

Junos® OS Evolved

Junos® OS Evolved Software Installation
and Upgrade Guide

Published
2025-12-16

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Evolved Junos® OS Evolved Software Installation and Upgrade Guide
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement ("EULA") posted at <https://support.juniper.net/support/eula/>. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.

Table of Contents

1

Overview of Junos OS Evolved

Junos OS Evolved Overview | 2

Junos OS Evolved Overview | 2

Understand Graceful Routing Engine Switchover for Junos OS Evolved | 5

Nonstop Active Routing Concepts for Junos OS Evolved | 9

Directories for Junos OS Evolved File Storage | 11

Default Directories for Junos OS Evolved File Storage | 11

Writable Directories for Junos OS Evolved | 13

2

Install, Upgrade, and Downgrade Software

Software Installation and Upgrade Overview | 16

Software Installation and Upgrade Overview (Junos OS Evolved) | 16

Junos OS Evolved Installation Packages | 25

Junos OS Evolved Installation Packages | 25

Prepare to Install and Upgrade Software | 30

Ensure Sufficient Disk Space for Upgrades | 30

Before You Upgrade or Reinstall Junos OS Evolved | 36

Validate the Configuration against the Installation Image | 51

Upgrade and Downgrade Software | 53

Install, Upgrade, and Downgrade Software | 53

 Prepare to Install Software | 55

 Prepare both Routing Engines to Join the System | 56

 Install the Software Package on a Device with Redundant Routing Engines, on all Nodes at the Same Time | 64

 Install the Software Package on a Device with Redundant Routing Engines, on Backup Routing Engine First, Then on Primary Routing Engine | 69

 Install the Software Package on a Device with a Single Routing Engine | 86

Recover from a Failed Installation Attempt If the CLI Is Working 89
Replace a Routing Engine in a Dual-Routing Engine System 90
Not Enough Disk Space for Software Installation 93
Upgrade Firmware on Junos OS Evolved Devices 94
Understanding Firmware Upgrades on Junos OS Evolved 94
Firmware Versions Overview 95
Upgrade the Firmware 95
Upgrade BIOS 98
Upgrading Firmware on the CMIS Optics Module 100
Install the <code>jfirmware</code> Software Image 102
Unified ISSU for Junos OS Evolved 103
Understanding Unified ISSU for Junos OS Evolved 103
Unified ISSU Considerations for Junos OS Evolved 105
Perform a Unified ISSU to Upgrade Junos OS Evolved 106
Prerequisites to Performing a Unified ISSU to Upgrade Junos OS Evolved 106
Upgrade Junos OS Evolved with a Unified ISSU 108
Stage and Activate Junos OS Evolved Software 112
Understanding the Stage and Activate Options 112
Before you Begin 113
Stage a New Software Version 113
Activate a Software Version 114
Validate the Active Configuration Against a Software Version 117
Install Third-Party Software 120
How to Install Third-Party Software on Devices Running Junos OS Evolved 120
Install the Paragon Active Assurance (PAA) Test Agent 123
Install the Paragon Active Assurance (PAA) Test Agent 123
Understand the PAA Test Agent on Junos OS Evolved 125
Install the PAA Test Agent for the First Time Using the <code>test-agent</code> Configuration Statement (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 127
Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the <code>test-agent</code> Configuration Statement (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 130
Uninstall the PAA Test Agent (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 132
Install the PAA Test Agent for the First Time Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 132

Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 135
Uninstall the Test Agent Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases) 138
Install the PAA Test Agent For the First Time Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases) 138
Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases) 141
Install the PAA Test Agent For the First Time Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases) 143
Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases) 145

3

System Backup and Recovery

Boot Junos OS Evolved from a USB Drive | 150

Boot Junos OS Evolved by Using a Bootable USB Drive 150
Create a Bootable USB Drive Using a Windows Device 150
Create a Bootable USB Drive Using a MAC OS X 151
Create a Bootable USB Drive Using a Switch or Router Running Junos OS Evolved 152
Boot Junos OS Evolved from a Bootable USB Drive Using the CLI 154
Recover Junos OS Evolved Using USB Scratch Install 155
Boot Junos OS Evolved from a Bootable USB Drive Using the Shell 156

Back Up an Installation with Snapshots | 160

Back Up and Recover Software with Snapshots 160
Understand Snapshots 160
Create a Snapshot on the Secondary SSD and Use It to Recover the Software Installation 161

Roll Back the Software to a Previous Version | 164

Roll Back the Software to a Previous Version 164
--

Backup and Recover the Configuration File | 166

Back Up and Recover the Configuration 166
Save a Rescue Configuration 167
Validate a Rescue Configuration 167
Roll Back to a Rescue Configuration 167
Fix the Failed Configuration 168
Delete the Rescue Configuration 169

Copy either the Configuration File or the Rescue Configuration to a Remote Server 169
Roll Back to a Prior Configuration 170
Synchronize the Rescue Configuration to the Secondary Routing Engine after the Current Configuration Is Synchronized 170
Restore the Configuration from a Backup Copy after a USB Software Installation 171
Revert to the Default Factory Configuration 174

4

Storage Media and Routing Engines

Storage Media and Routing Engines 177

Storage Media and Routing Engines | 177

Routing Engines and Storage Media 177

5

Zero Touch Provisioning and Secure Zero Touch Provisioning

Zero Touch Provisioning and Secure Zero Touch Provisioning 180
--

Zero Touch Provisioning | 180

Zero Touch Provisioning Overview 180
--

Zero Touch Provisioning Using DHCP Options | 184

Zero Touch Provisioning Using DHCPv6 Options | 202

Monitoring Zero Touch Provisioning | 208

Using the Console to Monitor Zero Touch Provisioning in Junos OS Evolved 209
--

Using the show dhcp client binding Command | 211

Using the show dhcpc6 client binding Command | 212

Zero Touch Provisioning DHCP Options for Junos OS Evolved | 217

Secure Zero Touch Provisioning | 221

Switching between Secure Zero Touch Provisioning and Zero Touch Provisioning | 233

6

Phone-Home Client

Phone-Home Client 237

Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client | 237

Deploying the Phone-home Client and Zero Touch Provisioning on vSRX Virtual Firewall | 241

Provision a Virtual Chassis Using the Phone-Home Client | 244

Overview of Phone-Home Provisioning for a Virtual Chassis | 245

How To Enable Phone-Home Provisioning on a Virtual Chassis | 247

Phone-Home Process on a Virtual Chassis | 248

Startup and Request Provisioning Information from PHS 249
Bootstrap Virtual Chassis Members 251
Apply Scripts and New Configuration on the Virtual Chassis 252
Provisioning Process Completion 253
Phone-Home Provisioning Status Notifications 253
Verify Virtual Chassis Status After Phone-Home Provisioning 255
Troubleshoot Phone-Home Provisioning Issues 256

7

Configuration Statements and Operational Commands

Junos CLI Reference Overview 259

1

PART

Overview of Junos OS Evolved

- Junos OS Evolved Overview | **2**
- Directories for Junos OS Evolved File Storage | **11**

CHAPTER 1

Junos OS Evolved Overview

IN THIS CHAPTER

- Junos OS Evolved Overview | 2
- Understand Graceful Routing Engine Switchover for Junos OS Evolved | 5
- Nonstop Active Routing Concepts for Junos OS Evolved | 9

Junos OS Evolved Overview

IN THIS SECTION

- Benefits | 2
- Native Linux Base | 3
- Integrated Database for State | 4
- Modular Design | 4
- Secure Boot | 5

Junos OS Evolved is a unified, end-to-end network operating system that provides reliability, agility, and open programmability for successful cloud-scale deployments. With Junos OS Evolved, you can enable higher availability, accelerate your deployments, innovate more rapidly, and operate your network more efficiently. We've aligned Junos OS Evolved with Junos OS so that you can seamlessly continue to manage and to automate your network.

Benefits

Junos OS Evolved provides several benefits to Juniper Networks customers:

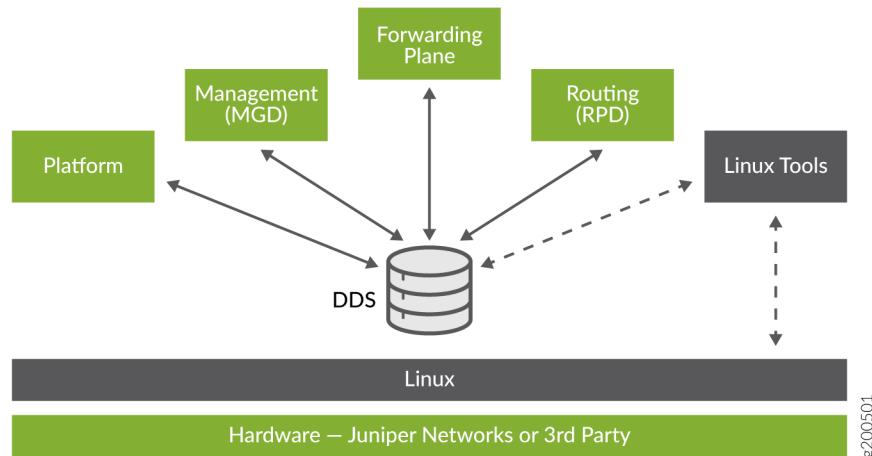
- It runs natively on Linux, providing direct access to all the Linux utilities and operations. With Linux integration, you can use standard Linux and open-source tools to speed up onboarding, accelerate

feature adoption with a smooth upgrade process, and enjoy enhanced debugging capabilities for streamlined qualification and deployment.

- Support for 3rd party applications and tools. You can run Linux applications directly on Junos OS Evolved using Docker containers, or create custom applications for advanced networking solutions. You can use existing Linux tools and procedures to create custom functions on a developer-friendly platform with a short learning curve. This versatility allows you to create the solution that best fits your needs through simple third-party application integration and the ability to implement the components required for specific use cases.
- You can install multiple different Junos OS Evolved software releases on a device, with support for rolling back to previous versions. This gives you the flexibility to try out different software releases and easily revert back to your preferred version if necessary.
- Enhanced security at all OS layers. Junos OS Evolved uses an integrity solution called Integrity Measurement Architecture (IMA), and a companion mechanism called the Extended Verification Module (EVM). These open source protections are part of a set of Linux Security Modules that are industry-standard and consistent with the trust mechanisms specified by the Trusted Computing Group. Junos OS Evolved also supports other security features such as TPM infrastructure, hardened secure BIOS, and secure boot. Security is a core design principle for Junos OS Evolved. Juniper Networks is committed to maintaining a strong security infrastructure to keep your network safe and protected.
- Nearly all of the CLI and user interfaces are identical to those provided in Junos OS, meaning you can pick up Junos OS Evolved with a minimal learning curve. These similarities provide simplicity and operational consistency, minimizing the effort required to implement, maintain, and customize your end-to-end solution.

Native Linux Base

Whereas Junos OS runs over an instance of the FreeBSD operating system on a specific hardware element (for example, the CPU on the Routing Engine), Junos OS Evolved runs over a native Linux system. Having Linux as a base leverages a much wider, dynamic, and active development community. The Linux system also contains multiple third-party applications and tools developed for Linux that Junos OS Evolved can integrate with minimal effort.


The Junos OS Evolved infrastructure is a horizontal software layer that decouples the application processes from the hardware on which the processes run. Effectively, this decoupling creates a general-purpose software infrastructure spanning all the different compute resources on the system (Routing Engine CPUs, line card CPUs, and possibly others). Application processes (protocols, services, and so on) run on top of this infrastructure and communicate with each other by publishing and consuming (that is, subscribing to) state.

Integrated Database for State

State is the retained information or status about physical or logical entities that the system preserves and shares across the system, and supplies during restarts. State includes both operational and configuration state, including committed configuration, interface state, routes, and hardware state. In Junos OS Evolved, state can be held in a database called the Distributed Data Store (DDS).

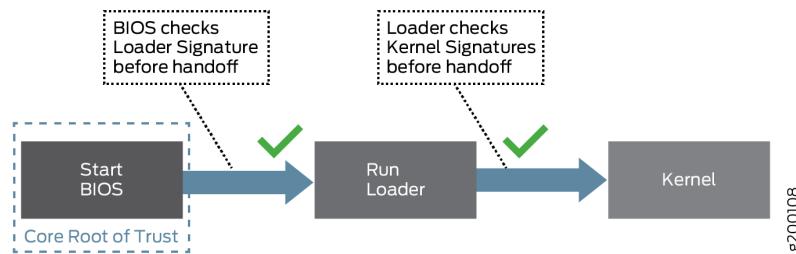
The DDS does not interpret state. Its only job is to hold state received from subscribers and propagate state to consumers. It implements the publish-subscribe messaging pattern for communicating state between applications that are originators of a state to applications that are consumers of that state (see [Figure 1 on page 4](#)). Each application publishes state to and subscribes to state from the DDS directly, making applications independent of each other.

Figure 1: Publish-Subscribe Model

Decoupling applications in this manner isolates the failure of one application from others. The failing application can restart using the last known state of the system held in the state database.

Modular Design

Junos OS Evolved is composed of components with well-defined interfaces. Applications can be individually restarted without requiring a system reboot. Restarted applications reload the state that is preserved in the DDS.


Secure Boot

Secure Boot is a significant system security enhancement based on the UEFI standard. It works by safeguarding the BIOS itself from tampering or modification and then maintaining that protection throughout the boot process.

The Secure Boot process begins with Secure Flash, which ensures that unauthorized changes cannot be made to the firmware. Authorized releases of Junos OS carry a digital signature produced by either Juniper Networks directly or one of its authorized partners. At each point of the boot-up process, each component verifies the next link is sound by checking the signature to ensure that the binaries have not been modified. The boot process cannot continue unless the signature is correct. This "chain of trust" continues until the operating system takes control. In this way, overall system security is enhanced, increasing resistance to some firmware-based persistent threats.

Figure 1 shows a simplified version of this "chain of trust."

Figure 2: Secure Boot Model

Secure Boot requires no actions on your part to implement. It is implemented on supported hardware by default.

For information on which Junos OS Evolved releases and hardware support Secure Boot, see [Feature Explorer](#) and enter **Secure Boot**.

Understand Graceful Routing Engine Switchover for Junos OS Evolved

IN THIS SECTION

- [Graceful Routing Engine Switchover Concepts | 6](#)
- [Effects of a Routing Engine Switchover | 8](#)

Graceful Routing Engine Switchover Concepts

The *graceful Routing Engine switchover* (GRES) feature in Junos OS Evolved enables a router with redundant Routing Engines to continue forwarding packets, even if one Routing Engine fails. GRES preserves interface information. Traffic is not interrupted.

NOTE: On PTX10004 and PTX10008 platforms running Junos OS Evolved, GRES is enabled by default and cannot be disabled.

Neighboring routers detect that the router has experienced a restart and react to the event in a manner prescribed by individual routing protocol specifications.

To preserve routing during a switchover, GRES must be combined with either:

- Graceful restart protocol extensions
- *Nonstop active routing* (NSR)

Any updates to the primary Routing Engine during GRES are replicated to the backup Routing Engine as soon as they occur.

NOTE: Because of its synchronization requirements and logic, NSR/GRES performance is limited by the slowest Routing Engine in the system.

The primary role switches to the backup Routing Engine if:

- The primary Routing Engine kernel stops operating.
- The primary Routing Engine experiences a hardware failure.
- The administrator initiates a manual switchover.

NOTE: To quickly restore or to preserve routing protocol state information during a switchover, GRES must be combined with graceful restart or nonstop active routing, respectively. For more information about nonstop active routing, see "["Nonstop Active Routing Concepts" on page 9](#).

If the backup Routing Engine does not receive a keepalive from the primary Routing Engine after 2 seconds, it determines that the primary Routing Engine has failed, and assumes the primary role.

The Packet Forwarding Engine:

- Seamlessly disconnects from the old primary Routing Engine

- Reconnects to the new primary Routing Engine
- Does not reboot
- Does not interrupt traffic

The new primary Routing Engine and the Packet Forwarding Engine then become synchronized. If the new primary Routing Engine detects that the Packet Forwarding Engine state is not up to date, it re-sends state update messages.

NOTE: Successive Routing Engine switchover events must be a minimum of 240 seconds (4 minutes) apart after both Routing Engines have come up.

If the router or switch displays a warning message similar to Standby Routing Engine is not ready for graceful switchover. Packet Forwarding Engines that are not ready for graceful switchover might be reset, do not attempt switchover. If you choose to proceed with switchover, only the Packet Forwarding Engines that were not ready for graceful switchover are reset. None of the FPCs should spontaneously restart. We recommend that you wait until the warning no longer appears and then proceed with the switchover.

NOTE: The `hwdr` application must be running for GRES to work properly.

Check GRES readiness by issuing both:

- The `request chassis routing-engine master switch check` command from the primary Routing Engine.
- The `show system switchover` command from the backup Routing Engine.

The switchover preparation process for GRES is as follows:

1. The primary Routing Engine starts.
2. The routing platform processes start.
3. The Packet Forwarding Engine starts and connects to the primary Routing Engine.
4. All state information is updated in the system.
5. The backup Routing Engine starts.
6. The system determines whether GRES has been enabled.
7. The backup Routing Engine is synchronized with the primary Routing Engine.
8. State information and the forwarding table are updated.

A switchover process comprises the following steps:

1. When keepalives from the primary Routing Engine are lost, the system switches over gracefully to the backup Routing Engine.
2. The Packet Forwarding Engine connects to the backup Routing Engine, which becomes the new primary.
3. Routing platform processes that are not part of GRES (such as the routing protocol process (rpd)) restart.
4. State information learned from the point of the switchover is updated in the system.
5. If configured, graceful restart protocol extensions collect and restore routing information from neighboring peer *helper* routers.

Effects of a Routing Engine Switchover

[Table 1 on page 8](#) describes the effects of a Routing Engine switchover when different features are enabled:

- Graceful Routing Engine switchover only
- GRES plus nonstop active routing (NSR)
- GRES plus graceful restart

Table 1: Effects of a Routing Engine Switchover

Feature	Benefits	Considerations
GRES enabled	<ul style="list-style-type: none"> • During the switchover, interface information is preserved. • The switchover is faster because the Packet Forwarding Engines are not restarted. 	<ul style="list-style-type: none"> • The new primary Routing Engine restarts the routing protocol process (rpd). • All adjacent systems are aware of the router's change in state.
GRES <i>and</i> NSR enabled	<ul style="list-style-type: none"> • Traffic is not interrupted during the switchover. • Interface information is preserved. 	<ul style="list-style-type: none"> • Unsupported protocols must be refreshed using the normal recovery mechanisms inherent in each protocol.

Table 1: Effects of a Routing Engine Switchover (Continued)

Feature	Benefits	Considerations
GRES <i>and</i> graceful restart enabled	<ul style="list-style-type: none"> Traffic is not interrupted during the switchover. Interface information is preserved. Graceful restart protocol extensions quickly collect and restore routing information from the neighboring routers. 	<ul style="list-style-type: none"> Neighbors are required to support graceful restart, and a wait interval is required. The routing protocol process (rpd) restarts. For certain protocols, a significant change in the network can cause graceful restart to stop.

RELATED DOCUMENTATION

[Nonstop Active Routing Concepts for Junos OS Evolved | 9](#)

Nonstop Active Routing Concepts for Junos OS Evolved

Nonstop active routing (NSR) uses the same infrastructure as *graceful Routing Engine switchover* (GRES) to preserve interface and kernel information. However, NSR also synchronizes routing protocol information by running the routing protocol process (rpd) on the backup Routing Engine. By synchronizing this additional information, NSR is self-contained and does not rely on helper routers (or switches) to assist the routing platform in restoring routing protocol information. NSR is advantageous in networks in which neighbor routers (or switches) do not support graceful restart protocol extensions. As a result of this enhanced functionality, NSR is a natural replacement for graceful restart.

To activate NSR, use the `set routing-options nonstop-routing` configuration statement.

The switchover preparation process for NSR comprises the following steps:

1. The primary Routing Engine starts.
2. The routing platform processes on the primary Routing Engine (such as the routing protocol process [rpd]) start.
3. The Packet Forwarding Engine starts and connects to the primary Routing Engine.

4. All state information is updated in the system.
5. The backup Routing Engine starts, including the routing protocol process (rpd).
6. The system determines whether GRES and NSR have been enabled.
7. The backup Routing Engine is synchronized with the primary Routing Engine.
8. For supported protocols, state information is updated directly between the routing protocol processes on the primary and backup Routing Engines.

The switchover process comprises the following steps:

1. When keepalives from the primary Routing Engine are lost, the system switches over gracefully to the backup Routing Engine.
2. The Packet Forwarding Engine connects to the backup Routing Engine, which becomes the new primary. Because the routing protocol process (rpd) is already running, this processes do not need to restart.
3. State information learned from the point of the switchover is updated in the system. Forwarding and routing are continued during the switchover, resulting in minimal packet loss.
4. Peer routers or switches continue to interact with the routing platform as if no change had occurred. Routing adjacencies and session state relying on underlying routing information are preserved and not reset.

CAUTION: We recommend that you do not restart the routing protocol process (rpd) on the primary Routing Engine after enabling NSR, as it disrupts the protocol adjacency/peering sessions, resulting in traffic loss.

To verify readiness, issue the `show system switchover operational mode` command.

RELATED DOCUMENTATION

[Understand Graceful Routing Engine Switchover for Junos OS Evolved | 5](#)

CHAPTER 2

Directories for Junos OS Evolved File Storage

IN THIS CHAPTER

- Default Directories for Junos OS Evolved File Storage | 11
- Writable Directories for Junos OS Evolved | 13

Default Directories for Junos OS Evolved File Storage

Junos OS Evolved files are stored in the following directories on the device:

- **/boot**—This directory contains the boot loader and associated files.
- **/config**—This directory contains the current operational router or switch configuration and the last three committed configurations, in the files **juniper.conf**, **juniper.conf.1**, **juniper.conf.2**, and **juniper.conf.3**, respectively. The **/config/scripts** directory contains all stored scripts.
- **/data**—This is the directory for all mutable copies of mutable directories. It contains the following subdirectories:
 - **/config**—Contains version-specific Juniper configuration files. This directory is bind mounted to **/config**, meaning that changes in either directory will be reflected in both directories.
 - **/etc**—Contains version-specific Linux configuration files. This directory is bind mounted to **/etc**.
 - **/var/etc**—Contains SSH host keys.
 - **/var**—Shared writable directory for all software versions. This directory is bind mounted to **/var**.
 - **/var_db**—Contains version-specific **/var/db** files. This directory is bind mounted to **/var/db**.
 - **/var_db_scripts**—Contains subdirectories for various script types. Scripts are stored in and executed from these directories. This directory is bind mounted to **/var/db/scripts**.
 - **/var/db/scripts/commit**—Contains commit scripts.
 - **/var/db/scripts/op**—Contains op scripts.
 - **/var/db/scripts/event**—Contains event scripts.

- **/var/db/scripts/snmp**—Contains SNMP scripts.
- **/var/db/scripts/lib**—Contains imported scripts.
- **/var_etc**—Contains version-specific **/var/etc** files. This directory is bind mounted to **/var/etc**.
- **/var_pfe**—Contains version-specific PFE configuration files. This directory is bind mounted to **/var/pfe**.
- **/var_rundb**—Contains UI-related runtime-generated database files that are shared across versions. This directory is bind mounted to **/var/rundb**.
- **/soft**—This directory is the software install area. All software versions are installed here.
- **/u**—This directory is a read-only file system for the running version of Junos OS Evolved.
- **/var**—This directory contains the following subdirectories:
 - **/home**—Contains users' home directories, which are created when you create user access accounts. For users using SSH authentication, their **.ssh** file, which contains their SSH key, is placed in their home directory. When a user saves or loads a configuration file, that file is loaded from the current working directory unless the user specifies a full pathname.
 - **/db/config**—Contains up to 46 previous versions of committed configurations, which are stored in the files **juniper.conf.4.gz** through **juniper.conf.49.gz**.
 - **/log**—Contains system log and tracing files.
 - **/core**—Contains core files. The software saves up to five core files, numbered from 0 through 4. File number 0 is the oldest core file and file number 4 is the newest core file. To preserve the oldest core files, the software overwrites the newest core file, number 4, with any subsequent core file.
 - **/tmp**—Contains temporary files, including files that are generated when a crash event is detected.

RELATED DOCUMENTATION

| [Junos OS Evolved Overview](#) | 2

Writable Directories for Junos OS Evolved

IN THIS SECTION

- [How the System Handles Writable Directories | 13](#)

The various versions of software share the same disk and partitions. The run-time environment enables a clean separation of the version's private state while also enabling the sharing of common directories, such as the log files and the core files. The final run-time filesystem topology is read-only by default. The system contains two kinds of writable directories:

- Shared—All software versions installed on the device use these directories. These directories hold files such as the log files and core files. For example, `/var` is a shared writable directory.
- Private—The individual software versions own these directories. Each version gets a pristine set of these directories and files, based on packaging content, and gets the opportunity to synchronize these files with whatever is the current file version, by peeking under the `/curroot` directory prefix. The system creates these directories in the `/data` partition and uses the name of the directory, with `'/'` replaced by `'_'` (slashes replaced with underscores). These directories are bind-mounted during boot up; the files contained within the directory are specific to that software version. The private directory list differs according to the capabilities of the nodes (for example, Routing Engine or FPC) and the products (for example, PTX10003 or PTX10008).

How the System Handles Writable Directories

Shared writable directories do not need special handling during software upgrades or rollbacks, because the contents are common across software versions. During software synchronization for dual-Routing Engine systems, only the user home directories in `/var/home` for the current software version synchronize to the backup Routing Engine from the primary Routing Engine. No other contents of the shared writable directories synchronize.

For private writable directories, because these directories are version-specific, the directories need special handling during software upgrades, rollbacks, and synchronizations:

- Software upgrades—During the post-install stage of the upgrade to a new version, the system creates a chroot environment for the new version, and the previous version mounts as `/curroot`. The post-install scripts of the new version merge the contents of the previous version's private directories into the new version. Therefore, any user scripts or configurations that are part of the previous version's private writable directories carry forward to the new version.

- Software rollbacks when you specify the `with-old-snapshot-config` option on the `request system software rollback` command—The system does not copy over any contents of the running version's private writable directories to the rollback version's private writable directories. After reboot, the system comes up with the contents that were present at the stage when the software upgrade was done from the previous (rollback) version to the currently running version.
- Software rollbacks without the `with-old-snapshot-config` option—During the roll back from the running version to the previous version, the system merges the contents of the running version's private writable directories with the previous version's private writable directories, similarly to what happens during a software upgrade.
- Software synchronization (Dual-Routing Engine systems only)—The system synchronizes the contents of the private writable directories from the primary Routing Engine to the backup Routing Engine for the software versions, based upon the option you specify on the `request system software sync` command: `current`, `rollback` or `all-versions`. When you configure the `auto-sw-sync` statement at the `[edit system]` hierarchy level, the system synchronizes all contents of the private writable directories from the primary Routing Engine to the backup Routing Engine for all software versions.

2

PART

Install, Upgrade, and Downgrade Software

- Software Installation and Upgrade Overview | **16**
- Junos OS Evolved Installation Packages | **25**
- Prepare to Install and Upgrade Software | **30**
- Upgrade and Downgrade Software | **53**
- Install Third-Party Software | **120**
- Install the Paragon Active Assurance (PAA) Test Agent | **123**

CHAPTER 3

Software Installation and Upgrade Overview

IN THIS CHAPTER

- [Software Installation and Upgrade Overview \(Junos OS Evolved\) | 16](#)

Software Installation and Upgrade Overview (Junos OS Evolved)

SUMMARY

A Juniper Networks device is delivered with the Juniper Networks operating system (Junos OS Evolved) already installed. When you power on the device, it starts (boots) using the installed software. As new features and software fixes become available, you must upgrade your software to use them.

IN THIS SECTION

- [Types of Junos OS Evolved Installation | 17](#)
- [Multiple Software Versions Available | 17](#)
- [Node Software Synchronization for Dual-Routing Engine Systems | 18](#)
- [Migrate to GPT Disk Partitioning | 19](#)
- [Back up the Current System's Files | 20](#)
- [Determine the Software Installation Package | 21](#)
- [Connect to the Console | 21](#)
- [Validate the Installation Package with the Current Configuration | 22](#)
- [Stage and Activate Options for Software Installations | 22](#)
- [Upgrade Method Impacts on Internal Media | 22](#)
- [Boot Sequence | 23](#)

Before installing software, you must back up the system, including the configuration. You upgrade (or downgrade) the version of the operating system on a device by copying a software installation package

to your device and then use the CLI to install the new software on the device. You then reboot the device, which boots from the newly installed software. After a successful upgrade, back up the new software and configuration. See ["Back Up and Recover Software with Snapshots" on page 160](#).

NOTE: Before installing software on a device that has one or more custom YANG data models added to it, back up and remove the configuration data corresponding to the custom YANG data models from the active configuration. For more information see [Managing YANG Packages and Configurations During a Software Upgrade or Downgrade](#).

To understand more about Junos OS Evolved Software Licensing, see the [Juniper Licensing Guide](#). Please refer to the product Data Sheets accessible from [Products & Services](#) for details, or contact your Juniper Account Team or Juniper Partner.

The following sections introduce the overall considerations in upgrading and downgrading the software:

Types of Junos OS Evolved Installation

The two types of installations used to upgrade or downgrade your device are standard installation and recovery. The standard installation is the standard method of upgrading and downgrading the software. You perform a recovery installation when the software on the device is damaged or otherwise unable to accommodate a software upgrade or downgrade.

Standard Installation	A standard installation is the typical method used to upgrade or downgrade software on the server. This method uses the installation package that matches the installation package already installed on the system. For information on the different installation packages available, see "Junos OS Evolved Installation Packages" on page 25 .
Recovery Installation	A recovery installation is the method used to repair a device with damaged software or a condition that prevents the upgrade or downgrade of the software.

Multiple Software Versions Available

Junos OS Evolved stores multiple versions of software on the storage media. To see the software packages installed on the system, use the `show system software list` operational mode command. Junos OS Evolved also allows you to roll back to any of the releases already stored on the system with the `request system software rollback` operational mode command.

Each version also stores the last configuration file that was running when that release was running. Junos OS Evolved supports a roll back to an alternate image with either the current configuration file or with the configuration snapshot from when the alternate image was last running, using the `request system software rollback image-name with-old-snapshot-config` operational mode command.

Node Software Synchronization for Dual-Routing Engine Systems

Junos OS Evolved ensures all nodes in a system are running the same software version.

If you insert a Routing Engine that has the same current software version as the primary Routing Engine into the system, the new Routing Engine joins the system. The system automatically synchronizes the configurations and the other software versions from the existing Routing Engine to the new Routing Engine, even if you have not configured the `auto-sw-sync` statement.

If you insert a Routing Engine that has a different software version into the system, the Routing Engine is kept outside the system and the system generates a software mismatch alarm. The alarm specifies the Routing Engine name and the version of software on the newly-inserted Routing Engine, similar to the following: Software Version Mismatch on `re1:junos-evo-install-ptx-x86-64-20.4R2.6-EVO`. You need to manually synchronize the Routing Engines to bring RE1 back into the system.

```
user@host-re0> show system alarms
2 alarms currently active
Alarm time          Class  Description
2021-04-19 16:02:26 PDT Major  Re1 Node unreachable
2021-04-19 16:04:46 PDT Major  Software Version Mismatch on re1:junos-evo-install-ptx-
x86-64-20.4R2.6-EVO
```

You can either manually or automatically synchronize the software versions and configurations to the new Routing Engine. Automatic software synchronization is disabled by default. We recommend that you enable automatic software synchronization.

- To automatically always synchronize the software versions and configurations to the new Routing Engine, configure the `auto-sw-sync enable` statement at the `[edit system]` hierarchy level. When you configure the `auto-sw-sync` statement, the system detects the new Routing Engine, synchronizes all of the images to the new Routing Engine, and reboots the new Routing Engine so that the new Routing Engine boots up with the same software and the same configuration version as the primary Routing Engine and joins the system. Each software image contains the configuration running when that software image was last active.
- To manually synchronize the software versions and configurations to the new Routing Engine, use the `request system software sync all-versions` operational mode command. All software images and configurations stored with the images are synchronized to the new Routing Engine and the system reboots the new Routing Engine. When the new Routing Engine comes back up, the new Routing Engine joins the system.

For a dual-Routing Engine system, when the secondary Routing Engine boots with a different current image than the primary Routing Engine's current image and you have configured the `auto-sw-sync enable` statement, the primary Routing Engine synchronizes the current image to the secondary Routing Engine. The primary Routing Engine also synchronizes the rollback software image and the other images to the

secondary Routing Engine. If the current configuration file (**juniper.conf.gz**) from the primary Routing Engine matches the current configuration file on the secondary Routing Engine, then the primary Routing Engine does not synchronize the rescue configuration (**rescue.conf.gz**) to the secondary Routing Engine.

To synchronize the rescue configuration from the primary Routing Engine to the secondary Routing Engine, issue the file copy command on the primary Routing Engine:

```
user@host-re0> file copy /config/rescue.conf.gz re1:/config/
```

For more information on replacing Routing Engines, see ["Replace a Routing Engine in a Dual-Routing Engine System" on page 90](#).

Migrate to GPT Disk Partitioning

Starting in Junos OS Evolved Release 24.2R1, we support migrating to GUID Partition Table (GPT) disk partitioning. GPT is the native disk partitioning scheme used by UEFI BIOSes. GPT is similar to the Master Boot Record (MBR) disk partitioning scheme used by traditional BIOSes. All Junos OS Evolved platforms support GPT natively. However, we default to MBR disk partitioning because Junos OS Evolved was originally ported to systems that used traditional BIOSes.

GPT has several advantages over MBR:

- Support for much larger disks
- Unique partition ID support by using GUIDs
- Human-readable partition names
- Backup copies

When you install a release that supports GPT disk partitioning, you can:

- For new installations, change the default partition scheme for both the primary and secondary disks to GPT immediately (for example, scratch installations to empty disks).
- For existing installations, migrate to GPT disk partitioning for both the primary and secondary disks after a reboot of the system.

If a hard disk is currently using GPT disk partitioning and you roll back the software to a release that does not support GPT disk partitioning as the default, the hard disk continues to use GPT disk partitioning. That is, once you migrate a disk to GPT disk partitioning, it continues to use GPT disk partitioning, even if you install older software and reboot the system.

For dual Routing-Engine systems:

- If Routing Engine 0 is running a release that supports GPT disk partitioning by default and a new Routing Engine 1 is inserted, the primary and secondary disks for Routing Engine 1 migrate to the GPT disk partitioning scheme upon reboot of Routing Engine 1.
- If the `auto-sw-sync enable` configuration statement is not configured on Routing Engine 0, then even though Routing Engine 0 is running a release that supports GPT disk partitioning by default, the primary and secondary disks for Routing Engine 1 do not migrate to the GPT disk partitioning scheme upon reboot of Routing Engine 1. To migrate to the GPT disk partitioning scheme, after you upgrade the software, you must manually synchronize the Routing Engines by issuing the `request system software sync all-versions` command on Routing Engine 0, and then reboot Routing Engine 1.

If you are using the gNOI software upgrade mechanism, neither staging nor activating a release image changes the partition scheme of the disks. (Currently, you can choose to activate an image but not reboot. You also can delete that activated image before rebooting the system.) Once you reboot the system with the activated image, then the primary and secondary disks migrate to the GPT disk partition scheme.

For systems that support ISSU, you must reboot the system to migrate the primary and secondary disks to the GPT disk partitioning scheme. Simply restarting applications to complete the upgrade does not migrate the disks to the GPT disk partitioning scheme.

Back up the Current System's Files

Creating a backup of the current system on your device has the following advantages:

- The device can boot from a backup and come back online in case a component fails or a power failure during an upgrade corrupts the primary boot device.
- The backup copy of the system saves your active configuration files and log files.
- The device can recover from a known, stable environment in case of an unsuccessful upgrade.

During a successful upgrade, the upgrade package completely re-installs the existing operating system. It retains the `juniper.conf`, `rescue.conf`, SNMP iflIndexes, `/var/home`, `/config/scripts`, SSH files, and other filesystem files. The upgrade process removes all other information. Therefore, you should back up your existing system in case you need to return to it after running the installation program.

You create copies of both the software and the configuration running on a device using the `request system snapshot` command. The `request system snapshot` command takes a “snapshot” of the files currently used to run the device and copies the files onto the alternate solid-state drive (SSD). The snapshot contains the complete contents of the `/soft`, `/config`, and `/root` directories, which include the current and all rollback software images, copies of user data, the active configuration, the rescue configuration, and content from the `/var` directory (except the `/var/core`, `/var/external`, `/var/log`, and `/var/tmp` directories).

You can then use this snapshot to boot the device at the next boot up or as a backup boot option. When the backup completes, the current and backup software installations are identical. For a dual-*Routing*

Engine system, you should create a snapshot on both the primary and the secondary Routing Engine, ensuring a snapshot is available, no matter which Routing Engine you use to reboot the device.

NOTE: When you issue the `request system snapshot` command, the system backs up the `/root` file system and the `/config` file system to the secondary solid-state drive (SSD).

The `/root` and `/config` file systems are on the device's primary SSD. The snapshot `/root` and `/config` file systems are on the device's secondary SSD.

Determine the Software Installation Package

Juniper Networks delivers software releases in signed packages that contain digital signatures to ensure official Juniper Networks software. To see the information about the software packages currently running on the device, use the `show version` operational mode command at the top level of the command-line interface (CLI).

NOTE: The `show version` command does not show the software edition, only the release number of the software.

You download software to the `/var/tmp` directory of your device from the [Juniper Networks Software Downloads](#) webpage.

For more information about software packages, see ["Junos OS Evolved Installation Packages" on page 25](#). For information on software images signed with post-quantum cryptography (PQC), see *PQC Signatures for Software Images*.

Connect to the Console

We recommend that you upgrade all individual software packages using an out-of-band connection from the console or the management Ethernet interface, because in-band connections can drop during the upgrade process.

Console ports allow root access to devices through a terminal or laptop interface, regardless of the state of the device, unless the device is off. By connecting to the console port, you can access the root level of the device, without using the network to which the device might or might not be connected. Connecting to the console port creates a secondary path to the device without relying on the network.

Using the terminal interface provides a technician, who is usually sitting in a NOC a long distance away, the ability to restore a device or perform an initialization configuration securely, using a modem, even if the primary network has failed. Without a connection to the console port, a technician must visit the site to perform repairs or initialization. A remote connection to the device through a modem requires the cable and connector (provided in the device accessory box), plus a DB-9 to DB-25 (or similar)

adapter for your modem, which you must purchase separately. For more information about connecting to the console port, see the hardware guide for your particular device.

Validate the Installation Package with the Current Configuration

When you upgrade or downgrade software, we recommend that you validate the configuration with the `request system software add` operational mode command, to check that the candidate software is compatible with the current configuration. By default, when you add a package with a different release number, the system automatically performs the validation check.

Stage and Activate Options for Software Installations

When you upgrade or downgrade software using the `request system software add` operational mode command, the system installs the software package and immediately activates it, which sets the software as the next boot version. Starting in Junos OS Evolved Release 25.4R1, you have the option to install software in separate staging and activation phases on devices that support this feature. This separation of installation tasks provides finer control over software management and makes it easier to perform validations.

You can use the following operational mode commands with the appropriate options to install, stage, and activate software:

- `request system software add`—Install a new software package and set it as the next boot version.
- `request system software add stage`—Install a new software package but do not set it as the next boot version.
- `request system software activate`—Activate an installed software version, which sets it as the next boot version.
- `request system software stage`—Validate the active configuration against an installed software version and copy the validated configuration to the `/data` directory associated with that software version.

For more information, see ["Stage and Activate Junos OS Evolved Software" on page 112](#).

Upgrade Method Impacts on Internal Media

Installation from the boot loader using a USB storage device re-formats the internal media before installation.

Installation using the CLI retains the existing partitioning scheme.

CAUTION: Upgrade methods that re-format the internal media before installation wipe out the existing contents of the media and the configuration files. You must back up all configuration files in the **/config** directory and any important data before starting the installation process.

Boot Sequence

Juniper Networks devices start using the installed Junos OS Evolved software. Boot-able copies of the software are stored in two locations: the internal solid-state drive and the removable media (USB). The following subsections discuss the order of the locations the system checks for a valid boot-able operating system.

Boot Order

Junos OS Evolved devices attempt to boot from these storage media in the following order:

1. Dual, internal SSD devices. First, the system tries to boot from the primary SSD device. If that SSD fails to boot, then the system attempts to boot from the secondary SSD device.
2. USB device. (If you insert a USB emergency boot device, select **USB00** from the GRUB menu to boot from the USB device.)

Boot from an Alternate Boot Device

If the device boots from an alternate boot device, when you log in to the device, a message displays indicating the alternate boot device. For example, the following message shows that the software booted from the secondary SSD (**/dev/sdb**):

```
login: username
Password: password
[...output truncated...]
--- NOTICE: System is running on alternate media device (/dev/sdb).
```


NOTE: Do not select an emergency boot device during reboot under normal operations. The router does not operate normally when booted from an emergency boot device. Selecting the **USB00** option on the GRUB menu installs the image from the USB onto the SSD. You must then apply the user configuration.

The system boots from an alternate boot device when the system detects a problem with the primary boot device—usually the primary SSD (`/dev/sda`)—that prevents the device from booting. Consequently, the system boots from the alternate boot device (the secondary SSD, `/dev/sdb`). When the system boots from the alternate boot device, the system removes the primary boot device from the list of candidate boot devices. The problem is usually a serious hardware error. We recommend you contact the Juniper Networks Technical Assistance Center (JTAC).

When the device boots from the alternate boot device, the software and the configuration are only as current as the most recent snapshot (taken with the `request system snapshot operational` mode command).

RELATED DOCUMENTATION

[Before You Upgrade or Reinstall Junos OS Evolved | 36](#)

CHAPTER 4

Junos OS Evolved Installation Packages

IN THIS CHAPTER

- Junos OS Evolved Installation Packages | 25

Junos OS Evolved Installation Packages

SUMMARY

The installation package is used to upgrade or downgrade from one Junos OS Evolved release to another. When added, the installation package completely re-installs the software, rebuilds the file system, and can erase system logs and other auxiliary information from the previous installation. The system does, however, retain the configuration files from the previous installation.

IN THIS SECTION

- Junos OS Evolved Installation Package Prefixes | 25
- Junos OS Evolved Release Numbers | 27
- Junos OS Evolved Editions | 28

The names of the Junos OS Evolved installation packages have the following general pattern:

- *prefix-release-edition-EVO.iso*

The names of the Junos OS Evolved jfirmware packages have the following general pattern:

- *jfirmware-prefix-release-edition-EVO.tgz*

Juniper Networks delivers the Junos OS Evolved software in signed packages that contain digital signatures. The system only installs a package if the checksum within it matches the hash recorded in its corresponding file.

Junos OS Evolved Installation Package Prefixes

The first part of the installation package filename is a combination of a standard prefix and a product designation.

Table 2: Installation Package Prefixes

Prefix	Description
junos-evo-install* or junos-evo-install-media*	<p>Introduced as of Junos OS Evolved Release 18.3R1. For Junos OS Evolved, there is a single image for all fixed form (versus chassis) platforms, and a platform image name can also be distinguished as merchant silicon (ms). Starting in Junos OS Evolved Release 20.3R1, install packages are available in limited editions. Here are some examples:</p> <ul style="list-style-type: none"> • junos-evo-install-acx-qfx-7k-x86-64-<i>release</i>.iso—A single ISO image for the ACX7100 platforms. • junos-evo-install-acx-t-x86-64-<i>release</i>.iso—A single ISO image for the ACX6160 platforms. • junos-evo-install-acx-x86-64-<i>release</i>.iso—A single ISO image for ACX chassis platforms. • junos-evo-install-ptx-fixed-x86-32-<i>release</i>.iso—All fixed PTX platform variants (that is, PTX10001-36MR, and so on) have a single ISO image. • junos-evo-install-ptx-fixed-x86-64-<i>release</i>.iso—All fixed PTX platform variants (that is, PTX10003, and so on) have a single ISO image. For PTX orders, this image is installed as factory default. • junos-evo-install-ptx-chassis-x86-64-<i>release</i>.iso—One single ISO image for PTX chassis platforms. • junos-evo-install-qfx-ms-fixed-x86-64-<i>release</i>.iso—Prior to Junos OS Evolved Release 21.1R1, a single image for all QFX platforms based on merchant silicon. It could be the Broadcom family or any other vendor. • junos-evo-install-qfx-ms-x86-64-<i>release</i>.iso—Starting in Junos OS Evolved Release 21.1R1, a single image for all QFX platforms based on merchant silicon. It could be the Broadcom family or any other vendor. • junos-evo-install-qfx-fixed-x86-64-<i>release</i>.iso—All fixed QFX platform variants have a single ISO image. For QFX orders, this image is installed as factory default. • junos-evo-install-qfx-chassis-x86-64-<i>release</i>.iso—One single ISO image for QFX chassis platforms.

Junos OS Evolved includes the binaries and libraries for any firmware updates in the software image. You must first install the Junos OS Evolved software image before you can perform any firmware upgrades associated with that image. Upgrading the Junos OS Evolved software does not automatically upgrade

the firmware. Starting in Junos OS Evolved Release 24.4R1, for those platforms that support this feature, we now provide separate `jfirmware` packages that contain the firmware binaries necessary to upgrade the firmware on individual components. (Prior to this release, and for platforms that do not support this feature, the firmware binaries are included only as part of the install package.) With this feature, you can download and install the latest `jfirmware` package at any time, and then upgrade the firmware of individual components with the `request system firmware upgrade` command. This feature enables firmware updates without requiring a complete system upgrade, minimizing disruption and downtime. You also do not have to wait to upgrade the firmware until the next time you upgrade the software on your system.

Table 3: Install package names and their corresponding `jfirmware` package names

Install package name	<code>Jfirmware</code> package name
<code>junos-evo-install-acx-chassis-x86-64-<release>-EVO.iso</code>	<code>jfirmware-junos-evo-install-acx-chassis-x86-64-<release>-EVO.tgz</code>
<code>junos-evo-install-ptx-chassis-x86-64-<release>-EVO.iso</code>	<code>jfirmware-junos-evo-install-ptx-chassis-x86-64-<release>-EVO.tgz</code>
<code>junos-evo-install-qfx-<release>-EVO.iso</code>	<code>jfirmware-junos-evo-install-qfx-<release>-EVO.tgz</code>

Although the `jfirmware` package names have release numbers in them, the packages themselves are version independent; that is, they can be installed on a system that is running a different version of software.

Junos OS Evolved Release Numbers

Each release has certain new features that complement the software processes that support Internet routing protocols, control the device's interfaces and the device chassis, and allow for device system management. From the web page for [Juniper Networks Software Downloads](#), you download software for a particular release number.

In this example, we dissect the format of the software release number in the installation package to show what it indicates. The generalized format is as follows:

Given the format of:

- *m.nZb.s-EVO*

The software release number 20.4R1.17-EVO, for example, maps to this format as follows:

- m is the main release number of the product, for example, 20.
- n is the minor release number of the product, for example, 4.
- Z is the type of software release, for example, R for an FRS or a maintenance release.
- b is the build number of the product, for example, 1, indicating the FRS rather than a maintenance release.
- s is the spin number of the product, for example, 17.
- -EVO means that it is a Junos OS Evolved package.

Table 4: Software Release Types

Release Type	Description
R	First revenue ship (FRS) or maintenance release software. R1 is FRS. R2 is a maintenance release.
B	Beta release software.
I	Internal release software. These packages are private software releases for verifying fixes.
S	Service release software, released to customers to solve a specific problem –Juniper Networks will maintain this release along with the life span of the underlying release. The service release number is after the R number; for example, 20.3R1-S2.12. Here, S2 represents the 2nd service release on top of 20.3R1 and is the 12th re-spin.

Junos OS Evolved Editions

Edition names show up in the installation package name between the release number string and the extension.

For Junos OS Evolved:

- A null (empty) edition field denotes the standard image for Junos OS Evolved.
- **limited**—Starting in Junos OS Evolved 20.3R1, limited packages are available. Limited packages do not have cryptographic support and are intended for countries in the Eurasian Customs Union

(EACU). These countries have import restrictions on software containing data-plane encryption. An example of a limited package image for a PTX router is **junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EVO-limited.iso**.

RELATED DOCUMENTATION

| *show version (Junos OS Evolved)*

CHAPTER 5

Prepare to Install and Upgrade Software

IN THIS CHAPTER

- Ensure Sufficient Disk Space for Upgrades | [30](#)
- Before You Upgrade or Reinstall Junos OS Evolved | [36](#)
- Validate the Configuration against the Installation Image | [51](#)

Ensure Sufficient Disk Space for Upgrades

SUMMARY

The amount of free disk space necessary to upgrade a device with a new version of Junos OS Evolved can vary from one release to another. Check the software version you are installing to determine the free disk space requirements, and then clear enough disk space for the upgrade.

If the **/soft**, **/var**, or **/data** directories are at 90% capacity or more, the device does not have enough storage space to install a software package. If the amount of storage space on a device is insufficient for installing Junos OS Evolved, you might receive a warning similar to the following messages, that a file system is low on free disk space:

WARNING: The **/soft** filesystem is low on free disk space.

WARNING: This package requires 1075136k free, but there is only 666502k available.

When the system file storage space on the device is full, rebooting the device does not solve the problem. The following error message displays during a typical operation on the device after the file storage space is full: `user@host> configure /soft: write failed, filesystem is full`

1. To determine the amount of free disk space on the device, issue the `show system storage` command. The command output displays statistics about the amount of free disk space in the device's file system.

For example:

```
user@host> show system storage

fpc0:
-----
Filesystem      Size   Used  Avail Capacity  Mounted on
/dev/root       30M    30M    0      100%   /run/initramfs
/dev/ram1p2     4.9G   586M   4.0G   13%    /soft
/dev/ram1p5     93M    19M    68M    22%    /data
/dev/ram1p7     2.7G   66M    2.4G   3%     /var
/dev/loop0       379M   2.3M   353M   1%     /data/var/external
devtmpfs        16G    0      16G    0%     /dev
[...output truncated...]

fpc1:
-----
Filesystem      Size   Used  Avail Capacity  Mounted on
/dev/root       30M    30M    0      100%   /run/initramfs
/dev/ram1p2     4.9G   586M   4.0G   13%    /soft
/dev/ram1p5     93M    19M    68M    22%    /data
/dev/ram1p7     2.7G   42M    2.5G   2%     /var
/dev/loop0       379M   2.3M   353M   1%     /data/var/external
devtmpfs        16G    0      16G    0%     /dev
[...output truncated...]

re0:
-----
Filesystem      Size   Used  Avail Capacity  Mounted on
/dev/root       34M    34M    0      100%   /run/initramfs
/dev/sda2       32G    10G    21G    34%    /soft
/dev/sda5       3.0G   179M   2.6G   7%     /data
/dev/sda7       145G   4.5G   134G   4%     /var
/dev/loop0       15G    38M    14G    1%     /data/var/external
devtmpfs        32G    0      32G    0%     /dev
/tmp            32G    0      32G    0%     /run/initramfs/uswitch/tmp
/dev/loop1       517M   517M   0      100%   /run/initramfs/uswitch/data/
hashes/8e6065a478c593473cd390245274128f1a5885e8
/dev/loop2       29M    29M    0      100%   /run/initramfs/uswitch/data/
hashes/244e2161887b001792709ec078f864c966baca88
/dev/loop3       36M    36M    0      100%   /run/initramfs/uswitch/data/
hashes/4cad203feb9c1bd4a903f03503a6777509e4031d
/dev/loop4       10M    10M    0      100%   /run/initramfs/uswitch/data/
```

```

hashes/5f9454b8d26e33715373f621d16c9c752e3ff57b
/dev/loop5          46M     46M     0    100% /run/initramfs/uswitch/data/
hashes/182901abd18cefe6f63397bcbb6f2a8238d38a9b
/dev/loop6          9.8M    9.8M     0    100% /run/initramfs/uswitch/data/
hashes/c08bb2c69ae7ff2446bdcb32011a03a4a53c5585
/dev/loop7          58M     58M     0    100% /run/initramfs/uswitch/data/
hashes/c92e70dc394c01bf5a2a9d06ffcc25ba673286d1
/dev/loop8          34M     34M     0    100% /run/initramfs/uswitch/data/
hashes/90fdfeec1bab47c19641d636598a4205bbb7949d
/dev/loop9          8.2M    8.2M     0    100% /run/initramfs/uswitch/data/
hashes/3874cf9fea904b2d5d3f6920671864bdc05130a2
/dev/loop10         34M     34M     0    100% /run/initramfs/uswitch/data/
hashes/35afa8ff63aded42bd23444b672dcd33b922898c
/dev/loop11         7.0M    7.0M     0    100% /run/initramfs/uswitch/data/
hashes/15684de48b2a621a98afaf9619026dd81cdf74bd
/dev/loop12         4.5M    4.5M     0    100% /run/initramfs/uswitch/data/
hashes/2d75968c5d882c86b38015fc93fe9e148e226407
/dev/loop13         148M   148M     0    100% /run/initramfs/uswitch/data/
hashes/ccb0c8af3d4b26bddf9ccc047aa7e76d34e31387
uswitchd           7.0M    7.0M     0    100% /run/initramfs/uswitch/data/
junos-evo-install-ptx-x86-64-21.2I20210315015050-EVO__cd-builder/uswitch
unionsfs           3.0G    186M    2.6G    7%   /
/dev/sda1           196M   19M    178M    10%  /boot
/dev/sda6           984M   1.5M   916M    1%   /data/config
/tmp                32G    68K    32G    1%   /tmp
tmpfs               32G    28M    32G    1%   /run
tmpfs               32G     0     32G    0%   /dev/shm
tmpfs               32G     0     32G    0%   /sys/fs/cgroup
tmpfs               6.3G   0     6.3G    0%   /run/user/0

re1:
-----
Filesystem      Size   Used  Avail Capacity  Mounted on
/dev/root        34M   34M    0    100% /run/initramfs
/dev/sda2        32G   10G   21G    34% /soft
/dev/sda5        3.0G  321M  2.5G    12% /data
/dev/sda7        145G  3.0G  135G    3%  /var
/dev/loop0        15G   38M   14G    1%  /data/var/external
devtmpfs         32G   0     32G    0%  /dev
[...output truncated...]

```

2. If the amount of free disk space on a device is insufficient for installing Junos OS Evolved, you can clean up the file storage on the device by deleting the system files or unnecessary software images.

You can use either the request system storage cleanup or the request system software delete operational mode command, or both, depending on where you need to clear space.

- a. Issue the request system storage cleanup operational mode command on the primary Routing Engine to delete system files in the **/var** directory for all Routing Engines in a system, usually system-log and trace files.

The list of files to be deleted displays:

```
user@host> request system storage cleanup
List of files to delete:

      Size Date        Name
11B Oct 28 23:40 /var/jail/tmp/alarmd.ts
92.4K Jan 11 17:12 /var/log/chassisd.0.gz
92.4K Jan 11 06:06 /var/log/chassisd.1.gz
92.5K Jan 10 19:00 /var/log/chassisd.2.gz
92.5K Jan 10 07:53 /var/log/chassisd.3.gz
92.2K Jan 10 15:00 /var/log/hostlogs/auth.log.1.gz
92.2K Jan 1 18:45 /var/log/hostlogs/auth.log.2.gz
92.1K Jan 4 17:30 /var/log/hostlogs/auth.log.3.gz
92.2K Jan 1 18:45 /var/log/hostlogs/auth.log.4.gz
79.0K Jan 12 01:59 /var/log/hostlogs/daemon.log.1.gz
78.8K Jan 11 23:15 /var/log/hostlogs/daemon.log.2.gz
78.7K Jan 11 20:30 /var/log/hostlogs/daemon.log.3.gz
79.1K Jan 11 17:44 /var/log/hostlogs/daemon.log.4.gz
59.1K Jan 11 21:59 /var/log/hostlogs/debug.1.gz
59.2K Jan 11 17:44 /var/log/hostlogs/debug.2.gz
59.2K Jan 11 13:29 /var/log/hostlogs/debug.3.gz
59.3K Jan 11 09:14 /var/log/hostlogs/debug.4.gz
186.6K Oct 20 16:31 /var/log/hostlogs/kern.log.1.gz
238.3K Jan 11 23:15 /var/log/hostlogs/lcmd.log.1.gz
238.4K Jan 11 17:30 /var/log/hostlogs/lcmd.log.2.gz
238.6K Jan 11 11:45 /var/log/hostlogs/lcmd.log.3.gz
238.5K Jan 11 06:00 /var/log/hostlogs/lcmd.log.4.gz
372.5K Jan 11 17:00 /var/log/hostlogs/syslog.1.gz
372.5K Jan 11 04:45 /var/log/hostlogs/syslog.2.gz
371.9K Jan 10 16:30 /var/log/hostlogs/syslog.3.gz
372.7K Jan 10 04:15 /var/log/hostlogs/syslog.4.gz
10.1K Jan 12 02:03 /var/log/messages.0.gz
55.1K Jan 6 21:25 /var/log/messages.1.gz
81.5K Dec 1 21:30 /var/log/messages.2.gz
```

```
Delete these files ? [yes,no] (no)
```

Enter the option **yes** to delete the files.

b. Before you can clean up unnecessary software images in the **/soft** and **/data** directories for all Routing Engines in a system, you must first find out what images exist on the device, using the **show system software list** operational mode command.

```
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 12:18:07]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

<  junos-evo-install-ptx-x86-64-20.4-202103121629.0-EVO - [2021-03-17 11:22:40]
-  junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 10:50:39]
    junos-evo-install-ptx-x86-64-20.4-202103131143.0-EVO - [2021-03-16 16:12:38]
    junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-15 17:26:42]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
```

```
'>' next boot version after upgrade/downgrade
'<' rollback boot version

< junos-evo-install-ptx-x86-64-20.4-202103121629.0-EVO - [2021-03-17 11:25:03]
- junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 10:50:39]
  junos-evo-install-ptx-x86-64-20.4-202103131143.0-EVO - [2021-03-16 16:14:55]
  junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-15 17:57:05]
```

You can delete software images one at a time or you can delete all software images except for the current and rollback images. These commands delete the images on all Routing Engines in the system.

- To delete the software images one at a time, issue the `request system software delete image-name` operational mode command for each image you need to delete. If you delete this image, you cannot downgrade to this particular version of the software. You cannot delete the currently running software version. Use the `force` option to delete the rollback software image.
- Starting in Junos OS Evolved Release 20.4R2, to delete all software images except for the current and rollback images, issue the `request system software delete archived` operational mode command. This command fails when a next-boot software image is on the Routing Engine; a new software image was installed, but the device has not yet been rebooted to finish the installation process.

```
user@host-re0> request system software delete archived
ALERT: This command will delete all archived SW versions except current and rollback.
Do you want to proceed? [yes,no] (no) yes

Software delete in progress...
re0: Executing Software delete...
re0: Cannot delete junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - It is the
current version
re0: Rollback or scratch install
re0: Removing version junos-evo-install-ptx-x86-64-20.4-202103150459.0-EVO...
re0: Removing version junos-evo-install-ptx-x86-64-20.4-202103111254.0-EVO...
re1: Removing version junos-evo-install-ptx-x86-64-20.4-202103150459.0-EVO...
re1: Removing version junos-evo-install-ptx-x86-64-20.4-202103111254.0-EVO...
Image deletion succeeded.
```

RELATED DOCUMENTATION

[request system software delete \(Junos OS Evolved\)](#)

Before You Upgrade or Reinstall Junos OS Evolved

SUMMARY

Before you upgrade or reinstall Junos OS Evolved, you must save some system information, ensure enough disk space is available, and back up the current software and configuration.

You need to gather and to save information about the current state of the system so that you can compare the state before and after the upgrade to make sure the system is correctly configured and operating. You also need to take a snapshot of the system software and configuration before you upgrade, so that you are able to recover the system if necessary.

1. To check if enough disk space is available for the installation, use the `show system storage` operational mode command.

Various directories store the installed software versions and the data files, such as the log and core files. If the (`/soft`, `/var`, or `/data`) directories are at 90% capacity or more, the device does not have enough storage space to install a software package. A software installation could fail if these directories do not have sufficient space.

We recommend that you store no more than 5 versions of software on the device. Please use the `request system software delete` operational mode command to delete older or unused versions of software. To delete all but the current and the rollback versions of the software, use the `request system software delete archived` operational mode command.

Use the `request system storage cleanup` operational mode command if your storage area (the `/var` directory) is full. We recommend that you issue this command before you copy the new image into the `/var/tmp` directory as this command could remove the image if the `/var` partition is low on space.

For more information, see ["Ensure Sufficient Disk Space for Upgrades" on page 30](#).

The sample output displays statistics about the amount of free disk space in the device's file system for the FPCs and Routing Engines.

```
user@host> show system storage
fpc0:
-----
Filesystem      Size   Used   Avail  Capacity  Mounted on
/dev/root       30M    30M    0      100%    /run/initramfs
/dev/ram1p2     4.9G   586M   4.0G   13%     /soft
```

```

/dev/ram1p5          93M    19M    68M    22%  /data
/dev/ram1p7          2.7G   66M    2.4G    3%   /var
/dev/loop0           379M   2.3M   353M    1%   /data/var/external
devtmpfs             16G     0      16G    0%   /dev
[...output truncated...]

```

fpc1:

```

-----  

Filesystem      Size   Used  Avail Capacity  Mounted on  

/dev/root        30M    30M    0      100%  /run/initramfs  

/dev/ram1p2      4.9G   586M   4.0G   13%   /soft  

/dev/ram1p5      93M    19M    68M    22%   /data  

/dev/ram1p7      2.7G   42M    2.5G   2%    /var  

/dev/loop0        379M   2.3M   353M   1%    /data/var/external  

devtmpfs         16G     0      16G    0%    /dev  

[...output truncated...]

```

re0:

```

-----  

Filesystem      Size   Used  Avail Capacity  Mounted on  

/dev/root        34M    34M    0      100%  /run/initramfs  

/dev/sda2        32G    10G    21G    34%   /soft  

/dev/sda5        3.0G   179M   2.6G   7%    /data  

/dev/sda7        145G   4.5G   134G   4%    /var  

/dev/loop0        15G    38M    14G    1%    /data/var/external  

devtmpfs         32G     0      32G    0%    /dev  

/tmp             32G     0      32G    0%    /run/initramfs/uswitch/tmp  

/dev/loop1        517M   517M   0      100%  /run/initramfs/uswitch/data/  

hashes/8e6065a478c593473cd390245274128f1a5885e8  

/dev/loop2        29M    29M    0      100%  /run/initramfs/uswitch/data/  

hashes/244e2161887b001792709ec078f864c966baca88  

/dev/loop3        36M    36M    0      100%  /run/initramfs/uswitch/data/  

hashes/4cad203feb9c1bd4a903f03503a6777509e4031d  

/dev/loop4        10M    10M    0      100%  /run/initramfs/uswitch/data/  

hashes/5f9454b8d26e33715373f621d16c9c752e3ff57b  

/dev/loop5        46M    46M    0      100%  /run/initramfs/uswitch/data/  

hashes/182901abd18cefef6f63397bcb6f2a8238d38a9b  

/dev/loop6        9.8M   9.8M   0      100%  /run/initramfs/uswitch/data/  

hashes/c08bb2c69ae7ff2446bdcb32011a03a4a53c5585  

/dev/loop7        58M    58M    0      100%  /run/initramfs/uswitch/data/  

hashes/c92e70dc394c01bf5a2a9d06ffcc25ba673286d1  

/dev/loop8        34M    34M    0      100%  /run/initramfs/uswitch/data/  

hashes/90fdfeec1bab47c19641d636598a4205bbb7949d

```

Filesystem	Size	Used	Avail	Capacity	Mounted on
/dev/root	34M	34M	0	100%	/run/initramfs
/dev/sda2	32G	10G	21G	34%	/soft
/dev/sda5	3.0G	321M	2.5G	12%	/data
/dev/sda7	145G	3.0G	135G	3%	/var
/dev/loop0	15G	38M	14G	1%	/data/var/external
devtmpfs	32G	0	32G	0%	/dev
[...output truncated...]					

2. To save the system software information, use the `show version detail | save filename` and the `show system software list` operational mode commands.

The `save filename` option saves the information in a file for you to look at later, after you upgrade the system, to compare to the current state.

a. Issue the `show version detail | save filename` command.

```
user@host> show version detail | save /var/tmp/swversion.old
Wrote 3274 lines of output to '/var/tmp/swversion.old'
```

The sample output shows the contents of the saved file: the hostname, device model, current software package name, and the various Junos OS Evolved processes and their release numbers.

```
Hostname: host-02-re0
Model: ptx10008
Junos: junos-evo-install-ptx-x86-64-20.4R1.17-EV0.iso
Yocto: 2.2.1
Linux Kernel: 4.8.28-WR2.2.1_standard-g65c1491
JUNOS-EVO OS 64-bit [junos-evo-install-ptx-x86-64-20.4R1.17-EV0.iso]
aapl_25x release 67
accountd release 20
accountd-app-config release 20
accountd-policy release 4
accounting_module release 95
accounting_module-evl release 95
action-scripts release 1
addrwatch_module release 34
addrwatch_module-evl release 34
aft-sysinfo-policy release 3
[...output truncated...]
```

b. Issue the `show system software list | save filename` command.

```
user@host> show system software list | save /var/tmp/swlist.old
Wrote 39 lines of output to '/var/tmp/swlist.old'
```

The sample output shows the contents of the saved file: all the software versions in the persistent storage on the Routing Engines in the system and the current software version running on the FPCs. FPCs cannot store more than one version, because FPCs do not contain any persistent storage media.

```
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
```

```

'<' rollback boot version

- junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 12:18:07]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

< junos-evo-install-ptx-x86-64-20.4-202103121629.0-EVO - [2021-03-17 11:22:40]
- junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 10:50:39]
  junos-evo-install-ptx-x86-64-20.4-202103131143.0-EVO - [2021-03-16 16:12:38]
  junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-15 17:26:42]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

< junos-evo-install-ptx-x86-64-20.4-202103121629.0-EVO - [2021-03-17 11:25:03]
- junos-evo-install-ptx-x86-64-20.4-202103151929.0-EVO - [2021-03-17 10:50:39]
  junos-evo-install-ptx-x86-64-20.4-202103131143.0-EVO - [2021-03-16 16:14:55]
  junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-15 17:57:05]

```

3. To save the active configuration on the device, which is the last committed configuration, use the `show configuration | save filename` operational mode command.

If you need to make changes to the configuration before you install the software package, now is a good time to do so, before you capture any further information about your system. After you change the configuration and commit it, save a copy of it in the `/var/tmp` directory.

```

user@host> show configuration | save /var/tmp/config.old
Wrote 345 lines of output to '/var/tmp/config.old'

```

4. To save information about the system alarms, use the `show system alarms | save filename` operational mode command.

```
user@host> show system alarms | save /var/tmp/alarms.old
Wrote 14 lines of output to '/var/tmp/alarms.old'
```

The sample output shows the contents of the saved file: information about the active alarms.

Alarm time	Class	Description
2021-03-31 17:22:10 PDT	Minor	CB 0 Temp Sensor Fail
2021-04-01 10:51:01 PDT	Minor	FAN 1 Power Sensor Fail
2021-03-31 01:36:38 PDT	Major	PSM 0 Input1 Failed
2021-03-31 01:36:38 PDT	Major	PSM 0 Input2 Failed
2021-03-31 01:36:13 PDT	Major	PSM 1 Input2 Failed
2021-03-31 01:36:38 PDT	Major	PSM 2 Input1 Failed
2021-03-31 01:36:38 PDT	Major	PSM 2 Input2 Failed
2021-03-31 01:36:13 PDT	Major	PSM 3 Input2 Failed
2021-03-31 01:36:13 PDT	Major	PSM 4 Input2 Failed
2021-03-31 01:36:13 PDT	Major	PSM 5 Input2 Failed
2021-04-01 10:22:58 PDT	Minor	RE 0 Secure boot disabled or not enforced
2021-03-31 01:35:52 PDT	Minor	RE 1 Secure boot disabled or not enforced
2021-04-01 10:46:18 PDT	Major	chassis No Redundant Power

5. To save information about the nodes in the system, use the `show system nodes | save filename` operational mode command.

```
user@host> show system nodes | save /var/tmp/nodes.old
Wrote 47 lines of output to '/var/tmp/nodes.old'
```

The sample output shows the contents of the saved file: node information about the FPCs and Routing Engines in the system.

Node: fpc0
Node Id : 2201170739216
NodeNonce : 3051624042
Status : online, apps-ready
Attributes : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC (Active), TIMINGD_FPC (Active), MSVCS (Active), SFLOWD (Active)

```

Node: fpc1
  Node Id      : 2201170739217
  NodeNonce : 524098764
  Status      : online, apps-ready
  Attributes : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC
  (Active), TIMINGD_FPC (Active), MSVCS (Active), SFLOWD (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce : 1409607325
  Status      : online
  Attributes : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
  TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
Node: re1
  Node Id      : 2201170739205
  NodeNonce : 4092367597
  Status      : online, apps-ready
  Attributes : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare),
  TIMINGD_RE (Spare), BackupRE (Active)

```

6. To save the hardware component information, use the `show chassis hardware | save filename` operational mode command.

You will need the hardware information if the device cannot successfully reboot after the upgrade and so you cannot access the serial number for the Routing Engine. The Routing Engine serial number is necessary for the Juniper Networks Technical Assistance Center (JTAC) to issue a return to manufacturing authorization (RMA). Without the Routing Engine serial number, JTAC must dispatch an on-site technician to issue the RMA.

```

user@host> show chassis hardware | save /var/tmp/hwinventory.old
Wrote 32 lines of output to '/var/tmp/hwinventory.old'

```

You should then upload this file to an off-box location using `scp`.

```

user@host> file copy scp:///var/tmp/hwinventory.old user@remotehost.com:filename

```

The output varies depending on the chassis components of the device. Refer to the hardware guides for information about the different chassis components. The sample output shows the contents of the saved file: the hardware inventory for a PTX10008 router.

Hardware inventory:

Item	Version	Part number	Serial number	Description
Chassis			AA100	JNP10008 [PTX10008]
Midplane 0	REV 16	750-086802	AAAA1001	Midplane 8
FPM 0	REV 02	711-086964	AAAA2002	Front Panel Display
PSM 0	Rev 03	740-069994	1B21B000001	JNP10K 5500W AC/HVDC Power Supply
Unit				
PSM 1	Rev 03	740-069994	1B21B000002	JNP10K 5500W AC/HVDC Power Supply
Unit				
PSM 2	Rev 03	740-069994	1B21B000003	JNP10K 5500W AC/HVDC Power Supply
Unit				
Routing Engine 0		BUILTIN	BUILTIN	JNP10K-RE1-E
Routing Engine 1		BUILTIN	BUILTIN	JNP10K-RE1-E
CB 0	REV 06	750-101345	AAAA3001	Control Board
CB 1	REV 06	750-101345	AAAA3002	Control Board
FPC 0	REV 38	750-093524	BBBB0001	JNP10K-LC1201
CPU	REV 10	750-087304	CCCC0001	JNP10K-LC1201 PMB Board
PIC 0		BUILTIN	BUILTIN	JNP10K-36QDD-LC-PIC
Xcvr 0	REV 01	740-061405	1AAQ00000AA	QSFP-100GBASE-SR4-T2
Xcvr 1	REV 01	740-061405	1AAQ00001AA	QSFP-100GBASE-SR4-T2
Xcvr 2	REV 01	740-058734	1AAQ00002AA	QSFP-100GBASE-SR4
Xcvr 3	REV 01	740-061405	1AAQ00003AA	QSFP-100GBASE-SR4-T2
Xcvr 4	REV 01	740-067443	QA0001AA	QSFP+-40G-SR4
Xcvr 5	REV 01	740-054053	QA0002AA	QSFP+-4X10G-SR
MEZZ 0	REV 10	711-084968	DDDD0001	JNP10K-LC1201 MEZZ Board
FPC 1	REV 38	750-093524	BBBB0002	JNP10K-LC1201
CPU	REV 10	750-087304	CCCC0002	JNP10K-LC1201 PMB Board
PIC 0		BUILTIN	BUILTIN	JNP10K-36QDD-LC-PIC
MEZZ 0	REV 10	711-084968	DDDD0002	JNP10K-LC1201 MEZZ Board
SIB 0	REV 30	750-083423	EEEE0001	SIB-JNP1008
SIB 1	REV 30	750-083423	EEEE0002	SIB-JNP1008
FTC 0	REV 18	750-083435	FFFF0001	Fan Controller 8
FTC 1	REV 18	750-083435	FFFF0002	Fan Controller 8
Fan Tray 0	REV 08	750-103312	FFFF1001	Fan tray 8
Fan Tray 1	REV 08	750-103312	FFFF1002	Fan tray 8

7. To save the chassis environment information, use the `show chassis environment | save filename` operational mode command.

```
user@host> show chassis environment | save /var/tmp/hwenvironment.old
Wrote 162 lines of output to '/var/tmp/hwenvironment.old'
```

The sample output shows the contents of the saved file: environmental information about the chassis, including the temperature and status for the various chassis components as well as the fan speeds.

Class	Item	Status	Measurement
Temp	PSM 0	Ok	26 degrees C / 78 degrees F
	PSM 1	Ok	38 degrees C / 100 degrees F
	PSM 2	Ok	31 degrees C / 87 degrees F
	CB 0 Intake A Temp Sensor	Ok	23 degrees C / 73 degrees F
	CB 0 Intake B Temp Sensor	Ok	23 degrees C / 73 degrees F
	CB 0 Exhaust A Temp Sensor	Ok	26 degrees C / 78 degrees F
	CB 0 Exhaust B Temp Sensor	Ok	29 degrees C / 84 degrees F
	CB 0 Middle Temp Sensor	Ok	28 degrees C / 82 degrees F
	CB 1 Intake A Temp Sensor	Ok	23 degrees C / 73 degrees F
	CB 1 Intake B Temp Sensor	Ok	23 degrees C / 73 degrees F
	CB 1 Exhaust A Temp Sensor	Ok	26 degrees C / 78 degrees F
	CB 1 Exhaust B Temp Sensor	Ok	29 degrees C / 84 degrees F
	CB 1 Middle Temp Sensor	Ok	28 degrees C / 82 degrees F
	Fan Tray 0 Inlet Temp Sensor	Ok	24 degrees C / 75 degrees F
	Fan Tray 0 Outlet Temp Sensor	Ok	27 degrees C / 80 degrees F
	Fan Tray 1 Inlet Temp Sensor	Ok	23 degrees C / 73 degrees F
Fan Tray 1 Outlet Temp Sensor	Ok	28 degrees C / 82 degrees F	
FPC 0 BT-0 HBM-0 Temperature	Ok	54 degrees C / 129 degrees F	
	Ok	54 degrees C / 129 degrees F	
[...output truncated...]			
Fan	Fan Tray 0 Fan 0	Ok	4650 RPM
	Fan Tray 0 Fan 1	Ok	5400 RPM
	Fan Tray 0 Fan 2	Ok	4500 RPM
	Fan Tray 0 Fan 3	Ok	5400 RPM
	Fan Tray 0 Fan 4	Ok	4500 RPM
	Fan Tray 0 Fan 5	Ok	5250 RPM
	Fan Tray 0 Fan 6	Ok	4500 RPM
	Fan Tray 0 Fan 7	Ok	5400 RPM
	Fan Tray 0 Fan 8	Ok	4650 RPM
[...output truncated...]			

8. To save the system boot-message information, use the `show system boot-messages | save filename` operational mode command.

```
user@host> show system boot-messages | save /var/tmp/bootmessages.old
Wrote 7201 lines of output to '/var/tmp/bootmessages.old'
```

The sample output shows the contents of the saved file: the initial messages generated by the system kernel upon boot for FPCs and the Routing Engines; the contents of the `/var/run/dmesg.boot` file.

```
-----
node: fpc0
-----
[ 1.630132] pci 0000:ff:13.5: [8086:6fad] type 00 class 0x088000
[ 1.630204] pci 0000:ff:13.6: [8086:6fae] type 00 class 0x088000
[ 1.630274] pci 0000:ff:13.7: [8086:6faf] type 00 class 0x088000
[ 1.630352] pci 0000:ff:14.0: [8086:6fb0] type 00 class 0x088000
[ 1.630426] pci 0000:ff:14.1: [8086:6fb1] type 00 class 0x088000
[ 1.630499] pci 0000:ff:14.2: [8086:6fb2] type 00 class 0x088000
[ 1.630572] pci 0000:ff:14.3: [8086:6fb3] type 00 class 0x088000
[ 1.630644] pci 0000:ff:14.4: [8086:6fbc] type 00 class 0x088000
[ 1.630713] pci 0000:ff:14.5: [8086:6fbd] type 00 class 0x088000
[ 1.630781] pci 0000:ff:14.6: [8086:6fbe] type 00 class 0x088000
[ 1.630851] pci 0000:ff:14.7: [8086:6fbf] type 00 class 0x088000
[ 1.630921] pci 0000:ff:15.0: [8086:6fb4] type 00 class 0x088000
[ 1.630994] pci 0000:ff:15.1: [8086:6fb5] type 00 class 0x088000
[ 1.631067] pci 0000:ff:15.2: [8086:6fb6] type 00 class 0x088000
[ 1.631140] pci 0000:ff:15.3: [8086:6fb7] type 00 class 0x088000
[ 1.631225] pci 0000:ff:1e.0: [8086:6f98] type 00 class 0x088000
[ 1.631295] pci 0000:ff:1e.1: [8086:6f99] type 00 class 0x088000
[ 1.631371] pci 0000:ff:1e.2: [8086:6f9a] type 00 class 0x088000
[ 1.631441] pci 0000:ff:1e.3: [8086:6fc0] type 00 class 0x088000
[ 1.631495] pci 0000:ff:1e.4: [8086:6f9c] type 00 class 0x088000
[ 1.631566] pci 0000:ff:1f.0: [8086:6f88] type 00 class 0x088000
[ 1.631635] pci 0000:ff:1f.2: [8086:6f8a] type 00 class 0x088000
[ 1.632456] ACPI: Enabled 6 GPEs in block 00 to 3F
[ 1.632624] vgaarb: loaded
[ 1.632683] SCSI subsystem initialized
[ 1.632737] libata version 3.00 loaded.
[ 1.632765] ACPI: bus type USB registered
[...output truncated...]
```

```

-----
node: re0
-----
[ 0.00000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
[ 0.00000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using
'standard' format.
[ 0.00000] x86/fpu: Using 'eager' FPU context switches.
[ 0.00000] e820: BIOS-provided physical RAM map:
[ 0.00000] BIOS-e820: [mem 0x0000000000000000-0x000000000007ffff] usable
[ 0.00000] BIOS-e820: [mem 0x000000000007e000-0x000000000007ffff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000080000-0x000000000009ffff] usable
[ 0.00000] BIOS-e820: [mem 0x0000000000a0000-0x000000000000ffff] reserved
[ 0.00000] BIOS-e820: [mem 0x0000000000100000-0x000000000678defff] usable
[ 0.00000] BIOS-e820: [mem 0x000000000678df000-0x00000000067bdefff] type 20
[ 0.00000] BIOS-e820: [mem 0x00000000067bdf000-0x0000000006b69efff] reserved
[ 0.00000] BIOS-e820: [mem 0x0000000006b69f000-0x0000000007b69efff] ACPI NVS
[ 0.00000] BIOS-e820: [mem 0x0000000007b69f000-0x0000000007b7fefff] ACPI data
[ 0.00000] BIOS-e820: [mem 0x0000000007b7ff000-0x0000000007b7fffff] usable
[ 0.00000] BIOS-e820: [mem 0x0000000007b800000-0x0000000008fffff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000feb00000-0x000000000feb03fff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000fec00000-0x000000000fec00fff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000fed18000-0x000000000fed19fff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000fed1c000-0x000000000fed1ffff] reserved
[ 0.00000] BIOS-e820: [mem 0x000000000ff800000-0x000000000fffffff] reserved
[ 0.00000] BIOS-e820: [mem 0x00000000100000000-0x0000000107fffffff] usable
[...output truncated...]

```

- To save information about the interfaces on the device, use the `show interfaces terse | save filename` operational mode command.

```

user@host> show interfaces terse | save /var/tmp/interfaces.old
Wrote 176 lines of output to '/var/tmp/interfaces.old'

```

The sample output shows the contents of the saved file: summary information about the physical and logical interfaces on the device.

Interface	Admin	Link	Proto	Local	Remote
et-0/0/0	up	down			
et-0/0/0.16386	up	down	multiservice		
pfh-0/0/0	up	up			
pfh-0/0/0.16383	up	up	inet		

et-0/0/1	up	up				
et-0/0/1.0	up	up	inet	10.1.1.1/24		
				multiservice		
et-0/0/2	up	down				
et-0/0/2.16386	up	down	multiservice			
et-0/0/3	up	down				
et-0/0/3.0	up	down	inet	10.0.0.1/24		
				multiservice		
et-0/0/4	up	down				
et-0/0/4.16386	up	down	multiservice			
[...output truncated...]						
et-1/0/0	up	down				
et-1/0/0.16386	up	down	multiservice			
pfh-1/0/0	up	up				
pfh-1/0/0.16383	up	up	inet			
et-1/0/1	up	down				
et-1/0/1.16386	up	down	multiservice			
et-1/0/2	up	down				
et-1/0/2.16386	up	down	multiservice			
[...output truncated...]						
re0:mgmt-0	up	up				
re0:mgmt-0.0	up	up	inet	10.48.20.100/22		
re1:mgmt-0	up	up				
re1:mgmt-0.0	up	up	inet	10.48.20.115/22		
dsc	up	up				
esi	up	up				
fti0	up	up				
fti1	up	up				
fti2	up	up				
fti3	up	up				
fti4	up	up				
fti5	up	up				
fti6	up	up				
fti7	up	up				
irb	up	up				
lo0	up	up				
lo0.0	up	up	inet	10.255.9.9	-->	0/0
				127.0.0.1	-->	0/0
				127.0.0.64	-->	0/0
			iso			
47.0005.80ff.f800.0000.0108.0001.0102.5500.9009.00						
			inet6	2001:db8::10:255:9:9	-->	
				2001:db8::8603:28f0:db:6a6d-->		

lsi	up	up
pip0	up	up
vtep	up	up

10. To save protocol information, use the `show` operational mode commands with the `save filename` option for the protocols configured for the device. To discover for which categories `show` commands are available, type `show ?` at the CLI operational mode prompt, and the system responds with a list of the available categories. Then choose a category, for example, `bgp`. Entering `show bgp ?` displays the list of `show` commands available for that category.

```
user@host> show bgp ?
Possible completions:
  bmp           Show BGP Monitoring Protocol information
  group         Show the BGP group database
  neighbor      Show the BGP neighbor database
  output-scheduler Show BGP output queue scheduler configuration
  replication   BGP NSR replication state between master and backup
  source-packet-routing Show BGP source-packet-routing
  summary        Show overview of BGP information
  tunnel-attribute Show Tunnel attributes advertised/received
```

This example shows the commands to save useful information about the Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS), and Open Shortest Path First (OSPF) protocols. If you have other protocols configured, such as Address Resolution Protocol (ARP), Bidirectional Forwarding Detection (BFD), Link Layer Discovery Protocol (LLDP), MPLS, Resource Reservation Protocol (RSVP), or Protocol Independent Multicast (PIM), you also should save summary information for these protocols.

```
user@host> show bgp summary | save /var/tmp/bgp.old
Wrote 17 lines of output to '/var/tmp/bgp.old'
```

The sample output shows the contents of the saved file: summary information about BGP.

```
Threading mode: BGP I/O
Default eBGP mode: advertise - accept, receive - accept
Groups: 4 Peers: 4 Down peers: 0
Table      Tot Paths  Act Paths Suppressed  History Damp State  Pending
inet.0          600000      600000          0          0          0          0
inet6.0
```

Peer	AS	InPkt	OutPkt	OutQ	Flaps	Last Up/Dwn	State	#Active/
Received/Accepted/Damped...								
192.0.2.2	64496	933	1007	0	0	4:40:24	Establ	
inet.0: 300000/300000/300000/0								
198.51.100.2	64497	933	1055	0	0	4:40:20	Establ	
inet.0: 300000/300000/300000/0								
2001:db8::119:2	64498	963	1068	0	0	4:40:30	Establ	
inet6.0: 100000/100000/100000/0								
2001:db8::120:2	64499	962	1083	0	0	4:40:26	Establ	
inet6.0: 100000/100000/100000/0								

```
user@host> show isis adjacency brief | save /var/tmp/isis.old
Wrote 383 lines of output to '/var/tmp/isis.old'
```

The sample output shows the contents of the saved file: brief information about the IS-IS adjacencies.

Interface	System	L	State	Hold (secs)	SNPA
ae0.1	host-101	1	Up	6	78:4f:9b:ff:19:83
ae0.1	host-101	2	Up	8	78:4f:9b:ff:19:83
ae0.10	host-101	1	Up	6	78:4f:9b:ff:19:83
ae0.10	host-101	2	Up	8	78:4f:9b:ff:19:83
ae0.100	host-101	1	Up	8	78:4f:9b:ff:19:83
ae0.100	host-101	2	Up	7	78:4f:9b:ff:19:83
ae0.11	host-101	1	Up	8	78:4f:9b:ff:19:83
ae0.11	host-101	2	Up	8	78:4f:9b:ff:19:83
ae0.12	host-101	1	Up	8	78:4f:9b:ff:19:83
ae0.12	host-101	2	Up	6	78:4f:9b:ff:19:83
[...output truncated...]					

```
user@host> show ospf neighbor brief | save /var/tmp/ospf.old
Wrote 428 lines of output to '/var/tmp/ospf.old'
```

The sample output shows the contents of the saved file: brief information about the OSPF neighbors.

Address	Interface	State	ID	Pri	Dead
10.1.1.2	ae0.1	Full	10.255.2.135	128	38
10.1.10.2	ae0.10	Full	10.255.2.135	128	37
10.1.100.2	ae0.100	Full	10.255.2.135	128	35
10.1.11.2	ae0.11	Full	10.255.2.135	128	39
10.1.12.2	ae0.12	Full	10.255.2.135	128	32
10.1.13.2	ae0.13	Full	10.255.2.135	128	35
10.1.14.2	ae0.14	Full	10.255.2.135	128	36
10.1.15.2	ae0.15	Full	10.255.2.135	128	37
10.1.16.2	ae0.16	Full	10.255.2.135	128	35
10.1.17.2	ae0.17	Full	10.255.2.135	128	36
10.1.18.2	ae0.18	Full	10.255.2.135	128	39
11.1.19.2	ae0.19	Full	10.255.2.135	128	34
[...output truncated...]					

11. To check if you have a recent-enough backup copy of your software, file system, and configuration, use the `show system snapshot | save filename` operational mode command.

```
user@host> show system snapshot | save /var/tmp/snapshot.old
Wrote 27 lines of output to '/var/tmp/snapshot.old'
```

The sample output shows the contents of the saved file: information about the snapshots saved on the system.

```
-----
node: re0
-----
Current snapshot device: /dev/sdb
Snapshot boot device: sdb
List of installed version(s) in Snapshot boot device sdb:

[1]  < junos-evo-install-ptx-x86-64-20.4-202103151803.0-EVO - [2021-03-16 15:09:46]
[2]    junos-evo-install-ptx-x86-64-20.4-202103111254.0-EVO - [2021-03-16 15:10:32]
[3] -> junos-evo-install-ptx-x86-64-20.4-202103150459.0-EVO - [2021-03-16 15:07:49]
[4]    junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-16 15:11:52]
```

```
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
-----
node: re1
-----
Current snapshot device: /dev/sdb
Snapshot boot device: sdb
List of installed version(s) in Snapshot boot device sdb:

[1] -> junos-evo-install-ptx-x86-64-20.4-202103051234.0-EVO - [2021-03-05 01:10:31]

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
```

We recommend that if you do not have a snapshot that is the version currently running on the system or one that is recent enough to have the latest configuration for the system, that you back up the currently running software, file system, and configuration. Use the `request system snapshot` operational mode command, using the instructions at ["Back Up and Recover Software with Snapshots" on page 160](#).

Once you have a snapshot of your system and collected information about the system, you need to validate the configuration image before upgrading or downgrading your software. See ["Validate the Configuration against the Installation Image" on page 51](#).

RELATED DOCUMENTATION

[Install, Upgrade, and Downgrade Software | 53](#)

Validate the Configuration against the Installation Image

SUMMARY

When you upgrade or downgrade the Junos OS Evolved image on a device, the system validates that the existing configuration is compatible with the new image before the actual upgrade or downgrade commences.

Before you upgrade or downgrade Junos OS Evolved on your device, you should validate the device's current configuration against the installation image you've downloaded from [Juniper Networks Support](#).

Validation is on by default. You do not need to configure it or issue any command to start it on a device.

When you upgrade or downgrade the Junos OS Evolved image on a device, the system validates that the existing configuration is compatible with the new image before the actual upgrade or downgrade commences.

During validation, Junos OS Evolved installs the image in a temporary location and keeps this image until validation is complete. Following validation, Junos OS Evolved displays one of the following status messages:

- Upgrade cleanup succeeded: The add operation failed, but the temporary image removal was successful.
- Upgrade cleanup failed: The add operation and the temporary image removal both failed.
- Validate cleanup succeeded: The temporary image was removed successfully.
- Validate cleanup failed: The temporary image removal failed.

Benefits of validation—If validation fails, the new image is not loaded. If you upgrade or downgrade the software on a system without validation, configuration incompatibilities between the existing and new image or insufficient memory to load the new image might cause the system to lose its current configuration or go offline.

To invoke validation manually, do one of the following:

- Issue the `request system software add image-name` operational mode command to install the package with validation.
- Issue the `request system software validate` operational mode command to just validate the configuration.

RELATED DOCUMENTATION

`request system software validate (Junos OS Evolved)`

CHAPTER 6

Upgrade and Downgrade Software

IN THIS CHAPTER

- [Install, Upgrade, and Downgrade Software | 53](#)
- [Upgrade Firmware on Junos OS Evolved Devices | 94](#)
- [Unified ISSU for Junos OS Evolved | 103](#)
- [Stage and Activate Junos OS Evolved Software | 112](#)

Install, Upgrade, and Downgrade Software

SUMMARY

Devices are delivered with Junos OS Evolved already installed on them. As new features and software fixes become available, you must upgrade Junos OS Evolved to use them. You can install software on devices that have either single or redundant routing engines. Before you install a software release on a device, you should make any necessary changes to the configuration and back up the current system.

IN THIS SECTION

- [Prepare to Install Software | 55](#)
- [Prepare both Routing Engines to Join the System | 56](#)
- [Install the Software Package on a Device with Redundant Routing Engines, on all Nodes at the Same Time | 64](#)
- [Install the Software Package on a Device with Redundant Routing Engines, on Backup Routing Engine First, Then on Primary Routing Engine | 69](#)
- [Install the Software Package on a Device with a Single Routing Engine | 86](#)
- [Recover from a Failed Installation Attempt If the CLI Is Working | 89](#)
- [Replace a Routing Engine in a Dual-Routing Engine System | 90](#)

- Not Enough Disk Space for Software Installation | 93

Junos OS Evolved ensures that all Routing Engines (Routing Engines) and FPCs in the system are running the same software version. By default, when you issue the `request system software add image-name` operational mode command on the primary Routing Engine, the system installs the new version of software on both Routing Engines. Once you reboot the system after a software package installation, all the Routing Engines and FPCs in the system run the new version of the software.

Junos OS Evolved supports storing multiple versions of software on the storage media. You can view the installed versions on the device with the `show system software list` operational mode command. Each version of the software is stored in a distinct area in the `/soft` directory, ensuring that a software package installation does not impact the other software versions installed in the system. We recommend you keep no more than 5 versions of software in the system.

In Junos OS, for devices with redundant Routing Engines, you must first upgrade the software on the backup Routing Engine and then switch control to the backup Routing Engine to run the new software version. After you are sure the software upgrade on the original backup Routing Engine is successful, you can upgrade the original primary Routing Engine to the new software version and switch control back to the original primary Routing Engine. However, by default, with Junos OS Evolved, you do not need to upgrade the backup Routing Engine first. You upgrade both Routing Engines using a single command issued on the primary Routing Engine. Starting in Junos OS Evolved Release 25.4R1, we also support installing Junos OS Evolved on the backup Routing Engine first, switching to it and then upgrading the new backup (original primary) Routing Engine, on devices with redundant Routing Engines.

During a successful installation, the installation package completely re-installs the existing software. It retains configuration files and similar information, such as secure shell and host keys, from the previous version. The previous software package is preserved in a separate area, and you can manually roll back to it if necessary. If the software installation fails for any reason, such as loss of power during the installation process, the system returns to the originally active installation when you reboot. For more background information on software installation, see ["Software Installation and Upgrade Overview \(Junos OS Evolved\)" on page 16](#).

Junos OS Evolved allows you to roll back to any of the releases stored in the system with the `request system software rollback image-name` operational mode command. The system also stores with each release the last configuration that was running when the release was running. Junos OS Evolved supports rolling back to an alternate image with the currently-running configuration or with the saved configuration that corresponds to the rollback software image, with the `request system software rollback with-old-snapshot-config` operational mode command.

If the system does not function properly after the upgrade and reboot, the previous version can be restored by rolling back to the previous version. See the roll back step in the ["Recover from a Failed Installation Attempt If the CLI Is Working" on page 89](#) procedure.

For dual-Routing Engine devices, if a Routing Engine inserted into the device has a different software version, the new Routing Engine is kept out of the system. We recommend that you configure the software to synchronize automatically to the new Routing Engine, by configuring the `auto-sw-sync` statement at the `[edit system]` hierarchy level. When this configuration is present, the Routing Engine that is in the system copies over all the images to the new Routing Engine and reboots the new Routing Engine so that it automatically comes up with the correct software. You can also choose to synchronize the software to the new Routing Engine manually each time you have to replace a Routing Engine, by using the `request system software sync all-versions` operational mode command, which synchronizes the software versions and configurations. For more information about replacing Routing Engines, see ["Replace a Routing Engine in a Dual-Routing Engine System" on page 90](#).

When you upgrade or downgrade software using the `request system software add` operational mode command, the system installs the software package and immediately activates it, which sets the software as the next boot version. Starting in Junos OS Evolved Release 25.4R1, you have the option to install software in separate staging and activation phases on devices that support this feature. The separation of installation tasks provides finer control over software management and makes it easier to perform validations. For more information, see ["Stage and Activate Junos OS Evolved Software" on page 112](#).

Prepare to Install Software

Follow these steps to prepare to install your Junos OS Evolved software:

1. Using a Web browser, navigate to the **All Junos Platforms** software download URL on the Juniper Networks webpage: <https://www.juniper.net/support/downloads/>
2. In the **Find a Product** box, enter the Junos OS platform for the software that you want to download.
3. Select **Junos Evolved** from the OS drop-down list.
4. Select the relevant release number from the **Version** drop-down list.
5. In the **Install Package** section, select the software package for the release.
6. Log in to the Juniper Networks authentication system using the username (generally your e-mail address) and password supplied by a Juniper Networks representative.
7. Review and accept the End User License Agreement.
8. Download the software to a local host.

NOTE: For more information about the types of Junos OS installation package prefixes, see ["Junos OS Evolved Installation Packages" on page 25](#).

9. For a dual-Routing Engine device, ensure that both Routing Engines are participating in the system, and are running the same software. See ["Prepare both Routing Engines to Join the System" on page 56](#).
10. Ensure enough disk space is available to install the package, ensure that a system backup is available, and gather information about the system and how it is currently handling traffic by following the procedure in ["Before You Upgrade or Reinstall Junos OS Evolved" on page 36](#).
11. Copy the software image to the `/var/tmp/` directory of the device running Junos OS Evolved using the `scp` command.

```
user@host> file copy scp://filename /var/tmp/filename
```

12. Validate the configuration against the installation image before upgrading or downgrading your software by following the procedure in ["Validate the Configuration against the Installation Image" on page 51](#).
13. Install the new package on the device.

Choose one of the following procedures:

- ["Install the Software Package on a Device with a Single Routing Engine" on page 86](#)
- ["Install the Software Package on a Device with Redundant Routing Engines, on all Nodes at the Same Time" on page 64](#)
- ["Install the Software Package on a Device with Redundant Routing Engines, on Backup Routing Engine First, Then on Primary Routing Engine" on page 69](#)

NOTE: We recommend that you upgrade all software packages out of band using the console port, because in-band connections are lost during the installation process.

For more information about EOL releases and to review a list of EOL releases, see the [Junos OS Evolved Dates and Milestones](#) webpage.

Prepare both Routing Engines to Join the System

For dual-Routing Engine devices, both Routing Engines must be participating in the system to be able to install software on both Routing Engines. You must verify that both Routing Engines are in the system and which software versions are currently running in the system. You use the `show system software list`, `show system nodes`, and `show system alarms` operational mode commands to do so and to determine what course of action to take if one of the Routing Engines is not participating in the system.

Issue the `show system software list` and `show system nodes` commands on the primary Routing Engine to check the status of the Routing Engines. If information about both `re0` and `re1` appear in the output, and show a status of `Status : online, apps-ready` in the output of the `show system nodes` command, both Routing Engines

are operational, part of the system, and are running the same software version. You can proceed to install the software. See ["Install the Software Package on a Device with Redundant Routing Engines, on all Nodes at the Same Time" on page 64](#). For example:

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:22:09]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:06:50]
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce   : 2632845278
  Status       : online, apps-ready
  Attributes  : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC (Active),
  TIMINGD_FPC (Active), MSVCSD (Active)

Node: re0
  Node Id      : 2201170739204
  NodeNonce   : 1829978227
  Status       : online, apps-ready
```

```
Attributes : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active), TIMINGD_RE
(Active), MasterRE (Active), GlobalIPOwner (Active)
```

Node:

re1

```
Node Id      : 2201170739205
```

```
NodeNonce : 3166228206
```

```
Status      : online, apps-ready
```

```
Attributes : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare), TIMINGD_RE
(Spare), BackupRE (Active)
```

If both Routing Engines are present, but the status of one Routing Engine is not Status : online, apps-ready, you need to take action to bring that Routing Engine into the system. In these examples, re0 is the Routing Engine in the system and re1 is the other Routing Engine that needs to join the system:

- **If the status is Status : offline, configured-offline**, issue the request node online *node-name* operational mode command on the Routing Engine in the system to bring the other Routing Engine back online. For example:

```
user@host-re0> request node online re1
This may take a few minutes. Online the node ? [yes,no] (no) yes

Node re1 is set to be online
```

Issue the show system nodes command to verify the Routing Engine has joined the system (both Routing Engines show Status : online, apps-ready).

```
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce : 4089726524
  Status      : online, apps-ready
  Attributes : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC (Active),
  TIMINGD_FPC (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce : 4290191371
  Status      : online, apps-ready
  Attributes : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
  TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
Node: re1
```

```

Node Id      : 2201170739205
NodeNonce   : 237744170
Status       : online, apps-ready
Attributes   : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare), TIMINGD_RE
(Spare), BackupRE (Active)

```

If the status is still Status : offline, configured-offline, the other Routing Engine is configured to be offline and you need to delete that part of the configuration and commit it. Use the show configuration system node operational mode command to check the configuration. Delete the configuration, and issue the show system nodes command to check the status. The Routing Engines should both be online.

```

user@host-re0> show configuration system node
offline re1;

{master}
user@host-re0> edit

{master}[edit]
user@host-re0# delete system node offline re1

{master}[edit]
user@host-re0# commit
commit complete

{master}[edit]
user@host-re0# exit

{master}
user@host-re0>

```

- If the status is Status : offline, configured-powered-off, the other Routing Engine has either been powered off or halted. Issue the request chassis cb slot *slot-number* offline operational mode command from the Routing Engine in the system to determine which is the case. For example:
 - If the Routing Engine was halted, the status message says Offline initiated:

```

user@host-re0> request chassis cb slot 1 offline
Offline initiated

```

- If the Routing Engine was powered-off, the status message says CB is already Offline:

```
user@host-re0> request chassis cb slot 1 offline
CB is already Offline
```

In either case, you need to bring the other Routing Engine back online and verify the Routing Engine has joined the system:

- a. Issue the `request chassis cb slot slot-number online` operational mode command on the Routing Engine in the system to bring the other Routing Engine online:

After issuing the command, please wait a few minutes for the other Routing Engine to come back online.

```
user@host-re0> request chassis cb slot 1 online
Online initiated
```

- b. Issue the `show system software list` operational mode command to verify that the Routing Engine has joined the system and that both Routing Engines are running the same software version:

```
user@host-re0> show system software list
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

- junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 16:27:34]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
```

```

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 14:24:37]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 13:59:46]

```

- If the output of the `show system software list` and `show system nodes operational mode` commands do not contain information for `re1` and the `show system alarms operational mode` command shows that the software versions do not match (Software Version Mismatch on `re1:package-name`), issue the `request system software sync all-versions` operational mode command on the Routing Engine in the system to bring the other Routing Engine into the system and synchronize the software from the Routing Engine in the system to the other Routing Engine.

```

user@host-re0> request system software sync all-versions
warning: Erase software versions present on the other RE node and sync software versions from
Master RE node
Erase software versions on the other RE and sync from Master RE? [yes,no] (no) ...yes

Cleanup old software versions on re1
The current version on master RE - junos-evo-install-ptx-x86-64-20.4R2.13-EVO
The current version on other RE - junos-evo-install-ptx-x86-64-20.4R2.14-EVO
Sync in progress for /soft/junos-evo-install-ptx-x86-64-20.4R2.13-EVO...
The rollback version on master RE - junos-evo-install-ptx-x86-64-20.4R2.14-EVO
The rollback version on other RE - junos-evo-install-ptx-x86-64-20.4R2.13-EVO
Sync in progress for /soft/junos-evo-install-ptx-x86-64-20.4R2.14-EVO...
Software sync completed for all versions
Warning: Rebooting re1
Please run 'show system software list' to see SW versions installed in all nodes

```

Issue the `show system software list` operational mode command to verify that both Routing Engines are in the system and the Routing Engines are running the same software version:

```
user@host-re0> show system software list
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

- junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 16:27:34]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

- junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
< junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

- junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 14:24:37]
< junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 13:59:46]
```

- Save the current image on disk1 to disk2.

In case of an early initialization error, the Routing Engine will boot from the second disk, which has the software image and the configuration file from before the upgrade attempt.

- Verify the snapshot is updated correctly.

```
user@host-re0> show system snapshot
-----
node: re0
-----
Current snapshot device: /dev/sdb
Snapshot boot device: sdb
List of installed version(s) in Snapshot boot device sdb:
[1] -> junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 16:56:02]
[2] < junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 16:58:38]

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
-----
node: re1
-----
Current snapshot device: /dev/sdb
Snapshot boot device: sdb
List of installed version(s) in Snapshot boot device sdb:
[1] -> junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 16:55:38]
[2] < junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 16:58:25]

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
```

Install the Software Package on a Device with Redundant Routing Engines, on all Nodes at the Same Time

Unlike Junos OS, Junos OS Evolved ensures all nodes in a system are running the same software version. In Junos OS Evolved, the device can contain multiple releases of the software simultaneously if enough space exists. If the device does not have enough space, you must delete an older image of the software before installing a new one. We recommend that you store no more than 5 versions of software on the device.

Before you install a new software release on a device, you should back up the current system. See ["Back Up and Recover Software with Snapshots" on page 160](#).

Before you upgrade the software, you must prepare for the installation. See ["Prepare to Install Software" on page 55](#).

The `request system software add` operational mode command installs the software on both the Routing Engines. This command does not modify the currently running software stack. This command validates the current configuration using the new version of the software. Once validation succeeds, the install process checks for sufficient storage on both Routing Engines. Once the storage checks pass, the new software is installed on both Routing Engines. You need to reboot the system to run the new software. The software installation process only affects traffic for a short while; for more information, see [Table 5 on page 65](#).

Table 5: Software Installation Tasks and their Traffic Impact

Tasks	Actions	Traffic Impact
Add the software	Validate the configuration, check for sufficient storage, install on both Routing Engines	None
Verify the software installation	Show image that will be the current image after the system reboots	None
Reboot the system	Reboot all Routing Engines and FPCs at the same time	Impacted; resumes after the system reboots
Verify which software image is running	Show image running after reboot	None

To upgrade the software on a device:

1. Install the new software package using the `request system software add` *installation-package* operational mode command on the primary Routing Engine:

The variable *installation-package* is the name of the installation package. Specify the absolute path on the local disk; for example, `/var/tmp/ptx.iso`. In this example, the package `junos-evo-install-ptx-`

x86-64-20.4R2.13-EVO was downloaded onto the local disk as `/var/tmp/ptx.iso`. To understand package name prefixes, see ["Junos OS Evolved Installation Packages" on page 25](#).

```
user@host-re0> request system software add /var/tmp/ptx.iso
Adding software images. This process can take several minutes. Please be patient...
Download and Validate in Progress
re0: Starting upgrade : /var/tmp/ptx.iso
re0: Upgrade version : junos-evo-install-ptx-x86-64-20.4R2.13-EVO
re0: Running pre-checks for 'junos-evo-install-ptx-x86-64-20.4R2.13-EVO'
re0: Pre-checks pass successfully, copying files to software
area                                         re0: Running post install
commands...
re0: Post install sequence was successful.
re0: Validating existing configs. See /var/log/validation_config.log for config validation
logs.
re0: Validation Passed
re0: Going ahead with Installation
re0: Boot version is now 'junos-evo-install-ptx-x86-64-20.4R2.13-EVO'
re0: Updating all nodes...
re1: Running pre-checks for 'junos-evo-install-ptx-x86-64-20.4R2.13-EVO'
re1: Pre-checks pass successfully, copying files to software area
re1: Running post install commands...
re1: Post install sequence was successful.
re1: Boot version is now 'junos-evo-install-ptx-x86-64-20.4R2.13-EVO'
re1: Config fetch successful
re0: Other nodes have been updated successfully
re0: Cluster wide installation was successful
Image validation and installation succeeded.
WARNING: NOTE: A reboot is required to start using the new software.
WARNING: Use the 'request system reboot' command when ready.
```


NOTE: Do not change the configuration before you reboot the device. If you make any configuration changes at this time, the system discards the changes.

2. Use the `show system software list` operational mode command on the primary Routing Engine to verify the newly-added software package is now the next-boot version on both Routing Engines:

In the example, the next-boot version on both Routing Engines is now `junos-evo-install-ptx-x86-64-20.4R2.13-EVO`. Note that `junos-evo-install-ptx-x86-64-20.4R2.14-EVO` is still the currently running version.

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :
  '-' running version
  '>' next boot version after upgrade/downgrade
  '<' rollback boot version

  >  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
  -  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed
version(s) :

  '-' running version
  '>' next boot version after upgrade/downgrade
  '<' rollback boot version

  >  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:22:09]
  -  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:06:50]
```

3. Reboot the device from the primary Routing Engine to start the new software:

The system reboots all nodes at the same time.

```
user@host-re0> request system reboot
The entire system (all nodes) will reboot causing traffic loss, do you wish to continue?
[yes,no] (no) yes

*** System shutdown message from user@host-re0 ***
```

```
reboot the system at Wed May  5 09:24:06 2021
```

Verify the system is running the new version.

NOTE: You must reboot the device to load the new software release on the device.

To prevent the newly added package from becoming the currently running software, do not reboot the device. Instead, answer `no`, and then issue the `request system software delete package-name` command. This prompt gives you the opportunity to stop the installation from finishing.

The software is loaded when you reboot the system. Installation can take between 5 and 10 minutes. The device then reboots from the boot device on which the software was just installed. When the reboot is complete, the device displays the login prompt. After the reboot, Junos OS Evolved automatically saves the previous image of the software and configuration to create the rollback image.

During the reboot, the Routing Engine on which you are performing the installation does not route traffic.

4. Log in to the primary Routing Engine and verify the release of the software installed on both Routing Engines, using the `show system software list` operational mode command:

The current version on both Routing Engines is now `junos-evo-install-ptx-x86-64-20.4R2.13-EV0`. `junos-evo-install-ptx-x86-64-20.4R2.14-EV0` is now the rollback version.

```
user@host> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EV0 - [2021-05-05 09:19:16]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EV0 - [2021-05-05 09:03:23]
-----
node: re1
```

```

-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:22:09]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:06:50]

```

5. Verify that the system is running properly and correctly handling traffic by repeating the steps in the procedure in ["Before You Upgrade or Reinstall Junos OS Evolved" on page 36](#) and compare the information to what you collected before you installed the software package.
6. If you need to make any changes to the configuration as a result of the verification step, don't forget to back up the software and configuration using the `request system snapshot operational` mode command. See ["Back Up and Recover Software with Snapshots" on page 160](#).

Install the Software Package on a Device with Redundant Routing Engines, on Backup Routing Engine First, Then on Primary Routing Engine

Unlike Junos OS, Junos OS Evolved ensures all nodes in a system are running the same software version. In Junos OS Evolved, the device can contain multiple releases of the software simultaneously if enough space exists. However, you might want to install the software on only one Routing Engine at a time to:

- Minimize the impact of the Routing Engine not being reachable by ssh by upgrading only the backup Routing Engine first.
- Maintain the old version on the primary Routing Engine.
- In case of traffic not resuming after switching to the Routing Engine with the new version, support switching back to the old version.
- Provide checkpoints for being able to ssh to the Routing Engine with the new version.

If you install software on the backup Routing Engine first, you can then check to make sure the installation was successful. You can then switch mastership on the backup Routing Engine and that Routing Engine takes over the primary role in a clean state.

Starting in Junos OS Evolved Release 25.4R1, we support the same install method as Junos OS, giving you another method of installing Junos OS Evolved software on devices with redundant Routing Engines. You first install the new Junos OS Evolved release on the backup Routing Engine while keeping the currently running software version on the primary Routing Engine. This method enables the primary Routing Engine to continue operations, minimizing disruption to your network.

If the device does not have enough space, you must delete an older image of the software before installing a new one. We recommend that you store no more than 5 versions of software on the device.

Before you install a new software release on a device, you should back up the current system. See ["Back Up and Recover Software with Snapshots" on page 160](#).

Before you upgrade the software, you must prepare for the installation. See ["Prepare to Install Software" on page 55](#).

To install the software, you:

- Disable all forms of Routing Engine synchronization, such as GRES, NSR, nonstop bridging, and automatic software synchronization, and configure a backup router to be able to access the system.
- Install the software on the hardware backup Routing Engine (RE1) and switch mastership to RE1.
- Install the software on RE0.
- Re-enable all forms of Routing Engine synchronization and, optionally, switch mastership back to RE0.

1. Check to make sure all nodes are in the cluster.

RE0, RE1, and all FPCs are running the old software version. RE0 is the hardware primary Routing Engine. RE1 is the hardware backup Routing Engine.

```
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce   : 4089726524
  Status       : online, apps-ready
  Attributes  : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC
  (Active), TIMINGD_FPC (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce   : 4290191371
  Status       : online, apps-ready
  Attributes  : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
  TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
Node: re1
  Node Id      : 2201170739205
  NodeNonce   : 237744170
  Status       : online, apps-ready
```

```
Attributes : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare),
TIMINGD_RE (Spare), BackupRE (Active)
```

2. Check which Routing Engine is master.

In this example, RE0 is master and RE1 is backup. We'll follow this convention through this procedure.

```
user@host-re0> show chassis routing-engine |no-more
Routing Engine status:
Slot 0:
  Current state           Master
  Election priority       Master (default)
  Temperature             35 degrees C / 95 degrees F
  CPU temperature         36 degrees C / 96 degrees F
  DRAM                   50692 MB (65536 MB installed)
  Memory utilization      22 percent
  5 sec CPU utilization:
    User                  4 percent
    Background            0 percent
    Kernel                1 percent
    Interrupt              0 percent
    Idle                  94 percent
  1 min CPU utilization:
    User                  4 percent
    Background            0 percent
    Kernel                1 percent
    Interrupt              0 percent
    Idle                  95 percent
  5 min CPU utilization:
    User                  4 percent
    Background            0 percent
    Kernel                1 percent
    Interrupt              0 percent
    Idle                  95 percent
  15 min CPU utilization:
    User                  4 percent
    Background            0 percent
    Kernel                1 percent
    Interrupt              0 percent
    Idle                  95 percent
  Model                  JNP10K-RE1-E
  Serial ID              BUILTIN
```

Start time	2025-12-09 18:03:00 PST
Uptime	1 day, 15 hours, 17 minutes, 36 seconds
Load averages:	1 minute 5 minute 15 minute
	0.98 1.19 1.28
Last reboot reason	software reboot
Routing Engine status:	
Slot 1:	
Current state	Backup
Election priority	Backup (default)
Temperature	34 degrees C / 93 degrees F
CPU temperature	34 degrees C / 93 degrees F
DRAM	51690 MB (65536 MB installed)
Memory utilization	21 percent
5 sec CPU utilization:	
User	1 percent
Background	0 percent
Kernel	1 percent
Interrupt	0 percent
Idle	98 percent
1 min CPU utilization:	
User	1 percent
Background	0 percent
Kernel	1 percent
Interrupt	0 percent
Idle	98 percent
5 min CPU utilization:	
User	1 percent
Background	0 percent
Kernel	1 percent
Interrupt	0 percent
Idle	98 percent
15 min CPU utilization:	
User	1 percent
Background	0 percent
Kernel	1 percent
Interrupt	0 percent
Idle	98 percent
Model	JNP10K-RE1-E
Serial ID	BUILTIN
Start time	2025-12-09 17:37:00 PST
Uptime	1 day, 15 hours, 43 minutes, 57 seconds
Load averages:	1 minute 5 minute 15 minute

Last reboot reason	0.32	0.26	0.26
	software reboot		

3. Configure a backup router so that you can access the Routing Engines from outside of the system using ssh:

If the backup router configuration is not present, or is not identical to the next-hop address of the available static routes, you need to add a backup router configuration. The following is an example of a backup-router configuration that is identical to the routing-options configuration for the static routes:

```

re0 {
    system {
        host-name host;
        backup-router 10.92.245.254 destination [ 172.16.0.0/12 192.168.0.0/16
10.0.0.0/10 10.64.0.0/10 10.128.0.0/10 10.192.0.0/11 10.224.0.0/12 10.240.0.0/13
10.248.0.0/14 10.252.0.0/15 10.254.0.0/16 ];
    }
    re1 {
        system {
            host-name host-1;
            backup-router 10.92.245.254 destination [ 172.16.0.0/12 192.168.0.0/16
10.0.0.0/10 10.64.0.0/10 10.128.0.0/10 10.192.0.0/11 10.224.0.0/12 10.240.0.0/13
10.248.0.0/14 10.252.0.0/15 10.254.0.0/16 ];
        }
    routing-options {                                # config on both RE0 and RE1
        router-id 10.255.28.178;
        static {
            route 172.16.0.0/12 {
                next-hop 10.92.245.254;
                retain;
                no-readvertise;
            }
            route 192.168.0.0/16 {
                next-hop 10.92.245.254;
                retain;
                no-readvertise;
            }
            route 10.0.0.0/10 {
                next-hop 10.92.245.254;
                retain;
                no-readvertise;
            }
        }
    }
}

```

```
}

route 10.64.0.0/10 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.128.0.0/10 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.192.0.0/11 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.224.0.0/12 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.240.0.0/13 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.248.0.0/14 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.252.0.0/15 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}

route 10.254.0.0/16 {
    next-hop 10.92.245.254;
    retain;
    no-readvertise;
}
```

4. Test that you can use the command ssh to access RE1:

```
user@external-shell-server> ssh RE1 hostname
```

5. Disable all forms of Routing Engine synchronization.

Starting state is RE0 is the hardware primary Routing Engine and RE1 is the hardware backup Routing Engine. Configuration is synchronized from RE0 to RE1. RE0 and the FPCs carry traffic.

```
user@host-re0# set system commit no-synchronize
user@host-re0# delete system auto-sw-sync
user@host-re0# delete routing-options nonstop-routing
user@host-re0# delete protocols layer2-control nonstop-bridging
user@host-re0# commit
user@host-re0# set chassis redundancy no-graceful-switchover
user@host-re0# commit
```

RE1 automatically reboots after GRES is disabled, and boots up with the old software version. RE1 is now a node by itself. RE0 and the FPCs are the other node in the system.

```
user@host-re1> show system nodes
Node: re1
  Node Id      : 2201170739205
  NodeNonce   : 237744170
  Status       : online, apps-ready
  Attributes  : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare),
  TIMINGD_RE (Spare), BackupRE (Active)
```

```
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce   : 4089726524
  Status       : online, apps-ready
  Attributes  : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC
  (Active), TIMINGD_FPC (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce   : 4290191371
  Status       : online, apps-ready
```

```
Attributes : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
```

6. Install the new software package using the request system software add *installation-package* operational mode command on the backup Routing Engine:

The variable ***installation-package*** is the name of the installation package. Specify the absolute path on the local disk; for example, **/var/tmp/ptx.iso**. In this example, the package **junos-evo-install-ptx-x86-64-25.4R1.13-EVO** was downloaded onto the local disk as **/var/tmp/ptx.iso**. To understand package name prefixes, see "[Junos OS Evolved Installation Packages](#)" on page 25.

```
user@host-re1> request system software add /var/tmp/ptx.iso
Adding software images. This process can take several minutes. Please be patient...
Download and Validate in Progress
re1: Running pre-checks for 'junos-evo-install-ptx-x86-64-25.4R1.12-EVO'
re1: Pre-checks pass successfully, copying files to software area
re1: Starting upgrade : /var/tmp/ptx.iso
re1: Upgrade version : junos-evo-install-ptx-x86-64-25.4R1.12-EVO
re1: Validating existing configs. See /var/log/validation_config.log for config validation
logs.
re1: Running post install commands...
re1: Post install sequence was successful.
re1: Boot version is now 'junos-evo-install-ptx-x86-64-25.4R1.12-EVO'
re1: Validation Passed
re1: Updating all nodes...
re1: Other nodes have been updated successfully
re1: Installation was successful
Image validation and installation succeeded.
WARNING: NOTE: A reboot is required to start using the new software.
WARNING: Use the 'request system reboot' command when ready.
WARNING: Configuration changes made after this point will not be validated.
WARNING: Target image will be booted with the latest configuration. Changing configuration
now may be risky.

user@host-re1> show system software list
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
```

```
'<' rollback boot version
'*' deleted JSU version

>  junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:34:57]
-  junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:34:56]
<  junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 17:06:02]
```


NOTE: Do not change the configuration before you reboot the device. If you make any configuration changes at this time, the system discards the changes.

7. Reboot RE1 and verify the system is running the new version.

```
user@host-re1> request system reboot
The entire system (all nodes) will reboot causing traffic loss, do you wish to continue?
[yes,no] (no) yes
```

*** System shutdown message from user@host-re1 ***

reboot the system at Fri Dec 5 09:24:06 2025

Verify the system is running the new version.

```
user@host-re1> show system software list
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

-  junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:37:42]
<  junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:34:56]
```

```
junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 17:06:02]
```

8. Test that you can use the command ssh to access RE1:

```
user@external-shell-server> ssh RE1 hostname
```

If you can use ssh to access RE1, go to the next step. If ssh fails, return RE1 to its original state. Downgrade RE1 and synchronize the Routing Engines:

- a. Rollback the software.

```
user@host-re1> request system rollback with-old-snapshot-config reboot
```

- b. Test ssh again.

If still not working, then sync RE1 with RE0, from the RE0 CLI prompt:

```
user@host-re0> request system software sync current
```

Both Routing Engines are now running the old software version.

- c. Enable GRES on both RE0 and RE1.

```
user@host-re0> delete chassis redundancy no-graceful-switchover
user@host-re0> commit
```

```
user@host-re1> delete chassis redundancy no-graceful-switchover
user@host-re01> commit
```

RE1 automatically reboots. Both Routing Engines are running the old software version and state is synchronized among all nodes in the cluster.

- d. Enable other forms of synchronization.

If you added configuration for a backup router earlier in this procedure, delete that configuration as well.

```
user@host-re0> set routing-options nonstop-routing
user@host-re0> delete system commit no-synchronize
```

```
user@host-re0> set system auto-sw-sync
user@host-re0> delete system backup-router
```

e. Check to see that all nodes are in the cluster.

```
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce   : 4089726524
  Status       : online, apps-ready
  Attributes  : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC
  (Active), TIMINGD_FPC (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce   : 4290191371
  Status       : online, apps-ready
  Attributes  : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
  TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
Node: re1
  Node Id      : 2201170739205
  NodeNonce   : 237744170
  Status       : online, apps-ready
  Attributes  : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare),
  TIMINGD_RE (Spare), BackupRE (Active)
```

f. Check to see that all nodes are running the old software version.

```
user@host-re0> show system software list
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

  '-' running version
  '>' next boot version after upgrade/downgrade
  '<' rollback boot version
  '*' deleted JSU version

-  junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:13:05]
```

```

node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

- junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:08:29]
< junos-evo-install-ptx-x86-64-25.4R1.9-EVO - [2025-12-09 17:05:48]

-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

- junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:08:04]
< junos-evo-install-ptx-x86-64-25.4R1.9-EVO - [2025-12-09 17:06:02]

```

9. Use ssh to access RE0 and switch mastership to RE1.

This step affects traffic because the FPCs will reboot into the new version as they become part of the cluster with RE1.

```
user@host-re0> request chassis routing-engine master switch force
```

The FPCs automatically reboot into the new version. RE0 is now the hardware backup Routing Engine. RE0 reboots to clean up state and comes up as a single node. RE1 is now the hardware primary Routing Engine and forms a cluster with the FPC nodes. Wait for the FPCs to come online. Use the `show system nodes` and `show chassis fpc` commands to check FPC status. Use the `show system software list` command to check that RE1 has formed a cluster with the FPCs.

```
user@host-re1> show system nodes
Node: re1
```

```

Node Id      : 2201170739205
NodeNonce : 4205518297
Status      : online, apps-ready
Attributes  : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), PFE_TOKEN (Active),
RE (Active), TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)

user@host-re1> show chassis fpc
          Temp  CPU Utilization (%)  CPU Utilization (%)  Memory  Utilization
          (%)          (C)  Total  Interrupt      1min  5min  15min  DRAM (MB)  Heap
Slot State      Buffer
0  Onlining
1  Onlining

user@host-re1> show chassis fpc
          Temp  CPU Utilization (%)  CPU Utilization (%)  Memory  Utilization
          (%)          (C)  Total  Interrupt      1min  5min  15min  DRAM (MB)  Heap
Slot State      Buffer
0  Online       61      8        0        7        7        7        32768
22             0
1  Online       54     22        0        7        7        7        32768
21             0

user@host-re1> show system software list
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
List of installed version(s) :

      '-' running version
      '>' next boot version after upgrade/downgrade
      '<' rollback boot version
      '*' deleted JSU version

-  junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:42:55]

-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

```

```

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

- junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:37:42]
< junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:34:56]
    junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 17:06:02]

```

10. Test if WAN traffic resumes with RE1 as the hardware primary Routing Engine.

To test if WAN traffic resumes, look at neighboring routers in your network to check if the routing protocols are up. For example, use the commands `show route summary` and `show bgp summary`. You can also check to see if the FPCs are up.

```

user@host-re1> show chassis fpc pic-status
Slot 0  Online      JNP10K-LC1201
  PIC 0  Online      JNP10K-36QDD-LC-PIC
Slot 1  Online      JNP10K-LC1201
  PIC 0  Online      JNP10K-36QDD-LC-PIC

```

If traffic has recovered, move to the next step. If traffic doesn't recover, switch mastership back to RE0. Then downgrade RE1 to the old software version using `request system software rollback with-old-snapshot-config` command.

11. Install the new software version on RE0.

```

user@host-re0> request system software add /var/tmp/ptx.iso
Adding software images. This process can take several minutes. Please be patient...
Download and Validate in Progress
re0: Starting upgrade : /var/tmp/ptx.iso
re0: Upgrade version : junos-evo-install-ptx-x86-64-25.4R1.13-EVO
re0: Running pre-checks for 'junos-evo-install-ptx-x86-64-25.4R1.13-EVO'
re0: Pre-checks pass successfully, copying files to software
area                                         re0: Running post install
commands...
re0: Post install sequence was successful.
re0: Validating existing configs. See /var/log/validation_config.log for config validation
logs.
re0: Validation Passed
re0: Going ahead with Installation

```

```

re0: Boot version is now 'junos-evo-install-ptx-x86-64-25.4R1.13-EVO'
re0: Config fetch successful
re0: Cluster wide installation was successful
Image validation and installation succeeded.
WARNING: NOTE: A reboot is required to start using the new software.
WARNING: Use the 'request system reboot' command when ready.

```


NOTE: Do not change the configuration before you reboot the device. If you make any configuration changes at this time, the system discards the changes.

12. Reboot RE0.

```

user@host-re0> request system reboot
The entire system (all nodes) will reboot causing traffic loss, do you wish to continue?
[yes,no] (no) yes

```

```
*** System shutdown message from user@host-re0 ***
```

```
reboot the system at Fri Dec 5 09:24:06 2025
```

```
Verify the system is running the new version.
```

13. Enable GRES on the hardware primary Routing Engine (RE1) first, then on the hardware backup Routing Engine (RE0).

```

user@host-re1# delete chassis redundancy no-graceful-switchover
user@host-re1# commit

```

```

user@host-re0# delete chassis redundancy no-graceful-switchover
user@host-re0# commit

```

The hardware backup Routing Engine (RE0) automatically reboots. The hardware master Routing Engine (RE1) and the FPCs remain up and carrying traffic. Both Routing Engines are running the new software version, and state is synchronized. RE0 is still the hardware backup Routing Engine and, therefore, the routing protocol process is not running on RE0.

14. Enable other forms of synchronization on RE1, because it is the hardware master Routing Engine.

If you added configuration for a backup router earlier in this procedure, delete that configuration as well.

```
user@host-re1# set routing-options nonstop-routing
user@host-re1# delete system commit no-synchronize
user@host-re1# set system auto-sw-sync
user@host-re1# set protocols layer2-control nonstop-bridging
user@host-re1# delete system backup-router
user@host-re1# commit
```

The routing protocol process is now running on RE0, and state is synchronized.

15. Check that all nodes are in the cluster.

```
user@host-re0> show system nodes
Node: fpc0
  Node Id      : 2201170739216
  NodeNonce : 4089726524
  Status      : online, apps-ready
  Attributes : ASICS (Active), BT (Active), FABRIC_PFE (Active), FPC (Active), PIC
(Active), TIMINGD_FPC (Active)
  [...output truncated...]
Node: re0
  Node Id      : 2201170739204
  NodeNonce : 4290191371
  Status      : online, apps-ready
  Attributes : FABRIC_CONTROL (Active), FABRIC_FCHIP_PARALLEL (Active), RE (Active),
TIMINGD_RE (Active), MasterRE (Active), GlobalIPOwner (Active)
Node: re1
  Node Id      : 2201170739205
  NodeNonce : 237744170
  Status      : online, apps-ready
  Attributes : FABRIC_CONTROL (Spare), FABRIC_FCHIP_PARALLEL (Spare), RE (Spare),
TIMINGD_RE (Spare), BackupRE (Active)
```

16. Check that all nodes are running the new software version.

```
user@host-re0> show system software list
-----
node: fpc0
-----
Active boot device is primary: /dev/ram1
```

```
List of installed version(s) :
```

```
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version
```

```
- junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-11 00:58:04]
```

```
-----
```

```
node: re0
```

```
-----
```

```
Active boot device is primary: /dev/sda
```

```
List of installed version(s) :
```

```
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version
```

```
- junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:57:16]
```

```
< junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:49:17]
```

```
    junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 17:05:48]
```

```
-----
```

```
node: re1
```

```
-----
```

```
Active boot device is primary: /dev/sda
```

```
List of installed version(s) :
```

```
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version
```

```
- junos-evo-install-ptx-x86-64-25.4R1.12-EVO - [2025-12-09 17:37:42]
```

```
< junos-evo-install-ptx-x86-64-25.4R1.10-EVO - [2025-12-09 17:34:56]
```

```
    junos-evo-install-ptx-x86-64-25.4R1.11-EVO - [2025-12-09 17:06:02]
```

17. Optionally, switch mastership back to REO.

Verify that REO is ready for switchover.

```
user@host-re1 request chassis routing-engine master switch check
```

```
Other RE not ready, try later
```

```

{master}
user@host-re1> request chassis routing-engine master switch no-confirm

Other RE not ready, try later

{master}
user@host-re1> request chassis routing-engine master switch check
Switchover Ready

user@host-re0> show system switchover
Graceful switchover: On
Configuration database: Ready
Object database: Ready
Applications' ready state: Ready
Commit in progress: False
Switchover Status: Ready

{backup}

user@host-re1> request chassis routing-engine master switch

```

After the upgrade, NSR and nonstop-bridging were enabled and synchronization is complete. Therefore, this switchover does not disrupt traffic.

18. After you are satisfied that the cluster is successfully running, back up the new software. See ["Back Up and Recover Software with Snapshots" on page 160](#).

Install the Software Package on a Device with a Single Routing Engine

Before you install a new software release on a device, you should back up the current system. See ["Back Up and Recover Software with Snapshots" on page 160](#).

In Junos OS Evolved, the device can contain multiple releases of the software simultaneously as long as the system has enough space. If the system does not have enough space, you must delete an older image of the software before installing a new one. We recommend that you store no more than 5 versions of software on the device.

Before you upgrade the software, you must prepare for the installation. See ["Prepare to Install Software" on page 55](#).

To upgrade the software on a device:

1. Install the new software package using the request system software add operational mode command:

```
user@host> request system software add /var/tmp/installation-package
```

The variable ***installation-package*** is the name of the installation package. Specify the absolute path on the local disk; for example, **/var/tmp/junos-evo-install-ptx.iso**. To understand package name prefixes, see ["Junos OS Evolved Installation Packages" on page 25](#).

NOTE: Do not change the configuration before you reboot the device. If you make any configuration changes at this time, the system discards the changes.

2. Use the show system software list operational mode command to verify the newly-added software package is now the next-boot version:

In the example, the next-boot version is now **junos-evo-install-ptx-x86-64-20.4R2.13-EVO**. Note that **junos-evo-install-ptx-x86-64-20.4R2.14-EVO** is still the currently running version.

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :
  '-' running version
  '>' next boot version after upgrade/downgrade
  '<' rollback boot version

  >  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
  -  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
```

3. Reboot the device to start the new software:

```
user@host> request system reboot
The entire system (all nodes) will reboot causing traffic loss, do you wish to continue?
[yes,no] (no) yes
```


NOTE: You must reboot the device to load the new software release on the device.

To prevent the newly added package from becoming the currently running software, do not reboot the device. Instead, answer `no`, and then issue the `request system software delete package-name` command. This prompt gives you the opportunity to stop the installation from finishing.

The software is loaded when you reboot the system. Installation can take between 5 and 10 minutes. The device then reboots from the boot device on which the software was just installed. When the reboot is complete, the device displays the login prompt. After the reboot, Junos OS Evolved automatically saves the previous image of the software and configuration to create the rollback image.

During the reboot, the Routing Engine does not route traffic.

4. Log in and verify the release of the software installed, using the `show system software list` operational mode command:

```
user@host> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

>  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
-  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
```

5. Verify that the system is running properly and correctly handling traffic by repeating the steps in the procedure in ["Before You Upgrade or Reinstall Junos OS Evolved" on page 36](#) and compare the information to what you collected before you installed the software package.
6. If you need to make any changes to the configuration as a result of the verification step, don't forget to back up the software and configuration using the `request system snapshot` operational mode command. See ["Back Up and Recover Software with Snapshots" on page 160](#).

SEE ALSO

request system software add (Junos OS Evolved)
request system software delete (Junos OS Evolved)

Recover from a Failed Installation Attempt If the CLI Is Working

If a Junos OS Evolved installation fails, and the CLI is working, use one of these procedures to install Junos OS Evolved, depending upon the situation:

- Roll back to the previous version of software.

Devices running Junos OS Evolved save the previous running image. The first time you upgrade the device, the new software package installs in next-boot position. When you finish the installation and reboot, the new image becomes the current image. The previous image becomes the rollback image. For early initialization failures, the Routing Engine automatically switches to the secondary SSD.

You can rollback to the previously saved software version and configuration that was active when that version was running.

```
user@host> request system software rollback with-old-snapshot-config
```

- For early initialization failures, use the software stored on the inactive solid-state drive (SSD) to repair the software on the active SSD of the affected Routing Engine. If the active SSDs on both Routing Engines have failed, you must perform these steps on both Routing Engines.
 - a. Reboot from the inactive SSD, typically the secondary SSD (disk2) on the primary Routing Engine (RE0).
If the active SSD on the other Routing Engine has also failed, you must repeat this step for the other Routing Engine, typically RE1.

```
user@host> request node reboot re0 disk2
```

- b. Create a snapshot to install the rollback image onto the primary SSD.

To restore the primary SSD, perform a snapshot to install the rollback image from the secondary SSD onto the primary SSD.

```
user@host> request system snapshot
```

- c. Boot from the primary SSD, typically disk1 on the primary Routing Engine (re0).

The system is now operational using the rollback software image.

```
user@host> request node reboot re0 disk1
```

- If neither one of the previous steps is successful, then install the Image from a USB drive.

The USB installation process deletes all configuration and other files. Therefore, after the USB installation process completes:

- If your system contains only one Routing Engine, you need to re-create the configuration file. Hopefully, you previously stored a configuration file on a remote server or other off-box location. If you did not, you must start with the initial configuration steps as described in the hardware guide for your product, and then continue to add the configuration statements you need.
- If your system contains two Routing Engines, the secondary Routing Engine boots up, but does not join the system formed by the primary Routing Engine and the FPCs, because the current software versions are different. To synchronize the software and configurations from the primary Routing Engine to the secondary Routing Engine, use the `request system software sync all-versions` operational mode command. The secondary Routing Engine then reboots and joins the system.

If you have already created a USB drive with the correct software package, follow the instructions in ["Boot Junos OS Evolved from a Bootable USB Drive Using the CLI" on page 154](#) to install an image on the Routing Engine and boot the device. If you have not yet created a USB drive, then follow the instructions at ["Boot Junos OS Evolved by Using a Bootable USB Drive" on page 150](#) to create a USB drive using either a Windows or a Mac OS X device. Then use that USB drive to install the image.

Replace a Routing Engine in a Dual-Routing Engine System

Junos OS Evolved ensures all nodes in a system are running the same software version.

If you insert a Routing Engine that has the same current software version as the primary Routing Engine into the system, the new Routing Engine joins the system, and the configurations and the other software versions automatically synchronize from the existing Routing Engine to the new Routing Engine, even if you have not configured the `auto-sw-sync` statement.

If you insert a Routing Engine that has a different software version into the system and you have not configured the `auto-sw-sync enable` statement, the Routing Engine is kept outside the system and the system generates a software mismatch alarm. The alarm message displays the Routing Engine name and the version of software on the newly-inserted Routing Engine, similar to the following: Software Version Mismatch on `re1:junos-evo-install-ptx-x86-64-20.4R2.6-EV0..`

```
user@host-re0> show system alarms
2 alarms currently active
Alarm time          Class  Description
2021-04-19 16:02:26 PDT Major  Re1 Node unreachable
2021-04-19 16:04:46 PDT Major  Software Version Mismatch on re1:junos-evo-install-ptx-
x86-64-20.4R2.6-EV0
```

To clear the alarms and bring the Routing Engine into the system, manually synchronize the primary Routing Engine to the new Routing Engine with the `request system software sync all-versions operational mode` command.

We recommend that you configure the `auto-sw-sync enable` configuration statement at the `[edit system]` hierarchy level before inserting a new Routing Engine into the system. When you do so, the Routing Engine in the system detects the newly-inserted Routing Engine and automatically synchronizes the software to the new Routing Engine. All images are synchronized to the new Routing Engine and the system reboots the newly-inserted Routing Engine. When the newly-inserted Routing Engine comes back up, it joins the system. Each software image has the configuration used when the image ran stored with it. The configuration associated with the current running image is synchronized from the primary Routing Engine to the backup Routing Engine. Configurations stored with the rollback and other images are also synchronized to the backup Routing Engine when you configure the `auto-sw-sync enable` statement on the primary Routing Engine.

To replace a Routing Engine in a dual-Routing Engine system:

1. Configure the `auto-sw-sync enable` statement.

Enter configuration mode, configure the `auto-sw-sync enable` statement, commit the configuration, and exit configuration mode to get back to operational mode:

```
user@host-re0> edit
user@host-re0# set system auto-sw-sync enable
user@host-re0# commit
commit complete
user@host-re0# exit
user@host-re0>
```

2. Replace the Routing Engine.

3. Allow several minutes for the software and configurations to synchronize and for the newly-inserted Routing Engine to reboot.
4. Verify that the newly-inserted Routing Engine is now part of the system and that the software versions on both Routing Engines are the same, by issuing the `show system software list` operational mode command.

You must make sure that the system has finished synchronizing all of the images in the background before you switch control to the newly-inserted Routing Engine to ensure that the newly-inserted Routing Engine does not remove any images from the existing Routing Engine.

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
```

```

-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:19:16]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:03:23]
-----
node: re1
-----
Active boot device is primary: /dev/sda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

-  junos-evo-install-ptx-x86-64-20.4R2.13-EVO - [2021-05-05 09:22:09]
<  junos-evo-install-ptx-x86-64-20.4R2.14-EVO - [2021-05-05 09:06:50]

```

5. If the software was not automatically synchronized or if you decided not to configure the `auto-sw-sync enable` statement, manually synchronize the software versions and configurations to the newly-inserted Routing Engine, by issuing the `request system software sync all-versions operational` mode command from the primary Routing Engine.

All software images and configurations stored with the images are synchronized to the new Routing Engine and the new Routing Engine is rebooted. When the new Routing Engine comes back up, it joins the system.

6. (Required if you have a rescue configuration) Synchronize the rescue configuration from the primary Routing Engine to the secondary Routing Engine with the `file copy rescue-config-filename secondary-rename: /config/` command on the primary Routing Engine.

For a dual-Routing Engine system, when the secondary Routing Engine boots with a different current image than the primary Routing Engine's current image and the `auto-sw-sync enable` statement is configured, the primary Routing Engine synchronizes the current image to the secondary Routing Engine. The primary Routing Engine also synchronizes the rollback software image and the other images to the secondary Routing Engine. If the current configuration file (**juniper.conf.gz**) from the primary Routing Engine matches the current configuration file on the secondary Routing Engine, then

the primary Routing Engine does not synchronize the rescue configuration (**rescue.conf.gz**) to the secondary Routing Engine. For example:

```
user@host-re0> file copy /config/rescue.conf.gz re1:/config/
```

7. Verify that the newly-inserted Routing Engine can function properly with the request chassis routing-engine master release operational mode command on the primary Routing Engine to release control to the newly-inserted Routing Engine.

If the newly-inserted Routing Engine then does not become the primary Routing Engine, issue the request chassis routing-engine master release command on the newly-inserted Routing Engine to release control, remove the newly-inserted Routing Engine, get a different Routing Engine and insert it, and repeat this procedure.

For more information about node synchronization, see *request system software sync* and *auto-sw-sync*.

Not Enough Disk Space for Software Installation

The software installation process requires a certain amount of unused disk space. If the system does not have enough space, you receive an error message similar to the following:

WARNING: The /soft filesystem is low on free disk space.

WARNING: This package requires 1075136k free, but there is only 666502k available.

If you need to create enough disk space for the software installation to be successful, you can do the following:

- Identify and delete older images by using the `show system software list` and `request system software delete` operational mode commands.
- Identify and delete unnecessary files by using the `show system storage` and `request system storage cleanup` operational mode commands.

For more information on how to create enough disk space for a software installation, see ["Ensure Sufficient Disk Space for Upgrades" on page 30](#).

Upgrade Firmware on Junos OS Evolved Devices

SUMMARY

You can upgrade the firmware on your Junos OS Evolved device to ensure optimal network performance.

IN THIS SECTION

- [Understanding Firmware Upgrades on Junos OS Evolved | 94](#)
- [Firmware Versions Overview | 95](#)
- [Upgrade the Firmware | 95](#)
- [Upgrading Firmware on the CMIS Optics Module | 100](#)
- [Install the `jfirmware` Software Image | 102](#)

Firmware is software embedded into the memory of hardware devices. Firmware provides the instructions that enable the hardware to function as intended and for the device to perform optimally. Junos OS Evolved devices have multiple hardware components with embedded firmware. As new versions of firmware are released for different hardware components, you can upgrade the firmware to ensure optimal network performance or to fix a vulnerability that could arise over time.

NOTE: We recommend that you upgrade firmware under the direction of the Juniper Networks Technical Assistance Center (JTAC).

Understanding Firmware Upgrades on Junos OS Evolved

Junos devices can include both third-party and Juniper hardware. Juniper Networks and component manufacturers may periodically release new firmware for components. Firmware updates help to optimize the performance of the hardware, including the Routing Engine, FPC, and other components.

Junos OS Evolved includes the binaries and libraries for any firmware updates in the software image. You must first install the Junos OS Evolved software image before you can perform any firmware upgrades associated with that image. Upgrading the Junos OS Evolved software does not automatically upgrade the firmware.

Starting in Junos OS Evolved Release 24.4R1, for those platforms that support this feature, we now provide separate `jfirmware` images that contain the firmware binaries necessary to upgrade the firmware on individual components. (Prior to this release, and for platforms that do not support this feature, the firmware binaries are included only as part of the software install image.) With this feature, you can download and install the latest `jfirmware` package at any time, and then upgrade the firmware of individual components with the `request system firmware upgrade` command. This feature enables firmware

updates without requiring a complete system upgrade, minimizing disruption and downtime. You also do not have to wait to upgrade the firmware until the next time you upgrade the software on your system. When we make new `jfirmware` images available, we issue a Technical Support Bulletin letting you know on which platforms and Evo releases the `jfirmware` image is supported and from where you can download the image.

After you install either the Junos OS Evolved software or the `jfirmware` image, the firmware upgrades associated with that software image are available for upgrade. You can issue the `show system firmware` command to view the current and available firmware versions.

For information about upgrading the firmware, see ["Upgrade the Firmware" on page 95](#).

Firmware Versions Overview

The specific hardware components can vary on different devices running Junos OS Evolved. You can issue the `show system firmware` operational mode command to view the components that have firmware. The output includes the current and available firmware versions for each component.

user@host> show system firmware					
Part	Type	Tag	Current version	Available version	Status
PSM 0	Psm MCU AC AFI	0	15.17	14.16	OK
PSM 1	Psm MCU AC AFI	0	15.17	14.16	OK
RE 0	BIOS ROM	0	19.01.00	19.01.00	OK
RE 0	UMC FPGA	8	0x0012	0x0012	OK
RE 0	RE FPGA	2	0x0100	0x0100	OK
RE 0	eMMC	3		0x1100000000000000	OK
RE 0	IDT PLL	4	4.8.15	4.8.15	OK
FPC 0	BCM Qumran 2U	1	2.504	2.504	OK

Upgrade the Firmware

IN THIS SECTION

- [Upgrade BIOS | 98](#)

The Junos OS Evolved software image includes the binaries and libraries for any firmware upgrades that are available as part of that image. You must first install the Junos OS Evolved software image before you can perform any firmware upgrades associated with that image.

Starting in Junos OS Evolved Release 24.4R1, for those platforms that support this feature, we now provide separate `jfirmware` images that contain the firmware binaries necessary to upgrade the firmware on individual components. You must first install the `jfirmware` image before you can perform any firmware upgrades associated with that image.

NOTE: We recommend that you upgrade firmware under the direction of the Juniper Networks Technical Assistance Center (JTAC).

Before you begin:

- Install the Junos OS Evolved software image as documented in ["Install, Upgrade, and Downgrade Software" on page 53](#). For those devices that support the `jfirmware` feature, install the `jfirmware` image as documented in ["Install the jfirmware Software Image" on page 102](#).

To upgrade the firmware for a specific hardware component on devices running Junos OS Evolved:

1. Issue the `show system firmware` command to verify the current and available firmware versions for the different components on your device.

user@host> show system firmware					
Part	Type	Tag	Current	Available	Status
			version		
FPC 0	CTRL FPGA	0	190912.11	190912.11	OK
FPC 0	PORT FPGA	1	15	15	OK
FPC 0	WANIO FPGA	2	15	15	OK
FPC 0	I2CS FPGA	3	19	19	OK
FPC 0	PMB BIOS	4	26.01	28.01	OK
FPC 0	BOOT CPLD	5	17	17	OK
FPC 1	CTRL FPGA	0	190912.11	190912.11	OK
FPC 1	PORT FPGA	1	15	15	OK
FPC 1	WANIO FPGA	2	15	15	OK
FPC 1	I2CS FPGA	3	19	19	OK
FPC 1	PMB BIOS	4	26.01	28.01	OK
FPC 1	BOOT CPLD	5	17	17	OK
PSM 4	PSM MCU AC	0	aa17.aa17.ab15.ab15.ac27	aa17.aa17.ab15.ab15.ac27	OK
PSM 5	PSM MCU AC	0	aa17.aa17.ab15.ab15.ac27	aa17.aa17.ab15.ab15.ac27	OK
RE 0	CBC FPGA	0	0x10B	0x10B	OK
RE 0	RE FPGA	1	0x2B	0x2B	OK
RE 0	SSD Primary	2	SBR12050	SBR12050	OK
RE 0	SSD Secondary	3	SBR12050	SBR12050	OK
RE 0	i40e	4	7.00	7.00	OK
RE 0	BIOS ROM	5	14.01	19.01	OK
RE 1	CBC FPGA	0	0x10B	0x10B	OK

RE 1	RE FPGA	1	0x2B	0x2B	OK
RE 1	SSD Primary	2	SBR12050	SBR12050	OK
RE 1	SSD Secondary	3	SBR12050	SBR12050	OK
RE 1	i40e	4	6.01	7.00	OK
RE 1	BIOS ROM	5	14.01	19.01	OK
SIB 0	SIB FPGA	0	200311.0F	200831.1D	OK
FTC 0	FTC FPGA	0	0.5	0.5	OK
FTC 1	FTC FPGA	0	0.5	0.5	OK

You can upgrade components for which the available firmware version is greater than the current firmware version.

2. Issue the `request system firmware upgrade` command, specify the component to upgrade, and include any options appropriate for your platform, such as the slot number. For example:

```
user@host> request system firmware upgrade fpc slot 0 pmb-bios
```

3. Check the progress of the firmware upgrade.

During the upgrade, the **STATUS** field displays PROGRAMMING.

```
user@host> show system firmware
Part          Type          Tag  Current          Available          Status
                  Type          version          version
...
FPC 0          PMB BIOS      4    26.01          28.01          PROGRAMMING
```

After the upgrade is complete, the **STATUS** field displays UPGRADED SUCCESSFULLY.

```
user@host> show system firmware
Part          Type          Tag  Current          Available          Status
                  Type          version          version
...
FPC 0          PMB BIOS      4    26.01          28.01          UPGRADED
SUCCESSFULLY
```

4. Follow the instructions in the command output to complete the firmware upgrade for that component.

NOTE: The instructions may vary by platform and hardware component. For example, you might need to restart or power cycle the system to complete the firmware upgrade.

5. Verify the new firmware version.

```
user@host> show system firmware
Part          Type           Tag Current
                           version      Available
                                         version      Status
...
FPC 0          PMB BIOS      4    28.01      28.01      OK
```

Upgrade BIOS

The Junos OS Evolved software image includes the binaries and libraries for any firmware upgrades that are available as part of that image. You must first install the Junos OS Evolved software image before you can perform any firmware upgrades associated with that image.

Starting in Junos OS Evolved Release 24.4R1, for those platforms that support this feature, we now provide separate `jfirmware` images that contain the firmware binaries necessary to upgrade the firmware on individual components. You must first install the `jfirmware` image before you can perform any firmware upgrades associated with that image.

Before you begin:

- Install the Junos OS Evolved software image as documented in [Install, Upgrade, and Downgrade Software](#). For those devices that support the `jfirmware` feature, install the `jfirmware` image as documented in ["Install the jfirmware Software Image" on page 102](#).

Perform the following steps to upgrade BIOS:

1. Issue the `show system firmware` command to verify the current and available versions for Type BIOS ROM.

```
user@host> show system firmware
Part          Type           Tag Current
                           version      Available
                                         version      Status
...
RE 0          BIOS ROM      5    14.01      19.01      OK
```

If the Available version is greater than the Current version, then upgrade BIOS.

2. Upgrade BIOS by issuing the `request system firmware upgrade re bios` command with the `re bios` option, and specify the slot number where applicable.

```
user@host> request system firmware upgrade re bios slot 0
Upgrade initiated. Please check status using CLI command "show system firmware"
```

3. Check the progress of the BIOS upgrade.

During the upgrade, the **STATUS** field displays PROGRAMMING.

```
user@host> show system firmware
Part          Type          Tag Current          Available          Status
              version          version
...
RE 0          BIOS ROM      5    14.01          19.01          PROGRAMMING
```

After the upgrade is complete, the **STATUS** field displays UPGRADED SUCCESSFULLY.

```
user@host> show system firmware
Part          Type          Tag Current          Available          Status
              version          version
...
RE 0          BIOS ROM      5    14.01          19.01          UPGRADED
SUCCESSFULLY
```

4. Reboot the system to activate the upgrade.

```
user@host> request system reboot
```

5. Confirm the new BIOS version.

```
user@host> show system firmware
Part          Type          Tag Current          Available          Status
              version          version
...
RE 0          BIOS ROM      5    19.01          19.01          OK
```

6. For devices with dual Routing Engines, repeat the steps on the other Routing Engine.

Upgrading Firmware on the CMIS Optics Module

SUMMARY

Learn how to upgrade firmware on the CMIS optics module.

The Junos OS Evolved software image includes the necessary binaries and libraries for firmware upgrades on supported hardware components, including optical transceivers that follow the Common Management Interface Specification (CMIS). You must first install the Junos OS Evolved software image before you can perform any associated firmware upgrades.

For platforms that support this functionality, the jfirmware image may include CMIS optics firmware. If the firmware is not bundled with the software package, you must manually copy the optics firmware binary to the /var/tmp/ directory on the router before initiating the upgrade.

NOTE: Before upgrading, ensure that no older version of the firmware is already installed. Refer to the relevant product documentation for version compatibility.

Before You Begin

- Install the Junos OS Evolved software image using the request system software add command.
- If the optics firmware is not included in the Junos package, manually copy the firmware binary file to /var/tmp/.

1. View Current Optics Firmware Status: Use the following command to display the status of optics firmware on the device.

```
user@host> show system firmware optics status
```

2. View Advertised CMIS Firmware Capabilities (Optional): This command helps you understand what CMIS firmware upgrade information is advertised per optic.

```
user@host> show system firmware optics cdb-advertisement
```

You can also specify the FPC, PIC, and port to narrow down the output:

```
user@host> show system firmware optics cdb-advertisement fpc-slot <slot> pic-slot <slot> port-number <port>
```

3. Upgrade the Optics Firmware: You can upgrade optics in several ways depending on the scope.

a. **Upgrade All Optics of a Given Part Number on a Specific FPC:**

```
user@host> request system firmware optics update fpc-slot <fpc-slot> firmware-path /var/tmp/<firmware-file> part-number <part-number>
```

b. **Upgrade All Optics of a Given Part Number on a Specific PIC:**

```
user@host> request system firmware optics update fpc-slot <fpc-slot> pic-slot <pic-slot> firmware-path /var/tmp/<firmware-file> part-number <part-number>
```

c. **Upgrade a Single Optic:**

```
user@host> request system firmware optics update fpc-slot <fpc-slot> pic-slot <pic-slot> port <port> firmware-path /var/tmp/<firmware-file> part-number <part-number>
```

For Example: user@host> request system firmware upgrade optics fpc-slot 0 pic-slot 0 port 0 firmware-path /var/tmp/tmp.bin part-number 123456

4. Monitor the Upgrade Progress: Re-run the following command to check if the status changes to indicate progress or success.

```
user@host> show system firmware optics status
```

5. Post-Upgrade Steps:

- Confirm that the firmware upgrade completed successfully by checking the status again.
- No reboot is typically required for optics firmware upgrades unless specified in the release notes or documentation.
- If your system has redundant components (e.g., multiple FPCs or dual control planes), repeat the steps as needed for each relevant module.

Install the jfirmware Software Image

Follow these steps to install your Junos OS Evolved jfirmware software image:

1. Follow the instructions in the Technical Support Bulletin (TSB) to locate the jfirmware image and to prepare for the upgrade. Using a Web browser, navigate to the URL specified in the TSB.
2. Download the jfirmware image to a local host.

NOTE: For more information about the types of Junos OS Evolved installation package prefixes, see ["Junos OS Evolved Installation Packages" on page 25](#).

3. For a dual-Routing Engine device, ensure that both Routing Engines are participating in the system, and are running the same software.
4. Ensure enough disk space is available to install the package, ensure that a system backup is available, and gather information about the system and how it is currently handling traffic by following the procedure in [Before You Upgrade or Reinstall Junos OS Evolved](#).
5. Delete the prior jfirmware image (if any) from the device using the request system software delete command.

```
user@host> request system software delete old-jfirmware-package-name
```

6. Copy the new jfirmware image to the /var/tmp/ directory of the device running Junos OS Evolved using the scp command.

```
user@host> file copy scp://filename /var/tmp/filename
```

7. Install the new image on the device.

NOTE:

We recommend that you upgrade all software packages out of band using the console port, because in-band connections are lost during the installation process.

Unified ISSU for Junos OS Evolved

SUMMARY

(QFX5220-32CD switches only) Unified in-service software upgrade (ISSU) is a feature that minimizes traffic loss during the software upgrade process.

IN THIS SECTION

- [Understanding Unified ISSU for Junos OS Evolved | 103](#)
- [Unified ISSU Considerations for Junos OS Evolved | 105](#)
- [Perform a Unified ISSU to Upgrade Junos OS Evolved | 106](#)

Understanding Unified ISSU for Junos OS Evolved

IN THIS SECTION

- [Unified ISSU Process on Junos OS Evolved | 103](#)
- [Upgrade Scenarios During a Unified ISSU | 104](#)
- [Validation During a Unified ISSU | 105](#)

The unified in-service software upgrade (unified ISSU) feature enables you to upgrade to a more recent release of Junos OS Evolved with no disruption on the control plane and minimal loss of traffic.

During a unified ISSU, the system restarts the upgraded software (kernel and applications) without reinitializing the underlying hardware. This process is faster than rebooting the complete system. The restarted software restores its previous state and runs the new version.

Unified ISSU provides the following benefits:

- Eliminates network downtime during software image upgrades.
- Reduces operating costs while delivering higher service levels.
- Enables you to implement new features quickly.

Unified ISSU Process on Junos OS Evolved

When you perform a software upgrade using a unified ISSU, the following process occurs:

1. The system downloads the new software package and performs checks to validate the existing configuration against the new package. This step includes application configuration checks and software development kit (SDK) checks to ensure that you can perform the upgrade by using a unified ISSU.
2. The software is installed on the system and becomes the next-boot version.
3. The upgrade software lists the applications that have been changed and that need to be restarted. The upgrade is performed using a restart or a reboot, which the validation process determines.
4. The system starts to run the new version of software, and the unified ISSU is complete.

Upgrade Scenarios During a Unified ISSU

When you perform a unified ISSU on a Junos OS Evolved device, the validation process determines which of the following methods is required to perform the upgrade:

- Application restart
- In-service kernel warm restart
- System reboot

Application restart involves a simple restart of the upgraded applications. The restarted applications run the new software version. This type of upgrade is hitless and results in zero traffic loss.

In-service kernel warm restart involves loading a new kernel directly into the memory and executing it, without initializing the hardware. This process reduces network downtime and minimizes traffic loss during the upgrade.

System reboot involves a complete reboot of the device, including reinitializing the hardware components. This process is the same as performing an upgrade without using unified ISSU.

The unified ISSU is performed using an in-service kernel warm restart if:

- The changed components or applications require the device to be restarted.
- The changed components or applications cannot be upgraded using an application restart.
- The kernel changed.

You are prompted to confirm the in-service kernel warm restart if changes are made in an application that does not support an application restart. If a major version change is made in the application, then you are prompted to reboot the system to complete the unified ISSU.

In other scenarios, unified ISSU is performed using an application restart.

Validation During a Unified ISSU

Before you perform a unified ISSU, you must validate the new software package against the existing configuration.

The system checks the existing system configuration against the new software package to determine if the two are compatible. It also checks the application configurations and Software Development Kit (SDK) versions to determine whether a hitless upgrade is possible. Note that validation does not actually install the new software package.

The system performs validation by default before you upgrade the device using a unified ISSU. When you add a package with a different release number, the system automatically performs the application configuration validation check and SDK validation check.

If the existing configuration validation fails, the unified ISSU aborts, and an error message provides more information about the failure. If the application configuration validation or the SDK version validation fails, you are prompted to confirm if you want to continue with the ISSU. An error message provides more information about the failure.

If you perform a unified ISSU without successful validations, incompatibilities in the configuration might cause traffic loss during the upgrade.

For more information about how to perform a validation check, see `request system software validate-restart`.

NOTE: Starting in Junos OS Evolved Release 23.4R1, the `request system software validate-restart` command output summarizes the method required to perform the indicated upgrade, for example, an application restart, an in-service kernel warm restart, or a system reboot.

Unified ISSU Considerations for Junos OS Evolved

Unified ISSU allows you to upgrade to a more recent version of Junos OS Evolved with minimal disruption of traffic and zero downtime.

On Junos OS Evolved, unified ISSU has the following caveats:

- You cannot use unified ISSU to install a version of Junos OS Evolved that is earlier than the version of Junos OS Evolved currently running on the device.
- Unified ISSU does not upgrade the firmware as part of the process. You must upgrade the firmware separately.
- The unified ISSU process is terminated if the current system configuration is not compatible with the new software version.

- Unified ISSU might cause inaccuracy in the values of filter counters, policer counters, and queue counters.
- Existing Address Resolution Protocol (ARP) entries will not expire, and new ARP entries will not be added during the ISSU process.
- During the ISSU process, the system might not respond to ARP requests from peer nodes. To prevent the peer side entries from getting expired during the ISSU window, the peer nodes should be configured to increase the ARP retry count before triggering ISSU.

Perform a Unified ISSU to Upgrade Junos OS Evolved

IN THIS SECTION

- [Prerequisites to Performing a Unified ISSU to Upgrade Junos OS Evolved | 106](#)
- [Upgrade Junos OS Evolved with a Unified ISSU | 108](#)

When you are planning to perform a unified ISSU, choose a time when your network is as stable as possible. As with a normal upgrade, Telnet sessions, SNMP, and CLI access are briefly interrupted.

We recommend that you read the ["Unified ISSU Considerations for Junos OS Evolved" on page 105](#) topic to anticipate any special circumstances that might affect your upgrade.

Prerequisites to Performing a Unified ISSU to Upgrade Junos OS Evolved

Before you upgrade your device, follow these steps:

1. Make sure that you have sufficient disk space for the upgrade and that a backup of the system is available. Save the system configuration and the information about how the system is handling traffic.

You can do this by following the procedure at ["Before You Upgrade or Reinstall Junos OS Evolved" on page 36](#).

You will need the information about the system configuration and how the system is handling traffic when you verify that the upgrade was performed correctly.

2. Download the software package from the Juniper Networks Support website at <https://www.juniper.net/support/> and place the package on your local server.
3. If the BGP protocol is configured on the main routing instance or a specific routing instance, then configure BGP graceful restart and set the restart-time value to greater than or equal to 300 seconds.

To configure BGP graceful restart and the restart-time value on the main routing instance, execute the following commands:

```
[edit]
user@host# set routing-options graceful-restart
[edit]
user@host# set protocols bgp graceful-restart restart-time 300
```

To configure BGP graceful restart and the restart-time value on a specific routing instance, execute the following commands:

```
[edit]
user@host# set routing-instances routing-instance routing-options graceful-restart
[edit]
user@host# set routing-instances routing-instance protocols bgp graceful-restart restart-time
300
```


NOTE: Changing the restart-time for BGP graceful restart causes the existing BGP sessions to restart, which might cause disruptions. We recommend that you perform this action during a low network usage time to avoid traffic loss.

4. If a Spanning Tree Protocol (STP) is configured, then configure the STP-enabled ports as edge ports and enable bridge protocol data unit (BPDU) protection.

Depending on the type of STP configured, execute the following commands:

```
[edit]
user@host# set protocols (mstp | rstp | vstp) bpdu-block-on-edge
[edit]
user@host# set protocols (mstp | rstp | vstp) interface (interface-name | all) edge
```

5. Configure the value of the Address Resolution Protocol aging-timer to 240 minutes.

```
[edit]
user@host# set system arp aging-timer 240
```

- Validate the existing configuration against the new software image to check whether it supports unified ISSU by using the `request system software validate-restart package-name` command.

```

user@host> request system software validate-restart /var/tmp/junos-evo-install-qfx-ms-
x86-64-22.1R1-S1.2-EV0.iso
Validating software image and getting ISSU services impact /var/tmp/junos-evo-install-qfx-ms-
x86-64-22.1R1-S1.2-EV0.iso...
Download and Validate in Progress
re0: Starting validation : /var/tmp/junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EV0.iso
re0: Validating version : junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EV0.iso
re0: Running pre-checks for 'junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EV0.iso'
re0: Pre-checks pass successfully, copying files to software area
re0: Running post install commands...
re0: Post install sequence was successful.
re0: Validating existing configs. See /var/log/validation_config.log for config validation
logs.
re0: Validation Passed
re0: Validating in-service-upgrade application configs. See /var/log/validation_appconfig.log
for in-service-upgrade application configs validation logs.
re0: In-service-upgrade application configs validation Passed
re0: Validating in-service-upgrade SDK compatibility. See /var/log/validation_sdk.log for in-
service-upgrade SDK compatibility validation logs.
re0: In-service-upgrade SDK Validation Passed
re0: Generating local impact report...
re0: Installation was successful
Image validation succeeded. ISSU impact report:

*** Restart Apps list ***
distributord

*** Applications that do not support restart upgrade ***
distributord

This platform supports in-service kernel warm restart upgrade.
Validate cleanup succeeded.
Image validation succeeded. Reboot is needed for this software image upgrade.

```

Upgrade Junos OS Evolved with a Unified ISSU

Make sure that you have completed the steps in ["Prerequisites to Performing a Unified ISSU to Upgrade Junos OS Evolved" on page 106](#) before you begin the upgrade.

To upgrade Junos OS Evolved with a unified ISSU:

1. Run the `request system software add package-name restart` command on the device that you want to upgrade.

```

user@host> request system software add /var/tmp/junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EVO.iso restart
Adding software images. This process can take several minutes. Please be patient...
Download and Validate in Progress
re0: Starting upgrade : /var/tmp/junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EVO.iso
re0: Upgrade version : junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EVO.iso
re0: Running pre-checks for 'junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EVO.iso'
re0: Pre-checks pass successfully, copying files to software area
re0: Running post install commands...
re0: Post install sequence was successful.
re0: Validating existing configs. See /var/log/validation_config.log for config validation logs.
re0: Validation Passed
re0: Validating in-service-upgrade application configs. See /var/log/validation_appconfig.log for in-service-upgrade application configs validation logs.
re0: In-service-upgrade application configs validation Passed
re0: Validating in-service-upgrade SDK compatibility. See /var/log/validation_sdk.log for in-service-upgrade SDK compatibility validation logs.
re0: In-service-upgrade SDK Validation Passed
re0: Going ahead with Installation
re0: Boot version is now 'junos-evo-install-qfx-ms-x86-64-22.1R1-S1.2-EVO.iso'
re0: Generating local impact report...
re0: Installation was successful
Image validation and installation succeeded. Restarting Applications.

*** Restart Apps list ***
distributord

*** Applications that do not support restart upgrade ***
distributord

This platform supports in-service kernel warm restart upgrade.

Enter yes to proceed with in-service kernel warm restart or no to proceed with the reboot upgrade.
Proceed with in-service kernel warm restart upgrade ? [yes,no] (yes) yes

```

```
----- Impact report for kernel warm restart upgrade -----
```

```
Actions prior to warm restart:
```

```
*** Applications that need prep to upgrade ***
```

```
rpdagent
```

```
*** Applications that need prep to upgrade final ***
```

```
agentd
```

```
arpd
```

```
evo-pfemand
```

```
l2ald-agent
```

```
l2cpd-agent
```

```
ndp
```

```
picd
```

```
rpdagent
```

```
Actions post warm restart:
```

```
*** Applications that need sw sync ***
```

```
evo-pfemand
```

```
*** Applications that need hw sync ***
```

```
evo-pfemand
```

```
*** Applications that need unprep to upgrade ***
```

```
agentd
```

```
arpd
```

```
evo-pfemand
```

```
ndp
```

```
picd
```

```
rpdagent
```

```
Sending prepare notification to app rpdagent on node re0
```

```
Prepare to upgrade succeeded for app rpdagent on node re0
```

```
Sending prepare final notification to app agentd on node re0
```

```
Sending prepare final notification to app arpd on node re0
```

```
Sending prepare final notification to app evo-pfemand on node re0
```

```
Sending prepare final notification to app l2ald-agent on node re0
```

```
Sending prepare final notification to app l2cpd-agent on node re0
```

```
Sending prepare final notification to app ndp on node re0
```

```
Sending prepare final notification to app picd on node re0
```

```
Sending prepare final notification to app rpdagent on node re0
```

```

Prepare to upgrade succeeded for app arpd on node re0
Prepare to upgrade succeeded for app picd on node re0
Prepare to upgrade succeeded for app agentd on node re0
Prepare to upgrade succeeded for app evo-pfemand on node re0
Prepare to upgrade succeeded for app l2cpd-agent on node re0
Prepare to upgrade succeeded for app rpdagent on node re0
Prepare to upgrade succeeded for app ndp on node re0
Prepare to upgrade succeeded for app l2ald-agent on node re0
Saving system snapshot and rebooting. See /var/log/issu.log for ISSU logs

```

The system restarts or reboots to load the new software image. When the upgrade is complete, the device displays the login prompt.

2. At the login prompt, log in and verify the release of the installed software, using the `show system software list` command.
3. Verify that the system is running properly and correctly handling traffic by repeating the steps in the procedure in ["Before You Upgrade or Reinstall Junos OS Evolved" on page 36](#). Compare the information about the system configuration to what you collected before you installed the software package.
4. If you need to make any changes to the configuration after the upgrade, remember to back up the software and configuration using the `request system snapshot` command. See ["Back Up and Recover Software with Snapshots" on page 160](#).
5. If the unified ISSU fails for some reason, and if the CLI is still working, you can follow the steps in ["Recover from a Failed Installation Attempt If the CLI Is Working" on page 89](#) to install the software image.

Change History Table

Feature support is determined by the platform and release you are using. Use [Feature Explorer](#) to determine if a feature is supported on your platform.

Release	Description
23.4R1-EVO	Starting in Junos OS Evolved Release 23.4R1, the <code>request system software validate-restart</code> command output summarizes the method required to perform the indicated upgrade, for example, an application restart, an in-service kernel warm restart, or a system reboot.

Stage and Activate Junos OS Evolved Software

SUMMARY

You can install software using separate stage and activate phases.

IN THIS SECTION

- [Understanding the Stage and Activate Options | 112](#)
- [Before you Begin | 113](#)
- [Stage a New Software Version | 113](#)
- [Activate a Software Version | 114](#)
- [Validate the Active Configuration Against a Software Version | 117](#)

Starting in Release 25.4R1, Junos OS Evolved optimizes the software installation process by providing separate staging and activation phases on devices that support this feature. This segmentation enables you to stage software images without immediately designating them for the next boot, offering greater operational flexibility and system reliability. You can later activate an installed software version at any time. By utilizing distinct phases for the installation tasks, you can more effectively manage and validate software images.

Benefits of Separate Stage and Activate Phases for Software Installations

- Enhance operational flexibility by staging software images without immediate activation, facilitating controlled upgrade processes.
- Facilitate validation and configuration checks prior to activation.
- Shorten maintenance windows for software upgrades by performing staging and validation tasks in advance.

Understanding the Stage and Activate Options

You have the option to install software in separate staging and activation phases. This segmentation provides finer control over software management, enabling you to pre-stage and validate software images without activating them for the next boot cycle. You can stage a new software package, enabling additional testing and validation of the configuration before activation. You can also stage an existing software version, which validates the active configuration against the installed software. If the validation is successful, the system copies the validated configuration to the `/data` directory associated with that software version.

After you stage a software image, you can activate it at any time. The activation mechanism sets the software version with its corresponding configuration as the next boot version. You can optionally reboot the system when you activate the software.

By separating the installation tasks, you can pre-stage multiple images and make thorough validation checks, ensuring all system components are compatible with the new software version before activating it. Furthermore, by staging and validating software images in advance, you can shorten the maintenance window for software upgrades, which is reduced to activating the image and rebooting the system. This approach fosters smoother transitions and minimizes potential disruptions in network operations, maintaining high system availability.

Before you Begin

Before you install a new software release on a device and activate it, you should back up the current system and prepare the system for the installation. For more information, see ["Install, Upgrade, and Downgrade Software" on page 53](#).

Stage a New Software Version

You can stage one or more new versions of software without setting them as the next boot version. When you stage the software, the system installs the software and adds it to the list of software images. This operation does not modify the currently running software stack. During the staging process, the system validates the current configuration using the new version of the software. Once validation succeeds, the install process checks for sufficient storage on any Routing Engine nodes. Once the storage checks pass, the system installs the new software in a read-only location in the file system.

To stage a new software version:

1. Install the software using the `request system software add` command with the `stage` option, and specify the path and name of the package.

```
user@host-re0> request system software add stage package-name
```

For example:

```
user@host-re0> request system software add stage /var/tmp/junos-evo-install-ptx-x86-64-25.4R1.8-EVO.iso
Adding software images. This process can take several minutes. Please be patient...
Download and Validate in Progress
re0: Running pre-checks for 'junos-evo-install-ptx-x86-64-25.4R1.8-EVO'
re0: Pre-checks pass successfully, copying files to software area
re0: Starting upgrade : /var/tmp/junos-evo-install-ptx-x86-64-25.4R1.8-EVO
re0: Upgrade version : junos-evo-install-ptx-x86-64-25.4R1.8-EVO
```

```

re0: Validating existing configs. See /var/log/validation_config.log for config validation
logs.

re1: Running pre-checks for 'junos-evo-install-ptx-x86-64-25.4R1.8-EVO'

re1: Pre-checks pass successfully, copying files to software area

re0: Running post install commands...

re1: Running post install commands...

re0: Post install sequence was successful.

re1: Post install sequence was successful.

re0: Validation Passed

re0: Updating all nodes...

re0: Other nodes have been updated successfully

re0: Installation was successful

Image validation, installation and staging succeeded.

WARNING: NOTE: An activate is required to start using the new software.

WARNING: Use the 'request system software activate with-old-snapshot-config reboot' command
when ready.

```

- Verify the image is installed by issuing the show system software list command.

```

user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/vda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

-  junos-evo-install-ptx-x86-64-25.4R1.2-EVO - [2025-12-02 15:21:01]
  junos-evo-install-ptx-x86-64-25.4R1.8-EVO - [2025-12-28 16:11:29]

```

The system installs the image but does not set it as the next boot version.

Activate a Software Version

After you stage a software version, you can activate it at any time. Activating a software version sets it as the next boot version. You can activate any installed version except the current version. You can only activate a software version with the configuration corresponding to that version.

To activate an installed software version:

1. Display the installed software and determine the software version to activate.

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/vda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

junos-evo-install-ptx-x86-64-25.4R1.8-EVO - [2025-12-28 16:11:29]
- junos-evo-install-ptx-x86-64-25.4R1.2-EVO - [2025-12-02 15:21:01]
```

2. Activate the desired software version and include the `with-old-snapshot-config` option, which uses the configuration associated with that software version.

You can optionally include the `reboot` option to reboot the device.

```
user@host-re0> request system software activate with-old-snapshot-config junos-evo-install-
ptx-x86-64-25.4R1.8-EVO
Download and Validate in Progress
re0: Boot version is now 'junos-evo-install-ptx-x86-64-25.4R1.8-EVO'
re1: Boot version is now 'junos-evo-install-ptx-x86-64-25.4R1.8-EVO'
re0: Activation complete. Next boot version is set.
Image activation succeeded.
WARNING: NOTE: A reboot is required to start using the new software.
WARNING: Use the 'request system reboot' command when ready.
```

When you activate a software version, the system sets that software version as the next boot version.

3. Verify that the activated software version is the next boot version. The next boot version is preceded by the greater than symbol (>).

```
user@host-re0> show system software list
[...output truncated...]
```

```

-----
node: re0
-----
Active boot device is primary: /dev/vda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

>  junos-evo-install-ptx-x86-64-25.4R1.8-EVO - [2025-12-28 16:11:29]
-  junos-evo-install-ptx-x86-64-25.4R1.2-EVO - [2025-12-02 15:21:01]

```

4. If you did not reboot the device as part of the activation, reboot the device to start the new software.

```

user@host-re0> request system reboot
The entire system (all nodes) will reboot causing traffic loss, do you wish to continue?
[yes,no] (no) yes

```

```
*** System shutdown message from user@host-re0 ***
```

```
reboot the system at Sun Dec 28 19:24:06 2025
```

```
Verify the system is running the new version.
```

5. After the device reboots, verify the running software version by issuing the `show system software list`. The running version is preceded by a dash.

```

user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/vda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

```

```
'*' deleted JSU version

- junos-evo-install-ptx-x86-64-25.4R1.8-EVO - [2025-12-28 16:11:29]
  junos-evo-install-ptx-x86-64-25.4R1.2-EVO - [2025-12-02 15:21:01]
```

After the device reboots, all nodes should be running the new software version.

If you try to activate a software version that is not installed on the device or if you enter an invalid software version name, the system generates an error, as shown in the following output. Use the `show system software list` to verify the installed software versions that you can activate.

```
user@host-re0> request system software activate with-old-snapshot-config junos-evo-install-ptx-x86-64-25.4R1.10-EVO
Download and Validate in Progress
re0: Error: This version junos-evo-install-ptx-x86-64-25.4R1.10-EVO is not found on RE
ERROR: This version is not found on RE. Node:re0 Image: re0:junos-evo-install-ptx-x86-64-25.4R1.10-EVO
Validation and download failed. Aborting upgrade.
```

Similarly, if you try to activate the current software version, the system generates an error.

```
user@host-re0> request system software activate with-old-snapshot-config junos-evo-install-ptx-x86-64-25.4R1.8-EVO
Download and Validate in Progress
re0: Error: Cannot activate current version
ERROR: Cannot activate current version. Node:re0 Image: re0:junos-evo-install-ptx-x86-64-25.4R1.8-EVO
Validation and download failed. Aborting upgrade.
```

Validate the Active Configuration Against a Software Version

You can validate the active configuration against any installed software version and then save the validated configuration as the configuration for that software version. Then when you activate the software version, it uses the saved configuration. If you validate the configuration against an activated software version, the system deactivates the version before validating the configuration. Deactivation removes the next boot pointer for that version. After validation, you must activate the software version again to set the next boot pointer for that image.

To validate and save the active configuration for a given software version:

1. Display the installed software and determine the software version to use.

```
user@host-re0> show system software list
[...output truncated...]
-----
node: re0
-----
Active boot device is primary: /dev/vda
List of installed version(s) :

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'*' deleted JSU version

junos-evo-install-ptx-x86-64-25.4R1.8-EVO - [2025-12-28 16:11:29]
- junos-evo-install-ptx-x86-64-25.4R1.2-EVO - [2025-12-02 15:21:01]
```

2. Issue the `request system software stage` command and specify the software version against which to validate the active configuration.

```
user@host-re0> request system software stage junos-evo-install-ptx-x86-64-25.4R1.8-EVO
Software staging in progress...
re0: Validating current config for staged version junos-evo-install-ptx-x86-64-25.4R1.8-EVO
re0: Validation passed for version junos-evo-install-ptx-x86-64-25.4R1.8-EVO
re0: Copying current config to staged version
re0: Stage is Done.
re0: Syncing nodes
re0: All nodes synced
```

When you stage the software version, the system validates the active configuration against the software. If the validation is successful, the system copies the active configuration to the staging directory for that software. If you later activate the software, it uses the newly saved configuration.

If you run the `request system software stage` command and the software version's configuration is identical to the active configuration, the output indicates that there are no configuration differences.

```
user@host-re0> request system software stage junos-evo-install-ptx-x86-64-25.4R1.8-EVO
Software staging in progress...
re0: No config change is done since last staging.
re0: Skipping current config validation for staged software version.
```

```
re0: Skipping current config copy to staged version.  
re0: Stage is Done.  
re0: Syncing nodes  
re0: All nodes synced
```

RELATED DOCUMENTATION

[request system software add \(Junos OS Evolved\)](#)
[request system software activate \(Junos OS Evolved\)](#)
[request system software stage \(Junos OS Evolved\)](#)

CHAPTER 7

Install Third-Party Software

IN THIS CHAPTER

- [How to Install Third-Party Software on Devices Running Junos OS Evolved | 120](#)

How to Install Third-Party Software on Devices Running Junos OS Evolved

Third-party software is software that is not part of the normal release cadence for a given target chassis. In the case of Junos OS Evolved, third-party software refers to the following types of software delivered to a node or a cluster of nodes running Junos OS Evolved:

- Private software developed by customers and partners
- Software or tools developed by Juniper

Third parties package their software as **.tgz** files. The package filename contains the component name and its version as well as the architecture and the SDK version. You install the third-party software package on a device running Junos OS Evolved using the `request system software add filename` command. This command is the same command you use to install different releases of the Junos OS Evolved software on a device. The only difference is that third-party software filenames use the **.tgz** filename extension, not the **.iso** filename extension used by the Junos OS Evolved software files.

The procedure is the same as installing software on any device running Junos OS. You back up the current system and you place the software on the device, usually in the **/var/tmp** directory of the active Routing Engine.

For example, if you have third-party software developed by Acme with the filename **acmeMonitor-1.2.3_Wrl_9.0_x86_64.tgz**, use the following command to install it on a device running Junos OS Evolved:

```
user@host> request system software add /var/tmp/acmeMonitor-1.2.3_Wrl_9.0_x86_64.tgz
```


NOTE: You do not need to use the reboot command to install third-party applications on devices running Junos OS Evolved.

NOTE: For Junos OS Evolved, if you are trying to reinstall an already installed application, use the force option. The force option will cause the program to remove the existing application before reinstalling it.

The program detects third-party components already installed in the current version that collide with new components in **acmeMonitor-1.2.3_Wrl_9.0_x86_64.tgz**. Without using the force option, a reinstall of a third-party application fails.

Use the show version command to see a list of the current components installed that are not part of the released BOM. The list is tagged as “External Software” and gives the name of each third-party component name and version.

```
user@host> show version
Hostname: host-re0
Model: ptx10008
Junos: 22.4R1.11-EVO
Yocto: 3.0.2
Linux Kernel: 5.2.60-yocto-standard-gae998d995
JUNOS-EVO OS 64-bit [junos-evo-install-ptx-x86-64-22.4R1.11-EVO]
External Software:
JET app acmeMonitor 1.2.3
JET app multi_app 1.1.1
JET app custom_logger 1.0.2
```

You remove third-party software the same way you remove versions of Junos OS Evolved. For example, to remove the Acme software, use this command:

```
user@host> request system software delete acmeMonitor
```

If you want to delete all third-party software, use the request system software delete all-third-party-packages command.

RELATED DOCUMENTATION

request system software add (Junos OS Evolved)

request system software delete (Junos OS Evolved)

show version (Junos OS Evolved)

CHAPTER 8

Install the Paragon Active Assurance (PAA) Test Agent

IN THIS CHAPTER

- [Install the Paragon Active Assurance \(PAA\) Test Agent | 123](#)

Install the Paragon Active Assurance (PAA) Test Agent

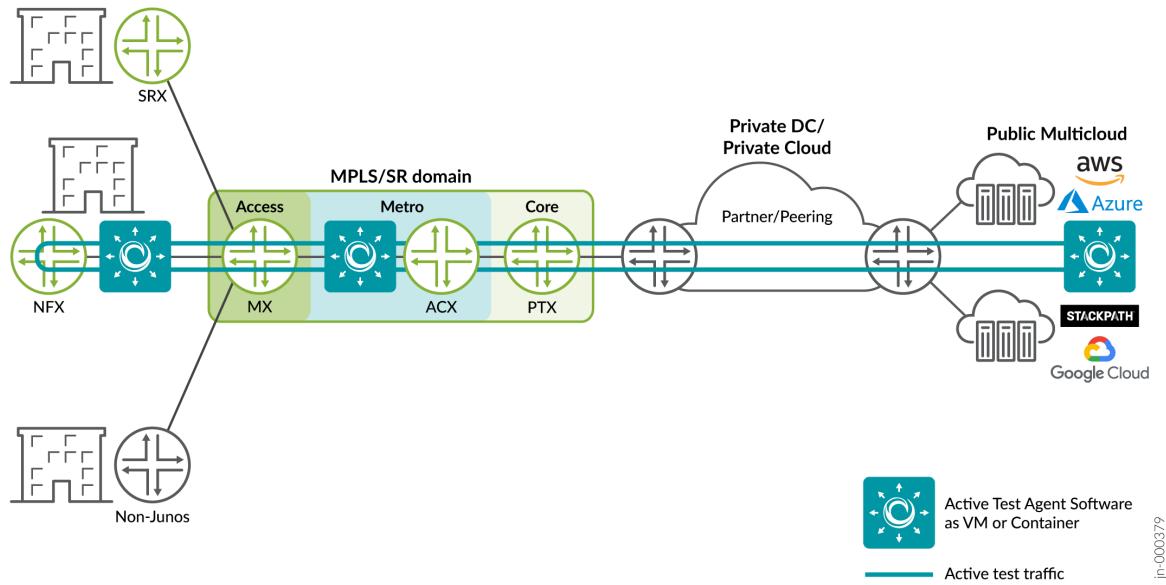
SUMMARY

Paragon Active Assurance (PAA) is a programmable test and service assurance solution using software-based and traffic-generating test agents, easily used and delivered from the cloud as a SaaS solution or deployed on-premise in NFV environments. You can install a PAA test agent on Junos OS Evolved routers to enable network engineers to measure network quality, availability, and performance.

IN THIS SECTION

- [Understand the PAA Test Agent on Junos OS Evolved | 125](#)
- [Install the PAA Test Agent for the First Time Using the test-agent Configuration Statement \(Junos OS Evolved Release 23.4R1-S1 and Later Releases\) | 127](#)
- [Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the test-agent Configuration Statement \(Junos OS Evolved Release 23.4R1-S1 and Later Releases\) | 130](#)
- [Uninstall the PAA Test Agent \(Junos OS Evolved Release 23.4R1-S1 and Later Releases\) | 132](#)
- [Install the PAA Test Agent for the First Time Using NETCONF \(Junos OS Evolved Release 23.4R1-S1 and Later Releases\) | 132](#)

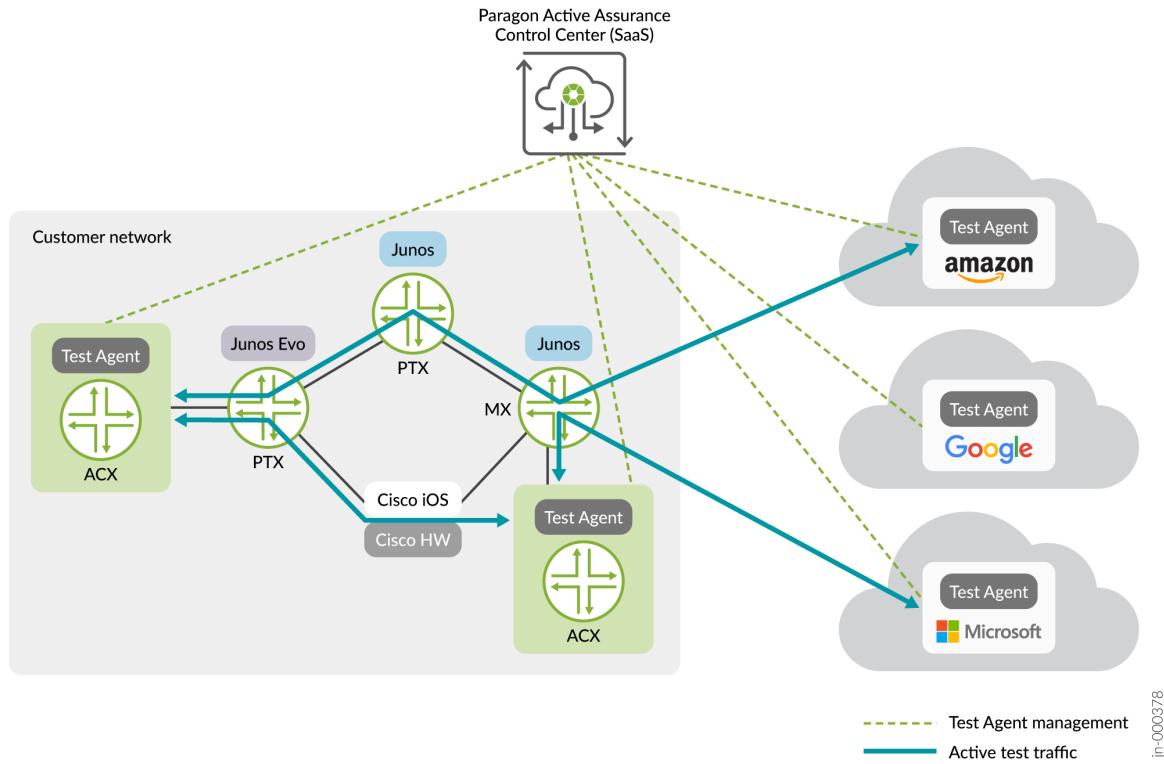
- Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases) | 135
- Uninstall the Test Agent Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases) | 138
- Install the PAA Test Agent For the First Time Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases) | 138
- Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases) | 141
- Install the PAA Test Agent For the First Time Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases) | 143
- Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases) | 145



PAA consists of three parts:

- Control Center—Software for centralized control and coordination of test agents. Runs on a general-purpose Ubuntu server, or is available as a SaaS solution hosted by Juniper Networks.
- Test agent—Software installed on network devices that generate and receive traffic from other test agents and receive control information from the Control Center.
- Plug-ins—Software for each type of test, such as TCP, UDP, and so on. The test agent downloads the plug-in executables from the Control Center.

PAA can test your traffic, no matter where it goes—from your edge devices, through your MPLS core, through your private data center or cloud network, to the public multicloud network, and back again, as shown in [Figure 3 on page 125](#).


Figure 3: PAA Traffic Testing

Understand the PAA Test Agent on Junos OS Evolved

The PAA test agent is a remotely-controlled, software-based active assurance solution on Junos OS Evolved routers that gives you an easy way to test, monitor, and troubleshoot the data plane, which helps improve operational efficiency and decrease churn. Running PAA test agents on routers allows easy testing and monitoring of internal network connectivity and external services, including test agents in cloud platforms, as shown in [Figure 4 on page 126](#).

Figure 4: PAA Test Agents

The Junos OS Evolved PAA test agent supports these plugins:

- TCP: measures network quality using TCP streams between test agents.
- UDP: measures network quality using UDP streams between test agents.
- PING: measures availability of network hosts.
- DNS: measures availability and performance of DNS service.
- HTTP: measures availability and performance of HTTP(S) servers.
- Path trace (ICMP/UDP): measures network route to destination host and response time of intermediate nodes.
- IPTV: measures IPTV stream quality.
- OTT video: measures OTT video stream quality.

The PAA test agent software is not part of the operating system. You install the software using the test-agent configuration statement at the [edit services paa] hierarchy level. This statement causes the device to fetch the PAA test agent software image from the PAA Control Center for you and installs the

software into a Docker container. You can update the PAA test agent software independently of any updates of the operating system software. The PAA test agent software and configuration persists through any upgrades or downgrades of the operating system, as long as you don't downgrade past Junos OS Evolved 22.3R1. If you downgrade below Release 22.3R1, we recommend that you uninstall the test agent software, and install again when you can upgrade to Release 22.3R1 or later.

Before you upgrade the system software from Junos OS Evolved Release 23.2R1 to a later release, you must uninstall the test agent using the `request services paa uninstall` command. After you have upgraded the system software, you need to install the test agent using the `test-agent` configuration statement.

To ensure that traffic bound for the PAA test agent doesn't overwhelm the router, this traffic occupies its own DDOS queue. The bandwidth is throttled according to the ability of the device to tolerate such traffic loads, as shown in [Table 6 on page 127](#). For more technical information on the PAA test agent, see [Further technical information on Test Agents](#).

Table 6: Bandwidth for Traffic Destined for the Test Agent

Device Model	Throttled Bandwidth Limit
ACX7100 and ACX7509	140 Mb/second
ACX7332 and ACX7348	60 Mb/second
ACX7024 and ACX7024X	40 Mb/second
ACX7020	20 Mb/second

For more information about PAA, see [Paragon Active Assurance](#).

For more information about APIs you can use with PAA, see [Developer Guides](#).

Install the PAA Test Agent for the First Time Using the `test-agent` Configuration Statement (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. Before you can install the PAA test agent on the router, you must first either purchase the service or install the PAA software on a server. Then you must:

- Make sure you have an account and a user created in the PAA Control Center, because you need this information to install and register a new PAA test agent on the router.

- Establish connectivity from the PAA Control Center to the router's management interface. You must have an HTTPS connection to the server hosting the PAA Control Center; that is, port 443 is open. Either port 6800 or a port of your choosing should also be open to connect the test agent with the PAA Control Center. In the PAA Control Center, make sure your SSL certificate is correct on both ports, and both are either secure or self-signed.
- If the test agent version is prior to 4.2.0, you must configure 127.0.0.1 as the loopback address (lo0.0) on the router. For more information about loopback addresses and how to configure these addresses, see [Loopback Interfaces \(Junos OS Evolved\)](#). If the test agent version is 4.2.0 or newer, you do not need to configure a loopback address.

To install the PAA software on a server instead of using the SaaS solution, or for more information about setting up SSL certificates for PAA, see: [Install/Upgrade Software](#).

Once you complete the prerequisites, you can install the PAA test agent on the router.

1. Decide what name you want to use for the test agent. The default is the router's hostname. Also, make sure you know what version of the test agent software you would like to use and what port the test agent should use to communicate with the PAA Control Center. The default port number is 6800.
2. Install the test agent.

The configuration statement command has this format:

```
user@host> edit
[edit]
user@host# set services paa test-agent cc-account account cc-host host cc-user user@domain cc-
password password ta-version version ta-name name cc-port port
user@host# commit
```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.49.23.49, the user's password is Passw0rd, the software version is 4.0.0.29, the test agent's name is USPE1_agent, and the port number is 6800. The user account on the router must have maintenance privileges.

```
user@USPE1> edit
[edit]
user@USPE1# set services paa test-agent cc-account MyCompany cc-host 10.49.23.49 cc-user
firstlast@mycompany.example.net cc-password Passw0rd ta-version 4.0.0.29 ta-name USPE1_agent
cc-port 6800
user@USPE1# commit
```

After the new configuration is committed, the operating system installs the test agent.

- Issue the `show services paa status` command to verify that the PAA test agent installed correctly and is able to generate and receive traffic.

This example uses the information from the previous step's example.

```
user@USPE1> show services paa status
Status: Installed
Error message: None
Control center: 10.49.23.49
Image: paa/test-agent-application:4.3.0.20
Container status: running
Running: true
Paused: false
Restarting: false
OOMKilled: false
Dead: false
Pid: 25078
ExitCode: 0
Error: None
Started At: 2023-12-12T15:02:11.993510852Z Finished At: 0001-01-01T00:00:00Z
VRF: vrf0
```

If Status=running, Running=true, and Pid is nonzero, the test agent is installed and running. If there is a problem, you'll see log messages at the end of the output describing the problem. For example, if the password given is incorrect, the output shows that Status=restarting, Restarting=true, Pid=0, and the log messages show that the agent could not register with the PAA Control Center:

```
user@USPE1> show services paa status
Status: Error
Error message: Incorrect login credentials
Logs: 2023-12-12 15:06:27Z INFO: Setting environment
Logs: 2023-12-12 15:06:30Z ERROR: Incorrect user name or password
```

To fix, issue the `set services paa test-agent configuration mode` command again with the correct password and commit the new configuration. Likewise, if you specify any of the other PAA control center options incorrectly, you must determine what the correct values are before reissuing the `set services paa test-agent configuration mode` command again with the correct values and committing the new configuration to install the test agent.

- Verify that the PAA test agent is connected to the PAA Control Center.

From the PAA Control Center GUI, go to the **Test Agents** view. If the test agent installed correctly and is connected to the Control Center, you should see an entry for your new test agent and be able to check its status.

Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the test-agent Configuration Statement (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. If you use the SaaS solution, you can proceed directly to upgrading or downgrading the PAA test agent. However, if you have chosen to install and maintain PAA on a server in your network, then you need to check to make sure the PAA Control Center and plug-ins have already been upgraded to the appropriate version before you can upgrade the Junos OS Evolved PAA test agent.

For information about upgrading the PAA Control Center and plug-ins, see: [Install/Upgrade Software](#).

Once you complete any prerequisites, you can upgrade or downgrade the PAA test agent on the router.

1. Upgrade or downgrade the test agent by changing the configuration of the test agent.

The configuration statement command has this format:

```
user@host> edit
[edit]
user@host# set services paa test-agent cc-account account cc-host host cc-user user@domain cc-
password password ta-version version ta-name name cc-port port
user@host# commit
```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.49.23.49, the user's password is Passw0rd, the software version is 4.1.0.36, the test agent's name is USPE1_agent, and the port number is 6800. The user account on the router must have maintenance privileges.

```
user@USPE1> edit
[edit]
user@USPE1# set services paa test-agent cc-account MyCompany cc-host 10.49.23.49 cc-user
firstlast@mycompany.example.net cc-password Passw0rd ta-version 4.1.0.36 ta-name USPE1_agent
cc-port 6800
user@USPE1# commit
```

After the new configuration is committed, the operating system reinstalls the test agent with whatever new values you configured.

2. Issue the show services paa status command to verify that the PAA test agent installed correctly and is able to generate and receive traffic.

This example uses the information from the previous step.

```
user@USPE1> show services paa status
Status: Installed
Error message: None
Control center: 10.49.23.49
Image: paa/test-agent-application:4.1.0.36
Container status: running
Running: true
Paused: false
Restarting: false
OOMKilled: false
Dead: false
Pid: 25078
ExitCode: 0
Error: None
Started At: 2023-12-12T15:02:11.993510852Z Finished At: 0001-01-01T00:00:00Z
VRF: vrf0
```

If Status=running, Running=true, and Pid is non-zero, the test agent is installed and running. If there is a problem, you'll see log messages at the end of the output describing the problem. For example, if the password given is incorrect, the output shows that Status=restarting, Restarting=true, Pid=0, and the log messages show that the agent could not register with the PAA Control Center:

```
user@USPE1> show services paa status
Status: Error
Error message: Incorrect login credentials
Logs: 2023-12-12 15:06:27Z INFO: Setting environment
Logs: 2023-12-12 15:06:30Z ERROR: Incorrect user name or password
```

To fix, issue the set services paa test-agent configuration mode command again with the correct password and commit the new configuration. Likewise, if you specify any of the other PAA control center options incorrectly, you must determine what the correct values are before uninstalling and then reissuing the set test-agent configuration mode command again with the correct values and committing the new configuration to install the test agent.

3. Verify that the PAA test agent is connected to the PAA Control Center.

From the PAA Control Center GUI, go to the **Test Agents** view. If the test agent installed correctly and is connected to the Control Center, you should see an entry for your new test agent and be able to check its status.

Uninstall the PAA Test Agent (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

If you no longer want to have the test agent on the device, you can uninstall the test agent by deleting its configuration. To delete the test agent configuration, issue the `delete services paa` configuration mode command and commit the configuration. The device then uninstalls the test agent.

Install the PAA Test Agent for the First Time Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. Before you can install the PAA test agent on the router, you must first either purchase the service or install the PAA software on a server. Then you must:

- Make sure you have an account and a user created in the PAA Control Center, because you need this information to install and register a new PAA test agent on the router.
- Establish connectivity from the PAA Control Center to the router's management interface. You must have an HTTPS connection to the server hosting the PAA Control Center (port 443 is open) and either port 6800 or a port of your choosing should also be open to connect the test agent with the PAA Control Center. In the PAA Control Center, make sure your SSL certificate is correct on both ports, and both are either secure or self-signed.
- If the test agent version is prior to 4.2.0, you must configure 127.0.0.1 as the loopback address (lo0.0) on the router. For more information about loopback addresses and how to configure these addresses, see [Loopback Interfaces \(Junos OS Evolved\)](#). If the test agent version is 4.2.0 or newer, you do not need to configure a loopback address.

To install the PAA software on a server instead of using the SaaS solution, or for more information about setting up SSL certificates for PAA, see: [Install/Upgrade Software](#).

You also need to establish a NETCONF session between the router and a NETCONF server, and have already initialized the session. For a sample NETCONF session, see [Sample NETCONF Session](#).

Once you complete the prerequisites, you can install the PAA test agent on the router.

1. Decide what name you want to use for the test agent (the default is the router's hostname), and make sure you know what version of the test agent software you would like to use and what port the test agent should use to communicate with the PAA Control Center (the default is 6800).
2. Install the test agent.

This operational request corresponds to the set services paa test-agent configuration mode command. The operational request to install the test agent has this format:

```
<rpc>
<edit-config>
  <target>
    <candidate/>
  </target>
  <config>
    <configuration>
      <services>
        <paa>
          <test-agent>
            <cc-host>host</cc-host>
            <cc-account>account</cc-account>
            <cc-user>user@domain</cc-user>
            <cc-password>password</cc-password>
            <ta-version>version</ta-version>
            <cc-port>port</cc-port>
            <ta-name>name</ta-name>
          </test-agent>
        </paa>
      </services>
    </configuration>
  </config>
</edit-config>
</rpc>
]]>]]>

<rpc>
  <commit></commit>
</rpc>
]]>]]>
```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.49.23.49, the user's password is Passw0rd, the software version is 4.3.0.20, the test agent's name is USPE1_agent, and the port number is 6800.

```
<rpc>
```

```

<edit-config>
  <target>
    <candidate/>
  </target>
  <config>
    <configuration>
      <services>
        <paa>
          <test-agent>
            <cc-host>10.49.23.49</cc-host>
            <cc-account>MyCompany</cc-account>
            <cc-user>firstlast@mycompany.example.net</cc-user>
            <cc-password>Passw0rd</cc-password>
            <ta-version>4.3.0.20
          </test-agent>
          <cc-port>6800</cc-port>
          <ta-name>USPE1_agent</ta-name>
        </test-agent>
      </paa>
    </services>
  </configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc>
<commit></commit>
</rpc>
]]>]]>

```

The output:

```

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/23.4IR1junos">
<ok/>
</rpc-reply>
]]>]]>

```

3. Verify that the PAA test agent installed correctly and is able to generate and receive traffic.

The operational request to show the status of the PAA test agent is:

```
<rpc>
  <get-paa-status>
  </get-paa-status>
</rpc>
]]>]]>
```

This operational request corresponds to the show services paa status CLI command. For information about parsing the response to this request, see [Parse the NETCONF Server Response](#).

Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. If you use the SaaS solution, you can proceed directly to upgrading or downgrading the PAA test agent. However, if you have chosen to install and maintain PAA on a server in your network, then you need to check to make sure the PAA Control Center and plugins have already been upgraded to the appropriate version before you can upgrade the Junos OS Evolved PAA test agent.

For information about upgrading the PAA Control Center and plugins, see: [Install/Upgrade Software](#).

You also need to establish a NETCONF session between the router and a NETCONF server, and have already initialized the session. For a sample NETCONF session, see [Sample NETCONF Session](#).

Once you complete any prerequisites, you can upgrade or downgrade the PAA test agent on the router.

1. Upgrade or downgrade the test agent by changing the test agent's configuration.

This operational request corresponds to the set services paa test-agent configuration mode command.

The operational request to install the test agent has this format:

```
<rpc>
<edit-config>
  <target>
    <candidate/>
  </target>
  <config>
    <configuration>
      <services>
        <paa>
          <test-agent>
```

```

<cc-host>host</cc-host>
<cc-account>account</cc-account>
<cc-user>user@domain</cc-user>
<cc-password>password</cc-password>
<ta-version>version</ta-version>
<cc-port>port</cc-port>
<ta-name>name</ta-name>
</test-agent>
</paa>
</services>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc>
<commit></commit>
</rpc>
]]>]]>

```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.49.23.49, the user's password is Passw0rd, the software version is 4.1.0.36, the test agent's name is USPE1_agent, and the port number is 6800.

```

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<services>
<paa>
<test-agent>
<cc-host>10.49.23.49</cc-host>
<cc-account>MyCompany</cc-account>
<cc-user>firstlast@mycompany.example.net</cc-user>
<cc-password>Passw0rd</cc-password>
<ta-version>4.1.0.36</ta-version>

```

```

<cc-port>6800</cc-port>
<ta-name>USPE1_agent</ta-name>
</test-agent>
</paa>
</services>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc>
<commit></commit>
</rpc>
]]>]]>

```

The output:

```

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/23.4IR1junos">
<ok/>
</rpc-reply>
]]>]]>

```

2. Verify that the PAA test agent installed correctly and is able to generate and receive traffic.

The operational request to show the status of the PAA test agent is:

```

<rpc>
<get-paa-status>
</get-paa-status>
</rpc>
]]>]]>

```

This operational request corresponds to the show services paa status command. For information about parsing the response to this request, see [Parse the NETCONF Server Response](#).

Uninstall the Test Agent Using NETCONF (Junos OS Evolved Release 23.4R1-S1 and Later Releases)

You need to establish a NETCONF session between the router and a NETCONF server, and have already initialized the session. For a sample NETCONF session, see [Sample NETCONF Session](#).

This operational request corresponds to the `delete services paa` configuration mode CLI command.

```

<rpc>
  <edit-config>
    <target><candidate/></target>
    <default-operation>none</default-operation>
    <config>
      <configuration>
        <services><paa operation="delete"/></services>
      </configuration>
    </config>
  </edit-config>
</rpc>
]]>]]>

<rpc>
  <commit></commit>
</rpc>
]]>]]>

```

The output:

```

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/23.4IR1junos">
<ok/>
</rpc-reply>
]]>]]>

```

Install the PAA Test Agent For the First Time Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network.

Before you can install the PAA test agent on the router, you must first either purchase the service or install the PAA software on a server. Then you must:

- Make sure you have an account and a user created in the PAA Control Center, because you need this information to install and register a new PAA test agent on the router.
- Establish connectivity from the PAA Control Center to the router's management interface. You must have an HTTPS connection to the server hosting the PAA Control Center (port 443 is open) and either port 6800 or a port of your choosing should also be open to connect the test agent with the PAA Control Center. In the PAA Control Center, make sure your SSL certificate is correct on both ports, and both are either secure or self-signed.
- If the test agent version is prior to 4.2.0, you must configure 127.0.0.1 as the loopback address (lo0.0) on the router. For more information about loopback addresses and how to configure them, see [Loopback Interfaces \(Junos OS Evolved\)](#). If the test agent version is 4.2.0 or newer, you do not need to configure a loopback address.

To install the PAA software on a server instead of using the SaaS solution, or for more information about setting up SSL certificates for PAA, see: [Install/Upgrade Software](#).

Once you complete the prerequisites, you can install the PAA test agent on the router.

1. Decide what name you want to use for the test agent (the default is the router's hostname), and make sure you know what version of the test agent software you would like to use and what port the test agent should use to communicate with the PAA Control Center (the default is 6800).
2. Install the test agent.

The install command has this format:

```
user@host> request services paa install cc-account account cc-host host cc-user user@domain
cc-password password ta-version version ta-name name cc-port port
```

For this example, we use a PAA account name of MyCompany. The email address for the user is *firstlast@mycompany.example.net*, the Control Center's IP address is 10.83.153.119, the user's password is *Passw0rd*, the software version is 4.0.0.29, the test agent's name is *USPE1_agent*, and the port number is 6800. The user account on the router must have maintenance privileges..

```
user@USPE1> request services paa install cc-account MyCompany cc-host 10.83.153.119 cc-user
firstlast@mycompany.example.net cc-password Passw0rd ta-version 4.0.0.29 ta-name USPE1_agent
cc-port 6800
```

The command provides status during the install process:

```

PAA installation files copied from 10.83.153.119.
Starting docker daemon.
Created symlink /etc/systemd/system/extensions.target.wants/docker@vrf0.service -> /lib/
systemd/system/docker@.service.
Starting PAA test agent process.
Loaded image: paa/test-agent-application:4.0.0.29
Setting environment.
459d83560855faa6bae16873d3753344f252cb5cd860f790228cf53d5e0ff046
Done. Starting the test agent with environment file /var/opt/paa.env

```

3. Issue the `show services paa status` command to verify that the PAA test agent installed correctly and is able to generate and receive traffic.

This example uses the information from the previous step's example.

```

user@USPE1> show services paa status
Control center: 10.83.153.119
Image: paa/test-agent-application:4.0.0.29
Status: running
Running: true
Paused: false
Restarting: false
OOMKilled: false
Dead: false
Pid: 2175
Started At: 2022-08-01T19:26:34.159900834Z
Finished At: 0001-01-01T00:00:00Z

```

If Status=running, Running=true, and Pid is non-zero, the test agent is installed and running. If there is a problem, you'll see log messages at the end of the output describing the problem. For example, if the password given is incorrect, the output shows that Status=restarting, Restarting=true, Pid=0, and the log messages show that the agent could not register with the PAA Control Center:

```

user@USPE1> show services paa status
Control center: 10.83.153.119
Image: paa/test-agent-application:4.0.0.29
Status: restarting
Running: true
Paused: false

```

```

Restarting: true
OOMKilled: false
Dead: false
Pid: 0
Started At: 2022-08-02T13:28:48.751648112Z
Finished At: 2022-08-02T13:28:49.723488791Z
Last 3 logs: 2022-08-02 13:28:47.765142Z ERROR: Failed to register agent to CC
Last 3 logs: 2022-08-02 13:28:49.664372Z WARN: Registration error: 401 Not Authorized
Last 3 logs: 2022-08-02 13:28:49.665425Z ERROR: Failed to register agent to CC

```

To fix, issue the `request services paa uninstall` command to delete the Docker container and then issue the `request services paa install` command again with the correct password. Likewise, if you specify any of the other PAA control center options incorrectly, you must determine what the correct values are before uninstalling and then reissuing the `request services paa install` command again with the correct values to install the test agent.

4. Verify that the PAA test agent is connected to the PAA Control Center.

From the PAA Control Center GUI, go to the **Test Agents** view. If the test agent installed correctly and is connected to the Control Center, you should see an entry for your new test agent and be able to check its status.

Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using the CLI Command (Junos OS Evolved Release 23.2R1 and Prior Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. If you use the SaaS solution, you can proceed directly to upgrading or downgrading the PAA test agent. However, if you have chosen to install and maintain PAA on a server in your network, then you need to check to make sure the PAA Control Center and plugins have already been upgraded to the appropriate version before you can upgrade the Junos OS Evolved PAA test agent.

For information about upgrading the PAA Control Center and plugins, see: [Install/Upgrade Software](#).

Once you complete any prerequisites, you can upgrade or downgrade the PAA test agent on the router.

1. Uninstall the PAA test agent.

For this example, we are logged in as user name `user` and the router's hostname is `USPE1`:

```

user@USPE1> request services paa uninstall
Stopping PAA test agent.
Done. Un-installation of PAA test agent.

```

2. Upgrade or downgrade the test agent, using the same test agent name as the previous version.

The install command has this format:

```
user@host> request services paa install cc-account account cc-host host cc-user user@domain
cc-password password ta-version version ta-name name cc-port port
```

For this example, we use a PAA user account name of MyCompany. The email address for the user is `firstlast@mycompany.example.net`, the Control Center's IP address is `10.83.153.119`, the user's password is `Passw0rd`, the software version is `4.0.0.36`, the test agent's name is `USPE1_agent`, and the port number is `6800`. The user account on the router must have maintenance privileges.

```
user@USPE1> request services paa install cc-account MyCompany cc-host 10.83.153.119 cc-user
firstlast@mycompany.example.net cc-password Passw0rd ta-version 4.0.0.36 ta-name USPE1_agent
cc-port 6800
```

The command provides status during the install process:

```
PAA installation files copied from 10.83.153.119.
Starting docker daemon.
Starting PAA test agent process.
Loaded image: paa/test-agent-application:4.0.0.36
Setting environment.
A0c12feaddb312fd2fe3625a659304a448e9eeac4767d2eccd7749bc6f24e8ca
Done. Starting the test agent with environment file /var/opt/paa.env
```

3. Issue the `show services paa status` command to verify that the PAA test agent installed correctly and is able to generate and receive traffic.

This example uses the information from the previous step.

```
user@USPE1> show services paa status
Control center: 10.83.153.119
Image: paa/test-agent-application:4.0.0.36
Status: running
Running: true
Paused: false
Restarting: false
OOMKilled: false
Dead: false
Pid: 15302
```

```
Started At: 2022-08-10T06:47:41.204299693Z
Finished At: 0001-01-01T00:00:00Z
```

If Status=running, Running=true, and Pid is non-zero, the test agent is installed and running. If there is a problem, you'll see log messages at the end of the output describing the problem. For example, if the password given is incorrect, the output shows that Status=restarting, Restarting=true, Pid=0, and the log messages show that the agent could not register with the PAA Control Center:

```
user@USPE1> show services paa status
Control center: 10.83.153.119
Image: paa/test-agent-application:4.0.0.36
Status: restarting
Running: true
Paused: false
Restarting: true
OOMKilled: false
Dead: false
Pid: 0
Started At: 2022-08-10T06:47:41.204299693Z
Finished At: 2022-08-10T06:48:25.723488791Z
Last 3 logs: 2022-08-10 06:47:47.765142Z ERROR: Failed to register agent to CC
Last 3 logs: 2022-08-02 06:49:49.664372Z WARN: Registration error: 401 Not Authorized
Last 3 logs: 2022-08-02 06:49:49.665425Z ERROR: Failed to register agent to CC
```

To fix, issue the request services paa uninstall command to delete the Docker container and then issue the request services paa install command again with the correct password. Likewise, if you specify any of the other PAA control center options incorrectly, you must determine what the correct values are before uninstalling and then reissuing the request services paa install command again with the correct values to install the test agent.

4. Verify that the PAA test agent is connected to the PAA Control Center.

From the PAA Control Center GUI, go to the **Test Agents** view. If the test agent installed correctly and is connected to the Control Center, you should see an entry for your new test agent and be able to check its status.

Install the PAA Test Agent For the First Time Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. Before you can install the PAA test agent on the router, you must first either purchase the service or install the PAA software on a server. Then you must:

- Make sure you have an account and a user created in the PAA Control Center, because you need this information to install and register a new PAA test agent on the router.
- Establish connectivity from the PAA Control Center to the router's management interface. You must have an HTTPS connection to the server hosting the PAA Control Center (port 443 is open) and either port 6800 or a port of your choosing should also be open to connect the test agent with the PAA Control Center. In the PAA Control Center, make sure your SSL certificate is correct on both ports, and both are either secure or self-signed.
- If the test agent version is prior to 4.2.0, you must configure 127.0.0.1 as the loopback address (lo0.0) on the router. For more information about loopback addresses and how to configure them, see [Loopback Interfaces \(Junos OS Evolved\)](#). If the test agent version is 4.2.0 or newer, you do not need to configure a loopback address.

To install the PAA software on a server instead of using the SaaS solution, or for more information about setting up SSL certificates for PAA, see: [Install/Upgrade Software](#).

You also need to establish a NETCONF session between the router and a NETCONF server, and have already initialized the session. For a sample NETCONF session, see [Sample NETCONF Session](#).

Once you complete the prerequisites, you can install the PAA test agent on the router.

1. Decide what name you want to use for the test agent (the default is the router's hostname), and make sure you know what version of the test agent software you would like to use and what port the test agent should use to communicate with the PAA Control Center (the default is 6800).
2. Install the test agent.

This operational request corresponds to the request services paa install CLI command. The operational request to install the test agent has this format:

```

<rpc>
  <install-paa-ta>
    <cc-host>host</cc-host>
    <cc-account>account</cc-account>
    <cc-user>user@domain</cc-user>
    <cc-password>password</cc-password>
    <ta-version>version</ta-version>
    <cc-port>port</cc-port>
    <ta-name>name</ta-name>
  </install-paa-ta>
</rpc>
]]>]]>

```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.83.153.119, the user's password is

Passw0rd, the software version is 4.0.0.29, the test agent's name is USPE1_agent, and the port number is 6800.

```

<rpc>
  <install-paa-ta>
    <cc-host>10.83.153.119</cc-host>
    <cc-account>MyCompany</cc-account>
    <cc-user>firstlast@mycompany.example.net</cc-user>
    <cc-password>Passw0rd</cc-password>
    <ta-version>4.0.0.29</ta-version>
    <cc-port>6800</cc-port>
    <ta-name>USPE1_agent</ta-name>
  </install-paa-ta>
</rpc>
]]>]]>

```

3. Verify that the PAA test agent installed correctly and is able to generate and receive traffic.

The operational request to show the status of the PAA test agent is:

```

<rpc>
  <get-paa-status>
  </get-paa-status>
</rpc>
]]>]]>

```

This operational request corresponds to the `show services paa status` CLI command. For information about parsing the response to this request, see [Parse the NETCONF Server Response](#).

Upgrade or Downgrade the PAA Test Agent Software on Junos OS Evolved Using NETCONF (Junos OS Evolved Release 23.2R1 and Prior Releases)

Paragon Active Assurance (PAA) is available either as a SaaS solution hosted by Juniper Networks or as a software package you install and maintain yourself on a general-purpose Ubuntu server in your network. If you use the SaaS solution, you can proceed directly to upgrading or downgrading the PAA test agent. However, if you have chosen to install and maintain PAA on a server in your network, then you need to check to make sure the PAA Control Center and plug-ins have already been upgraded to the appropriate version before you can upgrade the Junos OS Evolved PAA test agent.

For information about upgrading the PAA Control Center and plug-ins, see: [Install/Upgrade Software](#).

You also need to establish a NETCONF session between the router and a NETCONF server, and have already initialized the session. For a sample NETCONF session, see [Sample NETCONF Session](#).

Once you complete any prerequisites, you can upgrade or downgrade the PAA test agent on the router.

1. Uninstall the PAA test agent.

This operational request corresponds to the request services paa uninstall CLI command.

```
<rpc>
  <uninstall-paa-ta>
  </uninstall-paa-ta>
</rpc>
]]>]]>
```

2. Upgrade or downgrade the test agent, using the same test agent name as the previous version.

This operational request corresponds to the request services paa install CLI command. The operational request to install the test agent has this format:

```
<rpc>
  <install-paa-ta>
    <cc-host>host</cc-host>
    <cc-account>account</cc-account>
    <cc-user>user@domain</cc-user>
    <cc-password>password</cc-password>
    <ta-version>version</ta-version>
    <cc-port>port</cc-port>
    <ta-name>name</ta-name>
  </install-paa-ta>
</rpc>
]]>]]>
```

For this example, we use a PAA account name of MyCompany. The email address for the user is firstlast@mycompany.example.net, the Control Center's IP address is 10.83.153.119, the user's password is Passw0rd, the software version is 4.0.0.36, the test agent's name is USPE1_agent, and the port number is 6800.

```
<rpc>
  <install-paa-ta>
```

```

<cc-host>10.83.153.119</cc-host>
<cc-account>MyCompany</cc-account>
<cc-user>firstlast@mycompany.example.net</cc-user>
<cc-password>Passw0rd</cc-password>
<ta-version>4.0.0.36</ta-version>
<cc-port>6800</cc-port>
<ta-name>USPE1_agent</ta-name>
</install-paa-ta>
</rpc>
]]>]]>

```

3. Verify that the PAA test agent installed correctly and is able to generate and receive traffic.

The operational request to show the status of the PAA test agent is:

```

<rpc>
<get-paa-status>
</get-paa-status>
</rpc>
]]>]]>

```

This operational request corresponds to the show services paa status command. For information about parsing the response to this request, see [Parse the NETCONF Server Response](#).

Change History Table

Feature support is determined by the platform and release you are using. Use [Feature Explorer](#) to determine if a feature is supported on your platform.

Release	Description
25.2R1-EVO	Paragon Active Assurance (PAA) 4.4.2.24 test agent (ACX7020)—Starting in Junos OS Evolved Release 25.2R1, we support installing a test agent for Paragon Active Assurance Release 4.4.2.24 on the ACX7020 router.
23.4R1S1-EVO	Starting in Junos OS Evolved Release 23.4R1-S1, for ACX7332 and ACX7348 routers, you can install a PAA test agent on your router to help you monitor network quality, availability, and performance. Also, starting in this release for all ACX platforms that support this test agent, you now install the test agent by using the test-agent configuration statement at the [edit services paa] hierarchy level, instead of using the deprecated operational mode command request services paa install.

22.4R1-EVO	Paragon Active Assurance (PAA) 4.1 test agent (ACX7024)—Starting in Junos OS Evolved Release 22.4R1, we support installing a test agent for Paragon Active Assurance Release 4.1 on the ACX7024 router.
22.3R1-EVO	Paragon Active Assurance (PAA) 4.0 test agent (ACX7100 and ACX7509)—Starting in Junos OS Evolved Release 22.3R1, we support installing a test agent for Paragon Active Assurance Release 4.0, a remotely-controlled, software-based active assurance solution, on the ACX7100 and ACX7509 routers, giving network engineers an easy way to test, monitor, and troubleshoot the data plane.

RELATED DOCUMENTATION

[Paragon Active Assurance](#)

[Supported Devices and Junos OS Releases](#)

[Further technical information on Test Agents](#)

3

PART

System Backup and Recovery

- Boot Junos OS Evolved from a USB Drive | **150**
- Back Up an Installation with Snapshots | **160**
- Roll Back the Software to a Previous Version | **164**
- Backup and Recover the Configuration File | **166**

CHAPTER 9

Boot Junos OS Evolved from a USB Drive

IN THIS CHAPTER

- [Boot Junos OS Evolved by Using a Bootable USB Drive | 150](#)

Boot Junos OS Evolved by Using a Bootable USB Drive

SUMMARY

You can boot Junos OS Evolved from a USB device. Booting from the USB device reformats the disk and reinstalls the software without prompting you. After the installation is done, you can either remove the USB drive from the USB port or reboot the device.

IN THIS SECTION

- [Create a Bootable USB Drive Using a Windows Device | 150](#)
- [Create a Bootable USB Drive Using a MAC OS X | 151](#)
- [Create a Bootable USB Drive Using a Switch or Router Running Junos OS Evolved | 152](#)
- [Boot Junos OS Evolved from a Bootable USB Drive Using the CLI | 154](#)
- [Recover Junos OS Evolved Using USB Scratch Install | 155](#)
- [Boot Junos OS Evolved from a Bootable USB Drive Using the Shell | 156](#)

You can use several ways to create the Junos OS Evolved image on the USB drive. Also included are both a procedure for booting from the USB drive and a procedure for how to recover if the boot process from the USB drive goes bad.

Create a Bootable USB Drive Using a Windows Device

You need the following items to perform this procedure:

- Windows desktop or laptop with a USB port.

- Version 2.0 or version 3.0 USB device with the following features:
 - USB device is big enough to hold the image.
 - USB device must have no security features, such as a keyed boot partition.
- Junos OS Evolved image

For a virtual Windows desktop you must map a physical USB of the host to the guest virtual machine (VM).

To create a bootable USB drive using a Windows device:

1. Install Win32 Disk Imager on your laptop or computer.
You can download it from <https://sourceforge.net/projects/win32diskimager/>.
2. Download the required Junos OS Evolved image from the Downloads page to the Documents directory of your laptop or computer.
3. Insert a USB flash drive into the USB port of your laptop or computer.
4. Open the win32diskimager application and, in the **Image File** box, type the path to the Documents directory (or click the folder icon to navigate to the Documents directory) and select the install media image.
5. Under **Device**, select the USB flash-drive and click **Write and Confirm**. The Progress box shows the progress.
6. Remove the USB flash drive once it is complete.

The USB flash-drive is now ready to use as a bootable disk.

Create a Bootable USB Drive Using a MAC OS X

You need the following items to perform this procedure:

- A MAC OS X desktop or laptop with a USB port.
- Version 2.0 or version 3.0 USB device with following features:
 - USB device is big enough to hold the image.

To create a bootable USB using MAC OS X:

1. Copy the install media (.img format) to the **/var/tmp/** directory of the MAC OS device using the **scp** command.

For example:

```
$ scp user@server:/var/tmp/image-name /var/tmp/
password:
```

2. To get the list of devices on the MAC OS X device, run the `diskutil list` command.
3. Insert the USB flash drive into the USB port of the MAC OS X.
4. Run the `diskutil list` command again to determine the device node assigned to USB flash-drive (for example, `/dev/disk3`).
5. Run the `diskutil unmountDisk /dev/diskN` command.

Replace `N` with the disk number from the last command. (In this example, `N` would be 3.)

For example:

```
$ diskutil unmountDisk /dev/disk3
Unmount of all volumes on disk3 was successful
```

6. Execute the command `sudo dd if=/var/tmp/junos-evo-install-ptx-fixed-x86-64-19.2R1.31-EV0.img of=/dev/rdiskN bs=1m`

For example:

```
$ sudo dd if=/var/tmp/usb.img of=/dev/rdisk3 bs=1m
Password:
965+0 records in
965+0 records out
1011875840 bytes transferred in 82.891882 secs (12207177 bytes/sec)
```

7. The USB with image is created and ready for installation. Safely remove the USB drive and use it as a bootable USB drive on the device on which you plan to run Junos OS Evolved.

Create a Bootable USB Drive Using a Switch or Router Running Junos OS Evolved

You need the following items to perform this procedure:

- A switch or router with a USB port that is running Junos OS Evolved.
- Version 2.0 or version 3.0 USB device with following features:
 - USB device is big enough to hold the image.
 - USB device must have no security features, such as a keyed boot partition.
 - USB device label should be JUNOS.

To create a bootable USB using a switch or router running Junos OS Evolved:

1. Download `.img` image from Downloads site and copy it to the `/var/tmp/` directory of the switch or router running Junos OS Evolved using the `scp` command.

2. Enter the shell as root:

```
user@host> start shell user root
Password:
```

3. Before inserting the USB device, list the contents of `/dev/`.

```
root@host-re0:~#ls /dev/sd*
/dev/sda  /dev/sda3  /dev/sda6  /dev/sdb1  /dev/sdb4  /dev/sdb7
/dev/sda1 /dev/sda4  /dev/sda7  /dev/sdb2  /dev/sdb5
/dev/sda2 /dev/sda5  /dev/sdb   /dev/sdb3  /dev/sdb6
root@host-re0:~#
```


NOTE: Your output might differ based on the device you are using. Connect to the device using the console before inserting the USB to see the name given to the USB device. For more information see [KB36398](#).

4. Insert the USB drive in the USB port.

5. Repeat the command to list the contents of `/dev/`.

```
root@host-re0:~#ls /dev/sd*
/dev/sda  /dev/sda3  /dev/sda6  /dev/sdb1  /dev/sdb4  /dev/sdb7
/dev/sda1 /dev/sda4  /dev/sda7  /dev/sdb2  /dev/sdb5  /dev/sdc
/dev/sda2 /dev/sda5  /dev/sdb   /dev/sdb3  /dev/sdb6  /dev/sdc1
root@host-re0:~#
```


NOTE: `/dev/sdc` is the USB drive.

6. Execute the following command, where `$USB` identifies the device for that USB (typically `sdc` in Linux):

```
root@host-re0:~# dd if=/var/tmp/usb.img of=/dev/$USB bs=1M
```

7. The USB with image is created and ready for installation. Safely remove the USB drive and use it as a bootable USB drive on the device on which you plan to run Junos OS Evolved.

Boot Junos OS Evolved from a Bootable USB Drive Using the CLI

Before you perform this procedure, you must create a USB drive with the Junos OS Evolved software image installed on it. For instructions, see ["Create a Bootable USB Drive Using a Windows Device" on page 150](#) ["Create a Bootable USB Drive Using a MAC OS X" on page 151](#) or ["Create a Bootable USB Drive Using a Switch or Router Running Junos OS Evolved" on page 152](#).

To install Junos OS Evolved on a device that runs Junos OS Evolved using a USB drive:

1. Connect to the console.
2. Insert the USB drive with the Junos OS Evolved package in the **USB0** port on the routing device.
3. Reboot the routing device from the CLI:

```
user@host> request node reboot usb
```


NOTE: Use the command `request system shutdown reboot usb` for Junos OS Evolved software images older than Release 20.1R1.

When the reboot and loading of the Junos OS Evolved package is complete, you have a choice as to running a snapshot or not:

```
Installation of image junos-evo-install-ptx-fixed-x86-64-19.2R1.31-EVO done.  
Boot version is now 'junos-evo-install-ptx-fixed-x86-64-19.2R1.31-EVO'  
Do you want to run snapshot on secondary ssd? (Y/N)
```

4. Enter **N** to skip taking a snapshot. The system keeps the previous snapshot.

```
Do you want to run snapshot on secondary ssd? (Y/N)N  
Setting next_boot  
Booting from 0000
```

5. Reboot the device to finish the installation.

```
user@host-re0~# reboot
```

Recover Junos OS Evolved Using USB Scratch Install

IN THIS SECTION

- [Problem | 155](#)
- [Solution | 155](#)

Problem

Description

If, while you are trying to boot Junos OS Evolved from a USB device, the device goes to a bad state, follow this procedure.

Solution

To recover using a USB scratch install:

1. Insert the bootable USB device into the device.
2. Access the BIOS manager to check the USB selection:
 - a. Reboot the routing device.

```
user@host> request node reboot usb
```


NOTE: Use the command `request system shutdown reboot usb` for Junos OS Evolved software images older than Release 20.1R1.

- b. To access the BIOS boot manager, press ESC while the system reboots.
3. In the BIOS boot manager, select one of the following:
 - For PTX10003 devices, select **EFI USB**.
 - For QFX5200 devices, select **USB: *model-name***.

The scratch installation starts automatically and the operating system loads.

4. Reboot the device to finish the installation.

```
user@host-re0~# reboot
```

Boot Junos OS Evolved from a Bootable USB Drive Using the Shell

The USB installation process deletes all configuration and other files. Therefore, after the USB installation process completes:

- If your system contains only one Routing Engine, you need to re-create the configuration file. Hopefully, you previously stored a configuration file on a remote server or other off-box location. See ["Restore the Configuration from a Backup Copy after a USB Software Installation" on page 171](#). If you do not have a previously-stored configuration file, you must start with the initial configuration steps as described in the hardware guide for your product and then continue to add the configuration statements that you need.
- If your system contains two Routing Engines, the secondary Routing Engine boots up, but does not join the system formed by the primary Routing Engine and the FPCs, because the current software versions are different. To synchronize the software and configurations from the primary Routing Engine to the secondary Routing Engine, use the `request system software sync all-versions operational` mode command. The secondary Routing Engine then reboots and joins the system.

If you have not yet created a USB drive, follow the instructions at ["Create a Bootable USB Drive Using a Windows Device" on page 150](#) or ["Create a Bootable USB Drive Using a MAC OS X" on page 151](#) to create a USB drive using either a Microsoft Windows or a Mac OS X device and then use that USB drive to install the image.

1. Power on or reboot the device. The device boots from RE0.
2. Press the **ESC** key multiple times until the Front Page menu appears.
3. Using the arrow keys, move the cursor to the **Boot Manager** option, and press **Enter** to select that option. The Boot Manager menu appears:
4. Using the arrow keys, move the cursor to the **USB00** option, and press **Enter** to select that option. Some messages and the GNU GRUB menu appear:

```
Booting USB00 (JetFlashTranscend
16GB)...
Secure boot is not enforced

GNU GRUB  version 2.02~juniper/rel_v3~

+-----+
|*Evo ISO installation media [junos-evo-install-ptx-x86-64-20.4R2.14-EVO]|
```

```

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
+-----+

```

Use the ^ and v keys to select which entry is highlighted.
 Press enter to boot the selected OS, 'e' to edit the commands
 before booting or 'c' for a command-line. ESC to return
 previous menu.
 The highlighted entry will be executed automatically in 1s.

- Because the USB device can contain only one image, you do not need to select the image. GRUB starts the installation automatically.

```

Booting `Evo ISO installation media
[junos-evo-install-ptx-x86-64-20.4R2.14-EVO]'

Version is junos-evo-install-ptx-x86-64-20.4R2.14-EVO, Product is ptx[re].
IMA is 1
Loading kernel ...ok
Loading initrd ...ok
Booting ...
error: no suitable video mode found.
Booting in blind mode
error: no suitable video mode found.
Booting in blind mode
Trying sdc...sdc1...Found!
[    7.624873] jnx-cbd-fpga jnx-cbd-fpga.10: jnx_cbc_probe: FRU not handled by jnx-connector:
-22!
[    7.736740] jnx-cbd-fpga jnx-cbd-fpga.8: jnx_cbc_probe: FRU not handled by jnx-connector:
-22!
Watchdog set to 500 seconds
[    8.205691] watchdog: watchdog0: watchdog did not stop!
Found 186 gig (195360984 kbytes) Vendor ATA, Model SFS200GM3AA4T0-
Writing new partitioning table to disk sda -

```

```
boot - 204800K
soft - 32768M
swap - 4096M
data - 3072M
conf - 1024M
var - 149622M
user - 0M

Done
Installing/Mounting on disk /dev/sda mapped to device ata1
Processing /dev/sda2 for mount on /soft ...[creating]..
    data - 3072M
    conf - 1024M
    var - 149622M
    user - 0M

Done
Installing/Mounting on disk /dev/sda mapped to device ata1
Processing /dev/sda2 for mount on /soft ...[creating]..ok [mounting]..done
Processing /dev/sda5 for mount on /data ...[creating]..ok [mounting]..done
Processing /dev/sda6 for mount on /data/config ...[creating]..ok [mounting]..done
Processing /dev/sda7 for mount on /data/var ...[creating]..ok [mounting]..done
Processing /data/var/opt_fs for mount on /data/var/external ...[creating]..ok [mounting]..done
mkswap: /dev/sda3: warning: wiping old swap signature.
Setting up swapspace version 1, size = 4 GiB (4294963200 bytes)
no label, UUID=66495c63-a79e-496a-ba60-853417d76edb
Processing /dev/sda1 for mount on /boot ...[creating]..ok [mounting]..done
Done with local filesystems setup.

Cleanup check done.

Installation on re node for version junos-evo-install-ptx-x86-64-20.4R2.14-EVO started.
[...output truncated...]
Installation of image junos-evo-install-ptx-x86-64-20.4R2.14-EVO done.
Boot version is now 'junos-evo-install-ptx-x86-64-20.4R2.14-EVO'
Do you want to run snapshot on secondary ssd? (Y/N)n
Setting next_boot
Booting from 0000
NOTE: Now 9 keys in keyring: %keyring:.ima
Scratch install done.

BootCurrent: 0003
Timeout: 5 seconds
BootOrder: 0003,0000,0001,0002
Boot0000* HDD00 (SFSA200GM3AA4T0-C-HC-646-JUN)
Boot0001* HDD01 (SFSA200GM3AA4T0-C-HC-646-JUN)
Boot0002* ETH00 (B8-C2-53-32-91-63)
Boot0003* USB00 (JetFlashTranscend 16GB)
```

```
Booting from 0000
Scratch install done.

### To Reboot : #####
#      Pull out the USB stick      #
# Or -                                #
#      Type 'reboot' and hit <return>  #
#####
```

6. Issue the reboot command to finish the installation.

```
user@host-re0:~# reboot
```

7. The action you take next depends on whether your system has one or two Routing Engines.

- If your system has one Routing Engine, either copy a known-good configuration file to the Routing Engine, as explained in ["Restore the Configuration from a Backup Copy after a USB Software Installation" on page 171](#), or start creating a new configuration file with the steps contained in the hardware guide for your product.
- If your system has two Routing Engines, use the `request system software sync all-versions` operational mode command to synchronize the software and configurations from the primary Routing Engine to the secondary Routing Engine and enable the secondary Routing Engine to join the system and use the most-recent configuration that was stored on the primary Routing Engine. Because the current software versions do not match, the secondary Routing Engine does not join the system, which comprises the primary Routing Engine and the FPCs.

```
[vrf:none] user@host-re1:~# cli
{master}
user@host-re1> request system software sync all-versions
warning: Erase software versions present on the other RE node and sync software versions
from Master RE node
Erase software versions on the other RE and sync from Master RE? [yes,no] (no)
yes
Cleanup old software versions on re0
The current version on master RE - junos-evo-install-ptx-x86-64-20.4-202102141059.0-EVO
The current version on other RE - junos-evo-install-ptx-x86-64-19.4R1-S1.18-EVO
Transfer software version files for junos-evo-install-ptx-x86-64-20.4-202102141059.0-EVO
to node re0...
[...output truncated...]
```

Back Up an Installation with Snapshots

IN THIS CHAPTER

- [Back Up and Recover Software with Snapshots | 160](#)

Back Up and Recover Software with Snapshots

SUMMARY

The installation process removes all stored files on the device except for files such as the `juniper.conf`, `SNMP ifIndexes`, and `SSH` files. Therefore, you should back up your current configuration in case you need to return to the current software installation after running the installation program. You can also recover the configuration file and the Junos OS Evolved software, if required.

IN THIS SECTION

- [Understand Snapshots | 160](#)
- [Create a Snapshot on the Secondary SSD and Use It to Recover the Software Installation | 161](#)

Understand Snapshots

You create copies of both the software and the configuration running on a device using the `request system snapshot` command. The `request system snapshot` command takes a “snapshot” of the files currently used to run the device and copies the files onto the alternate solid-state drive (SSD). The snapshot contains the complete contents of the `/soft`, `/config`, and `/root` directories, which include the current and all rollback software images, copies of user data, the active configuration, the rescue configuration, and content from the `/var` directory (except the `/var/core`, `/var/external`, `/var/log`, and `/var/tmp` directories). You can then use this snapshot to boot the device at the next boot up or as a backup boot option.

NOTE: We recommend that you take a snapshot after every software upgrade or downgrade.

System snapshots have the following limitations:

- You cannot use snapshots to move files to any destination outside of the device, including an installed external USB flash drive.
- Snapshot commands run on the local Routing Engine and snapshot to the secondary SSD on the local Routing Engine.

NOTE: Starting in Junos OS Evolved Release 22.4R1, you can take snapshots of both Routing Engines by issuing the `request system snapshot routing-engine both` command.

Restoring from a snapshot is especially effective as a boot-up option after a disk corruption, as it is the only recovery option that allows you to completely restore the software and configuration in the event of a corrupted disk.

After an upgrade, if the installation fails during early boot, the Routing Engine automatically reverts to booting from the secondary SSD, where snapshots are stored. You can then reboot the Routing Engine using the snapshot saved on the secondary SSD.

Create a Snapshot on the Secondary SSD and Use It to Recover the Software Installation

To create a snapshot on the secondary SSD (`/dev/sdb`) of the primary (or only) Routing Engine:

1. Issue the `request system snapshot` operational mode command.

```
user@host> request system snapshot
-----
node: re0
-----
.....
Starting Snapshot in device /dev/sdb
List of software versions getting copied to Snapshot...
[1] junos-evo-install-ptx-x86-64-20.4-202103151803.0-EVO
[2] junos-evo-install-ptx-x86-64-20.4-202103111254.0-EVO
[3] junos-evo-install-ptx-x86-64-20.4-202103150459.0-EVO
[4] junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO
.....
.....
[...output truncated...]
.....
.....
Software Snapshot completed.
```

2. Use the show system snapshot operational mode command to see the snapshot images available on the Routing Engines.

```
user@host> show system snapshot
-----
node: re0
-----
Current snapshot device: /dev/sdb
Snapshot boot device: sdb
List of installed version(s) in Snapshot boot device sdb:

[1]  < junos-evo-install-ptx-x86-64-20.4-202103151803.0-EVO - [2021-03-16 15:09:46]
[2]    junos-evo-install-ptx-x86-64-20.4-202103111254.0-EVO - [2021-03-16 15:10:32]
[3] -> junos-evo-install-ptx-x86-64-20.4-202103150459.0-EVO - [2021-03-16 15:07:49]
[4]    junos-evo-install-ptx-x86-64-20.4-202103141559.0-EVO - [2021-03-16 15:11:52]

'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
```

3. To recover the primary Routing Engine using the snapshot, boot the Routing Engine from the secondary SSD (disk2).

```
user@host> request node reboot re0 disk2
```

4. If the Routing Engine has successfully booted from the secondary SSD, after the Routing Engine boots up, you see a message similar to the following before the login prompt:

```
*****
**
** WARNING: THIS DEVICE HAS BOOTTED FROM ALTERNATE DEVICE (/dev/sdb)
**
** It is possible that the primary device copy of JUNOS EVO failed to boot up
** properly, and so this device has booted from the backup device JUNOS EVO copy.
**
** Follow below steps to recover primary device:
** Master RE:
** 1) Run cli command "request system snapshot" to recover the primary device.
** 2) Then run cli command "request node reboot re0 disk1" to boot from
**    the primary device.
```

```
**  
** Backup RE:  
** 1) Run cli command "request system software sync all-versions" from  
**     the Master RE.  
** 2) Post RE reboot, login to RE and run cli command "request system snapshot"  
**     to recover primary device  
** 3) Then run cli command "request node reboot re0 disk1" to boot  
**     from the primary device.  
**  
*****
```

SEE ALSO

request system snapshot (Junos OS Evolved)

show system snapshot (Junos OS Evolved)

Roll Back the Software to a Previous Version

IN THIS CHAPTER

- [Roll Back the Software to a Previous Version | 164](#)

Roll Back the Software to a Previous Version

SUMMARY

Junos OS Evolved maintains multiple versions of the software and configuration files on the primary solid-state drive (SSD) on the Routing Engine. Each time you issue the `request system software add` operational mode command, the previous software image and configuration is preserved automatically. The last running software image and corresponding configuration file is the default rollback image. Older images, along with the configuration present when the older image was running, are preserved as well.

You use the rollback image and configuration preserved by default to revert to a prior image on the same disk as the current image.

After an upgrade or a roll back, if the software is unable to use the current configuration, the Routing Engine is often still reachable using the current management interface configuration. If the management interface does not come up, use the console to connect to the device to roll back the software and configuration.

After an upgrade, if the installation fails during early boot, the Routing Engine automatically reverts to booting from the secondary SSD, where snapshots are stored. You can then reboot the Routing Engine using the snapshot saved on the secondary SSD. You can then roll back the software version, especially if the snapshot version is not a recent-enough version of the software and configuration.

For a dual-Routing Engine device, the `request system software rollback` operational mode command reverts both Routing Engines to the rollback software version. For all devices, the command rolls back the software version on the FPCs as well.

- To see which software images are available for rollback, use the `show system software list operational` mode command.
- To roll back to any image with the current configuration (the snapshot configuration), use the `request system software rollback package-name` operational mode command.
- To roll back to the last running image with its corresponding configuration from when the software was last running, use the `request system software rollback with-old-snapshot-config` operational mode command.
- To roll back to any image and its corresponding configuration, use the `request system software rollback package-name with-old-snapshot-config` operational mode command.

RELATED DOCUMENTATION

| *request system software rollback (Junos OS Evolved)*

CHAPTER 12

Backup and Recover the Configuration File

IN THIS CHAPTER

- [Back Up and Recover the Configuration | 166](#)

Back Up and Recover the Configuration

SUMMARY

During a successful upgrade, the upgrade package completely re-installs the existing operating system. It retains the `juniper.conf`, `rescue.conf`, SNMP ifIndexes, `/var/home`, `/config/scripts`, SSH files, and other filesystem files. Other information is removed. Therefore, you should back up your current configuration in case you need to return to the current software installation after running the installation program.

IN THIS SECTION

- [Save a Rescue Configuration | 167](#)
- [Validate a Rescue Configuration | 167](#)
- [Roll Back to a Rescue Configuration | 167](#)
- [Fix the Failed Configuration | 168](#)
- [Delete the Rescue Configuration | 169](#)
- [Copy either the Configuration File or the Rescue Configuration to a Remote Server | 169](#)
- [Roll Back to a Prior Configuration | 170](#)
- [Synchronize the Rescue Configuration to the Secondary Routing Engine after the Current Configuration Is Synchronized | 170](#)
- [Restore the Configuration from a Backup Copy after a USB Software Installation | 171](#)
- [Revert to the Default Factory Configuration | 174](#)

Save a Rescue Configuration

In the event of software failure, having a rescue configuration helps to load a known working configuration. No need to remember or look up the rollback number; if you save a rescue configuration, you can use it anytime.

A rescue configuration file is helpful if your device's configuration file has been misconfigured. A rescue configuration allows you to define a known working configuration or a configuration with a known state to which you can roll back at any time. You can restore the device to this rescue configuration to bring the device back online. If you save this file off the device, you can use the rescue configuration to restore your device in the event of a software failure.

To save a current device configuration as a rescue configuration file:

1. Edit the configuration file on the device to reflect the configuration you wish to save.
2. In the CLI operational mode, save this edited configuration as the rescue configuration file:

```
user@host> request system configuration rescue save
```

The system automatically saves rescue configuration file in the `/config` directory as `rescue.conf.gz`. If the device has redundant Routing Engines, the system saves the rescue configuration file on both Routing Engines.

Validate a Rescue Configuration

You can verify that the syntax of a configuration file is correct and check for commit check errors by using the test configuration `filename` command.

To verify if a rescue configuration file is correct:

- Issue the test configuration `filename` operational mode command.

```
user@host> test configuration /config/rescue.conf.gz
configuration check succeeds
```

If the configuration contains any syntax or commit check errors, a message displays to indicate the line number and column number in which the error was found. This command only accepts text files.

Roll Back to a Rescue Configuration

1. Log in to the device through the console.

- Issue the `rollback rescue` command from the configuration mode of the CLI.

```
user@host# rollback rescue
load complete
```

- Commit the configuration.

```
user@host# commit
```

- Fix the failed configuration.

Fix the Failed Configuration

Your rescue configuration might not be the configuration you want or need on your system. Therefore, you need to fix the failed configuration and re-commit it.

To fix the failed configuration:

- Log into the device through the management interface, or the console port (if permitted).
- Load the failed configuration.

```
[edit]
user@host# rollback 1
```

- Make corrections to the configuration.
- Use the `check` option on the `commit configuration mode` command.

The `check` option points out errors in the candidate configuration, giving you the opportunity to fix the errors. If the configuration contains syntax errors, a message indicates the location of the error and the system does not activate the configuration.

```
[edit]
user@host# commit check
```

- If you have other corrections to make, make them. Keep using the `commit check configuration mode` command until the system does not find any more errors.
- Issue the `commit configuration mode` command to commit the configuration.

```
[edit]
user@host# commit
commit complete
```

After fixing the failed configuration, we recommend that you back up this configuration either by saving it as a rescue configuration or by saving it to a remote server or other off-box location. See ["Save a Rescue Configuration" on page 167](#) or ["Copy either the Configuration File or the Rescue Configuration to a Remote Server" on page 169](#).

Delete the Rescue Configuration

To delete the existing rescue configuration:

- Issue the `request system configuration rescue delete` command:

```
user@host> request system configuration rescue delete
```

Copy either the Configuration File or the Rescue Configuration to a Remote Server

This task is optional but recommended.

To copy either the currently running configuration or the rescue configuration file to a remote server:

- Log into the device through the management interface, or the console port (if permitted).
- Start the device shell.

```
user@host> start shell
```

- Go to the `/config` directory and list the configuration files.

The currently running configuration file is **juniper.conf.gz** and the rescue configuration file is **rescue.conf.gz**.

```
user@host-re0:~# cd /config
user@host-re0:~# ls /config
commit-sync-status juniper.conf.2.gz juniper.conf.gz
juniper.conf.1.gz juniper.conf.3.gz license rescue.conf.gz
```

- FTP the configuration file to the remote host.

```
user@host-re0:~# ftp host2
Name: user2
Password: password
User user2 logged in.
ftp> cd /var/tmp
ftp> lcd /config
ftp> bin
```

```

ftp> put rescue.conf.gz
local: rescue.conf.gz remote: rescue.conf.gz

Transfer complete.

ftp> put juniper.conf.gz
local: juniper.conf.gz remote: juniper.conf.gz

Transfer complete.

ftp> bye
Goodbye.

```

Roll Back to a Prior Configuration

To return to a configuration prior to the most recently committed one, include the configuration number, 0 through 49, in the `rollback` configuration mode command. The most recently saved configuration is number 0 (the default configuration to which the system returns), and the oldest saved configuration is number 49. To display a list of the previously committed configurations, including the rollback number, date, time, the name of the user who committed changes, and the method of commit, use the `rollback ?` configuration mode command.

To rollback to a prior configuration:

1. Issue the `rollback number` configuration mode command.

The `rollback` configuration becomes the candidate configuration.

```

{edit}
user@host# rollback 1
load complete

```

2. To activate the candidate configuration, issue the `commit` configuration mode command.

```

[edit]
user@host# commit

```

Synchronize the Rescue Configuration to the Secondary Routing Engine after the Current Configuration Is Synchronized

When the system boots up, if the system finds the current configuration file to be incompatible with the software, then the system fails to commit the configuration file (`/config/juniper.conf.gz`). If you previously saved a rescue configuration on the system, the system then commits the rescue configuration and saves it as the current configuration file `/config/juniper.conf.gz`.

For a dual-Routing Engine system, when the secondary Routing Engine boots with a different current image than the primary Routing Engine's current image and you have configured the `auto-sw-sync enable` statement, the primary Routing Engine synchronizes the current image to the secondary Routing Engine. The primary Routing Engine also synchronizes the rollback software image and the other images to the secondary Routing Engine. If the current configuration file (`juniper.conf.gz`) from the primary Routing Engine matches the current configuration file on the secondary Routing Engine, then the primary Routing Engine does not synchronize the rescue configuration (`rescue.conf.gz`) to the secondary Routing Engine.

To synchronize the rescue configuration from the primary Routing Engine to the secondary Routing Engine, issue the `file copy` command on the primary Routing Engine:

```
user@host-re0> file copy /config/rescue.conf.gz re1:/config/
```

Restore the Configuration from a Backup Copy after a USB Software Installation

If you install Junos OS Evolved from a USB drive onto a single-Routing Engine device, the installation process deletes the configuration files. Therefore, you need to re-configure the device. Also, if you have used the `request system zeroize` command to reset the device to the factory defaults, you also need to re-configure the device. If you have already saved a configuration file on a remote server or another off-box location, you can copy that configuration file onto the device to save time when re-configuring the device.

To restore the configuration from a backup copy:

1. Connect to the device through the console port.
2. Power on the device and wait for it to boot.

Junos OS Evolved boots automatically. When the boot process is complete, you'll see the `login:` prompt on the console.

3. Log in as the user `root`.

You won't need a password for the `root` user account, because the device is using the factory-default configuration. The device prompt `root@#` indicates that you are the `root` user. You must configure the management interface address and the password for the `root` user account before you are able to copy a configuration file to the device.

4. Issue the `cli` command to start the Junos OS Evolved CLI.
5. Issue the `configure` command to access configuration mode.

- Configure the interfaces statement at the [edit] hierarchy level to configure the IP address and prefix length for the management address on RE0.

```
[edit]
root@# set interfaces re0:mgmt-number unit 0 family inet address address/prefix-length
```

- Configure the root password. Use the password that you would usually configure for the root user account.

Enter a plain-text password that the system will encrypt, an already-encrypted password, or an SSH public key string. Configure the system root-authentication statement at the [edit] hierarchy level, and type or paste in the password or string when prompted.

- To enter a plain-text password:

```
[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password
```

- To enter an already-encrypted password, paste the password into the command after the encrypted-password option:

```
[edit]
root@# set system root-authentication encrypted-password encrypted-password
```

- To enter an SSH public key string, paste the key string into the command after the ssh-rsa option:

```
[edit]
root@# set system root-authentication ssh-rsa key
```

- Commit the configuration.

```
[edit]
root@# commit

commit complete
```

9. Exit configuration mode.

```
root@# exit  
root@>
```

10. To copy the configuration file onto the router, use the `file copy` command.

Place the file in the `/var/tmp` directory.

```
root@> file copy scp://filename var/tmp/filename
```

11. Start configuration mode.

```
root@# configure  
Entering configuration mode  
  
[edit]  
root@#
```

12. Load the file into the current configuration and override the existing file.

```
root@# load override /var/tmp/filename  
load complete
```

13. Commit the configuration.

```
root@# commit  
commit complete
```

14. Exit configuration mode.

```
root@host# exit  
root@host>
```

15. After you are satisfied that the new configuration is successfully running, issue the `request system snapshot` operational mode command to back up the system. We also recommend that you create a rescue configuration; for more information, see ["Save a Rescue Configuration" on page 167](#).

If you do not issue the `request system snapshot` command, the configuration on the secondary solid-state drive (SSD) will be out of sync with the configuration on the primary SSD.

Revert to the Default Factory Configuration

The `request system zeroize` command is an operational mode command that reverts the system to the factory-default configuration. Prior to Junos OS Evolved Release 21.3R1, this command removes all configuration information and resets all key values. The operation unlinks all user-created data files, including the configuration and log files, from their directories. The device then reboots and reverts to the factory-default configuration. Starting in Junos OS Evolved Release 21.3R1, for devices that support this feature, if the disks in the Routing Engine support the ATA standard, this command sanitizes the disks on the Routing Engine using the ATA secure erase command to overwrite the data. The ATA secure erase command overwrites the contents of LBA 0 through the greater of either READ NATIVE MAX or READ NATIVE MAX EXT, and replaces the contents with 0s or 1s. If the disks do not support the ATA standard (for example, they support the SCSI standard), they are sanitized using the older method described above. The secure erase capability is classified under the CLEAR NIST media sanitization level, according to the NIST 800-88 standard. When the secure erase is complete, the system copies the current running OS from RAMDISK to the ATA disk. Once the current running OS is installed, the system reboots and comes back to the factory default configuration.

Starting in Junos OS Evolved 24.4R1, for devices that support this feature, if the disks in the Routing Engine support the SATA standard, this command sanitizes the disks using the PURGE NIST media sanitization level, according to the NIST 800-88 standard. The PURGE level is comprised of both the CRYPTO_SCRAMBLE (if supported by the SATA SSD controller) and the BLOCK_ERASE mechanisms. The CRYPTO_ERASE mechanism (if supported by the SATA SSD controller) is followed by the BLOCK_ERASE mechanism in all cases of sanitization. Whenever the CRYPTO_SCRAMBLE mechanism is not supported, only the BLOCK_ERASE mechanism is run. When the disk sanitization is complete, the system copies the current running OS from RAMDISK to the SATA disk. Once the current running OS is installed, the system reboots and comes back to the factory default configuration.

CAUTION: Before issuing the `request system zeroize` operational mode command, use the `request system snapshot` operational mode command to back up the files currently used to run the device to the secondary SSD.

To revert to the factory-default configuration by using the `request system zeroize` command:

1. Issue the `request system zeroize` operational mode command.

```
user@host> request system zeroize
warning: System will be rebooted and may not boot without configuration
Erase all data, including configuration and log files? In case of Dual RE system, both
Routing Engines will be zeroized. [yes,no] (yes)
```

2. Type `yes` to sanitize the device and revert to the factory default configuration.

3. Complete the initial configuration of the device. See either the hardware guide for your product or [Initial Configuration Overview for Juniper Networks Devices](#). You can also copy a configuration file from a remote server or other off-box location to the device. See ["Restore the Configuration from a Backup Copy after a USB Software Installation" on page 171](#).

4

PART

Storage Media and Routing Engines

- Storage Media and Routing Engines | 177

CHAPTER 13

Storage Media and Routing Engines

IN THIS CHAPTER

- Storage Media and Routing Engines | 177

Storage Media and Routing Engines

SUMMARY

The Routing Engine and Packet Forwarding Engine (PFE) are the two primary components of Juniper Networks platforms. Junos OS Evolved software is installed on the routing engine and it is stored in storage media.

Routing Engines and Storage Media

IN THIS SECTION

- Storage Media | 178

Juniper Networks routing platforms are made up of two basic routing components:

- Routing Engine—The Routing Engine controls the routing updates and system management.
- Packet Forwarding Engine (PFE)—The Packet Forwarding Engine performs Layer 2 and Layer 3 packet switching, route lookups, and packet forwarding.

From a system administration perspective, you install the software onto the Routing Engine and during the installation, the appropriate software is forwarded to other components as necessary. Routing Engines include two solid-state drives that store Junos OS Evolved.

Storage Media

Junos OS Evolved devices use the following storage media components:

- Solid-state drives—Junos OS Evolved devices use two SATA based solid-state drives (SSDs) as the primary storage devices. The two SSDs are designated as primary and secondary. The primary SSD acts as the default boot device.
- Emergency boot device—You can use an external USB drive as the emergency boot device for Junos OS Evolved devices. For more information on creating an emergency boot device, see ["Boot Junos OS Evolved by Using a Bootable USB Drive" on page 150](#)

5

PART

Zero Touch Provisioning and Secure Zero Touch Provisioning

- Zero Touch Provisioning and Secure Zero Touch Provisioning | 180

CHAPTER 14

Zero Touch Provisioning and Secure Zero Touch Provisioning

IN THIS CHAPTER

- Zero Touch Provisioning | [180](#)
- Zero Touch Provisioning DHCP Options for Junos OS Evolved | [217](#)
- Secure Zero Touch Provisioning | [221](#)
- Switching between Secure Zero Touch Provisioning and Zero Touch Provisioning | [233](#)

Zero Touch Provisioning

IN THIS SECTION

- Zero Touch Provisioning Overview | [180](#)
- Zero Touch Provisioning Using DHCP Options | [184](#)
- Zero Touch Provisioning Using DHCPv6 Options | [202](#)
- Monitoring Zero Touch Provisioning | [208](#)

Zero Touch Provisioning installs or upgrades the software automatically on your new Juniper Networks devices with minimal manual intervention.

Zero Touch Provisioning Overview

IN THIS SECTION

- ZTP Workflow | [181](#)

- Provisioning a Device Using a Script | [182](#)
- Zero Touch Provisioning Restart Process Triggers | [183](#)
- Zero Touch Provisioning on PTX10008 Routers running Junos OS Evolved | [184](#)

Zero Touch Provisioning (ZTP) allows you to provision new Juniper Networks devices in your network automatically, with minimal manual intervention. You can use either management ports or network ports, depending on your device, to connect to the network. When you physically connect a device to the network and boot it with a default factory configuration, the device upgrades (or downgrades) the software release and autoinstalls a configuration file from the network. The configuration file can be a configuration or a script. Using scripts, you can create device-specific configuration files and perform HTTP request operations to web servers to download specific configuration files or software releases.

To locate the necessary software image and configuration files on the network, the device uses information that you have configured on a Dynamic Host Configuration Protocol (DHCP) server. If you do not configure the DHCP server to provide this information, the device boots with the preinstalled software and default factory configuration.

For Junos OS Evolved, Zero Touch Provisioning (ZTP) dynamically detects the port speed of WAN interfaces and uses this information to create ZTP server ports with the same speed. Devices running Junos OS Evolved support automation of the device configuration and software upgrade over the management interface of Routing Engine 0 (RE0) or over WAN interfaces.

NOTE: To see which platforms support ZTP, in a browser, go to [Feature Explorer](#). In the **Explore Features** section of the Feature Explorer page, select **All Features**. In the **Features Grouped by Feature Family** box, select Zero Touch Provisioning. You can also type the name of the feature in the **Search for Features** edit box. See the Release History Table at the end of this topic for more details of how ZTP support has expanded.

ZTP Workflow

When a device boots up with the default configuration, the following events take place:

1. DHCP client is run on supported interfaces.
2. DHCP server provisions an IP address and includes several DHCP options in the reply related to the ZTP process.
3. The device processes the DHCP options and locates configuration files, executes scripts, and upgrades and/or downgrades software.

4. If both the image and configuration files are present, the image is installed and the configuration is applied.
5. If only the image file is present, the image is installed on the device.
6. If the image is the same as the image already installed on the device, ZTP continues and skips the installation step.
7. If the image was unable to be fetched by the device, ZTP will try to fetch the image again.
8. If the image is corrupted, installation fails.
If installation fails for any reason, ZTP will retry on other interfaces.
9. If only the configuration file is present, the configuration is downloaded.
If the first line of the file consists of the #! characters followed by an interpreter path, then the file is considered a script, and the script is executed by the interpreter. If the script returns an error, ZTP will retry on other interfaces.
If the configuration file is unable to be downloaded, the ZTP process will try to download it again.
If the configuration file is corrupted, has syntax errors, or includes commands that are unsupported by the device, the device will be unable to commit, and ZTP will retry on other interfaces.
10. If there is no image or configuration file, ZTP will retry on other interfaces.
11. If there is no file server information, ZTP will retry on other interfaces.
12. Once the configuration is committed, the ZTP process is deemed successful and terminates.

Provisioning a Device Using a Script

During the ZTP process, when you connect and boot a new networking device, the device requests an IP address from the DHCP server. The server provides the IP address, and if configured, the filenames and locations for the software image and configuration file for the device. The configuration file can be a configuration or a script.

If a configuration file is provided, the operating system determines if the file is a script based on the first line of the file. If the first line contains the characters #! followed by an interpreter path, the operating system treats the file as a script and executes it with the specified interpreter.

If the script returns an error (that is, a nonzero value), ZTP will retry on other interfaces.

[Table 7 on page 183](#) outlines the supported script types, the corresponding interpreter path, and the platforms that support that script type during the ZTP process.

Table 7: Scripts Supported During ZTP

Script Type	Interpreter Path	Platform Support
Shell script	<code>#!/bin/sh</code>	All devices
SLAX script	<code>#!/usr/libexec/ui/cscript</code>	All devices
Python script	<code>#!/usr/bin/python</code>	Devices running Junos OS with Enhanced Automation
		Devices running Junos OS Evolved

NOTE: For security reasons, Junos OS has strict requirements for running unsigned Python scripts on devices running Junos OS. Only devices running Junos OS with Enhanced Automation and devices running Junos OS Evolved support using unsigned Python scripts in DHCP option 43 suboption 01.

If the operating system does not find the characters `#!` followed by an interpreter path, it treats the file as a configuration in text format and loads the configuration on the device.

Zero Touch Provisioning Restart Process Triggers

ZTP restarts when any of the following events occur:

- Request for configuration file, script file, or image file fails.
- Configuration file is incorrect, and commit fails.
- No configuration file and no image file is available.
- Image file is corrupted, and installation fails.
- No file server information is available.
- DHCP server does not have valid ZTP parameters configured.
- When none of the DHCP client interfaces goes to a bound state.
- On Junos OS Evolved devices, if downloading a file fails, ZTP restarts.

When any of these events occur, ZTP resets the DHCP client state machine on all of the DHCP client-configured interfaces (management and network) and then restarts the state machine. Restarting the state machine enables the DHCP client to get the latest DHCP server-configured parameters.

Before ZTP restarts, approximately 15 to 30 seconds must elapse to allow enough time to build a list of bound and unbound DHCP client interfaces.

The list of bound and unbound DHCP client interfaces can contain:

- No entries.
- Multiple DHCP client interfaces.

Priority is given to the DHCP client interfaces that have received all ZTP parameters (software image file, configuration file, and file server information) from the DHCP server.

ZTP attempts to download the software image and configuration files from the file server. If that download fails, ZTP clears the DHCP client binding on that interface and restarts the state machine on other interfaces.

The ZTP restart process continues until there is either a successful software upgrade, or an operator manually commits a user configuration and deletes the ZTP configuration.

Zero Touch Provisioning on PTX10008 Routers running Junos OS Evolved

Zero Touch Provisioning (ZTP) allows you to provision your router in your network automatically, with minimal manual intervention. Starting in Junos OS Evolved Release 20.1R1, the PTX10008 devices support automation of the device configuration and software upgrade over the management interface of Routing Engine 0 (RE0).

ZTP is enabled on the PTX10008 device in the factory default mode. You can connect the management interface (re0:mgmt-0) to a network with a Dynamic Host Configuration Protocol (DHCP) server, and then add ZTP configuration to the DHCP server. Use the `show interfaces re0:mgmt-0` command on the PTX10008 device to find the MAC address of the interface to use on the DHCP server configuration.

When the PTX10008 device is able to contact the DHCP server and retrieve ZTP parameters, it performs the following ZTP operations based on these parameters:

1. Fetches the specified image and/or configuration file using the specified protocol.
2. If an image is specified, ZTP installs the image on both Routing Engines and reboots the device.
3. If a configuration file is specified:
 - If the file is a Junos configuration, ZTP applies the configuration on the device.
 - If the file is a script, ZTP executes the script on the device.

Zero Touch Provisioning Using DHCP Options

Zero Touch Provisioning (ZTP) allows for automatic provisioning of Juniper Network devices that you add to your network. You can provision any supported device by using either a script to be executed or a

configuration file to be loaded. You will also need to configure a DHCP server with required information, which is provided in this procedure, to use ZTP.

ZTP requires that your device is in a factory default state. The device from the factory boots with preinstalled software and factory default configuration. On a device that does not currently have the factory default configuration, you can issue the `request system zeroize` command.

Before you begin:

- Ensure that the device has access to the following network resources:
 - The DHCP server that provides the location of the software image and configuration files on the networkRefer to your DHCP server documentation for configuration instructions.
- The File Transfer Protocol (anonymous FTP), Hypertext Transfer Protocol (HTTP), or Hypertext Transfer Protocol Secure (HTTPS), or Trivial File Transfer Protocol (TFTP) server on which the software image and configuration files are stored

NOTE: Although TFTP is supported, we recommend that you use FTP or HTTP instead, because these transport protocols are more reliable.

CAUTION: HTTP URLs are limited to 256 characters in length.

- A Domain Name System (DNS) server to perform reverse DNS lookup (not supported).
- (Optional) An NTP server to perform time synchronization on the network
- (Optional) A system log (syslog) server to manage system log messages and alerts.

Syslog messages will be forwarded to this syslog server during ZTP.

- Locate and record the MAC address for your device.

On PTX10008 devices, the management MAC addresses are located on routing engines.

CAUTION: You cannot commit a configuration while the device is performing the software update process. If you commit a configuration while the device is performing the configuration file autoinstallation process, the process stops, and the configuration file is not downloaded from the network.

To enable zero touch provisioning for a device using DHCP options:

1. Boot the device.
2. Make sure the device has the default factory configuration installed.

Issue the `request system zeroize` command on the device that you want to provision.

Starting in Junos OS Evolved Release 19.3R1, on the QFX5220-128C device, in Zero Touch Provisioning (ZTP), you can use either WAN interfaces or management interfaces to automatically download and install the appropriate software and the configuration file on your device during the bootstrap process. ZTP automatically configures on a WAN port that has the default port speed of 100-Gbps, and then connects your device to the Dynamic Host Configuration Protocol (DHCP) server to perform the bootstrap process:

- If multiple DHCP replies arrive, ZTP chooses the best set of arguments.
- If multiple interfaces provide the same arguments, ZTP chooses one of the interfaces.
- If there is an error while connecting to DHCP server, ZTP retries to connect to the DHCP server, and if multiple interfaces again provide the same arguments, ZTP chooses one of the interfaces.

We recommend you provision the DHCP server and save the software and configuration file in the specified DHCP server path on the file server.

3. Download the software image file and/or the configuration file to the FTP, HTTP, or TFTP server from which the device will download these files.
4. Configure the DHCP server to provide the necessary information to the device.

Configure IP address assignment.

You can configure the dynamic or static IP address assignment for the management address of the device.

NOTE: This address can be any address from the pool.

5. Define the format of the vendor-specific information for DHCP option 43.

Here is an example of an ISC DHCP 4.2 server `dhcpd.conf` file:

```
option space NEW_OP;
option NEW_OP.image-file-name code 0 = text;
option NEW_OP.config-file-name code 1 = text;
option NEW_OP.image-file-type code 2 = text;
option NEW_OP.transfer-mode code 3 = text;
option NEW_OP.alt-image-file-name code 4= text;
option NEW_OP.http-proxy code 8 = text;
option NEW_OP.ftp-server code 5 = ip-address;
```

```
option NEW_OP.pre-upgrade-script code 9 = text;
option NEW_OP-encapsulation code 43 = encapsulate NEW_OP;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
{
  "Dhcp4": {
    "option-def": [
      {
        "name": "software-package-name",
        "code": 0,
        "space": "vendor-encapsulated-options-space",
        "type": "string",
        "record-types": "",
        "array": false,
        "encapsulate": ""
      },
      {
        "name": "configuration-file-name",
        "code": 1,
        "space": "vendor-encapsulated-options-space",
        "type": "string",
        "record-types": "",
        "array": false,
        "encapsulate": ""
      },
      {
        "name": "image-file-type",
        "code": 2,
        "space": "vendor-encapsulated-options-space",
        "type": "string",
        "record-types": "",
        "array": false,
        "encapsulate": ""
      },
      {
        "name": "transfer-type",
        "code": 3,
        "space": "vendor-encapsulated-options-space",
        "type": "string",
        "record-types": "",
        "array": false,
        "encapsulate": ""
      }
    ]
  }
}
```

```

    "encapsulate": ""

},
{
    "name": "alt-image-file-name",
    "code": 4,
    "space": "vendor-encapsulated-options-space",
    "type": "string",
    "record-types": "",
    "array": false,
    "encapsulate": ""

},
{
    "name": "ftp-server",
    "code": 5,
    "space": "vendor-encapsulated-options-space",
    "type": "ipv4-address",
    "record-types": "",
    "array": false,
    "encapsulate": ""

},
{
    "name": "proxyv4-info",
    "code": 8,
    "space": "vendor-encapsulated-options-space",
    "type": "string",
    "record-types": "",
    "array": false,
    "encapsulate": ""

}
]
}
}

```

6. Configure the following DHCP option 43 suboptions:

- Suboption 00: The name of the software image file to install.

NOTE: When the DHCP server cannot use suboption 00, configure the software image filename using suboption 04. If both suboption 00 and suboption 4 are defined, suboption 04 is ignored.

Here is an example of an ISC DHCP 4.2 server dhcpcd.conf file:

```
option NEW_OP.image-file-name "/dist/images/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EVO.iso";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "software-package-name",
    "space": "vendor-encapsulated-options-space",
    "data": "images/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EVO.iso"
  }
]
```

This example shows you how to download an image using a custom HTTP or HTTPS port by appending the port number to the end of the filename.

ISC DHCP 4.2 server dhcpcd.conf file:

```
option NEW_OP.image-file-name "/dist/images/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EVO.iso:8080";
```

Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "software-package-name",
    "space": "vendor-encapsulated-options-space",
    "data": "images/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EVO.iso:8080"
  }
]
```

- Suboption 01: The name of the script or configuration file to install.

Here is an example of an ISC DHCP 4.2 server dhcpcd.conf file:

```
option NEW_OP.config-file-name "/dist/config/jn-switch35.config";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "configuration-file-name",
    "space": "vendor-encapsulated-options-space",
    "data": "configs/jn-switch35.config"
  }
]
```


NOTE: Optionally, you can specify a non-default port number for the HTTP and HTTPS protocols by appending the port number to the image or configuration name separated by a ":". For example, **/dist/config/jn-switch35.config:8088**. In this case, if the transfer protocol is HTTP or HTTPS, then is used as the port number. If the transfer protocol is FTP or TFTP, then the port number 8088 is ignored.

NOTE: ZTP determines if the file is a script file based on the first line of the file. If the first line contains the characters #! followed by an interpreter path, ZTP treats the file as a script and executes it with the specified interpreter path. For a script to execute, the script file must provide the ability to fetch and load a valid configuration file on the device during the ZTP process.

The following list provides the types of scripts and their associated interpreter paths:

- Shell script interpreter path: #!/bin/sh
- SLAX script interpreter path: #!/usr/libexec/ui/cscript
- Python script interpreter path: #!/usr/bin/python

For security reasons, Junos OS has strict requirements for running unsigned Python scripts on devices running Junos OS. Only devices running Junos OS with Enhanced Automation and devices running Junos OS Evolved support running unsigned Python scripts as part of the ZTP process.

If the file does not contain special characters (#!) , ZTP determines that the file is a configuration file and loads the configuration file.

- Suboption 02: The symbolic link to the software image file to install.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.image-file-type "symlink";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "image-file-type",
    "space": "vendor-encapsulated-options-space",
    "data": "symlink"
  }
]
```


NOTE: If you do not specify suboption 2, the ZTP process handles the image filename as a filename, not a symbolic link.

- Suboption 03: The transfer mode that the device uses to access the TFTP, FTP, HTTP, or HTTPS server. If you select FTP as the transfer mode, Junos OS uses the anonymous FTP login to download files from the FTP server.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.transfer-mode "ftp";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "transfer-mode",
    "space": "vendor-encapsulated-options-space",
    "data": "ftp"
  }
]
```


NOTE: If suboption 03 is not configured, TFTP becomes the transfer mode by default.

If you select either the HTTP or HTTPS transfer mode, you can provide a username and password, and those parameters are authenticated.

Here's the format for HTTP transfer mode:

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.transfer-mode "http@<username>:<password>";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "transfer-mode",
    "space": "vendor-encapsulated-options-space",
    "data": "http@<username>:<password>"
  }
]
```

If the transfer mode isn't HTTP or HTTPS, another transfer mode is used--for example, FTP.

If the transfer mode is HTTP or HTTPS, and a username and password are provided, the device sends an HTTP GET request with the authorization headers to download the software image.

If you don't provide a username and password, the device doesn't add authorization headers to download the software image.

- Suboption 04: The name of the software image file to install.

NOTE: If the DHCP server does not support suboption 00, configure the image file using suboption 04. If both suboption 00 and suboption 4 are defined, suboption 04 is ignored.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.alt-image-file-name "/dist/images/junos-evo-install-ptx-fixed-
x86-64-20.4R1.17-EV0.iso";
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
{
  "name": "alt-image-file-name",
  "space": "vendor-encapsulated-options-space",
  "data": "images/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EV0.iso"
}
]
```

- Suboption 05: The IP address of the FTP server or the HTTP port that the device uses to download either the script, image, or configuration file.

If there is an **http_port** file located in **/var/tmp/**, DHCPv4 option 43 suboption 5 will be used as an HTTP port. If there isn't a file in this location, DHCPv4 option 43 suboption 5 will be used as an FTP IP address.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.ftp-server code 5 = ip-address;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

Definition:

```
{
  "Dhcp4": {
    "option-def": [
      {
        "name": "ftp-server",
        "code": 5,
        "space": "vendor-encapsulated-options-space",
        "type": "ipv4-address",
        "record-types": "",
        "array": false,
        "encapsulate": ""
      }
    ]
  }
}
```

```

        }
    ]
}
}

```

Assignment:

```

"option-data": [
{
  "name": "ftp-server",
  "space": "vendor-encapsulated-options-space",
  "data": "10.10.90.5"
}
]

```

- Suboption 08: HTTP proxy server information that is passed from the DHCP server to the DHCP client. This is useful when the device needs to access the phone-home server or redirect server via a proxy server.

NOTE: When you configure the DHCP server and HTTP proxy server, make sure that you use the correct port number to allow traffic to flow through the secure tunnel. Also, make sure that the hostname or IP address of the HTTP proxy server and port number are separated by a colon: for example, 192.168.10.10:8080. If you don't use a colon, port 1080 is used.

When the DHCP client receives the HTTP proxy server information, it is saved in the /var/etc/phc_vendor_specific_info.xml (INET) file.

If the DHCP client does not receive the HTTP proxy server information, nothing is saved to the /var/etc/phc_vendor_specific_info.xml (INET) file, and the DHCP client moves into a bound state.

You can renew the HTTP proxy server information by issuing the request `dhclient renew` interface command. The DHCP client fetches the valid HTTP proxy server information from the DHCP server. Using the command is simpler than having to restart the provisioning process. When the HTTP proxy server is renewed, or the HTTP proxy server information is changed or deleted, jdhcp will rewrite the /var/etc/phc_vendor_specific_info.xml file with the latest information received from suboption 8.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.proxyv4-info code 8 = text;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
{
    "Dhcp4": {
        "option-def": [
            {
                "name": "proxyv4-info",
                "code": 8,
                "space": "vendor-encapsulated-options-space",
                "type": "string",
                "record-types": "",
                "array": false,
                "encapsulate": ""
            }
        ]
    }
}
```

Here's the format for this option:

ISC DHCP 4.2 server dhcpd.conf file:

```
option NEW_OP.proxyv4-info "http://<proxyname>:<port-number>";
```

Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
    {
        "name": "proxyv4-info",
        "space": "vendor-encapsulated-options-space",
        "data": "http://<proxyname>:<port-number>"
    }
]
```

Here's an example of the format using a fictitious proxy name:

ISC DHCP 4.2 server dhcpcd.conf file:

```
option NEW_OP.proxyv4-info "http://test-mr2:3128";
```

Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
"option-data": [
  {
    "name": "proxyv4-info",
    "space": "vendor-encapsulated-options-space",
    "data": "http://test-mr2:3128"
  }
]
```

7. (Mandatory) Configure either option 150 or option 66.

NOTE: You must configure either option 150 or option 66. If you configure both option 150 and option 66, option 150 takes precedence, and option 66 is ignored. Also, make sure you specify an IP address, not a hostname, because name resolution is not supported.

- Configure DHCP option 150 to specify the IP address of the FTP, HTTP, HTTPS, or TFTP server.

Here is an example of an ISC DHCP 4.2 server dhcpcd.conf file:

```
option option-150 code 150={ ip-address};
option option-150 10.100.31.71;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

Definition:

```
{
  "Dhcp4": {
    "option-def": [
      {
        "name": "tftp-server-address",
        "code": 150,
        "space": "dhcp4",
        "type": "ipv4-address",
```

```

        "array": true
    }
]
}
}

```

Assignment:

```

"option-data": [
{
    "name": "tftp-server-address",
    "data": "10.100.31.71"
}
]

```

- Configure DHCP option 66 to specify the IP address of the FTP, HTTP, HTTPS, or TFTP server.

Here is an example of an ISC DHCP 4.2 server `dhcpd.conf` file:

```
option tftp-server-name "10.100.31.71";
```

Here is an example of a Kea DHCP 2.4.1 server `kea-dhcp4.conf` file:

Definition:

```

{
    "Dhcp4": {
        "option-def": [
            {
                "name": "tftp-server-name",
                "code": 66,
                "space": "dhcp4",
                "type": "string",
                "array": false
            }
        ]
    }
}

```

Assignment:

```

"option-data": [
  {
    "name": "tftp-server-name",
    "data": "10.100.31.71"
  }
]

```

8. (Optional) Configure DHCP option 7 to specify one or more system log (syslog) servers.

Here is an example of an ISC DHCP 4.2 server dhcpcd.conf file:

```
option log-servers 10.100.31.72;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

Definition:

```

{
  "Dhcp4": {
    "option-def": [
      {
        "name": "log-servers",
        "code": 7,
        "space": "dhcp4",
        "type": "ipv4-address",
        "array": true
      }
    ]
  }
}

```

Assignment:

```

"option-data": [
  {
    "name": "log-servers",
    "data": "10.100.31.72"
  }
]

```

```

        }
    ]
}
```

9. (Optional) Configure DHCP option 42 to specify one or more NTP servers.

List each NTP server separated by a space.

Here is an example of an ISC DHCP 4.2 server dhcpd.conf file:

```
option ntp-servers 10.100.31.73;
```

Here is an example of a Kea DHCP 2.4.1 server kea-dhcp4.conf file:

Definition:

```
{
    "Dhcp4": {
        "option-def": [
            {
                "name": "ntp-servers",
                "code": 42,
                "space": "dhcp4",
                "type": "ipv4-address",
                "array": true
            }
        ]
    }
}
```

Assignment:

```
"option-data": [
    {
        "name": "ntp-servers",
        "data": "10.100.31.73"
    }
]
```

10. Connect the device to the network that includes the DHCP server and the FTP, HTTP, HTTPS, or TFTP server.

11. Power on the device.

12. Monitor the ZTP process by looking at the console.

NOTE: When SLAX scripts are executed, the `op-script.log` and `event-script.log` files are produced.

For Junos OS Evolved, use the `/var/log/ztp.log` file to troubleshoot.

You can also monitor the ZTP process by looking at error messages and issuing operational commands. See "[Monitoring Zero Touch Provisioning](#)" on page 208 for more information.

Juniper devices running Junos OS send additional DHCP options toward DHCP server in Discover packet during ZTP. These options help DHCP server to identify specific device on parameters such as vendor, model name and serial number (varies for different Juniper platforms).

DHCP option number	DHCP option name	
Option 12	Hostname	
Option 60	Vendor Class Identifier (VCI)	
Model	DHCP Option 12 (Hostname)	DHCP Option 60 (VCI)
PTX10001-36MR	<code><serial-number></code>	<code>Juniper-ptx10001-36mr- <serial-number></code>

Here's an example of how to classify a device based on its specific serial number and assign a unique set of DHCP options for ZTP processing.

ISC DHCP 4.2 server `dhcpd.conf` file:

```
class "Juniper-ptx10001-ER535" {
    match if substring (option vendor-class-identifier, 21, 5) = "ER535";
    option NEW_OP.image-file-name "images/junos-evo-install-ptx-fixed-x86-64-21.4R3-S1.6-EVO.iso:8080";
    option NEW_OP.config-file-name "configs/ptx10001-ER535-config.txt:8080";
    option NEW_OP.image-file-type "symlink";
    option NEW_OP.transfer-mode "http";
    option OPTION-150 10.1.60.103;
}
```

Kea DHCP 2.4.1 server kea-dhcp4.conf file:

```
{
  "Dhcp4": {
    "client-classes": [
      {
        "name": "Juniper-ptx10001-36mr",
        "test": "substring(option[60].hex,21,5) == 'ER535'",
        "option-data": [
          {
            "name": "vendor-encapsulated-options"
          },
          {
            "name": "image-file-name",
            "space": "vendor-encapsulated-options-space",
            "data": "images/junos-evo-install-ptx-fixed-x86-64-21.4R3-S1.6-EVO.iso:8080"
          },
          {
            "name": "config-file-name",
            "space": "vendor-encapsulated-options-space",
            "data": "configs/ptx10001-ER535-config.txt:8080"
          },
          {
            "name": "image-file-type",
            "space": "vendor-encapsulated-options-space",
            "data": "symlink"
          },
          {
            "name": "transfer-mode",
            "space": "vendor-encapsulated-options-space",
            "data": "http"
          },
          {
            "name": "tftp-server-address",
            "data": "10.1.60.103"
          }
        ]
      }
    ]
  }
}
```

```

    }
}
```


NOTE: In the above examples, the `substring` function extracts 12 characters starting from the 14th character position (indexing from zero). Below are some additional test string alternatives useful for the Kea DHCP configuration.

- "test": "split(option[60].hex, '-', 4) == 'ER535'"
- "test": "option[12].hex == 'ER535'"
- "test": "split(option[60].hex, '-', 2) == 'ptx10001'"
- "test": "substring(option[60].hex,0,7) == 'Juniper'"
- "test": "substring(option[60].hex,0,21) == 'Juniper-ptx10001-36mr'"

Zero Touch Provisioning Using DHCPv6 Options

NOTE: Zero Touch Provisioning (ZTP) using DHCPv6 options isn't supported on Junos OS Flex images. A Flex image has the word "flex" in the filename. Here is an example filename of a Flex image: **jinstall-host-qfx-5e-flex-x86-64-20.4R3.8-secure-signed.tgz**.

The DHCPv6 protocol doesn't have a subnet option for the IA_NA (identity association for non-temporary addresses) to learn and install subnet routes. Instead, the subnet route is installed through Neighbor Discovery Protocol.

In IPv6, devices periodically advertise IPv6 prefixes along with other link parameters using Router Advertisement (RA) messages. On the client (Juniper device running ZTP), once the DHCPv6 client is bound, the Neighbor Discovery Protocol (NDP) will learn these prefixes and installs the prefix routes via the client interface, with the next hop as the link to the local address of the gateway device.

On the client device, router advertisement configuration is enabled by default along with the DHCPv6 configuration.

- Ensure that the device has access to the following network resources:
 - The DHCP server that provides the location of the software image and configuration files on the network

Refer to your DHCP server documentation for configuration instructions.

- The File Transfer Protocol (anonymous FTP), Trivial File Transfer Protocol (TFTP), Hypertext Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) server on which the software image and configuration files are stored.

CAUTION: HTTP URLs are limited to 256 characters in length.

- Locate and record the MAC address printed on the device.

Zero Touch Provisioning (ZTP) allows for automatic provisioning of Juniper Network devices that you add to your network. You can provision any supported device by using either a script to be executed or a configuration file to be loaded.

To use ZTP, you configure a DHCP server to provide the required information. If you do not configure the DHCP server to provide this information, the device boots with the preinstalled software and default factory configuration. If your device is not in a factory default state, you can issue the `request system zeroize` command.

Optionally, you can configure an HTTP proxy server for either the phone-home server or redirect server. When the phone-home client receives information regarding the HTTP proxy server via DHCP option 17 suboption 8, it will create an HTTPS transparent tunnel with the proxy server. Once the tunnel is established, the phone-home client uses the tunnel as a proxy for the phone-home server or redirect server. The phone-home client downloads the software image and configuration file through the tunnel onto the device. Once bootstrapping is complete, the device reboots and the tunnel quits.

NOTE: Starting in Junos OS Release 20.2R1-S1, the DHCPv6 client is supported the MX-Series, EX3400, EX4300, QFX5100, and QFX5200 switches. Both DHCPv4 and DHCPv6 clients are included as part of the default configuration. During the bootstrap process, the device first uses the DHCPv4 client to request for information regarding image and configuration file from the DHCP server. The device checks the DHCPv4 bindings sequentially. If there is a failure with one of the DHCPv4 bindings, the device will continue to check for bindings until provisioning is successful. If there are no DHCPv4 bindings, however, the device will check for DHCPv6 bindings and follow the same process as for DHCPv4 until the device can be provisioned successfully. The DHCP server uses DHCPv6 options 59 and 17 and applicable sub-options to exchange ZTP-related information between itself and the DHCP client.

CAUTION: You cannot commit a configuration while the device is performing the software update process. If you commit a configuration while the device is performing the configuration file autoinstallation process, the process stops, and the configuration file is not downloaded from the network.

To use zero touch provisioning for a device using DHCPv6 options:

1. Boot the device.
2. Make sure the device has the default factory configuration installed.
 - If multiple DHCP replies arrive, the ZTP chooses the best set of arguments.
 - If multiple interfaces provide the same arguments, ZTP chooses one of the equal interfaces.
 - If there is an error while connecting to the DHCP server, ZTP tries again to connect to the DHCP server. If multiple interfaces again provide the same arguments, ZTP chooses one of the interfaces.

We recommend you to provision the DHCP server and save the software and configuration file in the specified DHCP server path on the file server.

3. Download the software image file and the configuration file to the FTP, HTTP, HTTPS, or TFTP server from which the device will download these files.
4. Configure the DHCP server to provide the necessary information to the device.
5. Configure IP address assignment.

You can configure dynamic or static IP address assignment for the management address of the device. To determine the management MAC address for static IP address mapping, add 1 to the last byte of the MAC address of the device, which you noted before you began this procedure.

6. Define the format of the DHCPv6 option 59 (OPT_BOOTFILE_URL) in the **dhcpd6.conf** file, so the server can send information about URLs to images to the client.

Here's the format for this option:

```
transfer-mode://[<ipv6-address>]:<port-number>/<path/image-file-name>
```

For example:

```
ftp://[2001:db8::40]:21/ZTP/bootimage.iso  
tftp://[2001:db8::40]:69/ZTP/bootimage.iso  
http://[2001:db8::40]:80/ZTP/bootimage.iso  
https://[2001:db8::40]:443/ZTP/bootimage.iso
```

The transfer mode and IPv6 address are required, but the port number is optional. If you do not specify the port number, the default port number of the transfer mode is used. If you specify the port number in options 17 and 59, then the port number mentioned in option 17 vendor-specific information option is used.

You can specify the image file name in either option 59 or option 17. If the image file name is mentioned in both options 59 and 17, then the image name mentioned in option 17 vendor-specific information option is used.

7. Define the format of the vendor-specific information for the following DHCP option 17 suboptions:

Here is an example of an ISC DHCP 4.2 server dhcpd6.conf file:

```
option space NEW_OP_V6 code width 2 length width 2;
option NEW_OP_V6.image-file-name code 0 = text;
option NEW_OP_V6.config-file-name code 1 = text;
option NEW_OP_V6.image-file-type code 2 = text;
option NEW_OP_V6.transfer-mode code 3 = text;
option NEW_OP_V6.alt-image-file-name code 4 = text;
option NEW_OP_V6.ftp-server code 5 = text;
option NEW_OP_V6.port-number code 5 = text;
option NEW_OP_V6.http-proxy code 8 = text;
option NEW_OP_V6.pre-upgrade-script code 9 = text;
option vsio.NEW_OP_V6 code 2636 = encapsulate NEW_OP_V6;
option dhcp6.bootfile-url "http://ztp:welcome@[2001::2]";
```

- Suboption 00: The name of the software image file to install.

NOTE: When the DHCP server cannot use suboption 00, configure the software image filename using suboption 04. If both suboption 00 and suboption 4 are defined, suboption 04 is ignored.

For example:

```
option NEW_OP_V6.image-file-name "ZTP_IMAGES/junos-evo-install-ptx-fixed-x86-64-20.4R1.17-EV0.iso";
```

- Suboption 01: The name of the script or configuration file to install.

For example:

```
option NEW_OP_V6.config-file-name "ZTP_FILES/baseline_config";
```


NOTE: ZTP determines if the file is a script file based on the first line of the file. If the first line contains the characters `#!` followed by an interpreter path, ZTP treats

the file as a script and executes it with the specified interpreter path. In order for a script to execute, the script file must provide the ability to fetch and load a valid configuration file on the device during the ZTP process.

The following list provides the types of scripts and their associated interpreter paths:

- Shell script interpreter path: `#!/bin/sh`
- SLAX script interpreter path: `#!/usr/libexec/ui/cscript`
- Python script interpreter path: `#!/usr/bin/python`

For security reasons, Junos OS has strict requirements for running unsigned Python scripts on devices running Junos OS. Only devices running Junos OS with Enhanced Automation and devices running Junos OS Evolved support running unsigned Python scripts as part of the ZTP process.

If the file does not contain special characters (`#!`), ZTP determines that the file is a configuration file and loads the configuration file.

- Suboption 02: The image type.

```
option NEW_OP_V6.image-file-type symlink;
```


NOTE: If you do not specify suboption 2, the ZTP process handles the software image as a filename, not a symbolic link.

- Suboption 03: The transfer mode that the device uses to access the TFTP, FTP, HTTP, or HTTPS server.

```
option NEW_OP_V6.transfer-mode "https";
```


NOTE: If suboption 03 is not configured, the transfer mode mentioned in option 59 for the boot image URL is used.

- You can specify the URL where the boot file is located as well as an authentication scheme you can use to download the software image, configuration file, or alternate image.

The primary URL schemes you provide in suboptions 00, 01, and 02 take precedence over the URL specified in the `bootfile-url` option. If you don't specify the image, configuration, or alternate

image as a URL in suboptions 00, 01, and 02, the boot file URL specified in the `bootfile-url` option is used to download these resources.

As part of the `bootfile-url`, you can also specify basic authentication (username and password) for HTTP and HTTPS transfer modes for the software image, configuration file, and alternate image. The username and password are encoded in base64 as part of RFC 7617.

If the transfer mode is HTTP or HTTPS, the device parses the username and password information.

Here is an example that shows the HTTP transfer mode and an authentication scheme that uses `ztp` as the username and `welcome` as the password:

For example:

```
option dhcp6.bootfile-url "http://ztp:welcome@[2001::2]";
```

If the transfer mode isn't HTTP or HTTPS, the device will proceed with the other transfer modes that you've specified as part of DHCPv6 option 17 suboptions 00, 01, and 03.

- Suboption 04: The name of the software image file to install.

NOTE: When the DHCP server cannot use suboption 00, configure the image file using suboption 04. If both suboption 00 and suboption 4 are defined, suboption 04 is ignored.

For example:

```
option NEW_OP_V6. alt-image-file-name "ZTP_IMAGES/junos-evo-install-ptx-fixed-alternate-img.iso";
```

- Suboption 05: The port that the device uses to download either the image or configuration file or both instead of the default port.

```
option NEW_OP_V6.port-number 8080;
```

- The DHCPv6 protocol defines the Vendor-specific Information Option ("VSIO") in order to send vendor options encapsulated in a standard DHCP option.

```
option vsio.NEW_OP_V6 code 2636 = encapsulate NEW_OP_V6;
```

The following example configuration shows the DHCPv6 options you've just configured:

```
subnet6 2001:db8::/32 {
    range6 2001:db8::10 2001:db8::40;
}

host test {
    hardware ethernet AA:BB:CC:DD:EE:FF;
    fixed-address6 2001:db8::11;
    option dhcp6.bootfile-url "http://ztp:welcome@[2001:db8:11]";
    option host-name "test";
    option NEW_OP_6.transfer-mode "http";
    option NEW_OP_6.config-file-name "configuration";
    option NEW_OP_6.image-file-name "ptx.iso";
    option NEW_OP_6.http-proxy "http://[2001::db8:3128];"
}
```

8. Power on the device with the default configuration.
9. Monitor the ZTP process by looking at the console.

NOTE: When SLAX scripts are executed, the `op-script.log` and `event-script.log` files are produced.

For Junos OS Evolved, use the `/var/log/ztp.log` file to troubleshoot.

You can also monitor the ZTP process by looking at error messages and issuing operational commands. See ["Monitoring Zero Touch Provisioning" on page 208](#) for more information.

Monitoring Zero Touch Provisioning

IN THIS SECTION

- [Using the Console to Monitor Zero Touch Provisioning in Junos OS Evolved | 209](#)
- [Using the `show dhcp client binding` Command | 211](#)
- [Using the `show dhcpcv6 client binding` Command | 212](#)

You can use the console and operational mode commands to monitor Zero Touch Provisioning.

For Junos OS Evolved, to monitor zero touch provisioning, use the [show system ztp](#) operational mode command.

Using the Console to Monitor Zero Touch Provisioning in Junos OS Evolved

IN THIS SECTION

- [Purpose | 209](#)
- [Action | 209](#)
- [Meaning | 211](#)

Purpose

System log files provide information on the state of the auto-upgrade process, lists of bound and unbound DHCP client interfaces, IP addresses of file servers, names and locations of image and configuration files, and successful and failed attempts at fetching configuration and image files.

Action

Use the information in the console to monitor the auto-upgrade process.

Here is an example of output for Junos OS Evolved.

```
164.319243] ztp.py[15456]: 2019-07-11 17:54:25 INFO: ZTP: Booted with factory settings set auto-image-upgrade
ztp.py[15456]: 2019-07-11 17:54:26 INFO: ZTP: loading config
[ 184.456977] ztp.py[15456]: 2019-07-11 17:54:45 INFO: ZTP: Releasing prior dhcp state
[ 184.520075] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: initializing
[ 184.520736] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: Interface vmb0 Watching
path /var/db/scripts/ztp/ztpopt.vmb0
[ 184.566657] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: Interface vmb0v6 Watching
path /var/db/scripts/ztp/ztpopt6.vmb0
[ 184.603976] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: remove "chassis auto-image-upgrade"
from config to abort ZTP
[ 184.605897] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: send DHCP discover on interface vmb0
[ 184.606083] ztp.py[15456]: 2019-07-11 17:54:46 INFO: ZTP: send DHCP discover on interface
vmb0v6
[ 205.043925] ztp.py[15456]: 2019-07-11 17:55:06 INFO: ZTP: loading options config
```

```

[ 225.528749] ztp.py[15456]: 2019-07-11 17:55:27 INFO: ZTP:(vmb0) Running: ['/sbin/dhclient', '-1', '-v', 'vmb0', '-cf', '/var/db/scripts/ztp/dhclient.conf', '-pf', '/var/db/scripts/ztp/vmb0.pid4']
[ 227.349638] ztp.py[15456]: 2019-07-11 17:55:28 INFO: ZTP: loading options config
[ 248.512666] ztp.py[15456]: 2019-07-11 17:55:50 INFO: ZTP:(vmb0) Running: ['/sbin/dhclient', '-6', '-D', 'LL', '-1', '-v', 'vmb0', '-cf', '/var/db/scripts/ztp/dhclient6.conf', '-pf', '/var/db/scripts/ztp/vmb0.pid6']
[ 309.448411] ztp.py[15456]: 2019-07-11 17:56:50 ERROR: ZTP:(vmb0v6) Unable to get DhcpInfo
[ 309.452340] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 ipaddr is 10.10.213.111
[ 309.453114] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 subnetmask is 255.255.255.0
[ 309.453379] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 option150addr is 10.10.213.1
[ 309.453619] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 option66addr is 10.10.213.1
[ 309.453836] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 host-name is sw-s3-u8-07
[ 309.454093] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 ntp server is ['10.129.255.62']
[ 309.454267] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 ntp server is ['10.129.255.62', '10.129.255.63']
[ 309.454451] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 log server is 10.10.213.1
[ 309.454673] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 image path is /ZTP_IMAGES/junos-evo-install-ptx-chassis-x
86-64-19.4EVO.iso
[ 309.454886] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 config path is /ZTP_CONFIG/sw-s3-u8-07.cfg
[ 309.455217] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: intf vmb0 transfertype is tftp
[ 309.457209] ztp.py[15456]: 2019-07-11 17:56:50 INFO: ZTP: Chose interface vmb0:
[ 309.633177] ztp.py[15456]: 2019-07-11 17:56:51 INFO: ZTP: loading options config
[ 333.584288] ztp.py[15456]: 2019-07-11 17:57:15 INFO: ZTP: downloading image file/ZTP_IMAGES/junos-evo-install-ptx-chassis-x86
-64-19.4-20190708.2-EVO.iso
[ 333.584840] ztp.py[15456]: 2019-07-11 17:57:15 INFO: ZTP: downloading image file local /var/tmp/junos-evo-install-ptx-chassis-x86-64-19.4-20190708.2-EVO.iso
[ 554.625986] ztp.py[15456]: No such vrf (None)
[ 554.628523] ztp.py[15456]: 2019-07-11 18:00:56 INFO: ZTP: Downloaded image file
[ 554.629289] ztp.py[15456]: 2019-07-11 18:00:56 INFO: ZTP: Downloading config file /ZTP_CONFIG/sw-s3-u8-07.cfg
[ 555.198176] ztp.py[15456]: No such vrf (None)
[ 555.200076] ztp.py[15456]: 2019-07-11 18:00:56 INFO: ZTP: Downloaded config file
[ 555.201882] ztp.py[15456]: 2019-07-11 18:00:56 INFO: ZTP: loading options config
577.427218] ztp.py[15456]: 2019-07-11 18:01:18 INFO: ZTP: Upgrading image

```

```

[ 577.427770] ztp.py[15456]: 2019-07-11 18:01:18 INFO: ZTP: Upgraded image localpath
is /var/tmp/junos-evo-install-ptx-chassis-x86-64-19.4EVO.iso
[ 577.483927] ztp.py[15456]: 2019-07-11 18:01:19 INFO: ZTP: Installing via CLI (/var/tmp/junos-
evo-install-ptx-chassis-x86-64-19.4-20190708.2-EVO.iso)
[ 577.484271] ztp.py[15456]: 2019-07-11 18:01:19 INFO: ZTP: Running: ['/usr/sbin/cli', '-c',
'show chassis hardware | display xml | match <name> | match "CB" | count']
[ 577.775918] ztp.py[15456]: 2019-07-11 18:01:19 INFO: ZTP: Dual-RE setup detected
[ 577.776130] ztp.py[15456]: 2019-07-11 18:01:19 INFO: ZTP: Checking for second RE
[ 577.776894] ztp.py[15456]: 2019-07-11 18:01:19 INFO: ZTP: Running: ['/usr/sbin/cli', '-c',
'show chassis hardware | display xml | match <name> | match "Routing Engine" | count']
[ 577.987278] ztp.py[15456]: 2019-07-11 18:01:19 INFO: Running: ['/usr/sbin/cli', '-c',
'request system software add /var/tmp/junos-evo-install-ptx-chassis-x86-64-19.4EVO.iso | display
xml']
[ 738.153925] ztp.py[15456]: 2019-07-11 18:03:59 INFO: ZTP: wait returns: 0
[ 738.154148] ztp.py[15456]: 2019-07-11 18:03:59 INFO: ZTP: Return Code: 0
[ 738.154281] ztp.py[15456]: 2019-07-11 18:03:59 INFO: ZTP: Upgraded image status is 0
[ 738.154749] ztp.py[15456]: 2019-07-11 18:03:59 INFO: ZTP: Upgrade succeeded Rebooting
[ 738.155372] ztp.py[15456]: 2019-07-11 18:03:5 Stopping Ethernet Bridge Filtering
Tables...

```

Meaning

The console shows the progress of ZTP.

Using the show dhcp client binding Command

IN THIS SECTION

- [Purpose | 211](#)
- [Action | 212](#)
- [Meaning | 212](#)

Purpose

Issue the show dhcp client binding command to display DHCP client binding information

Action

Issue the `show dhcp client binding` command to display the IP address of the DHCP client, the hardware address of the DHCP client, number of seconds in which the DHCP client's IP address lease expires, state of the DHCP client IP address in the binding table, and the name of the interface that has active client bindings.

`show dhcp client binding`

```
user@device# show dhcp client binding
IP address      Hardware address  Expires      State       Interface
10.0.0.0        00:22:83:2a:db:dc  0           SELECTING   irb.0
10.6.6.13       00:22:83:2a:db:dd  49201       BOUND       vme.0
10.0.0.0        00:22:83:2a:db:df  0           SELECTING   xe-0/0/0.0
10.0.0.0        00:22:83:2a:db:e0  0           SELECTING   xe-0/0/1.0
```

Meaning

The output of this command shows that there is one client interface that is bound, and that there are three interfaces that are receiving DHCP offers from the DHCP server.

Using the `show dhcpcv6 client binding` Command

IN THIS SECTION

- [Purpose | 212](#)
- [Action | 212](#)
- [Meaning | 213](#)

Purpose

Issue the `show dhcpcv6 client binding` command to display DHCP client binding information

Action

Issue the `show dhcpcv6 client binding` command to display the IP address of the DHCPv6 client, the hardware address of the DHCPv6 client, number of seconds in which the DHCPv6 client's IP address lease

expires, state of the DHCPv6 client IP address in the binding table, and the name of the interface that has active client bindings.

show dhcpv6 client binding

```
user@device# show dhcpv6 client binding
IP/prefix          Expires   State      ClientType  Interface  Client
DUID
2001:db8::10          57        SELECTING  STATEFUL   em0.0
LL0x3-54:4b:8c:d3:a2:34
2001:db8::10          46        SELECTING  STATEFUL   em2.0
LL0x3-54:4b:8c:d3:a2:35
2001:db8::10          38        SELECTING  STATEFUL   et-0/0/0:0.0
LL0x3-54:4b:8c:d3:a2:3b
2001:db8::10          530       BOUND      STATEFUL   et-0/0/0:1.0
LL0x3-54:4b:8c:d3:a2:3c
```

Meaning

The output of this command shows that there is one client interface that is bound, and that there are three interfaces that are receiving DHCPv6 offers from the DHCP server.

Change History Table

Feature support is determined by the platform and release you are using. Use [Feature Explorer](#) to determine if a feature is supported on your platform.

Release	Description
21.4R1-EVO	Starting in Junos OS Evolved Release 21.4R1 on the QFX5130-32CD, QFX5220, and QFX5700 devices, ZTP supports the DHCPv6 client on the management interface. During the bootstrap process, the device first uses the DHCPv4 client to request for information regarding image and configuration file from the DHCP server. The device checks the DHCPv4 bindings sequentially. If there is a failure with one of the DHCPv4 bindings, the device will continue to check for bindings until provisioning is successful. If there are no DHCPv4 bindings, however, the device will check for DHCPv6 bindings and follow the same process as for DHCPv4 until the device can be provisioned successfully. The DHCP server uses DHCPv6 options 59 and 17 and applicable sub-options to exchange ZTP-related information between itself and the DHCP client.
21.3R1-EVO	Starting in Junos OS Evolved Release 21.3R1, on PTX10001-36MR, PTX10003, PTX10004, PTX10008, and PTX10016 devices, ZTP now supports DHCP options 61 and 77. DHCP option 61 is used to specify the chassis serial number, and DHCP option 77 is used to specify the make, model, and software version of the chassis.

21.2R1-EVO	Starting in Junos OS Evolved Release 21.2R1 on PTX10008 devices, Zero Touch Provisioning (ZTP) dynamically detects the port speed of WAN interfaces and uses this information to create ZTP server ports with the same speed.
21.2R1-EVO	Starting in Junos OS Evolved Release 21.2R1, QFX5700 devices support the ability for either WAN interfaces or management interfaces to automatically download and install the appropriate software and the configuration file on your device during the ZTP bootstrap process.
21.2R1	Starting in Junos OS Release 21.2R1 on QFX10002 devices, Zero Touch Provisioning (ZTP) dynamically detects the port speed of WAN interfaces and uses this information to create ZTP server ports with the same speed.
21.2R1	Starting in Junos OS Release 21.2R1, on EX2300-C, EX2300-MP, EX4300, EX4300-MP, EX4300-VC, EX4400-24MP, EX4400-48MP, EX4600-VC, EX4650, and EX4650-48Y-VC devices, during the bootstrapping process, the phone-home client can access the redirect server through a proxy server. The DHCP server uses DHCP option 43 suboption 8 to deliver the details of IPv4 and/or IPv6 proxy servers to the phone-home client. The DHCP daemon running on the target switch learns about the proxy servers in the initial DHCP cycle and then populates either the phc_vendor_specific_info.xml or the phc_v6_vendor-specific_info.xml files located in the /var/etc/ directory with the vendor-specific information.
21.2R1	Starting in Junos OS Release 21.2R1, on EX2300-C, EX2300-MP, EX4300, EX4300-MP, EX4300-VC, EX4400-24MP, EX4400-48MP, EX4600-VC, EX4650, and EX4650-48Y-VC devices, you can use a DHCPv6 client and ZTP to provision a switch. During the bootstrap process, the device first uses the DHCPv4 client to request for information regarding the image and configuration file from the DHCP server. The device checks the DHCPv4 bindings sequentially. If there is a failure with one of the DHCPv4 bindings, the device continues to check for bindings until provisioning is successful. However, if there are no DHCPv4 bindings, the device checks for DHCPv6 bindings and follows the same process as for DHCPv4 until the device is provisioned successfully. Both DHCPv4 and DHCPv6 clients are included as part of the default configuration on the device. The DHCP server uses DHCPv6 options 59 and 17 and applicable suboptions to exchange ZTP-related information between itself and the DHCP client.
21.1R1	Starting in Junos OS Release 21.1R1, on EX2300, EX2300-VC, EX3400, EX3400-VC, EX4400-24T, EX4400-48F, EX4400-48T, and EX4600 devices, when the phone-home client receives information regarding the HTTP proxy server via DHCP option 43 suboption 8, it will create an HTTPS transparent tunnel with the proxy server. Once the tunnel is established, the phone-home client uses the tunnel as a proxy for the phone-home server or redirect server. The phone-home client downloads the software image and configuration file through the tunnel onto the device. Once bootstrapping is complete, the device reboots and the tunnel quits.

21.1R1	Starting in Junos OS Release 21.1R1, on EX2300, EX2300-VC, EX3400, EX3400-VC, EX4400-24T, EX4400-48F, EX4400-48T, and EX4600 devices, during the bootstrapping process, the phone-home client can access the redirect server through a proxy server. The DHCP server uses DHCP option 43 suboption 8 to deliver the details of IPv4 and/or IPv6 proxy servers to the phone-home client. The DHCP daemon running on the target switch learns about the proxy servers in the initial DHCP cycle and then populates either the <code>phc_vendor_specific_info.xml</code> or the <code>phc_v6_vendor-specific_info.xml</code> files located in the <code>/var/etc/</code> directory with the vendor-specific information.
20.4R1-EVO	Starting in Junos OS Evolved Release 20.4R1, PTX10004 devices support automation of the device configuration and software upgrade over the management interface of Routing Engine 0 (RE0).
20.4R1-EVO	Starting in Junos OS Evolved Release 20.4R1, ACX5448 and QFX5120-48YM devices support the ability for either WAN interfaces or management interfaces to automatically download and install the appropriate software and the configuration file on your device during the ZTP bootstrap process.
20.4R1	Starting in Junos OS Release 20.4R1 on the MX-Series, EX3400, EX4300, QFX5100, and QFX5200 devices, ZTP supports the DHCPv6 client. During the bootstrap process, the device first uses the DHCPv4 client to request for information regarding image and configuration file from the DHCP server. The device checks the DHCPv4 bindings sequentially. If there is a failure with one of the DHCPv4 bindings, the device will continue to check for bindings until provisioning is successful. If there are no DHCPv4 bindings, however, the device will check for DHCPv6 bindings and follow the same process as for DHCPv4 until the device can be provisioned successfully. The DHCP server uses DHCPv6 options 59 and 17 and applicable sub-options to exchange ZTP-related information between itself and the DHCP client.
20.4R1	Starting in Junos OS Release 20.4R1 on the EX4600, EX4650, EX9200 with RE-S-EX9200-2X00X6, QFX5110, QFX5200, QFX5210, QFX5120-32C, and QFX5120-48Y devices, you can use either the legacy DHCP-options-based ZTP or the phone-home client (PHC) to provision software for the switch. When the switch boots up, if there are DHCP options that have been received from the DHCP server for ZTP, ZTP resumes. If DHCP options are not present, PHC is attempted. PHC enables the switch to securely obtain bootstrapping data, such as a configuration or software image, with no user intervention other than having to physically connect the switch to the network. When the switch first boots up, PHC connects to a redirect server, which redirects to a phone home server to obtain the configuration or software image.
20.2R1-S1	Starting in Junos OS Release 20.2R1-S1 on the MX-Series, EX3400, EX4300, QFX5100, and QFX5200 devices, ZTP supports the DHCPv6 client. During the bootstrap process, the device first uses the DHCPv4 client to request for information regarding image and configuration file from the DHCP server. The device checks the DHCPv4 bindings sequentially. If there is a failure with one of the DHCPv4 bindings, the device will continue to check for bindings until provisioning is successful. If there are no DHCPv4 bindings, however, the device will check for DHCPv6 bindings and follow the same process as for DHCPv4 until the device can be provisioned successfully. The DHCP server uses DHCPv6 options 59 and 17 and applicable sub-options to exchange ZTP-related information between itself and the DHCP client.

20.2R1	Starting in Junos OS Release 20.2R1 on SRX300, SRX320, SRX340, SRX345, SRX550 HM, and SRX1500 devices, you can use Zero Touch Provisioning with DHCP options or the phone-home client to provision your device.
20.1R1-EVO	Starting in Junos OS Evolved Release 20.1R1 on PTX10003 devices, Zero Touch Provisioning (ZTP) dynamically detects the port speed of WAN interfaces and uses this information to create ZTP server ports with the same speed.
20.1R1-EVO	Starting in Junos OS Evolved Release 20.1R1, PTX10008 devices support automation of the device configuration and software upgrade over the management interface of Routing Engine 0 (RE0).
19.4R1	Starting in Junos OS Release 19.4R1, ZTP can automate the provisioning of the device configuration and software image on Juniper Route Reflector (JRR). ZTP supports self image upgrades and automatic configuration updates using ZTP DHCP options. In this release, ZTP supports revenue ports em2 thru em9, in addition to management port em0 which is supported in Junos OS Releases before 19.4R1.
19.3R1-Evo	Starting in Junos OS Evolved Release 19.3R1, on QFX5220-128C device, in Zero Touch Provisioning (ZTP), you can use either WAN interfaces or management interfaces, to automatically download and install the appropriate software and the configuration file on your device during the bootstrap process.
19.3R1	Starting in Junos OS Release 19.3R1, you can use either WAN interfaces or management interfaces to automatically download and install the appropriate software and the configuration file on your router during the ZTP bootstrap process.
19.2R1	Starting in Junos OS Release 19.2R1, ZTP can automate the provisioning of the device configuration and software image on management interface em0 for ACX5448 switches.
19.1R1-EVO	Starting in Junos OS Evolved Release 19.1R1, ZTP can automate the provisioning of the device configuration and software image on the management interface for QFX5220 and PTX10003 devices.
19.1-Evo	Starting in Junos OS Evolved Release 19.1R1, to monitor zero touch provisioning on Junos OS Evolved, use the <i>show system ztp</i> command.
18.3R1	Starting in Junos OS Release 18.3R1, ZTP, which automates the provisioning of the device configuration and software image with minimal manual intervention, is supported on MX Series VM hosts.

18.2R1	Starting in Junos OS Release 18.2R1, ZTP can automate the provisioning of the device configuration and software image on VM host platforms that use PTX5000, PTX3000, PTX10008, PTX10016, PTX10002-60C routers.
18.2R1	Starting in Junos OS Release 18.2R1, ZTP can automate the provisioning of the device configuration and software image on VM host platforms that use QFX10008 and QFX10016 switches.
18.1R1	Starting in Junos OS Release 18.1R1, ZTP can automate the provisioning of the device configuration and software image on VM host platforms that use QFX10002-60C switches.
17.2R1	Starting in Junos OS Release 17.2R1, ZTP can automate the provisioning of the device configuration and software image on VM host platforms that use PTX1000 routers.
16.1R1	Starting in Junos OS Release 16.1R1, you can provision supported devices by using either a script to be executed or a configuration file to be loaded.
12.2	Starting in Junos OS Release 12.2, you can use the console and operational commands to monitor Zero Touch Provisioning.

Zero Touch Provisioning DHCP Options for Junos OS Evolved

IN THIS SECTION

- [IPv4 DHCP Options | 218](#)
- [IPv6 DHCP Options | 220](#)

With Zero Touch Provisioning (ZTP), you can provision Juniper Networks devices in your network automatically, with minimal manual intervention. You can use either the management interface (re0:mgmt-0 for all devices; additionally re0:mgmt-1 for PTX10003) or WAN interface ports, depending on your device, to connect to the network. You use a Dynamic Host Configuration Protocol (DHCP) server on the network to control provisioning. You configure DHCP options for provisioning in the DHCP configuration file [dhcpd.conf (for IPv4 addressing) or dhcpcd6.conf (for IPv6 addressing).]

When you physically connect a device to the network and boot the device with a factory-default configuration, ZTP starts and detects that the device has a factory-default configuration. ZTP then uses the DHCP client on the device to request provisioning information from the DHCP server. The DHCP

server reads the parameters from the DHCP configuration file and sends the provisioning information to the device. ZTP uses this information to install the configured version of the Junos OS Evolved software image and the configuration file. The configuration file installed can be either a Junos OS Evolved configuration file or a script. With scripts, you can create device-specific configuration files and perform HTTP request operations to web servers to download specific configuration files or software images. After a reboot, ZTP applies the configuration to the device. You can monitor progress by issuing the `show system ztp` operational mode command.

DHCP option parameters are used in priority order if the same parameter is specified in two places in the DHCP configuration file.

IPv4 DHCP Options

The base DHCP packet contains the IPv4 address of the management or WAN interface.

For DHCP option 43 (vendor-specific options), you can configure the following parameters in the DHCP configuration file (`dhcpd.conf`) on the DHCP server:

- `image-file-name` (Junos OS Evolved software package name)
- `configuration-file-name` (Junos OS Evolved configuration file name)
- `image-file-type` (symbolic link)
- `transfer-type` (for example, FTP, HTTP, HTTPS, TFTP)
- `ftp-ip` (IP address of the FTP server)
- `alt-image` (If you do not configure the `image-file-name` parameter, ZTP uses the file name specified for the `alt-image` parameter.)

DHCP options sent by ZTP to the DHCP server, which are derived from the hardware information encoded on the device:

- Option 60 (vendor class identifier)—`make:serial_num:sw_version` (For example, `Juniper:serial-number:software-version`, uses the character `-` as a delimiter.)
- Option 61 (DHCP client identifier)—serial number
- Option 77 (user class)—`make:model:sw_version` (For example, `Juniper:qfx5220-128c:sw-version`, uses the character `:` as a delimiter.)

DHCP options received from the DHCP server, which you configure in the DHCP configuration file (`dhcpd.conf`) on the DHCP server:

- Option 1—subnet mask
- Option 3—device's subnet address

- Option 7—log server
- Option 12—host name
- Option 42—NTP server arguments
- Option 150—FTP server IP address
- Option 66—TFTP server or FTP server IP address
- Option 67—URL for the bootfile name

Order of Priority for Configuration and Script Management

In general, for configuring location, port, and transfer method, option 67 is primary and option 43 is secondary, except if the transfer type is HTTP. If the transfer type is HTTP, the port chosen for HTTP is configured from the information specified with option 43. If option 43 does not specify an HTTP port, the port is configured from the information specified with option 67.

Management Interface Address Configuration

The management interface address is configured based on the value for `ip_address` in the DHCP packet. The management interface address can be configured as one of the following:

- A fixed address for a device in the device-specific configuration, matched on the device's MAC address.
- An address from the specified subnet pool specified by the `range` parameter.

Order of Priority for Transfer Address

ZTP prefers to choose the transfer address from option 150. If not specified in option 150, ZTP chooses the address specified in option 66 instead. If not specified in either of these options, ZTP chooses the address specified for the `ftp-ip` parameter in option 43.

Order of Priority for Transfer Type

ZTP prefers to choose the transfer type from option 43. If not specified in option 43, ZTP uses the transfer type in option 67.

Order of Priority for Port Number

ZTP uses the HTTP or HTTPS port number from the option 43 `image-file-name` parameter for the image type and from the `alt-image-file-name` parameter for the alternate image type. For the `configuration-file-`

`name` parameter, ZTP prefers to read the port number from the configuration file argument in option 43. However, if not specified in option 43, ZTP reads the port number from the image URL in option 67.

IPv6 DHCP Options

The base DHCP packet contains both the IPv6 address of the management or WAN interface and the IPv6 prefix length.

For DHCP option 17 (vendor-specific options), you can configure the following parameters in the DHCP configuration file (`dhcpd6.conf`) on the DHCP server:

- `image-file` (Junos OS Evolved software package name, URL, or path)
- `configuration-file` (Junos OS Evolved configuration file name, URL, or path)
- `image-file-type` (symbolic link)
- `transfer-type` (for example, FTP, HTTP, HTTPS, TFTP)
- `alt-image` (If you do not configure the `image-file-name` parameter, ZTP uses the file name specified for the `alt-image` parameter.)
- `port-number` (configuration port number)

DHCP options sent by ZTP to the DHCP server, which are derived from the hardware information encoded on the device: `dhcp6.vendor-class-identifier` (For example, `Juniper:platform_type:serial_num:sw_version`, uses the character : as a delimiter.)

DHCP options received from the DHCP server, which you configure in the DHCP configuration file (`dhcpd6.conf`) on the DHCP server:

- Option 59—`bootfile-url` parameter. This parameter can be configured in one of two formats:
 - `<TransferMode>://<FTP Server IP>.<PortNumber>/<ImagePath/ConfigPath/ScriptPath>`
 - `<TransferMode>://<FTP Server IP>`
- IPv6 address—`IP6ADDR`
- IPv6 prefix length—`IP6PREFIXLEN`

Order of Priority for Configuration and Script Management

ZTP prefers to use the fully-formed URL specified in option 17; otherwise it uses the other configuration and script parameters specified in option 17. If these parameters are not specified in option 17, ZTP uses the URL specified in option 59.

Management Interface Address Configuration

The management interface address is configured based on the value for `ip6_address` in the DHCP packet.

Order of Priority for Transfer Address

ZTP prefers to use the vendor-specific URL from option 17. If not specified in option 17, ZTP uses the URL specified with the `bootfile-url` parameter in option 59.

Order of Priority for Transfer Type

ZTP prefers to use the transfer type from option 17. If not specified there, ZTP uses the transfer type from the argument for the `bootfile-url` parameter in option 59.

Order of Priority for Port Number

ZTP prefers to read the port number from the `portnum` parameter in option 17. If not specified there, ZTP uses the port number from the argument for the `bootfile-url` parameter in option 59.

RELATED DOCUMENTATION

[Zero Touch Provisioning | 180](#)

Secure Zero Touch Provisioning

IN THIS SECTION

- [Overview | 222](#)
- [Benefits | 223](#)
- [Use Case | 223](#)
- [SZTP Requirements | 223](#)
- [SZTP Infrastructure Components | 224](#)
- [DevID Workflow | 225](#)
- [Onboarding Information | 226](#)
- [DHCP V4 Option 143 | 228](#)

- [DHCP V6 Option 136 | 229](#)
- [SZTP Workflow | 230](#)
- [SZTP for Network Devices with Dual Routing Engines | 232](#)

NOTE: To see which platforms support Secure Zero Touch Provisioning (SZTP), go to [Feature Explorer](#). In the **Explore Features** section of the Feature Explorer page, select **All Features**. In the **Features Grouped by Feature Family** box, select Secure ZTP. You can also type the name of the feature in the **Search for Features** edit box. See the Release History Table at the end of this topic for more details of how ZTP support has expanded.

Overview

NOTE: The phone-home client (PHC) process supports Secure Zero Touch Provisioning (SZTP).

You can use RFC-8572-based SZTP to bootstrap remotely located network devices that are in a factory-default state. SZTP enables mutual authentication between the bootstrap server and the network device before provisioning the remote network device.

To enable mutual authentication, you need a unique digital voucher and DevID (Digital Device ID or Cryptographic Digital Identity) programmed network device. The DevID is embedded inside the Trusted Platform Module (TPM) 2.0 chip on the network device. Juniper Networks issues a digital voucher to customers for each eligible network device.

We support SZTP on management and WAN interfaces.

NOTE: DHCP-based legacy ZTP is disabled. We do not support DHCP-based legacy ZTP on hardware that supports SZTP.

SZTP is compliant with RFC 8572 and requires the following infrastructure to ensure the identity and authenticity of your network devices:

- Trusted Platform Module (TPM) 2.0
- Digital Device IDs (DevIDs)
- DevID Certificates

- X.509 Pinned Domain Certificates (PDCs)
- Owner Certificates
- DevID Trust Anchors
- Vouchers

For information on how to generate vouchers, see [Generate Voucher Certificate](#).

To onboard your Juniper devices with Secure ZTP, see [Secure ZTP Quick Start Guide](#).

Benefits

- You can provision a remote network device without manual intervention.
- You can provision a network device securely from a central location, which prevents unauthorized entities from taking control of your network device.
- Your redirect and bootstrap servers verify the authenticity of your network device based on the DevID that's programmed in the network device's TPM.
- Your network device verifies the authenticity of your redirect servers and bootstrap servers, and bootstrap information, based on the devices' vouchers.

Use Case

For network devices that are shipped from the factory, you can make the network devices operational both securely and remotely without manually touching the network device. The network device needs to be able to use the Dynamic Host Configuration Protocol (DHCP) to obtain network connectivity information and connect to a remote bootstrap server.

SZTP Requirements

To deploy SZTP in your network, you need to perform the following tasks:

1. Deploy your DHCP and DNS servers.
2. Configure DHCP V4 option 143 or DHCP V6 option 136 on your DHCP server, so the DHCP server can advertise the names of your redirect and bootstrap servers.
3. Deploy your redirect and bootstrap servers.
4. Acquire DevID trust anchors from Juniper Networks.
5. Generate owner certificates for one network device or a group of network devices.

6. Generate pinned domain certificates (PDCs) for each network domain.
7. Acquire vouchers from Juniper Networks.
8. Generate redirect and bootstrap information for each network device.
9. Use the redirect and bootstrap information that the redirect and bootstrap servers provide to provision your network devices.

After you deploy SZTP in your network, and then deploy a new network device, the network device bootstraps automatically.

SZTP Infrastructure Components

Trusted Platform Module (TPM) 2.0

The TPM is a microchip that provides security-related functions. During the manufacturing process, Juniper Networks programs the TPM with a digital device ID (DevID) and an asymmetric keypair (public key and private key). The TPM locks the private key of the asymmetric pair in a tamper-proof location.

DevIDs

The DevID corresponds to the private key and protects the private key. Applications that require signing or encryption use the DevID private key.

Applications running on your network device use the DevID private key in the network device's TPM to prove the identity of the network device to a remote verifier.

DevID Certificates

Juniper Networks generates a DevID certificate (X.509 certificate) for the public key that corresponds to the DevID of the private key. The DevID certificate contains the serial number of the network device for which the DevID was created. DevID certificate is generated conforming to the IEEE 802.1AR standard.

NOTE: We support the IDevID. We do not support the LDevID.

X.509 Pinned Domain Certificates (PDCs)

Create an X.509 pinned domain certificate (PDC) for every network domain. The PDC can be either a root CA certificate or an intermediate CA certificate. Convert the PDC from distinguished encoding rules (DER) to base 64 encoding. Make sure that the PDC is a certificate authority (CA) and conforms to X.509.

Owner Certificates

The owner certificate verifies the vendor that bought or owns the network device. Generate an asymmetric key pair (public key and private key) for each network device or group of network devices. The key pair needs to use either Rivest-Shamir-Adleman (RSA) or elliptic curve cryptography (ECC). Keep the private key protected in a secure location. The Pinned Domain Certificate (PDC) should be the CA for the owner certificate.

DevID Trust Anchors

Juniper Networks provides DevID trust anchors. Install the DevID trust anchors in redirect and bootstrap servers to verify the DevID certificate that the device or client presents while it establishes a TLS session.

Voucher Certificates

To receive voucher certificates, enter the PDC and the network device's serial number in the Juniper Agile Licensing (JAL) Portal. Once you receive the voucher certificates, include them as part of the bootstrap information on your bootstrap server. The bootstrap server provides the voucher certificates to your network devices. Your network devices then use the bootstrap information to verify the trust anchors that your redirect server provides.

For step-by-step instructions on how to receive vouchers, see [Generate Voucher Certificate](#).

DevID Workflow

1. When an application requires signing or encryption that uses the DevID, the application requests a TLS session with the bootstrap server.
2. The bootstrap server sends a TLS response to the network device asking the network device to do the following:
 - Provide its DevID certificate
 - Prove that it has a private key
3. The network device signs the session data with the DevID of the private key.
4. The network device sends the digital signature and the DevID certificate to the bootstrap server.
5. The bootstrap server uses the DevID certificate to verify the digital signature.
6. The bootstrap server uses the DevID trust anchor that Juniper Networks provides to verify the DevID certificate.

Onboarding Information

In order for a network device to bootstrap itself and establish secure connections with other systems, you need to provide onboarding information. Onboarding information is data that a network device uses to bootstrap itself and connect with other systems. When a network device sends this data, the data needs to be encoded in a format that conforms to RFC 8572.

Boot Image Information

Boot image information includes the name of the OS and the OS version. We recommend that you specify "Junos" as the OS version. Make sure that you specify the correct OS version to prevent the network device from continuously downloading and installing software.

Download URI

The download URI provides the location of the boot image.

Image Verification

The image verification field includes the hash algorithm that you use to generate a secure hash for the software image and the digest value of the software image. SZTP supports SHA256. Encode the digest value as a hexadecimal string.

Configuration Handling

SZTP can either merge or replace a configuration. Create the configuration in XML and encode the configuration to Base 64 format. The configuration needs to be in Base 64 format so that bootstrap server can include it in its bootstrap information.

Pre-upgrade Scripts

You can execute a pre-upgrade script to download signing keys or certificates for your third-party applications before provisioning your device.

SZTP supports Bourne shell scripts and Python scripts. The Bourne shell script interpreter path is `#!/bin/sh`, and the Python interpreter path is `#!/usr/bin/python`.

If the script is a Bourne script, SZTP checks the end value of the script. If the script exits with nonzero value, the SZTP process restarts. If the script is a Python script, SZTP doesn't check the end value of the script. The output of a script could have errors even if the script ran successfully.

Pre-configuration Scripts

SZTP supports Bourne shell scripts and Python scripts. The Bourne shell script interpreter path is `#!/bin/sh`, and the Python interpreter path is `#!/usr/bin/python`.

If the script is a Bourne script, SZTP checks the end value of the script. If the script exits with nonzero value, the SZTP process restarts. If the script is a Python script, SZTP doesn't check the end value of the script. The output of a script could have errors even if the script ran successfully.

Here's an example of the onboarding information in XML:

```
=====
<onboarding-information>
  <boot-image>
    <os-name>Junos</os-name>
    <os-version>22.2R1</os-version>
    <download-uri>https://example.com/path/to/image/file,https://example-1.com/path/to/image/
file</download-uri>
    <image-verification>
      <hash-algorithm> </hash-algorithm>
      <hash-
value>ba:ec:cf:a5:67:82:b4:10:77:c6:67:a6:22:ab:7d:50:04:a7:8b:8f:0e:db:02:8b:f4:75:55:fb:c1:13:b
2:33</hash-value>
    </image-verification>
  </boot-image>
  <configuration-handling>merge</configuration-handling>
  <pre-upgrade-script>base64encodedvalue</pre-upgrade-script>
  <configuration>base64encodedvalue</configuration>
  <post-configuration-script>base64encodedvalue</post-configuration-script>
</onboarding-information>
=====
```

```
=====
<onboarding-information>
  <boot-image>
    <os-name>Junos</os-name>
    <os-version>22.2R1</os-version>
    <download-uri>https://example.com/path/to/image/file,https://example-1.com/path/to/image/
file</download-uri>
    <image-verification>
      <hash-algorithm> </hash-algorithm>
```

```

<hash-
value>ba:ec:cf:a5:67:82:b4:10:77:c6:67:a6:22:ab:7d:50:04:a7:8b:8f:0e:db:02:8b:f4:75:55:fb:c1:13:b
2:33</hash-value>
</image-verification>
</boot-image>
<configuration-handling>merge</configuration-handling>
<pre-upgrade-script>base64encodedvalue</pre-upgrade-script>
<pre-configuration-script>base64encodedvalue</pre-configuration-script>
<configuration>base64encodedvalue</configuration>
<post-configuration-script>base64encodedvalue</post-configuration-script>
</onboarding-information>
=====

```

Post-configuration Scripts

The pre-configuration script requirements also apply to post-configuration scripts. If any post-configuration script fails, your device rolls back to the configuration it was running before the pre-configuration script was executed. The SZTP process restarts.

DHCP V4 Option 143

Configure DHCP V4 option 143 on your DHCP server before it can provide any IP addresses to the DHCP client.

If you use an MX-Series device as a DHCP server, enable DHCP V4 Option 143.

Here is a sample configuration:

```

access {
    address-assignment {
        pool p1 {
            family inet {
                network 192.168.2.0/24;
                range r1 {
                    low 192.168.2.2;
                    high 192.168.2.254;
                }
                dhcp-attributes {
                    maximum-lease-time 2419200;
                    server-identifier 192.168.2.1;
                    router {

```

```
        192.168.2.1;  
    }  
}  
option 143 hex-string 001368747470733a2f2f6578616d706c652e636f6d;  
}  
}  
}  
}
```

DHCP V6 Option 136

Here is a sample configuration:

```
access {
    address-assignment {
        neighbor-discovery-router-advertisement p2;
        pool p2 {
            family inet6 {
                prefix 2001:db8:::/64;
                range r1 {
                    low 2001:db8:::200/128;
                    high 2001:db8:::299/128;
                }
            }
            dhcp-attributes {
                dns-server {
                    2001:db8:::8888;
                }
            }
        }
        option 136 hex-string 001a68747470733a2f2f6d782d7068732d736572766572362e6e6574;
    }
}
```

Converting Hexadecimal Format to ASCII Text Format

This hexadecimal text string in the DHCP V6 Option 136, for example, is equal to 26 bytes in ASCII text format. In hexadecimal format, 26 is represented as 001a. Each hexadecimal number is equal to one byte, and each byte is equal to a combination of ASCII characters.

To convert the 001a68747470733a2f2f6d782d7068732d736572766572362e6e6574 hexadecimal string to ASCII characters, you need to map the hexadecimal letters and numbers to ASCII letters, numbers, and symbols.

In this example, we're mapping the URL used for DHCP Option 136. You can use the same process for the URL used in DHCP Option 143.

Here's an example URL that shows the mapping between hexadecimal format and ASCII format. You can see that each hexadecimal number is mapped to letters and symbols in ASCII format:

```
68(h) 74(t) 74(t) 70(p) 73(s) 3A(:) 2F(/) 2F(/) 61(a) 62(b) 2D(-) 63(c) 64(d) 65(e) 2D(-) 73(s)
65(e) 72(r) 76(v) 65(e) 72(r) 36(.) 2E (n)6E 65(e) 74(t)
```

The final URL is <https://ab-cde-server.net>.

Use a hexadecimal to ASCII converter and vice versa to make sure your results are correct.

SZTP Workflow

NOTE: This topic includes only one of the permitted workflows. We support everything in the RFC 8572 standard, including Appendix-B.

If your device isn't already in a factory-default state, issue one of the following commands to bring your device into a factory-default state.

- On network devices running Junos OS, issue the request `vmhost zeroize` command.
- For network devices running Junos OS Evolved, issue the request `system zeroize` command.

When a device boots up in a factory-default state, the following events occur.

1. The DHCP client sends a request to the DHCP server to obtain the name, IP address, or host name of either the bootstrap server or customer redirect server.

Configure either DHCP option 143 for V4 or DHCP option 136 for V6. The DHCP client requests the IP address for each bootstrap or redirect server until the device completes bootstrapping.

2. The DHCP server sends the server host name of either a bootstrap or a customer redirect server to the DHCP client.
3. The phone-home client (PHC) on your device sends a bootstrap request to the server it learned from the DHCP option. If you've provided multiple servers in the DHCP option, the device tries to bootstrap with each server sequentially.

The device tries to bootstrap with any bootstrap, customer redirect, or DNS server that the PHC learns through the DHCP option. The device attempts to bootstrap to a server in round-robin fashion until the device bootstraps successfully.

4. The bootstrap server responds with signed onboarding information along with the owner certificate and ownership voucher.
5. The PHC uses the information in the owner certificate and ownership voucher to verify the signed onboarding information.
6. (Optional) The PHC runs pre-upgrade scripts that were provided as part of the onboarding information.
7. The PHC extracts image and configuration information.
8. If the device is running a different image, the device downloads the image, uses the new image to upgrade, and then reboots with the new image.

Post reboot, the entire SZTP sequence repeats, except that device doesn't reboot because it already has the required image.

9. (Optional) The PHC runs the pre-configuration scripts.

SZTP supports Bourne and Python scripts.

Encode your pre-configuration script and post-configuration script XML tag value according to RFC 8572.

10. The PHC commits the configuration.
11. (Optional) The PHC runs post-configuration scripts.
12. The PHC sends a bootstrap complete message to the PHS.
13. The device cleans up the PHC-related configurations and resources.
14. The PHC terminates.

Table 8: Scripts Supported for SZTP

Script Type	Interpreter Path	Platform Support
Shell script	#!/bin/sh	All network devices

Table 8: Scripts Supported for SZTP (Continued)

Script Type	Interpreter Path	Platform Support
Python script	#!/usr/bin/python	Network devices running Junos OS with Enhanced Automation
		Network devices running Junos OS Evolved

SZTP for Network Devices with Dual Routing Engines

Before you upgrade the software on the backup Routing Engine on a network device that run Junos OS software, enable the `secure-ztp provision-backup-re` statement at the `[edit system]` hierarchy on the primary Routing Engine.

On network devices that run Junos OS software, enable the `provision-backup-re` statement at the `[edit system]` hierarchy on the primary Routing Engine, so it can bootstrap the backup Routing Engine.

On network devices that run Junos OS Evolved software, enable the `auto-sw-sync` statement at the `[edit system]` hierarchy, so that the primary Routing Engine ensures the same image version is on the backup Routing Engine through either an upgrade or downgrade.

On Junos OS-based systems with dual Routing Engines, the primary Routing Engine downloads the image even if the primary Routing Engine is already running the required image version. The device downloads the image so that the primary Routing Engine is ready to upgrade the backup Routing Engine, if needed.

On Junos OS Evolved-based systems, the primary Routing Engine always keeps a copy of the image it is running.

If you haven't enabled the `synchronize` statement at the `[edit system]` hierarchy or Graceful Restart Engine Switchover (GRES) on the primary Routing Engine, the primary Routing Engine doesn't synchronize the configuration and state to the backup Routing Engine. In this situation, the primary Routing Engine verifies the authenticity of the backup Routing Engine before it synchronizes any data with the backup Routing Engine.

Before the primary Routing Engine provisions the backup Routing Engine, the primary Routing Engine verifies the authenticity of the backup Routing Engine. The primary Routing Engine checks the DevID of the backup Routing Engine to make sure that the backup Routing Engine is a Juniper-authorized Routing Engine.

NOTE: The primary Routing Engine doesn't check whether the backup Routing Engine is authorized to receive information from the primary Routing Engine. Also, the backup

Routing Engine doesn't verify authenticity or authorization of the primary Routing Engine.

The primary Routing Engine provisions the backup Routing Engine in the following situations:

- When the primary Routing Engine has bootstrapped using SZTP.
- When the backup Routing Engine is present when the primary Routing Engine is bootstrapping or inserted during the SZTP process.
- When the backup Routing Engine reboots or is replaced.

Once the primary Routing Engine verifies the backup Routing Engine's authenticity and meets the requirements for provisioning, the primary Routing Engine checks the version of software that is running on the backup Routing Engine. If the backup Routing Engine's software version is different from the primary Routing Engine's software version, the primary Routing Engine upgrades the backup Routing Engine to the same software version that the primary Routing Engine is running.

When both Routing Engines are running the same software, the primary Routing Engine synchronizes its configuration with the backup Routing Engine.

RELATED DOCUMENTATION

[Generate Voucher Certificate](#)

[Secure ZTP Quick Start Guide](#)

[Switching between Secure Zero Touch Provisioning and Zero Touch Provisioning | 233](#)

Switching between Secure Zero Touch Provisioning and Zero Touch Provisioning

IN THIS SECTION

- [Overview | 234](#)
- [Benefits | 234](#)
- [Switching between SZTP and ZTP | 234](#)
- [Caveats | 235](#)

NOTE: To see which platforms support Secure Zero Touch Provisioning (SZTP), go to [Feature Explorer](#). In the **Explore Features** section of the Feature Explorer page, select **All Features**. In the **Features Grouped by Feature Family** box, select Secure ZTP. You can also type the name of the feature in the **Search for Features** edit box. See the Release History Table at the end of this topic for more details of how ZTP support has expanded.

Overview

Secure zero-touch provisioning (SZTP) requires additional network infrastructure, such as a secure ZTP server, for provisioning. If you have a secure device with SZTP as its default provisioning method, and don't have the network infrastructure to support SZTP, you can easily switch to ZTP. On the other hand, if your device's default provisioning method is ZTP, and you want to use SZTP for provisioning, you can easily switch to SZTP.

Benefits

- On secure devices, you have the flexibility to switch between using SZTP and ZTP depending on your network infrastructure.

Switching between SZTP and ZTP

See the following table for the Junos OS and Junos OS Evolved commands and the VM Host OS Junos OS commands to use to switch between SZTP and ZTP and vice versa.

NOTE: On MX304 devices without a backup Routing Engine, when you issue the request `vmhost zeroize ztp-option secure-(enable | disable)` command, you will see the following warning on the console: Backup RE is not present. Zeroize backup RE when it is inserted.

Table 9: Commands for Switching between SZTP and ZTP

Junos OS and Junos OS Evolved	VM Host Junos OS
<pre>request system zeroize ztp-option secure-disable</pre> <p>When you issue this command, the CLI checks to see if the device is a secure device. If the device is secure, the next time the device boots, the device uses ZTP as the provisioning solution. If the device is not secure, the process ends.</p>	<pre>request vmhost zeroize ztp-option secure-disable</pre> <p>When you issue this command, the CLI checks to see if the device is a secure device. If the device is secure, the next time the device boots, the device uses ZTP as the provisioning solution. If the device is not secure, the process ends.</p>

Table 9: Commands for Switching between SZTP and ZTP (Continued)

Junos OS and Junos OS Evolved	VM Host Junos OS
<pre>request system zeroize ztp-option secure-enable The CLI checks to see if the device is a secure device. If the device is secure, the process ends. The next time the device boots, the device uses SZTP as the provisioning solution. If the device is not a secure device, you will receive an error message that says the device is not secure, and the process ends.</pre>	<pre>request vmhost zeroize ztp-option secure-enable The CLI checks to see if the device is a secure device. If the device is secure, the process ends. The next time the device boots, the device uses SZTP as the provisioning solution. If the device is not a secure device, you will receive an error message that says the device is not secure, and the process ends.</pre>

If you don't specify the `ztp-option` option in either the `request system zeroize` or `request vmhost zeroize` command, the secure platform will bootstrap with SZTP as its provisioning solution.

Caveats

- When the device uses ZTP, the SZTP configuration remains on the device, and the SZTP client (phone-home client) runs passively. Once ZTP commits its configuration, the phone-home server configuration is removed.
- If the default ZTP behavior is different from the type of zero-touch provisioning (ZTP or SZTP, for example) you're using, you will need to issue either the `request system zeroize ztp-option secure-(enable | disable)` or


```
request vmhost zeroize ztp-option secure-(enable | disable)
```
- If the current Junos OS or Junos OS Evolved software version on your device supports SZTP, but the software image you're upgrading to doesn't support SZTP, then bootstrapping with SZTP will fail. On devices running Junos OS or VM Host Junos OS, this is not applicable if the device is installed with SZTP as part of its factory default configuration.

RELATED DOCUMENTATION

[Secure ZTP Quick Start Guide](#)

[Secure Zero Touch Provisioning | 221](#)

request system zeroize ztp-option secure

request vmhost zeroize ztp-option secure

6

PART

Phone-Home Client

- Phone-Home Client | 237

CHAPTER 15

Phone-Home Client

IN THIS CHAPTER

- [Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client | 237](#)
- [Deploying the Phone-home Client and Zero Touch Provisioning on vSRX Virtual Firewall | 241](#)
- [Provision a Virtual Chassis Using the Phone-Home Client | 244](#)

Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client

IN THIS SECTION

- [Prerequisites | 238](#)
- [Understanding the Phone-Home Client | 238](#)
- [Understanding the Redirect Server Configuration | 238](#)
- [Understanding Interoperability Between the Phone-Home Client and DHCP-Based ZTP | 239](#)
- [Understanding the Phone-Home Client Process | 239](#)
- [Understanding the Configuration File Format for the Phone-Home Client | 240](#)
- [Understanding Pre-Configuration and Post-Configuration Scripts | 240](#)
- [Verifying that the Phone-Home Client Downloaded the Configuration and Software Image | 240](#)

The phone-home client (PHC) enables the device or VM instance to securely obtain bootstrapping data, such as a configuration or software image, with no user intervention other than having to physically connect the device or VM instance to the network.

Prerequisites

PHC depends on the following software and utilities to operate:

- Connectivity to redirect server and phone-home server (PHS)
- DHCP client

NOTE: DHCP-based ZTP is not supported on vSRX Virtual Firewall.

- SLAX support for configuration commits
- Python support
- Curl support
- Factory default configuration
- Mechanism to retrieve device serial number
- SHA1/MD5 utilities to verify software image
- Basic utilities like GREP and AWK

Understanding the Phone-Home Client

PHC enables the device or VM instance to securely obtain bootstrapping data, such as a configuration or software image, with no user intervention other than having to physically connect the device to the network. When the device or VM instance first boots, PHC connects to a redirect server, which then redirects to PHS to get the configuration or software image.

Similar to DHCP-based ZTP, the device or VM instance must be in factory default state in order for PHC to provision the device. If the device is not in factory default state, you can issue the `request system zeroize` command to bring the device back to the factory default state.

Understanding the Redirect Server Configuration

By default, the factory default configuration includes the redirect server URL, which is `https://redirect.juniper.net`.

Understanding Interoperability Between the Phone-Home Client and DHCP-Based ZTP

To avoid conflicts between these two provisioning methods, the following steps are taken when the device or VM instance boots up:

NOTE: DHCP-based ZTP is not supported on vSRX Virtual Firewall.

NOTE: Provisioning does not start if the device is not in factory default mode. If the device is not in factory default mode, issue the `request system zeroize` command.

NOTE: The `request system zeroize` command is not supported on vSRX Virtual Firewall.

1. If the DHCP client receives either partial or complete DHCP options, PHC is terminated, and DHCP-based ZTP attempts to provision the device until it is successful.
2. If the DHCP client does not receive DHCP options, PHC attempts to provision the device until it is successful.

If PHC fails to connect to the redirect server, however, DHCP-based ZTP attempts to provision the device. Both provisioning methods attempt to provision the device until one method is successful.

Understanding the Phone-Home Client Process

The following steps take place when PHC is launched:

1. PHC connects to the redirect server.
2. The device or VM Instance downloads and installs the software image from PHS.
If the software upgrade fails, the process starts over.
3. The device or VM instance reboots, and PHC validates the installed software image when the device comes back online.
4. The device or VM instance downloads the configuration.
5. If a script (either pre-configuration script, post-configuration scripts, or both) was received as part of the configuration, the following happens:

NOTE: PHC supports both Python and shell scripts.

- a. The pre-configuration script is executed.
- b. The configuration received from the redirect server is committed.
- c. The post-configuration script is executed.
6. PHC sends a bootstrap-complete message to the PHS.
7. PHC cleans up the downloaded resources.
8. The existing phone-home configuration, along with any supporting configuration, is overwritten by the new configuration on the device or VM instance.
9. If any of the above steps fail, the phone-home process starts over again from the beginning, and a bootstrap failure error message is sent to PHS.

Understanding the Configuration File Format for the Phone-Home Client

PHC supports XML as the file format for the configuration file.

For example, the configuration file format looks like this:

```
<configuration>
[ Configuration in XML format ]
</configuration>
```

Currently, only the `merge` and `override` CLI commands are supported on configurations received by the PHC.

Understanding Pre-Configuration and Post-Configuration Scripts

You can include pre-configuration and post-configuration scripts on PHS in addition to, or instead of, using the Junos OS CLI. Embed the scripts in base64 encoded format. PHC extracts the encoded scripts from the bootstrap information received from PHS, decodes, and then runs the decoded scripts at the appropriate stages of provisioning.

Verifying that the Phone-Home Client Downloaded the Configuration and Software Image

To verify the progress of the phone-home process, you can view the `notification.xml` file on PHS.

Change History Table

Feature support is determined by the platform and release you are using. Use [Feature Explorer](#) to determine if a feature is supported on your platform.

Release	Description
21.1R1	Starting in Junos OS Release 21.1R1, the phone-home client is supported on vSRX Virtual Firewall.

Deploying the Phone-home Client and Zero Touch Provisioning on vSRX Virtual Firewall

SUMMARY

IN THIS SECTION

- [Factory Default Configuration on vSRX Virtual Firewall | 241](#)
- [Deploying ZTP on KVM | 242](#)
- [Deploying ZTP on VMWare | 242](#)
- [Deploying ZTP on Amazon Web Services, Google Cloud Platform, and Oracle Cloud Infrastructure | 243](#)
- [Deploying ZTP on Microsoft Azure | 244](#)

You can use the phone-home client and ZTP to provide a user-defined configuration file for the vSRX Virtual Firewall. The phone-home client and ZTP are supported on VMWare, KVM (Kernel-based Virtual Machine) hypervisors, and in various deployment environments, such as AWS (Amazon Web Service), GCP (Google Cloud Platform), OCI (Oracle Cloud Infrastructure), and Microsoft Azure.

Factory Default Configuration on vSRX Virtual Firewall

Here's the factory default configuration for the phone-home client:

```
set system services web-management http interface fxp0.0
set system services web-management https system-generated-certificate
set system services web-management https interface fxp0.0
set system name-server 8.8.8.8
set system name-server 8.8.4.4
```

```
set system syslog file messages any any
set system license autoupdate url https://ae1.juniper.net/junos/key_retrieval
set system phone-home server https://redirect.juniper.net
set system phone-home rfc-compliant
set interfaces fxp0 unit 0 family inet dhcp
```


NOTE: You must perform the changes suggested in the 'vSRX Virtual Firewall XML on KVM' and 'vSRX Virtual Firewall virtual machine edit settings in VMware' before the first reboot. This ensures that the correct factory default configuration with PHC commands are loaded during the first boot.

Deploying ZTP on KVM

To deploy ZTP on a KVM, set the **entry name='version'** to **phone-home=true** in the VM deployment XML file.

For example:

```
<os>
  ...
    <smbios mode='sysinfo' />
  </os>
<sysinfo type='smbios'>
  <system>
    <entry name='version'>phonehome=true</entry>
  </system>
</sysinfo>
```

Deploying ZTP on VMWare

To deploy ZTP on VMWare, enable the **Open Virtualization Format (OVF)** setting in the VMWare GUI, and set **phone-home** to **true**.

1. To enable OVF in the VMWare GUI, go to **Edit Virtual Machine Setting | vApp Options | OVF setting : OVF environment transparent | VMWare Tools: enable**.
2. To enable the phone-home client in the VMWare GUI, go to **Edit Virtual Machine Setting | vApp Options | Properties | phone-home true**.

Deploying ZTP on Amazon Web Services, Google Cloud Platform, and Oracle Cloud Infrastructure

To enable ZTP on Amazon Web Services, Google Cloud Platform, and Oracle Cloud Infrastructure, add the following phone-home client configuration in the **CLOUD-INIT USER-DATA** file:

```
system {
    name-server {
        8.8.8.8;
        8.8.4.4;
    }
    syslog {
        file messages {
            any any;
        }
    }
    services {
        ssh;
        web-management {
            http {
                interface fxp0.0;
            }
            https {
                system-generated-certificate;
                interface fxp0.0;
            }
        }
    }
    license {
        autoupdate {
            url https://ae1.juniper.net/junos/key_retrieval;
        }
    }
    phone-home {
        server https://redirect.juniper.net;
        rfc-compliant;
    }
}

interfaces {
    fxp0 {
```

```

unit 0 {
    family inet {
        dhcp;
    }
}
}
}

```

Deploying ZTP on Microsoft Azure

To enable ZTP on Microsoft Azure, add the following phone-home client configuration in the **write_files** section of the **CLOUD_INIT_CONFIG.JSON** file:

```

{
    "content": "configure\\nset system name-server 8.8.8.8\\nset system name-server 8.8.4.4\\nset
system phone-home server
https://redirect.juniper.net\\nset system phone-home rfc-compliant\\nset interfaces fxp0 unit 0
family inet dhcp\\ncommit\\n",
    "path": "/var/tmp/test_config"
},

```

Provision a Virtual Chassis Using the Phone-Home Client

SUMMARY

Phone-home provisioning on a Virtual Chassis is a form of zero-touch provisioning (ZTP). The phone-home client (PHC) on the Virtual Chassis gets bootstrap information over the network from a phone-home server (PHS) and provisions the Virtual Chassis. The only user intervention required on the client side is to physically wire the Virtual Chassis members together and connect any port on the Virtual Chassis to the network.

IN THIS SECTION

- [Overview of Phone-Home Provisioning for a Virtual Chassis | 245](#)
- [How To Enable Phone-Home Provisioning on a Virtual Chassis | 247](#)
- [Phone-Home Process on a Virtual Chassis | 248](#)
- [Phone-Home Provisioning Status Notifications | 253](#)

- [Verify Virtual Chassis Status After Phone-Home Provisioning | 255](#)
- [Troubleshoot Phone-Home Provisioning Issues | 256](#)

Overview of Phone-Home Provisioning for a Virtual Chassis

IN THIS SECTION

- [Benefits of Phone-Home Provisioning on a Virtual Chassis | 245](#)
- [Overview of the Phone-Home Provisioning Process on a Virtual Chassis | 246](#)

With phone-home provisioning, a phone-home client (PHC) on a device initially provisions the device with a software image and configuration from a central network management data source called the phone-home server (PHS), requiring little or no user intervention at the remote site.

A Virtual Chassis consists of a set of devices interconnected together using ports called Virtual Chassis ports (VCPs). You configure and manage the Virtual Chassis as a single device. Starting with Junos OS Release 20.3R1, we've made extensions to the phone-home provisioning process for a standalone device so it can also work on a Virtual Chassis. The PHC on a Virtual Chassis requires extra steps to coordinate and manage bootstrapping the member devices.

The PHS is usually part of a network management system (NMS) that supports phone-home provisioning. Your network administrator enters the intended provisioning data that directs how devices and Virtual Chassis at remote sites should be set up. Your organization might have more than one PHS for redundancy.

You can check [Feature Explorer](#) and search for **phone-home** to see the Virtual Chassis platforms that support phone-home provisioning.

Benefits of Phone-Home Provisioning on a Virtual Chassis

- Simplifies provisioning by launching the process automatically from the remote site, while securely obtaining bootstrap information from a central management system (the PHS) on your network or in the cloud.
- Doesn't require in-depth experience with the Junos OS CLI to coordinate the provisioning of multiple devices that make up a Virtual Chassis.

Overview of the Phone-Home Provisioning Process on a Virtual Chassis

On a Virtual Chassis that supports phone-home provisioning, for the process to work, you must set up the Virtual Chassis according to the requirements outlined in *How to Enable Phone-Home Provisioning on a Virtual Chassis*.

When the Virtual Chassis initially forms, the PHC process starts up automatically on the Virtual Chassis primary member and takes it from there:

1. The PHC connects to a PHS.

The PHC sends a provisioning request to a default redirect server URL, <https://redirect.juniper.net>, which redirects the request to an available PHS controlled by your network administrator or NMS. This step is the same as phone-home provisioning on a single device.

2. The PHS responds to the PHC provisioning request with the bootstrapping information, which includes the intended Virtual Chassis topology, software image, and configuration.

3. The PHC provisions the Virtual Chassis as specified by the PHS.

Provisioning includes steps such as:

- Validate the Virtual Chassis topology.
- Upgrade the software image sequentially on all of the member devices if needed.
- Run any pre-configuration or post-configuration staging scripts.
- Commit a new configuration on the Virtual Chassis.

The PHC sends status notifications to the PHS during the bootstrapping process, so the network administrator can verify the process completes successfully.

The PHC also logs status locally in the system log files on the Virtual Chassis. If needed, you can view log files in the Junos OS CLI, and use Junos OS CLI commands to see Virtual Chassis and VCP connection status.

SEE ALSO

[Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client](#)
| 237

[Zero Touch Provisioning](#) | 180

How To Enable Phone-Home Provisioning on a Virtual Chassis

On a Virtual Chassis that supports phone-home provisioning, if you set up the Virtual Chassis according to the steps listed here, a phone-home client (PHC) process starts up automatically on the Virtual Chassis primary member.

To enable phone-home provisioning on a Virtual Chassis:

1. Ensure that all Virtual Chassis members have the factory-default configuration and are powered off.

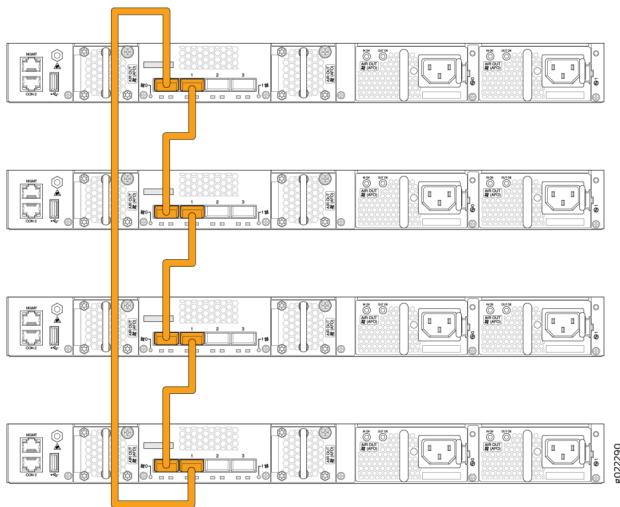
You can run the `request system zeroize` Junos OS CLI command to return a device to its factory-default state.

NOTE: The Virtual Chassis can't be a mixed-mode Virtual Chassis because mixed mode is never set in the factory-default configuration.

2. Interconnect the Virtual Chassis members in a ring topology using only dedicated or default-configured Virtual Chassis ports (VCPs) on each member device.

Keep in mind that the PHC process works only if the Virtual Chassis is initially formed with VCPs that do not need to be explicitly configured (dedicated VCPs or ports that are VCPs in the factory-default configuration). See *VCP Options by Switch Type* for details on which ports are dedicated and default-configured VCPs on different devices that support Virtual Chassis. See the hardware guide for the device to locate those ports on the device.

3. Connect the Virtual Chassis management interface (`me0`) or any network-facing port on any Virtual Chassis member to the network.


After the PHC starts up on the Virtual Chassis, it uses this connection to access a PHS over the network and retrieve the bootstrapping information for this Virtual Chassis.

For details about how the management interfaces work on a Virtual Chassis, see *Understanding Global Management of a Virtual Chassis*.

4. Power on the members of the Virtual Chassis.

[Figure 5 on page 248](#) shows an example of a Virtual Chassis topology that can support phone-home provisioning—a four-member EX4300 Virtual Chassis cabled in a ring topology using default-configured VCPs (in this case, two of the 40-Gigabit Ethernet QSFP+ ports on each device).

Figure 5: Sample Virtual Chassis That Can Support Phone-Home Provisioning

Usually you don't need to do anything else for the phone-home provisioning process to proceed and complete successfully. If you don't see successful completion status or the Virtual Chassis isn't up and operating as expected at the end of the process, read on to learn details about how the PHC works to help troubleshoot the issues.

SEE ALSO

Understanding Virtual Chassis Components

Virtual Chassis Overview for Switches

Phone-Home Process on a Virtual Chassis

IN THIS SECTION

- [Startup and Request Provisioning Information from PHS | 249](#)
- [Bootstrap Virtual Chassis Members | 251](#)
- [Apply Scripts and New Configuration on the Virtual Chassis | 252](#)
- [Provisioning Process Completion | 253](#)

Phone-home provisioning on a Virtual Chassis is an extension of the standalone device phone-home support described in ["Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client" on page 237](#). The PHC performs additional steps to manage bootstrapping the member devices that make up the Virtual Chassis.

The PHC process on a Virtual Chassis also requires the same software tools and utilities that standalone devices require for PHC to work. For example, the phone-home process needs DHCP client support to facilitate the network connection to the PHS in the same way as for a single device, and verifies a downloaded software image using the same checksum utilities. See ["Prerequisites" on page 238](#) for a list of these general PHC requirements.

Phone-home provisioning starts up automatically on a Virtual Chassis on the client side after you've performed the tasks in ["How To Enable Phone-Home Provisioning on a Virtual Chassis" on page 247](#) and if the Virtual Chassis meets the conditions described in *Requirements for Phone-Home Provisioning to Work for a Virtual Chassis*.

The provisioning process steps are grouped into the stages described in this section.

Startup and Request Provisioning Information from PHS

In the startup and request stage:

1. The Virtual Chassis boots up in factory-default or zeroized state as a nonprovisioned Virtual Chassis, and elects the initial primary and backup members. (See *Understanding How the Primary in a Virtual Chassis Is Elected*.)
2. The PHC starts up on the Virtual Chassis primary member, connects to the default redirect server (<https://redirect.juniper.net>) and sends a bootstrap request for the device. The redirect server redirects the PHC to an available PHS.
3. The PHC receives the response from PHS, starts to discover what Virtual Chassis members are connected, and prepares to provision the Virtual Chassis. The PHS response includes:
 - Virtual Chassis topology information—At a minimum, this part of the response indicates the device is expected to be part of a Virtual Chassis; otherwise, the PHC provisions only the primary member as a standalone device.

The response might additionally have full topology information, which includes the serial IDs of all the members the network administrator expects to be in the Virtual Chassis.

- Software image upgrade information—Includes a path to the intended software image and image verification details.
- Pre-configuration and post-configuration script information—Includes any staging scripts the network administrator needs the PHC to run before or after applying the new configuration.
- Configuration information—Includes the intended Virtual Chassis configuration and the method to apply that configuration.

The PHC must receive minimum required topology information to recognize it should provision a Virtual Chassis. Otherwise, the PHC defaults to provisioning only the primary member as a standalone device.

The PHC extensions for Virtual Chassis support two provisioning modes—the default mode and a more strict mode the PHS can specify in the response:

- By default, the PHC provisions any members it detects in the VC at the time it receives the PHS response. If the PHC encounters an error when bootstrapping a particular member, it moves on to bootstrap the next member or continues to the next provisioning step.
- If the PHS specifies the strict mode option in the response, the response must also include the full Virtual Chassis topology information. Provisioning succeeds only if the PHC finds and successfully bootstraps all of the same members listed in the PHS response. If the PHC doesn't detect all of the intended members or provisioning fails for any of them, the PHC restarts the process from the beginning to resend the provisioning request to another available PHS.

NOTE: The PHS can include the Virtual Chassis member serial IDs in the response in either mode. However, in the default mode, bootstrapping the Virtual Chassis can succeed even if the PHC doesn't detect all the members in the PHS response or if the PHS response doesn't include member details at all.

In this step, if the response includes full Virtual Chassis topology information and indicates to use strict provisioning mode, the PHC validates what it finds in the Virtual Chassis locally against the Virtual Chassis member information from the PHS response.

[Table 10 on page 250](#) summarizes the actions the PHC takes starting in this step based on the type of topology information it receives in the PHS response, the provisioning mode, and the Virtual Chassis members that the PHS discovers locally.

Table 10: PHC Actions Based on Topology Information in PHS Response

Virtual Chassis Topology Information from PHS	Default Mode Actions	Strict Mode Actions If PHS Requests This Option
No topology information provided	Try to provision as standalone device.	N/A (This mode can be specified only with full topology information)

Table 10: PHC Actions Based on Topology Information in PHS Response (Continued)

Virtual Chassis Topology Information from PHS	Default Mode Actions	Strict Mode Actions If PHS Requests This Option
Minimum required topology information for a Virtual Chassis	Discover members and proceed to provision Virtual Chassis with found members.	N/A (This mode can be specified only with full topology information)
Full topology information for a Virtual Chassis, including serial IDs for all intended Virtual Chassis members	Discover members. If member list doesn't match PHS response, proceed anyway to provision Virtual Chassis with found members.	Bootstrap intended Virtual Chassis members from PHS response. Detect members; if all expected members are present and up, provisioning succeeds. Otherwise retry to bootstrap and detect members that failed the process. After member detection timeout with failure to detect all expected members, report error and restart process contacting another PHS to re-request provisioning.

4. If the PHC proceeds to provision the devices in the Virtual Chassis, at this point the PHC commits some temporary changes to the Virtual Chassis configuration to enable smooth bootstrapping of all VC members.
For example, the PHC makes sure the Virtual Chassis primary and backup member roles don't change while the PHC is upgrading the software image on all the members.

Bootstrap Virtual Chassis Members

In this stage, the PHC bootstraps the Virtual Chassis, which includes installing the software image on and rebooting all of the members.

1. The PHC on the primary member compares the bootstrap information in the PHS response with what's on the Virtual Chassis to see if it needs to upgrade the software image. If the versions match, the PHC skips the remaining steps in this stage.
2. If the PHC needs to upgrade the software image, the PHC uses the bootstrap information in the PHS response (image filename and checksum information) to download and validate the image.
If the download operation fails, the PHC retries until it succeeds. (This behavior is the same for standalone device or Virtual Chassis phone-home provisioning.)

3. The PHC proceeds to install and reboot the Virtual Chassis members based on the member roles as follows in this order:

- a. Linecard members—Installs the image on the linecard role members sequentially (in member ID order), and then reboots them all at the same time.
- b. Backup member—Installs the image on the backup member and reboots it.
- c. Primary member—Installs the image on the primary member, synchronizes the current PHC Virtual Chassis bootstrap state to the backup member, and triggers the primary member to reboot.

As the upgraded members boot up, the PHC checks that they are up and running again. This action is called *member detection* in log messages and status notifications. If the PHC fails to detect a member within a default member detection timeout, the PHC notifies the PHS of the error. See ["Startup and Request Provisioning Information from PHS" on page 249](#) for the actions the PHC takes by default or if the PHS specified strict provisioning.

4. While the old primary member is rebooting, the original primary isn't available, so the Virtual Chassis switches primary role to the backup member. The Virtual Chassis also elects a new backup member at this time.

5. The PHC starts up on the new primary member (the original backup member) and resumes the Virtual Chassis bootstrap procedure from the PHC state inherited from the old primary.

When the old primary finishes booting and rejoins the Virtual Chassis, it is initially in linecard role but then assumes the backup role to the new primary member.

6. When the PHC detects this last member is up and running, the provisioning process continues to the next stage to apply pre-configuration or post-configuration scripts and the new configuration to the Virtual Chassis.

NOTE: Avoid having pre-configuration scripts, post-configuration scripts, or the new configuration make any changes that might cause the Virtual Chassis to assign new member roles or elect new primary and backup members during the provisioning process. Otherwise, provisioning might fail with unpredictable results.

Apply Scripts and New Configuration on the Virtual Chassis

The PHS response might include pre-configuration and post-configuration scripts the network administrator needs the PHC to run on the virtual Chassis before or after applying the new configuration. Phone-home provisioning supports Python or shell scripts and only XML format for the configuration.

The PHS response also provides the Junos OS configuration for PHC to commit on the member devices in the Virtual Chassis.

A Virtual Chassis operates as if it's a single device, so the PHC performs these steps on the Virtual Chassis as a whole:

1. Runs any specified pre-configuration scripts from PHS.
2. Applies and commits the new configuration from PHS.
3. Runs any specified post-configuration scripts from PHS.

Provisioning Process Completion

To complete the phone-home provisioning process, the PHC logs that the process completed successfully and sends a bootstrap completion notification to the PHS.

The PHC doesn't run again unless you return the device or Virtual Chassis back to the factory-default state and have all other required conditions to trigger phone-home provisioning.

See *Requirements for Phone-Home Provisioning to Work for a Virtual Chassis* for details.

Phone-Home Provisioning Status Notifications

The PHC logs status information locally in the system log (`/var/log/messages`) on the Virtual Chassis and sends status notifications to the PHS to report the progress of the provisioning process. These messages signal when the PHC completes the different provisioning stages and help you troubleshoot issues if the process doesn't complete successfully. See ["Phone-Home Process on a Virtual Chassis" on page 248](#) for the steps the PHC performs in each stage of Virtual Chassis provisioning.

Some PHC status messages are general and apply either for single device or Virtual Chassis provisioning.

Notification messages that are specific to a particular Virtual Chassis member include:

- The member ID
- The member's serial ID
- The member's current role in the Virtual Chassis—Master, Backup, or Linecard

Virtual Chassis member-specific notifications have the following format:

```
vc-member [memberID:serialID:role] message
```

For example:

```
vc-member [2:AA1234567890:Backup] Successfully installed downloaded image. Initiating member reboot.
```

Phone-home process notifications consist of a notification type and message. [Table 11 on page 254](#) lists notifications that are specific to the phone-home provisioning stages on a Virtual Chassis. Notification types with the `vc-member` keyword include Virtual Chassis member-specific information.

Table 11: PHC Notifications for Virtual Chassis Provisioning Steps

Notification Type	Notification Message
vc-member-image-installed	<ul style="list-style-type: none"> Successfully installed downloaded image. Initiating image installation on next member. Successfully installed downloaded image. Initiating member reboot.
vc-member-image-installation-failed	<ul style="list-style-type: none"> Image failed to install on the member. Giving up and trying a different phone-home-server.
vc-member-reboot-initiated	<ul style="list-style-type: none"> Reboot initiated for Line Card members. Waiting for the members to come back up.
vc-member-upgrade-success	<ul style="list-style-type: none"> No upgrade required. Successfully upgraded. Member detected and successfully upgraded.
vc-member-upgrade-failed	<ul style="list-style-type: none"> Upgrade failed !!! Member detected but upgrade failed !!!
vc-member-detection-failed	<ul style="list-style-type: none"> Did not come up post image upgrade <p>NOTE: This message means the PHC installed the new image and initiated a reboot of the Virtual Chassis member, but the PHC didn't detect that the member came up again within a prescribed member detection timeout.</p>

Table 11: PHC Notifications for Virtual Chassis Provisioning Steps (*Continued*)

Notification Type	Notification Message
vc-bootstrap-failed	<ul style="list-style-type: none"> VC member bootstrap failure detected with Strict provisioning set. <p>NOTE: This message means the PHC upgraded the expected linecard role members successfully, but after rebooting them, PHC didn't detect that all members came up again within a prescribed member detection timeout.</p> <ul style="list-style-type: none"> VC with detection failed members and Strict provisioning set. <p>NOTE: This message means the PHC failed to detect one or more members after upgrading and rebooting all of them, and upon checking again, finds that one or more of them still failed to come up.</p> <p>With strict provisioning mode, PHC must successfully bootstrap all intended members for the provisioning process to signal successful completion.</p>

Verify Virtual Chassis Status After Phone-Home Provisioning

IN THIS SECTION

- [Purpose | 255](#)
- [Action | 255](#)

Purpose

Check the running status of the Virtual Chassis after PHC provisioning.

Action

Enter the `show virtual-chassis` command using the Junos OS CLI.

For example:

```
{master:1}
user@device>
Virtual Chassis ID: xxxx.xxxx.xxxx
Virtual Chassis Mode: Enabled
                                Mstr      Mixed Route Neighbor List
Member ID  Status Serial No  Model      prio  Role    Mode  Mode  ID  Interface
0 (FPC 0)  Prsnt  ...      ex3400-24p  128   Backup  N    VC   2  vcp-255/1/0
                                         1  vcp-255/1/1
1 (FPC 1)  Prsnt  ...      ex3400-24p  128   Master*  N    VC   0  vcp-255/1/0
                                         2  vcp-255/1/1
2 (FPC 2)  Prsnt  ...      ex3400-48p  128   Linecard N    VC   0  vcp-255/1/0
                                         1  vcp-255/1/1
Member ID for next new member: 3 (FPC 3)
```

Troubleshoot Phone-Home Provisioning Issues

To troubleshoot PHC problems during the provisioning process:

- Use utilities on the PHS side specific to your network management system to check device, Virtual Chassis, and connection status, or display phone-home process notifications (see ["Phone-Home Provisioning Status Notifications" on page 253](#)).
- Make sure the Virtual Chassis management or network interface is connected to the network and can connect to a PHS.
- If the PHS specified the strict mode option, verify the Virtual Chassis member serial IDs on the phone-home server side match the member devices you're interconnecting on the client side at the remote site.
- Look for error and status messages in the syslog file on the Virtual Chassis.

For example, syslog status messages can show that the ZTP client is trying to provision the device instead of or in addition to the PHC. Upon startup with the factory-default configuration on either a standalone device or a Virtual Chassis primary member, both the PHC and the DHCP-based ZTP process (see ["Zero Touch Provisioning" on page 180](#)) start running automatically. ZTP proceeds if DHCP ZTP options are configured, which can cause unexpected provisioning behavior because ZTP isn't supported for a Virtual Chassis. To trigger only phone-home provisioning, your DHCP system administrator can make sure the ZTP-specific options are not set on the DHCP server for devices intended to be in a Virtual Chassis under PHS management.

- Check the configuration on the Virtual Chassis after provisioning using the `show configuration` CLI command.

RELATED DOCUMENTATION

[Obtaining Configurations and Software Image Without User Intervention Using Phone-Home Client | 237](#)

Understanding Virtual Chassis Components

[Zero Touch Provisioning | 180](#)

7

PART

Configuration Statements and Operational Commands

- Junos CLI Reference Overview | **259**

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Read this guide to learn about the syntax and options that make up the statements and commands. Also understand the contexts in which you'll use these CLI elements in your network configurations and operations.

- [Junos CLI Reference](#)

Click the links to access Junos OS and Junos OS Evolved configuration statement and command summary topics.

- [Configuration Statements](#)
- [Operational Commands](#)