
Junos® OS

REST API Guide

Published

2024-06-22

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS REST API Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | iv

1 Overview

Understanding the REST API | 2

2 Configuring and Using the REST API

Configuring the REST API | 6

Example: Configuring the REST API | 7

Requirements | 8

Overview | 8

Configuration | 8

Verification | 11

Example: Using the REST API Explorer | 13

Requirements | 13

Overview | 13

Configuration | 14

Submitting a GET Request to the REST API | 24

Submitting a POST Request to the REST API | 27

3 Configuration Statements and Operational Commands

Junos CLI Reference Overview | 32

iii

About This Guide

The Junos OS REST API is a Representational State Transfer (REST) interface that enables you to
securely connect to Junos OS devices, execute remote procedure calls, use a REST API Explorer
graphical user interface enabling you to conveniently experiment with any of the REST APIs, and use a
variety of formatting and display options including JavaScript Object Notation (JSON).

iv

1
CHAPTER

Overview

Understanding the REST API | 2

Understanding the REST API

The REST API is a Representational State Transfer (REST) interface that enables you to securely connect
to Juniper Networks Junos operating system (Junos OS) devices, execute remote procedure calls (rpc
commands), use a REST API Explorer GUI enabling you to conveniently experiment with any of the REST
APIs, and use a variety of formatting and display options, including JavaScript Object Notation (JSON).

The REST API can be configured on Junos OS devices using commands available under the [edit system
services rest] hierarchy level. Once configured, the REST API becomes available as the rest service, a
REST-based interface that enables you to submit rpc commands to the device from a remote location,
and supports GET and POST requests. With the REST API you can:

• Use GET requests to submit rpc commands.

• Use POST requests to submit information via rpc commands.

• Retrieve configuration information in XML, ASCII (plain text), or JSON.

• Retrieve operational data in XML, ASCII, or JSON.

At the [edit system services rest] hierarchy level, you can configure and secure the REST API service on a
Junos OS device; set up IP addresses, port numbers, server certificates, control parameters, and trace
options; and enable a REST API explorer tool that enables you to try the REST APIs using a convenient
GUI.

The following CLI display options are available:

• A display json option is added to the | (pipe) command. For example, the CLI command show interfaces
| display json displays the interfaces in JSON notation.

• A format="json" option is added to NETCONF server commands to return operational information in
JSON notation.

NOTE: Starting in Junos OS Release 17.3R1, OpenConfig supports the operational state emitted
by daemons directly in JSON format in addition to XML format. To configure JSON compact
format, specify the following CLI command: set system export-format state-data json compact. This
CLI command converts XML format to compact JSON format. Else, it emits the JSON in non-
compact format.

NOTE: The REST API incoming request payload size cannot exceed 1174KB.

2

Workaround: Chunk the incoming REST API requests into a smaller size.

The REST API supports HTTP Basic Authentication, and all requests require a base64-encoded
username and password included in the Authorization header. Both HTTP and HTTPS support are
available:

• You can use HTTP to exchange content using clear text if you do not need a secure connection.

• We recommend that you use HTTPS to exchange encrypted content using one of the available cipher
suites. You can configure the REST API to require server authentication without client authentication,
or you can configure mutual authentication.

Once the REST API is configured on the device, new REST endpoints are available for executing either
single rpc commands via GET or POST requests, or executing multiple rpc commands via a single POST
request. See "Submitting a GET Request to the REST API" on page 24 and "Submitting a POST Request
to the REST API" on page 27 for more information.

The REST API also provides a GUI called the REST API Explorer, which allows you to easily and quickly
learn how to use the REST API. It is disabled by default, and can be enabled by specifying set system
services rest enable-explorer. To learn more about the REST API Explorer, see "Example: Using the REST
API Explorer" on page 13.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

17.3R1 Starting in Junos OS Release 17.3R1, OpenConfig supports the operational state emitted by daemons
directly in JSON format in addition to XML format. To configure JSON compact format, specify the
following CLI command: set system export-format state-data json compact. This CLI command converts
XML format to compact JSON format. Else, it emits the JSON in non-compact format.

RELATED DOCUMENTATION

Example: Using the REST API Explorer | 13

Configuring the REST API | 6

Submitting a GET Request to the REST API | 24

Submitting a POST Request to the REST API | 27

| (pipe)

Pipe (|) Filter Functions in the Junos OS Command-Line Interface

3

https://apps.juniper.net/feature-explorer/

Specifying the Output Format for Operational Information Requests in a NETCONF Session

4

2
CHAPTER

Configuring and Using the REST API

Configuring the REST API | 6

Example: Configuring the REST API | 7

Example: Using the REST API Explorer | 13

Submitting a GET Request to the REST API | 24

Submitting a POST Request to the REST API | 27

Configuring the REST API

The REST API can be configured on Junos OS devices using commands available under the [edit system
services rest] hierarchy level. Once configured, the REST API becomes available as the rest service, a
REST-based interface that enables you to submit rpc commands to the device from a remote location,
and supports GET and POST requests.

To enable the REST API on your device, you need to configure:

• Control parameters— These allow you to optionally specify permitted source IP addresses and
connection limits common to both HTTP and HTTPS connections.

• REST API Explorer— The REST API provides a GUI called the REST API Explorer, which allows you to
easily and quickly learn how to use the REST API. It is disabled by default, and can be enabled by
specifying set system services rest enable-explorer. To learn more about the REST API Explorer, see
"Example: Using the REST API Explorer" on page 13.

• HTTP access— You can specify a list of addresses and TCP ports for incoming connections. HTTP
connections are not secure because they exchange credentials and data in clear text, so we
recommend using HTTPS.

• HTTPS access (recommended)— You can specify a list of addresses and TCP ports for incoming
connections, a list of preferred cipher suites, transport layer security (TLS) mutual authentication, and
server certificates. HTTPS connections are secure, encrypting both credentials and information.

• Trace options— You can enable tracing for lighttpd, User Interface Script Environment (juise), or both.
Trace information for lighttpd is stored at /var/chroot/rest-api/var/log/lighttpd, and trace
information for juise is stored at /var/chroot/rest-api/var/log/juise. Tracing is disabled by default.

To configure the optional control parameters for settings common to both HTTP and HTTPS
connections:

1. Specify set system services rest control allowed-sources [value-list] to set the permitted IP addresses
for both HTTP and HTTPS connections. Use spaces as delimiters between values.

2. Specify set system services rest control connection-limit limit to set the maximum number of allowed
simultaneous connections for both HTTP and HTTPS connections. You can assign a value from 1
through 1024 (the default is 64).

To configure HTTP access:

1. Specify set system services rest http addresses [addresses] to set the addresses on which the server
listens for incoming HTTP connections.

2. Specify set system services rest http port port-number to set the TCP port for incoming HTTP
connections. You can assign a value from 1024 through 65535 (the default is 3000).

6

To configure HTTPS access:

1. Specify set system services rest https addresses [addresses] to set the addresses on which the server
listens for incoming HTTPS connections.

2. Specify set system services rest https port port-number to set the TCP port for incoming HTTPS
connections. You can assign a value from 1024 through 65535 (the default is 3443).

3. Specify set system services rest https cipher-list[cipher-1 cipher-2 cipher-3 ...] to configure the set of
cipher suites the SSH server can use to perform encryption and decryption functions.

4. Specify set system services rest https server-certificate local-certificate-identifier to configure the
server certificate. See request security pki generate-certificate-request for information about
creating local certificates.

5. You can configure the REST API to require server authentication without client authentication, or
you can configure TLS mutual authentication on both the server and client by specifying set system
services rest https mutual-authentication certificate-authority certificate-authority-profile-name.

To configure trace options for lighttpd, juise, or both, specify set system services rest traceoptions flag
flag. Set flag to lighttpd, juise, or all. When you specify the trace options, the command overwrites any
previous trace option settings.

RELATED DOCUMENTATION

rest

Understanding the REST API | 2

Example: Using the REST API Explorer | 13

Example: Configuring the REST API

IN THIS SECTION

Requirements | 8

Overview | 8

Configuration | 8

Verification | 11

7

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/request-security-pki-generate-certificate-request.html

This example demonstrates how to configure the REST API on a Junos OS device.

Requirements

• A routing, switching, or security device running Junos OS Release 14.2 or later is required.

Overview

This example configures the REST API on a Juniper Networks M10i Multiservice Edge Router. The
example configures both HTTP and HTTPS access, with both lighttpd and juise tracing.

Configuration

IN THIS SECTION

CLI Quick Configuration | 8

Configuring the REST API | 9

Results | 11

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set system services rest control allowed-sources [192.0.2.0 198.51.100.0]
set system services rest control connection-limit 100
set system services rest http port 3000
set system services rest http addresses [203.0.113.0 203.0.113.1]
set system services rest https port 3443
set system services rest https addresses [203.0.113.2 203.0.113.3]
set system services rest https server-certificate testcert

8

set system services rest https cipher-list rsa-with-3des-ede-cbc-sha
set system services rest https mutual-authentication certificate-authority testca
set system services rest traceoptions flag all
set system services rest enable-explorer

Configuring the REST API

Step-by-Step Procedure

To configure the REST API:

1. Specify allowed IP addresses for incoming HTTP and HTTPS connections.

[edit]
user@R1# set system services rest control allowed-sources [192.0.2.0 198.51.100.0]

2. Specify the maximum number of allowed connections over both HTTP and HTTPS.

[edit]
user@R1# set system services rest control connection-limit 100

3. Set the TCP port for incoming HTTP connections.

[edit]
user@R1# set system services rest http port 3000

4. Set the addresses on which the server listens for incoming HTTP connections.

[edit]
user@R1# set system services rest http addresses [203.0.113.0 203.0.113.1]

5. Set the TCP port for incoming HTTPS connections.

[edit]
user@R1# set system services rest https port 3443

9

6. Set the addresses on which the server listens for incoming HTTPS connections.

[edit]
user@R1# set system services rest https addresses [203.0.113.2 203.0.113.3]

7. Set the server certificate.

[edit]
user@R1# set system services rest https server-certificate testcert

8. Configure the set of ciphers the server can use to perform encryption and decryption functions.

[edit]
user@R1# set system services rest https cipher-list rsa-with-3des-ede-cbc-sha

9. (Optional) Set up TLS mutual authentication on both the server and client with a certificate.

[edit]
user@R1# set system services rest https mutual-authentication certificate-authority testca

10. (Optional) Configure trace options for lighttpd, juise, or both.

[edit]
user@R1# set system services rest traceoptions flag all

11. (Optional) Enable the REST API Explorer.

[edit]
user@R1# set system services rest enable-explorer

12. Commit the configuration.

[edit]
user@R1# commit and-quit

10

Results

system {
 services {
 rest {
 control {
 allowed-sources [192.0.2.0 198.51.100.0];
 connection-limit 100;
 }
 enable-explorer;
 http {
 addresses [203.0.113.0 203.0.113.1];
 port 3000;
 }
 https {
 port 3443;
 addresses [203.0.113.2 203.0.113.3];
 server-certificate testcert;
 cipher-list rsa-with-3des-ede-cbc-sha;
 mutual-authentication {
 certificate-authority testca;
 }
 }
 traceoptions {
 flag all;
 }
 }
 }
}

Verification

IN THIS SECTION

Verifying REST API Configuration | 12

11

Verifying REST API Configuration

Purpose

Confirm that the REST API configuration is working properly on the device.

Action

Display the REST API configuration by issuing the show configuration system services rest operational mode
command.

user@R1> show configuration system services rest
http {
 port 3000;
 addresses [203.0.113.0 203.0.113.1];
}
https {
 port 3443;
 addresses [203.0.113.2 203.0.113.3];
 server-certificate testcert;
 cipher-list rsa-with-3des-ede-cbc-sha;
 mutual-authentication {
 certificate-authority testca;
 }
}
control {
 allowed-sources [192.0.2.0 198.51.100.0];
 connection-limit 100;
}
traceoptions {
 flag all;
}
enable-explorer;

Meaning

This example configured both HTTP and HTTPS access on a Juniper Networks M10i Multiservice Edge
Router. For HTTP access, the device listens on port 3000 and permits traffic from IP addresses
192.0.2.0, 198.51.100.0, 203.0.113.0, and 203.0.113.1. For a more secure connection, HTTPS access
was configured with mutual authentication, using port 3443 and allowed IP addresses of 192.0.2.0,
198.51.100.0, 203.0.113.2, and 203.0.113.3. A connection limit of 100 has been configured for both

12

HTTP and HTTPS, and both juise and lighttpd tracing has been enabled. By default, the REST API
Explorer is disabled (see "Example: Using the REST API Explorer" on page 13).

RELATED DOCUMENTATION

Understanding the REST API | 2

Configuring the REST API | 6

Example: Using the REST API Explorer | 13

Example: Using the REST API Explorer

IN THIS SECTION

Requirements | 13

Overview | 13

Configuration | 14

This example demonstrates how to optionally use the REST API Explorer on a Junos OS device on which
the REST API has been configured.

Requirements

• An M Series, MX Series, T Series, or PTX Series device running Junos OS Release 14.2 or later is
required.

Overview

The REST API Explorer allows you to conveniently test out single or multiple RPC calls. Its GUI provides
you with options to select the HTTP method (GET or POST), the required output format (XML, JSON, or
plain text), the RPC URL, the input data type when using POST requests (XML or plain text), and an exit-

13

on-error condition. When you submit the request, the REST API Explorer displays the request header,
response header, response body, and equivalent cURL request, all of which are useful to your
development efforts.

Configuration

IN THIS SECTION

Enabling the REST API Explorer | 14

Opening the REST API Explorer | 15

Executing a Single RPC Using an HTTP GET Request | 16

Executing a Single RPC Using an HTTP POST Request | 17

Executing Multiple RPCs | 20

Viewing Error Messages | 21

To use the REST API Explorer on any device on which the REST API has been configured, perform these
tasks:

Enabling the REST API Explorer

Step-by-Step Procedure

To enable the REST API Explorer:

1. Configure the REST API on the device.

See "Configuring the REST API" on page 6 and "Example: Configuring the REST API" on page 7 for
information and examples.

2. Check whether the REST API Explorer is enabled.

14

Use the show command to see if enable-explorer; appears in the REST API configuration. If it appears,
the REST API Explorer has been enabled. If it does not appear, you must enable the REST API
Explorer.

[edit]
user@R1# show system services rest
http;
traceoptions {
 flag all;
}
enable-explorer;

3. Enable the REST API Explorer if necessary.

Use the set command to ensure that enable-explorer; appears in the REST API configuration.

[edit]
user@R1# set system services rest enable-explorer

Opening the REST API Explorer

Step-by-Step Procedure

To open the REST API Explorer:

• Ensure that the REST API Explorer is enabled, open a browser, and go to the following URL:
scheme://device-name:port (for example, https://mydevice:3000).

15

Executing a Single RPC Using an HTTP GET Request

Step-by-Step Procedure

To execute a single RPC using an HTTP GET Request:

1. In the HTTP method drop-down list, select GET.

2. Enter the RPC URL endpoint.

For example, type /rpc/get-software-information.

3. Enter your username and password.

4. Click Submit.

In this example, the default output format, XML, is returned in the Response Body:

16

Executing a Single RPC Using an HTTP POST Request

Step-by-Step Procedure

To execute a single RPC using an HTTP POST Request:

1. In the HTTP method drop-down list, select POST.

17

2. In the Required output format drop-down list, select JSON.

3. Enter this RPC URL endpoint: /rpc/get-software-information.

4. Enter your username and password.

5. Enter the XML-formatted request in the Request body text area.

For example:

<brief/>

6. Click Submit.

In this example, the JSON output format is returned in the Response Body:

7. If you prefer a different output format, select one of the available choices in the Required output
format drop-down list.

18

For example, you could select Plain text. When you click Submit, you will see plain text in the
Response Body:

19

Similarly, if you select XML in the Required output format drop-down list, the response body will
contain XML-formatted information:

Executing Multiple RPCs

Step-by-Step Procedure

To execute multiple RPCs:

1. In the HTTP method drop-down list, select POST.

This is always required when executing multiple RPCs.

2. To set a conditional exit in the event of an error, select the Exit on error checkbox.

3. Select an output format in the Required output format drop-down list.

For example, you could select JSON.

4. This RPC URL endpoint will automatically populate: /rpc?exit-on-error=1.

20

5. Enter your username and password.

6. Enter the XML-formatted request in the Request body text area.

For example:

<get-software-information />
<get-interface-information />

7. Click Submit.

In this example, the JSON output format is returned in the Response Body:

Viewing Error Messages

Step-by-Step Procedure

When executing multiple RPCs, an error might occur. If you select the Exit on error checkbox, an error
message will appear in the output if an error occurs.

To view error messages:

1. In the HTTP method drop-down list, select POST.

This is always required when executing multiple RPCs.

2. To set a conditional exit in the event of an error, select the Exit on error checkbox.

3. Select an output format in the Required output format drop-down list.

21

For example, you could select JSON.

4. This RPC URL endpoint will automatically populate: /rpc?exit-on-error=1.

5. Enter your username and password.

6. Enter the XML-formatted request containing an error in the Request body text area.

For example:

<get-software-information />
<get-unknown-rpc />
<get-interface-information />

7. Click Submit.

In this example, the JSON output format is returned in the Response Body, and you can see an XML-
formatted error message at the end of the Response Body:

22

8. If you do not select the Exit on error checkbox, an error message will appear in the Response Body if
an error occurs.

Execution will continue after the error is processed, and the results will also be included in the
Response Body:

23

RELATED DOCUMENTATION

Understanding the REST API | 2

Configuring the REST API | 6

Submitting a GET Request to the REST API

For an rpc command, the general format of the endpoints is:

scheme://device-name:port/rpc/method[@attributes]/params

24

• scheme: http or https

• method: The name of any Junos OS rpc command. The method name is identical to the tag element. For
more information, see the Junos XML API Operational Developer Reference.

• params: Optional parameter values (name[=value]).

To authenticate your request, submit the base64-encoded username and password included in the
Authorization header:

curl -u "username:password" http://device-name:port/rpc/get-interface-information

To specify rpc data as a query string in the URI for GET requests, you can use a ? following the URI with
the & delimiter separating multiple arguments, or use the / delimiter, as shown in these equivalent cURL
calls:

For example:

curl -u "username:password" http://device-name:port/rpc/get-interface-information?interface-name=cbp0&snmp-
index=1
curl -u "username:password" http://device-name:port/rpc/get-interface-information/interface-name=cbp0/snmp-
index=1

HTTP Accept headers can be used to specify the return format using one of the following Content-Type
values:

• application/xml (the default)

• application/json

• text/plain

• text/html

For example, the following cURL call specifies an output format of JSON:

curl -u "username:password" http://device-name:port/rpc/get-interface-information?interface-
name=cbp0 –header "Accept: application/json"

You can also specify the output format using the optional format parameter.

25

For example, the <get-software-information> tag element retrieves software process revision levels. The
following HTTPS GET request executes this command and retrieves the results in JSON format:

https://device-name:3000/rpc/get-software-information@format=json

The following Python program uses the REST interface to execute the get-route-engine-information RPC,
extracts the data from the response, and plots a graph of the CPU load average:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import requests

temp_y = 1
def update_line(num, data, line):
 if num == 0:
 return line,
 global temp_y
 x_data.append(num)
 if num is not 0 and num%8 == 1:
 r = requests.get('scheme://device:port/rpc/get-route-engine-information@format=json',
auth=('username', 'password'))
 if r: temp_y = r.json()["route-engine-information"][0]["route-engine"][0]["load-average-
one"][0]["data"]
 y_data.append(temp_y)
 line.set_data(x_data, y_data)
 return line,
fig1 = plt.figure()
x_data = []
y_data = []
l, = plt.plot([], [])
plt.xlim(0, 80)
plt.ylim(0, 1.5)
plt.xlabel('Time in seconds')
plt.ylabel('CPU utilization (load average)')
plt.title('REST-API test')
line_ani = animation.FuncAnimation(fig1, update_line, 80, fargs=(0, l), interval=1000, blit=True)
plt.show()

26

RELATED DOCUMENTATION

Understanding the REST API | 2

Configuring the REST API | 6

Example: Using the REST API Explorer | 13

| (pipe)

Pipe (|) Filter Functions in the Junos OS Command-Line Interface

Specifying the Output Format for Operational Information Requests in a NETCONF Session

Submitting a POST Request to the REST API

Use an HTTP POST request to send single or multiple RPC requests to the REST API. You can use the
POST request to do device configuration.

For a single rpc command, the general format of the endpoints is:

scheme://device-name:port/rpc/method[@attributes]/params

• scheme: http or https

• method: The name of any Junos OS rpc command. The method name is identical to the tag element. For
more information, see the Junos XML Protocol Operations, Processing Instructions, and Response
Tags in the Junos XML Management Protocol Developer Guide and the Junos XML API Operational
Developer Reference.

• params: Optional parameter values (name[=value]).

27

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-xml-management-protocol/junos-xml-management-protocol.html

To authenticate your request, submit the base64-encoded username and password included in the
Authorization header:

curl -u "username:password" http://device-name:port/rpc/get-interface-information

To specify rpc data as a query string in the URI for POST requests, submit the query data in the POST
body. In such cases you can specify the Content-Type as text/plain or application/xml, as shown in these
equivalent cURL calls:

curl -u "username:password" http://device-name:port/rpc/get-interface-information --header
"Content-Type: text/plain" –d "interface-name=cbp0"
curl -u "username:password" http://device-name:port/rpc/get-interface-information --header
"Content-Type: application/xml" –d "<interface-name>cbp0</interface-name>"

For both single and multiple RPC commands, HTTP Accept headers can be used to specify the return
format using one of the following Content-Type values:

• application/xml (the default)

• application/json

• text/plain

• text/html

For example, the following cURL call specifies an output format of JSON:

curl -u "username:password" http://device-name:port/rpc -d <get-software-information /> –header
"Accept: application/json"

You can also specify the output format using the optional format attribute:

curl -u "username:password" http://device-name:port/rpc -d "<get-software-information
format=application/json'/>"

NOTE: The default Content-Type for POST requests containing arguments in the body is
application/xml. If you want to use any other content, such as a query string, you can specify a
Content-Type of text/plain. Specify the format attribute in configuration commands.

28

When executing multiple rpc commands in a single request, the general format of the endpoint is:

scheme://device-name:port/rpc

The RPCs must be provided as XML data in the POST body. The Content-Type for the response is
multipart/mixed, with boundary and subtype associated with the output from each RPC execution. The
format specified in the Accept header is used as the output format for each of the RPCs if they are
missing a format attribute. If an Accept header is not specified and no format attribute is specified in a
given RPC, the default output format is XML. For example, to send a single HTTP request to execute the
RPCs get-software-information and get-interface-information, submit a POST request to /rpc with "Auth: Basic
<base64hash>", "Content-Type: application/xml". The POST body would contain:

<get-software-information/><get-interface-information/>

Here is a cURL call using this POST body:

curl -u "username:password" http://device-name:port/rpc -d "<get-software-information/><get-
interface-information/>"

The output from the request, containing XML as the default, would appear as follows:

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=fkj49sn38dcn3
Transfer-Encoding: chunked
Date: Thu, 20 Mar 2014 11:01:27 GMT
Server: lighttpd/1.4.32
--fkj49sn38dcn3
Content-Type: application/xml

<software-information>
<host-name>...</host-name>
...
</software-information>
--fkj49sn38dcn3
Content-Type: application/xml

<interface-information>
<physical-interface>...</physical-interface>
</interface-information>
--fkj49sn38dcn3--

29

You can also specify the output format for each of the elements in the POST body. For example, the
following request emits JSON for the get-interface-information RPC and plain text for the get-software-
information RPC:

curl -u "username:password" http://device-name:port/rpc
-d "<get-interface-information/><get-software-information format='text/plain'/>"
—header "Accept: application/json"

When executing multiple RPCs, if an error occurs, the default behavior is to ignore the error and
continue execution. If you want to exit when the first error is encountered, specify the stop-on-error flag
in the URI. For example, the following request configures the device and terminates if an error is
encountered:

curl -u "username:password" http://device-name:port/rpc?stop-on-error=1
-d "<lock-configuration/>
 <load-configuration>
 <configuration><system><hostname>foo</hostname></system></configuration>
 </load-configuration>
 <commit/>
 <unlock-configuration/>"

RELATED DOCUMENTATION

Understanding the REST API | 2

| (pipe)

Pipe (|) Filter Functions in the Junos OS Command-Line Interface

Specifying the Output Format for Operational Information Requests in a NETCONF Session

Configuring the REST API | 6

Example: Using the REST API Explorer | 13

30

3
CHAPTER

Configuration Statements and
Operational Commands

Junos CLI Reference Overview | 32

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Learn about the
syntax and options that make up the statements and commands and understand the contexts in which
you’ll use these CLI elements in your network configurations and operations.

• Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

• Configuration Statements

• Operational Commands

32

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	Overview
	Understanding the REST API

	Configuring and Using the REST API
	Configuring the REST API
	Example: Configuring the REST API
	Requirements
	Overview
	Configuration
	Verification

	Example: Using the REST API Explorer
	Requirements
	Overview
	Configuration

	Submitting a GET Request to the REST API
	Submitting a POST Request to the REST API

	Configuration Statements and Operational Commands
	Junos CLI Reference Overview

