JUDLR@! | Engineering

Simplicity

Junos® OS Evolved

oRPC Network Services User Guide

Published
2025-12-09

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Evolved gRPC Network Services User Guide
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 gRPC Services Overview

Understanding gRPC Services for Managing Network Devices | 2

Benefits of gRPC Network Services | 2
Understanding OpenConfig | 2

gRPC-Based Services Overview | 3

gNMI, gNOI, and gRIBI Overview | 3
2 Configure gRPC Services

Configure gRPC Services | 8

Understanding Authentication and Authorization for gRPC-Based Services | 9
Obtain X.509 Certificates | 11

Load the gRPC Server's Local Certificate in the Junos PKI | 14

Enable gRPC Services | 15

Configure Mutual (Bidirectional) Authentication for gRPC Services | 20
Configure the User Account for gRPC Services | 25

Configure gRPC RPC Authorization | 26

0

onfigure gNOI Services | 29

Set up the gRPC Client | 29
Compile the Proto Definiton Files | 30
Create gNOI Applications | 33

Execute the Application | 37

3 gNOlI Services

gNOI Services Overview | 39

| Supported Services Overview | 39

CertificateManagement Service | 40
Diagnostic (Diag) Service | 42

File Service | 42

Layer 2 Service | 43

Operating System (OS) Service | 44

System Service | 45

gNOI Certificate Management Service | 47

Overview | 47

Supported RPCs | 51

Network Device Configuration | 52
Install a Certificate | 53

Rotate a Certificate | 63

Revoke a Certificate | 73

gNOI Diagnostic (Diag) Service | 78

Overview | 79
Supported RPCs | 80

Network Device Configuration | 81

Example: Run a BERT | 81

gNOI File Service | 92

Supported RPCs | 92
Network Device Configuration | 93

Example: Get File | 93

Example: Put File | 98

gNOI Layer 2 Service | 103

Overview | 103

Supported RPCs | 103

Network Device Configuration | 103
Clear LLDP Neighbors | 104

gNOI Operating System (OS) Service | 104

Supported RPCs | 105
OS Service Overview | 106

Network Device Configuration | 108

Example: Install and Activate | 108

gNOI System Service | 115

Overview | 115

Network Device Configuration | 116
Ping and Traceroute | 116

Reboot a Device | 124

Upgrade Software | 130

Routing Engine Switchover | 136

gRIBI

gRIBI | 142

Supported RPCs | 143

Network Device Configuration | 143

Junos OS Evolved Release 23.4R1 and Later | 144
Before Junos OS Evolved Release 23.4R1 | 144

Modify Routes | 147
Get Routes | 156
Flush Routes | 157

Configuration Statements and Operational Commands

Junos CLI Reference Overview | 159

About This Guide

Use this guide to remotely operate supported Junos devices using the following gRPC services:
e gRPC Network Operations Interface (gNOI) services

e gRPC Routing Information Base Interface (gRIBI) services.

CHAPTER

gRPC Services Overview

IN THIS CHAPTER

Understanding gRPC Services for Managing Network Devices | 2

Understanding gRPC Services for Managing
Network Devices

SUMMARY IN THIS SECTION

gRPC client applications can use the gRPC network Benefits of gRPC Network Services | 2
services defined in the OpenConfig network
interfaces (gNMI, gNOI, gRIBI) to manage supported
network devices.

Understanding OpenConfig | 2
gRPC-Based Services Overview | 3

gNMI, gNOI, and gRIBI Overview | 3

Benefits of gRPC Network Services

e Provide simple, vendor agnostic interfaces for managing network devices.
e Enable you to more easily manage multivendor networks on a large scale.

o Use the gRPC Remote Procedure Call framework for transport and Protocol Buffers for service
definitions and encoding, which provide efficient transport and fast processing.

Understanding OpenConfig

OpenConfig is a collaborative effort in the networking industry to move toward a more dynamic,
programmable method for configuring and managing multivendor networks. OpenConfig supports the
use of vendor-neutral service definitions and data models to manage and configure the network. The
service definitions define common operations executed on network devices, and the data models define
the configuration and operational state of network devices for common network protocols or services.

Operators with a multivendor network benefit greatly from using industry standard models and
specifications. The goal of OpenConfig is for operators to be able to use a single set of data models and
operations to configure and manage all network devices that support the OpenConfig initiative. The
OpenConfig working group has developed specifications for gRPC-based interfaces for managing the
configuration, operations, and telemetry streams on network devices, which provide advantages over
other traditional network management protocols.

gRPC-Based Services Overview

gRPC is an open source Remote Procedure Call (RPC) framework that was originally developed by
Google. gRPC uses HTTP/2 for transport and supports modern security mechanisms and bidirectional
streaming. gRPC uses the Protocol Buffers data format for defining services and encoding data. Protocol
Buffers is language agnostic and supports bindings for many different languages, which enables
operators to easily integrate gRPC-based services into existing management applications.

The OpenConfig working group has defined specifications for gRPC-based network management
protocols. The gRPC-based network services include:

e gRPC Network Management Interface (gNMI)—Single service for configuration management and
streaming telemetry.

e gRPC Network Operations Interface (gNOI)—Suite of microservices for operations management.

e gRPC Routing Information Base Interface (gRIBI)—Service that enables external applications to
programmatically add or remove entries in a routing table on the target device.

Figure 1 on page 3 illustrates the scope of the different services.

Figure 1: gRPC Network Interfaces

gRIBI gNMI gNoOI
gRPC Routing gRPC Network gRPC Network
Information Base Interface Management Interface Operations Interface

Configuration O

Operational State Commands

Network Device

jn-000277

gNMI, gNOI, and gRIBI Overview

gNMI provides a single service for state management of network elements. gNMI uses vendor-neutral
data models that define the configuration and operational state of network devices for common
network protocols or services. gNMI clients can retrieve and modify the configuration of a network
device as well as stream operational data. Operators monitor the network by subscribing to the specific

data objects of interest. gNMI also supports on-change streaming, which is critical for time-sensitive
operations.

For more information about using gNMI for configuration management and telemetry streaming on
Junos devices, see:

e OpenConfig User Guide
e Junos Telemetry Interface User Guide

Whereas gNMI handles state management, gNOI handles operations management. gNOl is a collection
of gRPC-based microservices for performing common operations on network devices. Each service
definition defines RPCs that management applications can execute on a device to perform a set of
operations, for example, rebooting a device or upgrading the software. For a list of supported gNOI
services, see "gNOI Services Overview" on page 39.

gRIBI provides a single service for managing the network device's routing information base (RIB, also
known as a routing table) and forwarding information base (FIB, also known as a forwarding table).
Management applications can execute gRIBI RPCs on a device to retrieve, add, modify, or delete routes
from the device's RIB or FIB. For more information about supported gRIBI RPCs, see "gRIBI" on page
142.

gNMI, gNOlI, and gRIBI use gRPC for transport, and the connection between the gRPC server and the
gRPC client is over an SSL-encrypted gRPC session. For example, Figure 2 on page 5 illustrates a
simple connection between a gRPC client and server. Juniper Networks supports both server-only
authentication and mutual authentication for the gRPC session, which uses X.509 certificates to
authenticate the device or application. Certificates can be signed by a certificate authority (CA) or self-
signed.

https://www.juniper.net/documentation/us/en/software/junos/open-config/index.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/index.html

Figure 2: gRPC Server and Client Interaction

RPC Request

Channel Established

gRPC client gRPC server

.

JET Service
Process (JSD)

Lo

gnoi-system

Lo

MGD/other libraries

Network Management System Network device (Junos)

jn-000278

gNMI, gNOI, and gRIBI define services for managing network devices. Each service definition defines
the operations (RPCs) and data structures (messages) for that specific service in proto definition files.
The data structures are defined using Protocol Buffers, which is an open-source, language-neutral data
format for serializing structured data. You use protoc or an equivalent compiler to compile the proto files
for your language of choice. Management applications can use the code in the compiled files to perform
the requested operations on network devices. Table 1 on page 5 outlines the GitHub repositories
containing the proto definition files for each service interface.

Table 1: gNMl, gNOI, and gRIBI GitHub Repositories

Interface GitHub Repository
gNMI openconfig/gnmi
gNOlI openconfig/gnoi
gRIBI openconfig/gribi

The gRPC-based network services provide alternatives to and advantages over other network
management protocols like NETCONF and RESTCONF. Because you can compile the proto definition
files for many different languages, you can easily integrate the services with existing management
applications to manage multivendor networks. Additionally, the use of Protocol Buffers for data

https://github.com/openconfig/gnmi
https://github.com/openconfig/gnoi
https://github.com/openconfig/gribi

serialization generally provides more efficient transport and faster processing over other serialization
formats such as JSON and XML.

CHAPTER

Configure gRPC Services

IN THIS CHAPTER

Configure gRPC Services | 8
Configure gNOI Services | 29

Configure gRPC Services

SUMMARY IN THIS SECTION

Configure the gRPC server to enable a client to use ® Understanding Authentication and

gRPC services on the network device, including: Authorization for gRPC-Based Services | 9
gRPC Network Operations Interface (gNOI) services, ® Obtain X.509 Certificates | 11

gRPC Network Management Interface (gNMI)

services, and gRPC Routing Information Base ©® Load the gRPC Server's Local Certificate in
Interface (gRIBI) services. the Junos PKI | 14

® Enable gRPC Services | 15

® Configure Mutual (Bidirectional)
Authentication for gRPC Services | 20

® Configure the User Account for gRPC
Services | 25

® Configure gRPC RPC Authorization | 26

This topic discusses how to configure gRPC services on Junos devices, including the options for
authentication and how to configure each option. Before the server and client can establish a gRPC
session, you must satisfy the requirements discussed in the following sections:

e "Understanding Authentication and Authorization for gRPC-Based Services" on page 9

e "Obtain X.509 Certificates" on page 11

e "Load the gRPC Server's Local Certificate in the Junos PKI" on page 14

e "Enable gRPC Services" on page 15

e "Configure Mutual (Bidirectional) Authentication for gRPC Services" on page 20 (Optional)
e "Configure the User Account for gRPC Services" on page 25

e "Configure gRPC RPC Authorization" on page 26 (Optional)

Understanding Authentication and Authorization for gRPC-Based
Services

The gNMI, gNOI, and gRIBI interfaces use the gRPC Remote Procedure Call framework for transport.
The gRPC server runs on the network device and listens for connection requests on a specified port. The
gRPC client application runs on a remote network management system (NMS) and establishes a gRPC
channel with the server on the specified host and port. The client executes RPCs through the SSL-
encrypted gRPC session to perform network service operations. Figure 3 on page 9 illustrates a

simple connection between a gRPC client and server.

Figure 3: gRPC Server and Client Interaction

RPC Request

Channel Established

B

gRPC client gRPC server

Lo

JET Service
Process (JSD)

.

gnoi-system

.

MGD/other libraries

Network Management System Network device (Junos)

jn-000278

gRPC channels use channel credentials to handle authentication between the server and the client.
Standard channel credentials use X.509 digital certificates for authenticating the server and the client. A
digital certificate provides a way of authenticating users through a trusted third-party called a certificate
authority or certification authority (CA). The CA verifies the identity of a certificate holder and “signs”
the certificate to attest that it has not been forged or altered. The X.509 standard defines the format for
the certificate. Digital certificates can be used to establish a secure connection between two endpoints
through certificate validation. To establish a gRPC channel, each endpoint (device or application) that
requires authentication must supply an X.509 certificate in the exchange.

Junos devices support both server-only authentication as well as mutual authentication for SSL and TLS-
based gRPC sessions. When server-only authentication is configured, the server provides its public key
certificate when the channel is established. The client uses the server's Root CA certificate to

authenticate the server. When mutual authentication is configured, the client also provides its certificate
when it connects to the server, and the server validates the certificate. If the certificate validation is
successful, the client is allowed to make calls. We recommend that you configure mutual authentication
and use CA-signed certificates for the strongest security, although self-signed certificates are accepted.

A public key infrastructure (PKI) supports the distribution and identification of public encryption keys,
enabling users to both securely exchange data over networks such as the Internet and verify the identity
of the other party. For gRPC-based services, the Junos PKI must contain the certificate for the local
device acting as the gRPC server. If you use mutual authentication, the Junos PKI must also contain the
Root CA certificates required to validate the certificates of any gRPC clients that connect to the device.

Table 2 on page 10 outlines the general requirements for server-only authentication and mutual
authentication when a gRPC client connects to the device to perform gRPC-based services. The gRPC
server's certificate must define either the server’s hostname in the Common Name (CN) field, or it must
define the server’s IP address in the Subject Alternative Name (subjectAltName or SAN) IP Address field.
The client application must use the same value to establish the connection to the server. If the
certificate defines the SubjectAltName IP Address field, the Common Name field is ignored during
authentication.

Table 2: Requirements for Server-Only and Mutual Authentication for gRPC Sessions

Requirements Server-Only Authentication Mutual Authentication

Certificates The server must have an X.509 public key The server and client must each have an X.509
certificate. public key certificate.
If the client connects to the server's IP If the client connects to the server's IP address
address instead of the hostname, the instead of the hostname, the server's certificate
server's certificate must include the must include the subjectAltName (SAN) IP
subjectAltName (SAN) IP address address extension field with the IP address of
extension field with the IP address of the the server.
server.

Junos PKI The server's local certificate must be The server's local certificate and each client's
loaded in the Junos PKI. Root CA certificate must be loaded in the Junos

PKI.

Channel The client must pass in the server's Root The client must pass in their certificate and key

credentials CA certificate when the gRPC channel is and the server's Root CA certificate when the
established. gRPC channel is established.

Channel credentials are attached to the gRPC channel and enable the client application to access the
service. Call credentials, on the other hand, are attached to a specific service operation (RPC request)
and provide information about the person who is using the client application. Call credentials are sent

per request, that is, for each RPC call. To execute gRPC-based operations on Junos devices, you must
provide call credentials in the request. The user must either have a user account defined locally on the
device, or the user must be authenticated by a TACACS+ server, which then maps the user to a user
template account that is defined locally on the device. You can provide the call credentials (username
and password) in the RPC's metadata argument. If authentication is successful, the Junos device executes
the RPC request using the account privileges of the specified user.

@ NOTE: As an alternative to passing in call credentials for every RPC executed on a Junos
device, you can use the Juniper Extension Toolkit jnx_authentication_service APl to log in
to the device once at the start of the gRPC session, and all subsequent RPCs executed in
the channel are authenticated. You can download the JET Client IDL library from the
Juniper Networks download site.

By default, Junos devices authorize an authenticated gRPC client to execute all gRPC RPCs. You can
optionally configure a gRPC user's login class to explicitly allow or deny specific gRPC RPCs. To specify
the RPCs, you configure the allow-grpc-rpc-regexps and deny-grpc-rpc-regexps statements and define regular
expressions that match the RPCs. See "Configure gRPC RPC Authorization" on page 26 for more
information.

Obtain X.509 Certificates

A gRPC session uses X.509 public key certificates to authenticate the gRPC server and client. For
server-only authentication, the gRPC server must have a certificate. For mutual authentication, both the
gRPC server and client must have certificates. The requirements for the certificates are:

e The certificate can be signed by a CA or self-signed.
e The certificate must be PEM-encoded.

o The gRPC server's certificate must define either the gRPC server’s hostname in the Common Name
(CN) field, or it must define the gRPC server’s IP address in the SubjectAltName (SAN) IP Address
field. The gRPC client must use the same value to establish the connection to the server. If the
certificate defines the SubjectAltName IP Address, the Common Name field is ignored during
authentication.

To use OpenSSL to obtain the gRPC server's certificate:

1. Generate a private key, and specify the key length in bits.

user@nms:~$ openssl genrsa -out server.key 4096
Generating RSA private key, 4096 bit long modulus (2 primes)

https://support.juniper.net/support/downloads/?p=juniper-extension-toolkit

e is 65537 (0x010001)

2. If the gRPC client connects to the gRPC server’s IP address, update your openssl.cnf or equivalent
configuration file to define the subjectAltName=IP extension with the gRPC server’s IP address.

user@nms:~$ cat openssl.cnf
OpenSSL configuration file.

extensions = v3_sign

[v3_sign]
subjectAltName=IP:10.53.52.169

3. Generate a certificate signing request (CSR), which contains the entity's public key and information
about their identity.

user@nms:~$ openssl req -new -key server.key -out server.csr

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AUJ:US

State or Province Name (full name) [Some-State]:CA

Locality Name (eg, city) []:Sunnyvale

Organization Name (eg, company) [Internet Widgits Pty Ltd]: Acme
Organizational Unit Name (eg, section) []: testing

Common Name (e.g. server FQDN or YOUR name) []:gnoi-server.example.com
Email Address [1]:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password [1]:

An optional company name []:

Alternatively, you can provide the CSR information in a single command, for example:

user@nms:~$ openssl req -new -key server.key -out server.csr -subj "/C=US/ST=CA/L=Sunnyvale/
0=Acme/OU=testing/CN=gnoi-server.example.com"

4. Generate the certificate by doing one of the following:

Send the CSR to a CA to request an X.509 certificate, and provide the configuration file to include
any additional extensions.

Sign the CSR with a CA to generate the certificate, and include the -extfile option if you need to
reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in server.csr -CA /etc/pki/certs/ServerRootCA.crt -

CAkey /etc/pki/certs/ServerRootCA.key -set_serial 0101 -out server.crt -days 365 -sha256 -
extfile openssl.cnf

Signature ok

subject=C = US, ST = CA, L = Sunnyvale, 0 = Acme, OU = testing, CN = gnoi-
server.example.com

Getting Private key

Sign the CSR with the server key to generate a self-signed certificate, and include the -extfile
option if you need to reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in server.csr -signkey server.key -out server.crt -days
365 -sha256 -extfile openssl.cnf

Signature ok

subject=C = US, ST = CA, L = Sunnyvale, 0 = Acme, OU = testing, CN = gnoi-
server.example.com

Getting Private key

5. Verify that the certificate's Common Name (CN) field and extensions, if provided, are correct.

user@nms:~$ openssl x509 -text -noout -in server.crt
Certificate:

Data:
Version: 3 (0x2)

Subject: C = US, ST = CA, L = Sunnyvale, 0 = Acme, OU = testing, CN = gnoi-

server.example.com

X509v3 extensions:
X509v3 Subject Alternative Name:
IP Address:10.53.52.169

For mutual authentication, repeat the previous steps with the information for the gRPC client to
generate the client's key and certificate. The client certificate does not require the SAN IP extension
field.

Load the gRPC Server's Local Certificate in the Junos PKI

The network device running the gRPC server must have an X.509 certificate that identifies the device to
gRPC clients. To perform gRPC-based services on the Junos device, you must load the public key
certificate and key for the local network device in the Junos PKI. After you load the certificate and
perform the initial configuration, gRPC clients can then use any microservice to update the certificate.
For example, a gRPC client can use the gNOI CertificateManagement service to install a new certificate or
replace an existing certificate.

To load the local device's certificate and key in the PKI:

1. Download the certificate and key for the device that is acting as the gRPC server to that device.

2. In operational mode, define an identifier and load the local device's certificate and key into the PKI.

user@host> request security pki local-certificate load certificate-id certificate-id filename
path-to-certificate-file key path-to-key-file

Local certificate loaded successfully

For example:

user@host> request security pki local-certificate load certificate-id gnoi-server
filename /var/tmp/server.crt key /var/tmp/server.key
Local certificate loaded successfully

3. (Optional) Verify the certificate is present in the PKI database.

user@host> show security pki local-certificate certificate-id gnoi-server
LSYS: root-logical-system
Certificate identifier: gnoi-server
Issued to: gnoi-server.example.com, Issued by: C = US, ST = CA, O = serverRootCAOrg, CN =

serverRootCA
Validity:
Not before: 04-13-2022 18:15 UTC
Not after: 04-13-2023 18:15 UTC
Public key algorithm: rsaEncryption(4096 bits)

Keypair Location: Keypair generated locally

Enable gRPC Services

IN THIS SECTION

[edit system services http servers] | 16

[edit system services extension-service request-response grpc ssl] | 18

gRPC-based services use an API connection setting based on Secure Socket Layer (SSL) or Transport
Layer Security (TLS) technology. For these connections, you must specify a local certificate that
identifies the gRPC server.

After you enable gRPC services and specify a local certificate, the network device uses server-only
authentication. You can then optionally configure mutual authentication by completing the steps
described in "Configure Mutual (Bidirectional) Authentication for gRPC Services" on page 20.

You can configure your network device for gRPC services and specify the local certificate used for server

authentication at one of the following hierarchy levels:

o [edit system services http servers]—Use this statement hierarchy to configure one or more gRPC
servers that host different sets of services on unique ports. Additionally, each server can support
different listening addresses, certificates, and routing instances.

o [edit system services extension-service request-response grpc ssl]—Use this statement hierarchy when
you require only a single gRPC server that supports all gRPC services on the same listening address
and port.

To configure the device for gRPC services, follow the instructions for the hierarchy level that meets your
environment's requirements.

[edit system services http servers]

To configure one or more gRPC servers at the [edit system services http servers] hierarchy level:

1. Navigate to the gRPC servers hierarchy level and specify an identifier for the server.

[edit]
user@host# edit system services http servers server name

For example:

[edit]
user@host# edit system services http servers server grpc-serveri

2. Configure the port to use for the gRPC services. The port must be unique for each gRPC server.

[edit system services http servers server name]
user@host# set port port-number

For example:

[edit system services http servers server grpc-serverl]
user@host# set port 32767

3. Configure the gRPC services hosted by this server.

[edit system services http servers server name]
user@host# set grpc [servicel service? ...]

In this example, the server hosts gNMI services and gNOI services.

[edit system services http servers server grpc-serveri]

user@host# set grpc [gnmi gnoi]

4. Specify the local certificate that identifies the server to a client.

Enter the identifier for the local certificate that you previously loaded into the Junos PKI with the
request security pki local-certificate load operational mode command.

[edit system services http servers server name]
user@host# set tls local-certificate certificate-id

The following example configures the local certificate gnoi-server:

[edit system services http servers server grpc-serverl]
user@host# set tls local-certificate gnoi-server

5. (Optional) Specify the IPv4 or IPvé address on which the server listens for incoming connections.

[edit system services http servers server name]
user@host# set listen-address address

For example:

[edit system services http servers server grpc-serveri]
user@host# set ip-address 192.168.2.1

@ NOTE: If you do not specify an IP address, the default address of :: is used to listen for
incoming connections.

6. (Optional) Configure the routing-instance to use for this gRPC server, if different from the default
routing instance.

[edit system services http servers server name]
user@host# set routing-instance routing-instance

The following example uses the mgmt-junos routing instance.

[edit system services http servers server grpc-serverl]

user@host# set routing-instance mgmt-junos

7. (Optional) Configure the maximum number of connections that this gRPC server supports.

[edit system services http servers server name]
user@host# set max-connections connections

The following example configures a maximum of 10 connections. The default is 5.

[edit system services http servers server grpc-serveri]
user@host# set max-connections 10

8. Commit the configuration.

user@host# commit

To configure mutual authentication instead of server-only authentication, you must also complete the
steps in "Configure Mutual (Bidirectional) Authentication for gRPC Services" on page 20.

[edit system services extension-service request-response grpc ssl]

To configure a single gRPC server at the [edit system services extension-service request-response grpc ssl]
hierarchy level:

1. Navigate to the SSL-based API connection settings for gRPC services.

[edit]

user@host# edit system services extension-service request-response grpc ssl

2. Configure the port to use for gRPC services.

[edit system services extension-service request-response grpc ssl]
user@host# set port port-number

For example:

[edit system services extension-service request-response grpc ssl]
user@host# set port 32767

3. Specify the local certificate that identifies the server to a client.

Enter the identifier for the local certificate that you previously loaded into the Junos PKI with the
request security pki local-certificate load operational mode command.

[edit system services extension-service request-response grpc ssl]
user@host# set local-certificate certificate-id

The following example configures the local certificate gnoi-server:

[edit system services extension-service request-response grpc ssl]
user@host# set local-certificate gnoi-server

4. Configure the device to use the PKI database for certificates.

[edit system services extension-service request-response grpc ssl]
user@host# set use-pki

5. Enable the device to reload certificates without terminating the gRPC session.

[edit system services extension-service request-response grpc ssl]
user@host# set hot-reloading

6. (Optional) Specify an IP address to listen to for incoming connections.

[edit system services extension-service request-response grpc ssl]
user@host# set ip-address address

For example:

[edit system services extension-service request-response grpc ssl]
user@host# set ip-address 192.168.2.1

@ NOTE: If you do not specify an IP address, the default address of :: is used to listen for
incoming connections.

7. (Optional) Configure tracing for extension services to debug any issues that might arise.

[edit]

user@host# top

user@host# set system services extension-service traceoptions file jsd
user@host# set system services extension-service traceoptions flag all

@ NOTE: To view Junos OS Evolved trace files for extensions services, use the show trace
application jsd and show trace application jsd live operational mode commands.

8. Commit the configuration.

user@host# commit

To configure mutual authentication instead of server-only authentication, you must also complete the
steps in "Configure Mutual (Bidirectional) Authentication for gRPC Services" on page 20.

Configure Mutual (Bidirectional) Authentication for gRPC Services

IN THIS SECTION

Configure Mutual Authentication in the Device Configuration | 21

Configure Mutual Authentication Using the gNOI CertificateManagement Service | 24

You can configure mutual (bidirectional) authentication for gRPC sessions, which authenticates both the
network device as the gRPC server and the NMS as the gRPC client using certificates. The Junos device
uses the credentials provided by the external client to authenticate the client and authorize a
connection.

You can configure mutual authentication on Junos devices using one of the following options:
e Configure the mutual authentication settings directly in the configuration.

e Set up server-only authentication initially, and then use the gNOI CertificateManagement service to load
the necessary CA certificates on the device.

If you configure mutual authentication directly in the device configuration, the device configuration
takes precedence over any setup done using the gNOI services.

Before you begin:

e Load the certificate and key for the network device acting as the gRPC server into the device's PKI as
described in "Load the gRPC Server's Local Certificate in the Junos PKI" on page 14.

o Enable gRPC services and configure the local server authentication as described in "Enable gRPC
Services" on page 15.

The following sections discuss the different methods for configuring mutual authentication. You can use
whichever method works best for your environment.

Configure Mutual Authentication in the Device Configuration

To configure authentication for the gRPC client directly in the network device configuration:

1. Download the root CA certificate that will be used to validate the client' s certificate to the local
device acting as the gRPC server.

2. Configure a CA profile for the client certificate's root CA at the [edit security pki] hierarchy.

[edit security pkil
user@host# set ca-profile ca-profile-name ca-identity ca-identifier

For example:

[edit security pkil
user@host# set ca-profile gnoi-client ca-identity clientRootCA

3. Commit the configuration.

[edit]
user@host# commit and-quit

4. In operational mode, load the root CA certificate that will be used to verify the client's certificate into
the Junos PKI. Specify the ca-profile identifier that you configured in the previous steps.

user@host> request security pki ca-certificate load ca-profile ca-profile filename cert-path

For example:

user@host> request security pki ca-certificate load ca-profile gnoi-client filename /var/tmp/
clientRootCA.crt
Fingerprint:
00:2a:30:€9:59:94:db:f1:a1:5¢c:d1:c9:d4:5f:db:8f:f1:f0:8d:c4 (shal)
02:3b:a0:b8:95:0c:a2:fa:15:18:57:3d:a3:10:e9:ac (md5)

69:97:90:39:de:75:a0:1d:94:1e:06:a8:be:8c:66:€5:41:95:fd:dc:14:8a:e7:3a:€0:42:9e:f9:f7:dd:c8:c
2 (sha256)

Do you want to load this CA certificate ? [yes,no] (no) yes

CA certificate for profile gnoi-client loaded successfully

TIP: To load a CA certificate bundle, issue the request security pki ca-certificate ca-
profile-group load ca-group-name ca-group-name filename bundle-path command.

After loading the certificate, enter configuration mode and continue configuring mutual
authentication. You must configure mutual authentication under the same hierarchy level where you
configured your server. Perform the steps outlined in the section for your hierarchy level.

[edit system services http servers]

To configure mutual authentication for a server configured at the [edit system services http servers]
hierarchy level:

1. Navigate to the tls statement under your server configuration.

[edit]
user@host# edit system services http servers server name tls

For example:

[edit]
user@host# edit system services http servers server grpc-serverl tls

2. Enable mutual authentication and specify the requirements for client certificates.

[edit system services http servers server name tls]
user@host# set mutual-authentication authentication-type requirement

For example, to specify the strongest authentication, which requires a certificate and its validation,
use request-and-require-cert-and-verify, which is also the default.

[edit system services http servers server grpc-serverl tls]
user@host# set mutual-authentication authentication-type request-and-require-cert-and-verify

3. Specify the CA profile that will be used to verify the client certificate.

The CA profile was configured in step "2" on page 21 of the CA profile configuration.

[edit system services http servers server name tls]
user@host# set mutual-authentication certificate-authority certificate-authority

For example, to specify the CA profile named gnoi-client:

[edit system services http servers server grpc-serverl tls]
user@host# set mutual-authentication certificate-authority gnoi-client

4. Commit the configuration.

[edit system services http servers server name tls]

user@host# commit and-quit

[edit system services extension-service request-response grpc ssl]

To configure mutual authentication for a server configured at the [edit system services extension-service
request-response grpc ssl] hierarchy level:

1. Enable mutual authentication and specify the requirements for client certificates.

[edit system services extension-service request-response grpc ssl]
user@host# set mutual-authentication client-certificate-request requirement

For example, to specify the strongest authentication, which requires a certificate and its validation,

use require-certificate-and-verify.

[edit system services extension-service request-response grpc ssl]
user@host# set mutual-authentication client-certificate-request require-certificate-and-verify

@ NOTE: The default is no-certificate. The other options are: request-certificate, request-
certificate-and-verify, require-certificate, require-certificate-and-verify.

We recommend that you use the no-certificate option in a test environment only.

2. Specify the CA profile that will be used to verify the client certificate.

The CA profile was configured in step "2" on page 21 of the CA profile configuration.

[edit system services extension-service request-response grpc ssl]
user@host# set mutual-authentication certificate-authority certificate-authority

For example, to specify the CA profile named gnoi-client:

[edit system services extension-service request-response grpc ssl]

user@host# set mutual-authentication certificate-authority gnoi-client

3. Commit the configuration.

[edit system services extension-service request-response grpc ssl]

user@host# commit and-quit

Configure Mutual Authentication Using the gNOI CertificateManagement Service

You can use the gNOI CertificateManagement service to set up mutual authentication between the gRPC
client and gRPC server instead of configuring the settings directly in the device configuration. You
initially set up server-only authentication and then use the gNOI CertificateManagement service RPCs to
load the client CA certificates. See "gNOI Certificate Management Service" on page 47 for information
about loading the certificates using the gNOI CertificateManagement service.

The gRPC server supports only one global CA certificate bundle for gNOI services. When you use the
gNOI CertificateManagement service to load the CA certificate bundle, the device implicitly uses mutual
authentication. However, you should take note of the following:

e The CertificateManagement service always loads the CA certificate bundle using the ca-profile-group
reserved identifier gnoi-ca-bundle.

o If you use the CertificateManagement service to load the CA certificate bundle, the device implicitly uses
mutual authentication.

e |If the CertificateManagement service sends a request to load a new CA certificate bundle, the server
clears the certificates for the previous CA bundle from the device and loads the new ones.

e If you use the CertificateManagement service to load a CA certificate bundle and you also explicitly
configure mutual authentication in the device configuration, then the configured statements take
precedence.

Configure the User Account for gRPC Services

Channel credentials are attached to the gRPC channel and enable the client application to access the
service. Call credentials are attached to a specific RPC request and provide information about the user
who is using the client application. You must provide call credentials in each RPC request, which requires
a user account for the network device. The user must have a user account defined locally on the
network device, or the user must be authenticated by a TACACS+ server, which then maps the user to a
user template account that is defined locally on the device.

To create a user account:

1. Configure the user statement with a unique username, and include the class statement to specify a
login class that has the permissions required for all actions to be performed by the user. For example:

[edit system login]
user@host# set user gnoi-user class super-user

2. For local user accounts, configure the user's password.

You can omit the password for local user template accounts because the user is authenticated
through a remote authentication server.

[edit system login]
user@host# set user gnoi-user authentication plain-text-password
New password:

Retype new password:

3. (Optional) Configure the full-name statement to specify the user’s name.

[edit system login]
user@host# set user gnoi-user full-name "gNOI client"

4. Commit the configuration to activate the user account on the device.

[edit system login]
user@host# commit

5. Repeat the preceding steps on each network device where the gRPC client will execute RPCs in a
gRPC session.

Configure gRPC RPC Authorization

By default, Junos devices authorize an authenticated gRPC client to execute all gRPC RPCs. You can
configure a Junos login class to explicitly allow or deny gRPC RPCs. To specify the RPCs, you configure
the allow-grpc-rpc-regexps and deny-grpc-rpc-regexps statements and define regular expressions that match
the RPCs. If there are conflicting expressions in the allow and deny lists, the deny list takes precedence.
If an RPC does not match either list, the RPC is allowed by default.

Junos devices use the following syntax for specifying gRPC RPCs:

/package. service/ rpc

Where package, service, and rpc are the names defined in the respective statement in that service's proto
definition file. For example:

/gnmi.gNMI/Get
/gnoi.certificate.CertificateManagement/Rotate
/gnoi.system.System/Reboot
/gnoi.system.System/RebootStatus
/gribi.gRIBI/.*

You can configure multiple allow-grpc-rpc-regexps and deny-grpc-rpc-regexps statements with one or more
expressions. Enclose each expression within quotation marks (" "). Enclose multiple expressions in square
brackets [], and separate the expressions with a space.

allow-grpc-rpc-regexps ["regex7" "regex2" ...]

allow-grpc-rpc-regexps "regex3"

To create a login class that defines authorization for gRPC RPCs:

1. Configure the login class name and permissions.

[edit system login]
user@host# set class class-name permissions [permissionl permission2 ...]

For example:
[edit system login]
user@host# set class grpc-operator permissions all
2. Within the class, configure regular expressions for the RPCs that the class allows.
[edit system login class class-name]

user@host# set allow-grpc-rpc-regexps ["regex7" "regex2" ...]

user@host# set allow-grpc-rpc-regexps "regex3"

For example, the following statement allows the gNMI Get() RPC and all gNOI System service RPCs.

[edit system login class grpc-operator]
user@host# set allow-grpc-rpc-regexps ["/gnmi.gNMI/Get" "/gnoi.system.System/.*"]
3. Configure regular expressions for the RPCs that the class denies.

[edit system login class class-name]
user@host# set deny-grpc-rpc-regexps ["regex!" "regex2" ...]

For example, the following statements deny the gNMI Set() RPC and also deny all RPCs for the gRIBI
service as well as the gNOI CertificateManagement service.

[edit system login class grpc-operator]
user@host# set deny-grpc-rpc-regexps ["/gnmi.gNMI/Set" "/gribi.gRIBI/.*"]
user@host# set deny-grpc-rpc-regexps "/gnoi.certificate.CertificateManagement/.*"

4. Assign the login class to the appropriate gRPC users.

[edit system login]
user@host# set user username class class-name

For example, the following statement assigns the grpc-operator class to the grpc-user user.

[edit system login]
user@host# set user grpc-user class grpc-operator

After enabling gRPC services on the network device, set up the remote NMS as a gRPC client. To enable
the client to execute gNOI operations, configure the client as outlined in "Configure gNOI Services" on
page 29.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.2R1 & 25.2R1-EVO | Starting in Junos OS Release 25.2R1 and Junos OS Evolved Release 25.2R1, you can
configure multiple gRPC servers that host different sets of services on unique ports.

https://apps.juniper.net/feature-explorer/

Configure gNOI Services

SUMMARY IN THIS SECTION
Configure the remote network management system Set up the gRPC Client | 29
as a gRPC client that can execute gNOI operations Compile the Proto Definiton Files | 30

on network devices.
Create gNOI Applications | 33

Execute the Application | 37

The gRPC Network Operations Interface (gNOI) uses the gRPC Remote Procedure Call (gRPC)
framework to perform operations on a network device. The network management system must have the
gRPC stack installed.

OpenConfig defines proto definition files for gNOI services. Proto definition files define the operations
(RPCs) and the data structures (messages) for a given service. The definitions are language agnostic.
gRPC supports using many different languages to execute service operations. You must compile the
proto definition files for your language of choice. You then create applications that use the objects
(classes, functions, methods, etc) in the compiled files to connect to the gRPC server on the network
device and execute the desired operations.

For information about using gRPC with the different supported languages, consult the gRPC
documentation. The following sections provide sample commands for setting up a gRPC client and
downloading and compiling the gNOI proto definition files for Python. You must use the commands that
are appropriate for your operating system, environment, and gRPC language of choice.

Before you begin:

e Configure the gRPC server as described in "Configure gRPC Services" on page 8.

Set up the gRPC Client

gNOlI uses the gRPC framework to perform operations on a network device. gRPC supports using many
different languages. Before you can perform gNOI operations using your language of choice, you must
install the gRPC stack on the network management system.

For example, to install the gRPC stack for Python on a network management system running Ubuntu
20.04 LTS (use sudo where appropriate):

https://github.com/openconfig/gnoi
https://grpc.io/
https://grpc.io/

1. Install pip for Python 3.

user@ms:~$ sudo apt install python3-pip

2. Install the grpcio package for Python.

user@nms:~$ sudo pip3 install grpcio

3. Install the grpcio-tools package for Python.

user@ms:~$ sudo pip3 install grpcio-tools

Compile the Proto Definiton Files

gRPC supports using many languages. In order to perform gRPC operations on network devices, you
must compile the respective proto definition files and any dependent files for your language of choice.
OpenConfig provides the necessary proto definition files in the OpenConfig GitHub repository. You use
the protocol buffer compiler (protoc or equivalent application) to compile the .proto files.

For this setup, we execute a script that copies all the desired and dependent .proto files into a directory,
updates the files to use relative import statements, and then compiles the files.

To download and compile the gNOI proto definition files for Python:

1. Create the temporary directories for the original source files.

user@nms:~$ mkdir -p src/github.com/openconfig/gnoi
user@nms:~$ mkdir -p src/github.com/openconfig/gnmi
user@nms:~$ mkdir -p src/github.com/openconfig/gnsi

user@nms:~$ mkdir -p src/github.com/openconfig/bootz

2. Clone the gNOI GitHub repository and dependent repositories to the local device.

user@ms:~$ git clone https://github.com/openconfig/gnoi.git src/github.com/openconfig/gnoi
user@nms:~$ git clone https://github.com/openconfig/gnmi.git src/github.com/openconfig/gnmi
user@ms:~$ git clone https://github.com/openconfig/gnsi.git src/github.com/openconfig/gnsi
user@nms:~$ git clone https://github.com/openconfig/bootz.git src/github.com/openconfig/bootz

https://github.com/openconfig/

3. Compile the .proto files for your language, which in this example is Python.

The sample shell script performs the following operations:

e Creates the src/proto directory.

e Copies the desired proto files into the new directory.

e Updates the import statements in each proto file to use relative paths.

e Compiles each proto file in the specified list for use with Python.

user@nms:~$ cat compile-proto.sh

#!/usr/bin/env bash

src=src/proto

gnoi_files="types common bootconfig cert diag file layer2 os system"
gnmi_files="gnmi gnmi_ext"
gnsi_files="authz certz credentialz pathz"

bootz_files="bootz"

echo "Updating proto file source location and import statements"
mkdir -p $src

for p in $gnoi_files; do

cp src/github.com/openconfig/gnoi/$p/$p.proto $src
done
for p in $gnmi_files; do

cp src/github.com/openconfig/gnmi/proto/$p/$p.proto $src
done
for p in $gnsi_files; do

cp src/github.com/openconfig/gnsi/$p/$p.proto $src
done
for p in $bootz_files; do

cp src/github.com/openconfig/bootz/proto/$p.proto $src
done

for p in $gnoi_files $gnmi_files $gnsi_files $hootz_files; do
python3 -c "
import re

with open('$src/$p.proto', 'r') as fd:

data = fd.read()

datal = re.sub(r'github\.com\/openconfig\/.*\/(.*.proto)"', r'\g<1>', data)

with open('$src/$p.proto', 'w') as fd:

fd.write(datal)

done

echo "Compiling proto files"

for p in $gnoi_files $gnmi_files $gnsi_files $bootz_files; do

python3 -m grpc_tools.protoc --proto_path=$src --python_out=$src --grpc_python_out=$src

$p.proto
done

To compile the files using the script, execute the script from the parent directory that contains the src

directory.

user@ms:~$ sh compile-proto.sh

Updating proto file source location and import statements

Compiling proto files

@ NOTE: The script compiles only the subset of gNOI proto files (as defined in gnoi_files)
that have services supported on Junos devices as well as any dependent proto files. To

compile other services as they become available, you can update the variables to

include those services.

4, Verify that the proto files are compiled by viewing the output files in the target directory.

The file list should include the compiled files, which for Python have _pb2 and pb2_grpc in the

output filenames.

authz_pb2_grpc.py
authz_pb2.py
authz.proto

bootconfig_pb2_grpc.py

bootconfig_pb2.py
bootconfig.proto
bootz_pb2_grpc.py
bootz_pb2.py
bootz.proto
cert_pb2_grpc.py
cert_pb2.py

certz_pb2.py
certz.proto
common_pb2_grpc.py
common_pb2. py

common.proto

credentialz_pb2_grpc.py

credentialz_pb2.py
credentialz.proto
diag_pb2_grpc.py
diag_pb2.py
diag.proto

file.proto
gnmi_ext_pb2_grpc.py
gnmi_ext_pb2.py
gnmi_ext.proto
gnmi_pb2_grpc.py
gnmi_pb2.py
gnmi.proto
grpc_channel. py
layer2_pb2_grpc.py
layer2_pb2.py
layer2.proto

0s.proto
pathz_pb2_grpc.py
pathz_pb2.py
pathz.proto

proto

__pycache__
system_pb2_grpc.py
system_pb2.py
system.proto
types_pb2_grpc.py
types_pb2.py

cert.proto file_pb2_grpc.py 0s_pb2_grpc.py types.proto
certz_pb2_grpc.py file_pb2.py 0s_pb2.py

Create gNOI Applications

IN THIS SECTION

grpc_channel.py | 33

gnoi_connect_cert_auth_mutual.py | 34

After you compile the proto definition files, you create applications that use the objects in the compiled
files. The applications connect to the gRPC server on the network device and perform the desired
operations. This section provides two sample Python modules, which are described in their respective
sections.

grpc_channel.py

The grpc_channel .py Python module provides sample functions that create a gRPC channel using the
arguments provided for the selected method of authentication, server-only or mutual.

import grpc

from os.path import isfile

def grpc_authenticate_channel_mutual(server, port, root_ca_cert="", client_key="",
client_cert=""):
if not isfile(root_ca_cert):
raise Exception("Error: root_ca_cert file does not exist")
if (client_key == "") or (not isfile(client_key)):
raise Exception(
"Error: client_key option is missing or target file does not exist")
elif (client_cert == "") or (not isfile(client_cert)):
raise Exception(

"Error: client_cert option is empty or target file does not exist")

print("Creating channel")

creds = grpc.ssl_channel_credentials(open(root_ca_cert, 'rb').read(),
open(client_key, 'rb').read(),
open(client_cert, 'rb').read())

channel = grpc.secure_channel('%s:%s' % (server, port), creds)

return channel

def grpc_authenticate_channel_server_only(server, port, root_ca_cert=""):
if isfile(root_ca_cert):
print("Creating channel")
creds = grpc.ssl_channel_credentials(open(root_ca_cert, 'rb').read(),
None,
None)
channel = grpc.secure_channel('%s:%s' % (server, port), creds)
return channel
else:

raise Exception("root_ca_cert file does not exist")

gnoi_connect_cert_auth_mutual.py

The gnoi_connect_cert_auth_mutual.py Python application establishes a gRPC channel with the given gRPC
server and executes a simple gNOI System service operation. The user provides the necessary connection
and mutual authentication information as input to the application. The application invokes the
appropriate function in the grpc_channel.py module to establish the gRPC channel between the client and
the server. If the application successfully establishes a gRPC channel, it then executes a simple system
service RPC to retrieve the time from the network device.

gRPC gNOI Time request utility.

from __future__ import print_function
import argparse
import logging

from getpass import getpass

import system_pb2
import system_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

35

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',
dest="port',
nargs="7?",
type=int,
default=32767,
help='The server port. Default is 32767"')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',
dest="root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.")

args = parser.parse_args()

return args

36

def send_rpc(channel, metadata):
stub = system_pb2_grpc.SystemStub(channel)
print("Executing GNOI::System::Time RPC")
req = system_pb2.TimeRequest()
try:
response = stub.Time(request=req, metadata=metadata, timeout=60)
except Exception as e:
logging.error('Error executing RPC: %s', e)
print(e)
else:
logging.info('Received message: %s', response)

return response

def main():
parser = argparse.ArgumentParser()

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata)

print("Response received: time since last epoch in nanoseconds is ", str(response))
except Exception as e:
logging.error('Received error: %s', e)

print(e)

if __name__ == '__main__":
logging.basicConfig(filename="'gnoi-testing.log',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

Execute the Application

After you create applications to perform gNOI service operations, you execute the applications and
provide any necessary arguments. The following example uses the scripts provided in the previous
section to connect to the gRPC server on the network device and request the time. The gRPC server is
configured to require and verify the client's certificate.

e For mutual authentication, the client provides their own key and X.509 public key certificate in PEM
format in addition to the server's IP address, gRPC port, and root CA certificate. The client also
provides the credentials for RPC calls: the user_id argument supplies the username, and the
application prompts for the user password.

lab@gnoi-client:~/src/proto$ python3 gnoi_connect_cert_auth_mutual.py --server 10.53.52.169 --
port 32767 --root_ca_cert /etc/pki/certs/serverRootCA.crt --client_key /home/lab/certs/
client.key --client_cert /home/lab/certs/client.crt --user_id gnoi-user

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::System::Time RPC

Response received: time since last epoch in nanoseconds is time: 1650061065769701762

CHAPTER

gNOI Services

IN THIS CHAPTER

gNOI Services Overview | 39

gNOI Certificate Management Service | 47
gNOI Diagnostic (Diag) Service | 78

gNOlI File Service | 92

gNOI Layer 2 Service | 103

gNOI Operating System (OS) Service | 104
gNOI System Service | 115

gNOI Services Overview

SUMMARY IN THIS SECTION

Junos devices support the gNOI services and RPCs Supported Services Overview | 39
outlined in this topic. CertificateManagement Service | 40
Diagnostic (Diag) Service | 42

File Service | 42

Layer 2 Service | 43

Operating System (OS) Service | 44

System Service | 45

The gRPC Network Operations Interface (gNOI) defines services for performing operational commands
on network devices. OpenConfig defines the operations (RPCs) and data structures (messages) for each
service in proto definition files. The proto files with the full list of gNOI RPCs are located in the
OpenConfig gNOI GitHub repository at https:/github.com/openconfig/gnoi. Junos devices support a
subset of the services and RPCs as described in the following sections.

Supported Services Overview
Table 3 on page 39 outlines the gNOI services supported on Junos devices. The table lists the release

in which support starts for the given version of the proto file.

Table 3: Supported gNOI Services

Service Release Starting Support Proto File Version
CertificateManagement Junos OS Evolved Release 22.2R1 0.2.0
Diag Junos OS Evolved Release 22.2R1 0.1.0

File Junos OS Evolved Release 22.2R1 0.1.0

https://github.com/openconfig/gnoi

Table 3: Supported gNOI Services (Continued)

Service

Layer2

0S

System

Release Starting Support

Junos OS and Junos OS Evolved Release 24.2R1

Junos OS Evolved Release 22.2R1

Junos OS Evolved Release 22.2R1

CertificateManagement Service

Table 4: Supported cert.proto RPCs

RPC

CanGenerateCSR()

GenerateCSR()

GetCertificates()

Description

Query the target device to determine if it can
generate a certificate signing request (CSR) with the
specified key type, key size, and certificate type.
Supported values:

o Key type: KT_RSA

o Key sizes: 1024, 2048, 4096

o Certificate type: CT_X509

Returns True if the gNOI server supports the specific

key type, key size, and certificate type.

Generate and return a certificate signing request
(CSR).

Return the local certificates loaded on the target
device.

Proto File Version

0.1.0

0.11

1.0.0

Introduced in
Release

Junos OS Evolved
23.1R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Table 4: Supported cert.proto RPCs (Continued)

RPC

Install()

LoadCertificate()

LoadCertificateAuthorityBundle()

RevokeCertificates()

Rotate()

Description

Load a new certificate on the target device by creating
a CSR request, generating a certificate based on the
CSR, and loading the certificate using a new certificate
ID.

Load a certificate signed by a Certificate Authority
(CA) on the target device.

Load a CA certificate bundle on the target device.

Revoke the certificates with the specified certificate
IDs on the target device.

Replace an existing certificate on the target device by
creating a CSR request, generating a certificate based
on the CSR, and loading the certificate using an
existing certificate ID.

Introduced in
Release

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Junos OS Evolved
23.1R1

Junos OS Evolved
22.2R1

Diagnostic (Diag) Service
Table 5: Supported diag.proto RPCs

RPC Description Introduced in Release

StartBERT() Start a BERT on a set of ports. Junos devices support the following = Junos OS Evolved 22.2R1
PRBS patterns for gNOI BERTs:

PRBS7

e PRBS9
e PRBS15
e PRBS23

e PRBS31

StopBert() Stop an already in-progress BERT on a set of ports. Junos OS Evolved 22.2R1

GetBERTResult() = Get BERT results during the BERT or after it completes. Junos OS Evolved 22.2R1

File Service

Table 6: Supported file.proto RPCs

RPC Description Introduced in
Release

Get() Read and stream the contents of a file from the target. Junos OS Evolved
22.2R1

The file is streamed by sequential messages, each message containing up to
64KB of data. A final message is sent prior to closing the stream that contains
the hash of the data sent. The operation returns an error if the file does not exist
or there is an error reading the file.

Table 6: Supported file.proto RPCs (Continued)

RPC Description

Put() Stream data to a file on the target.

Introduced in
Release

Junos OS Evolved

22.2R1
The file is sent in sequential messages, each message containing up to 64KB of
data. A final message must be sent that includes the hash of the data.
The operation returns an error if the location does not exist or there is an error
writing the data. If no checksum is received, the target removes the partially
transmitted file. A failure will not alter any existing file of the same name.
Remove() = Remove the specified file from the target. The operation returns an error if the Junos OS Evolved
file does not exist, if the file path resolves to a directory, or if the remove 22.2R1
operation encounters an error.
Stat() Return metadata about a file on the target device. The operation returns an error = Junos OS Evolved
if the file does not exist or there is an error accessing the metadata. 22.2R1

Layer 2 Service
Table 7: Supported layer2.proto RPCs

RPC Description

ClearLLDPInterface() | Clear all LLDP neighbors of the specified
interface.

Introduced in Release

Junos OS and Junos OS Evolved 24.2R1

Operating System (OS) Service
Table 8: Supported os.proto RPCs

RPC Description

Activate() | Set the software version that is used at the next reboot.

Activate() reboots the target if the no_reboot flag is omitted or set to False. If the
reboot fails to boot the requested software version, the target rolls back to the
previous version.

NOTE: Junos devices do not support the standby_supervisor field in the
ActivateRequest message.

NOTE: Prior to Junos OS Evolved Release 25.2R1, Activate() validates the
current configuration against the software, installs the software, and sets the
software version as the next boot version.

Install() | Transfer a software installation package to the target, validate the configuration
against the software, and install (stage) the software.

If the specified software image is already installed on the device, validate the
current configuration against the software image and store the validated
configuration as the running configuration associated with that software version.

NOTE: Junos devices do not support the standby_supervisor field in the
TransferRequest message.

NOTE: Prior to Junos OS Evolved Release 25.2R1, Install() only transfers the
software installation package to the target.

Verify() Check the running software version. This RPC may be called multiple times while

the target boots until successful.

NOTE: Junos devices do not support verify_standby for VerifyResponse.

Introduced in
Release

Junos OS
Evolved 22.2R1

Junos OS
Evolved 22.2R1

Junos OS
Evolved 22.2R1

System Service

IN THIS SECTION

System Service (Ping and Traceroute) | 45

System Service (Reboot) | 46

System Service (Software Upgrade) | 46

System Service (Routing Engine Switchover) | 47

System Service (Ping and Traceroute)

Table 9: Supported system.proto RPCs for Troubleshooting the Network

RPC

Ping()

Traceroute()

Description
Ping a device. The Ping() RPC supports IPv4 and IPvé6 pings. This RPC
streams back the results of the ping after the ping is complete.

Default number of packets: 5

Execute the traceroute command on the target device and stream
back the results.

Default hop count: 30

Introduced in Release

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

System Service (Reboot)

Table 10: Supported system.proto RPCs for Rebooting

RPC Description Introduced in Release
Reboot() Reboot the target. You can only execute one reboot request on a Junos OS Evolved
target at a time. 22.2R1

You can optionally configure a delay to reboot in the future, reboot
subcomponents individually, and add a message when the reboot
initiates. The delay is configured in nanoseconds.

Junos devices support the following reboot methods:
e COLD(1)

e POWERDOWN (2)

e HALT (3)

e POWERUP (7)

RebootStatus() | Return the status of the reboot. Junos OS Evolved
22.2R1

CancelReboot() | Cancel a pending reboot request. Junos OS Evolved
22.2R1

System Service (Software Upgrade)

Table 11: Supported system.proto RPCs for Software Upgrades
RPC Description Introduced in Release

SetPackage() Install a software image on the target device. Junos OS Evolved 22.2R1

System Service (Routing Engine Switchover)

Table 12: Supported system.proto RPCs for Routing Engine Switchover

RPC Description Introduced in
Release
SwitchControlProcessor() | Switch from the current Routing Engine to the specified Routing Junos OS

Engine. If the current and specified Routing Engines are the same, Evolved 22.2R1
it is a NOORP. If the target does not exist, the RPC returns an error.

NOTE: Junos devices do not support control_processor for

SwitchControlProcessorResponse.

gNOI Certificate Management Service

SUMMARY IN THIS SECTION
Use the gNOI CertificateManagement service to Overview | 47
manage certificates on the target network element. Supported RPCs | 51

Network Device Configuration | 52
Install a Certificate | 53
Rotate a Certificate | 63

Revoke a Certificate | 73

Overview

The gNOI CertificateManagement service in the gnoi.certificate package handles certificate management on
the target network element. The proto definition file is located at https:/github.com/openconfig/gnoi/
blob/master/cert/cert.proto.

A public key infrastructure (PKI) supports the distribution and identification of public encryption keys,
enabling users to both securely exchange data over networks such as the Internet and verify the identity

https://github.com/openconfig/gnoi/blob/master/cert/cert.proto
https://github.com/openconfig/gnoi/blob/master/cert/cert.proto

of the other party. The Junos PKI enables you to manage public key certificates on Junos devices,
including downloading, generating, and verifying certificates. The gNOI CertificateManagement service
defines operations for certificate management, which is through the Junos PKI. The two main operations
are:

¢ Install—Install a new certificate using a new certificate ID on the target network device. If the
certificate ID already exists, the operation returns an error.

e Rotate—Replace an existing certificate, which already has an existing certificate ID, on the target
network device. If the stream is broken or any steps fail during the process, then the device rolls back
to the original certificate.

Figure 4 on page 49 outlines the workflow for the Install() and Rotate() operations. For both
operations, the client can generate the certificate signing request (CSR) itself or request the target to
generate the CSR. In either case, the client forwards the CSR to a certificate authority (CA) to request a
digital certificate. The client then loads the certificate on the target, either with a new certificate ID for
Install() operations or with an existing certificate ID for Rotate() operations. For Rotate() operations, the
client should also validate any replacement certificates and finalize or cancel the Rotate() operation
based on the success or failure of the validation. If the client cancels the operation, the server rolls back
the certificate, key pair, and any CA bundle, if it is present in the request.

Starting in Junos OS Evolved Release 23.1R1, during an Install(), Rotate(), or LoadCertificate() operation,
the gNOI server verifies the new end entity certificate using the corresponding CA certificate. Thus, the
gNOI server's PKI must include the root CA certificate that verifies the new certificate. You can load the
required CA certificate as part of the gNOI CA bundle, or you can load it separately. If the verification
fails, the device does not install the new certificate.

Figure 4: gNOI CertificateManagement Service Install and Rotate Operations

CA server gNOlI client gNOl server
g (Network Management (Network Device) |
System)

gRPC session

CSR request

CSR response

-~

Sign

Load certificate request

v

Load certificate response

-~

Validate with new gRPC session

Finalize request

v

jn-000298

Rotate

The gNOI server supports only one global CA certificate bundle for gNOI services. When you use the
gNOI CertificateManagement service to load the CA bundle, the following statements are applicable:

e The CertificateManagement service always loads the CA certificate bundle using the ca-profile-group
reserved identifier gnoi-ca-bundle.

e If you use the CertificateManagement service to load the CA certificate bundle, the device implicitly uses
mutual authentication.

e If the CertificateManagement service sends a request to load a new CA certificate bundle, the server
clears the certificates for the previous CA bundle from the device and loads the new ones.

e If you use the CertificateManagement service to load a CA certificate bundle and you also explicitly
configure mutual authentication in the device configuration, then the configured statements take
precedence.

Thus you can initially set up server-only authentication on the gNOI server and then use the Install()
RPC to load the CA certificates. When you use gNOI to load the initial CA certificate bundle, the device
performs the following steps:

e Adds the CA certificates in the Junos PKI.

e Automatically configures the gNOI CA certificate bundle at the [edit security pkil hierarchy level
using the ca-profile-group identifier gnoi-ca-bundle.

e Switches from server-only authentication to mutual authentication.

[edit]
security {
pki {
ca-profile gnoi-ca-bundle_1 {
ca-identity gnoi-ca-bundle_1;
}
ca-profile gnoi-ca-bundle_2 {
ca-identity gnoi-ca-bundle_2;
}
ca-profile-group gnoi-ca-bundle {
cert-base-count 2;
}
}
}

The Rotate() RPC does not support switching between authentication modes during the rotate
operation. Thus, Rotate() does not support loading the CA certificate bundle on the gNOI server for the
first time because it causes the device to switch from server-only authentication to mutual
authentication during the operation. When the authentication mode changes, the network device must
restart the gRPC stack and the connection is lost. If the stream is broken, the client cannot finalize the
rotate request, and the device would roll back to the certificates that were in place before the Rotate()
request was initiated.

@ NOTE: The hot-reloading statement at the [edit system services extension-service request-
response grpc ssl] hierarchy level only maintains the gRPC session during a certificate
update when the authentication mode remains unchanged during the operation. If the
authentication mode switches, for example, from server-only to mutual authentication
or vice versa, the client disconnects.

Supported RPCs

Table 13 on page 51 outlines the CertificateManagement service RPCs supported on Junos devices.

Table 13: Supported cert.proto RPCs

RPC

CanGenerateCSR()

GenerateCSR()

GetCertificates()

Install()

LoadCertificate()

LoadCertificateAuthorityBundle()

Description

Query the target device to determine if it can
generate a certificate signing request (CSR) with the
specified key type, key size, and certificate type.
Supported values:

e Key type: KT_RSA

o Key sizes: 1024, 2048, 4096

o (Certificate type: CT_X509

Returns True if the gNOI server supports the specific

key type, key size, and certificate type.

Generate and return a certificate signing request
(CSR).

Return the local certificates loaded on the target
device.

Load a new certificate on the target device by creating

a CSR request, generating a certificate based on the

CSR, and loading the certificate using a new certificate

ID.

Load a certificate signed by a Certificate Authority
(CA) on the target device.

Load a CA certificate bundle on the target device.

Introduced in
Release

Junos OS Evolved
23.1R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Junos OS Evolved
22.2R1

Table 13: Supported cert.proto RPCs (Continued)

RPC Description Introduced in
Release
RevokeCertificates() Revoke the certificates with the specified certificate Junos OS Evolved
IDs on the target device. 23.1R1
Rotate() Replace an existing certificate on the target device by | Junos OS Evolved

creating a CSR request, generating a certificate based 22.2R1
on the CSR, and loading the certificate using an
existing certificate ID.

Network Device Configuration

Before you begin:

e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

e Configure the network management system to support gNOI operations as described in "Configure
gNOI Services" on page 29.

For gNOI servers configured at the [edit system services http servers] hierarchy level, no additional
configuration is required.

For gNOI servers configured at the [edit system services extension-service request-response grpc ssl]
hierarchy level, you must configure the use-pki and hot-reloading statements at the same hierarchy level.
The hot-reloading statement is required to maintain the gRPC session when updating certificates that
affect the session. To configure the statements:

1. Configure the device to use the PKI database for local certificates.

[edit system services extension-service request-response grpc ssl]

user@host# set use-pki

2. Enable the device to reload certificates without terminating the gRPC session.

[edit system services extension-service request-response grpc ssl]

user@host# set hot-reloading

3. Commit the configuration.

[edit system services extension-service request-response grpc ssl]
user@host# commit

Install a Certificate

IN THIS SECTION

Example: Install a Certificate | 53

You can use the CertificateManagement service Install() RPC to load a new certificate on the target device.
When you install a new certificate using the Install() operation, you must specify a new certificate ID
that does not already exist on the target device. You can also optionally load a CA certificate bundle as
part of the Install() operation.

As part of the Install() operation, the device verifies the new certificate. Therefore, the Junos PKI must
have the root CA certificate that verifies the new certificate. You can load the required CA certificate as
part of the Install() operation, or you can load it separately, prior to the operation, if it is not already in

the PKI.

If you install a new local certificate that will be used for gRPC session authentication, you must also
update the gRPC server configuration on the device to use the new certificate ID.

Example: Install a Certificate

In this example, the gNOI server has been initially configured with a local certificate only and has not
been configured to use mutual authentication. The gNOI client uses the Install() RPC to load a new
local certificate and a CA certificate bundle on the device. After the CA bundle is loaded on the gNOI
server, the server uses mutual authentication by default. The CA bundle includes the root CA certificate
for the client certificate as well as the root CA certificate for the new server certificate.

The client executes the gnoi_cert_install_certificate_csr.py Python application, which performs the
following operations:

e Requests the target to generate a CSR.

o Gets a signed certificate based on the CSR.

e Loads the new server certificate, the server's new root CA certificate, and the client's root CA
certificate on the target network device.

The application uses the InstallCertificateRequest message with the appropriate parameters to define the
requests for generating the CSR and loading the certificates. For each request, the application uses the
Install() RPC to send the requests to the network device.

The gnoi_cert_install_certificate_csr.py application imports the grpc_channel module to establish the
channel. The grpc_channel module is described in "Configure gNOI Services" on page 29. The application's
arguments are stored in the args_cert_install_csr.txt file. The application and argument files are
presented here.

gnoi_cert_install_certificate_csr.py

"""oNOI Install Certificate utility."""

from __future__ import print_function

from __future__ import unicode_literals
import argparse

import logging

import re

from getpass import getpass

from subprocess import call

import cert_pb2
import cert_pb2_grpc
from grpc_channel import grpc_authenticate_channel_server_only

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost.')

parser.add_argument('--port"',
dest="'port',
nargs='?",
type=int,
default=32767,

help='Server port. Default is 32767')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default is "".')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="",
help='Full path of the client certificate. Default is "".')

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.')

parser.add_argument('--type',
dest="type',
type=int,
default="1",
help='Certificate Type. Default is 1. Valid value is 1 (1 is CT_X509);
Invalid value is @ (0 is CT_UNKNOWN).')

parser.add_argument('--min_key_size',
dest="min_key_size',
type=int,
default='2048",
help='Minimum key size. Default is 2048.")

parser.add_argument('--key_type',
dest="key_type',
type=int,
default='1",

help="'Key Type. Default is 1 (KT_RSA); @ is KT_UNKNOWN.')

parser.add_argument("' --common_name",
dest="common_name"',
type=str,
default="",
help='CN of the certificate')

parser.add_argument('--country',
dest="country',
type=str,
default="'US",
help='Country name')

parser.add_argument('--state',
dest="'state',
type=str,
default="'CA',
help='State name')

parser.add_argument('--city',
dest="city',
type=str,
default='Sunnyvale',
help='City name')

parser.add_argument('--organization',
dest="organization',
type=str,
default="Acme',

help='0Organization name')

parser.add_argument('--organizational _unit',
dest="organizational_unit',
type=str,
default="'Test',

help='0Organization unit name')

parser.add_argument('--ip_address",
dest="ip_address',
type=str,
default="",
help="'IP address on the certificate')

parser.

parser.

parser.

parser

parser.

parser.

parser

add_argument('--email_id",
dest="email_id',
type=str,
default="",
help='Email id"')

add_argument('--certificate_id"',
dest='certificate_id',
required=True,
type=str,
help='Certificate id."')

add_argument (' --server_cert_private_key',
dest="server_cert_private_key',
type=str,
default="",

help='Server certificate private key')

.add_argument('--server_cert_public_key",

dest="server_cert_public_key',
type=str,

default="",

help='Server certificate public key')

add_argument('--server_cert',
dest="server_cert',
type=str,
default="'server_cert',

help='Server certificate')

add_argument('--server_root_cal',
dest="server_root_cal',
type=str,
default="'server_root_cal',
help='Server Root CA')

.add_argument('--server_root_ca2',

dest="server_root_ca2',
type=str,
default="server_root_ca2',
help='Server Root CA')

57

def

parser.add_argument('--client_root_cal',

dest="client_root_cal',

type=str,

default='client_root_cal',
help='Client Root CA')

parser.add_argument('--client_root_ca2',

dest="client_root_ca2',

type=str,

default='client_root_ca2',
help='Client Root CA')

parser.add_argument('--client_root_ca3"',

dest="client_root_ca3',

type=str,

default='client_root_ca3"',
help='Client Root CA')

parser.add_argument('--client_root_ca4',

args = parser.parse_
return args

dest="client_root_ca4',

type=str,

default='client_root_ca4',
help='Client Root CA')

args(Q)

install_cert(channel, metadata, args):

try:

stub = cert_pb2_grpc.CertificateManagementStub(channel)

print("Executing GNOI::CertificateManagement::Install")

Create request to generate certificate signing request (CSR)

it = [1]

req = cert_pb2.InstallCertificateRequest()

req.generate_csr

req.generate_csr.
req.generate_csr.
req.generate_csr.

req.generate_csr.

req.generate_csr

.CSr_params.

Ccsr_params

CSr_params

CSr_params

.CSr_params

csr_params.

type = args.type

.min_key_size = args.min_key_size

.key_type = args.key_type

common_name = args.common_name

.country = args.country

.state = args.state

59

reg.generate_csr.csr_params.city = args.city
req.generate_csr.csr_params.organization = args.organization
reg.generate_csr.csr_params.organizational_unit = args.organizational_unit
req.generate_csr.csr_params.ip_address = args.ip_address
req.generate_csr.csr_params.email_id = args.email_id
req.generate_csr.certificate_id = args.certificate_id

it.append(req)

Send request to generate CSR
for csr_rsp in stub.Install(iter(it), metadata=metadata, timeout=180):

logging.info(csr_rsp)

Write CSR to a file
with open('/home/lab/certs/server_temp.csr', "wb") as file:

file.write(csr_rsp.generated_csr.csr.csr)

If client connects to server IP address
update openssl.cnf template to include subjectAltName IP extension
with open('/etc/pki/certs/openssl.cnf', 'r') as fd:
data = fd.read()
datal = re.sub(r'(subjectAltName=IP:).x',
r'\g<1>'+args.ip_address, data)
with open('/home/lab/certs/openssl_temp.cnf', 'w') as fd:
fd.write(datal)

Generate certificate with v3 extensions

cmd = "openssl x509 -req -days 365 -in /home/lab/certs/server_temp.csr -CA /etc/pki/
certs/serverRootCA.crt -CAkey /etc/pki/certs/serverRootCA.key -CAcreateserial -out /home/lab/
certs/server_temp.crt -extensions v3_sign -extfile /home/lab/certs/openssl_temp.cnf -sha384"

decrypted = call(cmd, shell=True)

Create request to install node certificate and CA certificates
print("\nExecuting GNOI::CertificateManagement::Install")

it = [1

req = cert_pb2.InstallCertificateRequest()

Import certificate and add to request

cert_data = bytearray(b'")

with open("/home/lab/certs/server_temp.crt", "rb") as file:
cert_data = file.read()

req.load_certificate.certificate.type = args.type

req.load_certificate.certificate_id = args.certificate_id

req.load_certificate.certificate.certificate = cert_data

Add client and server CA certificates to request

cal = req.load_certificate.ca_certificates.add()

cal.type = args.type

cal.certificate = open(args.client_root_cal, 'rb').read()
ca2 = req.load_certificate.ca_certificates.add()

ca2.type = args.type

ca2.certificate = open(args.server_root_cal, 'rb').read()

it.append(req)

Send request to install node certificate and CA bundle

for rsp in stub.Install(iter(it), metadata=metadata, timeout=180):
logging.info("Installing certificates: %s", rsp)

print("Install complete.")

except Exception as e:
logging.error('Certificate install error: %s', e)
print(e)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_server_only(

args.server, args.port, args.root_ca_cert)

install_cert(channel, metadata, args)

except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main__":
logging.basicConfig(filename="'gnoi-testing.log',
format="'%(asctime)s %(levelname)-8s %(message)s',

level=logging.INFO,

60

datefmt="%Y-%m-%d %H:%M:%S")

main()

args_cert_install_csr.txt

--server=10.53.52.169

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--user_id=gnoi-user

--type=1

--min_key_size=2048

--key_type=1
--common_name=gnoi-server.example.com
--country=US

--state=CA

--city=Sunnyvale

--organization=Acme

--organizational _unit=testing
--ip_address=10.53.52.169
--email_id=test@example.com
--certificate_id=gnoi-server1
--client_root_cal=/etc/pki/certs/clientRootCA.crt

--server_root_cal=/etc/pki/certs/serverRootCAl.crt

Execute the Application

When the client executes the application, the application requests the CSR, gets the signed certificate,
and loads the new server certificate and CA certificates on the target network device.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_cert_install_certificate_csr.py
@args_cert_install_csr.txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::CertificateManagement::Install

Signature ok

subject=CN = gnoi-server.example.com, C = US, ST = CA, O = Acme, OU = testing
Getting CA Private Key

Executing GNOI::CertificateManagement::Install
Install complete.

After you install the new server certificate, you must configure the server to use that certificate ID for
gRPC session authentication. Update the local-certificate statement for your specific server
configuration, which may be configured at one of the following hierarchy levels:

o [edit system services extension-service request-response grpc ssl]
e [edit system services http servers server name tls]

For example:

user@gnoi-server> show configuration system services extension-service request-response grpc ssl
port 32767;

local-certificate gnoi-serveri;

hot-reloading;

use-pki;

In addition, because the Install() operation loaded new CA certificates, the device implicitly uses mutual
authentication. As a result, all subsequent gRPC sessions must include the client's certificate and key
when establishing the channel.

If you execute the application and provide a certificate ID that already exists on the server, the
application returns an ALREADY_EXISTS error, because the Install() operation requires a new certificate ID.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_cert_install_certificate_csr.py
@args_cert_install_csr.txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::CertificateManagement::Install

Signature ok

subject=CN = gnoi-server.example.com, C = US, ST = CA, 0 = Acme, OU = testing

Getting CA Private Key

Executing GNOI::CertificateManagement::Install
<_MultiThreadedRendezvous of RPC that terminated with:

status = StatusCode.ALREADY_EXISTS

details = ""

debug_error_string = "{"created":"@1652241881.676147097","description":"Error received
from peer ipv4:10.53.52.169:32767","file":"src/core/lib/surface/

call.cc","file_line":903,"grpc_message":"","grpc_status":6}"

Rotate a Certificate

IN THIS SECTION

Example: Rotate a Certificate | 63

You can use the CertificateManagement service Rotate() RPC to replace an existing certificate on the target
device. When you replace an existing certificate using the Rotate() operation, you must load the
certificate using the certificate ID that already exists on the target device. You can also optionally
replace the existing gNOI CA certificate bundle as part of the Rotate() operation.

The Rotate() operation is similar to the Install() operation except that the Rotate() operation replaces an
existing certificate instead of installing a new certificate. In addition, the client must validate that the
updated certificate works and then finalize or cancel the Rotate() request based on the success or failure
of the certificate validation.

As part of the Rotate() operation, the device verifies the new certificate. Therefore, the Junos PKI must
have the root CA certificate that verifies the new certificate. You can load the required CA certificate as
part of the Rotate() operation, or you can load it separately, prior to the operation, if it is not already in
the PKI.

Example: Rotate a Certificate

In this example, the client executes the gnoi_cert_rotate_certificate_csr.py Python application, which
performs the following operations:

e Requests the target to generate a CSR.

e Gets a signed certificate based on the CSR

e Replaces the node certificate and the gNOI CA bundle on the target network device.
¢ Validates the new certificate.

o Finalizes the Rotate operation.

The application uses the RotateCertificateRequest message with the appropriate parameters to define the
requests for generating the CSR and loading the certificate and CA bundle. For each request, the
application uses the Rotate() RPC to send the request to the network device. To enable the target device
to verify the new node certificate, the application replaces the existing CA bundle with a new CA

bundle. The bundle includes both the client CA certificate and the CA certificate required to verify the
node certificate.

The application validates that the new certificate works by creating a new gRPC session with the
network device and executing a simple Time() RPC, although you can test the session authentication with
any RPC. The application finalizes the rotate request if the session is successfully established and
cancels the rotate request if the session authentication fails.

The gnoi_cert_rotate_certificate_csr.py application imports the grpc_channel module to establish the
channel. The grpc_channel module is described in "Configure gNOI Services" on page 29. The application's
arguments are stored in the args_cert_rotate_csr.txt file. The application and argument files are presented
here.

gnoi_cert_rotate_certificate_csr.py

"""oNOI Rotate Certificate utility."""

from __future__ import print_function
from __future__ import unicode_literals
import argparse

import logging

import time

import re

import grpc

from getpass import getpass

from subprocess import call

import cert_pb2

import cert_pb2_grpc

import system_pb2

import system_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

def get_args(parser):
parser.add_argument('--server"',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost.')

parser.add_argument('--port",

dest="'port',

nargs='7?",

type=int,

default=32767,

help='Server port. Default is 32767')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default is "".')

parser.add_argument('--client_cert',
dest='client_cert',
type=str,
default="",
help='Full path of the client certificate. Default is "".')

parser.add_argument('--root_ca_cert',
dest="root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id",
required=True,
type=str,
help='User ID for RPC call credentials."')

parser.add_argument('--type",
dest="type',
type=int,
default='1",
help='Certificate Type. Default is 1. Valid value is 1 (1 is CT_X509);
Invalid value is @ (@ is CT_UNKNOWN).')

parser.add_argument('--min_key_size',
dest="min_key_size',
type=int,
default='2048",
help='Minimum key size. Default is 2048."')

parser.add_argument('--key_type',

parser.

parser.

parser.

parser.

parser.

parser.

parser.

dest="key_type',

type=int,

default="1",

help='Key Type. Default is 1 (KT_RSA); @ is KT_UNKNOWN.')

add_argument (' --common_name ",
dest="common_name"',
type=str,
default="",
help='CN of the certificate')

add_argument('--country',
dest="'country',
type=str,
default="'US",

help='Country name')

add_argument('--state',
dest='state',
type=str,
default="'CA",
help='State name')

add_argument('--city',
dest="city',
type=str,
default="'Sunnyvale',
help='City name')

add_argument('--organization',
dest="organization',
type=str,
default="Acme',

help='0Organization name')

add_argument('--organizational_unit',
dest='organizational _unit"',
type=str,
default="'Test',

help='0Organization unit name')

add_argument('--ip_address",

dest="ip_address',

66

parser.

parser.

parser

parser

parser.

parser.

parser

type=str,
default="",
help="'IP address on the certificate')

add_argument('--email_id",
dest='email_id',
type=str,
default="",
help='Email id')

add_argument('--certificate_id",
dest="certificate_id"',
required=True,
type=str,
help='Certificate id."')

.add_argument('--server_cert_private_key',

dest="server_cert_private_key',
type=str,
default="'",

help='Server certificate private key')

.add_argument('--server_cert_public_key",

dest="server_cert_public_key"',
type=str,
default="'",

help='Server certificate public key')

add_argument (' --server_cert',
dest="server_cert',
type=str,
default="'server_cert',

help='Server certificate')

add_argument (' --server_root_cal',
dest="server_root_cal',
type=str,
default="'server_root_cal',
help='Server Root CA')

.add_argument('--server_root_ca2',

dest="'server_root_ca2'
’

type=str,

67

parser.

parser.

parser.

parser.

parser.

parser.

args =
return

add_

add_

add_

add_

add_

add_

pars

args

default="server_root_ca2',
help='Server Root CA')

argument('--client_root_cal',
dest="client_root_cal',
type=str,
default='client_root_cal',
help='Client Root CA')

argument('--client_root_ca2',
dest="client_root_ca2',
type=str,
default="'client_root_ca2',
help='Client Root CA')

argument('--client_root_ca3',
dest="client_root_ca3',
type=str,
default='client_root_ca3"',
help='Client Root CA')

argument('--client_root_ca4',
dest="client_root_ca4',
type=str,
default='client_root_ca4',
help='Client Root CA')

argument("--client_key_test",
dest="client_key_test',
type=str,
default="",
help='Full path of the test client private key. Default ""')

argument("--client_cert_test",
dest="client_cert_test',
type=str,
default="",
help='Full path of the test client certificate. Default ""')

er.parse_args()

68

def rotate_cert(channel, metadata, args):

try:

result =

stub = cert_pb2_grpc.CertificateManagementStub(channel)

print("Executing GNOI::CertificateManagement: :Rotate")

Create request to generate certificate signing request (CSR)

it = []

req

req.
req.
req.
req.
reg.
req.
reg.
req.
reg.
req.

req
req

= cert_pb2.RotateCertificateRequest()

generate_csr.
generate_csr.
generate_csr.
generate_csr.
generate_csr.
generate_csr.
generate_csr.

generate_csr.

generate_csr

generate_csr

.generate_csr.

.generate_csr.

it.append(req)

csr_params.type = args.type
csr_params.min_key_size = args.min_key_size
csr_params.key_type = args.key_type
CSr_params.common_name = args.common_name
csr_params.country = args.country
csr_params.state = args.state
csr_params.city = args.city

csr_params.organization = args.organization

.Csr_params.organizational_unit = args.organizational_unit

.csr_params.ip_address = args.ip_address

csr_params.email_id = args.email_id

certificate_id = args.certificate_id

Send request to generate CSR

print('Sending request for CSR')

for csr_rsp in stub.Rotate(iter(it), metadata=metadata, timeout=30):

logging.info(csr_rsp)

Write CSR to a file

with open('/home/lab/certs/server_temp.csr', "wb") as file:

file.write(csr_rsp.generated_csr.csr.csr)

If client connects to server IP address

update openssl.cnf template to include subjectAltName IP extension

with open('/etc/pki/certs/openssl.cnf', 'r') as fd:
data = fd.read()

datal = re.sub(r'

r 1

(subjectAltName=IP:).x',
\g<1>'+args.ip_address, data)

with open('/home/lab/certs/openssl_temp.cnf', 'w') as fd:
fd.write(datal)

Generate certificate with v3 extensions

cmd = "openssl x509 -req -days 365 -in /home/lab/certs/server_temp.csr -CA /etc/pki/
certs/serverRootCA.crt -CAkey /etc/pki/certs/serverRootCA.key -CAcreateserial -out /home/lab/
certs/server_temp.crt -extensions v3_sign -extfile /home/lab/certs/openssl_temp.cnf -sha384"
decrypted = call(cmd, shell=True)

Create request to rotate node certificate and CA certificates
print("\nExecuting GNOI::CertificateManagement::Rotate")

it = [1

req = cert_pb2.RotateCertificateRequest()

Import certificate and add to request

with open("/home/lab/certs/server_temp.crt", "rb") as file:
cert_data = file.read()

req.load_certificate.certificate.type = args.type

req.load_certificate.certificate.certificate = cert_data

req.load_certificate.certificate_id = args.certificate_id

Add client and server CA certificates to request

cal = req.load_certificate.ca_certificates.add()

cal.type = args.type

cal.certificate = open(args.client_root_cal, 'rb').read()
ca2 = req.load_certificate.ca_certificates.add()

ca2.type = args.type

ca2.certificate = open(args.server_root_cal, 'rb').read()

it.append(req)

Send request to replace node certificate and CA bundle
for rsp in stub.Rotate(iter(it), metadata=metadata, timeout=60):

logging.info("Rotating certificates. %s", rsp)

Validate certificates
print("Validating certificates")
time.sleep(5)

validate_rc = True

try:
validate_channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.server_root_cal, args.client_key_test,
args.client_cert_test)
validate_stub = system_pb2_grpc.SystemStub(validate_channel)
validate_rsp = validate_stub.Time(

request=system_pb2.TimeRequest(), metadata=metadata, timeout=60)

except grpc.RpcError as e:
print("Validation failed with error:", e)
validate_rc = False

pass

if validate_rc:
print("Finalizing certificate rotation.")
it = [1
req = cert_pb2.RotateCertificateRequest()
req.finalize_rotation.SetInParent()
it.append(req)
for rsp in stub.Rotate(iter(it), metadata=metadata, timeout=30):
logging.info("Finalizing rotate. %s", rsp)
logging.info(
"Certificate validation succeeded. Certificate rotation finalized.")
result = "Certificate rotation finalized."
else:
print("Rolling back certificates.")
logging.info(
"Certificate validation failed. Rolling back to original certificates.")

rsp.cancel()

except Exception as e:
logging.error('Certificate rotate error: %s', e)
print(e)

else:

return result

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@")

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),
('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = rotate_cert(channel, metadata, args)

print(response)

except Exception as e:
logging.error('Error: %s', e)
print(e)

if __name__ == '__main_

logging.basicConfig(filename="'gnoi-testing.log"',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_cert_rotate_csr.txt

--server=10.53.52.169

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user

--type=1

--min_key_size=2048

--key_type=1
--common_name=gnoi-server.example.com
--country=US

--state=CA

--city=Sunnyvale

--organization=Acme

--organizational _unit=testing
--ip_address=10.53.52.169
--email_id=test@example.com
--certificate_id=gnoi-server
--client_root_cal=/etc/pki/certs/clientRootCA.crt
--server_root_cal=/etc/pki/certs/serverRootCA.crt
--client_key_test=/home/lab/certs/client.key

--client_cert_test=/home/lab/certs/client.crt

It's important to note that the root_ca_cert argument is the server's root CA certificate required for the
initial channel credentials. The server_root_cal argument is the root CA certificate corresponding to the
server's new certificate. The Junos PKI must have the new root CA certificate in order to verify the new
local certificate during the Rotate() operation. In addition, the channel credentials for the gRPC session

that validates the new certificate use this root CA certificate. Although this example uses the same root
CA certificate for the new and old server certificates, these might differ for another case.

Execute the Application

When the client executes the application, the application requests the CSR, gets the signed certificate,
and loads the replacement certificate and CA bundle on the target network device. The application then
validates the replacement certificate with a new gRPC session that executes a simple Time() RPC. Upon
successful validation, the client finalizes the rotate request.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_cert_rotate_certificate_csr.py
@args_cert_rotate_csr. txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::CertificateManagement: :Rotate

Sending request for CSR

Signature ok

subject=CN = gnoi-server.example.com, C = US, ST = CA, 0 = Acme, OU = testing
Getting CA Private Key

Executing GNOI::CertificateManagement: :Rotate
Validating certificates

Creating channel

Finalizing certificate rotation.

Certificate rotation finalized.

Revoke a Certificate

IN THIS SECTION

Example: Revoke a Certificate | 74

A gNOI client can use the RevokeCertificates() RPC to remove one or more certificates from the target
device. The client includes a RevokeCertificatesRequest message with the list of certificate IDs to revoke.

When the gNOI server receives the RevokeCertificates() request, it processes each certificate ID in the list
as follows:

e If the certificate is present and the revocation is successful, the device removes the certificate from
the file system and the Junos PKI and adds the certificate ID to the list of successfully revoked
certificates.

e If the certificate is present and the revocation fails, the device includes the certificate ID and the
reason for the failure in the certificate revocation error list.

o If the certificate is not present, the device considers the revocation operation successful and adds
the certificate ID to the list of successfully revoked certificates.

@ NOTE: If the request revokes the certificate used for the current session, the session is
not affected.

After processing the request, the gNOI server returns a RevokeCertificatesResponse message that includes:
e A list of successfully revoked certificate IDs.

o Alist of revocation errors containing the certificate ID and the reason for the failure.

Example: Revoke a Certificate

In this example, the client executes the gnoi_cert_revoke_certificates.py Python application, which revokes
two certificates on the server. The first certificate ID is a valid identifier on the device. The second
certificate ID is an identifier that does not exist on the device.

The application uses the RevokeCertificatesRequest message with the appropriate parameters to define the
request. The application sends the RevokeCertificates() RPC to the network device to perform the
operation.

The gnoi_cert_revoke_certificates.py application imports the grpc_channel module to establish the channel.
The grpc_channel module is described in "Configure gNOI Services" on page 29. The application's
arguments are stored in the args_cert_revoke_certificates.txt file. The application and argument files are
presented here.

gnoi_cert_revoke_certificates.py

"""oNOI Revoke Certificates utility.
from __future__ import print_function

from __future__ import unicode_literals

import argparse

import logging

from getpass import getpass

import cert_pb2
import cert_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost.')

parser.add_argument('--port',

dest="port',
nargs="'7?",
type=int,

default=32767,
help='Server port. Default is 32767')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default is "".')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="",
help='Full path of the client certificate. Default is "".')

parser.add_argument('--root_ca_cert',
dest="root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,

type=str,

75

help='User ID for RPC call credentials."')

parser.add_argument('--certificate_id1",
dest="certificate_id1',
required=True,
type=str,
help='Certificate id."')

parser.add_argument('--certificate_id2",
dest="certificate_id2',
type=str,
help='Certificate id."')

args = parser.parse_args()

return args

def revoke_cert(channel, metadata, args):
try:
stub = cert_pb2_grpc.CertificateManagementStub(channel)
print("Executing GNOI::CertificateManagement: :RevokeCertificates")

Create request to revoke certificates

req = cert_pb2.RevokeCertificatesRequest()
req.certificate_id.append(args.certificate_id1)
req.certificate_id.append(args.certificate_id2)

Send request to revoke certificates

logging.info("Sending RevokeCertificates request.")

rsp = stub.RevokeCertificates(req, metadata=metadata, timeout=60)
logging.info(rsp)

print("rsp:\n%s" %rsp)

except Exception as e:
logging.error('Error: %s', e)

print(e)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@"')

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs:

II)

metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(

args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)

revoke_cert(channel, metadata, args)

except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main__"':
logging.basicConfig(filename="'gnoi-testing.log"',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_cert_revoke_certificates.txt

--server=10.53.52.169

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user
--certificate_id1=gnoi-server

--certificate_id2=id-does-not-exist

Execute the Application

When the client executes the application, the application instructs the target device to revoke the
specified certificates. The device returns a list of successfully revoked certificates and any errors. The

device deems the operation successful for both the valid certificate ID as well as for the certificate ID
that does not currently exist on the device.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_cert_revoke_certificates.py
@args_cert_revoke_certificates. txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::CertificateManagement::RevokeCertificates

rsp:

revoked_certificate_id: "gnoi-server"

revoked_certificate_id: "id-does-not-exist"

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.1R1-EVO | Starting in Junos OS Evolved Release 23.1R1, the Install(), Rotate(), and LoadCertificate()
operations verify the new certificate as part of the operation.

gNOI Diagnostic (Diag) Service

SUMMARY IN THIS SECTION

Use the gNOI diagnostic (Diag) service to test the Overview | 79
reliability of a link between two devices. Supported RPCs | 80
Network Device Configuration | 81

Example: Run a BERT | 81

https://apps.juniper.net/feature-explorer/

Overview

Use the Diag service RPCs to perform a bit error rate test (BERT) on a pair of connected ports. The Diag
service proto definition file is located at https:/github.com/openconfig/gnoi/blob/master/diag/
diag.proto.

A BERT, also known as a pseudo-random binary sequence (PRBS) test, tests the reliability of a link. The
StartBERT() gNOI RPC initiates a bidirectional BERT on a pair of connected physical interfaces. The
devices exchange a set pattern of 1s and Os across the link. The devices compare the received message
to the sent message and count the number of errors. The lower the number of errors, the higher the
quality of the link.

You must run a gNOI BERT on both sides of the link so the devices can compare results. The link you are
testing goes down during the BERT and comes back up after the BERT ends. However, if one of the
devices where you are running the BERT reboots, the link remains down unless you stop the BERT on
the other device.

You can choose the test pattern from several predetermined types. BERT or PRBS test patterns are titled
in the form PRBSx, where x is a number. Junos devices support the following test patterns for gNOI
BERTs:

e PRBS7
¢ PRBS9
e PRBS15
e PRBS23
e PRBS31

You must give each gNOI BERT a unique operation ID. The RPCs to start the BERT, stop the BERT, and
get the BERT results are linked by the BERT operation ID. When you run a new BERT, you must change
the operation ID to a new string. Because the RPCs identify each BERT by its operation ID, you can run
multiple BERTs on different interfaces with the same ID.

The device keeps the results of the last 5 BERT operations. However, the saved BERT results are not
persistent. They are lost if the system reboots.

To view the result of a specific saved BERT operation, send the GetBERTResul tRequest message for the
desired BERT operation ID and set the result_from_all_ports field to False. To view all request results for
different IDs, set the result_from_all_ports field in the GetBERTResultRequest message to True.

When you run the GetBERTResult() RPC on a device, the RPC displays the number of mismatched bits that
particular device detected during the BERT. Since the RPC does not have pass or fail criteria configured,

https://github.com/openconfig/gnoi/blob/master/diag/diag.proto
https://github.com/openconfig/gnoi/blob/master/diag/diag.proto

it is up to the user to evaluate the results. You might see a high number of errors for several reasons,
including:

e The quality of the link is poor.

e One of the devices went offline during the BERT.

e The BERT only ran on one device.

e The BERT did not start and stop on both devices simultaneously.

To avoid the last error, we recommend sending the StartBERT() RPC to both devices simultaneously. If you
start a BERT on one device before the other, the first device doesn't receive a response until the BERT
starts on the other device. The first device records the lack of response as mismatched bits. The first
device continues to report errors until BERT starts on the second device. If it is not possible to start the
BERT simultaneously, we recommend running the GetBERTResult() RPC on the device that started the
BERT last. Since the BERT was already running on the first device, the second device should not report
any false missing bits.

Supported RPCs

Table 14: Supported diag.proto RPCs
RPC Description Introduced in Release

StartBERT() Start a BERT on a set of ports. Junos devices support the following | Junos OS Evolved 22.2R1
PRBS patterns for gNOI BERTs:

e PRBS7
e PRBS9
e PRBS15
e PRBS23

e PRBS31

StopBert() Stop an already in-progress BERT on a set of ports. Junos OS Evolved 22.2R1

GetBERTResult() | Get BERT results during the BERT or after it completes. Junos OS Evolved 22.2R1

Network Device Configuration

Before you begin:
e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

e Configure the network management system to support gNOI operations as described in "Configure
gNOlI Services" on page 29.

e For the link you want to run the BERT on, configure the server and peer interfaces speeds to match.
BERT only runs if the interface speeds match.

Example: Run a BERT

IN THIS SECTION

gnoi_bert_client.py | 82
input_bert_start.json | 87
input_bert_get.json | 87

Execute the Application | 88

@ NOTE: While a BERT is in progress on an interface, the physical link on that interface
goes down.

After you have configured the gNOI client and server, you are ready to write and execute your
application to run the BERT. In this example, the client executes the gnoi_bert_client.py Python
application to test a link between the server and a peer device. The gnoi_bert_client.py application can
start the BERT, stop the BERT, or get the BERT results depending on the arguments.

First, the client uses gnoi_bert_client.py to send the StartBERT() RPC to start the BERT on the server and
the peer. While the BERT is running, the server and peer exchange BERT test packets across the link
between the et-1/0/2 and et-1/0/3 interfaces.

Figure 5: Network Topology During the BERT

StartBERT Server

>

7| 10.0.2.0/24

et-1/0/2

BERT test packets
StartBERT

et-1/0/3

Peer
10.0.3.0/24

jn-000306

The BERT ends after the set time expires. Then the client executes the application a second time with
the GetBERTResult() RPC to get the BERT results from the server.

The parameters for the StartBERTRequest message are stored in the input_bert_start.json JSON file. This
file specifies that the BERT should run for 60 seconds using PRBS pattern 31. The parameters for the
GetBERTResultRequest message are stored in the input_bert_get.json JSON file. The result_from_all_ports field
is set to False, so the GetBERTResult() RPC only retrieves the result for this particular BERT from this port.
The BERT operation ID is BERT-operation id 1 in both JSON files.

The application imports the grpc_channel module to establish the channel. The grpc_channel module is
described in "Configure gNOI Services" on page 29. The application file and JSON files are presented
here.

gnoi_bert_client.py

"""gRPC gNOI BERT utility."""

from __future__ import print_function
import argparse

import json

import sys

import logging

from getpass import getpass

import diag_pb2
import diag_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

from google.protobuf.json_format import MessageToJson

from google.protobuf.json_format import ParseDict

def get_args(parser):

Main arguments

parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

83

help='Server IP or name. Default is localhost')

parser.add_argument('--port',
dest="port',
nargs='7?",
type=int,
default=32767,
help='The server port. Default is 32767")

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="'",

help="Full path of the client private key.

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="'",

help="Full path of the client certificate.

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,

Default ""')

Default ""')

help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.')

BERT arguments

parser.add_argument('--input_file",
dest="input_file',
type=str,
defaul t=None,
help="Input JSON file to convert to a Message Object. Default NULL
string')

parser.add_argument('--output_file',
dest="output_file',
type=str,
default=None,
help='Output file. Default NULL string')

parser.add_argument('--message',
dest="message',
type=str,
default=None,
help='The type of Message Object. Must correspond to input file JSON.
Default NULL string')

args = parser.parse_args()
return args

def check_inputs(args):

Check each of the default=None arguments

if args.server is None:
print('\nFAIL: --server is not passed in\n')
return False

if args.port is None:
print('\nFAIL: server port (--port) is not passed in\n')
return False

if args.input_file is None:
print('\nFAIL: --input_file is not passed in\n')
return False

if args.output_file is None:
print('\nFAIL: --output_file is not passed in\n')
return False

if args.message is None:
print('\nFAIL: --message is not passed in\n')
return False

return True

Create a dictionary where top-level keys match what is passed in via args.message
The values are pointers to the relevant classes and method names needed to build/send message
objects
MESSAGE_RELATED_OBJECTS = {
'StartBERTRequest': {
'msg_type': diag_pb2.StartBERTRequest,
'grpc': diag_pb2_grpc.DiagStub,
'method': 'StartBERT'
Y
'StopBERTRequest': {
'msg_type': diag_pb2.StopBERTRequest,
'grpc': diag_pb2_grpc.DiagStub,
'method': 'StopBERT'
1,
'GetBERTResultRequest': {
'msg_type': diag_pb2.GetBERTResultRequest,
'grpc': diag_pb2_grpc.DiagStub,
'method': 'GetBERTResult'

def send_rpc(channel, metadata, args):
if not check_inputs(args):
print('\nFAIL: One of the inputs was not as expected.\n')
return False

print('\nMessage Type is {}'.format(args.message))

Message objects to send

msg_object_list = []

with open(args.input_file) as json_file:

user_input = json.load(json_file)

Choose the Request Message Object type based on the --message type passed
request_message = MESSAGE_RELATED_OBJECTS[args.message]['msg_type'1()

Convert the dictionary to the type of message object specified by request_message
try:

msg_object_list.append(ParseDict(user_input, request_message))

85

def

if

__name__ == '__main__":

except Exception as error:
print('\n\nError:\n{}'.format(error), file=sys.stderr)

raise

Assemble callable object to use for sending, e.g. diag pb2_grpc.DiagStub(channel). StartBERT
method = MESSAGE_RELATED_OBJECTS[args.message]['method']
send_message = getattr(

MESSAGE_RELATED_OBJECTS[args.message]['grpc' 1(channel), method)

send the Request Object(s)

for msg_object in msg_object_list:
resp = send_message(msg_object, metadata=metadata)
print('\n\nResponse:\n{}'.format(resp))
print(')

resp_json = MessageToJson(resp)
print('\n\nResponse JSON:\n{}'.format(resp_json))

with open(args.output_file, 'w') as data:
data.write(str(resp_json))

return True

main():
parser = argparse.ArgumentParser()

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata, args)
except Exception as e:
logging.error('Received error: %s', e)

print(e)

86

logging.basicConfig(filename="'gnoi-testing.log',

format="'%(asctime)s %(levelname)-8s %(message)s',

level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

input_bert_start.json

{
"bert_operation_id": "BERT-operation id 1",
"per_port_requests": [
{
"interface": {
"origin": "origin",
"elem": [
{"name": "interfaces"},
{"name": "interface", "key": {"name": "et-1/0/2"}}
]
¥
"prbs_polynomial": "PRBS_POLYNOMIAL_PRBS31",
"test_duration_in_secs": "60"
}
]
}

input_bert_get.json

"bert_operation_id": "BERT-operation id 1",
"result_from_all_ports": false,
"per_port_requests": [
{
"interface": {
"origin": "origin",
"elem": [
{"name": "interfaces"},

{"name": "interface", "key": {"name":

"et-1/0/2"}}

Execute the Application

1. From the client, run the gnoi_bert_client.py application to start the BERT on the peer (not shown).
Then run the gnoi_bert_client.py application to start the BERT on the server (shown below). To start
the BERT, set message to StartBERTRequest and set input_file to the input_bert_start.json file path. For
each device, the input file should specify the interface tested on that device. The BERT_STATUS_OK status
indicates that the BERT started successfully.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_bert_client.py --server 10.0.2.1 --port 32767
--root_ca_cert /etc/pki/certs/serverRootCA.crt --client_key /home/lab/certs/client.key --
client_cert /home/lab/certs/client.crt --user_id gnoi-user --message StartBERTRequest --
input_file diag/input_bert_start.json --output_file diag/output/bert-start-respi.json

gRPC server password for executing RPCs:

Message Type is StartBERTRequest

Response:
bert_operation_id: "BERT-operation id 1"
per_port_responses {
interface {
origin: "origin"
elem {
name: "interfaces"
}
elem {

name: "interface"

key {
key: "name"
value: "et-1/0/2"
}

}
status: BERT_STATUS_OK

Response JSON:
{
"bertOperationId": "BERT-operation id 1",
"perPortResponses": [
{
"interface": {
"origin": "origin",
"elem": [
{

"name": "interfaces"

"name": "interface",
"key": {
"name": "et-1/0/2"

]
3,
"status": "BERT_STATUS_OK"

2. (Optional) While you are running the BERT, use the show interfaces command on the server or peer
device to view the ongoing BERT results. When a BERT is running, the PRBS Mode is Enabled. The
output in this example has been truncated for clarity.

user@server> show interfaces
et-1/0/2
Physical interface: et-1/0/2, Enabled, Physical link is Down
Interface index: 1018, SNMP ifIndex: 534
[...]
PRBS Mode : Enabled
PRBS Pattern : 31
PRBS Statistics
Lane @ : Error Bits : @ Total Bits : 200000000000 Monitored Seconds :
Lane 1 : Error Bits : @ Total Bits : 200000000000 Monitored Seconds :
Lane 2 : Error Bits : @ Total Bits : 200000000000 Monitored Seconds :
Lane 3 : Error Bits : @ Total Bits : 200000000000 Monitored Seconds :

co 00 0 o

Interface transmit statistics: Disabled
Link Degrade :
Link Monitoring : Disable

[...]

3. After the BERT is finished, run the gnoi_bert_client.py application again with message set to
GetBERTResultRequest and input_file set to the input_bert_get.json file path to get the results of the test.
In this example, the BERT found zero errors during a one-minute test.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_bert_client.py --server 10.0.2.1 --port 32767
--root_ca_cert /etc/pki/certs/serverRootCA.crt --client_key /home/lab/certs/client.key --
client_cert /home/lab/certs/client.crt --user_id gnoi-user --message GetBERTResultRequest --
input_file diag/input_bert_get.json --output_file diag/output/bert-get-resp1.json

gRPC server password for executing RPCs:

Message Type is GetBERTResultRequest

Response:
per_port_responses {
interface {
origin: "origin"
elem {
name: "interfaces"
}
elem {

name: "interface"

key {
key: "name"
value: "et-1/0/2"
}

}

status: BERT_STATUS_OK

bert_operation_id: "BERT-operation id 1"
prbs_polynomial: PRBS_POLYNOMIAL_PRBS31
last_bert_start_timestamp: 1652379568178
last_bert_get_result_timestamp: 1652379688037
peer_lock_established: true
error_count_per_minute: @

total_errors: 0

Response JSON:
{
"perPortResponses": [
{
"interface": {
"origin": "origin",
"elem": [
{

"name": "interfaces"

"name": "interface",
llkeyll: {
"name": "et-1/0/2"

]
1,
"status": "BERT_STATUS_OK",
"bertOperationId": "BERT-operation id 1",
"prbsPolynomial": "PRBS_POLYNOMIAL_PRBS31",
"lastBertStartTimestamp": "1652379568178",
"lastBertGetResultTimestamp": "1652379688037",
"peerLockEstablished": true,
"errorCountPerMinute": [

0
1,

"totalErrors": "0"

The BERT completed successfully and shows the quality of the link is good.

gNOI File Service

SUMMARY IN THIS SECTION

Use the gNOI File service to manage files on a Supported RPCs | 92
network device. Network Device Configuration | 93
Example: Get File | 93

Example: Put File | 98

Use the File service RPCs to transfer and delete files or retrieve information about files. The proto
definition file is located at https:/github.com/openconfig/gnoi/blob/master/file/file.proto.

Supported RPCs

Table 15: Supported file.proto RPCs

RPC Description Introduced in
Release

Get() Read and stream the contents of a file from the target. Junos OS Evolved
22.2R1

The file is streamed by sequential messages, each message containing up to
64KB of data. A final message is sent prior to closing the stream that contains
the hash of the data sent. The operation returns an error if the file does not exist
or there is an error reading the file.

Put() Stream data to a file on the target. Junos OS Evolved

22.2R1
The file is sent in sequential messages, each message containing up to 64KB of

data. A final message must be sent that includes the hash of the data.

The operation returns an error if the location does not exist or there is an error
writing the data. If no checksum is received, the target removes the partially
transmitted file. A failure will not alter any existing file of the same name.

https://github.com/openconfig/gnoi/blob/master/file/file.proto

Table 15: Supported file.proto RPCs (Continued)

RPC Description Introduced in
Release
Remove() = Remove the specified file from the target. The operation returns an error if the Junos OS Evolved
file does not exist, if the file path resolves to a directory, or if the remove 22.2R1

operation encounters an error.

Stat() Return metadata about a file on the target device. The operation returns an error ' Junos OS Evolved
if the file does not exist or there is an error accessing the metadata. 22.2R1

Network Device Configuration

Before you begin:
e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

o Configure the network management system to support gNOI operations as described in "Configure
gNOI Services" on page 29.

To perform file operations on the target device, the client must have the appropriate permissions to
interact with the file system.

Example: Get File

IN THIS SECTION

gnoi_file_get.py | 94
args_file_get.txt | 97

Execute the Application | 97

This example provides a simple Python application, gnoi_file_get.py, to download a file from the target
device to the local network management system.

The application imports the grpc_channel module to establish the channel. The grpc_channel module is
described in "Configure gNOI Services" on page 29. The application's arguments are stored in the
args_file_get.txt file. The application and argument files are presented here.

gnoi_file_get.py

"eNOI Get File utility."""

from __future__ import print_function
import argparse

import hashlib

import logging

from getpass import getpass

import file_pb2
import file_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost"',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',
dest="port',
nargs='?",
type=int,
default=32767,
help='The server port. Default is 32767")

parser.add_argument('--client_key",
dest="client_key"',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,

def

95

default="",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',

dest="root_ca_cert',

required=True,

type=str,

help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',

dest="user_id",

required=True,

type=str,

help='User ID for RPC call credentials.")

parser.add_argument('--dest_file',

dest="dest_file',

type=str,

default="",

help='Full path for destination file. Default ""')

parser.add_argument('--source_file',

dest="source_file',

type=str,

default="",

help="'Full path of source file to retrieve. Default ""')

args = parser.parse_args()

return args

send_rpc(channel, metadata, args):
stub = file_pb2_grpc.FileStub(channel)
print("Executing GNOI::File::Get")

Prepare hash generator
gen_hash = hashlib.sha256()

Get File

req = file_pb2.GetRequest()

req.remote_file = args.source_file

hashvalue = None

hm = None
count = 1
with open(args.dest_file, "wb") as file:
Read data in 64 KB chunks and calculate checksum and data messages
print("Retrieving file")
try:
for msg in stub.Get(req, metadata=metadata, timeout=120):
if msg.WhichOneof('response') == "contents":
count = count + 1
file.write(msg.contents)
gen_hash.update(msg.contents)
else:
hashvalue = msg.hash.hash
hm = msg.hash.method

print("File transfer complete: ", args.dest_file)
except Exception as e:
logging.error("Get() operation error. %s", e)
print(e)
else:
file.close()
ehashvalue = gen_hash.hexdigest().encode()
if (ehashvalue != hashvalue):
raise ValueError(
'Hash value mismatch. Expected "%s", got "%s"' % (ehashvalue, hashvalue))
if (hm != 1):
raise ValueError(
'Hash method mismatch. Expected "1", got "%s"' % (hm))
logging.info("Downloaded file: %s", args.dest_file)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@"')

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)

send_rpc(channel, metadata, args)

except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main_

logging.basicConfig(filename="'gnoi-testing.log"',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_file_get.txt

--server=10.53.52.169

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user
--source_file=/var/log/messages
--dest_file=downloads/10.53.52.169-messages

Execute the Application

When the client executes the application, it transfers the specified file from the target device to the local
device.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_file_get.py @args_file_get.txt
gRPC server password for executing RPCs:

Creating channel

Executing GNOI::File::Get

Retrieving file

File transfer complete: downloads/10.53.52.169-messages

Example: Put File

IN THIS SECTION

gnoi_file_put.py | 98
args_file_put.txt | 102

Execute the Application | 102

This example provides a simple Python application, gnoi_file_put.py, to upload a file from the local
network management system to the target device.

The application imports the grpc_channel module to establish the channel. The grpc_channel module is
described in "Configure gNOI Services" on page 29. The application's arguments are stored in the
args_file_put.txt file. The application and argument files are presented here.

gnoi_file_put.py

"nnoNOI Put File utility."""

from __future__ import print_function
import argparse

import hashlib

import logging

import sys

from functools import partial

from getpass import getpass

import file_pb2
import file_pb2_grpc
from grpc_channel import grpc_authenticate_channel_mutual

MAX_BYTES = 65536

def get_args(parser):
parser.add_argument('--server',
dest="server',

type=str,

default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',
dest="port',
nargs='7?",
type=int,
default=32767,
help='The server port. Default is 32767")

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="'",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.')

parser.add_argument('--dest_file',
dest="'dest_file"',
type=str,
default="",
help='Full path for destination file. Default ""')

parser.add_argument('--dest_file_mode"',
dest="dest_file_mode',

type=int,

def

default=600,

help='Destination file mode (file permissions in octal).

parser.add_argument('--hash_method",
dest="hash_method"',
type=str,
default="unspecified',

Default 600')

help="'Hash method. Valid values are md5, sha256, sha512, or
unspecified. Default: unspecified')

parser.add_argument('--source_file',
dest="source_file',
type=str,
default="",

help="Full path of source file to transfer.

args = parser.parse_args()
return args

send_rpc(channel, metadata, args):
stub = file_pb2_grpc.FileStub(channel)
print("Executing GNOI::File::Put")

Prepare hash generator

if args.hash_method == "sha256":
gen_hash = hashlib.sha256()
hm = 1

elif args.hash_method == "sha512":
gen_hash = hashlib.sha512()
hm = 2

elif args.hash_method == "md5":
gen_hash = hashlib.md5()
hm = 3

else:
print("Unsupported hash method:", args.hash_method)
sys.exit(1)

Put File

req = file_pb2.PutRequest()
req.open.remote_file = args.dest_file
req.open.permissions = args.dest_file_mode

it = []

Default ""')

100

it.append(req)

Read source file and add to request
with open(args.source_file, "rb") as file:
Read data in 64 KB chunks and calculate checksum and data messages
for data in iter(partial(file.read, MAX_BYTES), b''):
req = file_pb2.PutRequest()
req.contents = data
it.append(req)
gen_hash.update(data)

Checksum message

req = file_pb2.PutRequest()

req.hash.hash = gen_hash.hexdigest().encode()
req.hash.method = hm

it.append(req)

Send PutRequest
try:
print("Sending file.")
response = stub.Put(iter(it), metadata=metadata, timeout=120)
except Exception as e:
logging.error("Error uploading source file %s to %s. Error: %s",
args.source_file, args.dest_file, e)
print(e)
else:

print("File transfer complete: ", args.dest_file)

logging.info("Uploaded file: %s", args.dest_file)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@"')

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)

send_rpc(channel, metadata, args)

except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main_

logging.basicConfig(filename="'gnoi-testing.log"',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_file_put.txt

--server=10.53.52.169

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user
--source_file=scripts/op/ospf-summary.slax
--dest_file=/var/db/scripts/op/ospf-summary.slax
--dest_file_mode=644

--hash_method=sha256

Execute the Application

When the client executes the application, it transfers the specified file from the local device to the target
device and sets the file permissions according to the dest_file_mode value.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_file_put.py @args_file_put.txt
gRPC server password for executing RPCs:

Creating channel

Executing GNOI::File::Put

Sending file.

File transfer complete: /var/db/scripts/op/ospf-summary.slax

gNOI Layer 2 Service

SUMMARY

Use the gNOI Layer2 service to perform functions at
Layer 2 of your network.

Overview

IN THIS SECTION

Overview | 103

Supported RPCs | 103

Network Device Configuration | 103
Clear LLDP Neighbors | 104

Use the Layer2 service RPC to clear the all the Link Layer Discovery Protocol (LLDP) neighbors of a
specified interface. The Layer2 service proto definition file is located at https:/github.com/openconfig/

gnoi/blob/main/layer2/layer2.proto.

Supported RPCs

Table 16: Supported layer2.proto RPCs

RPC Description Introduced in Release
ClearLLDPInterface() | Clear all LLDP neighbors of the specified Junos OS and Junos OS Evolved 24.2R1
interface.

Network Device Configuration

Before you begin:

e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

o Configure the network management system to support gNOI operations as described in "Configure
gNOlI Services" on page 29.

Clear LLDP Neighbors

After you have configured the gNOI client and server, you are ready to write and execute your
application. Executing your application to clear all the LLDP neighbors of an interface is the equivalent

of running the clear 1ldp neighbors interface interface-name command.

@ NOTE: When executing the equivalent CLI command, you have the option to clear all
LLDP neighbors. This is not an option when using this service. You must specify an
interface.

1. Write the application.

2. Prepare to execute the application. Specify the interface whose LLDP neighbors you want to clear.
3. Run the application. Do not expect a response after the application runs.
4

. Use the show 11dp neighbors command to check the LLDP neighbors were cleared.

gNOI Operating System (OS) Service

SUMMARY IN THIS SECTION
Use the gNOI operating system (0S) service to Supported RPCs | 105
upgrade the software on the target network device. OS Service Overview | 106

Network Device Configuration | 108

Example: Install and Activate | 108

You can use the gNOI 0S service to upgrade software on the target device. The proto definition file is
located at https:/github.com/openconfig/gnoi/blob/master/os/os.proto.

Software installation has three main steps, which correspond to the 05 service RPCs.

e [nstall

https://github.com/openconfig/gnoi/blob/master/os/os.proto

e Activate

o \Verify

You can use the 0S service RPCs to transfer a software installation package to the device, validate the
configuration against a specified software version, and install software. You can also set an installed

software version as the next boot version and verify the software version.

@ NOTE: You can also use the gNOI system service SetPackage() RPC to install software on a

device. For more information, see "gNOI System Service" on page 115.

Supported RPCs

Table 17: Supported os.proto RPCs

RPC Description

Activate() = Set the software version that is used at the next reboot.

Activate() reboots the target if the no_reboot flag is omitted or set to False. If the
reboot fails to boot the requested software version, the target rolls back to the
previous version.

NOTE: Junos devices do not support the standby_supervisor field in the

ActivateRequest message.

NOTE: Prior to Junos OS Evolved Release 25.2R1, Activate() validates the
current configuration against the software, installs the software, and sets the
software version as the next boot version.

Introduced in
Release

Junos OS
Evolved 22.2R1

Table 17: Supported os.proto RPCs (Continued))

RPC Description Introduced in
Release

Install() @ Transfer a software installation package to the target, validate the configuration Junos OS
against the software, and install (stage) the software. Evolved 22.2R1

If the specified software image is already installed on the device, validate the
current configuration against the software image and store the validated
configuration as the running configuration associated with that software version.

NOTE: Junos devices do not support the standby_supervisor field in the
TransferRequest message.

NOTE: Prior to Junos OS Evolved Release 25.2R1, Install() only transfers the
software installation package to the target.

Verify() Check the running software version. This RPC may be called multiple times while | Junos OS
the target boots until successful. Evolved 22.2R1

NOTE: Junos devices do not support verify_standby for VerifyResponse.

OS Service Overview

The gNOI 0S service RPCs enable you to manage the software on devices running Junos OS Evolved.
Junos OS Evolved stores multiple versions of software on the storage media. For each software version,
Junos OS Evolved also stores the configuration that was running at the time the software version was
running last.

Table 18 on page 107 outlines the RPC operations in the different Junos OS Evolved releases. Starting in
Junos OS Evolved Release 25.2R1, you can install software without immediate activation, validate the
current configuration against any installed software version, and activate any installed software version.

Table 18: OS Service RPC Changes

RPC

Install()

Activate()

Verify()

Junos OS Evolved Release 24.4R1
and Earlier

Transfer the software installation
package to the device.

Validate the current configuration
against the specified software
version.

Install the software.

Set the specified software version
as the next boot version.

(Optional) Reboot the device.

Check the running software
version.

Junos OS Evolved Release 25.2R1
and Later

Transfer the software installation
package to the device.

Validate the current configuration
against the specified software
version (new or previously
installed).

Install the software, if the specified
software version is not already
installed.

Store the validated current
configuration as the running
configuration associated with the
specified software version.

Set the specified software version
as the next boot version.

(Optional) Reboot the device.

Check the running software
version.

In Junos OS Evolved Release 25.2R1 and later, the Install() RPC transfers the specified software
installation package to the /var/tmp/ directory on the target device, validates the configuration against
the software, and installs the software, if that software version is not already installed on the device. The

destination filename is the value defined in the TransferRequest message's version field. The Activate() RPC
sets the specified software version as the next boot version and optionally reboots the device to
activate the software. You can activate any installed software version.

If you run Install() and specify an existing software version, Install() validates the current configuration
against the software and stores the validated configuration as the running configuration associated with
that software version. If the software version is set as the next boot version, Install() deactivates it in
the process. Thus you can verify that a specific software version will work with any recent configuration
changes.

Network Device Configuration

Before you begin:
e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

e Configure the network management system to support gNOI operations as described in "Configure
gNOlI Services" on page 29.

No additional configuration is required to use the 0S service RPCs.

Example: Install and Activate

In this example, the client executes the gnoi_os_install_activate.py Python application, which performs the
following operations:

Copies the software package from the local network management system to the network device.

Validates the configuration against the software image.

Installs the package on the network device.

Reboots the network device, thus activating the new software image.

The application calls the Install() RPC with the InstallRequest() message to transfer the file. The
application tracks the progress of the file transfer by emitting progress messages at each 10 percent
transfer completion interval. If the file transfer is successful, the system validates the configuration
against the software image, performs a storage cleanup, and installs the image. The application then calls
the Activate() RPC to set the new image as the next boot image and reboot the target.

The application imports the grpc_channel module to establish the channel. The grpc_channel module is
described in "Configure gNOI Services" on page 29. The application's arguments are stored in the
args_os_install_activate.txt file. The application and argument files are as follows:

gnoi_os_install_activate.py

"""oRPC gNOI 0S Install, Activate utility."""

from __future__ import print_function
import argparse

import logging

import os

from functools import partial

from getpass import getpass

import os_pb2
import os_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

MAX_BYTES = 65536

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port",
dest="port',
nargs='7?",
type=int,
default=32767,
help='The server port. Default is 32767')

parser.add_argument('--client_key',
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.

parser

parser.

parser.

parser.

parser.

parser

args =

add_argument('--client_cert',
dest="client_cert',
type=str,
default="",

help='Full path of the client certificate. Default ""')

.add_argument('--root_ca_cert',

dest='root_ca_cert',
required=True,
type=str,

help='Full path of the Root CA certificate.')

add_argument('--user_id",
dest="user_id',
required=True,
type=str,

help='User ID for RPC call credentials.")

add_argument (' --no_reboot ",
dest="'no_reboot"',
type=int,
default=0,
help="Reboot immediately

add_argument (' --source_package ',
dest="source_package',
type=str,
default="'",

or not. Default @ (Reboot immediately)')

help='Full path of the install file. Default ""')

add_argument (' --timeout',
dest="timeout',
type=int,
default=600,

help='Timeout in seconds.

.add_argument('--version',

dest="version',
type=str,
default="",

help="'Software version.

parser.parse_args()

Default 600")

Default is ""')

110

return args

def send_rpc(channel, metadata, args):
print("Executing GNOI::0S::Install")
stub = os_pb2_grpc.0SStub(channel)
it = [1]

Create file transfer request
req = os_pb2.InstallRequest()
req.transfer_request.version = args.version

it.append(req)

Read source package and add to request
source_package_bytes = os.path.getsize(args.source_package)
with open(args.source_package, "rb") as file:
Read data in 64 KB chunks and calculate checksum and data messages
for data in iter(partial(file.read, MAX_BYTES), b''):
req = os_pb2.InstallRequest()
req.transfer_content = data

it.append(req)

req = os_pb2.InstallRequest()
req.transfer_end.SetInParent()

it.append(req)

next_pct = 0
transfer_percent = 0
validated = False
activated = False

try:
responses = stub.Install(
iter(it), metadata=metadata, timeout=args.timeout)
print("0S Install start\n")

for response in responses:
rsp_type = response.WhichOneof('response')
if rsp_type == 'install_error':
print("%s: %s -- %s\n" % (rsp_type,
response.install_error.type, response.install_error.detail))
raise Exception("Install Error")

elif rsp_type == 'transfer_ready':

print("%s: %s\n" % (rsp_type, response.transfer_ready))
elif rsp_type == 'transfer_progress':
transfer_percent = int(float(
response. transfer_progress.bytes_received) / float(source_package_bytes) *
100)
if 0 == (transfer_percent % 10) and transfer_percent != next_pct:
next_pct = transfer_percent
print("Transfer percent complete: %s%%" % transfer_percent)
logging.info('Transferring file %s%%', transfer_percent)
elif rsp_type == 'validated':
print("%s: %s -- %s\n" % (rsp_type,
response.validated.version, response.validated.description))
logging.info('Validated: %s', response.validated.version)
validated = True

if transfer_percent > 0 and validated:
print("Executing GNOI::0S::Activate")
req = os_pb2.ActivateRequest()
req.version = args.version
req.no_reboot = args.no_reboot
activate_response = stub.Activate(
req, metadata=metadata, timeout=args.timeout)
rsp_type = activate_response.WhichOneof (' response')
if rsp_type == 'activate_ok':
activated = True

except Exception as e:
logging.error('Error installing package: %s', e)
print(e)
else:
if activated:
logging.info('Installation complete: %s', args.version)

print('Installation complete for %s' % args.version)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@")
args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata, args)
except Exception as e:
logging.error('Received error: %s', e)

print(e)

if __name__ == '__main__":
logging.basicConfig(filename="'gnoi-install.log",
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_os_install_activate.txt

--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt

--server=10.53.52.169

--port=32767

--user_id=gnoi-user
--source_package=/home/lab/images/junos-evo-install-ptx-x86-64-25.2R1.9-EVO0. iso
--timeout=1800

--version=25.2R1.9-EVO

@ NOTE: Starting in Junos OS Evolved Release 23.4R1, the version field in the Activate(),
Install(), and Verify() RPCs uses the software version string (as displayed in /system/state/
software-version) instead of the package name.

Execute the Application

When the client executes the application, the application copies the package from the local device to

the /var/tmp directory on the network device, installs the package, and then reboots the device to

complete the installation.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_os_install_activate.py

@args_os_install_activate. txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::0S::Install

0S Install start

transfer_ready:

Transfer percent
Transfer percent
Transfer percent
Transfer percent
Transfer percent
Transfer percent
Transfer percent
Transfer percent
Transfer percent

Transfer percent

complete:
complete:
complete:
complete:
complete:
complete:
complete:
complete:
complete:

complete:

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

validated: 25.2R1.9-EVO -- Use Activate to set the next boot Image

Executing GNOI::0S::Activate
Installation complete for 25.2R1.9-EVO

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.2R1-EVO | Starting in Junos OS Evolved Release 25.2R1, the Install() RPC copies the software installation
package to the device, validates the configuration against the specified software version, and installs

the software, and the Activate() RPC sets the specified software version as the next boot version. In

earlier releases, Install() copies the software installation package to the device, and Activate()

validates the configuration against the software, installs the software, and sets the software version

as the next boot version.

https://apps.juniper.net/feature-explorer/

25.2R1-EVO | Starting in Junos OS Evolved Release 25.2R1, you can execute the Install() RPC on an installed
software image to validate the current configuration against the software image and store the
validated configuration as the running configuration associated with that software version.

23.4R1-EVO | Starting in Junos OS Evolved Release 23.4R1, the version field in the Activate(), Install(), and

Verify() RPCs uses the software version string (as displayed in /system/state/sof tware-version)
instead of the package name.

gNOI System Service

SUMMARY IN THIS SECTION

Use the gNOI System service to perform system Overview | 115
operations on the target network device, including
rebooting the device, upgrading software, and
troubleshooting the network.

Network Device Configuration | 116
Ping and Traceroute | 116

Reboot a Device | 124

Upgrade Software | 130

Routing Engine Switchover | 136

Overview

The gNOI System service provides RPCs to perform a number of different system operations on a
network device, including the following operations:

e Reboot a device

e Execute ping and traceroute commands to troubleshoot the network

e Upgrade software

e Perform a Routing Engine switchover

The proto definition file is located at https:/github.com/openconfig/gnoi/blob/master/system/
system.proto.

https://github.com/openconfig/gnoi/blob/master/system/system.proto
https://github.com/openconfig/gnoi/blob/master/system/system.proto

@ NOTE: The gnoi-system process restarts in the event of a system failure. To restart it
manually, use the restart gnoi-system command.

Network Device Configuration

Before you begin:
e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.

e Configure the network management system to support gNOI operations as described in "Configure
gNOI Services" on page 29.

No additional configuration is required to use the System service RPCs.

Ping and Traceroute

IN THIS SECTION

Example: Ping | 117

You can execute ping and traceroute commands on the network device to troubleshoot issues on your
network.

Table 19: Supported system.proto RPCs for Troubleshooting the Network

RPC Description Introduced in Release
Ping() Ping a device. The Ping() RPC supports IPv4 and IPv6 pings. This RPC | Junos OS Evolved
streams back the results of the ping after the ping is complete. 22.2R1

Default number of packets: 5

Table 19: Supported system.proto RPCs for Troubleshooting the Network (Continued)

RPC Description Introduced in Release
Traceroute() | Execute the traceroute command on the target device and stream Junos OS Evolved
back the results. 22.2R1

Default hop count: 30

Example: Ping

In this example, the client executes the gnoi_ping_request.py Python application. The application sends the
Ping() RPC to the network device, which then pings the specified device on the network.

The gnoi_ping_request.py application imports the grpc_channel module to establish the channel. The
grpc_channel module is described in "Configure gNOI Services" on page 29. The application's arguments
are stored in the gnoi_ping_request_args.txt file. The application and argument files are presented here.

gnoi_ping_request.py

gRPC gNOI ping request utility.

from __future__ import print_function
import argparse

import logging

from getpass import getpass

import system_pb2
import system_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost"',
help='Server IP or name. Default is localhost')

parser.add_argument('--port',

118

dest="port',

nargs='7?",

type=int,

default=32767,

help='The server port. Default is 32767')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="'",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.')

Ping request arguments
parser.add_argument('--destination’,
dest="destination',
type=str,
default=None,
help='Destination IP. Default None')

parser.add_argument('--source',
dest="source',
type=str,
default=None,
help="'Source IP. Default None')

119

parser.add_argument('--count',
dest="'count"',
type=int,
defaul t=None,
help='Count of packets. Default None')

parser.add_argument('--interval',
dest="interval',
type=int,
defaul t=None,

help="'Interval of packets in nanoseconds. Default None')

parser.add_argument('--wait',
dest='wait',
type=int,
default=None,

help='Wait of packets in nanoseconds. Default None')

parser.add_argument('--size',
dest="'size',
type=int,
default=None,
help='Size of packets. Default None')

parser.add_argument('--dnfragment",
dest="dnfragment',
type=int,
default=0,
help='Do not fragment. Default @ (False)')

parser.add_argument('--dnresolve',
dest="'dnresolve',
type=int,
default=0,
help='Do not resolve. Default @ (False)')

parser.add_argument('--13protocol",
dest="13protocol "',
type=int,
default=None,
help='L3 protocol (1=ipv4,2=ipv6). Default None')

parser.add_argument('--timeout',

dest="timeout',

type=int,

default=30,

help='Timeout for ping. Default: 30 seconds')

args = parser.parse_args()

return args

def send_rpc(channel, metadata, args):
stub = system_pb2_grpc.SystemStub(channel)
print("Executing GNOI::System::Ping Request RPC")
req = system_pb2.PingRequest()

if args.count != None:
reg.count = args.count
if args.source != None:
reg.source = args.source
if args.destination != None:
req.destination = args.destination
if args.interval != None:
req.interval = args.interval
if args.wait != None:
req.wait = args.wait
if args.size != None:
req.size = args.size
if args.dnfragment != 0:
req.do_not_fragment = args.dnfragment
if args.dnresolve != 0:
req.do_not_resolve = args.dnresolve
if args.13protocol != None:
req.13protocol = args.l13protocol

try:

print("Ping Request Response starts\n")

count = 1

for ping in stub.Ping(request=req, metadata=metadata, timeout=args.timeout):
print("Response Source%s: %s " % (count, ping.source))
print("Time%s: %s" % (count, ping.time))
print("Sent%s: %s" % (count, ping.sent))
print("Receive%s: %s" % (count, ping.received))
print("Mintime%s: %s" % (count, ping.min_time))

print("Avgtime%s: %s" % (count, ping.avg_time))

print("Stddev%s: %s" % (count, ping.std_dev))
print("Bytes%s: %s" % (count, ping.bytes))
print("Sequence%s: %s" % (count, ping.sequence))
print("TTL%s: %s" % (count, ping.ttl))
count += 1

print("Ping Request Response ends\n")

except Exception as e:
logging.error('Error: %s', e)
print(e)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@")

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata, args)
except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main_
logging.basicConfig(filename="'gnoi-testing.log',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

gnoi_ping_request_args.txt

--server=10.0.2.1
--port=32767

--root_ca_cert=/etc/pki/certs/serverRootCA.crt

--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user
--destination=10.0.3.1

--source=10.0.2.1

--count=5

Execute the Application

On the client, execute the application, which prompts for the server's password for the RPC call
credentials. The PingResponse indicates that the device sent five pings. The final response includes the
summary statistics for the ping request, which shows that the device sent five pings and received five
responses.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_ping_request.py @gnoi_ping_request_args.txt
gRPC server password for executing RPCs:

Creating channel

Executing GNOI::System::Ping Request RPC

Ping Request Response starts

Response Sourcel: 10.0.3.1
Timel: 741000

Sentl1: 0

Receivel: 0

Mintimel: @

Avgtimel: 0

Stddevl: @

Bytesl: 64

Sequencel: 1

TTL1: 59

Response Source2: 10.0.3.1
Time2: 734000

Sent2: 0

Receive2: 0

Mintime2: @

Avgtime2: 0

Stddev2: @

Bytes2: 64

Sequence2: 2

TTL2: 59

Response Source3: 10.0.3.1

Time3: 704000
Sent3: 0
Receive3: 0
Mintime3: 0
Avgtime3: 0
Stddev3: 0
Bytes3: 64
Sequence3: 3
TTL3: 59

Response Source4: 10.0.3.1
Timed: 767000
Sent4: 0
Receive4: 0
Mintime4: 0
Avgtime4: 0
Stddev4: 0
Bytes4: 64
Sequence4: 4
TTL4: 59

Response Source5: 10.0.3.1
Time5: 800000
Sent5: @
Receive5: 0
Mintime5: 0
Avgtime5: 0
Stddev5: 0
Bytes5: 64
Sequence5: 5
TTL5: 59

Response Source6: 10.0.3.1
Time6: 4111000000
Sent6: 5
Receive6: 5
Mintime6: 704000
Avgtime6: 749000
Stddev6: 32000
Bytes6: 0
Sequenceb6: 0
TTL6: @

Ping Request Response ends

Reboot a Device

IN THIS SECTION

Example: Reboot | 125

Use the System service RPCs to remotely reboot a device, check the status of the reboot, and cancel the
reboot if needed. You can execute these RPCs on the device or on specific subcomponents. Junos
devices support the following reboot methods:

e COLD (1): Available for all types of reboots.

¢ POWERDOWN (2): Use for FPC and Routing Engine (controller card) reboots.
e HALT (3): Use for active Control Processor reboots.

e POWERUP (7): Use for FPC and Routing Engine (controller card) reboots.

Starting in Junos OS Evolved Release 25.2R1, you can use the POWERDOWN and POWERUP options
on Routing Engine components. You can only power down a Routing Engine in a dual Routing Engine
system, and you cannot power off both Routing Engines at the same time. A Routing Engine stays
powered down until the next reboot.

@ NOTE: To power down the Routing Engine and maintain the state even after a reboot,
you can set the OpenConfig path /components/component/controller-card/config/power-admin-
state/ to POWER_DISABLED. This state change is effective immediately on the backup Routing
Engine. The primary Routing Engine state changes only after a reboot or a switchover.

Table 20: Supported system.proto RPCs for Rebooting

RPC Description Introduced in Release
Reboot() Reboot the target. You can only execute one reboot request on a Junos OS Evolved
target at a time. 22.2R1

You can optionally configure a delay to reboot in the future, reboot
subcomponents individually, and add a message when the reboot
initiates. The delay is configured in nanoseconds.

Junos devices support the following reboot methods:

COLD (1)

POWERDOWN (2)

e HALT (3)
e POWERUP (7)
RebootStatus() | Return the status of the reboot. Junos OS Evolved
22.2R1
CancelReboot() = Cancel a pending reboot request. Junos OS Evolved
22.2R1

Example: Reboot

In this example, the client executes the gnoi_reboot_request.py Python application. The application sends
the reboot request and then checks the status of the reboot.

The application lets the user set the reboot delay in seconds. Since the RebootRequest() interprets the
delay in nanoseconds, the application converts the user input into nanoseconds for the request. In this
example, the client specifies a 60-second delay for the reboot operation.

The gnoi_reboot_request.py application imports the grpc_channel module to establish the channel. The
grpc_channel module is described in "Configure gNOI Services" on page 29. The application's arguments
are stored in the reboot_status_request_args.txt file. The application and argument files are presented
here.

126

gnoi_reboot_status_request.py

gRPC gNOI reboot request and reboot status utility."""

from __future__ import print_function
import argparse
import logging

from getpass import getpass

import types_pb2
import system_pb2
import system_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

def get_args(parser):
parser.add_argument('--server',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',

dest="port',
nargs='?",
type=int,

default=32767,
help='The server port. Default is 32767")

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest='client_cert',
type=str,
default="",
help='Full path of the client certificate. Default ""')

127

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id',
required=True,
type=str,
help='User ID for RPC call credentials.')

Arguments for RebootRequest
parser.add_argument('--method"',
dest="method"',
type=int,
default=1,
help="'Reboot method. Valid value: @ (UNKNOWN), 1 (COLD), 2 (POWERDOWN),
3 (HALT), 6 (reserved), 7 (POWERUP). Default 1')

parser.add_argument('--delay"',
dest="delay',
type=int,
default=None,
help='Delay in seconds before rebooting. Default 0')

parser.add_argument('--message',
dest="message',
type=str,
default=None,

help='Message for rebooting."')

parser.add_argument('--force',
dest="'force',
type=int,
default=None,
help='Force reboot. Valid value 0|1. Default 0')

parser.add_argument('--subcomponents "',
dest="subcomponents',
type=str,
default="",
help="'Subcomponents to reboot. Valid value re@,rel,fpc,fpc8,etc.

Default """)

args = parser.parse_args()
return args

def send_rpc(channel, metadata, args):
RebootRequest
stub = system_pb2_grpc.SystemStub(channel)
print("Executing GNOI::System::Reboot RPC")
req = system_pb2.RebootRequest()

Add RebootRequest arguments

req.method = args.method

if args.delay != None:
gNOI delay is in nanoseconds. Convert from seconds to nanoseconds.
req.delay = args.delayx(10%*9)

if args.message != None:
reg.message = args.message

if args.force != None:

req.force = args.force

for subcomponent in args.subcomponents.split(","):
if subcomponent == "":
continue
elem_key = {}
elem_key["%s" % subcomponent] = subcomponent
path_elem = [types_pb2.PathElem(
name="%s" % subcomponent, key=elem_key)]
path = types_pb2.Path(origin="origin", elem=path_elem)

req. subcomponents.extend([path])

RebootStatus
print("Executing GNOI::System::Reboot Status RPC")
req_status = system_pb2.RebootStatusRequest()

try:
reboot_response = stub.Reboot(
request=req, metadata=metadata, timeout=60)
status_response = stub.RebootStatus(
request=req_status, metadata=metadata, timeout=60)
print("Reboot status response received. %s" % status_response)

except Exception as e:

logging.error('Error: %s', e)
print(e)
else:

logging.info('Received reboot status: %s', status_response)

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@")

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
send_rpc(channel, metadata, args)
except Exception as e:
print(e)
logging.error('Received error: %s', e)

if __name__ == '__main_

logging.basicConfig(filename="'gnoi-testing.log',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

reboot_status_request_args.txt

--server=10.0.2.1

--port=32767
--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key
--client_cert=/home/lab/certs/client.crt
--user_id=gnoi-user

--message="Testing gNOI reboot"

--delay=60

Execute the Application

When the client executes the application, the application prompts for the server's password for the RPC
call credentials. The application then reboots the server after a 60 second delay and returns the
applicable reboot status messages. The message set under reason also appears on the server immediately
before the server reboots. In this example, any user logged into the server sees "Testing gNOI reboot"
immediately before it reboots.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_reboot_status_request.py
@reboot_status_request_args. txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::System: :Reboot RPC

Executing GNOI::System::Reboot Status RPC

Reboot status response received! active: true

wait: 59266969677

when: 1651788480000000000

reason: "Testing gNOI reboot"

count: 5

Upgrade Software

IN THIS SECTION

Example: Install a Software Package | 131

Table 21 on page 130 lists the System service RPCs that support software upgrades.

Table 21: Supported system.proto RPCs for Software Upgrades
RPC Description Introduced in Release

SetPackage() Install a software image on the target device. Junos OS Evolved 22.2R1

You can use the SetPackage() RPC to copy a software image to the target device and install it. The source
software image must reside on the local network management system. If the file copy operation is
successful, and a file of the same name already exists at the target location, the file is overwritten. The
RPC returns an error if the target location does not exist or if there is an error writing the data.

By default, SetPackage() does not reboot the device and activate the software. You must explicitly set the
activate option to 1 in the SetPackageRequest message to activate the new software. If you activate the
software, the device reboots and uses the new software image. If you do not activate the software, you
must reboot the relevant nodes to complete the installation and activate the new software image.

Example: Install a Software Package

In this example, the client executes the gnoi_system_set_package.py Python application, which performs the
following operations:

o Copies the software package from the local network management system to the network device.
¢ Installs the package on the network device.
e Reboots the network device, thus activating the new software image.

The application constructs the SetPackageRequest message with the appropriate parameters to define the
request for the copy and install operations. The application then calls the SetPackage() RPC to send the
request to the network device. The SetPackageRequest message contains the following components:

¢ An initial Package message containing the path and file information for the software image. The
activate argument is set to 1 (True) to reboot the device and activate the software.

o A stream of the software image file contents in sequential messages that do not exceed 64KB.
¢ A final message with the file checksum to verify the integrity of the file contents.

The gnoi_system_set_package.py application imports the grpc_channel module to establish the channel. The
grpc_channel module is described in "Configure gNOI Services" on page 29. The application's arguments
are stored in the args_system_set_package. txt file. The application and argument files are as follows:

gnoi_system_set_package.py

"""oRPC gNOI 0S Upgrade Utility."""

from __future__ import print_function
import argparse
import hashlib

import logging

132

from functools import partial

from getpass import getpass

import system_pb2
import system_pb2_grpc

from grpc_channel import grpc_authenticate_channel_mutual

MAX_BYTES = 65536

def get_args(parser):
parser.add_argument('--server"',
dest="server',
type=str,
default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',

dest="port',
nargs='?",
type=int,

default=32767,
help='The server port. Default is 32767")

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="'",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest="client_cert',
type=str,
default="'",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',
dest='root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',

parser.

dest="user_id",

required=True,

type=str,

help="'User ID for RPC call credentials.")

add_argument('--activate',
dest="activate',
type=int,
default=0,

help="'Reboot and activate the package. Default:

activate). Valid value: 1 (Reboot/activate).')

def

parser.

parser.

parser.

parser.

args =
return

add_argument('--filename",
dest="'filename',
type=str,
default="'",

help='Destination path and filename of the package.

add_argument (' --source_package ',
dest="source_package',
type=str,
default="'",
help="Full path of the source file to send.

add_argument (' --timeout',
dest="timeout',
type=int,
default=None,

help='Timeout in seconds.')

add_argument('--version',
dest="version',
type=str,
default="",
help='Version of the package. Default ""')

parser.parse_args()
args

send_rpc(channel, metadata, args):

stub =

system_pb2_grpc.SystemStub(channel)

Default ""')

0 (Do not reboot/

Default ""')

133

print("Executing GNOI::System::SetPackage")

Create request

Add file information to request
req = system_pb2.SetPackageRequest()
req.package.activate = args.activate
req.package.filename = args.filename
it = [1

it.append(req)

Prepare hash generator
gen_hash = hashlib.sha256()

Read source package and add to request

with open(args.source_package, "rb") as fd:

Read data in 64 KB chunks and calculate checksum and data messages
for data in iter(partial(fd.read, MAX_BYTES), b''):

req = system_pb2.SetPackageRequest()
req.contents = data

it.append(req)

gen_hash.update(data)

Add checksum to request
req = system_pb2.SetPackageRequest()

req.hash.hash = gen_hash.hexdigest().encode()

req.hash.method = 1
it.append(req)

Install the package
try:

logging.info('Installing package %s', args.source_package)

print('SetPackage start.')

response = stub.SetPackage(

iter(it), metadata=metadata, timeout=args.timeout)

print('SetPackage complete.')
except Exception as e:

logging.error('Software install error: %s', e)

print(e)

else:
logging.info('SetPackage complete.')
return response

134

def main():
parser = argparse.ArgumentParser(fromfile_prefix_chars='@")

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata, args)
except Exception as e:
logging.error('Error: %s', e)
print(e)

if __name__ == '__main__
logging.basicConfig(filename="gnoi-install.log",
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

args_system_set_package.txt

--server=10.0.2.1

--port=32767

--root_ca_cert=/etc/pki/certs/serverRootCA.crt
--client_key=/home/lab/certs/client.key

--client_cert=/home/lab/certs/client.crt

--user_id=gnoi-user

--activate=1

--filename=/var/tmp/junos-evo-install-ptx-x86-64-22.2R1.13-EV0.iso
--source_package=/home/lab/images/junos-evo-install-ptx-x86-64-22.2R1.13-EV0.iso
--timeout=1800

Execute the Application

When the client executes the application, the application copies the package from the local device to
the network device, installs it, and then reboots the device to complete the installation.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_system_set_package.py
@args_system_set_package. txt

gRPC server password for executing RPCs:

Creating channel

Executing GNOI::System::SetPackage

SetPackage start.

SetPackage complete.

Routing Engine Switchover

IN THIS SECTION

Example: Routing Engine Switchover | 137

You can use the SwitchControlProcessor() RPC to perform a Routing Engine switchover.

@ NOTE: Successive Routing Engine switchover events must be a minimum of 400 seconds
apart after both Routing Engines have come up.

Table 22: Supported system.proto RPCs for Routing Engine Switchover

RPC Description Introduced in
Release
SwitchControlProcessor() = Switch from the current Routing Engine to the specified Routing Junos OS

Engine. If the current and specified Routing Engines are the same, Evolved 22.2R1
it is a NOOP. If the target does not exist, the RPC returns an error.

NOTE: Junos devices do not support control_processor for
SwitchControlProcessorResponse.

Example: Routing Engine Switchover

In this example, the gNOI client executes the gnoi_system_switch_control_processor.py application to perform
a Routing Engine switchover. The client specifies which switch control processor, or Routing Engine,
should be the primary Routing Engine by including the control_processor argument. If the target Routing
Engine does not exist, the RPC returns an INVALID_ARGUMENT error.

The application imports the grpc_channel module to establish the channel. The grpc_channel module is
described in "Configure gNOI Services" on page 29.

gnoi_system_switch_control_processor.py

"""oNOI Routing Engine switchover request utility.

from __future__ import print_function
import argparse

import logging

from getpass import getpass

import system_pb2
import system_pb2_grpc
import types_pb2

from grpc_channel import grpc_authenticate_channel_mutual
def get_args(parser):

parser.add_argument('--server',

dest="server',

138

type=str,
default="'localhost',

help='Server IP or name. Default is localhost')

parser.add_argument('--port',
dest="port',
nargs='7?",
type=int,
default=32767,
help='The server port. Default is 32767"')

parser.add_argument('--client_key",
dest="client_key',
type=str,
default="",
help='Full path of the client private key. Default ""')

parser.add_argument('--client_cert',
dest='client_cert',
type=str,
default="",
help='Full path of the client certificate. Default ""')

parser.add_argument('--root_ca_cert',
dest="root_ca_cert',
required=True,
type=str,
help='Full path of the Root CA certificate.')

parser.add_argument('--user_id"',
dest="user_id",
required=True,
type=str,
help='User ID for RPC call credentials.")

parser.add_argument('--control_processor',
dest="control_processor',
type=str,
default="'rel",
help='Control processor that will assume the role of primary. Default is

rel. Valid values are re@,rel.")

args = parser.parse_args()

return args

def send_rpc(channel, metadata, processor):
stub = system_pb2_grpc.SystemStub(channel)
print("Executing GNOI::System::SwitchControlProcessor")

elem_key = {}

elem_key["%s" % processor] = processor

path_elem = [types_pb2.PathElem(name="%s" % processor, key=elem_key)]
path = types_pb2.Path(origin="origin", elem=path_elem)

req = system_pb2.SwitchControlProcessorRequest(control_processor=path)

Send the request
try:
response = stub.SwitchControlProcessor(
req, metadata=metadata, timeout=60)
print("SwitchControlProcessor response:\n", response)
except Exception as e:
logging.error('Switchover error: %s', e)
print(e)
else:
logging.info('SwitchControlProcessor response:\n %s', response)

return response

def main():
parser = argparse.ArgumentParser()

args = get_args(parser)

grpc_server_password = getpass("gRPC server password for executing RPCs: ")
metadata = [('username', args.user_id),

('password', grpc_server_password)]

try:
Establish grpc channel to network device
channel = grpc_authenticate_channel_mutual(
args.server, args.port, args.root_ca_cert, args.client_key, args.client_cert)
response = send_rpc(channel, metadata, args.control_processor)
except Exception as e:
logging.error('Received error: %s', e)
print(e)

if __name__ == '__main_
logging.basicConfig(filename="'gnoi-testing.log',
format="'%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S")

main()

Execute the Application

The client executes the application and sets the control_processor argument to re1 so that rel becomes
the primary Routing Engine.

lab@gnoi-client:~/src/gnoi/proto$ python3 gnoi_system_switch_control_processor.py --server
10.0.2.1 --port 32767 --root_ca_cert /etc/pki/certs/serverRootCA.crt --client_key /home/lab/
certs/client.key --client_cert /home/lab/certs/client.crt --user_id gnoi-user --
control_processor rel
gRPC server password for executing RPCs:
Creating channel
Executing GNOI::System::SwitchControlProcessor
SwitchControlProcessor response:

version: "22.2R1.13-EV0"

uptime: 1652478709000000000

After executing the operation, rel is the primary Routing Engine on the target device.

{master}
lab@gnoi-server-rel>

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.2R1-EVO | Starting in Junos OS Evolved Release 25.2R1, you can use the gNOI System service Reboot() RPC to
power up and power down a Routing Engine (controller card) on a dual Routing Engine device.

https://apps.juniper.net/feature-explorer/

CHAPTER

oRIB|

IN THIS CHAPTER

gRIBI | 142

gRIBI

SUMMARY IN THIS SECTION

gRPC Routing Information Base Interface (gRIBI) is a Supported RPCs | 143

gRPC service that enables external applications to Network Device Configuration | 143
programmatically add, modify, and remove routes on

a network device. Modify Routes | 147

Get Routes | 156
Flush Routes | 157

The gRIBI service is an API for adding, modifying, and removing routing entries in a device's routing
information base (RIB, also known as a routing table). If the entry is eligible for forwarding, the operating
system automatically adds the entry to the device's forwarding information base (FIB, also known as a
forwarding table). gRIBI client applications can use any language supported by the Juniper Extension
Toolkit (JET). The client application can run on an external network management system or as a local
application on the network device.

The gRIBI service proto defintion file is located at https:/github.com/openconfig/gribi/blob/master/v1/
proto/service/gribi.proto. The gRIBI messages that are supported by Junos devices are located in the
JET IDL package.

The OpenConfig Abstract Forwarding Table (AFT) model is a YANG data model that describes the
forwarding entries installed on a network device. gRIBI uses a Protocol Buffer translated version of the
OpenConfig AFT model to describe the RIB entries that it can modify. The protobuf representation of
the OpenConfig AFT schema is in the proto definition file located at https:/github.com/openconfig/
gribi/blob/master/v1/proto/gribi_aft/gribi_aft.proto.

Benefits of gRIBI:

e Sends acknowledgments when you program a route.

e Supports hierarchical lookups.

e Supports arbitration when multiple clients are connected to the gRIBI session.

Use the show route extensive command to display route data for gRIBI including the client ID and the next
hop group ID used by the route.

https://github.com/openconfig/gribi/blob/master/v1/proto/service/gribi.proto
https://github.com/openconfig/gribi/blob/master/v1/proto/service/gribi.proto
https://support.juniper.net/support/downloads/?p=jet
https://github.com/openconfig/gribi/blob/master/v1/proto/gribi_aft/gribi_aft.proto
https://github.com/openconfig/gribi/blob/master/v1/proto/gribi_aft/gribi_aft.proto

@

Supported RPCs

NOTE: We recommend using either gRIBI or the JET RIB Service API, not both
simultaneously, especially for same set of routes.

Junos devices support gRIBI service RPCs to remotely retrieve, add, modify, or delete routes from a
device's RIB. The RPCs function by modifying or reading the abstract forwarding tables (AFTs) on the

device.

Table 23: Supported gribi.proto RPCs

RPC

Modify()

Get()

Flush()

Definition

Add, modify, or delete entries from
the AFT.

Retrieve the installed entries from
the AFT.

Remove all the device's AFT entries
that match what is described in the

FlushRequest message.

Network Device Configuration

IN THIS SECTION

Junos OS Evolved Release 23.4R1 and Later | 144

Before Junos OS Evolved Release 23.4R1 | 144

Introduced in Release

Junos OS Release 19.4R1

Junos OS Evolved Release 20.3R1

Junos OS Evolved 22.2R1

Junos OS Evolved 22.2R1

Junos OS Evolved Release 23.4R1 and Later

Before you begin:

e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.
To configure the network device for gRIBI:

1. Create a routing instance with filter-based forwarding.

[edit]

user@host# set routing-instances routing-instance-name instance-type forwarding

2. Configure the two policies: one to handle multipath resolve and one to handle load balancing.

[edit policy-options]
user@host# set policy-statement policy-name term t1 then accept
user@host# set policy-statement policy-name term t1 then multipath-resolve

user@host# set policy-statement policy-name-2 then load-balance per-packet

In this example, a policy called mp-resolve handles multipath resolve. If the resolving route has multiple
paths, the resolved route resolves over all the paths. The policy pplb tells the Packet Forwarding
Engine to load balance the traffic for each packet.

[edit policy-options]
user@host# set policy-statement mp-resolve term t1 then accept
user@host# set policy-statement mp-resolve term t1 then multipath-resolve

user@host# set policy-statement pplb then load-balance per-packet

3. Set the remnant holdtime to give the system enough time to update the routes. After the system
restarts, the rpd process waits until the remnant holdtime expires before cleaning up the routes. The
rpd process does not delete any routes that are updated before the wait time expires.

[edit]
user@host# set routing-options forwarding-table remnant-holdtime 20

You are now ready to use gRIBI service RPCs.

Before Junos OS Evolved Release 23.4R1

Before you begin:

e Configure gRPC services on the network device as described in "Configure gRPC Services" on page 8.
To configure the network device for gRIBI:

1. Create a routing instance with filter-based forwarding.

[edit]
user@host# set routing-instances routing-instance-name instance-type forwarding

2. Configure the routing table(s) you want to use for default, IPv4 family protocol, and IPvé family
protocol route resolution in your routing instance.

[edit routing-instances routing-instance-name routing-options resolution]

user@host# set rib routing-table-name-1 resolution-ribs default-routing-table-name
user@host# set rib routing-table-name-1 inet-resolution-ribs IPv4-routing-table-name
user@host# set rib routing-table-name-1 inet6-resolution-ribs IPvé6-routing-table-name

You can specify up to two routing tables for each protocol family. The route resolution scheme only
checks the second routing table if it can't find an entry for the protocol next-hop address in the first
routing table.

In this example, the teVRF.inet.0 is the default routing table. If there is no route for the next-hop
address in that routing table, the route solution scheme checks the inet.3 table.

[edit routing-instances teVRF routing-options resolution]
user@host# set rib teVRF.inet.0® resolution-ribs teVRF.inet.@
user@host# set rib teVRF.inet.@ resolution-ribs inet.3
user@host# set rib teVRF.inet.@ inet6-resolution-ribs inet6.3

3. Specify import policies for the IPv4 and IPvé6 family resolution trees.

[edit routing-instances routing-instance-name routing-options resolution]
user@host# set rib routing-table-name-1 inet-import policy-name-IPv4

user@host# set rib routing-table-name-1 inet6-import policy-name-IPv6

For example:

[edit routing-instances teVRF routing-options resolution]
user@host# set rib teVRF.inet.0 inet6-import mp-resolve

4. Configure the two policies: one to handle multipath resolve and one to handle load balancing.

[edit policy-options]

user@host# set policy-statement policy-name term t1 then accept
user@host# set policy-statement policy-name term t1 then multipath-resolve
user@host# set policy-statement policy-name-2 then load-balance per-packet

In this example, a policy called mp-resolve handles multipath resolve. If the resolving route has multiple
paths, the resolved route resolves over all the paths. The policy pplb tells the Packet Forwarding
Engine to load balance the traffic for each packet.

[edit policy-options]

user@host# set policy-statement mp-resolve term t1 then accept
user@host# set policy-statement mp-resolve term t1 then multipath-resolve
user@host# set policy-statement pplb then load-balance per-packet

5. Configure the routing options to preserve the next hop hierarchy when installing a next hop in the
forwarding plane.

[edit]
user@host# set routing-options resolution preserve-nexthop-hierarchy

6. Configure the routing table(s) you want to use for IPv4 and IPvé family protocol route resolution and
the policy for route resolution at the routing options level. Repeat this configuration for each routing
table you configured at the routing instance level.

[edit routing-options resolution]

user@host# set rib routing-table-name inet-resolution-ribs routing-table-name-IPv4
user@host# set rib routing-table-name inet6-resolution-ribs routing-table-name-IPv6
user@host# set rib routing-table-name import policy-name-IPv4

user@host# set rib routing-table-name inet-import policy-name-IPv4

user@host# set rib routing-table-name inet6-import policy-name-IPv6

For example:

[edit routing-options resolution]

user@host# set rib inet.@ inet-resolution-ribs inet.3
user@host# set rib inet.@ inet-resolution-ribs teVRF.inet.0
user@host# set rib inet.@ import mp-resolve

user@host# set rib inet.@ inet-import mp-resolve
user@host# set rib inet.@ inet6-import mp-resolve
user@host# set rib inet6.3 inet-resolution-ribs inet.3
user@host# set rib inet6.3 import mp-resolve

user@host# set rib inet6.3 inet6-import mp-resolve
user@host# set rib inet.3 inet6-resolution-ribs inet6.3
user@host# set rib inet.3 import mp-resolve

user@host# set rib inet.3 inet6-import mp-resolve

7. Set the remnant holdtime to give the system enough time to update the routes. After the system
restarts, the rpd process waits until the remnant holdtime expires before cleaning up the routes. The
rpd process does not delete any routes that are updated before the wait time expires.

[edit]

user@host# set routing-options forwarding-table remnant-holdtime 20

You are now ready to use gRIBI service RPCs.

Modify Routes

IN THIS SECTION

Route Acknowledgments | 148

Program an IPv4 Route | 149

Program Next Hops and Next Hop Groups | 149
Program Next Hops with MAC Addresses | 150
Hierarchical Lookups and IP-in-IP Tunneling | 151
Arbitration for Multiple Clients | 152

Program a Fallback Route in a VRF Instance | 154
VRF Instance Selection | 155

Policy-Based Forwarding | 156

Use the Modify() RPC to install new routes and edit existing routes in the gRIBI server's RIB. Routes are
added as static routes.

Modify() is a bidirectional streaming RPC. The client sends a Modify() RPC containing ModifyRequest
messages to modify an AFT entry on the server. For each ModifyRequest, the gRIBI server responds to the
client with a ModifyResponse message.

The ModifyRequest message comprises one or more AFTOperation messages. Each AFTOperation message
defines a request to add, modify, or remove a single AFT entry. The gRIBI server processes the AFT
operations in the order that the Modify() RPC streams them.

Junos devices support the following AFT entry types:
e IPv4Entry—Program an IPv4 route.

e NextHopEntry—Program a next hop.

e NextHopGroup—Program a next hop group.

Use the Modify() RPC to perform the following functions:

Route Acknowledgments

The server sends an acknowledgment when you successfully program a route in the Packet Forwarding
Engine using the Modify() RPC. If the gRIBI API fails to program a route in the Packet Forwarding Engine
within the given timeout period, the server sends an error message. You can configure the length of this
timeout. The acknowledgment is only valid for the most recent route. If an older route sends an
acknowledgment but the new route does not, the Packet Forwarding Engine records it as an error.

Junos devices support the following values in the entry field of the message AFTOperation:

AFTOperation {
EntryAckType {

INVALID;
FIB_ACK;
RIB_ACK;
}
ack_type;

@ NOTE: Junos devices do not support the MAC_ENTRY option.

Use the show route extensive command to display the acknowledgment status. The acknowledgment
status is persistent across rpd process restarts.

Program an IPv4 Route

To program an IPv4 route, use the IPv4Entry AFT entry. The AFT matches the input packets based on the
destination address and maps them to the corresponding next hops. Install the AFT entry on the default
VREF instance as well as the traffic engineering VRF instances in your network. To install an AFT entry in
a non-default instance, specify the VRF instance in the network_instance field of the AFTOperation message.
For example:

o Traffic engineering VRF instance: g_b4_cos1
e Set the network_instance field to: g_b4_cos1

The gRIBI client only programs the IPv4Entry AFT entry on the server after it receives acknowledgments
from the server that the server received the associated NextHopGroup and NextHop messages. If the client
programs the IPv4Entry AFT entry on the server without acknowledgment of the NextHopGroup message, it
adds the route to the server as a hidden route.

Program Next Hops and Next Hop Groups

Use the gRIBI Modify() RPC to program a next hop or a next hop group on the gRIBI server. The RPC only
creates next hops and next hop groups within the default VRF instance.

When there are next hops and next hop groups in the same ModifyRequest message, the gRIBI client
handles them according to the AFT operation. If the AFT operation adds NextHop and NextHopGroup entries,
the client adds all the next hops to the server before adding the next hop groups. If the AFT operation
deletes NextHop and NextHopGroup entries, the client processes them in the reverse order: it deletes all the
next hop groups before deleting the next hops.

In Junos devices, the RPC instantiates next hops in the inet6.3 table as FCo1:: next_fop_id, where the next
hop ID is in hexadecimal. For example, if the next hop ID is 10, the server installs a route called FC01::A in
the inet6.3 table.

Next hop groups appear in the inet6.3 table as FC02:: next_hop_id. For example, if the next hop group ID is
100, the server installs a route called FC02::64 in the inet6.3 table.

For example, to program a next hop object via a directly reachable interface:

1. Assuming the address 10.0.1.2 is reachable via interface et-0/0/7.0, set the following fields in the
Afts message, where = means set the field to that value:

NextHop {
ip_address = 10.0.1.2; // Next hop IP address
InterfaceRef {
interface = "et-0/0/7";

subinterface = 0;

}
NextHopKey {

index = 1;

2. Set the AFTOperation message fields as follows:

AFTOperation {
Operation {
ADD;
}
entry {
next_hop; // NextHopKey object created above

3. Set the ModifyRequest message to use the AFTOperation defined above.
4. Call the Modify() RPC with the above ModifyRequest message.

5. To confirm the route was programmed successfully, use the show route programmed command in the CLI.

Program Next Hops with MAC Addresses

Optionally, you can identify a next hop with its MAC address instead of its IP address. This feature is
useful in networks where devices cannot use dynamic Address Resolution Protocol (ARP) or Neighbor
Discovery Protocol (NDP) to look up the next hop's MAC address. To use the MAC address, use the
mac_address field instead of the ip_address field in the AFT message.

@ NOTE: All traffic using this interface uses the static MAC address programmed by the
gRIBI service, even traffic on routes not programed by the gRIBI service.

After you use the gRIBI service to program a MAC address as the next hop on the interface, the device
does not use dynamic ARP or NDP for any traffic using this interface. If the programmed gRIBI next hop
is deleted or purged when the client disconnects, the device automatically re-enables ARP on the
interface and the route continues to function using dynamic ARP.

For example, to program a next hop object with a MAC address via a directly reachable interface:

1. Make sure the interface you want to program with a next hop is a numbered interface.

2. Make sure the IPvé6 family is enabled on the interface.

3. Assuming the MAC address 00:00:5E:00:53:00 is reachable via interface et-0/0/7.0, set the
following fields in the Afts message, where = means set the field to that value:

NextHop {
mac_address = 00:00:5E:00:53:00; // Next hop MAC address
InterfaceRef {
interface = "et-0/0/7";
subinterface = 0;

}
NextHopKey {

index = 1;

4. Set the AFTOperation message fields as follows:

AFTOperation {
Operation {
ADD;
}
entry {
next_hop; // NextHopKey object created above

5. Set the ModifyRequest message to use the AFTOperation defined above.
6. Call the Modify() RPC with the above ModifyRequest message.

7. To confirm the route was programmed successfully, use the show route programmed command in the CLI.

Hierarchical Lookups and IP-in-IP Tunneling

The Junos implementation of gRIBI supports hierarchical lookups. To configure hierarchical lookups, use
the IPv4 AFT to program IP-IP tunnel endpoints and site group virtual IP address routes.

To encapsulate traffic on the ingress node in an IP-in-IP tunnel, set the following fields in the NextHop
message:

NextHop {
encapsulate_header;
IpInIp {
dst_ip; // Destination IP address
src_ip; // Source IP address

Arbitration for Multiple Clients

The Modify() RPC supports arbitration when multiple clients are connected to the gRIBI server.
Arbitration determines which client can perform which operations.

Use the SessionParameters message to set the persistence mode and the client redundancy mode for the
gRIBI clients. All clients must send the same values of all the attributes of the SessionParameters message.
SessionParameters should be sent only once during the lifetime of the session.

SessionParameters must be the first message sent after a reconnect. When a client reconnects, a new
session starts. If other clients are already connected, match the SessionParameters message values to the
values set by existing clients. If all the clients reconnect, you can set the SessionParameters message values
to different values than the ones used in the previous session.

Junos devices support both PRESERVE and DELETE persistence modes. If the persistence mode is set to
PRESERVE, then the server preserves the AFT entries added by the client even after the client disconnects.
If the persistence mode is set to DELETE, then the server deletes the AFT entries when the client
disconnects.

We recommend deleting all routes before changing session parameters. You might see unexpected
behavior if you change the session parameters and switch the redundancy mode between ALL_PRIMARY
and SINGLE_PRIMARY after adding routes in the other mode.

When there are multiple clients, you must chose between two client redundancy modes:

All Primary Mode

In ALL_PRIMARY redundancy mode:
¢ Any client can modify routes.

e Multiple clients can add the same AFT entry.

e The gRIBI API maintains a mapping of which clients have added the route.

e The first add operation adds the entry to the RIB. Subsequent add operations for the same entry
from a different client adds the client to the list of clients referencing the entry.

e Delete operations remove the client from the list of clients referencing the entry. The entry is only
deleted when there are no clients referencing the entry.

@ NOTE: When FlushRequest is processed, the entries are deleted without any reference
count checks.

Use the show route extensive command to view the details of the route. Here is an example of what the
show route extensive command displays in ALL_PRIMARY mode. The output has been shortened for clarity.

user@host> show route 10.0.1.1 extensive

b4.inet.@: 2 destinations, 2 routes (2 active, @ holddown, @ hidden)
10.0.1.1/32 (1 entry, 1 announced)

TSI:

[...]

Opaque data client: PRPD

Address: ABC123

Opaque-data reference count: 2

Opaque data PRPD: client_num_ids=1,5,6 nh group Id=110

Single Primary Mode

In SINGLE_PRIMARY redundancy mode:

e gRIBI clients can have a primary (active) or backup role.

e Only the primary client can perform AFT operations.

e The client with the highest election ID is the primary client. All other clients are backup clients.

o When a backup client becomes the primary client, the routes added by the previous primary client
can be modified by the new primary client.

Set the election ID for each device to determine which client is the primary client. You can only set the
election ID in SINGLE_PRIMARY redundancy mode. The election ID is preserved even if a client is in the down
state. If the primary client disconnects, it remains the primary client until you set the election ID of
another device to be higher. After the election ID is set, the new primary client continues programming
the gRIBI entries.

To update the election ID, send the ModifyRequest message with the election ID set to its new value. Each
client must have a unique election ID. Do not set any other fields of the ModifyRequest message when you
update the election ID.

The election ID is present in the following messages:

e ModifyRequest—Set the election ID for the client. The client with the highest election ID becomes the
primary client.

e AFTOperation—Determines if the server should process the AFT operation.
e ModifyResponse—The server responds with the current highest election ID.

Use the show programmable-rpd clients detail command to view the group ID and whether the client has the
primary or backup role.

Use the show route extensive command to view the details of the route. Here is an example of what the
show route extensive command displays in SINGLE_PRIMARY mode. The output has been shortened for clarity.

user@host> show route 10.0.1.1 extensive

b4.inet.@: 2 destinations, 2 routes (2 active, @ holddown, @ hidden)
10.0.1.1/32 (1 entry, 1 announced)

TSI:

[...]

Opaque data client: PRPD

Address: ABC123

Opaque-data reference count: 2

Opaque data PRPD: group_num_id=1 nh group Id=110

Program a Fallback Route in a VRF Instance

When a next hop becomes unreachable through a static route, the network can reroute the traffic
through an alternate route to avoid traffic disruption. This alternate route is called a fallback route. If the
traffic was not encapsulated in a tunnel, configure the fallback static route as you usually would using
the CLI. However, if the traffic was encapsulated in a tunnel, you can use gRIBI to program a fallback
tunnel that includes decapsulation and encapsulation.

You can program the fallback route in the VRF so that the system decapsulates the traffic from the old
tunnel and re-encapsulates it in a new tunnel before re-routing the traffic to the next hop. This feature
supports IPv4 transport for dynamic IP-IP tunnels with an IPv4 or IPvé6 payload.

To program a fallback IP-in-IP tunnel with decapsulation and re-encapsulation capability, set the
following fields in the NextHop message:

NextHop {
decapsulate_header;
encapsulate_header;
network_instance; // VRF instance
IpInIp {
dst_ip; // Destination IP address

src_ip; // Source IP address

You can use a default route in a traffic engineering virtual routing and forwarding (VRF) instance as the
backup route. Add the default route to the VRF first so the future routes you configure in the VRF will
use it as a fallback route. To use this default route, set the decapsulate_header field to
OPENCONFIGAFTTYPESENCAPSULATION HEADERTYPE_IPV4 and set network_instance to DEFAULT. This default route has a
next hop with decapsulation and looks up routes in the default VRF.

You can also select a backup next hop group to make it easier to configure a fallback route. To do so, set
the backup_next_hop_group field in the NextHopGroup message.

VRF Instance Selection

gRIBI does not support programming routes in a non-default VRF instance. To use a non-default VRF
instance, first configure a firewall filter using the CLI. The firewall filter must match the DSCP and IP
protocol required. Apply the filter to the interface on which the traffic is expected.

For example, if traffic is on interface et-0/0/0:

[edit]

user@host# set firewall filter b4-filter term 1 from dscp cs7

user@host# set firewall filter b4-filter term 1 then count b4-count
user@host# set firewall filter b4-filter term 1 then routing-instance b4
user@host# set firewall filter b4-filter term 2 then accept

user@host# set interfaces et-0/0/0 unit 0 family inet filter input b4-filter

Policy-Based Forwarding

Use the PolicyForwardingEntry message to program policy-based forwarding on the gRIBI server. Policy-
based forwarding ensures that traffic moved to the backup tunnel remains in the tunnel regardless of
what the routing table says.

To set the match conditions and program a policy for forwarding traffic:

1. Set the following fields in the Afts message:

PolicyForwardingEntry {
ip_prefix; // To match the destination IP address
src_ip_prefix; // To match the source IP address

next_hop_group;

2. Set the following fields in the AFTOperation message:

AFTOperation {
entry {
policy_forwarding_entry; // PolicyForwardingEntryKey object created above

3. Set the ModifyRequest message to use the AFTOperation defined above.

4. Call the Modify() RPC with the above ModifyRequest message.

Get Routes

When the client loses the connection to the gRIBI server, any routes that were programmed during the
downtime might not be added to the server. After the connection to the server comes back up, use the
Get() RPC to check that all the routes were added correctly to the server's routing table. The Get() RPC is
also useful for periodically checking that the routes installed on a server are correct and reconciling any
differences.

The Get() RPC retrieves the contents of the AFTs installed on the server. When the client sends a Get()
RPC request, the server responds with the set of currently installed entries using the GetResponse stream.
The server only responds with the entries that have been acknowledged. After the server sends all the
entries to the client, the server closes the RPC.

If graceful Routing Engine switchover (GRES) is configured, the gRIBI server and rpd process also recover
routes after the gRIBI server restarts. After the client reconnects to the server, the client automatically
sends a gRIBI Get() RPC request to the server. If GRES is configured, the client reconciles the routes on
the server. If the client sends another Get() RPC request, the GetResponse stream includes the active
reconciled routes on the server. If GRES is configured and non-stop routing is not configured, the gRIBI
API also recovers routes after a Routing Engine switchover.

@ NOTE: Only active routes are recovered when the rpd process restarts.

Flush Routes

The Flush() RPC removes all the server's gRIBI programmed routes that match what is described in the
FlushRequest message. Sending a FlushRequest message is a quick and easy way to delete gRIBI programmed
routes from the server.

When routes are present in a traffic engineering VRF instance, flush the routes from the VRF instance
using the Flush() RPC before deleting the VRF instance.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R1-EVO | You no longer need to configure statements at the [edit routing-options resolution] hierarchy level
to run gRIBI service RPCs.

https://apps.juniper.net/feature-explorer/

CHAPTER

Configuration Statements and

Operational Commands

IN THIS CHAPTER

Junos CLI Reference Overview | 159

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Read this guide
to learn about the syntax and options that make up the statements and commands. Also understand the
contexts in which you'll use these CLI elements in your network configurations and operations.

e Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

e Configuration Statements

e Operational Commands

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	gRPC Services Overview
	Understanding gRPC Services for Managing Network Devices
	Benefits of gRPC Network Services
	Understanding OpenConfig
	gRPC-Based Services Overview
	gNMI, gNOI, and gRIBI Overview

	Configure gRPC Services
	Configure gRPC Services
	Understanding Authentication and Authorization for gRPC-Based Services
	Obtain X.509 Certificates
	Load the gRPC Server's Local Certificate in the Junos PKI
	Enable gRPC Services
	Configure Mutual (Bidirectional) Authentication for gRPC Services
	Configure the User Account for gRPC Services
	Configure gRPC RPC Authorization

	Configure gNOI Services
	Set up the gRPC Client
	Compile the Proto Definiton Files
	Create gNOI Applications
	Execute the Application

	gNOI Services
	gNOI Services Overview
	Supported Services Overview
	CertificateManagement Service
	Diagnostic (Diag) Service
	File Service
	Layer 2 Service
	Operating System (OS) Service
	System Service

	gNOI Certificate Management Service
	Overview
	Supported RPCs
	Network Device Configuration
	Install a Certificate
	Rotate a Certificate
	Revoke a Certificate

	gNOI Diagnostic (Diag) Service
	Overview
	Supported RPCs
	Network Device Configuration
	Example: Run a BERT

	gNOI File Service
	Supported RPCs
	Network Device Configuration
	Example: Get File
	Example: Put File

	gNOI Layer 2 Service
	Overview
	Supported RPCs
	Network Device Configuration
	Clear LLDP Neighbors

	gNOI Operating System (OS) Service
	Supported RPCs
	OS Service Overview
	Network Device Configuration
	Example: Install and Activate

	gNOI System Service
	Overview
	Network Device Configuration
	Ping and Traceroute
	Reboot a Device
	Upgrade Software
	Routing Engine Switchover

	gRIBI
	gRIBI
	Supported RPCs
	Network Device Configuration
	Junos OS Evolved Release 23.4R1 and Later
	Before Junos OS Evolved Release 23.4R1

	Modify Routes
	Get Routes
	Flush Routes

	Configuration Statements and Operational Commands
	Junos CLI Reference Overview

