
Juniper Paragon Automation 2.3.0
Monitoring and Troubleshooting Guide

Published

2025-08-26

RELEASE

2.3.0

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Juniper Paragon Automation 2.3.0 Monitoring and Troubleshooting Guide
2.3.0
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | iv

1 Monitoring

Monitor Using Sources and Sinks | 2

Monitoring Overview | 2

Configure Sources and Sinks | 3

Sample Sources and Sinks Configuration | 4

Configure Monitoring | 12

Configure IBM QRadar as a Monitoring Sink | 13

2 Troubleshooting

Troubleshoot Using Paragon Shell | 17

Troubleshooting Overview | 17

Troubleshooting Commands | 18

Perform a Health Check | 24

Troubleshoot Using Linux Root Shell | 27

Check Storage Utilization | 27

iii

About This Guide

Use this guide to monitor and troubleshoot Juniper Paragon Automation.

RELATED DOCUMENTATION

Juniper Paragon Automation User Guide

Juniper Paragon Automation Installation and Upgrade Guide

iv

https://www.juniper.net/documentation/us/en/software/juniper-paragon-automation2.3.0/user-guide/index.html
https://www.juniper.net/documentation/us/en/software/juniper-paragon-automation2.3.0/installation-guide/index.html

1
PART

Monitoring

Monitor Using Sources and Sinks | 2

CHAPTER 1

Monitor Using Sources and Sinks

IN THIS CHAPTER

Monitoring Overview | 2

Configure Sources and Sinks | 3

Sample Sources and Sinks Configuration | 4

Configure Monitoring | 12

Configure IBM QRadar as a Monitoring Sink | 13

Monitoring Overview

IN THIS SECTION

Benefits | 2

Paragon Automation uses a CLI-based infrastructure to monitor cluster resource usage and logs in real-
time. The monitoring process collects metrics from diverse sources and forwards the collected data to
designated sinks (such as Prometheus and VictoriaMetrics).

Paragon Automation uses Vector.dev, an advanced observability pipeline platform, that streamlines the
intricate process of collecting, transforming, and storing observability data. You can view this data to
interpret and analyze performance metrics ensuring timely responses to potential issues.

Benefits

• Provides real-time data collection enabling visibility into resource usage and logs.

• Provides insights into performance of the Paragon Automation cluster, enabling prompt identification
and resolution of potential issues.

2

• Improves system performance and reliability by enabling timely responses based on real-time
performance metrics and log data.

Configure Sources and Sinks

IN THIS SECTION

General Configuration Overview | 3

To set up monitoring, you must configure Paragon Automation to specify sources and destinations for
the metrics. The following terms are used extensively in this topic:

• Source—A source is the type and origin from which the observability data is collected.

• Sink—A sink is the destination to which the collected and transformed data is sent. This data can be
visualized, interpreted, and analyzed to gain insights into cluster resource usage and performance,
service status, and logs.

General Configuration Overview

Configure sources and sinks from the Paragon Shell CLI configuration mode. To enter configuration
mode, type configure in Paragon Shell.

root@node> configure
Entering configuration mode
[edit]
root@node#

To configure a source, use the following command:

user@node# set paragon monitoring source source_id scope source_type

Where:

• source_id—Used to index the source and specified by the user.

• scope —Specifies whether the metrics must be collected at the cluster level or at the node level.

3

• source_type—See "Supported Node Sources" on page 5 for a list of supported source types.

Similarly, to configure a sink, use the following command:

user@node# set paragon monitoring sink sink_id sink_type

Where:

• sink_id—Used to index the sink and specified by the user.

• source_type—See "Supported Sinks" on page 10 for a list of supported sink types.

To configure a sink to receive data from one or more sources, use the inputs keyword.

user@node# set paragon monitoring sink sink_id inputs (source_id|list of source_ids)

Where, the input entries must match the defined source_ids.

Majority of sources and sinks have their own options. Type ? after source_type or sink_type to view all
available options.

user@node# set paragon monitoring source source_id scope source_type ?

or

user@node# set paragon monitoring sink sink_id sink_type ?

Vector.dev, by default, supports a reservoir of different types of sources and sinks. Currently, a few
major sources are integrated into Paragon Shell CLI. Refer to "Sample Sources and Sinks Configuration"
on page 4 for detailed configuration for each currently supported sources and sinks.

Sample Sources and Sinks Configuration

IN THIS SECTION

Supported Node Sources | 5

Supported Cluster Sources | 8

4

Supported Sinks | 10

Default Sources and Sinks | 11

Use the information provided in this topic to view sample source and corresponding sink configuration.

According to the scope and format, all sources can be categorized in the following ways:

• cluster or node—Specifies whether the scope of the collected data is cluster level or node level.

• metric or log—Specifies the format of the observability data that is collected.

Supported Node Sources

Paragon Automation supports the following node log and metric sources.

Syslog

Collect system logs from all primary and worker nodes within the Paragon Automation cluster.

Category: node, log

Sample source configuration:

root@node# set paragon monitoring source syslog node syslog

Sample sink configuration:

root@node# set paragon monitoring sink syslogvlog inputs syslog
root@node# set paragon monitoring sink syslogvlog elasticsearch mode bulk
root@node# set paragon monitoring sink syslogvlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink syslogvlog elasticsearch api_version v8
root@node# set paragon monitoring sink syslogvlog elasticsearch compression gzip
root@node# set paragon monitoring sink syslogvlog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch/
root@node# set paragon monitoring sink syslogvlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#appname,hostname,facility,procid,seve
rity,source_type"

5

Docker Log

Collect logs from all the docker containers in the primary and worker nodes within the Paragon
Automation Kubernetes cluster.

Category: node, log

Sample source configuration:

root@node# set paragon monitoring source docker node docker_logs
(optional) root@node# set paragon monitoring source docker node docker_logs include_containers
container_id_or_name
(optional) root@node# set paragon monitoring source docker node docker_logs exclude_containers
container_id_or_name

Sample sink configuration:

root@node# set paragon monitoring sink dockervlog inputs docker
root@node# set paragon monitoring sink dockervlog elasticsearch mode bulk
root@node# set paragon monitoring sink dockervlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink dockervlog elasticsearch api_version v8 set paragon
monitoring sink dockervlog elasticsearch compression gzip
root@node# set paragon monitoring sink dockervlog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch/
root@node# set paragon monitoring sink dockervlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#container_name,container_id,stream,im
age"

NOTE: An implicit transform audit-parser is used internally and is required for this source.
The source ID must be audit and the input field for the corresponding sink must be audit-
parser.

Paragon Shell cMGD Log

Collect the cMGD log from Paragon Shell.

Category: node, log

6

Sample source configuration:

root@node# set paragon monitoring source cmgd node cmgd_log

Sample sink configuration:

root@node# set paragon monitoring sink cmgdvlog inputs cmgd
root@node# set paragon monitoring sink cmgdvlog elasticsearch mode bulk
root@node# set paragon monitoring sink cmgdvlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink cmgdvlog elasticsearch api_version v8 set
root@node# paragon monitoring sink cmgdvlog elasticsearch compression gzip
set paragon monitoring sink cmgdvlog elasticsearch endpoints http://monitoring_node:9428/insert/
elasticsearch
root@node# set paragon monitoring sink cmgdvlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_tim

Host Metric

Collect host resource usage from the Paragon Automation cluster nodes.

Category: node, metric

Sample source configuration:

root@node# set paragon monitoring source host node host_metrics scrape_interval_secs 60

Sample sink configuration:

root@node# set paragon monitoring sink vm inputs add-hostname
root@node# set paragon monitoring sink vm prometheus_remote_write endpoint http://
monitoring_node:8428/api/v1/write
root@node# set paragon monitoring sink vm prometheus_remote_write compression zstd
root@node# set paragon monitoring sink vm prometheus_remote_write healthcheck enabled false

NOTE: An implicit transform add-hostname is used internally to add the hostname field to
the processed data. The source ID must be host and the input field for the corresponding
sink must be add-hostname.

7

Supported Cluster Sources

Paragon Automation supports the following cluster log and metric sources.

Kubernetes Log

Collect logs from all Kubernetes pods.

Category: cluster, log

Sample source configuration:

root@node# set paragon monitoring source k8s cluster kubernetes_logs

Sample sink configuration:

root@node# set paragon monitoring sink kuberneteslog inputs k8s
root@node# set paragon monitoring sink kuberneteslog elasticsearch mode bulk
root@node# set paragon monitoring sink kuberneteslog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink kuberneteslog elasticsearch api_version v8
root@node# set paragon monitoring sink kuberneteslog elasticsearch compression gzip
root@node# set paragon monitoring sink kuberneteslog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch/
root@node# set paragon monitoring sink kuberneteslog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#kubernetes.pod_namespace,kubernetes.p
od_name,kubernetes.pod_node_name"

Audit Log

Collect logs from the Paragon Automation audit log.

Category: cluster, log

Sample source configuration:

root@node# set paragon monitoring source audit cluster kafka bootstrap_servers kafka.common:9092
root@node# set paragon monitoring source audit cluster kafka group_id vector-kafka-consumer
root@node# set paragon monitoring source audit cluster kafka topics audits-dev

8

Sample sink configuration:

root@node# set paragon monitoring sink auditvlog inputs audit-parser
root@node# set paragon monitoring sink auditvlog elasticsearch mode bulk
root@node# set paragon monitoring sink auditvlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink auditvlog elasticsearch api_version v8
root@node# set paragon monitoring sink auditvlog elasticsearch compression gzip
root@node# set paragon monitoring sink auditvlog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch
root@node# set paragon monitoring sink auditvlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#org_id,site_id,admin_name,src_ip"

Kube State Metric

Collect Kubernetes resource usage from kube-state-metric.

Category: cluster, metric

Sample source configuration:

root@node# set paragon monitoring source ksm cluster prometheus_scrape endpoints http://kube-
state-metrics.kube-system:8080/metrics
root@node# set paragon monitoring source ksm cluster prometheus_scrape scrape_interval_secs 60

Sample sink configuration:

root@node# set paragon monitoring sink vm inputs add-hostname
root@node# set paragon monitoring sink vm prometheus_remote_write endpoint http://
monitoring_node:8428/api/v1/write
root@node# set paragon monitoring sink vm prometheus_remote_write compression zstd
root@node# set paragon monitoring sink vm prometheus_remote_write healthcheck enabled false

NOTE: An implicit transform add-hostname is used internally to add the hostname field to
the processed data. The source ID must be ksm and the input field for the corresponding
sink must be add-hostname.

Kubernetes Container Metric

Collect container resource usage of Kubernetes pods in the Paragon Automation cluster.

9

Category: cluster, metric

Sample source configuration:

root@node# set paragon monitoring source k8s_container_metric cluster
kubernetes_container_metrics

Sample sink configuration:

root@node# set paragon monitoring sink cadvisor inputs k8s_container_metric
root@node# set paragon monitoring sink cadvisor prometheus_remote_write endpoint http://
monitoring_node:8428/api/v1/write
root@node# set paragon monitoring sink cadvisor prometheus_remote_write compression zstd
root@node# set paragon monitoring sink cadvisor prometheus_remote_write healthcheck enabled false

Supported Sinks

All sinks can also be categorized in the following way as log or metric to identify the format of the
observability data that the sink accepts.

A data sink can accept input only from log sources and a metric sink can accept input only from metric
sources.

Paragon Automation supports the following cluster log and metric sinks.

Elasticsearch

Send data to a destination that supports the Elasticsearch format.

Category: log

The available options are:

root@node# set paragon monitoring sink id elasticsearch ?
Possible completions:
 api_version The API version of Elasticsearch
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 compression Data compression method. Default is none
+ endpoints HTTP(S) endpoint of sources/sinks
> healthcheck Whether or not to check the health of the sink when Vector starts up
 mode Elasticsearch Indexing mode

10

 query Custom parameters to add to the query string for each HTTP request sent
to Elasticsearch. In the format of arg1_key#arg1_value#arg2_key#arg2_value... Number of hashtag
separated items has to be an even number

Prometheus Remote Write

Deliver metric data to a Prometheus remote write endpoint.

Category: metric

The available options are:

root@node# set paragon monitoring sink id prometheus_remote_write ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 compression Data compression method. Default is snappy
 endpoint HTTP(S) endpoint
> healthcheck Whether or not to check the health of the sink when Vector starts up

For more information, see https://prometheus.io/docs/practices/remote_write/.

Default Sources and Sinks

When the Paragon Automation cluster is installed for the first time, the following three sources are
automatically created:

• Kube State Metric—ksm

• Host—host

• Audit log—audit

root@node# show paragon monitoring source ?
Possible completions:
 <id> ID of the source. Should be of pattern [a-z][a-z0-9_-]*
 audit ID of the source. Should be of pattern [a-z][a-z0-9_-]*
 host ID of the source. Should be of pattern [a-z][a-z0-9_-]*
 ksm ID of the source. Should be of pattern [a-z][a-z0-9_-]*

You can modify the configuration for each default source but the source must not be removed.

11

https://prometheus.io/docs/practices/remote_write/

You must set up and configure your own sinks on your own network which the Paragon Automation
cluster can access.

Configure Monitoring

Use the steps detailed in this topic to configure monitoring in Paragon Automation to collect metrics
from different types of sources and forward the collected data to designated sinks.

1. Log in to the node from which you deployed the Paragon Automation cluster.

2. Type configure to enter configuration mode.

3. Configure the sources and sinks. Use the following commands.

• root@primary1# set paragon monitoring source source_id scope source_type

• root@primary1# set paragon monitoring sink sink_id sink_type

Where:

source_id and sink_id is the required source or sink ID.

Scope is cluster or node.

To view a list of all available sink-options and source-options as well as sample configurations, see set
paragon monitoring and "Sample Sources and Sinks Configuration" on page 4.

4. Type commit and-quit to commit the configuration and exit the configuration mode.

Committing will update the monitoring configuration, but will not deploy the changes to the
underlying services.

5. Deploy the monitoring updates.

root@primary1> request paragon deploy monitoring
Getting vector daemonset metadata...
Loading vector sources and sinks...
Validating config...
Deleting existing vector configmap...
Creating new vector configmap...
configmap/vector-config created
Vector source or sinks missing...
Suppressing vector pods

12

The vector pods are only spawned when at least one source and one sink is configured.

6. Verify that the vector pods are up and operational.

root@primary1> show paragon cluster pods namespace kube-system | grep vector
vector-jrsh2 1/1 Running 0
44h
vector-lnlfl 1/1 Running 0
44h
vector-pcndg 1/1 Running 0
44h
vector-rnjnc 1/1 Running 0
44h

7. Verify that data is received at the configured sink.

Configure IBM QRadar as a Monitoring Sink

IN THIS SECTION

Host Syslog | 13

Other Logs Supported by Paragon Automation | 14

You can configure Paragon Automation to send all types of log data to IBM QRadar. We recommend two
approaches for different types of logs:

Host Syslog

System logs on Paragon Automation clusters are managed by rsyslog, which supports multiple output
modules. Although Paragon Automation monitoring does support collecting these host system logs, you
can configure rsyslog to directly forward the system log to QRadar.

To configure rsyslog to send system log-data to QRadar:

1. Log in to a Paragon Automation cluster node and type exit to access the Linux root shell.

2. Navigate to the /etc/rsyslog.d/ directory.

13

3. Create a .conf configuration file using the rsyslog naming convention, or modify an existing
configuration file.

4. Add the following line to the configuration file.

. action(type="omfwd" target="qradar_host" port="514" protocol="tcp" resumeRetryCount="-1"
queue.type="LinkedList" queue.filename="Forward1" queue.saveOnShutdown="on")

Replace qradar_host with your QRadar host IP address or hostname.

5. Restart the rsyslogd process.

service rsyslog restart
Host system logs will start streaming into QRadar.

Repeat this process on the remaining Paragon Automation cluster nodes.

Other Logs Supported by Paragon Automation

For all other types of logs (Kubernetes container log, Docker log, Audit log) supported by Paragon
Automation monitoring, perform the following steps to send system data to QRadar.

1. Log in to a Paragon Automation cluster node and type configure in Paragon Shell to enter the
configuration mode.

2. Enter the following commands in configuration mode.

root@node# set paragon monitoring sink qradar inputs ID
root@node# set paragon monitoring sink qradar socket address QRadar_IP_address:514
root@node# set paragon monitoring sink qradar socket mode tcp
root@node# set paragon monitoring sink qradar socket encoding codec raw_message

Replace ID with the ID of the log source. Retrieve the source ID using the show paragon monitoring
source ? command.

To add multiple inputs, repeat the inputs command for different IDs or specify a list of inputs.

root@node# set paragon monitoring sink qradar inputs [k8s_log docker_log]

3. Type commit and-quit to commit the configuration and exit configuration mode.

14

4. Deploy the monitoring updates.

root@node> request paragon deploy monitoring

15

2
PART

Troubleshooting

Troubleshoot Using Paragon Shell | 17

Troubleshoot Using Linux Root Shell | 27

CHAPTER 2

Troubleshoot Using Paragon Shell

IN THIS CHAPTER

Troubleshooting Overview | 17

Troubleshooting Commands | 18

Perform a Health Check | 24

Troubleshooting Overview

IN THIS SECTION

Benefits | 18

Paragon Automation enables you to troubleshoot and debug issues with your Paragon Automation
deployment by using Paragon Shell CLI troubleshooting commands. These troubleshooting commands
enhance your problem resolution capabilities with specific commands that gather support and
troubleshooting information, enabling you to pinpoint and resolve cluster-related issues effectively. The
commands enable the discovery of cluster-related issues by executing a series of support commands
sequentially from any cluster node.

The Paragon Shell CLI troubleshooting commands are:

• request paragon support information on page 19—Provides an in-depth status report of your
Paragon Automation cluster configuration. The command output includes information such as CPU
and memory usage, information about pods, nodes, namespaces, persistent volume claim (PVC),
persistent volume (PV), and so on.

• request paragon troubleshooting information on page 21—Provides troubleshooting logs of the ems,
foghorn, insights, paa, trust, and pathfinder services.

17

When you run the troubleshooting command, a troubleshooting_date_time.tar.gz file is generated. Share
this file with Juniper Technical Assistance Center (JTAC) for further evaluation. This .tar.gz file is
saved in the /root/troubleshooting/ directory.

Paragon Automation also provides robust debugging commands that gather data from key system
components such as the Redis database, Kafka messages, service logs, time series database (TSDB),
Helm and Kubernetes deployment service information, and so on. These commands are not part of the
Paragon Shell CLI troubleshooting commands, and must be run separately. See "Additional
Troubleshooting Commands to Debug Issues" on page 22 for more information.

Use the troubleshooting commands when you see issues such as unavailable data across devices, syslog,
BGP, IS-IS, or incorrect fan status, incorrect interface availability, and so on. Analyze the data collected
from the output of these commands to find the cause of any issues seen in the Paragon Automation
cluster.

Benefits

• Streamlines the troubleshooting process by allowing you to execute multiple commands sequentially
from any cluster node.

• Provides comprehensive diagnostic information by collecting data from various sources such as
Redis, Kafka, service logs, Postgres, and TSDB, enabling a thorough understanding of the deployment
state.

• Provides you comprehensive data logs at one place thereby reducing the time and effort needed to
diagnose issues.

• Enables you to investigate and resolve complex issues with detailed data collected from all critical
system components.

Troubleshooting Commands

IN THIS SECTION

request paragon support information | 19

request paragon troubleshooting information | 20

Additional Debugging Commands | 22

18

https://support.juniper.net/support/

Use this topic to learn more about the Paragon Automation support and troubleshooting commands.

request paragon support information

The request paragon support information command displays an in-depth status report of your Paragon
Automation cluster configuration.

The show commands that are executed when you run the request paragon support information command are
listed in Table 1 on page 19.

Table 1: request paragon support information Commands

Command Description

show paragon cluster nodes Shows node information of your Paragon Automation
cluster.

show paragon cluster pods Shows pod information of your Paragon Automation
cluster.

show paragon cluster namespaces Shows namespace information of your Paragon
Automation cluster.

show paragon cluster details Shows storage and controller node information of
your Paragon Automation cluster.

show paragon version Shows the version of your Paragon Automation
cluster.

show paragon images version Shows the version of pods in your Paragon
Automation cluster.

show paragon cluster pods namespace healthbot sort
memory

Shows the top pods of the healthbot namespace
sorted by memory utilization.

show paragon cluster pods namespace healthbot sort cpu Shows the top pods of the healthbot namespace
sorted by CPU utilization.

19

Table 1: request paragon support information Commands (Continued)

Command Description

show paragon pvc details Shows the persistent volume (PV) and persistent
volume claim (PVC) information.

The request paragon support information command also runs many kubectl commands. These commands
provide you debugging information such as Helm deployment service information for the NorthStar
namespace, Kubernetes deployment information for api-aggregator service, and so on.

request paragon troubleshooting information

The request paragon troubleshooting information command provides troubleshooting information of the ems,
foghorn, insights, paa, trust, and pathfinder Paragon Automation services.

To view the list of available services, run the following command:

user@node> request paragon troubleshooting information service ?

Possible completions:
 ems ems service
 foghorn foghorn service
 insights insights service
 paa paa service
 pathfinder pathfinder service
 trust trust service

When you run the request paragon troubleshooting information command, a troubleshooting_date_time.tar.gz file
is generated. You can share this file with the Juniper Technical Assistance Center (JTAC) for further
evaluation. This .tar.gz file is saved in the /root/troubleshooting/ directory.

The commands that are executed when you run the request paragon troubleshooting information command
are listed in Table 2 on page 21.

20

https://support.juniper.net/support/

Table 2: request paragon troubleshooting information Commands

Command Description

request paragon debug logs namespace healthbot service
service-name

Generates log files of different services within the
healthbot namespace. Replace service-name with:

• tsdb-shim

• tand

• jtimon

• config-server

• api-server

• analytical-engine

• alerta

request paragon debug logs namespace foghorn service
service-name

Generates log files of different services within the
foghorn namespace. Replace service-name with:

• order-management

• placement

• cmgd

request paragon debug logs namespace airflow service
service-name

Generates a log file of the workflow-manager
service within the airflow namespace.

request paragon debug logs namespace northstar service
service-name

Generates log files of different services within the
northstar namespace. Replace service-name with:

• toposerver

• web

• configmonitor

• api-aggregator

21

Table 2: request paragon troubleshooting information Commands (Continued)

Command Description

request paragon debug logs namespace papi service service-
name

Generates log files of different services within the
papi namespace. Replace service-name with:

• oc-term

• papi

• papi-ws

request paragon debug postgres Generates a text file (JSON format) with Postgres
information.

Additional Debugging Commands

You can run commands to collect data from the Redis database, Kafka messages, service logs, and the
time series database (TSDB). You can use this data to troubleshoot issues with your Paragon Automation
cluster. These commands are not part of the Paragon Shell CLI troubleshooting commands, and must be
run separately. Table 3 on page 22 lists the commands.

Table 3: Additional Commands to Debug Issues

Command Description

Kafka

request paragon debug kafka ? Display possible completions for the request
paragon debug kafka command.

request paragon debug kafka options "-C -t topic-name -o
s@start-time -o e@end-time -e -JB" output-file "file-name"

Generate an output file of Kafka messages for a
topic for a specified period of time.

Insights Kafka

22

Table 3: Additional Commands to Debug Issues (Continued)

Command Description

request paragon debug insights-kafka-data ? Display possible completions for the request
paragon debug insights-kafka-data command.

request paragon debug insights-kafka-data device "device-id"
time-period "duration"

Display insights-kafka-data information for a
device, for a specific time period. An output file
of the information is generated.

Redis

request paragon debug redis ? Display possible completions for the request
paragon debug redis command.

request paragon debug redis redis-key-pattern "insights" Display Redis key pattern information forredis-
keys with pattern "insights".

request paragon debug redis-key-pattern "insights" output
file

Generate an output file of Redis key pattern
information forredis-keys with pattern
"insights".

Service Logs

request paragon debug logs ? Display possible completions for the request
paragon debug logs command.

request paragon debug logs namespace name service service-
name time duration

Generate a log file for a service within a
namespace for the specified time period.

TSDB

request paragon debug get-tsdb-data ? Display possible completions for the request
paragon debug get-tsdb-data command.

23

Table 3: Additional Commands to Debug Issues (Continued)

Command Description

request paragon debug get-tsdb-data device device-id topic
"topic-name" output file

Generate an output file of TSDB data for a
particular device.

Postgres

request paragon debug postgres ? Display possible completions for the request
paragon debug postgres command.

request paragon debug postgres database database-name
username username measurement measurement-name output (file)

Generate an output file of the measurement
value information of the Postgres database.

Perform a Health Check

IN THIS SECTION

Purpose | 24

Action | 24

Sample Output | 25

Meaning | 25

Purpose

Perform a health check on the cluster and get an overall status of the cluster.

Action

Log in to a cluster node and use the request paragon health-check command in Paragon Shell.

24

Sample Output

root@primary1> request paragon health-check
Health status checking...

===
Get node count of Kubernetes cluster.
===

OK
There are 4 nodes in the cluster.
...
<output snipped>
...
==
Verifying Elasticsearch
==

OK
Opensearch test...
Checking health status at opensearch-cluster-master.common:9200...
Opensearch is healthy (green).
OPENSEARCH VERIFICATION PASS

===
Overall cluster status
===

GREEN

Meaning

The command performs multiple health checks on the cluster and returns a detailed list of all the tests
run and each of their results. The health-check command checks for multiple parameters such as:

• Kubernetes status

• Health of each node (CPU, disk space, memory, I/O latency, and so on)

• Database health (Postgres, ArangoDB, OpenSearch, Kafka, and so on)

• Ceph storage health

25

The overall health status is categorized as green, amber, or red. A green status indicates a healthy cluster
and that all health checks have passed successfully. A red status that indicates that many health checks
have failed and implies serious issues in the cluster. An amber status indicates that there maybe certain
noncritical issues in the cluster. The status is returned amber in the following instances:

• Nodes have taints

• Disk usage or memory usage on any node exceeds 80% of available space.

• Disk I/O latency on any node exceeds 100000 ms

• Rook ceph status shows HEALTH_WARN

NOTE: Alternatively, you can also use health-check command from the Linux root shell to
get an overall status of the cluster.

26

CHAPTER 3

Troubleshoot Using Linux Root Shell

IN THIS CHAPTER

Check Storage Utilization | 27

Check Storage Utilization

IN THIS SECTION

Purpose | 27

Action | 27

Sample Output | 28

Meaning | 32

Purpose

Check utilization of local storage PVC, Ceph-based storage PVC, and the S3 bucket.

Action

Log in to the Linux root shell of a cluster node and use the following commands:

• For the local storage PVC—paragon-local-volume-check

• For Ceph-based storage PVC and S3 bucket—paragon-ceph-usage-check [-h] [-s] [-c] [-b]

Where:

• -h or --help displays command usage information.

• -c or --cephfs checks Ceph-based storage usage.

27

• -s or --s3 checks S3 bucket usage.

• -b or --both checks both Ceph-based storage and S3 bucket usage.

Sample Output

paragon-local-volume-check

root@pa1:~# paragon-local-volume-check

===
Get local volume usage.
===

pv-name pvc-claim local-path disk-usage node-name
echolocal-pv-36c71c79 foghorn-dbserver-6nrhq4nc /export/local-
volumes/pv16 107M pa1
local-pv-49d4aff9 data-zookeeper-0 /export/local-
volumes/pv3 996K pa1
local-pv-aa9c4410 data-kafka-2 /export/local-
volumes/pv11 142M pa1
local-pv-c747791f vmstorage-db-vmstorage-victoria-metrics-cluster-2 /export/local-
volumes/pv9 68K pa1
local-pv-ead7ada4 opensearch-cluster-master-opensearch-cluster-master-2 /export/local-
volumes/pv20 1.5M pa1
local-pv-22f5300c pgdata-atom-db-2 /export/local-
volumes/pv5 519M pa2
local-pv-37c26b76 foghorn-dbserver-9d9nd1l2 /export/local-
volumes/pv3 106M pa2
local-pv-53c4d5b foghorn-agent-hiknywjh /export/local-
volumes/pv15 8.2M pa2
local-pv-80a32482 vmstorage-db-vmstorage-victoria-metrics-cluster-0 /export/local-
volumes/pv12 68K pa2
local-pv-92b5cf80 data-zookeeper-2 /export/local-
volumes/pv14 996K pa2
local-pv-a5c36300 vmstorage-db-vmstorage-victoria-metrics-cluster-0 /export/local-
volumes/pv1 140K pa2
local-pv-3abab0b0 pgdata-atom-db-1 /export/local-
volumes/pv17 519M pa3
local-pv-4961bb7d foghorn-agent-hpvuvjh9 /export/local-
volumes/pv5 8.2M pa3
local-pv-6b46253c opensearch-cluster-master-opensearch-cluster-master-0 /export/local-

28

volumes/pv13 2.3M pa3
local-pv-7358834e foghorn-dbserver-ddxwbr01 /export/local-
volumes/pv11 134M pa3
local-pv-7e53b8bc data-kafka-1 /export/local-
volumes/pv6 142M pa3
local-pv-b788099 vmstorage-db-vmstorage-victoria-metrics-cluster-1 /export/local-
volumes/pv9 140K pa3
local-pv-269c69f0 data-zookeeper-1 /export/local-
volumes/pv7 996K pa4
local-pv-3d6bab16 vmstorage-db-vmstorage-victoria-metrics-cluster-2 /export/local-
volumes/pv10 72K pa4
local-pv-40e3ef1 opensearch-cluster-master-opensearch-cluster-master-1 /export/local-
volumes/pv20 2.0M pa4
local-pv-4eb12e61 pgdata-atom-db-0 /export/local-
volumes/pv15 581M pa4
local-pv-866f53aa data-kafka-0 /export/local-
volumes/pv9 142M pa4
local-pv-abda8deb vmstorage-db-vmstorage-victoria-metrics-cluster-1 /export/local-
volumes/pv17 68K pa4
local-pv-c101544f foghorn-agent-wldughyr /export/local-
volumes/pv13 8.2M pa4

paragon-ceph-usage-check -h or paragon-ceph-usage-check --help

root@pa1:~# paragon-ceph-usage-check -h
usage: paragon-ceph-usage-check [-h] [-s] [-c] [-b]

Helper command to check S3 and Ceph usage

options:
 -h, --help show this help message and exit
 -s, --s3 Check S3 bucket usage
 -c, --cephfs Check CephFS usage
 -b, --both Check usage for both S3 and CephFS

paragon-ceph-usage-check -s or paragon-ceph-usage-check --s3

root@pa1:~# paragon-ceph-usage-check -s
Checking S3 bucket usage
Listing top-level directories and checking usage:

29

S3 Directory list : ['devicesoftware', 'usw2-jcloud-dev-paa-plugin-service-plugins-storage']
Usage for: devicesoftware
Total Objects: 0
 Total Size: 0 Bytes
Usage for: usw2-jcloud-dev-paa-plugin-service-plugins-storage
Total Objects: 0
 Total Size: 0 Bytes

paragon-ceph-usage-check -c or paragon-ceph-usage-check --cephfs

root@pa1:~# paragon-ceph-usage-check -c

Checking CephFS usage
 PV to PVC , Volume and Size mapping
+--+--+----------
+--
+-----------------------+
| PV | Claim | Capacity
| Volume location
| Gb Used |
+--+--+----------
+--
+-----------------------+
| pvc-3eed5171-5efe-4c6b-8629-613844711362 | paa/timescaledb-data-paa-timescaledb-0 | 32Gi
| /volumes/csi/csi-vol-c96deb77-7145-403e-8da1-e971883ce6c1/0ba12eb7-e93d-47d4-afa1-21b8dc998971
| 0.0723346984013915 |
| pvc-42fec79a-fbf0-40bd-9dc5-066ff2f479e3 | common/redis-data | 10Gi
| /volumes/csi/csi-vol-0f8878fa-eeb5-4ce5-8396-2ee2766e9413/d8810464-bf81-4008-98e1-da295a579e35
| 2.360902726650238e-06 |
| pvc-46209d4a-2283-4fc2-aa55-2b9a4f9af6a1 | common/opensearch-backup | 32Gi
| /volumes/csi/csi-vol-9c5ace5e-d133-40aa-954d-fd51cceb2d80/3a8d0c37-4cfc-4ae7-8a82-a5deca1225b7
| 1.773890107870102e-05 |
| pvc-5ae0fd7f-b53d-4b78-ba7d-4b0297ed6e30 | healthbot/insights-data | 10Gi
| /volumes/csi/csi-vol-d51fa0b1-5432-4e6e-97b9-17d0df1bdf47/43435330-12b4-4a50-9ca7-efee19b94e96
| 0.0024269744753837585 |
| pvc-697325c2-4c93-4a1c-b60a-feb1d5b5b611 | license-client/license-client-data | 8Mi
| /volumes/csi/csi-vol-fc9ff7c8-e4a1-42f2-9f96-5c34f2cd559b/9f364508-9d15-4d13-8d83-c64da1bb7c25
| 0.0 |
| pvc-99cf22c0-33f3-44b1-ad53-2a898b3247b4 | common/opensearch-cephfs-pvc | 10Gi
| /volumes/csi/csi-vol-d3ba7888-09f3-45c6-8378-028f78d8b318/5b21acb7-6e02-428c-aacf-7ec78efd9932
| 0.0 |

30

| pvc-cdef057b-21ea-4481-9504-e8ff9f9094a0 | paa/orchestrator-volume | 10Gi
| /volumes/csi/csi-vol-f606b8f9-f705-498e-b0ee-f3afa4ed0d14/0ee7375d-908b-4230-a513-b6c6c872f73a
| 0.2804222572594881 |
| pvc-e160c14c-8832-4ad8-bd39-9ca43c1f1dca | airflow/airflow | 10Gi
| /volumes/csi/csi-vol-2b8e1186-650e-4489-b1cd-697c38511c01/a9c8d233-ea01-4d4d-9497-fa8f73b5875c
| 0.6222417075186968 |
+--+--+----------
+--
+-----------------------+

paragon-ceph-usage-check -b or paragon-ceph-usage-check --both

root@pa1:~# paragon-ceph-usage-check -b
Checking S3 bucket usage
Listing top-level directories and checking usage:
S3 Directory list : ['devicesoftware', 'usw2-jcloud-dev-paa-plugin-service-plugins-storage']
Usage for: devicesoftware
Total Objects: 0
 Total Size: 0 Bytes
Usage for: usw2-jcloud-dev-paa-plugin-service-plugins-storage
Total Objects: 0
 Total Size: 0 Bytes

Checking CephFS usage
 PV to PVC , Volume and Size mapping
+--+--+----------
+--
+-----------------------+
| PV | Claim | Capacity
| Volume location
| Gb Used |
+--+--+----------
+--
+-----------------------+
| pvc-3eed5171-5efe-4c6b-8629-613844711362 | paa/timescaledb-data-paa-timescaledb-0 | 32Gi
| /volumes/csi/csi-vol-c96deb77-7145-403e-8da1-e971883ce6c1/0ba12eb7-e93d-47d4-afa1-21b8dc998971
| 0.0724263722077012 |
| pvc-42fec79a-fbf0-40bd-9dc5-066ff2f479e3 | common/redis-data | 10Gi
| /volumes/csi/csi-vol-0f8878fa-eeb5-4ce5-8396-2ee2766e9413/d8810464-bf81-4008-98e1-da295a579e35
| 2.360902726650238e-06 |
| pvc-46209d4a-2283-4fc2-aa55-2b9a4f9af6a1 | common/opensearch-backup | 32Gi

31

| /volumes/csi/csi-vol-9c5ace5e-d133-40aa-954d-fd51cceb2d80/3a8d0c37-4cfc-4ae7-8a82-a5deca1225b7
| 1.773890107870102e-05 |
| pvc-5ae0fd7f-b53d-4b78-ba7d-4b0297ed6e30 | healthbot/insights-data | 10Gi
| /volumes/csi/csi-vol-d51fa0b1-5432-4e6e-97b9-17d0df1bdf47/43435330-12b4-4a50-9ca7-efee19b94e96
| 0.0024269744753837585 |
| pvc-697325c2-4c93-4a1c-b60a-feb1d5b5b611 | license-client/license-client-data | 8Mi
| /volumes/csi/csi-vol-fc9ff7c8-e4a1-42f2-9f96-5c34f2cd559b/9f364508-9d15-4d13-8d83-c64da1bb7c25
| 0.0 |
| pvc-99cf22c0-33f3-44b1-ad53-2a898b3247b4 | common/opensearch-cephfs-pvc | 10Gi
| /volumes/csi/csi-vol-d3ba7888-09f3-45c6-8378-028f78d8b318/5b21acb7-6e02-428c-aacf-7ec78efd9932
| 0.0 |
| pvc-cdef057b-21ea-4481-9504-e8ff9f9094a0 | paa/orchestrator-volume | 10Gi
| /volumes/csi/csi-vol-f606b8f9-f705-498e-b0ee-f3afa4ed0d14/0ee7375d-908b-4230-a513-b6c6c872f73a
| 0.2804222572594881 |
| pvc-e160c14c-8832-4ad8-bd39-9ca43c1f1dca | airflow/airflow | 10Gi
| /volumes/csi/csi-vol-2b8e1186-650e-4489-b1cd-697c38511c01/a9c8d233-ea01-4d4d-9497-fa8f73b5875c
| 0.6234864285215735 |
+--+--+----------
+--
+-----------------------+

Meaning

32

	Table of Contents
	About This Guide
	Monitoring
	Monitor Using Sources and Sinks
	Monitoring Overview
	Configure Sources and Sinks
	Sample Sources and Sinks Configuration
	Configure Monitoring
	Configure IBM QRadar as a Monitoring Sink

	Troubleshooting
	Troubleshoot Using Paragon Shell
	Troubleshooting Overview
	Troubleshooting Commands
	Perform a Health Check

	Troubleshoot Using Linux Root Shell
	Check Storage Utilization

