the CLI as root user.

root#cli

root@

4. Verify the interfaces.

root@ show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up

Interface index: 100

Link-level type: Ethernet, MTU: 1514

Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02
Physical interface: ge-0/0/0, Enabled, Physical link is Up

Interface index: 200

Link-level type: Ethernet, MTU: 1514

Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

5. Enter configuration mode.

configure
[edit]
root@#

6. Set the root authentication password by entering a c/eartext password, an encrypted password, or
an SSH public key string (DSA or RSA).

[edit]

root@# set system root-authentication plain-text-password
New password: password

Retype new password: password

7. Configure the hostname.

[edit]
root@# set system host-name host-name

8. Configure the two traffic interfaces.

[edit]
root@# set interfaces ge-0/0/0 unit @ family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit @ family inet address 192.168.10.2/24

9. Configure basic security zones for the public and private interfaces and bind them to traffic
interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0
root@# set security zones security-zone trust interfaces ge-0/0/1.0

root@# set security policies default-policy permit-all
10. Verify the configuration.
[edit]

root@# commit check

configuration check succeeds
11. Commit the configuration to activate it on the cSRX Container Firewall instance.
[edit]

root@# commit

commit complete

12. (Optional) Use the show command to display the configuration for verification.

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

	Table of Contents
	About This Guide
	Overview
	Understanding cSRX Container Firewall with a Bare-Metal Linux Server
	Junos OS Features Supported on cSRX Container Firewall

	Installing cSRX Container Firewall
	Requirements for Deploying cSRX Container Firewall on a Bare-Metal Linux Server
	Installing cSRX Container Firewall in a Bare-Metal Linux Server
	Before You Deploy
	Confirming Docker Installation
	Loading the cSRX Container Firewall Image
	Creating the Linux Bridge Network for the cSRX Container Firewall

	Launching the cSRX Container Firewall Container

	cSRX Managing Container Firewall Containers
	cSRX Container Firewall Environment Variables Overview
	Changing the Size of a cSRX Container Firewall Container
	Configuring Traffic Forwarding on a cSRX Container Firewall Container
	Configuring Routing Mode
	Configuring Secure-Wire Mode

	Configuring CPU Affinity for a cSRX Container Firewall Container
	Enabling Persistent Log File Storage to a Linux Host Directory
	Managing cSRX Container Firewall Containers
	Pausing/Resuming Processes within a cSRX Container Firewall Container
	Viewing Container Processes on a Running cSRX Container Firewall Container
	Removing a cSRX Container Firewall Container or Image

	Configuring cSRX Container Firewall
	cSRX Container Firewall Configuration and Management Tools
	Configuring cSRX Container Firewall Using the Junos OS CLI

