JUDLR@! | Engineering

Simplicity

Juniper Paragon Automation 2.3.0
Monitoring and Troubleshooting Guide

Published
2025-08-26

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Paragon Automation 2.3.0 Monitoring and Troubleshooting Guide
2.3.0
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https:/support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | iv

1 Monitoring
Monitor Using Sources and Sinks | 2

Monitoring Overview | 2

Configure Sources and Sinks | 3

Sample Sources and Sinks Configuration | 4
Configure Monitoring | 12

Configure IBM QRadar as a Monitoring Sink | 13

2 Troubleshooting

Troubleshoot Using Paragon Shell | 17

Troubleshooting Overview | 17
Troubleshooting Commands | 18
Perform a Health Check | 24

Troubleshoot Using Linux Root Shell | 27

Check Storage Utilization | 27

About This Guide

Use this guide to monitor and troubleshoot Juniper Paragon Automation.

RELATED DOCUMENTATION

Juniper Paragon Automation User Guide

Juniper Paragon Automation Installation and Upgrade Guide

https://www.juniper.net/documentation/us/en/software/juniper-paragon-automation2.3.0/user-guide/index.html
https://www.juniper.net/documentation/us/en/software/juniper-paragon-automation2.3.0/installation-guide/index.html

Monitoring

Monitor Using Sources and Sinks | 2

CHAPTER 1

Monitor Using Sources and Sinks

IN THIS CHAPTER

Monitoring Overview | 2

Configure Sources and Sinks | 3

Sample Sources and Sinks Configuration | 4
Configure Monitoring | 12

Configure IBM QRadar as a Monitoring Sink | 13

Monitoring Overview

IN THIS SECTION

Benefits | 2

Paragon Automation uses a CLI-based infrastructure to monitor cluster resource usage and logs in real-
time. The monitoring process collects metrics from diverse sources and forwards the collected data to
designated sinks (such as Prometheus and VictoriaMetrics).

Paragon Automation uses Vector.dev, an advanced observability pipeline platform, that streamlines the
intricate process of collecting, transforming, and storing observability data. You can view this data to
interpret and analyze performance metrics ensuring timely responses to potential issues.

Benefits

e Provides real-time data collection enabling visibility into resource usage and logs.

e Provides insights into performance of the Paragon Automation cluster, enabling prompt identification
and resolution of potential issues.

¢ Improves system performance and reliability by enabling timely responses based on real-time
performance metrics and log data.

Configure Sources and Sinks

IN THIS SECTION

General Configuration Overview | 3

To set up monitoring, you must configure Paragon Automation to specify sources and destinations for
the metrics. The following terms are used extensively in this topic:

e Source—A source is the type and origin from which the observability data is collected.

e Sink—A sink is the destination to which the collected and transformed data is sent. This data can be

visualized, interpreted, and analyzed to gain insights into cluster resource usage and performance,
service status, and logs.

General Configuration Overview

Configure sources and sinks from the Paragon Shell CLI configuration mode. To enter configuration
mode, type configure in Paragon Shell.

root@node> configure
Entering configuration mode
[edit]

root@node#

To configure a source, use the following command:

user@node# set paragon monitoring source source_id scope source_type

Where:
e source_id—Used to index the source and specified by the user.

e scope —Specifies whether the metrics must be collected at the cluster level or at the node level.

e source_type—See "Supported Node Sources" on page 5 for a list of supported source types.

Similarly, to configure a sink, use the following command:

user@node# set paragon monitoring sink sink_id sink_type

Where:
e sink_id—Used to index the sink and specified by the user.
e source_type—See "Supported Sinks" on page 10 for a list of supported sink types.

To configure a sink to receive data from one or more sources, use the inputs keyword.

user@node# set paragon monitoring sink sink_id inputs (source_id|list of source_ids)

Where, the input entries must match the defined source_ids.

Majority of sources and sinks have their own options. Type ? after source_type or sink_typeto view all
available options.

user@node# set paragon monitoring source source_id scope source_type ?

or

user@node# set paragon monitoring sink sink_id sink_type ?

Vector.dev, by default, supports a reservoir of different types of sources and sinks. Currently, a few
major sources are integrated into Paragon Shell CLI. Refer to "Sample Sources and Sinks Configuration'
on page 4 for detailed configuration for each currently supported sources and sinks.

Sample Sources and Sinks Configuration

IN THIS SECTION

Supported Node Sources | 5

Supported Cluster Sources | 8

Supported Sinks | 10

Default Sources and Sinks | 11

Use the information provided in this topic to view sample source and corresponding sink configuration.
According to the scope and format, all sources can be categorized in the following ways:
e cluster or node—Specifies whether the scope of the collected data is cluster level or node level.

e metric or log—Specifies the format of the observability data that is collected.

Supported Node Sources

Paragon Automation supports the following node log and metric sources.

Syslog

Collect system logs from all primary and worker nodes within the Paragon Automation cluster.
Category: node, log

Sample source configuration:

root@node# set paragon monitoring source syslog node syslog

Sample sink configuration:

root@node# set paragon monitoring sink syslogvlog inputs syslog

root@node# set paragon monitoring sink syslogvlog elasticsearch mode bulk

root@node# set paragon monitoring sink syslogvlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink syslogvlog elasticsearch api_version v8

root@node# set paragon monitoring sink syslogvlog elasticsearch compression gzip

root@node# set paragon monitoring sink syslogvlog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch/

root@node# set paragon monitoring sink syslogvlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#appname,hostname,facility,procid,seve

rity,source_type"

Docker Log

Collect logs from all the docker containers in the primary and worker nodes within the Paragon
Automation Kubernetes cluster.

Category: node, log

Sample source configuration:

root@node# set paragon monitoring source docker node docker_logs

(optional) root@node# set paragon monitoring source docker node docker_logs include_containers
container_id_or_name

(optional) root@node# set paragon monitoring source docker node docker_logs exclude_containers

container_id_or_name

Sample sink configuration:

root@node# set paragon monitoring sink dockervlog inputs docker

root@node# set paragon monitoring sink dockervlog elasticsearch mode bulk

root@node# set paragon monitoring sink dockervlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink dockervlog elasticsearch api_version v8 set paragon
monitoring sink dockervlog elasticsearch compression gzip

root@node# set paragon monitoring sink dockervlog elasticsearch endpoints http://
monitoring_node:9428/insert/elasticsearch/

root@node# set paragon monitoring sink dockervlog elasticsearch query "X-Powered-
By#Vector#_msg_field#message#_time#timestamp#_stream_fields#container_name,container_id,stream,im

age

@ NOTE: An implicit transform audit-parser is used internally and is required for this source.
The source ID must be audit and the input field for the corresponding sink must be audit-

parser.

Paragon Shell cMGD Log

Collect the cMGD log from Paragon Shell.

Category: node, log

Sample source configuration:

root@node# set paragon monitoring source cmgd node cmgd_log

Sample sink configuration:

root@node# set paragon monitoring sink cmgdvlog inputs cmgd

root@node# set paragon monitoring sink cmgdvlog elasticsearch mode bulk

root@node# set paragon monitoring sink cmgdvlog elasticsearch healthcheck enabled false
root@node# set paragon monitoring sink cmgdvlog elasticsearch api_version v8 set

root@node# paragon monitoring sink cmgdvlog elasticsearch compression gzip

set paragon monitoring sink cmgdvlog elasticsearch endpoints http://monitoring node:9428/insert/
elasticsearch

root@node# set paragon monitoring sink cmgdvlog elasticsearch query "X-Powered-

By#Vector#_msg_field#message#_tim

Host Metric

Collect host resource usage from the Paragon Automation cluster nodes.
Category: node, metric

Sample source configuration:

root@node# set paragon monitoring source host node host_metrics scrape_interval_secs 60

Sample sink configuration:

root@node# set paragon monitoring sink vm inputs add-hostname

root@node# set paragon monitoring sink vm prometheus_remote_write endpoint http://
monitoring_node:8428/api/v1/write

root@node# set paragon monitoring sink vm prometheus_remote_write compression zstd

root@node# set paragon monitoring sink vm prometheus_remote_write healthcheck enabled false

@ NOTE: An implicit transform add-hostname is used internally to add the hostname field to
the processed data. The source ID must be host and the input field for the corresponding
sink must be add-hostname.

Supported Cluster Sources

Paragon Automation supports the following cluster log and metric sources.

Kubernetes Log

Collect logs from all Kubernetes pods.

Category: cluster, log

Sample source configuration:

root@node# set paragon

monitoring

Sample sink configuration:

root@node# set paragon
root@node# set paragon
root@node# set paragon
root@node# set paragon
root@node# set paragon

root@node# set paragon

monitoring
monitoring
monitoring
monitoring
monitoring

monitoring

source k8s cluster

sink kuberneteslog
sink kuberneteslog
sink kuberneteslog
sink kuberneteslog
sink kuberneteslog

sink kuberneteslog

monitoring_node:9428/insert/elasticsearch/

root@node# set paragon monitoring sink kuberneteslog

By#Vector#_msg_field#message#_time#timestamp#_stream

od_name, kubernetes. pod_

Audit Log

node_name"

Collect logs from the Paragon Automation audit log.

Category: cluster, log

Sample source configuration:

kubernetes_logs

inputs k8s

elasticsearch mode bulk

elasticsearch healthcheck enabled false
elasticsearch api_version v8
elasticsearch compression gzip

elasticsearch endpoints http://

elasticsearch query "X-Powered-

fields#kubernetes.pod_namespace,kubernetes.p

root@node# set paragon monitoring source audit cluster kafka bootstrap_servers kafka.common:9092

root@node# set paragon monitoring source audit cluster kafka group_id vector-kafka-consumer

root@node# set paragon monitoring source audit cluster kafka topics audits-dev

Sample sink configuration:

root@node# set paragon monitoring sink auditvlog inputs audit-parser

root@node# set paragon monitoring sink auditvlog elasticsearch
root@node# set paragon monitoring sink auditvlog elasticsearch
root@node# set paragon monitoring sink auditvlog elasticsearch
root@node# set paragon monitoring sink auditvlog elasticsearch
root@node# set paragon monitoring sink auditvlog elasticsearch
monitoring_node:9428/insert/elasticsearch

root@node# set paragon monitoring sink auditvlog elasticsearch

mode bulk

healthcheck enabled false
api_version v8
compression gzip
endpoints http://

query "X-Powered-

By#Vector#_msg_field#message#_time#timestamp#_stream_fields#org_id,site_id,admin_name,src_ip"

Kube State Metric

Collect Kubernetes resource usage from kube-state-metric.
Category: cluster, metric

Sample source configuration:

root@node# set paragon monitoring source ksm cluster prometheus_scrape endpoints http://kube-

state-metrics.kube-system:8080/metrics

root@node# set paragon monitoring source ksm cluster prometheus_scrape scrape_interval_secs 60

Sample sink configuration:

root@node# set paragon monitoring sink vm inputs add-hostname

root@node# set paragon monitoring sink vm prometheus_remote_write endpoint http://

monitoring_node:8428/api/v1/write

root@node# set paragon monitoring sink vm prometheus_remote_write compression zstd

root@node# set paragon monitoring sink vm prometheus_remote_write healthcheck enabled false

@ NOTE: An implicit transform add-hostname is used internally to add the hostname field to
the processed data. The source ID must be ksm and the input field for the corresponding

sink must be add-hostname.

Kubernetes Container Metric

Collect container resource usage of Kubernetes pods in the Paragon Automation cluster.

Category: cluster, metric

Sample source configuration:

root@node# set paragon monitoring source k8s_container_metric cluster

kubernetes_container_metrics

Sample sink configuration:

root@node# set paragon monitoring sink cadvisor inputs k8s_container_metric

root@node# set paragon monitoring sink cadvisor prometheus_remote_write endpoint http://
monitoring_node:8428/api/vl/write

root@node# set paragon monitoring sink cadvisor prometheus_remote_write compression zstd

root@node# set paragon monitoring sink cadvisor prometheus_remote_write healthcheck enabled false

Supported Sinks

All sinks can also be categorized in the following way as log or metric to identify the format of the
observability data that the sink accepts.

A data sink can accept input only from log sources and a metric sink can accept input only from metric
sources.

Paragon Automation supports the following cluster log and metric sinks.

Elasticsearch

Send data to a destination that supports the Elasticsearch format.
Category: log

The available options are:

root@node# set paragon monitoring sink id elasticsearch ?
Possible completions:
api_version The API version of Elasticsearch
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

compression Data compression method. Default is none
+ endpoints HTTP(S) endpoint of sources/sinks
> healthcheck Whether or not to check the health of the sink when Vector starts up

mode Elasticsearch Indexing mode

query Custom parameters to add to the query string for each HTTP request sent

to Elasticsearch. In the format of argl_key#argl_value#arg2_key#arg2_value...

separated items has to be an even number

Prometheus Remote Write

Deliver metric data to a Prometheus remote write endpoint.

Category: metric

The available options are:

root@node# set paragon monitoring sink id prometheus_remote_write ?

Possible completions:

+ apply-groups Groups from which to inherit configuration data

+ apply-groups-except Don't inherit configuration data from these groups

Number of hashtag

compression Data compression method. Default is snappy
endpoint HTTP(S) endpoint
> healthcheck Whether or not to check the health of the sink when Vector starts up

For more information, see https:/prometheus.io/docs/practices/remote_write/.

Default Sources and Sinks

When the Paragon Automation cluster is installed for the first time, the following three sources are

automatically created:
o Kube State Metric—ksm
e Host—host

o Audit log—audit

root@node# show paragon monitoring source ?

Possible completions:

<id> ID of the source.
audit ID of the source.
host ID of the source.
ksm ID of the source.

Should be of pattern
Should be of pattern
Should be of pattern
Should be of pattern

[a-z]1[a-z0-9_-1*
[a-z]1[a-20-9_-1*
[a-z]1[a-z0-9_-1*
[a-z]1[a-20-9_-1*

You can modify the configuration for each default source but the source must not be removed.

https://prometheus.io/docs/practices/remote_write/

You must set up and configure your own sinks on your own network which the Paragon Automation
cluster can access.

Configure Monitoring

Use the steps detailed in this topic to configure monitoring in Paragon Automation to collect metrics
from different types of sources and forward the collected data to designated sinks.

1. Login to the node from which you deployed the Paragon Automation cluster.
2. Type configure to enter configuration mode.

3. Configure the sources and sinks. Use the following commands.

° root@rimaryl# set paragon monitoring source source_id scope source_type

° root@primaryl# set paragon monitoring sink sink_id sink_type

Where:
source_id and sink_id'is the required source or sink ID.
Scope is cluster or node.

To view a list of all available sink-options and source-options as well as sample configurations, see set
paragon monitoring and "Sample Sources and Sinks Configuration" on page 4.

4. Type commit and-quit to commit the configuration and exit the configuration mode.

Committing will update the monitoring configuration, but will not deploy the changes to the
underlying services.

5. Deploy the monitoring updates.

root@primary1> request paragon deploy monitoring
Getting vector daemonset metadata...

Loading vector sources and sinks...

Validating config...

Deleting existing vector configmap...

Creating new vector configmap...
configmap/vector-config created

Vector source or sinks missing...

Suppressing vector pods

The vector pods are only spawned when at least one source and one sink is configured.

6. Verify that the vector pods are up and operational.

root@rimary1> show paragon cluster pods namespace kube-system | grep vector

vector-jrsh2 11 Running 0
44h
vector-1nlfl 1/1 Running 0
44h
vector-pcndg 1/1 Running 0
44h
vector-rnjnc 11 Running 0
44h

7. Verify that data is received at the configured sink.

Configure IBM QRadar as a Monitoring Sink

IN THIS SECTION

Host Syslog | 13

Other Logs Supported by Paragon Automation | 14

You can configure Paragon Automation to send all types of log data to IBM QRadar. We recommend two
approaches for different types of logs:

Host Syslog

System logs on Paragon Automation clusters are managed by rsyslog, which supports multiple output
modules. Although Paragon Automation monitoring does support collecting these host system logs, you
can configure rsyslog to directly forward the system log to QRadar.

To configure rsyslog to send system log-data to QRadar:
1. Login to a Paragon Automation cluster node and type exit to access the Linux root shell.

2. Navigate to the /etc/rsyslog.d/ directory.

3. Create a .conf configuration file using the rsyslog naming convention, or modify an existing
configuration file.

4. Add the following line to the configuration file.

x.x action(type="omfwd" target="gradar_host" port="514" protocol="tcp" resumeRetryCount="-1"

queue.type="LinkedList" queue.filename="Forwardl" queue.saveOnShutdown="on")

Replace gradar_host with your QRadar host IP address or hostname.
5. Restart the rsyslogd process.

service rsyslog restart

Host system logs will start streaming into QRadar.

Repeat this process on the remaining Paragon Automation cluster nodes.

Other Logs Supported by Paragon Automation

For all other types of logs (Kubernetes container log, Docker log, Audit log) supported by Paragon
Automation monitoring, perform the following steps to send system data to QRadar.

1. Login to a Paragon Automation cluster node and type configure in Paragon Shell to enter the
configuration mode.

2. Enter the following commands in configuration mode.

root@node# set paragon monitoring sink gradar inputs 1D
root@node# set paragon monitoring sink gradar socket address QRadar_IP_address:514
root@node# set paragon monitoring sink gradar socket mode tcp

root@node# set paragon monitoring sink gradar socket encoding codec raw_message

Replace /D with the ID of the log source. Retrieve the source ID using the show paragon monitoring
source ? command.

To add multiple inputs, repeat the inputs command for different IDs or specify a list of inputs.

root@node# set paragon monitoring sink gradar inputs [k8s_log docker_log]

3. Type commit and-quit to commit the configuration and exit configuration mode.

4. Deploy the monitoring updates.

root@node> request paragon deploy monitoring

Troubleshooting

Troubleshoot Using Paragon Shell | 17
Troubleshoot Using Linux Root Shell | 27

CHAPTER 2

Troubleshoot Using Paragon Shell

IN THIS CHAPTER

Troubleshooting Overview | 17
Troubleshooting Commands | 18

Perform a Health Check | 24

Troubleshooting Overview

IN THIS SECTION

Benefits | 18

Paragon Automation enables you to troubleshoot and debug issues with your Paragon Automation
deployment by using Paragon Shell CLI troubleshooting commands. These troubleshooting commands
enhance your problem resolution capabilities with specific commands that gather support and
troubleshooting information, enabling you to pinpoint and resolve cluster-related issues effectively. The
commands enable the discovery of cluster-related issues by executing a series of support commands

sequentially from any cluster node.
The Paragon Shell CLI troubleshooting commands are:

e request paragon support information on page 19—Provides an in-depth status report of your
Paragon Automation cluster configuration. The command output includes information such as CPU
and memory usage, information about pods, nodes, namespaces, persistent volume claim (PVC),

persistent volume (PV), and so on.

e request paragon troubleshooting information on page 21—Provides troubleshooting logs of the ems,

foghorn, insights, paa, trust, and pathfinder services.

When you run the troubleshooting command, a troubleshooting_date_time.tar.gz file is generated. Share
this file with Juniper Technical Assistance Center (JTAC) for further evaluation. This .tar.gz file is
saved in the /root/troubleshooting/ directory.

Paragon Automation also provides robust debugging commands that gather data from key system
components such as the Redis database, Kafka messages, service logs, time series database (TSDB),
Helm and Kubernetes deployment service information, and so on. These commands are not part of the
Paragon Shell CLI troubleshooting commands, and must be run separately. See "Additional
Troubleshooting Commands to Debug Issues" on page 22 for more information.

Use the troubleshooting commands when you see issues such as unavailable data across devices, syslog,
BGP, IS-IS, or incorrect fan status, incorrect interface availability, and so on. Analyze the data collected
from the output of these commands to find the cause of any issues seen in the Paragon Automation
cluster.

Benefits

e Streamlines the troubleshooting process by allowing you to execute multiple commands sequentially
from any cluster node.

e Provides comprehensive diagnostic information by collecting data from various sources such as
Redis, Kafka, service logs, Postgres, and TSDB, enabling a thorough understanding of the deployment
state.

e Provides you comprehensive data logs at one place thereby reducing the time and effort needed to
diagnose issues.

e Enables you to investigate and resolve complex issues with detailed data collected from all critical
system components.

Troubleshooting Commands

IN THIS SECTION

request paragon support information | 19
request paragon troubleshooting information | 20

Additional Debugging Commands | 22

https://support.juniper.net/support/

Use this topic to learn more about the Paragon Automation support and troubleshooting commands.

request paragon support information

The request paragon support information command displays an in-depth status report of your Paragon
Automation cluster configuration.

The show commands that are executed when you run the request paragon support information command are

listed in Table 1 on page 19.

Table 1: request paragon support information Commands

Command

show paragon

show paragon

show paragon

show paragon

show paragon

show paragon

show paragon

memory

show paragon

cluster nodes

cluster pods

cluster namespaces

cluster details

version

images version

cluster pods namespace healthbot sort

cluster pods namespace healthbot sort cpu

Description

Shows node information of your Paragon Automation
cluster.

Shows pod information of your Paragon Automation
cluster.

Shows namespace information of your Paragon
Automation cluster.

Shows storage and controller node information of
your Paragon Automation cluster.

Shows the version of your Paragon Automation
cluster.

Shows the version of pods in your Paragon
Automation cluster.

Shows the top pods of the healthbot namespace
sorted by memory utilization.

Shows the top pods of the healthbot namespace
sorted by CPU utilization.

Table 1: request paragon support information Commands (Continued)

Command Description

show paragon pvc details Shows the persistent volume (PV) and persistent
volume claim (PVC) information.

The request paragon support information command also runs many kubectl commands. These commands
provide you debugging information such as Helm deployment service information for the NorthStar
namespace, Kubernetes deployment information for api-aggregator service, and so on.

request paragon troubleshooting information

The request paragon troubleshooting information command provides troubleshooting information of the ems,
foghorn, insights, paa, trust, and pathfinder Paragon Automation services.

To view the list of available services, run the following command:

user@node> request paragon troubleshooting information service ?

Possible completions:

ems ems service
foghorn foghorn service
insights insights service
paa paa service
pathfinder pathfinder service
trust trust service

When you run the request paragon troubleshooting information command, a troubleshooting_date_time.tar.gz file
is generated. You can share this file with the Juniper Technical Assistance Center (JTAC) for further
evaluation. This .tar.gz file is saved in the /root/troubleshooting/ directory.

The commands that are executed when you run the request paragon troubleshooting information command
are listed in Table 2 on page 21.

https://support.juniper.net/support/

Table 2: request paragon troubleshooting information Commands

Command

request paragon debug logs namespace healthbot service

service-name

request paragon debug logs namespace foghorn service

service-name

request paragon debug logs namespace airflow service

service-name

request paragon debug logs namespace northstar service

service-name

Description

Generates log files of different services within the
healthbot namespace. Replace service-name with:

e tsdb-shim

e tand

e jtimon

e config-server

® api-server

e analytical-engine

e alerta

Generates log files of different services within the

foghorn namespace. Replace service-name with:

e order-management
e placement

e cmgd

Generates a log file of the workflow-manager
service within the airflow namespace.

Generates log files of different services within the
northstar namespace. Replace service-name with:

e toposerver
® web
e configmonitor

® api-aggregator

Table 2: request paragon troubleshooting information Commands (Continued)

Command Description

request paragon debug logs namespace papi service service- = Generates log files of different services within the

name papi namespace. Replace service-name with:

e oc-term
® papi
® papi-ws

request paragon debug postgres Generates a text file (JSON format) with Postgres
information.

Additional Debugging Commands

You can run commands to collect data from the Redis database, Kafka messages, service logs, and the
time series database (TSDB). You can use this data to troubleshoot issues with your Paragon Automation
cluster. These commands are not part of the Paragon Shell CLI troubleshooting commands, and must be
run separately. Table 3 on page 22 lists the commands.

Table 3: Additional Commands to Debug Issues

Command Description
Kafka
request paragon debug kafka ? Display possible completions for the request

paragon debug kafka command.

request paragon debug kafka options "-C -t topic-name -o Generate an output file of Kafka messages for a
s@start-time -o e@end-time -e -JB" output-file "File-name" topic for a specified period of time.

Insights Karfka

Table 3: Additional Commands to Debug Issues (Continued))

Command

request paragon debug insights-kafka-data ?

request paragon debug insights-kafka-data device "device-id"
time-period "duration'

Redis

request paragon debug redis ?

request paragon debug redis redis-key-pattern "insights"

request paragon debug redis-key-pattern "insights" output
file

Service Logs

request paragon debug logs ?

request paragon debug logs namespace name service service-
name time duration

7SDB

request paragon debug get-tsdb-data ?

Description

Display possible completions for the request
paragon debug insights-kafka-data command.

Display insights-kafka-data information for a
device, for a specific time period. An output file
of the information is generated.

Display possible completions for the request
paragon debug redis command.

Display Redis key pattern information forredis-
keys with pattern "insights".

Generate an output file of Redis key pattern
information forredis-keys with pattern

"insights".

Display possible completions for the request
paragon debug logs command.

Generate a log file for a service within a
namespace for the specified time period.

Display possible completions for the request
paragon debug get-tsdb-data command.

Table 3: Additional Commands to Debug Issues (Continued))

Command Description

request paragon debug get-tsdb-data device device-id topic Generate an output file of TSDB data for a

"topic-name" output file particular device.
Postgres
request paragon debug postgres ? Display possible completions for the request

paragon debug postgres command.

request paragon debug postgres database database-name Generate an output file of the measurement
username username measurement measurement-name output (file) = value information of the Postgres database.

Perform a Health Check

IN THIS SECTION

Purpose | 24
Action | 24
Sample Output | 25

Meaning | 25

Purpose

Perform a health check on the cluster and get an overall status of the cluster.

Action

Log in to a cluster node and use the request paragon health-check command in Paragon Shell.

Sample Output

root@primary1> request paragon health-check
Health status checking...

Get node count of Kubernetes cluster.

OK

There are 4 nodes in the cluster.

<output snipped>

Verifying Elasticsearch

0K

Opensearch test...

Checking health status at opensearch-cluster-master.common:9200. ..
Opensearch is healthy (green).

OPENSEARCH VERIFICATION PASS

Overall cluster status

GREEN

Meaning

The command performs multiple health checks on the cluster and returns a detailed list of all the tests
run and each of their results. The health-check command checks for multiple parameters such as:

e Kubernetes status
e Health of each node (CPU, disk space, memory, 1/O latency, and so on)
e Database health (Postgres, ArangoDB, OpenSearch, Kafka, and so on)

e Ceph storage health

The overall health status is categorized as green, amber, or red. A green status indicates a healthy cluster
and that all health checks have passed successfully. A red status that indicates that many health checks
have failed and implies serious issues in the cluster. An amber status indicates that there maybe certain
noncritical issues in the cluster. The status is returned amber in the following instances:

¢ Nodes have taints
e Disk usage or memory usage on any node exceeds 80% of available space.
e Disk I/0 latency on any node exceeds 100000 ms

e Rook ceph status shows HEALTH_WARN

@ NOTE: Alternatively, you can also use health-check command from the Linux root shell to
get an overall status of the cluster.

CHAPTER 3

Troubleshoot Using Linux Root Shell

IN THIS CHAPTER

Check Storage Utilization | 27

Check Storage Utilization

IN THIS SECTION

Purpose | 27
Action | 27
Sample Output | 28
Meaning | 32

Purpose

Check utilization of local storage PVC, Ceph-based storage PVC, and the S3 bucket.

Action

Log in to the Linux root shell of a cluster node and use the following commands:

e For the local storage PVC—paragon-1ocal-volume-check

e For Ceph-based storage PVC and S3 bucket—paragon-ceph-usage-check [-h] [-s] [-c] [-b]
Where:
e -hor --help displays command usage information.

e -cor --cephfs checks Ceph-based storage usage.

e -sor --s3 checks S3 bucket usage.

e -bor --both checks both Ceph-based storage and S3 bucket usage.

Sample Output

paragon-local-volume-check

root@pal:~# paragon-local-volume-check

Get local volume usage.

pv-name pvc-claim

local-path disk-usage node-name

echolocal-pv-36c71c79 foghorn-dbserver-6nrhg4nc

volumes/pvi6 107M pal

local-pv-49d4aff9

volumes/pv3d 996K

local-pv-aa9c4410

volumes/pvil 142M

local-pv-c747791f
volumes/pv9 68K
local-pv-ead7ada4

volumes/pv20 1.5M

local-pv-22f5300c

volumes/pv5 519M

local-pv-37c26b76

volumes/pv3 106M

local-pv-53c4d5b

volumes/pvi5 8.2M

local-pv-80a32482
volumes/pvi2 68K
local-pv-92b5cf80

volumes/pvi4 996K

local-pv-a5c36300

volumes/pvl 140K

local-pv-3abab0bd

volumes/pv17 519M

local-pv-4961bb7d

volumes/pv5 8.2M

local-pv-6b46253c

pal

pal

pal

pal

pa2

pa2

pa2

pa2

pa2

pa2

pa3

pa3

data-zookeeper-0

data-kafka-2

vmstorage-db-vmstorage-victoria-metrics-cluster-2

opensearch-cluster-master-opensearch-cluster-master-2

pgdata-atom-db-2

foghorn-dbserver-9d9nd112

foghorn-agent-hiknywjh

vmstorage-db-vmstorage-victoria-metrics-cluster-0

data-zookeeper-2

vmstorage-db-vmstorage-victoria-metrics-cluster-0

pgdata-atom-db-1

foghorn-agent-hpvuvjh9

opensearch-cluster-master-opensearch-cluster-master-0

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

volumes/pvi3 2.3M
local-pv-7358834e
volumes/pv1l 134M
local-pv-7e53b8bc
volumes/pv6 142M
local-pv-b788099
volumes/pv9 140K
local-pv-269c69f0
volumes/pv7 996K
local-pv-3d6bab16
volumes/pvi@ 72K
local-pv-40e3ef1
volumes/pv20 2.0M
local-pv-4eb12e61
volumes/pv15 581M
local-pv-866f53aa
volumes/pv9 142M
local-pv-abda8deb
volumes/pv17 68K
local-pv-c101544f
volumes/pvi3 8.2M

pa3

pa3

pa3

pa3

pa4

pa4

pa4

pa4

pa4

pa4

pa4

foghorn-dbserver-ddxwbro1

data-kafka-1

vmstorage-db-vmstorage-victoria-metrics-cluster-1

data-zookeeper-1

vmstorage-db-vmstorage-victoria-metrics-cluster-2

opensearch-cluster-master-opensearch-cluster-master-1

pgdata-atom-db-0

data-kafka-0

vmstorage-db-vmstorage-victoria-metrics-cluster-1

foghorn-agent-wldughyr

paragon-ceph-usage-check -h or paragon-ceph-usage-check --help

root@pal:~# paragon-ceph-usage-check -h

usage: paragon-ceph-usage-check [-h] [-s] [-c] [-b]

Helper command to check S3 and Ceph usage

options:

-h, --help show this help message and exit

-s, --s3 Check S3 bucket usage

-c, --cephfs Check CephFS usage
-b, --both Check usage for both S3 and CephFS

paragon-ceph-usage-check -s or paragon-ceph-usage-check --s3

root@pal:~# paragon-ceph-usage-check -s

Checking S3 bucket usage

Listing top-level directories and checking usage:

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

/export/local-

S3 Directory list : ['devicesoftware', 'usw2-jcloud-dev-paa-plugin-service-plugins-storage']
Usage for: devicesoftware
Total Objects: @
Total Size: 0@ Bytes
Usage for: usw2-jcloud-dev-paa-plugin-service-plugins-storage
Total Objects: @
Total Size: @ Bytes

paragon-ceph-usage-check -c or paragon-ceph-usage-check --cephfs

root@pal:~# paragon-ceph-usage-check -c

Checking CephFS usage
PV to PVC , Volume and Size mapping

e e LT T e B et et

o o e e e e e
R LT TP TP +

| PV | Claim | Capacity

| Volume location

| Gb Used |

e e LT T e B et et

o o e e e e e
R LT TP TP +

| pvc-3eed5171-5efe-4c6b-8629-613844711362 | paa/timescaledb-data-paa-timescaledb-0 | 32Gi

| /volumes/csi/csi-vol-c96deb77-7145-403e-8dal-e971883cebc1/0bal2eb7-e93d-47d4-afal-21b8dc998971
| 0.0723346984013915 |

| pvc-42fec79a-fbf0-40bd-9dc5-066ff2f479%e3 | common/redis-data | 10Gi

| /volumes/csi/csi-vol-0f8878fa-eeb5-4ce5-8396-2ee2766€9413/d8810464-bf81-4008-98e1-da295a579%e35
| 2.360902726650238e-06 |

| pvc-46209d4a-2283-4fc2-aab5-2b%a4f9afbal | common/opensearch-backup | 32G1i

| /volumes/csi/csi-vol-9c5ace5e-d133-40aa-954d-fd51cceb2d80/3a8d0c37-4cfc-4ae7-8a82-a5decal225b7
| 1.773890107870102e-05 |

| pvc-5ae@fd7f-b53d-4b78-ba7d-4b0297ed6e30 | healthbot/insights-data | 10Gi

| /volumes/csi/csi-vol-d51fab1-5432-4e6e-97b9-17d0df 1bdf47/43435330-12b4-4a50-9ca7-efee19b94e96
| 0.0024269744753837585 |

I

I

I

I

I

I

pvc-697325c2-4c93-4alc-b60a-feb1d5b5b611 | license-client/license-client-data | 8Mi

/volumes/csi/csi-vol-fc9ff7c8-edal-42f2-9f96-5c34f2cd559b/9f364508-9d15-4d13-8d83-c64dalbb7c25
0.0 |

pvc-99cf22c0-33f3-44b1-ad53-2a898b3247b4 | common/opensearch-cephfs-pvc | 10Gi

/volumes/csi/csi-vol-d3ba7888-09f3-45c6-8378-028f78d8b318/5b21ach7-6e02-428c-aacf-7ec78efd9932
0.0 |

| pvc-cdef@57b-21ea-4481-9504-e8ff9f9094a0 | paa/orchestrator-volume | 10Gi

| /volumes/csi/csi-vol-f606b8f9-f705-498e-b0ee-f3afadeddd14/0ee7375d-908b-4230-a513-b6c6c872f73a
| ©0.2804222572594881 |

| pvc-e160c14c-8832-4ad8-bd39-9ca43ci1flidca | airflow/airflow | 10Gi

| /volumes/csi/csi-vol-2b8e1186-650e-4489-b1cd-697c38511c01/a9c8d233-ea01-4d4d-9497-fa8f73b5875¢
| 0.6222417075186968 |

paragon-ceph-usage-check -b or paragon-ceph-usage-check --both

root@pal:~# paragon-ceph-usage-check -b
Checking S3 bucket usage
Listing top-level directories and checking usage:
S3 Directory list : ['devicesoftware', 'usw2-jcloud-dev-paa-plugin-service-plugins-storage']
Usage for: devicesoftware
Total Objects: @
Total Size: 0@ Bytes
Usage for: usw2-jcloud-dev-paa-plugin-service-plugins-storage
Total Objects: @
Total Size: @ Bytes

Checking CephFS usage
PV to PVC , Volume and Size mapping

e e E LT e e Fo---m-m- -

o e e
dmmmmmm +

| PV | Claim | Capacity

| Volume location

| Gb Used |

e e E LT e e Fo---m-m- -

o e e
dmmmmmm +

| pvc-3eed5171-5efe-4c6b-8629-613844711362 | paa/timescaledb-data-paa-timescaledb-0 | 32Gi

| /volumes/csi/csi-vol-c96deb77-7145-403e-8dal-e971883cebc1/0bal2eb7-e93d-47d4-afal-21b8dc998971
| 0.0724263722077012 |

| pvc-42fec79a-fbf0-40bd-9dc5-066ff2f479%e3 | common/redis-data | 10Gi

| /volumes/csi/csi-vol-0f8878fa-eeb5-4ce5-8396-2ee2766e9413/d8810464-bf81-4008-98e1-da295a579e35
| 2.360902726650238e-06 |

| pvc-46209d4a-2283-4fc2-aab5-2b%a4f9afbal | common/opensearch-backup | 32Gi

/volumes/csi/csi-vol-9cbace5e-d133-40aa-954d-fd51cceb2d80/3a8d0c37-4cfc-4ae7-8a82-a5decal225b7
1.773890107870102e-05 |

pvc-5aedfd7f-b53d-4b78-ba7d-4b0297ed6e30 | healthbot/insights-data | 10Gi
/volumes/csi/csi-vol-d51fadb1-5432-4e6e-97b9-17d0df 1bdf47/43435330-12b4-4a50-9ca7-efee19b94e96
0.0024269744753837585 |

pvc-697325c2-4c93-4alc-b60a-feb1d5b5b0611 | license-client/license-client-data | 8Mi

/volumes/csi/csi-vol-fc9ff7c8-edal-42f2-9f96-5c34f2cd559b/9f364508-9d15-4d13-8d83-c64dalbb7c25
0.0 |

/volumes/csi/csi-vol-d3ba7888-09f3-45c6-8378-028f78d8b318/5b21ach7-6e02-428c-aacf-7ec78efd9932
0.0 |

pvc-cdef@57b-21ea-4481-9504-e8ff9f9094a0 | paa/orchestrator-volume | 10Gi

/volumes/csi/csi-vol-f606b8f9-f705-498e-b0ee-f3afadeddd14/0ee7375d-908b-4230-a513-b6c6c872f73a
0.2804222572594881 |

pvc-e160c14c-8832-4ad8-bd39-9ca43ci1fldca | airflow/airflow | 10Gi

/volumes/csi/csi-vol-2b8e1186-650e-4489-b1cd-697c38511c01/a9c8d233-eald1-4d4d-9497-fa8f73b5875¢c

I
I
I
I
I
I
I
I
| pvc-99cf22c0-33f3-44b1-ad53-2a898b3247b4 | common/opensearch-cephfs-pvc | 10Gi
I
I
I
I
I
I
I
| 0.6234864285215735 |

Meaning

	Table of Contents
	About This Guide
	Monitoring
	Monitor Using Sources and Sinks
	Monitoring Overview
	Configure Sources and Sinks
	Sample Sources and Sinks Configuration
	Configure Monitoring
	Configure IBM QRadar as a Monitoring Sink

	Troubleshooting
	Troubleshoot Using Paragon Shell
	Troubleshooting Overview
	Troubleshooting Commands
	Perform a Health Check

	Troubleshoot Using Linux Root Shell
	Check Storage Utilization

