JUDLR@! | Engineering

Simplicity

Junos® OS

OpenfFlow User Guide

Published
2024-12-18




Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS OpenFlow User Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.


https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vii

Overview

OpenFlow Support on Juniper Networks Devices | 3

Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding OpenFlow Operation and Forwarding Actions on Devices Running
JunosOS | 6

Understanding the Virtual Switch Connection to the OpenFlow Controller on Devices
Running Junos OS | 13

Understanding the OpenFlow Version Negotiation Between the Controller and Devices
Running Junos OS | 15

Understanding OpenFlow Flows and Filters on Devices Running Junos OS | 16
Understanding How the OpenFlow Destination MAC Address Rewrite Action Works | 19
Understanding OpenFlow Flow Instructions on Devices Running Junos OS | 20
Understanding How the OpenFlow Group Action Works | 20

Understanding OpenFlow Flow Entry Timers on Devices Running Junos OS | 22
Understanding OpenFlow Barrier Messages on Devices Running Junos OS | 24
Understanding OpenFlow Multipart Messages on Devices Running Junos OS | 25
Supported Open Standards | 26

OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28
OpenFlow v1.0 Compliance Matrix for QFX5100 and EX4600 Switches | 39
OpenFlow v1.0 Compliance Matrix for EX4550 Switches | 49

OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

OpenFlow Basic Configuration

Configuring Support for OpenFlow on MX Series Routers | 79




Configuring the OpenFlow Interfaces | 79
Configuring the OpenFlow Protocol | 80
Configuring the OpenFlow Routing Instance | 81

Example: Enabling OpenFlow on MX Series Routers | 82

Requirements | 83
Overview | 83

Configuration | 84

Verification | 87

Configuring Support for OpenFlow on EX9200 Switches | 90

Configuring the OpenFlow Interfaces | 91
Configuring the OpenFlow Protocol | 91
Configuring the OpenFlow Routing Instance | 92

Example: Enabling OpenFlow on EX9200 Switches | 93

Requirements | 94
Overview and Topology | 94

Configuration | 95

Verification | 99

Configuring Support for OpenFlow on QFX5100 and EX4600 Switches | 101

Configuring the OpenFlow Interfaces | 102
Configuring the OpenFlow Protocol | 102

Example: Enabling OpenFlow on QFX5100 and EX4600 Switches | 104

Requirements | 104
Overview | 105

Configuration | 105

Verification | 109

Configuring Support for OpenFlow on EX4550 Switches | 111

Configuring the OpenFlow Interfaces | 112



Configuring the OpenFlow Protocol | 112

Example: Enabling OpenFlow on EX4550 Switches | 113

Requirements | 114
Overview | 114

Configuration | 115

Verification | 118
Configuring OpenFlow Hybrid Interfaces

Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122

Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 123

Configuring the Hybrid Physical Interface | 124
Configuring the Hybrid Interface Logical Units | 124
Configuring the Non-Hybrid Interfaces | 125

Configuring OpenFlow | 125

Configuring the Virtual Switch Routing Instances | 126

Example: Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 127

Requirements | 127
Overview | 128
Configuration | 129

Verification | 135

Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 138

Configuring the Hybrid Physical Interface | 138
Configuring the Hybrid Interface Logical Units | 139
Configuring the Non-Hybrid Interfaces | 139

Configuring OpenFlow | 140

Configuring the Virtual Switch Routing Instances | 141

Example: Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 142

Requirements | 142



Overview and Topology | 143
Configuration | 145
Verification | 151

Configuring OpenFlow Traffic Steering Across MPLS Networks

Understanding OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP
Tunnel Cross-Connects | 154

Example: OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP Tunnel
Cross-Connects | 155

Requirements | 156
Overview | 156
Configuration | 158
Verification | 175

Troubleshooting | 181

Configuration Statements and Operational Commands

OpenFlow Operational Mode Commands | 183

Junos CLI Reference Overview | 184

Vi



About This Guide

vii



CHAPTER

Overview

OpenFlow Support on Juniper Networks Devices | 3
Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding OpenFlow Operation and Forwarding Actions on Devices Running
Junos OS | 6

Understanding the Virtual Switch Connection to the OpenFlow Controller on
Devices Running Junos OS | 13

Understanding the OpenFlow Version Negotiation Between the Controller and
Devices Running Junos OS | 15

Understanding OpenFlow Flows and Filters on Devices Running Junos OS | 16

Understanding How the OpenFlow Destination MAC Address Rewrite Action
Works | 19

Understanding OpenFlow Flow Instructions on Devices Running Junos OS | 20

Understanding How the OpenFlow Group Action Works | 20

Understanding OpenFlow Flow Entry Timers on Devices Running Junos OS | 22
Understanding OpenFlow Barrier Messages on Devices Running Junos OS | 24

Understanding OpenFlow Multipart Messages on Devices Running Junos OS |
25

Supported Open Standards | 26

OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28
OpenFlow v1.0 Compliance Matrix for QFX5100 and EX4600 Switches | 39
OpenFlow v1.0 Compliance Matrix for EX4550 Switches | 49

OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62






OpenFlow Support on Juniper Networks Devices

Starting with Junos OS Release 14.2R1, OpenFlow v1.3.1 support is introduced. The following Juniper

Networks devices support OpenFlow v1.0, and OpenFlow v1.3.1:

EX4600 Switches

EX9200 Line of Ethernet Switches

QFX5100 Switches

MX80, MX240, MX480, MX960, MX2010, and MX2020 Universal Routing Platforms

For these Juniper Networks devices, the OpenFlow software is included in the jsdn package, which is in

turn included in the Junos OS software (jinstall) package.

Table 1 on page 3 lists support for various OpenFlow features on Juniper Networks devices that

support OpenFlow.

Table 1: OpenFlow Features Supported on Juniper Networks Devices

Juniper Networks Device Basic OpenFlow
Functionality

EX9200 Line of Ethernet Yes
Switches
MX80, MX240, MX480, Yes

MX960, MX2010, MX2020
Universal Routing Platforms

QFX5100 Ethernet and Yes
EX4600 Switches

Change History Table

Hybrid
Interfaces

Yes

Yes

No

Multi-VLAN
Support

Yes

Yes

Yes

OpenFlow over
MPLS

No

Yes

No

Feature support is determined by the platform and release you are using. Use Feature Explorer to

determine if a feature is supported on your platform.

Release Description

14.2R1 Starting with Junos OS Release 14.2R1, OpenFlow v1.3.1 support is introduced.


https://apps.juniper.net/feature-explorer/

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6

OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28

OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

Understanding Support for OpenFlow on Devices
Running Junos OS

IN THIS SECTION

OpenFlow Overview | 4
OpenFlow Virtual Switches | 5

OpenFlow Interfaces | 5

OpenFlow Overview

OpenFlow is an open standard that enables you to control traffic and run experimental protocols in an
existing network by using a remote controller. The OpenFlow components consist of a controller, an
OpenFlow or OpenFlow-enabled switch, and the OpenFlow protocol. The OpenFlow protocol is a Layer
2 protocol that permits an OpenFlow controller access to the data plane of an OpenFlow-enabled switch
over an SSL or TCP/IP connection.

Using OpenFlow, you can control traffic paths in a network by creating, deleting, and modifying flows in
each device along a path. Flow entries specify match conditions against which packets are compared,
and a set of actions (OpenFlow v1.0) or instructions (OpenFlow v1.3.1) that are applied to matching
packets.

You can configure certain devices running Juniper Networks Junos operating system (Junos OS) as
OpenFlow-enabled switches. The Junos OS process, openflowd (ofd), handles OpenFlow functionality
on these devices. When implementing OpenFlow in an existing network, you must isolate experimental
flows from production flows so that normal network traffic is not impacted. On devices running Junos
OS, you isolate OpenFlow traffic by configuring one or more virtual switches that act as logically



separate flood domains. The virtual switch and controller communicate by exchanging OpenFlow
protocol messages, which the controller uses to add, delete, and modify flows on the switch.

OpenFlow Virtual Switches

To isolate and control OpenFlow traffic on devices running Junos OS, you configure virtual switches.
Each virtual switch configuration contains the controller connection information, the set of logical
interfaces participating in OpenFlow, and the default action executed when a packet does not match
any existing flow entry. You configure the OpenFlow protocol and OpenFlow virtual switches at the
[edit protocols openflow] hierarchy level.

Depending on the platform, a default VLAN or bridge domain is assigned to each virtual switch. This
VLAN or bridge domain acts as a logically separate flood domain, which isolates OpenFlow traffic from
normal traffic. On certain platforms, you must also configure a separate virtual switch routing instance at
the [edit routing-instances] hierarchy level.

You can configure a single OpenFlow virtual switch on devices running Junos OS that support
OpenFlow, and you can configure one controller connection per virtual switch. By default, if you
configure a virtual switch with a single controller, the controller is in active mode. If a controller is in
active mode, the switch automatically initiates a connection to the controller.

OpenFlow Interfaces

When you configure an OpenFlow virtual switch on a device running Junos OS, you must specify the

logical interfaces that are participating in OpenFlow for that virtual switch instance. OpenFlow traffic

can only either enter or exit OpenFlow-enabled interfaces. MAC address learning is disabled on these
interfaces.

Interfaces participating in OpenFlow must be configured as Layer 2 interfaces. To configure an interface
as OpenFlow-enabled, you add the logical interface to the OpenFlow virtual switch configuration at the
[edit protocols openflow switch switch-name interfaces] hierarchy level. An OpenFlow interface can be
configured only under a single virtual switch. On platforms that require a separate virtual switch routing
instance for OpenFlow traffic, you must also configure the OpenFlow interfaces under the OpenFlow
virtual switch routing instance.

On certain platforms that support OpenFlow, you can configure only a single logical unit by using logical
unit number O on an OpenFlow interface. However, on certain platforms that support OpenFlow, a
single physical interface can be configured as a hybrid interface that supports both OpenFlow and non-
OpenFlow logical interfaces—for example, you can configure interface ge-1/0/1 to have two logical



interfaces ge-1/0/1.0 and ge-1/0/1.1, where ge-1/0/1.0 does not participate in OpenFlow, and
ge-1/0/1.1 is an OpenFlow-enabled interface.

RELATED DOCUMENTATION

OpenFlow Support on Juniper Networks Devices | 3

Understanding the Virtual Switch Connection to the OpenFlow Controller on Devices Running Junos
0S| 13

Understanding OpenFlow Flows and Filters on Devices Running Junos OS | 16
Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6
OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28

OpenFlow v1.0 Compliance Matrix for EX4550 Switches | 49

OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

Understanding OpenFlow Operation and
Forwarding Actions on Devices Running Junos OS

IN THIS SECTION

®  OpenFlow Operation and Support | 7

®  OpenFlow Forwarding Actions | 11

This topic explains how Juniper Networks devices isolate and control OpenFlow traffic. It also
summarizes the OpenFlow features and supported forwarding actions, which are actions that OpenFlow
can take when a packet matches the terms of a flow entry. For detailed information about support for
specific OpenFlow v1.0 messages and fields, match conditions, wildcards, flow actions, statistics, and
features, see "OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS" on page 28. For a
detailed list of supported OpenFlow v1.3.1 messages and fields, port structure flags and numbering,
match conditions, flow actions, multipart messages, flow instructions, and group types, see "OpenFlow
v1.3.1 Compliance Matrix for Devices Running Junos OS" on page 62.



OpenFlow Operation and Support

To isolate and control OpenFlow traffic on devices running Junos OS, you configure virtual switches. You
can configure one OpenFlow virtual switch and one active OpenFlow controller on each device running
Junos OS that supports OpenFlow. You configure the OpenFlow protocol, virtual switch, and controller
connection information at the [edit protocols openflow] hierarchy level.

OpenFlow traffic can either enter or exit only OpenFlow-enabled ports. If a flow modification message
is sent to an ingress port that is not enabled for OpenFlow, the device sends an ofp_error_msg with an
OFPET_FLOW_MOD_FAILED error type and OFPFMFC_UNKNOWN code to the controller. If a flow
modification action is requested for a port that is not enabled for OpenFlow, the device sends an
ofp_error_msg with an OFPET_BAD_ACTION error type and OFPBAC_BAD_OUT_PORT code to the
controller.

Table 2 on page 7 summarizes the general feature support on devices running Junos OS that support
OpenFlow v1.0. For information about support on specific platforms, see "OpenFlow Support on Juniper
Networks Devices" on page 3.

Table 2: OpenFlow v1.0 Support on Devices Running Junos OS

Feature Support

OpenFlow v1.0 Supported.

OpenFlow virtual switch One OpenFlow virtual switch.

Controller One active OpenFlow controller per virtual switch. Tested controllers include

Floodlight and OESS.

Controller connection TCP/IP connection. Only passive connections are accepted. The controller cannot
actively connect to the OpenFlow switch.

SSL connections are not supported.

Emergency mode Not supported as defined in OpenFlow Switch Specification v1.0. If the controller
connection is lost and cannot be reestablished, the switch maintains all flow states
in the control and data planes.



Table 2: OpenFlow v1.0 Support on Devices Running Junos OS (Continued)

Feature

Flow classification and
mapping as a Layer 2 or
Layer 3 route

Flow priority

Flow table

Forwarding actions

Hybrid interfaces

Interfaces

Multi-VLAN actions

Port modification

Queues, queue messages,
or enqueue actions

Support

Not supported.

Supported as per OpenFlow Switch Specification v1.3 in which there is no
prioritization of exact match entries over wildcard entries.

Single flow table.

e Forward to an OpenFlow-enabled physical port
o ALL CONTROLLER, NORMAL, and FLOOD for normal flow actions
e ALL and FLOOD for Send Packet flow actions
NOTE: The QFX5100 and EX4600 switches do not support NORMAL for

normal flow actions.

Supported on some devices. OpenFlow-enabled devices that support hybrid
interfaces permit a physical interface to concurrently support logical interfaces for
normal traffic and logical interfaces for OpenFlow traffic.

You can configure Ethernet interfaces only as OpenFlow interfaces.

Supported on some devices. OpenFlow-enabled devices that support multi-VLAN
actions have the ability to associate a different VLAN and different VLAN action
with each egress port.

Not supported. OpenFlow-enabled devices ignore all OpenFlow controller
OFPT_PORT_MOD requests.

Not supported.



Table 3 on page 9 summarizes the general feature support on devices running Junos OS that support
OpenFlow v1.3.1. For information about support on specific platforms, see "OpenFlow Support on

Juniper Networks Devices" on page 3.

Table 3: OpenFlow v1.3.1 Support on Devices Running Junos OS

Feature

OpenFlow v1.3.1

OpenFlow virtual switch

Controller

Controller connection

Flow classification and mapping as a Layer 2 or Layer 3
route

Flow priority

Flow instructions

Flow table

Support

Supported.

One OpenFlow virtual switch.

One active OpenFlow controller per virtual switch.
Tested controllers include NEC and Ixia.

TCP/IP connection. Only passive connections are
accepted. The controller cannot actively connect to the
OpenFlow switch.

SSL connections are not supported.

Not supported.

Supported as per OpenFlow Switch Specification v1.3
in which there is no prioritization of exact match
entries over wildcard entries.

For each flow entry, one flow instruction is supported.
A flow instruction can be one of the following:

e OFPIT_APPLY_ACTIONS

e OFPIT_WRITE_ACTIONS

Single flow table.



Table 3: OpenFlow v1.3.1 Support on Devices Running Junos OS (Continued)

Feature

Forwarding actions

Group action

Interfaces

IPv6-related match conditions

Multi-VLAN actions

Support

e Forward to an OpenFlow-enabled physical port.

e ALL, CONTROLLER, NORMAL, and FLOOD for
normal flow actions

e ALL and FLOOD for Send Packet flow actions

NOTE: The QFX5100 and EX4600 switches do not
support NORMAL for normal flow actions.

Supported. A group can include 1 through 32 buckets,
and a bucket can have a set of actions (set, pop, or
output).

Group types OFPGT_ALL and OFPGT_INDIRECT are
supported.

You can configure Ethernet interfaces only as
OpenFlow interfaces.

Supported on some devices. Starting with Junos OS
Release 14.2R3, IPvé source and destination addresses
and subnet masks can be used as match conditions.

NOTE: The Junos OS implementation of OpenFlow
v1.3.1 does not support arbitrary bit masks for IPvé
addresses. The Junos OS implementation supports
only continuous masks for IPvé source and
destination addresses.

Supported on some devices. OpenFlow-enabled
devices that support multi-VLAN actions have the
ability to associate a different VLAN and different
VLAN action with each egress port.



Table 3: OpenFlow v1.3.1 Support on Devices Running Junos OS (Continued)

Feature Support
Multipart messages Supported for requesting and returning the following
information:

e Switch, group, or port descriptions

e Single-flow, aggregate-flow, flow table, port, or
group statistics

e Group or table features

OpenFlow version negotiation Supported for OpenFlow version negotiation between
an OpenFlow controller and a device running Junos
OsS.

Port modification Not supported. OpenFlow-enabled devices ignore all

OpenFlow controller OFPT_PORT_MOD requests.

Queues, queue messages, or enqueue actions Not supported.

OpenFlow Forwarding Actions

@ NOTE: The information in this section applies to both OpenFlow v1.0 and OpenFlow
v1.3.1 except where noted.

OpenFlow-enabled devices running Junos OS support several flow actions for forwarding OpenFlow
packets. For normal flow actions, the following forwarding actions are supported:

e physical port—Forward unicast or multicast packets out the specified OpenFlow-enabled interfaces.

e AlL—Flood the packet out all OpenFlow interfaces configured for that virtual switch instance except
the ingress interface.

e CONTROLLER—Send the packet to the OpenFlow controller for processing.



e FLOOD-—Flood the packet along the minimum spanning tree, which includes all OpenFlow interfaces
configured for that virtual switch instance except the ingress interface and any interfaces that are
disabled by the Spanning Tree Protocol (STP). Because devices running Junos OS do not support
802.1D STP capabilities for OpenFlow, the FLOOD forwarding action behaves like the ALL
forwarding action.

o NORMAL—Process the packet, using traditional Layer 2 or Layer 3 processing.

@ NOTE: The QFX5100 and EX4600 switches do not support NORMAL for normal flow
actions.

The OpenFlow controller can also use a Send Packet message (OFPT_PACKET_OUT) to direct the
OpenFlow virtual switch to send a packet out of a specified port. The Send Packet message includes the
packet to be forwarded and the forwarding action indicating the interface out of which the packet must
be forwarded. Supported forwarding actions for the Send Packet message include ALL and FLOOD.

Each OpenFlow virtual switch is a logically separate flood domain. Therefore, the OpenFlow ALL and
FLOOD actions flood packets only out OpenFlow interfaces configured under that specific virtual switch
excluding the ingress OpenFlow interface.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

14.2R3 Starting with Junos OS Release 14.2R3, IPvé6 source and destination addresses and subnet masks can be
used as match conditions.

RELATED DOCUMENTATION

Understanding Support for OpenFlow on Devices Running Junos OS | 4
OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28
OpenFlow v1.0 Compliance Matrix for EX4550 Switches | 49

OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62
Understanding How the OpenFlow Group Action Works | 20

Understanding OpenFlow Flow Instructions on Devices Running Junos OS | 20
Understanding OpenFlow Multipart Messages on Devices Running Junos OS | 25

Understanding the OpenFlow Version Negotiation Between the Controller and Devices Running
Junos OS | 15

12


https://apps.juniper.net/feature-explorer/

Understanding the Virtual Switch Connection to the OpenFlow Controller on Devices Running Junos
0S| 13

Understanding OpenFlow Flow Entry Timers on Devices Running Junos OS | 22

Understanding the Virtual Switch Connection to the
OpenFlow Controller on Devices Running Junos OS

On devices running Juniper Networks Junos operating system (Junos OS), each OpenFlow virtual switch
establishes an independent connection with the controller and is represented by a unique runtime
datapath ID consisting of the management port MAC address and an internally assigned virtual switch
ID. The controller and virtual switch connect to each other using a TCP/IP connection on the
management plane. Thus, OpenFlow-enabled devices that are managed by a controller must be
connected to the management network (for example, connected using the me0, fxp0, em0, or em1
management port) and must be reachable from the controller IP address.

Upon establishing a connection with the controller, the switch and the controller exchange hello
messages that specify the latest OpenFlow protocol version supported by the sender. If the first packet
received by the switch is not an OFPT_HELLO message, the switch terminates the connection and
attempts to establish a new connection with the controller. Additionally, if the controller and the switch
negotiate an OpenFlow protocol version that one of the parties does not support, the connection is
terminated with an error message indicating an OFPET_HELLO_FAILED error type and an
OFPHFC_INCOMPATIBLE code.

The session is established when the switch and controller successfully exchange Hello messages and
negotiate the OpenFlow protocol version. After establishing the session, the controller sends the switch
a feature request message requesting the capabilities supported by the switch. The switch responds
with a feature reply message, which includes the local MAC address in the virtual switch datapath ID
field. If the local MAC address is unavailable, the switch terminates the connection.

After establishing the session, the controller and virtual switch exchange echo request and reply
messages as a keepalive mechanism. The keepalive timer is reset if the virtual switch or controller
receives either an echo reply or a packet. Echo requests are sent every 10 seconds during idle windows
in the absence of other messages. If the switch receives no echo reply or other message from the
controller for 120 seconds, the connection is considered lost, and the switch attempts to reestablish the
connection for 10 seconds. If the connection cannot be established, the switch enters emergency mode
as defined in the OpenFlow v1.3 specification. In emergency mode, the switch deletes normal flow
entries, and after 30 seconds, purges flow entries that are installed in hardware.

If at any point after the session is established the recipient receives an OpenFlow message that specifies
the wrong OpenFlow version, the recipient responds with an error message indicating an



OFPET_BAD_REQUEST type and OFPBRC_BAD_VERSION code. If the switch cannot process the
version and type of an OpenFlow packet in the TCP buffer, or if the switch fails sending OpenFlow
messages to the controller, the switch terminates the connection.

Modifying, deleting, or deactivating the virtual switch configuration also impacts the connection to the

controller. If you modify an existing virtual switch configuration, the virtual switch terminates the

existing connection to the controller and establishes a new session with the updated configuration

information. If you delete or deactivate an existing virtual switch configuration, the virtual switch
automatically disconnects from the controller.

To summarize, the switch disconnects from the controller under the following circumstances:

The first packet the switch receives from the controller is not a hello message.

The switch receives a hello message with an unsupported OpenFlow version.

The local MAC address is not available for inclusion in the feature reply message.

The switch receives no echo reply or other message from the controller for 120 seconds.
The existing virtual switch configuration is deleted or deactivated.

The existing virtual switch configuration is modified. In this case, after disconnecting from the
controller, the switch attempts to establish a new connection and session.

The switch cannot process the version and type of an OpenFlow packet in the TCP buffer.

The switch fails to send OpenFlow messages to the controller, which is treated as a dead TCP socket
connection.

Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding the OpenFlow Version Negotiation Between the Controller and Devices Running
Junos OS | 15



Understanding the OpenFlow Version Negotiation

Between the Controller and Devices Running Junos

OS

Upon establishing an initial connection, an OpenFlow controller and a Juniper Networks Junos OS
device negotiate the OpenFlow version to be used. In general, the OpenFlow controller must support at
least one of the versions run on the Junos OS device. Otherwise, a connection is not established.

@ NOTE: The Junos OS implementation of OpenFlow 1.3.1 does not support the
OFPHET_VERSIONBITMAP Hello message element.

Table 4 on page 15 outlines the OpenFlow versions run by the Junos OS device and controller, the

negotiated version, and the numerical value associated with each version.

Table 4: OpenFlow Versions Negotiated Between the Controller and a Junos OS Device and the
Numerical Value Associated with Each Version

OpenFlow Version Run by
Junos OS Device

1.0

1.31

1.0and 1.3.1

1.0and 1.3.1

1.0and 1.3.1

OpenFlow Version Supported by
Controller

1.0

131

1.0and 1.3.1

1.0

1.31

Negotiated Version

1.0

131

131

1.0

1.31

Numerical Value
Associated with
Negotiated OpenFlow
Version



Table 4: OpenFlow Versions Negotiated Between the Controller and a Junos OS Device and the
Numerical Value Associated with Each Version (Continued)

OpenFlow Version Run by OpenFlow Version Supported by = Negotiated Version Numerical Value
Junos OS Device Controller Associated with

Negotiated OpenFlow
Version

1.0 and/or 1.3.1 e Neither 1.0 nor 1.3.1 None; no connection = 0

e Connection with Junos OS
device is down

To determine the negotiated version running on a Junos OS device, you enter the show openflow controller
command. The output of this command includes a Negotiated version field and a numerical value that
represents the negotiated version number. Use Table 4 on page 15 to correlate the numerical values
shown in this field with the negotiated versions.

Understanding the Virtual Switch Connection to the OpenFlow Controller on Devices Running Junos
0S| 13

Understanding OpenFlow Flows and Filters on
Devices Running Junos OS

OpenFlow flows are defined by various elements. Table 5 on page 16 outlines the support for flow
elements in OpenFlow v1.0 and OpenFlow v1.3.1. The elements supported by the OpenFlow versions
uniquely identify a flow.

Table 5: OpenFlow Flow Elements

Flow Element Supported In OpenFlow v1.0? Supported In OpenFlow v1.3.1?

Match conditions Yes Yes



Table 5: OpenFlow Flow Elements (Continued))

Flow Element Supported In OpenFlow v1.0? Supported In OpenFlow v1.3.1?
Set of actions Yes No
Flow instructions No Yes
Flow priority Yes Yes
Flow timeout information Yes Yes
Flow cookie and cookie mask No Yes

Flow entries specify wildcard match conditions for fields that do not require an exact match. If a flow
entry contains wildcards for all match conditions, then all packets match that flow entry.

To implement OpenFlow flow-based forwarding, devices running Junos OS use filters. For each logical
interface configured to participate in OpenFlow, a single filter is created and applied to the logical
interface in the input direction. The filter name is the concatenation of the interface name, including the
logical unit number, and an internally assigned virtual switch ID, for example ge-1/1/0.0_0.

@ NOTE: If you manually configure a filter name or a filter term name that conflicts with an
autogenerated OpenFlow filter name or filter term name, Junos OS does not generate an
error during a commit check. If there is a conflict, the commit succeeds, but one of the
filters or filter terms is rejected based on the order in which they were received.

A filter consists of one or more terms with match conditions, and actions (for OpenFlow v1.0) or
instructions (for OpenFlow v1.3.1). OpenFlow flows are mapped to filter terms, and OpenFlow
controller requests to add, delete, and modify flows result in the addition, deletion, or modification of
terms in the filter. When the OpenFlow controller sends a flow modification request, the flow entry
match condition for the ingress port determines which logical interface filter is updated. The OpenFlow
flow priority determines the order of the terms in the filter, where higher priority terms are installed
above lower priority terms. Flow match conditions are mapped to the filter term match conditions, and
flow actions or instructions are mapped to the filter term then statement. Depending on the flow action
or instruction, the then statement might include actions for forwarding the packet to the next hop or
OpenFlow controller, or discarding the packet.



@ NOTE: If the OpenFlow controller sends a request to modify a flow, but no flow entries
match the conditions, OpenFlow v1.0 adds an entry for the flow to the flow table.
However, in the same situation, OpenFlow v1.3.1 does not add this flow to the flow
table, nor is an error logged.

Each OpenFlow flow entry corresponds to a filter term. However, each flow entry might map to a term
in one or more filters depending on the match condition for the ingress port. If the ingress port is a
wildcard match, the flow entry appears as a term in all of the interface filters for that OpenFlow virtual
switch. For example, suppose that the OpenFlow controller sends a request to add a new flow entry
with a wildcard match for the ingress port field. In this case, the flow is added as a new filter term for all
OpenFlow logical interfaces configured under that virtual switch.

Devices running Junos OS support both strict and non-strict flow mod commands for modifying and
deleting flows. OpenFlow controller strict-modify and strict-delete flow mod requests modify or delete
only flows that exactly match the description for all header fields including wildcards and priorities. Non-
strict modify and delete flow mod requests modify or delete flows that exactly match or are more
specific than the request.

In addition to the functionality already described, OpenFlow v1.3.1 supports a flow cookie, which is an
identifier that the OpenFlow controller can specify when a flow is installed in the flow table. This cookie
enables OpenFlow to filter flows selected for flow modification and delete operations.

You can configure the default action for packets that do not match on any flow entry as either drop,
which discards the packet, or packet-in, which accepts the packet and forwards it to the controller. The
default action is specific to the OpenFlow virtual switch and is the same across all filters associated with
that virtual switch. If you do not explicitly configure the default action, the default is packet-in.

In the event that a logical interface becomes unavailable, the filter associated with that logical interface
is removed from the Packet Forwarding Engine. Although the filter is removed, the Routing Engine
retains flows that match the logical interface as the ingress port until such time as the flows are purged
in response to OpenFlow timers. For information about OpenFlow timers, see "Understanding
OpenFlow Flow Entry Timers on Devices Running Junos OS" on page 22. If the logical interface
becomes available before the flows are purged, the filter and any flows retained by the Routing Engine
at that point are reinstalled in hardware.

Similarly, when a logical interface becomes unavailable, flows that have that logical interface as the only
active egress interface in their action set or instruction are considered invalid. The invalid flows are
removed from the Packet Forwarding Engine but are indefinitely retained by the Routing Engine until the
flows are purged in response to various OpenFlow timers. Alternatively, flows that include the logical
interface as one of several active egress interfaces in their action set or instruction are still valid. In that
case, the flow remains in the Packet Forwarding Engine, but the multicast next hop is updated to remove
that logical interface as a valid egress interface.



Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding OpenFlow Flow Instructions on Devices Running Junos OS | 20

Understanding How the OpenFlow Destination
MAC Address Rewrite Action Works

Some types of network equipment that function as routers accept and handle packets only if the
destination MAC address in the packet is the same as the MAC address of the Layer 3 interface on
which the packet is received. To interoperate with these routers, connected devices must also be able to
rewrite the destination MAC address of an incoming packet. Starting with Junos OS Releases 14.2R6, an
OpenFlow controller can configure an MX Series router that supports OpenFlow to rewrite the
destination MAC address of an incoming packet.

The MX routers support a maximum of two actions in a flow. As a result, the MX routers support the
following flow combinations:

e Destination MAC address rewrite and VLAN SWAP
e Destination MAC address rewrite and VLAN POP
e Destination MAC address rewrite in a group

If a flow includes an unsupported combination of actions, for example, VLAN PUSH and VLAN POP, the
MX Series routers reject the flow.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

14.2R6 Starting with Junos OS Releases 14.2R6, an OpenFlow controller can configure an MX Series router that
supports OpenFlow to rewrite the destination MAC address of an incoming packet.


https://apps.juniper.net/feature-explorer/

Understanding OpenFlow Flow Instructions on
Devices Running Junos OS

@ NOTE: Flow instructions are supported only on Juniper Networks devices running
OpenFlow v1.3.1 or later.

When a packet matches a particular OpenFlow flow, a Juniper Networks device running OpenFlow v1.0
applies a set of actions to the packet. Starting with OpenFlow v1.3.1, instead of applying a set of
actions, the Juniper Networks device applies a flow instruction to a matching packet.

In the Junos OS implementation of OpenFlow v1.3.1, a flow entry can include only one flow instruction,
which can be one of the following:

e Apply actions (OFPIT_APPLY_ACTIONS)
e Write actions (OFPIT_WRITE_ACTIONS)

Each of the instructions mentioned above includes a list of actions that the device applies immediately
in the order in which they appear the list.

‘ OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

Understanding How the OpenFlow Group Action
Works

@ NOTE: The group action is supported only on Juniper Networks devices running
OpenFlow v1.3.1 or later.

OpenFlow uses flow entries as a means to match flows and specify an action for incoming packets on
logical OpenFlow interfaces. The action specified in one or more flow entries can direct packets to, or
reference, a base action called a group action. The purpose of the group action is to further process
these packets and assign a more specific forwarding action to them.



A group can include 1 to 32 buckets, and in turn, a bucket can have a set of actions (set, pop, or output).

For information about the specific actions that are supported for each base type, see the "OpenFlow
v1.3.1 Compliance Matrix for Devices Running Junos OS" on page 62.

Juniper Networks Junos operating system (Junos OS) devices support the following group types, which
define how buckets are implemented:

e All—Multiple buckets are implemented for the handling of multicast and broadcast packets. Each
incoming packet is replicated and processed by each bucket in the group.

¢ Indirect—One bucket is implemented. An indirect group is typically referenced by multiple flow
entries, thereby allowing each of these entities to have a centralized action that can be easily
updated.

For example, an all group type with a unique OpenFlow-controller-assigned identifier, say, 50 can have
two buckets: bucket 1 and bucket 2. The action associated with bucket 1 might be to set the VLAN ID
field in the packet to 3022 and to output the packet to an OpenFlow port—for example, 118. The action
associated with bucket 2 might be to set the VLAN ID field in the packet to—for example, 2022—and to
output the packet to an OpenFlow port—for example, 117.

You can add a group with one or more buckets on the OpenFlow controller, and the controller pushes
the group to the Junos OS devices with which it is connected. Each Junos OS device checks to see
whether the group already exists. If it does not, the group is added to the group table on the Junos OS
devices. After the group is in the group table, you can modify or delete it from the table by way of the
OpenFlow controller.

show openflow groups

show openflow statistics groups



Understanding OpenFlow Flow Entry Timers on
Devices Running Junos OS

IN THIS SECTION

OpenFlow Flow Entry Timer Overview | 22
Idle Timeout and Hard Timeout | 23

Purge Flow Timer | 23

OpenFlow Flow Entry Timer Overview

For each logical interface participating in OpenFlow on a device running Junos OS, a single filter is
created and applied to the logical interface in the input direction. OpenFlow flows are mapped to the
filter as filter terms. Each flow has a number of timers associated with it, some of which are configured
through the OpenFlow controller while others are configured through the Junos OS CLI. OpenFlow flow
entry timers include the idle timeout, the hard timeout, and the purge flow timer. Table 6 on page 22
summarizes the various OpenFlow flow timers. EX4550 switches do not support idle timeout.

Table 6: OpenFlow Flow Entry Timers

Timer Configured Through Range (Seconds)
Idle timeout Controller 0, 11 through 65,535
Hard timeout Controller 0 through 65,535

Purge flow timer | Junos OS CLI by using the purge-flow-timer configuration statement = O through 300



Idle Timeout and Hard Timeout

Each flow entry has an idle timeout and a hard timeout associated with it, both of which are configured
through the OpenFlow controller. The idle timeout is the number of seconds after which a flow entry is
removed from the flow table and the hardware provided because no packets match it. The hard timeout
is the number of seconds after which the flow entry is removed from the flow table and the hardware
whether or not packets match it.

If a flow entry has both an idle timer and a hard timer associated with it, the first timer to expire causes
the flow entry to be removed. If the idle timer expires first, the flow entry is removed at that point only
if there are no matching packets. Otherwise, the flow entry is removed when the hard timer expires.

When the controller sends a flow entry modification message (OFPT_FLOW_MOD) to the switch, it
specifies the idle timeout and hard timeout for that flow entry. On devices running Junos OS, the idle
timeout value can be O, or it can range from 11 through 65,535 seconds. If the controller sets the idle
timeout to 0, the flow entry does not experience an idle time out. The hard timeout value can range
from O through 65,535 seconds. If the controller sets the hard timeout to O, the flow entry does not
experience a hard time out. If the controller requests an invalid timeout value, the switch rejects the
flow modification message and sends an error message back to the controller.

Purge Flow Timer

On devices running Junos OS, you can configure a purge flow timer, which is the number of seconds
after which an invalid OpenFlow flow entry is deleted from the flow table. The purge-flow-timer statement
is configured through the Junos OS CLI at the [edit protocols openflow switch switch-name] hierarchy level.
The purge-flow-timer value is specific to the OpenFlow virtual switch under which it is configured, and it is
the same for all flow entries associated with that virtual switch.

If you do not configure the purge-flow-timer statement, the device purges invalid flow entries from
hardware, but indefinitely retains the corresponding flow entries in the flow table on the Routing Engine.
If you configure the purge-flow-timer statement, the device purges invalid flow entries from hardware, and
after the specified number of seconds, deletes the invalid flow entries from the flow table. Configuring a
value of O causes the device to immediately delete invalid flow entries from the flow table.

For example, consider the case of an OpenFlow logical interface that becomes temporarily unavailable.
When the interface becomes unavailable, flow entries that have the logical interface as the matching
ingress interface or as the only active egress interface in their action set (for OpenFlow v1.0) or flow
instruction (for OpenFlow v1.3.1) are marked as invalid. Although the logical interface is not available,
the flow entries could still be valid. The purge-flow-timer configuration statement determines how to
handle the flow entries.



In this example, if you do not configure the purge-flow-timer statement, then when the logical interface
becomes unavailable, the device removes the invalid flow entries from the hardware but indefinitely
retains the flow entries in the flow table. If the logical interface later becomes available, the flow entries
are reinstalled in the hardware without any controller intervention.

On the other hand, if you configure the purge-flow-timer statement, then when the logical interface
becomes unavailable, the device removes the flow entries from the hardware, and retains the flow
entries in the flow table for the configured number of purge-flow-timer seconds. If the interface does not
become available and the timer expires, the device deletes the flow entries from the flow table. After
the interface comes back up, the OpenFlow controller must send new flow entry modification messages
to the OpenFlow switch in order to restore the flow entries to the flow table and to the hardware.

@ NOTE: By default, if you remove an active OpenFlow logical interface from an existing
OpenFlow configuration, flow entries that match on this logical interface as the ingress
interface and flow entries that include this logical interface as the only active egress
interface in their action list or flow instruction are invalid and are automatically purged
from the flow table and from the hardware regardless of whether you configure the
purge-flow-timer statement.

Understanding Support for OpenFlow on Devices Running Junos OS | 4

purge-flow-timer

Understanding OpenFlow Barrier Messages on
Devices Running Junos OS

OpenFlow-enabled devices running Juniper Networks Junos operating system (Junos OS) support the
OpenFlow protocol controller-to-switch Barrier Request message (OFPT_BARRIER_REQUEST). The
OpenFlow controller sends a Barrier Request message to request that the OpenFlow-enabled switch
complete processing of all messages sent before the Barrier Request message before processing any
messages sent after the Barrier Request message. This ensures that the virtual switch processes all
message dependencies and sends all notifications for completed operations before proceeding with new
requests.

When the OpenFlow virtual switch receives a Barrier Request message, it queues all subsequent
incoming messages, with the exception of echo request and reply messages, until processing of all prior



messages is complete. Echo request and reply messages are required to maintain connectivity to the
controller.

When the switch completes an operation, it sends a reply message back to the controller. Only after the
reply is sent to the controller does the switch mark the message or operation as processed. After the
switch completes processing for all operations requested prior to the Barrier Request message, the
switch sends a Barrier Reply (OFPT_BARRIER_REPLY) message, which includes the ID of the original
request message, to the OpenFlow controller. At that point, the switch resumes processing of the
gueued messages.

Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding OpenFlow Flows and Filters on Devices Running Junos OS | 16

Understanding OpenFlow Multipart Messages on
Devices Running Junos OS

@ NOTE: Multipart messages are supported only on Juniper Networks devices running
OpenFlow v1.3.1 or later.

To more efficiently process large OpenFlow data responses, OpenFlow v1.3.1 introduces support for
multipart messages.

The OpenFlow controller can use a multipart request message to request the following information:
e Switch, group, or port descriptions

¢ Single-flow, aggregate-flow, flow table, port, or group statistics

e Group or table features

In response, a Juniper Networks device can send one or more multipart response messages wherein
each message includes the same request identifier. In addition, each message in the sequence, except
the last message, includes a flag that indicates more messages are to follow.



OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

Supported Open Standards

Junos OS substantially supports the following open standards:

OpenFlow Switch Specification, Version 1.0.0

For a detailed list of supported messages and fields, match conditions, wild cards, flow actions,
statistics, and features, see "OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS" on
page 28.

The Junos OS implementation of OpenFlow v1.0 differs from the specification in the following ways:
(The sections of the OpenFlow specification are indicated in the parentheses.)
e Junos OS supports only the following flow action types (section 5.2.4):

e OFPAT_OUTPUT—supports OFPP_NORMAL, OFPP_FLOOD, OFPP_ALL, and
OFPP_CONTROLLER for normal flow actions, and OFPP_FLOOD and OFPP_ALL for Send
Packet flow actions.

e OFPAT_SET_VLAN_VID—support varies by platform.
e OFPAT_STRIP_VLAN—support varies by platform

e Flow priority is supported according to OpenFlow Switch Specification v1.3.0 in which there is no
prioritization of exact match entries over wildcard entries.

e Emergency mode as defined in OpenFlow v1.0 is not supported. If the controller connection is
lost and cannot be reestablished, the switch maintains all flow states in the control and data
planes.

The following features are not supported:

e Encryption through TLS connection (section 4.4)

e 802.1D Spanning Tree Protocol (sections 4.5 and 5.2.1)

e OFPP_LOCAL virtual port (section 5.2.1)

e Physical port features OFPPF_PAUSE and OFPPF_PAUSE_ASYM (section 5.2.1)

¢ Queue structures and queue configuration messages (section 5.2.2 and 5.3.4)



e Flow action types: OFPAT_SET_VLAN_PCP, OFPAT_SET_DL_SRC/DST,
OFPAT_SET_NW_SRC/DST/TOS, OFPAT_SET_TP_SRC/DST and OFPAT_ENQUEUE (section
5.2.4)

o buffer_id for Modify Flow Entry Message, Send Packet Message, and Packet-In Message (sections
5.3.3,5.3.6,and 5.4.1)

e Port Modification Message (section 5.3.3)
e Vendor Statistics (section 5.3.5)
¢ Vendor message (section 5.5.4)
OpenFlow Switch Specification, Version 1.3.1

For a detailed list of supported messages and fields, port structure flags and numbering, match
conditions, flow actions, multipart messages, flow instructions, and group types, see "OpenFlow
v1.3.1 Compliance Matrix for Devices Running Junos OS" on page 62.

The Junos OS implementation of OpenFlow v1.3.1 differs from the specification in the following
ways:

(The sections of the OpenFlow specification are indicated in the parentheses.)
e Junos OS supports only the following flow action types (section 5.12):

e OFPAT_SET_VLAN_VID

e OFPAT_POP_VLAN

e OFPAT_GROUP
e Junos OS supports only the following group types (section 5.6.1):

e OFPGT_ALL

e OFPGT_INDIRECT

e Junos OS supports only one flow instruction per flow entry. Further, only the following flow
instructions (section A.2.4) are supported:

e OFPIT_WRITE_ACTIONS
e OFPIT_APPLY_ACTIONS

e For OFPT_SET_CONFIG (section A.3.2), Junos OS supports only the OFPC_FRAG_NORMAL
configuration flag, and the OFPCML_NO_BUFFER setting for the miss_send_len field.

e On MX Series routers, Junos OS supports only the following IPvé6-related match conditions
(A.2.3.7):



e OFPXMT_OFB_IPV6_SRC
e OFPXMT_OFB_IPV6_DST

The following features are not supported:

Multiple flow tables (section 5)

¢ Table metadata (section 2)

e Action sets (section 5.10)

e Meter (section 5.7)

e MPLS fields (section 5.12.1)

e MPLS actions (section 5.10 and 5.12)

e Encryption through TLS connection (section 6.3.3)
e Per-port queues (section A.2.2)

e Auxiliary connections (section 6.3.5)

e Multiple virtual switches (section A.3.1)

e |Pvé-related set-field actions (5.12)

OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS | 28
OpenFlow v1.0 Compliance Matrix for QFX5100 and EX4600 Switches | 39
OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS | 62

Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6

OpenFlow v1.0 Compliance Matrix for Devices
Running Junos OS

The following tables list the Junos OS support for OpenFlow v1.0 messages and fields, match
conditions, wildcards, flow actions, statistics, and features on the indicated platforms:

e Table 7 on page 29 lists the support for message types.



e Table 8 on page 31 lists the support for port structure flags.
e Table 9 on page 33 lists the support for match conditions.
e Table 10 on page 35 lists the support for wildcards.

e Table 11 on page 35 lists the support for flow actions.

e Table 12 on page 37 lists the support for flow actions in Send Packet messages

(OFPT_PACKET_OUT).
e Table 13 on page 38 lists the support for statistics.
e Table 14 on page 38 lists the support for features.

Table 7 on page 29 lists the support for OpenFlow v1.0 message types.

Table 7: Junos OS Support for OpenFlow v1.0 Message Types

Section Specification MX Series

51 OFPT_HELLO Supported
OFPT_ERROR Supported
OFPT_ECHO_REQUEST Supported
OFPT_ECHO_REPLY Supported
OFPT_VENDOR Not supported

OFPT_FEATURES_REQUEST Supported

EX9200

Supported

Supported

Supported

Supported

Not supported

Supported



Table 7: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section

Specification

OFPT_FEATURES_REPLY:

Datapath ID

N_buffers

N_tables
OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_STP
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

OFPT_GET_CONFIG_REQUEST

OFPT_GET_CONFIG_REPLY

OFPT_SET_CONFIG

OFPT_PACKET_IN

OFPT_PACKET_IN with buffer_id

OFPT_FLOW_REMOVED

OFPT_PORT_STATUS

OFPT_PACKET_OUT

OFPT_PACKET_OUT with buffer_id

MX Series

Supported

Supported

0

1

Supported
Supported
Supported
Not supported
Not supported
Supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported

EX9200

Supported

Supported

0

1

Supported
Supported
Supported
Not supported
Not supported
Supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported



Table 7: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section Specification MX Series EX9200
OFPT_FLOW_MOD: Supported Supported
OFPFC_ADD Supported Supported
OFPFC_ADD with OFPFF_CHECK_OVERLAP Supported Supported
OFPFC_MODIFY Supported Supported
OFPFC_MODIFY_STRICT Supported Supported
OFPFC_DELETE Supported Supported
OFPFC_DELETE_STRICT Supported Supported
OFPT_FLOW_MOD with buffer_id Not supported Not supported
OFPT_PORT_MOD Not supported Not supported
OFPT_STATS_REQUEST Supported Supported
OFPT_STATS_REPLY Supported Supported

See Table 13 on page 38

OFPT_BARRIER_REQUEST Supported Supported
OFPT_BARRIER_REPLY Supported Supported
OFPT_QUEUE_GET_CONFIG_REQUEST Not supported Not supported
OFPT_QUEUE_GET_CONFIG_REPLY Not supported Not supported

Table 8 on page 31 lists the support for OpenFlow v1.0 port structure flags.

Table 8: Junos OS Support for OpenFlow v1.0 Port Structure Flags

Section Specification MX Series EX9200

521 OFPPC_PORT_DOWN Not supported Not supported



Table 8: Junos OS Support for OpenFlow v1.0 Port Structure Flags (Continued)

Section

Specification

OFPPC_NO_STP

OFPPC_NO_RECV

OFPPC_NO_RECV_STP

OFPPC_NO_FLOOD

OFPPC_NO_FWD

OFPPC_NO_PACKET_IN

OFPPS_LINK_DOWN

OFPPS_STP_LISTEN

OFPPS_STP_LEARN

OFPPS_STP_FORWARD

OFPPS_STP_BLOCK

OFPPS_STP_MASK

OFPPF_10MB_HD

OFPPF_10MB_FD

OFPPF_100MB_HD

MX Series

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Supported

Supported

EX9200

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Supported

Supported



Table 8: Junos OS Support for OpenFlow v1.0 Port Structure Flags (Continued)

Section Specification

OFPPF_100MB_FD

OFPPF_1GB_HD

OFPPF_1GB_FD

OFPPF_10GB_FD

OFPPF_COPPER

OFPPF_FIBER

OFPPF_AUTONEG

OFPPF_PAUSE

OFPPF_PAUSE_ASYM

MX Series

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Not supported

Table 9 on page 33 lists the support for OpenFlow v1.0 match conditions.

Table 9: Junos OS Support for OpenFlow v1.0 Match Conditions

Section Specification

523 dl_src (Ethernet source address)

dl_dst (Ethernet destination address)

MX Series

Supported

Supported

EX9200

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Not supported

EX9200

Supported

Supported



Table 9: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section Specification MX Series EX9200

di_vlan (Input VLAN ID) Supported Supported

NOTE: The flow match condition for the VLAN ID
must be less than 4096. Otherwise, the flow is not
installed. The only exception is VLAN ID 65535,
which corresponds to untagged frames.

dl_vlan_pcp (Input VLAN priority) Supported Supported

NOTE: The flow match condition for the VLAN
priority must be in accordance with 802.1p.
Otherwise, the flow is not installed.

dI_type (Ethernet frame type) Supported Supported
nw_tos (IP TOS (6 bits DSCP) Supported Supported
nw_proto (IP Protocol or lower 8 bits of ARP opcode) = Supported Supported
nw_src (IP source address) Supported Supported
nw_dst (IP destination address) Supported Supported
tp_src (TCP/UDP source port) Supported Supported
tp_dst (TCP/UDP destination port) Supported Supported
Match all 12 tuples or a combination of tuples Supported Supported

Table 10 on page 35 lists the support for OpenFlow v1.0 wildcards.



Table 10: Junos OS Support for OpenFlow v1.0 Wildcards

Section

5.23

Specification

OFPFW_IN_PORT

OFPFW_DL_VLAN

OFPFW_DL_SRC

OFPFW_DL_DST

OFPFW_DL_TYPE

OFPFW_NW_PROTO

OFPFW_TP_SRC

OFPFW_TP_DST

No wildcards set. Match entire 12 tuple.

MX Series

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Table 11 on page 35 lists the support for OpenFlow v1.0 flow actions.

Table 11: Junos OS Support for OpenFlow v1.0 Flow Actions

Section

5.24

Specification

OFPAT_OUTPUT:

OFPP_IN_PORT
OFPP_TABLE
OFPP_NORMAL
OFPP_FLOOD
OFPP_ALL
OFPP_CONTROLLER
OFPP_LOCAL

MX Series

Not supported
Not supported
Supported
Supported
Supported
Supported
Not supported

EX9200

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

EX9200

Not supported
Not supported
Supported
Supported
Supported
Supported
Not supported



Table 11: Junos OS Support for OpenFlow v1.0 Flow Actions (Continued)

Section Specification

OFPAT_SET_VLAN_VID

OFPAT_SET_VLAN_PCP

OFPAT_STRIP_VLAN

OFPAT_SET_DL_SRC

OFPAT_SET_DL_DST

OFPAT_SET_NW_SRC

OFPAT_SET_NW_DST

OFPAT_SET_NW_TOS

OFPAT_SET_TP_SRC

OFPAT_SET_TP_DST

OFPAT_ENQUEUE

MX Series

Supported

Not supported

Supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX9200

Supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Table 12 on page 37 lists the support for OpenFlow v1.0 flow actions in Send Packet messages

(OFPT_PACKET_OUT).



Table 12: Junos OS Support for OpenFlow v1.0 Flow Actions in Send Packet Messages

(OFPT_PACKET_OUT)

Section Specification

5.24 OFPAT_OUTPUT:

OFPP_IN_PORT

OFPP_TABLE

OFPP_NORMAL
OFPP_FLOOD

OFPP_ALL

OFPP_CONTROLLER
OFPP_LOCAL

OFPAT_SET_VLAN_VID

OFPAT_SET_VLAN_PCP

OFPAT_STRIP_VLAN

OFPAT_SET_DL_SRC

OFPAT_SET_DL_DST

OFPAT_SET_NW_SRC

OFPAT_SET_NW_DST

OFPAT_SET_NW_TOS

OFPAT_SET_TP_SRC

OFPAT_SET_TP_DST

OFPAT_ENQUEUE

MX Series

Not supported
Not supported
Not supported
Supported

Supported

Not supported
Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Table 13 on page 38 lists the support for OpenFlow v1.0 statistics.

EX9200

Not supported
Not supported
Not supported
Supported

Supported

Not supported
Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 13: Junos OS Support for OpenFlow v1.0 Statistics

Section Specification MX Series EX9200

535 OFPST_DESC Supported Supported
OFPST_FLOW Supported Supported
OFPST_AGGREGATE Supported Supported
OFPST_TABLE Supported Supported
OFPST_PORT Supported Supported
OFPST_QUEUE Supported Supported
OFPST_VENDOR Gracefully ignored Gracefully ignored

Table 14 on page 38 lists the support for OpenFlow v1.0 features.

Table 14: Junos OS Support for OpenFlow v1.0 Features

Section Specification MX Series EX9200

44 Encryption. Controller and switch communicate Not supported Not supported
through a TLS connection

5.3.3 Flow Idle Timeout Supported Supported

Flow Hard Timeout Supported Supported

Flow Priority Supported Supported



Understanding Support for OpenFlow on Devices Running Junos OS | 4
Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6

OpenFlow Operational Mode Commands | 183

OpenFlow v1.0 Compliance Matrix for QFX5100
and EX4600 Switches

Table 15 on page 39 through Table 22 on page 48 list the OpenFlow v1.0 support for QFX5100
switches.

e Table 15 on page 39 lists support for message types.

e Table 16 on page 42 lists support for port structure flags.

o Table 17 on page 43 lists support for match conditions.

e Table 18 on page 45 lists support for wildcards.

e Table 19 on page 45 lists support for flow actions.

e Table 20 on page 47 lists support for flow actions in Send Packet messages (OFPT_PACKET_OUT).
e Table 21 on page 48 lists support for statistics.

e Table 22 on page 48 lists support for features.

Table 15 on page 39 lists the OpenFlow v1.0 message type support.

Table 15: Junos OS Support for OpenFlow v1.0 Message Types

Section Specification QFX5100 and EX4600
51 OFPT_HELLO Supported
OFPT_ERROR Supported

OFPT_ECHO_REQUEST Supported



Table 15: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section

Specification

OFPT_ECHO_REPLY

OFPT_VENDOR

OFPT_FEATURES_REQUEST

OFPT_FEATURES_REPLY:

Datapath ID

N_buffers

N_tables
OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_STP
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

OFPT_GET_CONFIG_REQUEST

OFPT_GET_CONFIG_REPLY

OFPT_SET_CONFIG

OFPT_PACKET_IN

OFPT_PACKET_IN with buffer_id

OFPT_FLOW_REMOVED

OFPT_PORT_STATUS

QFX5100 and EX4600

Supported

Not supported

Supported

Supported

Supported

-1

1

Supported
Supported
Supported
Not supported
Not supported
Supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported



Table 15: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section

Table 16 on page 42 lists the OpenFlow v1.0 port structure flag support

Specification

OFPT_PACKET_OUT
OFPT_PACKET_OUT with buffer_id
OFPT_FLOW_MOD:

OFPFC_ADD

OFPFC_ADD with OFPFF_CHECK_OVERLAP
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT
OFPT_FLOW_MOD with buffer_id
OFPT_PORT_MOD

OFPT_STATS_REQUEST

OFPT_STATS_REPLY
See Table 21 on page 48

OFPT_BARRIER_REQUEST

OFPT_BARRIER_REPLY

OFPT_QUEUE_GET_CONFIG_REQUEST

OFPT_QUEUE_GET_CONFIG_REPLY

QFX5100 and EX4600

Supported
Not supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Not supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Not supported



Table 16: Junos OS Support for OpenFlow v1.0 Port Structure Flags

Section

5.21

Specification

OFPPC_PORT_DOWN

OFPPC_NO_STP

OFPPC_NO_RECV

OFPPC_NO_RECV_STP

OFPPC_NO_FLOOD

OFPPC_NO_FWD

OFPPC_NO_PACKET_IN

OFPPS_LINK_DOWN

OFPPS_STP_LISTEN

OFPPS_STP_LEARN

OFPPS_STP_FORWARD

OFPPS_STP_BLOCK

OFPPS_STP_MASK

OFPPF_10MB_HD

OFPPF_10MB_FD

QFX5100 and EX4600

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Supported



Table 16: Junos OS Support for OpenFlow v1.0 Port Structure Flags (Continued))

Section

Table 17 on page 43 lists OpenFlow v1.0 match condition support.

Table 17: Junos OS Support for OpenFlow v1.0 Match Conditions

Section

5.23

Specification

OFPPF_100MB_HD

OFPPF_100MB_FD

OFPPF_1GB_HD

OFPPF_1GB_FD

OFPPF_10GB_FD

OFPPF_COPPER

OFPPF_FIBER

OFPPF_AUTONEG

OFPPF_PAUSE

OFPPF_PAUSE_ASYM

Specification

dl_src (Ethernet source address)

dl_dst (Ethernet destination address)

QFX5100 and EX4600

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Not supported

QFX5100 and EX4600

Supported

Supported



Table 17: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section Specification QFX5100 and EX4600

di_vlan (Input VLAN ID) Supported

NOTE: The flow match condition for the VLAN ID must be less
than 4096. Otherwise, the flow is not installed. The only
exception is VLAN ID 65535, which corresponds to untagged
frames.

dl_vlan_pcp (Input VLAN priority) Supported

NOTE: The flow match condition for the VLAN priority must be
in accordance with 802.1p specifications. Otherwise, the flow is

not installed.
di_type (Ethernet frame type) Supported
nw_tos (IP TOS (6-bit DSCP)) Supported
nw_proto (IP Protocol or lower 8 bits of ARP opcode) Supported
nw_src (IP source address) Supported
nw_dst (IP destination address) Supported
tp_src (TCP/UDP source port/ICMPv4 type) Supported
tp_dst (TCP/UDP destination port/ICMPv4 code) Supported
Match all 12 tuples or a combination of tuples Supported

Table 18 on page 45 lists the OpenFlow v1.0 wildcard support.



Table 18: Junos OS Support for OpenFlow v1.0 Wildcards

Section

5.23

Table 19 on page 45 lists the OpenFlow v1.0 flow action support.

Table 19: Junos OS Support for OpenFlow v1.0 Flow Actions

Section

5.24

Specification

OFPFW_IN_PORT

OFPFW_DL_VLAN

OFPFW_DL_SRC

OFPFW_DL_DST

OFPFW_DL_TYPE

OFPFW_NW_PROTO

OFPFW_TP_SRC

OFPFW_TP_DST

No wild cards set. Match entire 12 tuple.

Specification

OFPAT_OUTPUT:

OFPP_IN_PORT
OFPP_TABLE
OFPP_NORMAL
OFPP_FLOOD
OFPP_ALL
OFPP_CONTROLLER
OFPP_LOCAL

QFX5100 and EX4600

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

QFX5100 and EX4600

Not supported
Not supported
Not supported
Supported
Supported
Supported
Not supported



Table 19: Junos OS Support for OpenFlow v1.0 Flow Actions (Continued)

Section Specification QFX5100 and EX4600
OFPAT_SET_VLAN_VID Supported
OFPAT_SET_VLAN_PCP Not supported
OFPAT_STRIP_VLAN Supported
OFPAT_SET_DL_SRC Not supported
OFPAT_SET_DL_DST Not supported
OFPAT_SET_NW_SRC Not supported
OFPAT_SET_NW_DST Not supported
OFPAT_SET_NW_TOS Not supported
OFPAT_SET_TP_SRC Not supported
OFPAT_SET_TP_DST Not supported
OFPAT_ENQUEUE Not supported

Table 20 on page 47 lists the OpenFlow v1.0 flow action support in Send Packet messages
(OFPT_PACKET_OUT).



Table 20: Junos OS Support for OpenFlow v1.0 Flow Actions in Send Packet Messages
(OFPT_PACKET_OUT)

Section Specification QFX5100 and EX4600
524 OFPAT_OUTPUT:

OFPP_IN_PORT Not supported
OFPP_TABLE Not supported
OFPP_NORMAL Not supported
OFPP_FLOOD Supported

OFPP_ALL Supported

OFPP_CONTROLLER Not supported
OFPP_LOCAL Not supported
OFPAT_SET_VLAN_VID Supported

OFPAT_SET_VLAN_PCP Not supported
OFPAT_STRIP_VLAN Supported

OFPAT_SET_DL_SRC Not supported
OFPAT_SET_DL_DST Not supported
OFPAT_SET_NW_SRC Not supported
OFPAT_SET_NW_DST Not supported
OFPAT_SET_NW_TOS Not supported
OFPAT_SET_TP_SRC Not supported
OFPAT_SET_TP_DST Not supported
OFPAT_ENQUEUE Not supported

Table 21 on page 48 lists the OpenFlow v1.0 statistics support.



Table 21: Junos OS Support for OpenFlow v1.0 Statistics

Section

535

Specification

OFPST_DESC

OFPST_FLOW

OFPST_AGGREGATE

OFPST_TABLE

OFPST_PORT

OFPST_QUEUE

OFPST_VENDOR

Table 22 on page 48 lists the OpenFlow v1.0 feature support.

Table 22: Junos OS Support for OpenFlow v1.0 Features

Section

44

5.3.3

Specification

Encryption. Controller and switch communicate through a TLS
connection.

Flow Idle Timeout

Flow Hard Timeout

Flow Priority

QFX5100 and EX4600

Supported

Supported

Supported

Supported

Supported

Not supported

Gracefully ignored

QFX5100 and EX4600

Not supported

Supported

Supported

Supported



Understanding Support for OpenFlow on Devices Running Junos OS | 4
Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6

OpenFlow Operational Mode Commands | 183

OpenFlow v1.0 Compliance Matrix for EX4550
Switches

Table 23 on page 49 through Table 30 on page 61 list the OpenFlow v1.0 support for the EX4550
switch.

e Table 23 on page 49 lists support for message types.

e Table 24 on page 52 lists support for port structure flags.

o Table 25 on page 53 lists match condition support.

e Table 26 on page 57 lists wildcard support.

e Table 27 on page 58 lists flow action support.

e Table 28 on page 59 lists flow action in Send Packet messages (OFPT_PACKET_OUT) support.
e Table 29 on page 60 lists statistics support.

e Table 30 on page 61 lists feature support.

Table 23 on page 49 lists the OpenFlow v1.0 message type support.

Table 23: Junos OS Support for OpenFlow v1.0 Message Types

Section Specification EX4550
51 OFPT_HELLO Supported
OFPT_ERROR Supported

OFPT_ECHO_REQUEST Supported



Table 23: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section

Specification

OFPT_ECHO_REPLY

OFPT_VENDOR

OFPT_FEATURES_REQUEST

OFPT_FEATURES_REPLY:

Datapath ID

N_buffers

N_tables
OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_STP
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

OFPT_GET_CONFIG_REQUEST

OFPT_GET_CONFIG_REPLY

OFPT_SET_CONFIG

OFPT_PACKET_IN

OFPT_PACKET_IN with buffer_id

OFPT_FLOW_REMOVED

OFPT_PORT_STATUS

EX4550

Supported

Not supported

Supported

Supported

Supported

-1

1

Not supported
Supported
Supported
Not supported
Not supported
Supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported



Table 23: Junos OS Support for OpenFlow v1.0 Message Types (Continued))

Section

Table 24 on page 52 lists the OpenFlow v1.0 port structure flag support.

Specification

OFPT_PACKET_OUT
OFPT_PACKET_OUT with buffer_id
OFPT_FLOW_MOD:

OFPFC_ADD

OFPFC_ADD with OFPFF_CHECK_OVERLAP
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT
OFPT_FLOW_MOD with buffer_id
OFPT_PORT_MOD

OFPT_STATS_REQUEST

OFPT_STATS_REPLY
See Table 29 on page 60

OFPT_BARRIER_REQUEST

OFPT_BARRIER_REPLY

OFPT_QUEUE_GET_CONFIG_REQUEST

OFPT_QUEUE_GET_CONFIG_REPLY

EX4550

Supported
Not supported
Supported
Supported
Supported
Supported
Supported
Supported
Supported
Not supported
Not supported

Supported

Supported

Supported

Supported

Not supported

Not supported



Table 24: Junos OS Support for OpenFlow v1.0 Port Structure Flags

Section

5.21

Specification

OFPPC_PORT_DOWN

OFPPC_NO_STP

OFPPC_NO_RECV

OFPPC_NO_RECV_STP

OFPPC_NO_FLOOD

OFPPC_NO_FWD

OFPPC_NO_PACKET_IN

OFPPS_LINK_DOWN

OFPPS_STP_LISTEN

OFPPS_STP_LEARN

OFPPS_STP_FORWARD

OFPPS_STP_BLOCK

OFPPS_STP_MASK

OFPPF_10MB_HD

OFPPF_10MB_FD

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Supported



Table 24: Junos OS Support for OpenFlow v1.0 Port Structure Flags (Continued))

Section Specification EX4550
OFPPF_100MB_HD Supported
OFPPF_100MB_FD Supported
OFPPF_1GB_HD Supported
OFPPF_1GB_FD Supported
OFPPF_10GB_FD Supported
OFPPF_COPPER Supported
OFPPF_FIBER Supported
OFPPF_AUTONEG Supported
OFPPF_PAUSE Not supported
OFPPF_PAUSE_ASYM Not supported

Table 25 on page 53 lists OpenFlow v1.0 match condition support.

Table 25: Junos OS Support for OpenFlow v1.0 Match Conditions

Section Specification EX4550

523 dl_src (Ethernet source address) Supported

dl_dst (Ethernet destination address) Supported



Table 25: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section

Specification

di_vlan (Input VLAN ID)
NOTE: The flow match condition for the VLAN ID must be less
than 4096. Otherwise, the flow is not installed. The only

exception is VLAN ID 65535, which corresponds to untagged
frames.

dl_vlan_pcp (Input VLAN priority)

NOTE: The flow match condition for the VLAN priority must be

in accordance with 802.1p. Otherwise, the flow is not installed.

dl_type (Ethernet frame type)

nw_tos (IP TOS (6 bits DSCP))

nw_proto (IP Protocol or lower 8 bits of ARP opcode)

nw_src (IP source address)

nw_dst (IP destination address)

tp_src (TCP/UDP source port)

tp_dst (TCP/UDP destination port)

Match all 12 tuples or a combination of tuples

OFPXMT_OFB_IN_PORT

OFPXMT_OFB_IN_PHY_PORT

OFPXMT_OFB_METADATA

EX4550

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Not supported

Not supported



Table 25: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section

Specification

OFPXMT_OFB_ETH_DST

OFPXMT_OFB_ETH_SRC

OFPXMT_OFB_ETH_TYPE

OFPXMT_OFB_VLAN_VID

OFPXMT_OFB_VLAN_PCP

OFPXMT_OFB_IP_DSCP

OFPXMT_OFB_IP_ECN

OFPXMT_OFB_IP_PROTO

OFPXMT_OFB_IPV4_SRC

OFPXMT_OFB_IPV4_DST

OFPXMT_OFB_TCP_SRC

OFPXMT_OFB_TCP_DST

OFPXMT_OFB_UDP_SRC

OFPXMT_OFB_UDP_DST

OFPXMT_OFB_SCTP_SRC

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 25: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section

Specification

OFPXMT_OFB_SCTP_DST

OFPXMT_OFB_ICMPV4_TYPE

OFPXMT_OFB_ICMPV4_CODE

OFPXMT_OFB_ARP_OP

OFPXMT_OFB_ARP_SPA

OFPXMT_OFB_ARP_TPA

OFPXMT_OFB_ARP_SHA

OFPXMT_OFB_ARP_THA

OFPXMT_OFB_IPV6_SRC

OFPXMT_OFB_IPV6_DST

OFPXMT_OFB_IPV6_FLABEL

OFPXMT_OFB_ICMPV6_TYPE

OFPXMT_OFB_ICMPV6_CODE

OFPXMT_OFB_IPV6_ND_TARGET

OFPXMT_OFB_IPV6_ND_SLL

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 25: Junos OS Support for OpenFlow v1.0 Match Conditions (Continued)

Section

Table 26 on page 57 lists the OpenFlow v1.0 wildcard support.

Specification

OFPXMT_OFB_IPV6_ND_TLL

OFPXMT_OFB_MPLS_LABEL

OFPXMT_OFB_MPLS_TC

OFPXMT_OFB_MPLS_BOS

OFPXMT_OFB_PBB_ISID

OFPXMT_OFB_TUNNEL_ID

OFPXMT_OFB_IPV6_EXTHDR

Table 26: Junos OS Support for OpenFlow v1.0 Wildcards

Section

523

Specification

OFPFW_IN_PORT

OFPFW_DL_VLAN

OFPFW_DL_SRC

OFPFW_DL_DST

OFPFW_DL_TYPE

OFPFW_NW_PROTO

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX4550

Supported

Supported

Supported

Supported

Supported

Supported



Table 26: Junos OS Support for OpenFlow v1.0 Wildcards (Continued)

Section Specification EX4550
OFPFW_TP_SRC Supported
OFPFW_TP_DST Supported
No wild cards set. Match entire 12 tuple. Supported

Table 27 on page 58 lists the OpenFlow v1.0 flow action support.

Table 27: Junos OS Support for OpenFlow v1.0 Flow Actions

Section

524

Specification
OFPAT_OUTPUT:
OFPP_IN_PORT
OFPP_TABLE
OFPP_NORMAL
OFPP_FLOOD
OFPP_ALL

OFPP_CONTROLLER
OFPP_LOCAL

OFPAT_SET_VLAN_VID

OFPAT_SET_VLAN_PCP

OFPAT_STRIP_VLAN

OFPAT_SET_DL_SRC

OFPAT_SET_DL_DST

OFPAT_SET_NW_SRC

EX4550

Not supported
Not supported
Supported
Supported
Supported
Supported
Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 27: Junos OS Support for OpenFlow v1.0 Flow Actions (Continued)

Section

Specification

OFPAT_SET_NW_DST

OFPAT_SET_NW_TOS

OFPAT_SET_TP_SRC

OFPAT_SET_TP_DST

OFPAT_ENQUEUE

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Table 28 on page 59 lists the OpenFlow v1.0 flow action support in Send Packet messages
(OFPT_PACKET_OUT).

Table 28: Junos OS Support for OpenFlow v1.0 Flow Actions in Send Packet Messages
(OFPT_PACKET_OUT)

Section

5.24

Specification

OFPAT_OUTPUT:

OFPP_IN_PORT
OFPP_TABLE
OFPP_NORMAL
OFPP_FLOOD
OFPP_ALL
OFPP_CONTROLLER
OFPP_LOCAL

OFPAT_SET_VLAN_VID

OFPAT_SET_VLAN_PCP

OFPAT_STRIP_VLAN

EX4550

Not supported
Not supported
Not supported
Supported

Supported

Not supported
Not supported

Not supported

Not supported

Not supported



Table 28: Junos OS Support for OpenFlow v1.0 Flow Actions in Send Packet Messages

(OFPT_PACKET_OUT) (Continued)

Section

Table 29 on page 60 lists the OpenFlow v1.0 statistics support.

Table 29: Junos OS Support for OpenFlow v1.0 Statistics

Section

535

Specification

OFPAT_SET_DL_SRC

OFPAT_SET_DL_DST

OFPAT_SET_NW_SRC

OFPAT_SET_NW_DST

OFPAT_SET_NW_TOS

OFPAT_SET_TP_SRC

OFPAT_SET_TP_DST

OFPAT_ENQUEUE

Specification

OFPST_DESC

OFPST_FLOW

OFPST_AGGREGATE

OFPST_TABLE

OFPST_PORT

EX4550

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX4550

Supported

Not supported

Not supported

Supported

Supported



61

Table 29: Junos OS Support for OpenFlow v1.0 Statistics (Continued)

Section Specification EX4550
OFPST_QUEUE Supported
OFPST_VENDOR Gracefully ignored

Table 30 on page 61 lists the OpenFlow v1.0 feature support.

Table 30: Junos OS Support for OpenFlow v1.0 Features

Section Specification EX4550
44 Encryption. Controller and switch communicate through a TLS Not supported
connection.
5.3.3 Flow Idle Timeout Not supported
Flow Hard Timeout Supported
Flow Priority Supported
RELATED DOCUMENTATION

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6

OpenFlow Operational Mode Commands | 183



OpenFlow v1.3.1 Compliance Matrix for Devices
Running Junos OS

Starting with Junos OS Release 14.2R1, OpenFlow v1.3.1 support is introduced. The following tables list
the support for OpenFlow v1.3.1 features on the indicated platforms.

e Table 31 on page 62 lists support for message types.

Table 32 on page 66 lists support for features reply messages.
e Table 33 on page 67 lists support for port structure flags.

e Table 34 on page 68 lists support for port numbering.

e Table 35 on page 69 lists support for match conditions.

o Table 36 on page 73 lists support for flow actions.

e Table 37 on page 75 lists support for multipart messages.

e Table 38 on page 76 lists support for flow instructions.

e Table 39 on page 77 lists support for group types.

Table 31 on page 62 lists the support for OpenFlow v1.3.1 message types.

Table 31: Junos OS Support for OpenFlow v1.3.1 Message Types

Specification MX Series EX9200 QFX5100 and

EX4600
OFPT_HELLO Supported Supported Supported
OFPT_ERROR Supported Supported Supported
OFPT_ECHO_REQUE | Supported Supported Supported
ST

OFPT_ECHO_REPLY Supported Supported Supported



Table 31: Junos OS Support for OpenFlow v1.3.1 Message Types (Continued)

Specification

OFPT_EXPERIMENTE
R

OFPT_FEATURES_RE
QUEST

OFPT_FEATURES_RE
PLY

See Table 32 on page
66.

OFPT_GET_CONFIG_
REQUEST

OFPT_GET_CONFIG_
REPLY

OFPT_SET_CONFIG

OFPT_PACKET_IN

OFPT_PACKET_IN

with buffer_id

OFPT_FLOW_REMOV
ED

OFPT_PORT_STATUS

OFPT_PACKET_OUT

OFPT_PACKET_OUT
with buffer_id

MX Series

Not supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported

EX9200

Not supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported

QFX5100 and

EX4600

Not supported

Supported

Supported

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported



Table 31: Junos OS Support for OpenFlow v1.3.1 Message Types (Continued)

Specification

OFPT_FLOW_MOD

OFPT_FLOW_MOD
with buffer_id

OFPFC_ADD
OFPFC_ADD with
OFPFF_CHECK_OVER
LAP

OFPFC_MODIFY
OFPFC_MODIFY_STR
ICT

OFPFC_DELETE
OFPFC_DELETE_STRI
CT

Flow Modification
Flags:

OFPFF_SEND_FLOW_
REM
OFPFF_CHECK_OVER
LAP
OFPFF_RESET_COUN
TS
OFPFF_NO_PKT_COU
NTS
OFPFF_NO_BYT_COU
NTS

OFPT_GROUP_MOD:
OFPGC_ADD
OFPGC_MODIFY

OFPGC_DELETE

OFPT_PORT_MOD

MX Series

Supported
Not supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Supported

Not supported

EX9200

Supported
Not supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Supported

Not supported

QFX5100 and
EX4600

Supported
Not supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported

Supported
Supported
Supported
Supported
Supported

Supported
Supported
Supported

Supported

Not supported



Table 31: Junos OS Support for OpenFlow v1.3.1 Message Types (Continued)

Specification

OFPT_TABLE_MOD

OFPT_MULTIPART_RE
QUEST

See Table 37 on page
75

OFPT_MULTIPART_RE
PLY

See Table 37 on page
75

OFPT_BARRIER_REQ
UEST

OFPT_BARRIER_REPL
Y

OFPT_QUEUE_GET_C
ONFIG_REQUEST

OFPT_QUEUE_GET_C
ONFIG_REPLY

OFPT_ROLE_REQUES
T

OFPT_ROLE_REPLY

OFPT_GET_ASYNC_R
EQUEST

MX Series

Not supported

Supported

Supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX9200

Not supported

Supported

Supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

QFX5100 and
EX4600

Not supported

Supported

Supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 31: Junos OS Support for OpenFlow v1.3.1 Message Types (Continued)

Specification

OFPT_GET_ASYNC_R

EPLY

OFPT_SET_ASYNC

OFPT_METER_MOD

OFPT_VENDOR

Table 32 on page 66 lists the support for OpenFlow v1.3.1 features reply messages.

MX Series

Not supported

Not supported

Not supported

Not supported

EX9200

Not supported

Not supported

Not supported

Not supported

Table 32: Junos OS Support for OpenFlow v1.3.1 Features Reply Messages

Specification

OFPT_FEATURES_REPLY:

Datapath ID
N_buffers
N_tables
Auxiliary ID

OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_GROUP_STATS
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_PORT_BLOCKED

MX Series

Supported

0
1
0

Supported
Supported
Supported
Supported
Not supported
Supported
Not supported

EX9200

Supported

0

1

0

Supported
Supported
Supported
Supported

Not supported
Supported
Not supported

QFX5100 and
EX4600

Not supported

Not supported

Not supported

Not supported

QFX5100 and EX4600

Supported

-1
1
0

Supported
Supported
Supported
Supported

Not supported

Supported

Not supported

Table 33 on page 67 lists the support for OpenFlow v1.3.1 port structure flags.



Table 33: Junos OS Support for OpenFlow v1.3.1 Port Structure Flags

Specification

OFPPC_PORT_DOWN

OFPPC_NO_STP

OFPPC_NO_RECV

OFPPC_NO_RECV_STP

OFPPC_NO_FLOOD

OFPPC_NO_FWD

OFPPC_NO_PACKET_IN

OFPPS_LINK_DOWN

OFPPS_BLOCKED

OFPPS_LIVE

OFPPF_10MB_HD

OFPPF_10MB_FD

OFPPF_100MB_HD

OFPPF_100MB_FD

OFPPF_1GB_HD

MX Series

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Supported

Supported

Supported

Supported

Supported

EX9200

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Supported

Supported

Supported

Supported

Supported

QFX5100 and EX4600

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Supported

Not supported

Not supported

Supported

Supported

Supported

Supported

Supported



Table 33: Junos OS Support for OpenFlow v1.3.1 Port Structure Flags (Continued)

Specification

OFPPF_1GB_FD

OFPPF_10GB_FD

OFPPF_40GB-FD

OFPPF_100GB-FD

OFPPF_1TB-FD

OFPPF_COPPER

OFPPF_FIBER

OFPPF_AUTONEG

OFPPF_PAUSE

OFPPF_PAUSE_ASYM

MX Series

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported

Not supported

EX9200

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

Not supported

Not supported

Table 34 on page 68 lists the support for OpenFlow v1.3.1 port numbering.

Table 34: Junos OS Support for OpenFlow v1.3.1 Port Numbering

Specification

OFPP_IN_PORT

OFPP_TABLE

OFPP_NORMAL

MX Series

EX9200

Not supported = Not supported

Not supported = Not supported

Supported

Supported

QFX5100 and EX4600

Supported

Supported

Supported

Not supported

Not supported

Not supported

Supported

Supported

Not supported

Not supported

QFX5100 and EX4600

Not supported

Not supported

Not supported



Table 34: Junos OS Support for OpenFlow v1.3.1 Port Numbering (Continued)

Specification MX Series EX9200 QFX5100 and EX4600

OFPP_FLOOD (all except input and STP disabled Supported Supported Supported
port) (Flood and All are same)

OFPP_ALL (all except input) Supported Supported Supported
OFPP_CONTROLLER Supported Supported Supported
OFPP_LOCAL Not supported = Not supported = Not supported

Table 35 on page 69 lists the support for OpenFlow v1.3.1 match conditions.

Table 35: Junos OS Support for OpenFlow v1.3.1 Match Conditions

Specification MX Series EX9200 QFX5100 and
EX4600

OFPXMT_OFB_IN_PO | Supported Supported Supported

RT

OFPXMT_OFB_IN_PH | Not supported Not supported Not supported

Y_PORT

OFPXMT_OFB_META ' Not supported Not supported Not supported

DATA

OFPXMT_OFB_ETH_S | Supported Supported Supported

RC

OFPXMT_OFB_ETH_ Supported Supported Supported

DST



Table 35: Junos OS Support for OpenFlow v1.3.1 Match Conditions (Continued))

Specification

OFPXMT_OFB_VLAN
_VID

OFPXMT_OFB_VLAN
_PCP

OFPXMT_OFB_ETH_T
YPE

OFPXMT_OFB_IP_DS
CP

OFPXMT_OFB_IP_EC
N

OFPXMT_OFB_IP_PR
OoTO

OFPXMT_OFB_IPV4_
SRC

OFPXMT_OFB_IPV4_
DST

MX Series

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

EX9200

Supported

NOTE: Native
VLAN is not
supported on
the OpenFlow
logical
interface when
multiple logical
interfaces are
configured on
that interface.

Supported

Supported

Supported

Not supported

Supported

Supported

Supported

QFX5100 and
EX4600

Supported

Supported

Supported

Supported

Not supported

Supported

Supported

Supported



Table 35: Junos OS Support for OpenFlow v1.3.1 Match Conditions (Continued))

Specification

OFPXMT_OFB_TCP_S

RC

OFPXMT_OFB_TCP_D

ST

OFPXMT_OFB_UDP_

SRC

OFPXMT_OFB_UDP_

DST

OFPXMT_OFB_SCTP_

SRC

OFPXMT_OFB__SCTP

_DST

OFPXMT_OFB_ICMP

V4_TYPE

OFPXMT_OFB_ICMP

V4_CODE

OFPXMT_OFB_ARP_

OP

OFPXMT_OFB_ARP_S

PA

OFPXMT_OFB_ARP_T

PA

MX Series

Supported

Supported

Supported

Supported

Not supported

Not supported

Supported

Supported

Not supported

Not supported

Not supported

EX9200

Supported

Supported

Supported

Supported

Not supported

Not supported

Supported

Supported

Not supported

Not supported

Not supported

QFX5100 and

EX4600

Supported

Supported

Supported

Supported

Not supported

Not supported

Supported

Supported

Not supported

Not supported

Not supported



Table 35: Junos OS Support for OpenFlow v1.3.1 Match Conditions (Continued))

Specification

OFPXMT_OFB_ARP_S
HA

OFPXMT_OFB_ARP_T
HA

OFPXMT_OFB_IPV6_
SRC

OFPXMT_OFB_IPV6_
DST

OFPXMT_OFB_IPV6_
FLABEL

OFPXMT_OFB_ICMP
V6_TYPE

OFPXMT_OFB_ICMP
V6_CODE

OXM_OF_IPV6_ND_T
ARGET

OXM_OF_IPV6_ND_S
LL

OXM_OF_IPV6_ND_T
LL

OXM_OF_IPV6_EXTH
DR

MX Series

Not supported

Not supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX9200

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

QFX5100 and

EX4600

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 35: Junos OS Support for OpenFlow v1.3.1 Match Conditions (Continued))

Specification

OFPXMT_OFB_MPLS_
LABEL

OFPXMT_OFB_MPLS_
TC

OFPXMT_OFB_MPLS_
BOS

OFPXMT_OFB_PBB_I
SID

OFPXMT_OFB_TUNN
EL_ID

MX Series

Not supported

Not supported

Not supported

Not supported

Not supported

EX9200

Not supported

Not supported

Not supported

Not supported

Not supported

QFX5100 and

EX4600

Not supported

Not supported

Not supported

Not supported

Not supported

@ NOTE: The Junos OS implementation of OpenFlow v1.3.1 supports wildcards for all
match conditions.

The Junos OS implementation of OpenFlow v1.3.1 does not support arbitrary bit masks

for any fields or IPvé6 addresses. This implementation supports only continuous masks

for IPv4 and IPvé6 source and destination addresses.

Table 36 on page 73 lists the support for OpenFlow v1.3.1 flow actions.

Table 36: Junos OS Support for OpenFlow v1.3.1 Flow Actions

Specification

OFPAT_SET_VLAN_VI
D

MX Series

Supported

EX9200

Supported

QFX5100 and
EX4600

Supported



Table 36: Junos OS Support for OpenFlow v1.3.1 Flow Actions (Continued))

Specification

OFPAT_SET_VLAN_P
CP

OFPAT_POP_VLAN

OFPAT_GROUP

OFPAT_COPY_TTL_O
)

OFPAT_COPY_TTLLIN

OFPAT_SET_MPLS_TT
L

OFPAT_DEC_MPLS_T
TL

OFPAT_PUSH_VLAN

OFPAT_PUSH_MPLS

OFPAT_POP_MPLS

OFPAT_SET_QUEUE

OFPAT_SET_NW_TTL

OFPAT_DEC_NW_TTL

OFPAT_PUSH_PBB

MX Series

Not supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

EX9200

Not supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

QFX5100 and
EX4600

Not supported

Supported

Supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported



Table 36: Junos OS Support for OpenFlow v1.3.1 Flow Actions (Continued))

Specification MX Series EX9200 QFX5100 and

EX4600
OFPAT_POP_PBB Not supported Not supported Not supported
OFPAT_EXPERIMENT | Not supported Not supported Not supported
ER

Table 37 on page 75 lists the support for OpenFlow v1.3.1 multipart messages.

Table 37: Junos OS Support for OpenFlow v1.3.1 Multipart Messages

Specification MX Series EX9200 QFX5100 and EX4600
OFPMP_DESC Supported Supported Supported
OFPMP_FLOW Supported Supported Supported
OFPMP_AGGREGATE Supported Supported Supported
OFPMP_TABLE Supported Supported Supported
OFPMP_PORT_STATS Supported Supported Supported
OFPMP_QUEUE Supported Supported Supported
OFPMP_GROUP Supported Supported Supported
OFPMP_GROUP_DESC Supported Supported Supported
OFPMP_GROUP_FEATURES Supported Supported Supported

OFPMP_METER Not supported Not supported Not supported



Table 37: Junos OS Support for OpenFlow v1.3.1 Multipart Messages (Continued)

Specification

OFPMP_METER_CONFIG

OFPMP_METER_FEATURES

OFPMP_TABLE_FEATURES

OFPMP_PORT_DESC

OFPMP_EXPERIMENTER

Table 38 on page 76 lists the support for OpenFlow v1.3.1 flow instructions.

@ NOTE: A flow can have a maximum of one of the supported flow instructions listed in
Table 38 on page 76.

MX Series

Not supported

Not supported

Supported

Supported

Not supported

EX9200

Not supported

Not supported

Supported

Supported

Not supported

Table 38: Junos OS Support for OpenFlow v1.3.1 Flow Instructions

Specification

OFPIT_GOTO_TABLE

OFPIT_WRITE_METADATA

OFPIT_WRITE_ACTIONS

OFPIT_APPLY_ACTIONS

OFPIT_CLEAR_ACTIONS

OFPIT_METER

MX Series

Not supported

Not supported

Supported

Supported

Not supported

Not supported

EX9200

Not supported

Not supported

Supported

Supported

Not supported

Not supported

QFX5100 and EX4600

Not supported

Not supported

Supported

Supported

Not supported

QFX5100 and EX4600

Not supported

Not supported

Supported

Supported

Not supported

Not supported



Table 38: Junos OS Support for OpenFlow v1.3.1 Flow Instructions (Continued)

Specification MX Series EX9200 QFX5100 and EX4600

OFPIT_EXPERIMENTER Not supported Not supported Not supported

Table 39 on page 77 lists the support for OpenFlow v1.3.1 group types.

Table 39: Junos OS Support for OpenFlow v1.3.1 Group Types

Specification MX Series EX9200 QFX5100 and EX4600
OFPGT_ALL Supported Supported Supported
OFPGT_SELECT Not supported Not supported Not supported
OFPGT_INDIRECT Supported Supported Supported

OFPGT_FF Not supported Not supported Not supported

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

14.2R1 Starting with Junos OS Release 14.2R1, OpenFlow v1.3.1 support is introduced.

Understanding Support for OpenFlow on Devices Running Junos OS | 4

Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS | 6
Understanding How the OpenFlow Group Action Works | 20

OpenFlow Operational Mode Commands | 183



https://apps.juniper.net/feature-explorer/

CHAPTER

Openklow Basic Configuration

Configuring Support for OpenFlow on MX Series Routers | 79

Example: Enabling OpenFlow on MX Series Routers | 82

Configuring Support for OpenFlow on EX9200 Switches | 90

Example: Enabling OpenFlow on EX9200 Switches | 93

Configuring Support for OpenFlow on QFX5100 and EX4600 Switches | 101
Example: Enabling OpenFlow on QFX5100 and EX4600 Switches | 104
Configuring Support for OpenFlow on EX4550 Switches | 111

Example: Enabling OpenFlow on EX4550 Switches | 113




Configuring Support for OpenFlow on MX Series
Routers

IN THIS SECTION

Configuring the OpenFlow Interfaces | 79
Configuring the OpenFlow Protocol | 80

Configuring the OpenFlow Routing Instance | 81

The following sections configure MX Series routers to support OpenFlow using interfaces that
participate solely in OpenFlow. For information about configuring hybrid interfaces, which concurrently
support OpenFlow logical interfaces and non-OpenFlow logical interfaces, see "Configuring OpenFlow
Hybrid Interfaces on MX Series Routers" on page 123.

Before configuring support for OpenFlow, ensure that the router meets the following requirements:
o MX Series router running Junos OS Release 13.3 or a later release

e OpenFlow software package with a software package release that matches the Junos OS release of
the device on which it is installed

e TCP connection between the router and an OpenFlow controller

e Connection between the management interface of the router and the management network, which is
reachable from the controller IP address

Configuration tasks are described in detail in the following sections:

Configuring the OpenFlow Interfaces

You must configure interfaces participating in OpenFlow as Layer 2 interfaces. On MX Series routers,
you configure the interfaces with encapsulation ethernet-bridge and protocol family bridge.

To configure the OpenFlow Interfaces:



o Configure the physical link-layer encapsulation type and the logical interface and protocol family.

[edit interfaces interface-name]
user@host# set encapsulation ethernet-bridge
user@host# set unit wnit family bridge

Configuring the OpenFlow Protocol

To configure support for OpenFlow, create a virtual switch instance, and specify a switch name, which
must be 60 characters or less. For the virtual switch instance, configure the OpenFlow controller
information and the participating logical interfaces. Optionally, configure the default action for packets
that do not match a flow entry, the purge timer for invalid flows, and any OpenFlow traceoptions.

To configure the OpenFlow protocol:

1. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch switch-name]
user@host# set controller address address
user@host# set controller protocol tcp

2. Specify the logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch switch-namel
user@host# set interfaces interface-namei.unit]

user@host# set interfaces interface-name2.uniti

3. (Optional) Configure the default-action statement for packets that do not match on an existing flow
entry.

If you do not configure the default-action statement, the default is packet-in, which indicates that
packets with no matching flow entry must be sent to the controller for processing.

[edit protocols openflow switch switch-namel
user@host# set default-action (drop | packet-in)



4. (Optional) Configure the purge-flow-timer statement, which is the number of seconds after which an
invalid flow is purged from the flow table.

[edit protocols openflow switch switch-name]
user@host# set purge-flow-timer seconds

5. (Optional) Configure OpenFlow traceoptions.

If you do not configure a log filename, OpenFlow trace messages are logged in the default OpenFlow
log file /var/log/ofd .

[edit protocols openflow]
user@host# set traceoptions flag flag
user@host# set traceoptions file file-name

Configuring the OpenFlow Routing Instance

To configure the virtual switch routing instance for OpenFlow traffic:

1. Configure the routing instance type as virtual-switch.
[edit routing-instances routing-instance-name]
user@host# set instance-type virtual-switch

2. Configure the bridge domain name and type.

[edit routing-instances routing-instance-name]
user@host# set bridge-domains name domain-type bridge

3. Configure the VLAN ID as none.

[edit routing-instances routing-instance-name]
user@host# set bridge-domains name vlan-id none



4. Configure the OpenFlow logical interfaces that will be bound to the routing instance.

[edit routing-instances routing-instance-name]
user@host# set bridge-domains name interface interface-namel.unit]

user@host# set bridge-domains name interface interface-name2.uniti

5. (Optional) If you use the NORMAL forward action to forward OpenFlow traffic using traditional Layer
2 and Layer 3 processing, configure an integrated routing and bridging (IRB) interface, and include
the appropriate logical interface in the bridge domain configuration.

[edit routing-instances routing-instance-namel

user@host# set bridge-domains name routing-interface irb.unit

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Example: Enabling OpenFlow on MX Series Routers | 82
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Example: Enabling OpenFlow on MX Series Routers

IN THIS SECTION

Requirements | 83
Overview | 83
Configuration | 84

Verification | 87

OpenFlow is an open standard that allows you to control traffic paths in a network by creating, deleting,
and modifying flows in each device along a path. This example shows how to configure OpenFlow
support on an MX240 router running Junos OS.



Requirements

This example uses the following hardware and software components:
e MX240 router running Junos OS Release 13.3 or a later release

e OpenFlow software package with a software package release that matches the Junos OS release of
the device on which it is installed

e TCP connection between the router and an OpenFlow controller

e Connection between the management interface of the router and the management network, which is
reachable from the OpenFlow controller IP address

Overview

In this example, you configure support for OpenFlow on an MX240 router. The router has three
interfaces that participate solely in OpenFlow: ge-1/0/0.0, ge-1/1/0.0, and xe-0/0/0.0. You first
configure the interfaces as Layer 2 interfaces using physical link-layer encapsulation type ethernet-bridge
and protocol family bridge.

MX Series routers require a separate virtual switch routing instance to isolate the OpenFlow traffic from
the normal network traffic. This example configures a virtual switch routing instance, rt-bd-1, using
instance type virtual-switch at the [edit routing-instances] hierarchy level. Within the routing instance, the
bridge domain of-bridge includes all of the logical interfaces participating in OpenFlow.

You configure the OpenFlow virtual switch and OpenFlow protocol statements at the [edit protocols

openflow] hierarchy level. In this example, the virtual switch, OFswitch1, connects to the controller over a
TCP connection at IP address 172.16.1.1. The virtual switch configuration must include all of the logical
interfaces participating in OpenFlow, and OpenFlow traffic will only enter or exit from these interfaces.

Within the OpenFlow configuration, the default-action statement indicates the action the switch must
take for packets that do not have a matching flow entry. If you omit the default-action statement, the
default action is packet-in, which indicates that packets with no matching flow entry must be sent to the
controller for processing. This example explicitly configures the default action for packets that do not
have a matching flow entry as packet-in.

This example also configures OpenFlow traceoptions. In this case, the flag all statement indicates that
all OpenFlow trace events should be captured and logged. Since the example does not configure a
specific filename for the log file, OpenFlow trace messages are logged in the default OpenFlow log

file /var/log/ofd.



Configuration

IN THIS SECTION

CLI Quick Configuration | 84
Procedure | 84

Results | 86

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces ge-1/0/0 encapsulation ethernet-bridge unit 0 family bridge
set interfaces ge-1/1/0 encapsulation ethernet-bridge unit @ family bridge
set interfaces xe-0/0/0 encapsulation ethernet-bridge unit 0 family bridge
set routing-instances rt-bd-1 instance-type virtual-switch

set routing-instances rt-bd-1 bridge-domains of-bridge vlan-id none

set routing-instances rt-bd-1 bridge-domains of-bridge interface ge-1/0/0.0
set routing-instances rt-bd-1 bridge-domains of-bridge interface ge-1/1/0.0
set routing-instances rt-bd-1 bridge-domains of-bridge interface xe-0/0/0.0
set protocols openflow switch OFswitchl controller address 172.16.1.1

set protocols openflow switch OFswitchl controller protocol tcp

set protocols openflow switch OFswitchl interfaces ge-1/0/0.0

set protocols openflow switch OFswitch1 interfaces ge-1/1/0.0

set protocols openflow switch OFswitchl interfaces xe-0/0/0.0

set protocols openflow switch OFswitchl default-action packet-in

set protocols openflow traceoptions flag all

Procedure

Step-by-Step Procedure

To configure support for OpenFlow:



1. Configure the OpenFlow interfaces as Layer 2 interfaces.

[edit interfaces]

user@host# set ge-1/0/0 encapsulation ethernet-bridge unit @ family bridge
user@host# set ge-1/1/0 encapsulation ethernet-bridge unit @ family bridge
user@host# set xe-0/0/0 encapsulation ethernet-bridge unit @ family bridge

2. Configure the virtual switch routing instance.

[edit routing-instances]

user@host# set rt-bd-1 instance-type virtual-switch

user@host# set rt-bd-1 bridge-domains of-bridge vlan-id none
user@host# set rt-bd-1 bridge-domains of-bridge interface ge-1/0/0.0
user@host# set rt-bd-1 bridge-domains of-bridge interface ge-1/1/0.0
user@host# set rt-bd-1 bridge-domains of-bridge interface xe-0/0/0.0

3. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch OFswitch1]
user@host# set controller address 172.16.1.1

user@host# set controller protocol tcp

4. Configure the logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch OFswitch1]
user@host# set interfaces ge-1/0/0.0
user@host# set interfaces ge-1/1/0.0
user@host# set interfaces xe-0/0/0.0

5. Configure the default action for packets that do not have a matching flow entry.

[edit protocols openflow switch OFswitch1]

user@host# set default-action packet-in



6. Configure OpenFlow traceoptions.

[edit protocols openflow]
user@host# set traceoptions flag all

7. Commit the configuration.

[edit]
user@host# commit

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols

openflow, and show routing-instances commands. If the output does not display the intended configuration,
repeat the instructions in this example to correct the configuration.

user@host# show interfaces

ge-1/0/0 {
encapsulation ethernet-bridge;
unit @ {
family bridge;
}
}
ge-1/1/0 {
encapsulation ethernet-bridge;
unit @ {
family bridge;
}
}
xe-0/0/0 {
encapsulation ethernet-bridge;
unit @ {
family bridge;
}
}

user@host# show protocols openflow
switch OFswitch1 {



default-action packet-in;

interfaces {
ge-1/0/0.9;
ge-1/1/0.0;
xe-0/0/0.0;

}

controller {
address 172.16.1.1;
protocol tcp;

}
}
traceoptions {
flag all;
}

user@host# show routing-instances
rt-bd-1 {
instance-type virtual-switch;
bridge-domains {
of-bridge {
vlan-id none;
interface ge-1/0/0.0;
interface ge-1/1/0.0;
interface xe-0/0/0.0;

Verification

IN THIS SECTION

Verifying that the OpenFlow Controller Connection is Up | 88

Verifying that the OpenFlow Interfaces Are Up | 88



Confirm that the configuration is working properly.
Verifying that the OpenFlow Controller Connection is Up

Purpose

Verify that the OpenFlow controller connection is up.

Action

Issue the show openflow controller operational mode command, and verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch should
automatically initiate a connection to the controller after you commit the configuration.

user@host> show openflow controller
Openflowd controller information:
Controller socket: 11

Controller IP address: 172.16.1.1
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 1

Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other

information about the controller.
Verifying that the OpenFlow Interfaces Are Up

Purpose

Verify that the OpenFlow interfaces are up.



Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow
interface is Up.

user@host> show openflow interfaces

Switch name: OFswitch

Interface Name: ge-1/0/0.0

Interface port number: 41507

Interface Hardware Address: 00:00:5e:00:53:b1
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: OFswitchl

Interface Name: ge-1/1/0.0

Interface port number: 44538

Interface Hardware Address: 00:00:5e:00:53:b2
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: OFswitch

Interface Name: xe-0/0/0.0

Interface port number: 45549

Interface Hardware Address: 00:00:5e:00:53:b3
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.



Understanding Support for OpenFlow on Devices Running Junos OS | 4
Configuring Support for OpenFlow on MX Series Routers | 79
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Configuring Support for OpenFlow on EX9200
Switches

IN THIS SECTION

Configuring the OpenFlow Interfaces | 91
Configuring the OpenFlow Protocol | 91

Configuring the OpenFlow Routing Instance | 92

The following sections detail one method to configure EX2200 switches to support OpenFlow, using
interfaces that participate solely in OpenFlow. For information about configuring hybrid interfaces,
which concurrently support OpenFlow logical interfaces and non-OpenFlow logical interfaces, see
"Configuring OpenFlow Hybrid Interfaces on EX9200 Switches" on page 138.

Before you begin configuring support for OpenFlow, ensure that the switch meets the following
hardware and software requirements:

e EX9200 switch running Junos OS Release 13.3 or a later release.

¢ OpenFlow software package with a software package release that matches the Junos OS release
running on the switch

o TCP connection between the switch and an OpenFlow controller

e Connection between the management interface of the switch and the management network, which
is reachable from the controller IP address

Configuration tasks are described in detail in the following sections:



Configuring the OpenFlow Interfaces

To configure the OpenFlow interfaces:

1. Specify the VLAN tagging to be used and configure the encapsulation type.

[edit interfaces interface-namel
user@host# set flexible-vlan-tagging
user@host# set encapsulation flexible-ethernet-services

2. Configure the logical interface and the protocol family.

[edit interfaces interface-name]
user@host# set unit wnit family ethernet-switching

3. Configure the interface as a trunk interface and specify the VLAN members associated with
OpenFlow.

[edit interfaces interface-name]
user@host# set unit wnit family ethernet-switching interface-mode trunk
user@host# set unit wnit family ethernet-switching vlan members openflow-vlan-ids

Configuring the OpenFlow Protocol

To configure support for OpenFlow, create a virtual switch instance, and specify a switch name,
containing a maximum of 60 characters. For the virtual switch instance, configure the OpenFlow
controller information and the participating logical interfaces. Optionally, configure the default action for
packets that do not have a matching flow entry, the purge timer for invalid flows, and any OpenFlow
traceoptions.

To configure the OpenFlow protocol:

1. Configure the OpenFlow controller IP address and TCP as the connection protocol.

[edit protocols openflow switch switch-name]
user@host# set controller address address

user@host# set controller protocol tcp



2. Specify the logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch switch-namel
user@host# set interfaces interface-namel.uniti

user@host# set interfaces interface-name2.uniti?

3. (Optional) Configure the default-action statement for packets that do not match on an existing flow
entry.

If you do not configure the default-action statement, the default is packet-in, which indicates that
packets that do not have a matching flow entry must be sent to the controller for processing.

[edit protocols openflow switch switch-name]
user@host# set default-action (drop | packet-in)

4, (Optional) Configure the purge-flow-timer statement, which is the number of seconds after which an
invalid flow entry is purged from the flow table.

[edit protocols openflow switch switch-namel
user@host# set purge-flow-timer seconds

5. (Optional) Configure OpenFlow traceoptions.

If you do not configure a log filename, OpenFlow trace messages are logged in the default OpenFlow
log file /var/log/ofd.

[edit protocols openflow]
user@host# set traceoptions flag flag

user@host# set traceoptions file file-name

Configuring the OpenFlow Routing Instance

To configure the virtual switch routing instance for OpenFlow traffic:

1. Configure the routing instance type as virtual-switch.

[edit routing-instances routing-instance-namel
user@host# set instance-type virtual-switch



2. Configure the OpenFlow logical interfaces that will be bound to the routing instance.

[edit routing-instances routing-instance-name]
user@host# set interface interface-namel.uniti

user@host# set interface interface-name2.uniti

3. Configure the OpenFlow VLAN members under the vlans hierarchy.

[edit routing-instances routing-instance-namel
user@host# set vlans name (vlan-id | vlan-id-list) openflow-vlan-ids

4. (Optional) If you use the NORMAL forward action to forward OpenFlow traffic using traditional Layer
2 and Layer 3 processing, configure an integrated routing and bridging (IRB) interface, and bind the
appropriate logical interface to the VLAN.

[edit routing-instances routing-instance-namel

user@host# set vlans name 13-interface irb.unit

Understanding Support for OpenFlow on Devices Running Junos OS | 4
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Example: Enabling OpenFlow on EX9200 Switches

IN THIS SECTION

Requirements | 94
Overview and Topology | 94
Configuration | 95

Verification | 99



OpenFlow is an open standard that enables you to control traffic paths in a network by creating,
deleting, and modifying flows in each device, including EX9200 switches that have an OpenFlow
software package installed, along a path. This example shows how to configure OpenFlow support on an
EX9200 switch.

Requirements

This example uses the following hardware and software components:
e An EX9200 switch running Junos OS Release 13.3 or a later release.

e An OpenFlow software package is installed on the switch, and the software package release matches
the Junos OS release running on the switch.

e The switch has a TCP connection to an OpenFlow controller, which needs to access the data plane of
the switch.

e The switch is connected to the management network through the me0 interface and is reachable
from the OpenFlow controller IP address.

Overview and Topology

In this example, you configure support for OpenFlow on an EX9200 switch. The switch has three
interfaces that are dedicated to handling OpenFlow traffic: ge-1/0/0.0, ge-1/1/0.0, and xe-0/0/0.0.

EX9200 switches require a separate routing instance for a virtual switch. This routing instance isolates
the experimental OpenFlow traffic from the normal network traffic. In this example, you configure a
routing instance for the virtual switch, 0F-ri, by using the instance type virtual-switch at the [edit routing-
instances] hierarchy level. The routing instance 0F-ri includes all of the logical interfaces participating in
OpenFlow.

The virtual switch, OFswitch1, connects to the OpenFlow controller over a TCP connection at the IP
address 198.51.100.174. The virtual switch configuration must include all of the logical interfaces
participating in OpenFlow, and the OpenFlow traffic only either enters or exits these interfaces.

A flow entry consists of a match condition against which packets entering an OpenFlow interface are
compared, and the action that is applied to packets that match the condition. Each OpenFlow interface
can have one or more flow entries. The default-action statement in the OpenFlow configuration indicates
the action the switch applies for packets that do not have a matching flow entry. If you do not explicitly
configure the default-action statement, the default action is packet-in, which indicates that packets that



have no matching flow entry are sent to the OpenFlow controller for processing. In this example, you
explicitly configure packet-in as the default action for packets that do not have a matching flow entry.

In this example, you configure OpenFlow traceoptions also. When traceoptions are configured with the
flag all statement, all OpenFlow events are captured and logged. In this example, a specific filename is
not configured for the log file. Therefore, OpenFlow events are logged in the default OpenFlow log file
at /var/log/ofd.

Configuration

IN THIS SECTION

CLI Quick Configuration | 95
Procedure | 96
Results | 97

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter comnit from configuration mode.

set interfaces ge-1/0/0 unit 0 family ethernet-switching

set interfaces ge-1/1/0 unit 0 family ethernet-switching

set interfaces xe-0/0/0 unit 0 family ethernet-switching

set routing-instances OF-ri instance-type virtual-switch

set routing-instances OF-ri interface ge-1/0/0.0

set routing-instances OF-ri interface ge-1/1/0.0

set routing-instances OF-ri interface xe-0/0/0.0

set routing-instances OF-ri vlans of-bridge vlan-id none

set protocols openflow switch OFswitchl controller address 198.51.100.174
set protocols openflow switch OFswitchl controller protocol tcp port 6633
set protocols openflow switch OFswitch1 interfaces ge-1/0/0.0

set protocols openflow switch OFswitchl interfaces ge-1/1/0.0

set protocols openflow switch OFswitch1 interfaces xe-0/0/0.0



set protocols openflow switch OFswitchl default-action packet-in

set protocols openflow traceoptions flag all

Procedure

Step-by-Step Procedure

To configure support for OpenFlow:

1. Configure the OpenFlow interfaces as Layer 2 interfaces:

[edit interfaces]

user@switch# set ge-1/0/0 unit 0 family ethernet-switching
user@switch# set ge-1/1/0 unit @ family ethernet-switching
user@switch# set xe-0/0/0 unit @ family ethernet-switching

2. Configure the virtual switch routing instance:

[edit routing-instances]

user@switch# set OF-ri instance-type virtual-switch
user@switch# set OF-ri interface ge-1/0/0.0
user@switch# set OF-ri interface ge-1/1/0.0
user@switch# set OF-ri interface xe-0/0/0.0
user@switch# set OF-ri vlans of-bridge vlan-id none

3. Configure the OpenFlow controller IP address and the connection protocol:

[edit protocols openflow switch OFswitch1]
user@switch# set controller address 198.51.100.174
user@switch# set controller protocol tcp port 6633

4. Configure the logical interfaces participating in OpenFlow under this virtual switch instance:

[edit protocols openflow switch OFswitch1]
user@switch# set interfaces ge-1/0/0.0
user@switch# set interfaces ge-1/1/0.0
user@switch# set interfaces xe-0/0/0.0



5. Configure the default action for packets that do not have a matching flow entry:

[edit protocols openflow switch OFswitch1]
user@switch# set default-action packet-in

6. Configure OpenFlow traceoptions:

[edit protocols openflow]
user@switch# set traceoptions flag all

7. Commit the configuration:

[edit]
user@switch# commit

Results

From operational mode, display the results of your configuration by entering the show configuration
interfaces, show configuration protocols openflow, and show configuration routing-instances commands. If the
output does not display the specified configuration, repeat the instructions in this example to correct
the configuration.

user@switch> show configuration interfaces

ge-1/0/0 {
unit 0 {
family ethernet-switching;
}
}
ge-1/1/0 {
unit @ {
family ethernet-switching;
}
}
xe-0/0/0 {
unit 0 {

family ethernet-switching;



user@switch> show configuration protocols openflow
switch OFswitchl {
default-action {

packet-in;
}
interfaces {
ge-1/0/0.0;
ge-1/1/0.0;
xe-0/0/0.0;
}

controller {
address 198.51.100.174;
protocol tcp {

port 6633;
}
}
traceoptions {
flag all;
}

user@switch> show configuration routing-instances
OF-ri {

instance-type virtual-switch;

interface ge-1/0/0.0;

interface ge-1/1/0.0;

interface xe-0/0/0.0;

vlans {

of-bridge {
vlan-id none;



Verification

IN THIS SECTION

Verifying the OpenFlow Controller Connection | 99

Verifying the OpenFlow Interfaces | 100

Confirm that the configuration is working properly.
Verifying the OpenFlow Controller Connection

Purpose

Verify that the OpenFlow controller connection is up.

Action

Issue the show openflow controller operational mode command to verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch
automatically initiates a connection to the controller after you commit the configuration.

user@switch> show openflow controller
Openflowd controller information:
Controller socket: 11

Controller IP address: 198.51.100.174
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 5

Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.



Verifying the OpenFlow Interfaces

Purpose

Verify that the OpenFlow interfaces are up.

Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow
interface is Up.

user@switch> show openflow interfaces

Switch name: OFswitchi

Interface Name: ge-1/0/0.0

Interface port number: 41507

Interface Hardware Address: 00:00:5E:00:53:b1
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: OFswitchl

Interface Name: ge-1/1/0.0

Interface port number: 44538

Interface Hardware Address: 00:00:5E:00:53:b2
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: OFswitchil

Interface Name: xe-0/0/0.0

Interface port number: 45549

Interface Hardware Address: 00:00:5E:00:53:b3
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up



Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Configuring Support for OpenFlow on EX9200 Switches | 90
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Configuring Support for OpenFlow on QFX5100 and
EX4600 Switches

IN THIS SECTION

Configuring the OpenFlow Interfaces | 102

Configuring the OpenFlow Protocol | 102

This topic describes how to configure QFX5100 and EX4600 switches with interfaces that participate
solely in OpenFlow.

Before configuring support for OpenFlow, ensure that the switch meets the following requirements:

e QFX5100 switch running Junos OS Release 14.1X53-D10 or later, or EX4600 switch running Junos
OS Release 17.1R1 or later

e OpenFlow software package with a release that matches the Junos OS release running on the switch
o TCP connection between the switch and an OpenFlow controller

e Connection between the management interface (emO or em1) of the switch and the management
network



Configuration tasks are described in detail in the following sections:

Configuring the OpenFlow Interfaces

You must configure interfaces participating in OpenFlow as Layer 2 interfaces. On the switches, you
configure the interfaces with protocol family ethernet-switching. Also, you can configure only a single
logical port by specifying logical unit number O.

To configure the OpenFlow interfaces:

e Configure the logical interface and protocol family.

[edit interfaces interface-name]
user@switch# set unit 0 family ethernet-switching

Configuring the OpenFlow Protocol

To configure support for OpenFlow, you must create a virtual switch, and then, configure the connection
with the OpenFlow controller and the logical interfaces participating in OpenFlow for the virtual switch.
Optionally, configure the default action for packets that do not match a flow entry, the purge timer for
invalid flows, and any OpenFlow traceoptions.

To configure the OpenFlow protocol:

1. Create an OpenFlow virtual switch, and specify a switch name, which can contain a maximum of 60
characters.

[edit protocols openflow]
user@switch# set switch switch-name

2. Configure the OpenFlow controller IP address and the connection protocol.
[edit protocols openflow switch switch-namel

user@switch# set controller address address

user@switch# set controller protocol tcp



. Specify the logical interfaces participating in OpenFlow under this virtual switch.

[edit protocols openflow switch switch-namel
user@switch# set interfaces interface-namel.0

user@switch# set interfaces interface-name2.0

. (Optional) Configure the default-action statement for packets that do not match an existing flow entry.

If you do not configure the default-action statement, the default is packet-in, which indicates that
packets with no matching flow entry are sent to the controller for processing.

[edit protocols openflow switch switch-namel]

user@switch# set default-action (drop | packet-in)

. (Optional) Configure the purge-flow-timer statement, which specifies the number of seconds after
which an invalid flow is purged from the flow table.

[edit protocols openflow switch switch-name]
user@switch# set purge-flow-timer seconds

. (Optional) Configure OpenFlow traceoptions.

If you do not configure a log file by specifying its filename, OpenFlow trace messages are logged in
the default OpenFlow log file /var/log/ofd .

[edit protocols openflow]
user@switch# set traceoptions flag all
user@switch# set traceoptions file file-name

Example: Enabling OpenFlow on QFX5100 and EX4600 Switches | 104
Understanding Support for OpenFlow on Devices Running Junos OS | 4
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)



Example: Enabling OpenFlow on QFX5100 and
EX4600 Switches

IN THIS SECTION

Requirements | 104
Overview | 105
Configuration | 105
Verification | 109

OpenFlow is an open standard that enables you to control traffic paths in a network by creating,
deleting, and modifying flows in each device along a path. This example shows how to configure
OpenFlow support on QFX5100 and EX4600 switches.

To isolate and control OpenFlow traffic on the switches, you configure a virtual switch. You also
configure a Secure Sockets Layer (SSL) or TCP/IP connection between the virtual switch and a remote
OpenFlow controller. Using this connection, the OpenFlow controller can access the flows in the virtual
switch.

Requirements

This example uses the following hardware and software components:

e A QFX5100 switch running Junos OS Release 14.1X53-D10 or later, or an EX4600 switch running
Junos OS Release 17.1R1 or later.

¢ An OpenFlow software package is installed on the switch, and the release of this package matches
the Junos OS release running on the switch.

e A TCP connection between the switch and an OpenFlow controller.

e A connection between the management interface (emO or em1) of the switch and the management
network.



Overview

In this example, you configure support for OpenFlow on a Juniper Networks switch. The switch has
three interfaces that are dedicated to handling OpenFlow traffic: xe-0/0/10.0, xe-0/0/11.0, and
xe-0/0/12.0. Note that on these switches, you can configure only a single logical interface, using logical
unit number O for each OpenFlow interface.

In an OpenFlow topology, a virtual switch is used to isolate and control OpenFlow traffic. You configure
the OpenFlow virtual switch and OpenFlow protocol statements at the [edit protocols openflow] hierarchy
level.

Virtual switch 100 also connects to an OpenFlow controller over a TCP connection at the IP address
10.51.100.174. The virtual switch configuration must include all of the logical interfaces participating in
OpenFlow; OpenFlow traffic enters and exits only through these interfaces.

A flow entry consists of a match condition against which packets entering an OpenFlow interface are
compared, and the action that is applied to packets that match the condition. Each OpenFlow interface
can have one or more flow entries. The default-action statement in the OpenFlow configuration indicates
the action the switch applies to packets that do not have a matching flow entry. This example uses the
drop option, which specifies that packets that do not match a flow entry are dropped.

This example also configures OpenFlow traceoptions, along with the flag all statement, which captures
and logs all OpenFlow events. This example does not configure a specific filename for the log file. As a
result, OpenFlow events are logged in the default OpenFlow log directory /var/log/ofd.

Configuration

IN THIS SECTION

CLI Quick Configuration | 106
Procedure | 106
Results | 107



CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces xe-0/0/10 unit @ family ethernet-switching

set interfaces xe-0/0/11 unit @ family ethernet-switching

set interfaces xe-0/0/12 unit @ family ethernet-switching

set protocols openflow switch 100 controller address 10.51.100.174
set protocols openflow switch 100 controller protocol tcp

set protocols openflow switch 100 interfaces xe-0/0/10.0

set protocols openflow switch 100 interfaces xe-0/0/11.0

set protocols openflow switch 100 interfaces xe-0/0/12.0

set protocols openflow switch 100 default-action drop

set protocols openflow traceoptions flag all

Procedure

Step-by-Step Procedure

To configure support for OpenFlow:

1. Configure the OpenFlow interfaces as Layer 2 interfaces.

[edit interfaces]

user@switch# set xe-0/0/10 unit @ family ethernet-switching
user@switch# set xe-0/0/11 unit @ family ethernet-switching
user@switch# set xe-0/0/12 unit @ family ethernet-switching

2. Configure an OpenFlow virtual switch named 100.

[edit protocols openflow]
user@switch# set switch 100



3. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch 100]
user@switch# set controller address 10.51.100.174
user@switch# set controller protocol tcp

4. Configure the logical interfaces in this virtual switch that participate in OpenFlow.

[edit protocols openflow switch 100]

user@switch# set interfaces xe-0/0/10.0
user@switch# set interfaces xe-0/0/11.0
user@switch# set interfaces xe-0/0/12.0

5. Configure the default action for packets that do not have a matching flow entry.

[edit protocols openflow switch 100]
user@switch# set default-action drop

6. Configure OpenFlow traceoptions.

[edit protocols openflow]
user@switch# set traceoptions flag all

7. Commit the configuration.

[edit]
user@switch# commit

Results

From operational mode, confirm your configuration by entering the show configuration interfacesand show
configuration protocols openflow commands.

user@switch> show configuration interfaces
xe-0/0/10 {
unit @ {



family ethernet-switching;

}
}
xe-0/0/11 {
unit @ {
family ethernet-switching;
}
}
xe-0/0/12 {
unit 0 {
family ethernet-switching;
}
}

user@switch> show configuration protocols openflow
switch 100 {
default-action {

drop;
}
interfaces {
xe-0/0/10.0;
xe-0/0/11.0;
xe-0/0/12.0;
}
controller {
protocol {
tep {
}
address 10.51.100.174;
}
}
traceoptions {
flag all;



Verification

IN THIS SECTION

Verifying That the OpenFlow Controller Connection Is Up | 109

Verifying that the OpenFlow Interfaces Are Up | 110

Confirm that the configuration is working properly.
Verifying That the OpenFlow Controller Connection Is Up

Purpose

Verify that the OpenFlow controller connection is up.

Action

Issue the show openflow controller operational mode command, and verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch
automatically initiates a connection to the controller after you commit the configuration.

user@switch> show openflow controller
Openflowd controller information:
Controller socket: 12

Controller IP address: 10.51.100.174
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 4
Controller role: equal

Negotiated version: 4

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.



Verifying that the OpenFlow Interfaces Are Up

Purpose

Verify that the OpenFlow interfaces are up.

Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow
interface is Up.

user@switch> show openflow interfaces

Switch name: 100

Interface Name: xe-0/0/10.0

Interface port number: 41507

Interface Hardware Address: 00:00:5e:00:53:00
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: 100

Interface Name: xe-0/0/11.0

Interface port number: 44538

Interface Hardware Address: 00:00:5e:00:53:01
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: 100

Interface Name: xe-0/0/12.0

Interface port number: 45549

Interface Hardware Address: 00:00:5e:00:53:02
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up



Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Configuring Support for OpenFlow on QFX5100 and EX4600 Switches | 101
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Configuring Support for OpenFlow on EX4550
Switches

IN THIS SECTION

Configuring the OpenFlow Interfaces | 112

Configuring the OpenFlow Protocol | 112

The following sections configure EX4550 switches to support OpenFlow using interfaces that
participate solely in OpenFlow.

Before configuring support for OpenFlow, ensure that the switch meets the following requirements:
e EX4550 switch running Junos OS Release 13.2X51-D20 or a later release

e OpenFlow software package with a software package release that matches the Junos OS release of
the device on which it is installed

o TCP connection between the switch and an OpenFlow controller

e Connection between the management interface of the switch and the management network, which
is reachable from the controller IP address



Configuration tasks are described in detail in the following sections:

Configuring the OpenFlow Interfaces

You must configure interfaces participating in OpenFlow as Layer 2 interfaces. On EX Series Ethernet
Switches, you configure the interfaces with protocol family ethernet-switching. On EX4550 switches, you
can configure only a single logical port using logical unit number O.

To configure the OpenFlow interfaces:

e Configure the logical interface and the protocol family.

[edit interfaces interface-name]
user@host# set unit 0 family ethernet-switching

Configuring the OpenFlow Protocol

To configure support for OpenFlow, create a virtual switch instance, and specify a switch name, which
must be 60 characters or less. For the virtual switch instance, configure the OpenFlow controller
information and the participating logical interfaces. Optionally, configure the default action for packets
that do not match a flow entry, the purge timer for invalid flows, and any OpenFlow traceoptions.

To configure the OpenFlow protocol:

1. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch switch-name]
user@host# set controller address address
user@host# set controller protocol tcp

2. Specify the logical interfaces participating in OpenFlow under this virtual switch instance.
[edit protocols openflow switch switch-namel

user@host# set interfaces interface-namei.0

user@host# set interfaces interface-name2.0

3. (Optional) Configure the default-action statement for packets that do not match on an existing flow
entry.



If you do not configure the default-action statement, the default is packet-in, which indicates that
packets with no matching flow entry must be sent to the controller for processing.

[edit protocols openflow switch switch-name]
user@host# set default-action (drop | packet-in)

. (Optional) Configure the purge-flow-timer statement, which is the number of seconds after which an
invalid flow is purged from the flow table.

[edit protocols openflow switch switch-namel]

user@host# set purge-flow-timer seconds

. (Optional) Configure OpenFlow traceoptions.

If you do not configure a log filename, OpenFlow trace messages are logged in the default OpenFlow
log file /var/log/ofd .

[edit protocols openflow]
user@host# set traceoptions flag all

user@host# set traceoptions file file-name

Example: Enabling OpenFlow on EX4550 Switches | 113
Understanding Support for OpenFlow on Devices Running Junos OS | 4
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)

Example: Enabling OpenFlow on EX4550 Switches

IN THIS SECTION

Requirements | 114
Overview | 114



Configuration | 115
Verification | 118

OpenFlow is an open standard that allows you to control traffic paths in a network by creating, deleting,
and modifying flows in each device, including EX4550 switches, along a path. This example shows how
to configure OpenFlow support on an EX4550 switch.

Requirements

This example uses the following hardware and software components:
e An EX4550 switch running Junos OS Release 13.2X51-D15 or a later release.

¢ An OpenFlow software package with a software package release that matches the Junos OS release
of the device on which it is installed.

e A TCP connection between the switch and an OpenFlow controller, which needs to access the data
plane of the switch.

¢ A connection between the meO interface of the switch and the management network.

Overview

In this example, you configure support for OpenFlow on an EX4550 switch. The switch has three
interfaces that are dedicated to handling OpenFlow traffic: xe-0/0/4.0, xe-0/0/5.0, and xe-0/0/6.0.
Note that on EX4550 switches, you can only configure a single logical unit using logical unit number O
for OpenFlow interfaces.

In an OpenFlow topology, a virtual switch is used to isolate and control OpenFlow traffic. You configure
the OpenFlow virtual switch and OpenFlow protocol statements at the [edit protocols openflow] hierarchy
level. In this example, the virtual switch, 100, is assigned a default VLAN, which acts as a logically
separate flood domain. The assignment of the default VLAN to virtual switch 100 is automatic, and no
configuration is required to set up the default VLAN.

Virtual switch 100 also connects to the controller over a TCP connection at the IP address
198.51.100.174. The virtual switch configuration must include all of the logical interfaces participating
in OpenFlow, and OpenFlow traffic will only enter or exit from these interfaces.



A flow entry consists of a match condition against which packets entering an OpenFlow interface are
compared, and the action that is applied to packets that match the condition. Each OpenFlow interface
can have one or more flow entries. The default-action statement in the OpenFlow configuration indicates
the action the switch applies to packets that do not have a matching flow entry. If you omit the default-
action statement, the default action is packet-in, which means that packets that have no matching flow
entry are sent to the controller for processing. This example explicitly configures packet-in as the default
action for packets that do not have a matching flow entry.

This example also configures OpenFlow traceoptions, along with the flag all statement, which is meant
to capture and log all OpenFlow events. Since the example does not configure a specific filename for the
log file, OpenFlow events are logged in the default OpenFlow log directory /var/log/ofd.

Configuration

IN THIS SECTION

CLI Quick Configuration | 115
Procedure | 116

Results | 117

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces xe-0/0/4 unit 0 family ethernet-switching

set interfaces xe-0/0/5 unit 0 family ethernet-switching

set interfaces xe-0/0/6 unit 0 family ethernet-switching

set protocols openflow switch 100 controller address 198.51.100.174
set protocols openflow switch 100 controller protocol tcp

set protocols openflow switch 100 interfaces xe-0/0/4.0

set protocols openflow switch 100 interfaces xe-0/0/5.0

set protocols openflow switch 100 interfaces xe-0/0/6.0



set protocols openflow switch 100 default-action packet-in

set protocols openflow traceoptions flag all

Procedure

Step-by-Step Procedure

To configure support for OpenFlow:

1. Configure the OpenFlow interfaces as Layer 2 interfaces.

[edit interfaces]

user@switch# set xe-0/0/4 unit 0 family ethernet-switching
user@switch# set xe-0/0/5 unit @ family ethernet-switching
user@switch# set xe-0/0/6 unit @ family ethernet-switching

2. Configure an OpenFlow virtual switch.

[edit protocols openflow]
user@switch# set switch 100

3. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch 100]
user@switch# set controller address 198.51.100.174
user@switch# set controller protocol tcp

4. Configure the logical interfaces participating in OpenFlow under this virtual switch.

[edit protocols openflow switch 100]

user@switch# set interfaces xe-0/0/4.0
user@switch# set interfaces xe-0/0/5.0
user@switch# set interfaces xe-0/0/6.0



5. Configure the default action for packets that do not have a matching flow entry.

[edit protocols openflow switch 100]
user@switch# set default-action packet-in

6. Configure OpenFlow traceoptions.

[edit protocols openflow]
user@switch# set traceoptions flag all

7. Commit the configuration.

[edit]
user@switch# commit

Results
From operational mode, confirm your configuration by entering the show configuration interfaces and show

configuration protocols openflow commands. If the output does not display the intended configuration,
repeat the instructions in this example to correct the configuration.

user@switch> show configuration interfaces

xe-0/0/4 {
unit @ {
family ethernet-switching;
}
}
xe-0/0/5 {
unit 0 {
family ethernet-switching;
}
}
xe-0/0/6 {
unit @ {

family ethernet-switching;



user@switch> show configuration protocols openflow
switch 100 {
default-action packet-in;
interfaces {
xe-0/0/4.0;
xe-0/0/5.0;
xe-0/0/6.0;
}

controller {
address 198.51.100.174;
protocol tcp;
}

traceoptions {
flag all;

Verification

IN THIS SECTION

Verifying that the OpenFlow Controller Connectionis Up | 118

Verifying that the OpenFlow Interfaces Are Up | 119

Confirm that the configuration is working properly.

Verifying that the OpenFlow Controller Connection is Up

Purpose

Verify that the OpenFlow controller connection is up.



Action

Issue the show openflow controller operational mode command, and verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch should
automatically initiate a connection to the controller after you commit the configuration.

user@switch> show openflow controller
Openflowd controller information:
Controller socket: 12

Controller IP address: 198.51.100.174
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 4

Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.

Verifying that the OpenFlow Interfaces Are Up

Purpose

Verify that the OpenFlow interfaces are in the Up state.

Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow

interface is Up.

user@switch> show openflow interfaces

Switch name: 100

Interface Name: xe-0/0/4.0

Interface port number: 41507

Interface Hardware Address: 00:00:5e:00:53:00
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled

Interface media type: Fiber



Interface state: Up

Switch name: 100

Interface Name: xe-0/0/5.0

Interface port number: 44538

Interface Hardware Address: 00:00:5e:00:53:01
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: 100

Interface Name: xe-0/0/6.0

Interface port number: 45549

Interface Hardware Address: 00:00:5e:00:53:02
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Meaning

The output shows that the state of the OpenFlow interfaces is Up, in addition to other information about
the interfaces.

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Configuring Support for OpenFlow on EX4550 Switches | 111
OpenFlow Operational Mode Commands | 183

openflow (Protocols OpenFlow)



CHAPTER

Configuring OpenFlow Hybrid

Interfaces

Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122
Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 123

Example: Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 127
Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 138

Example: Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 142




Understanding OpenFlow Hybrid Interfaces on
Devices Running Junos OS

On Juniper Networks EX9200 Ethernet Switches and on MX Series 5G Universal Routing Platforms that
support OpenFlow, you can configure physical interfaces that support multiple logical interfaces as
hybrid interfaces. A hybrid interface concurrently supports OpenFlow logical interfaces and non-
OpenFlow logical interfaces.

On a hybrid interface, the OpenFlow protocol and the non-OpenFlow protocols essentially exist
independently. Traffic does not get forwarded across OpenFlow and non-OpenFlow logical interfaces.
Instead VLANSs and VLAN tags are used to distinguish the OpenFlow traffic from the normal traffic. To
accomplish this, you must enable the reception and transmission of 802.1Q VLAN-tagged frames on all
interfaces, including both hybrid and non-hybrid interfaces. You must also configure separate virtual
switch routing instances for OpenFlow traffic and for normal traffic, which serve to separate the VLAN
ID space.

On devices using hybrid interfaces, traffic entering an interface must be VLAN-tagged. The VLAN ID
differentiates the OpenFlow traffic from the normal traffic, and on the hybrid interface, the VLAN ID
also determines the associated logical interface. Once the logical interface is known, the traffic is
forwarded accordingly. The device forwards OpenFlow traffic according to OpenFlow flow entries, and it
forwards normal traffic using traditional Layer 2 and Layer 3 processing. If you do not configure a native
VLAN, untagged packets are dropped.

On a hybrid interface, you configure a logical interface as a trunk interface, which accepts and forwards
tagged packets from multiple VLANSs. Additionally, you can configure certain non-OpenFlow logical
interfaces as Layer 3 subinterfaces that perform traditional Layer 3 or MPLS-based forwarding.

To configure a logical interface to receive and forward VLAN-tagged frames, you must bind a VLAN ID,
or a range or list of VLAN IDs, to the logical interface. OpenFlow interfaces must have a different set of
VLANSs from normal interfaces. On a hybrid interface, OpenFlow traffic can only exit from an interface
that has the same VLAN ID range as that of the ingress interface.

A hybrid interface configuration with multiple logical interfaces permits OpenFlow and non-OpenFlow
traffic to traverse the same interface while keeping the traffic in separate routing or bridging domains.
One advantage of using hybrid interfaces is that you can use fewer physical interfaces where port
density is an issue. However, using hybrid interfaces requires some additional configuration, and
untagged traffic entering a hybrid port cannot be forwarded according to OpenFlow flow entries.
Additionally, several physical port properties such as Layer 1 statistics are reported for all logical
interfaces on that physical interface. Thus, when you configure a physical interface in hybrid mode,
these properties are reported for all OpenFlow and non-OpenFlow logical interfaces on that physical
interface. These properties include queue drops, framing errors, CRC errors, and collisions. When using



hybrid interfaces, if you use the Link Layer Discovery Protocol (LLDP) for topology discovery, you must
ensure that any LLDP frames entering a hybrid interface are tagged appropriately.

Understanding Support for OpenFlow on Devices Running Junos OS | 4
Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 123
Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 138

Binding VLAN IDs to Logical Interfaces

Configuring OpenFlow Hybrid Interfaces on MX
Series Routers

IN THIS SECTION

Configuring the Hybrid Physical Interface | 124
Configuring the Hybrid Interface Logical Units | 124
Configuring the Non-Hybrid Interfaces | 125
Configuring OpenFlow | 125

Configuring the Virtual Switch Routing Instances | 126

On MX Series routers that support OpenFlow, you can configure a physical interface as a hybrid
interface that concurrently supports OpenFlow logical interfaces and non-OpenFlow logical interfaces. If
you configure an OpenFlow hybrid interface on a device running Junos OS, you must enable the
reception and transmission of 802.1Q VLAN-tagged frames on all interfaces, including both hybrid and
non-hybrid interfaces, and you must configure a virtual switch routing instance for the OpenFlow traffic
and a separate virtual switch routing instance for the normal traffic.

The following sections detail configuring an MX Series router that supports OpenFlow with a mix of
hybrid and normal interfaces:


https://www.juniper.net/documentation/en_US/junos/topics/task/configuration/interfaces-binding-a-vlan-id-to-a-logical-interface.html

Configuring the Hybrid Physical Interface

To configure the hybrid physical interface:

1. Enable VLAN tagging.

Configure vlan-tagging to support 802.1Q VLAN single-tag frames for both OpenFlow and non-
OpenFlow traffic, or configure flexible-vlan-tagging to support both 802.1Q VLAN single-tag and
dual-tag frames.

[edit interfaces interface-name]
user@host# set (vlan-tagging | flexible-vlan-tagging)

2. Configure flexible Ethernet services encapsulation to enable multiple per-unit Ethernet
encapsulations.

[edit interfaces interface-name]
user@host# set encapsulation flexible-ethernet-services

Configuring the Hybrid Interface Logical Units

On a hybrid interface, you configure an OpenFlow or non-OpenFlow logical interface as a Layer 2 trunk
interface. Additionally, you can configure a non-OpenFlow logical interface as a Layer 3 subinterface
that performs traditional Layer 3 or MPLS-based forwarding. To configure a logical interface to receive
and forward VLAN-tagged frames, you must bind a VLAN ID, or a range or list of VLAN IDs, to the
logical interface. Configure Layer 2 interfaces using family bridge on MX Series routers.

To configure the hybrid interface logical units:

1. Configure the OpenFlow logical interfaces and any non-OpenFlow Layer 2 logical interfaces, and
specify the interface mode and VLAN membership.

[edit interfaces interface-name]
user@host# set unit wnit family bridge interface-mode trunk
user@host# set unit wnit family bridge vlan-id-list vian-ids



2. Configure any non-OpenFlow Layer 3 logical interfaces, and specify the VLAN membership.

[edit interfaces interface-namel
user@host# set unit wnit (vlan-id | vlan-id-list | vlan-id-range) vlan-ids

user@host# set unit wnit family inet address address

Configuring the Non-Hybrid Interfaces

Non-hybrid interfaces support either OpenFlow traffic or non-OpenFlow traffic, but not both

simultaneously.
To configure the non-hybrid interfaces:

1. Configure interfaces that support only OpenFlow traffic as Layer 2 trunk interfaces, and specify the
interface mode and VLAN membership.

[edit interfaces interface-name]

user@host# set vlan-tagging

user@host# set unit wnit family bridge interface-mode trunk
user@host# set unit wnit family bridge vlan-id-list vian-ids

2. Configure interfaces that support only normal traffic, and specify the interface mode for the Layer 2
interfaces and the VLAN membership.

For example:

[edit interfaces interface-name]

user@host# set vlan-tagging

user@host# set unit wnit family bridge interface-mode trunk
user@host# set unit wnit family bridge vlan-id-list vian-ids

Configuring OpenFlow

To configure the OpenFlow virtual switch instance:



1. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch switch-namel
user@host# set controller address address

user@host# set controller protocol tcp port port

2. Specify all logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch switch-namel

user@host# set interfaces interface-name

Configuring the Virtual Switch Routing Instances

Configure separate virtual switch routing instances for the OpenFlow traffic and the non-OpenFlow
traffic. The configured interface names must include a logical unit number.

To configure the virtual switch routing instances:

1. Configure the virtual switch routing instance for the OpenFlow traffic, and specify the OpenFlow
logical interfaces and VLANS.

[edit routing-instances of-routing-instance-name]

user@host# set instance-type virtual-switch

user@host# set interface of-interface-namel

user@host# set interface of-interface-name2

user@host# set bridge-domains name vlan-id-list of-vlan-id-list

2. Configure the virtual switch routing instance for the non-OpenFlow traffic, and specify the non-
OpenFlow logical interfaces and VLANSs.

[edit routing instances non-of-routing-instance-name]

user@host# set instance-type virtual-switch

user@host# set interface non-of-interface-namel

user@host# set interface non-of-interface-name2

user@host# set bridge-domains name vlan-id-list non-of-vlan-id-1ist



Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122
Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 123

Example: Configuring OpenFlow Hybrid Interfaces
on MX Series Routers

IN THIS SECTION

Requirements | 127
Overview | 128
Configuration | 129
Verification | 135

On MX series routers that support OpenFlow, you can configure physical interfaces that support
multiple logical interfaces as hybrid interfaces. A hybrid interface concurrently supports both OpenFlow
logical interfaces and non-OpenFlow logical interfaces, thus allowing OpenFlow and non-OpenFlow
traffic to traverse the same interface.

Hybrid interfaces enable you to use your physical interfaces more efficiently, especially in a situation
where port density is an issue.

This example shows how to configure an MX Series router with OpenFlow hybrid interfaces.

Requirements

This example uses the following hardware and software components:
e MX240 router running Junos OS Release 13.3 or a later release

o OpenFlow software package with a software package release that matches the Junos OS release of
the device on which it is installed

e TCP connection between the router and an OpenFlow controller



e Connection between the fxpO management interface of the router and the management network,
which is reachable from the OpenFlow controller IP address

Overview

In this example, you configure an MX240 router with a hybrid interface, ge-1/0/1, an OpenFlow
interface, ge-1/0/2, and a non-OpenFlow interface, ge-1/0/3. On the hybrid interface, logical interface
ge-1/0/1.0 participates in OpenFlow, and logical interfaces ge-1/0/1.1 and ge-1/0/1.2 do not
participate in OpenFlow.

When using OpenFlow hybrid interfaces, you use VLANSs to distinguish the OpenFlow traffic from the
normal traffic. Thus, you must enable VLAN tagging on all interfaces, and traffic entering the interfaces
must be vlan-tagged. Untagged traffic entering the hybrid interface is dropped. In this example, you
configure the hybrid interface using flexible-vlan-tagging, which enables VLAN tagging and supports both
802.1Q VLAN single-tag and dual-tag frames for all traffic on the interface. You configure interfaces
ge-1/0/2 and ge-1/0/3 using vlan-tagging.

You configure the hybrid interface encapsulation as flexible Ethernet services. Note that for interfaces
with this encapsulation, all VLAN IDs are valid. VLAN IDs from 1 through 511 are no longer reserved for
normal VLANS. In this example, VLANSs 1 through 100 are used for OpenFlow traffic, and VLANs 101
through 200 and VLAN 300 are used for normal traffic.

All logical interfaces except ge-1/0/1.2 are configured as Layer 2 trunk interfaces using family bridge and
interface mode trunk. Logical interfaces ge-1/0/1.0 and ge-1/0/2.0 participate in OpenFlow and receive
and forward traffic with OpenFlow VLAN IDs 1 through 100. Logical interfaces ge-1/0/1.1 and
ge-1/0/3.0 do not participate in OpenFlow and receive and forward traffic with non-OpenFlow VLAN
IDs 101 through 200.

ge-1/0/1.2 is a Layer 3 logical interface with IP address 198.51.100.10/24 that performs Layer 3
routing. This interface does not participate in OpenFlow and routes traffic with VLAN ID 300.

Table 40 on page 128 summarizes the logical interfaces, traffic type, and associated VLAN IDs.

Table 40: Summary of Logical Interfaces

Logical Interface Traffic Type VLANSs

ge-1/0/1.0 OpenFlow 1 through 100

ge-1/0/1.1 non-OpenFlow 101 through 200



Table 40: Summary of Logical Interfaces (Continued)

Logical Interface Traffic Type VLANSs
ge-1/0/1.2 non-OpenFlow 300

ge-1/0/2.0 OpenFlow 1 through 100
ge-1/0/3.0 non-OpenFlow 101 through 200

You configure the OpenFlow virtual switch and OpenFlow protocol statements at the [edit protocols
openflow] hierarchy level. The virtual switch, OFswitch2, connects to the controller over a TCP connection
at IP address 172.16.1.1. The virtual switch configuration must include all of the logical interfaces
participating in OpenFlow, which includes ge-1/0/1.0 and ge-1/0/2.0.

When configuring OpenFlow on MX Series routers, you must configure a virtual switch routing instance
for the OpenFlow traffic that isolates it from the normal network traffic. Additionally, when using hybrid
interfaces, you configure both a virtual switch routing instance for the OpenFlow traffic and also a
separate virtual switch routing instance for the normal traffic. In this example, you configure routing
instance rt1 for the OpenFlow traffic and routing instance rt2 for the normal traffic.

Routing instance rt1 includes the interfaces participating in OpenFlow, ge-1/0/1.0 and ge-1/0/2.0.
Within the routing instance you configure the bridge domain to include all OpenFlow VLANSs 1 through
100. Routing instance rt2 includes the Layer 2 interfaces that do not participate in OpenFlow,
ge-1/0/1.1 and ge-1/0/3.0. Within the routing instance you configure the bridge domain to include the
non-OpenFlow VLANs 101 through 200.

@ NOTE: In order to direct OpenFlow traffic, the OpenFlow controller must install flow
entries that select the appropriate traffic and forward it to the correct OpenFlow
interface.

Configuration

IN THIS SECTION

CLI Quick Configuration | 130



Configuring the Interfaces | 131

Configuring OpenFlow | 132

Configuring the Virtual Switch Routing Instances | 132
Results | 133

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces ge-1/0/1 flexible-vlan-tagging

set interfaces ge-1/0/1 encapsulation flexible-ethernet-services

set interfaces ge-1/0/1 unit @ family bridge interface-mode trunk
set interfaces ge-1/0/1 unit 0 family bridge vlan-id-list 1-100

set interfaces ge-1/0/1 unit 1 family bridge interface-mode trunk
set interfaces ge-1/0/1 unit 1 family bridge vlan-id-list 101-200
set interfaces ge-1/0/1 unit 2 vlan-id 300

set interfaces ge-1/0/1 unit 2 family inet address 198.51.100.10/24
set interfaces ge-1/0/2 vlan-tagging

set interfaces ge-1/0/2 unit @ family bridge interface-mode trunk
set interfaces ge-1/0/2 unit 0 family bridge vlan-id-list 1-100

set interfaces ge-1/0/3 vlan-tagging

set interfaces ge-1/0/3 unit @ family bridge interface-mode trunk
set interfaces ge-1/0/3 unit @ family bridge vlan-id-list 101-200
set protocols openflow switch OFswitch2 controller address 172.16.1.1
set protocols openflow switch OFswitch2 controller protocol tcp port 6633
set protocols openflow switch OFswitch2 interfaces ge-1/0/1.0

set protocols openflow switch OFswitch2 interfaces ge-1/0/2.0

set routing-instances rt1 instance-type virtual-switch

set routing-instances rt1 interface ge-1/0/1.0

set routing-instances rt1 interface ge-1/0/2.0

set routing-instances rt1 bridge-domains bd-of vlan-id-list 1-100
set routing-instances rt2 instance-type virtual-switch

set routing-instances rt2 interface ge-1/0/1.1

set routing-instances rt2 interface ge-1/0/3.0

set routing-instances rt2 bridge-domains bd-nonof vlan-id-list 101-200



Configuring the Interfaces

Step-by-Step Procedure

To configure the interfaces:

1. On the hybrid physical interface, enable VLAN tagging and configure the encapsulation.

[edit interfaces ge-1/0/1]
user@host# set flexible-vlan-tagging
user@host# set encapsulation flexible-ethernet-services

2. Configure OpenFlow logical interface ge-1/0/1.0 as a Layer 2 trunk that supports VLANs 1-100.

[edit interfaces ge-1/0/1]
user@host# set unit @ family bridge interface-mode trunk
user@host# set unit @ family bridge vlan-id-list 1-100

3. Configure non-OpenFlow logical interface ge-1/0/1.1 as a Layer 2 trunk that supports VLANs
101-200.

[edit interfaces ge-1/0/1]
user@host# set unit 1 family bridge interface-mode trunk
user@host# set unit 1 family bridge vlan-id-list 101-200

4. Configure non-OpenFlow logical interface ge-1/0/1.2 as a Layer 3 subinterface.

[edit interfaces ge-1/0/1]
user@host# set unit 2 vlan-id 300
user@host# set unit 2 family inet address 198.51.100.10/24

5. On ge-1/0/2, enable VLAN tagging, and configure the logical interface as a Layer 2 trunk that
supports VLANs 1-100.

[edit interfaces ge-1/0/2]
user@host# set vlan-tagging



user@host# set unit @ family bridge interface-mode trunk
user@host# set unit 0 family bridge vlan-id-list 1-100

6. On ge-1/0/3, enable VLAN tagging, and configure the logical interface as a Layer 2 trunk that
supports VLANs 101-200:

[edit interfaces ge-1/0/3]

user@host# set vlan-tagging

user@host# set unit 0 family bridge interface-mode trunk
user@host# set unit @ family bridge vlan-id-list 101-200

Configuring OpenFlow

Step-by-Step Procedure

To configure OpenFlow:

1. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch OFswitch2]
user@host# set controller address 172.16.1.1
user@host# set controller protocol tcp port 6633

2. Specify the logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch OFswitch2]
user@host# set interfaces ge-1/0/1.0
user@host# set interfaces ge-1/0/2.0

Configuring the Virtual Switch Routing Instances

Step-by-Step Procedure

To configure the virtual switch routing instances:



1. Configure the virtual switch routing instance for the OpenFlow traffic.

[edit]

user@host# set routing-instances rt1 instance-type virtual-switch
user@host# set routing-instances rt1 interface ge-1/0/1.0

user@host# set routing-instances rt1 interface ge-1/0/2.0

user@host# set routing-instances rt1 bridge-domains bd-of vlan-id-list 1-100

2. Configure the virtual switch routing instance for the non-OpenFlow traffic.

[edit]

user@host# set routing-instances rt2 instance-type virtual-switch

user@host# set routing-instances rt2 interface ge-1/0/1.1

user@host# set routing-instances rt2 interface ge-1/0/3.0

user@host# set routing-instances rt2 bridge-domains bd-nonof vlan-id-list 101-200

3. Commit the configuration.

[edit]
user@host# commit

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols
openflow, and show routing-instances commands. If the output does not display the intended configuration,
repeat the configuration instructions in this example to correct the configuration.

user@host# show interfaces
ge-1/0/1 {
flexible-vlan-tagging;
encapsulation flexible-ethernet-services;
unit @ {
family bridge {
interface-mode trunk;
vlan-id-list 1-100;

unit 1 {



family bridge {
interface-mode trunk;
vlan-id-list 101-200;

}
unit 2 {
vlan-id 300;
family inet {
address 198.51.100.10/24;

ge-1/0/2 {
vlan-tagging;
unit 0 {
family bridge {
interface-mode trunk;
vlan-id-list 1-100;

ge-1/0/3 {
vlan-tagging;
unit @ {
family bridge {
interface-mode trunk;
vlan-id-list 101-200;

user@host# show protocols openflow
switch OFswitch2 {
interfaces {
ge-1/0/1.0;
ge-1/0/2.0;
}
controller {
protocol tcp {
port 6633;



address 172.16.1.1;

user@host# show routing-instances
rt1 {
instance-type virtual-switch;
interface ge-1/0/1.0;
interface ge-1/0/2.0;
bridge-domains {
bd-of {
vlan-id-list 1-100;

}
}
}
rt2 {
instance-type virtual-switch;
interface ge-1/0/1.1;
interface ge-1/0/3.0;
bridge-domains {
bd-nonof {
vlan-id-list 101-200;
}
}
}
Verification

IN THIS SECTION

Verifying that the OpenFlow Controller Connection is Up | 136

Verifying that the OpenFlow Interfaces Are Up | 136

Confirm that the configuration is working properly.



Verifying that the OpenFlow Controller Connection is Up

Purpose

Verify that the OpenFlow controller connection is up.

Action

Issue the show openflow controller operational mode command, and verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch should
automatically initiate a connection to the controller after you commit the configuration.

user@host> show openflow controller
Openflowd controller information:
Controller socket: 11

Controller IP address: 172.16.1.1
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 1
Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.

Verifying that the OpenFlow Interfaces Are Up

Purpose

Verify that the OpenFlow interfaces are up.



Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow
interface is Up.

user@host> show openflow interfaces

Switch name: OFswitch2

Interface Name: ge-1/0/1.0

Interface port number: 41500

Interface Hardware Address: 00:00:5e:00:53:al
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: OFswitch2

Interface Name: ge-1/0/2.0

Interface port number: 41501

Interface Hardware Address: 00:00:5e:00:53:00
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.

Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122
Configuring OpenFlow Hybrid Interfaces on MX Series Routers | 123



Configuring OpenFlow Hybrid Interfaces on EX9200
Switches

IN THIS SECTION

Configuring the Hybrid Physical Interface | 138
Configuring the Hybrid Interface Logical Units | 139
Configuring the Non-Hybrid Interfaces | 139
Configuring OpenFlow | 140

Configuring the Virtual Switch Routing Instances | 141

On EX9200 switches that support OpenFlow, you can configure a physical interface as a hybrid
interface that concurrently supports OpenFlow logical interfaces and non-OpenFlow logical interfaces. If
you configure an OpenFlow hybrid interface on a device running Junos OS, you must enable the
reception and transmission of 802.1Q VLAN-tagged frames on all interfaces, including both hybrid and
non-hybrid interfaces, and you must configure a virtual switch routing instance for the OpenFlow traffic
and a separate virtual switch routing instance for the normal traffic.

The following sections detail configuring an EX9200 switch that supports OpenFlow with a mix of
hybrid and normal interfaces:

Configuring the Hybrid Physical Interface

To configure the hybrid physical interface:

1. Enable VLAN tagging.
Configure vlan-tagging to support 802.1Q VLAN single-tag frames for both OpenFlow and non-
OpenFlow traffic, or configure flexible-vlan-tagging to support both 802.1Q VLAN single-tag and
dual-tag frames.

[edit interfaces interface-name]
user@host# set (vlan-tagging | flexible-vlan-tagging)



2. Configure flexible Ethernet services encapsulation to enable multiple per-unit Ethernet
encapsulations.

[edit interfaces interface-name]
user@host# set encapsulation flexible-ethernet-services

Configuring the Hybrid Interface Logical Units

On a hybrid interface, you configure an OpenFlow or non-OpenFlow logical interface as a Layer 2 trunk
interface. Additionally, you can configure a non-OpenFlow logical interface as a Layer 3 subinterface
that performs traditional Layer 3 forwarding. To configure a logical interface to receive and forward
VLAN-tagged frames, you must bind a VLAN ID, or a range or list of VLAN IDs, to the logical interface.
Configure Layer 2 interfaces using family ethernet-switching on EX9200 switches.

To configure the hybrid interface logical units:

1. Configure the OpenFlow logical interfaces and any non-OpenFlow Layer 2 logical interfaces, and
specify the interface mode and VLAN membership.

[edit interfaces interface-name]
user@host# set unit wnit family ethernet-switching interface-mode trunk
user@host# set unit wnit family ethernet-switching vlan members vlan-ids

2. Configure any non-OpenFlow Layer 3 logical interfaces, and specify the VLAN membership.
[edit interfaces interface-name]

user@host# set unit wnit (vlan-id | vlan-id-list | vlan-id-range) vlan-ids

user@host# set unit wnit family inet address address

Configuring the Non-Hybrid Interfaces

Non-hybrid interfaces support either OpenFlow traffic or non-OpenFlow traffic, but not both
simultaneously.

To configure the non-hybrid interfaces:



1. Configure interfaces that support only OpenFlow traffic as Layer 2 trunk interfaces, and specify the
interface mode and VLAN membership.

[edit interfaces interface-name]

user@host# set vlan-tagging

user@host# set unit wnit family ethernet-switching interface-mode trunk

user@host# set unit unit family ethernet-switching vlan members (vlan-id | vlan-id-1ist)

2. Configure interfaces that support only normal traffic, and specify the interface mode for the Layer 2
interfaces and the VLAN membership.

For example:

[edit interfaces interface-name]

user@host# set vlan-tagging

user@host# set unit wnit family ethernet-switching interface-mode trunk

user@host# set unit wnit family ethernet-switching vlan members (vlan-id | vlan-id-1ist)

Configuring OpenFlow

To configure the OpenFlow virtual switch instance:

1. Configure the OpenFlow controller IP address and the connection protocol.

[edit protocols openflow switch switch-namel
user@host# set controller address address
user@host# set controller protocol tcp port port

2. Specify all logical interfaces participating in OpenFlow under this virtual switch instance.

[edit protocols openflow switch switch-namel

user@host# set interfaces interface-name



Configuring the Virtual Switch Routing Instances

Configure separate virtual switch routing instances for the OpenFlow traffic and the non-OpenFlow
traffic. The configured interface names must include a logical unit number.

To configure the virtual switch routing instances:

1. Configure the virtual switch routing instance for the OpenFlow traffic, and specify the OpenFlow
logical interfaces and VLANS.

[edit routing-instances of-routing-instance-name]
user@host# set instance-type virtual-switch

user@host# set interface of-interface-namel
user@host# set interface of-interface-name2
user@host# set vlans name vlan-id-list of-vlan-id-1list

2. Configure the virtual switch routing instance for the non-OpenFlow traffic, and specify the non-
OpenFlow logical interfaces and VLANSs.

[edit routing instances non-of-routing-instance-name]
user@host# set instance-type virtual-switch
user@host# set interface non-of-interface-namel
user@host# set interface non-of-interface-name2

user@host# set vlans name vlan-id-list non-of-vlan-id-1ist

Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 138
Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122



Example: Configuring OpenFlow Hybrid Interfaces
on EX9200 Switches

IN THIS SECTION

Requirements | 142
Overview and Topology | 143
Configuration | 145
Verification | 151

On EX9200 switches that have the OpenFlow software package installed, you can configure physical
interfaces that support multiple logical interfaces as OpenFlow hybrid interfaces. A hybrid interface
concurrently supports OpenFlow logical interfaces and non-OpenFlow logical interfaces. A hybrid
interface enables OpenFlow and non-OpenFlow traffic to traverse the same physical interface while
keeping the traffic in separate VLANS.

Hybrid interfaces enable you to use physical interfaces more efficiently, especially in a situation where
having an adequate number of physical interfaces available is important.

This example shows how to configure an OpenFlow hybrid interface on an EX9200 switch.

Requirements

This example uses the following hardware and software components:
e An EX9200 switch running Junos OS Release 13.3 or a later release.

e An OpenFlow software package is installed on the switch, and the software package release matches
the Junos OS release running on the switch.

e The switch has a TCP connection to an OpenFlow controller, which needs to access the data plane of
the switch.

e The switch is connected to the management network through the fxpO0 interface and is reachable
from the controller IP address.



Overview and Topology

In this example, you configure an EX9200 switch with:

e One hybrid interface, xe-2/1/0

e One non-hybrid interface, xe-2/1/1, which handles OpenFlow traffic only

e One non-hybrid interface, xe-2/1/2, which handles non-OpenFlow traffic only

On the hybrid interface, logical interface xe-2/1/0.0 participates in OpenFlow, and logical interfaces
xe-2/1/0.1 and xe-2/1/0.2 do not participate in OpenFlow.

When using hybrid interfaces, you use VLAN tagging to distinguish OpenFlow traffic from non-
OpenFlow traffic. Thus, you must enable VLAN tagging on all interfaces, and traffic entering the
interfaces must be VLAN-tagged. If you do not configure a native VLAN, untagged traffic entering a
hybrid interface is dropped. In this example, you configure the hybrid interface by using flexible-vlan-
tagging, which enables VLAN tagging and supports both 802.1Q VLAN single-tag and dual-tag frames for
all traffic on the interface. You also configure the OpenFlow interface xe-2/1/1 and the non-OpenFlow
interface xe-2/1/2 by using vlan-tagging, which enables VLAN tagging and supports only 802.1Q VLAN
single-tag frames for all traffic on the interface.

You configure the hybrid interface encapsulation as flexible Ethernet services. Note that for interfaces
with this type of encapsulation, all VLAN IDs are valid. VLAN IDs from 1 through 511 are no longer
reserved for normal Ethernet VLANS. In this example, VLANs 100 through 200 are used for OpenFlow
traffic, and VLANs 700 and 800 are used for non-OpenFlow traffic.

All logical interfaces except xe-2/1/0.2 are configured as Layer 2 trunk interfaces by using family
ethernet-switching and interface mode trunk. Logical interfaces xe-2/1/0.0 and xe-2/1/1.0 participate in
OpenFlow and receive and forward traffic with OpenFlow VLAN IDs 100 through 200. Logical interfaces
xe-2/1/0.1 and xe-2/1/2.0 do not participate in OpenFlow and receive and forward traffic with non-
OpenFlow VLAN ID 700.

Logical interface xe-2/1/0.2 is a subinterface with the IP address 198.51.100.10/24 and performs
Layer 3 routing. This interface does not participate in OpenFlow and routes traffic with VLAN ID 800.

Table 41 on page 143 summarizes the logical interfaces, traffic types, and associated VLAN IDs.

Table 41: Summary of Logical Interface Configuration in EX9200 Hybrid Interface Example

Logical Interface Traffic Type VLANSs

xe-2/1/0.0 OpenFlow 100 through 200



Table 41: Summary of Logical Interface Configuration in EX9200 Hybrid Interface Example (Continued)

Logical Interface Traffic Type VLANSs
xe-2/1/0.1 Non-OpenFlow 700
xe-2/1/0.2 Non-OpenFlow 800
xe-2/1/1.0 OpenFlow 200
xe-2/1/2.0 Non-OpenFlow 700

You configure the OpenFlow virtual switch and OpenFlow protocol statements at the [edit protocols
openflow] hierarchy level. The virtual switch 100 connects to the OpenFlow controller over a TCP
connection at the IP address 198.51.100.174. The virtual switch configuration must include all of the
logical interfaces participating in OpenFlow, which includes xe-2/1/0.0 and xe-2/1/1.0.

An EX9200 switch requires a separate routing instance for a virtual switch. This routing instance isolates
the OpenFlow traffic from the non-OpenFlow traffic. When using hybrid interfaces, you configure a
virtual switch routing instance for the OpenFlow traffic and another virtual switch routing instance for
non-OpenFlow traffic. In this example, you configure routing instance 0F for the OpenFlow traffic and
routing instance NON-OF for the non-OpenFlow traffic.

Routing instance 0F includes the interfaces participating in OpenFlow—xe-2/1/0.0 and xe-2/1/1.0.
Within this routing instance, you configure a VLAN to include OpenFlow VLANs 100 through 200.
Routing instance NON-OF includes the Layer 2 interfaces that do not participate in OpenFlow—xe-2/1/0.1
and xe-2/1/2.0. Within this routing instance, you configure a VLAN to include the non-OpenFlow VLAN
700.

@ NOTE: To direct OpenFlow traffic, the OpenFlow controller must install flow entries that
select the appropriate traffic and forward it to the correct OpenFlow interface.



Configuration

IN THIS SECTION

CLI Quick Configuration | 145
Configuring the Interfaces | 146

Configuring OpenFlow | 147

Configuring the Virtual Switch Routing Instances | 148
Results | 148

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

set interfaces xe-2/1/0 flexible-vlan-tagging

set interfaces xe-2/1/0 encapsulation flexible-ethernet-services

set interfaces xe-2/1/0 unit @ family ethernet-switching interface-mode trunk
set interfaces xe-2/1/0 unit @ family ethernet-switching vlan members 100-200
set interfacesxe-2/1/0 unit 1 family ethernet-switching interface-mode trunk
set interfaces xe-2/1/0 unit 1 family ethernet-switching vlan members 700

set interfaces xe-2/1/0 unit 2 vlan-id 800

set interfaces xe-2/1/0 unit 2 family inet address 198.51.100.10/24

set interfaces xe-2/1/1 vlan-tagging

set interfaces xe-2/1/1 unit @ family ethernet-switching interface-mode trunk
set interfaces xe-2/1/1 unit @ family ethernet-switching vlan members 200

set interfaces xe-2/1/2 vlan-tagging

set interfaces xe-2/1/2 unit @ family ethernet-switching interface-mode trunk
set interfaces xe-2/1/2 unit @ family ethernet-switching vlan members 700

set protocols openflow switch 100 controller address 198.51.100.174

set protocols openflow switch 100 controller protocol tcp port 6633

set protocols openflow switch 100 interfaces xe-2/1/0.0

set protocols openflow switch 100 interfaces xe-2/1/1.0

set routing-instances OF instance-type virtual-switch

set routing-instances OF interface xe-2/1/0.0

set routing-instances OF interface xe-2/1/1.0



set routing-instances OF vlans OF-vlan vlan-id-list 100-200
set routing-instances NON-OF instance-type virtual-switch
set routing-instances NON-OF interface xe-2/1/0.1

set routing-instances NON-OF interface xe-2/1/2.0

set routing-instances NON-OF vlans OF-vlan vlan-id-list 700

Configuring the Interfaces

Step-by-Step Procedure

To configure the interfaces:

1. On the hybrid physical interface, enable VLAN tagging and configure the encapsulation:

[edit interfaces xe-2/1/0]
user@switch# set flexible-vlan-tagging

user@switch# set encapsulation flexible-ethernet-services

2. Configure the OpenFlow logical interface xe-2/1/0.0 as a Layer 2 trunk that supports VLANs 100
through 200:

[edit interfaces xe-2/1/0]
user@switch# set unit @ family ethernet-switching interface-mode trunk
user@switch# set unit 0 family ethernet-switching vlan members 100-200

3. Configure the non-OpenFlow logical interface xe-2/1/0.1 as a Layer 2 trunk that supports VLAN
700:

[edit interfaces xe-2/1/0]
user@switch# set unit 1 family ethernet-switching interface-mode trunk
user@switch# set unit 1 family ethernet-switching vlan members 700

4. Configure the non-OpenFlow logical interface xe-2/1/0.2 as a Layer 3 subinterface:

[edit interfaces xe-2/1/0]
user@switch# set unit 2 vlan-id 800
user@switch# set unit 2 family inet address 198.51.100.10/24



5. On xe-2/1/1, enable VLAN tagging, and configure the logical interface as a Layer 2 trunk that
supports VLAN 200:

[edit interfaces xe-2/1/1]
user@switch# set vlan-tagging
user@switch# set unit @ family ethernet-switching interface-mode trunk

user@switch# set unit 0 family ethernet-switching vlan members 200

6. On xe-2/1/2, enable VLAN tagging, and configure the logical interface as a Layer 2 trunk that
supports VLAN 700:

[edit interfaces xe-2/1/2]
user@switch# set vlan-tagging
user@switch# set unit 0 family ethernet-switching interface-mode trunk

user@switch# set unit @ family ethernet-switching vlan members 700

Configuring OpenFlow

Step-by-Step Procedure

To configure OpenFlow:

1. Configure the OpenFlow controller IP address and the connection protocol:

[edit protocols openflow switch 100]
user@switch# set controller address 198.51.100.174
user@switch# set controller protocol tcp port 6633

2. Specify the logical interfaces participating in OpenFlow under virtual switch 100:

[edit protocols openflow switch 100]
user@switch# set interfaces xe-2/1/0.0

user@switch# set interfaces xe-2/1/1.0



Configuring the Virtual Switch Routing Instances

Step-by-Step Procedure

To configure the routing instances:

1. Configure the routing instance for the OpenFlow traffic.

[edit]

user@switch# set routing-instances OF instance-type virtual-switch
user@switch# set routing-instances OF interface xe-2/1/0.0
user@switch# set routing-instances OF interface xe-2/1/1.0

user@switch# set routing-instances OF vlans OF-vlan vlan-id-list 100-200

2. Configure the routing instance for the non-OpenFlow traffic on Layer 2 interfaces:

[edit]

user@switch# set routing-instances NON-OF instance-type virtual-switch
user@switch# set routing-instances NON-OF interface xe-2/1/0.1
user@switch# set routing-instances NON-OF interface xe-2/1/2.0
user@switch# set routing-instances NON-OF vlans NOF-vlan vlan-id-list 700

3. Commit the configuration:

[edit]
user@switch# commit

Results

From operational mode, confirm your configuration by entering the show configuration interfaces, show
configuration protocols openflow, and show configuration routing-instances commands. If the output does not
display the specified configuration, repeat the configuration instructions in this example to correct the
configuration.

user@switch> show configuration interfaces
xe-2/1/0 {

flexible-vlan-tagging;

encapsulation flexible-ethernet-services;



unit @ {
family ethernet-switching {
interface-mode trunk;
vlan {
members 100-200;

}
}
}
unit 1 {
family ethernet-switching {
interface-mode trunk;
vlan {
members 700;
}
}
}
unit 2 {
vlan-id 800;
family inet {
address 198.51.100.10/24;
}
}
}
xe-2/1/1 {
vlan-tagging;
unit 0 {
family ethernet-switching {
interface-mode trunk;
vlan {
members 200;
}
}
}
}
xe-2/1/2 {
vlan-tagging;
unit @ {

family ethernet-switching {
interface-mode trunk;
vlan {

members 700;



user@switch> show configuration protocols openflow
switch 100 {
interfaces {
xe-2/1/0.0;
xe-2/1/1.0;
}
controller {
protocol tcp {
port 6633;
}
address 198.51.100.174;

user@switch> show configuration routing-instances
OF {

instance-type virtual-switch;

interface xe-2/1/0.0;

interface xe-2/1/1.0;

vlans {
OF-vlan {
vlan-id-list 100-200;
}
}
}
NON-OF {

instance-type virtual-switch;
interface xe-2/1/0.1;
interface xe-2/1/2.0;

vlans {
NOF-vlan {
vlan-id 700;
}
}



Verification

IN THIS SECTION

Verifying the OpenFlow Controller Connection | 151

Verifying the OpenFlow Interfaces | 152

Confirm that the configuration is working properly.
Verifying the OpenFlow Controller Connection

Purpose

Verify that the OpenFlow controller connection is up.

Action

Issue the show openflow controller operational mode command to verify that the controller connection
state is up. Because the virtual switch configuration has only a single controller, the virtual switch
automatically initiates a connection to the controller after you commit the configuration.

user@switch> show openflow controller
Openflowd controller information:
Controller socket: 11

Controller IP address: 198.51.100.174
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 5

Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.



Verifying the OpenFlow Interfaces

Purpose

Verify that the OpenFlow interfaces are up.

Action

Issue the show openflow interfaces operational mode command, and verify that the state of each OpenFlow
interface is Up.

user@switch> show openflow interfaces

Switch name: 100

Interface Name: xe-2/1/0.0

Interface port number: 41500

Interface Hardware Address: 00:00:5E:00:53:cf
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Switch name: 100

Interface Name: xe-2/1/1.0

Interface port number: 41501

Interface Hardware Address: 00:00:5E:00:53:d0
Interface speed: 10Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.

Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS | 122
Configuring OpenFlow Hybrid Interfaces on EX9200 Switches | 138



CHAPTER

Configuring OpenFlow Traffic Steering
Across MPLS Networks

Understanding OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP
Tunnel Cross-Connects | 154

Example: OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP
Tunnel Cross-Connects | 155




Understanding OpenFlow Traffic Steering Across
MPLS Networks Using MPLS LSP Tunnel Cross-
Connects

On MX Series devices that support OpenFlow, you can direct traffic from OpenFlow networks over
MPLS networks by using logical tunnel interfaces and MPLS LSP tunnel cross-connects. Using logical
tunnel interfaces, you can stitch an OpenFlow interface to an MPLS label-switched path (LSP), which
enables you to direct traffic from the OpenFlow network onto the MPLS network. MPLS LSP tunnel
cross-connects between interfaces and LSPs permit you to connect the OpenFlow network to a remote
network by creating MPLS tunnels that use LSPs as the conduit.

The topology in Figure 1 on page 154 illustrates an MPLS LSP tunnel cross-connect that connects two
remote OpenFlow networks through an MPLS network. Circuit cross-connect (CCC) enables you to
establish an LSP tunnel between the two domains, through which you can tunnel the traffic from one
OpenFlow network across the MPLS network to the second OpenFlow network.

Figure 1: Connecting OpenFlow Networks Using MPLS LSP Tunnel Cross-Connects

A B
OpenFlow gel ge-2 ge-2 ge-l OpenFlow
Metwaork MNetwork
ge-1 ) ge-1 "
—_—
(OpenFlow) TSP AB (OpenFlow)
—
LSPB-A
[t-1 I1t-1
(OpenFlow/bridge) (OpenFlow/bridge)
Circuit
cross-connect
[t-2 (CCC) 1t-2 (CCC)
ge-2 (MPLS) ge-2 (MPLS)

2041475

Router A and Router B are OpenFlow-enabled routers that have MPLS LSPs configured to route traffic
across the MPLS network. LSP A-B routes traffic from Router A to Router B, and LSP B-A routes traffic
from Router B to Router A.

Each router has an OpenFlow interface, ge-1, and an MPLS interface, ge-2. You can stitch the OpenFlow
interface to the MPLS LSP by using two logical tunnel interfaces. You configure the first logical tunnel
interface, It-1, as a Layer 2 interface that participates in OpenFlow. The second logical tunnel interface,
It-2, uses CCC encapsulation. You configure It-1 and It-2 interfaces as peers, so that traffic entering one
logical interface is automatically directed to the second logical interface.



On each router, MPLS LSP tunnel cross-connects are configured at the [edit protocols connections remote-
interface-switch] hierarchy level. The cross-connects make an association between the CCC interface,
It-2, and the two LSPs, one for transmitting MPLS packets from the local device to the remote device
and the other for receiving MPLS packets on the local device from the remote device.

For traffic flowing from Router A to Router B, the OpenFlow controller must install flow entries on
Router A that direct the desired OpenFlow traffic from ge-1 as the OpenFlow ingress port to It-1 as the
output port. On Router B, the OpenFlow controller must install flow entries that direct the OpenFlow
traffic from It-1 as the OpenFlow ingress port to ge-1 as the output port. Similarly for traffic flowing
from Router B to Router A, the OpenFlow controller must install flow entries on Router B that direct the
desired OpenFlow traffic from ge-1 as the OpenFlow ingress port to It-1 as the output port. On Router
A, the OpenFlow controller must install flow entries that direct the OpenFlow traffic from It-1 as the
OpenFlow ingress port to ge-1 as the output port.

Example: OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP Tunnel Cross-
Connects | 155

Understanding Support for OpenFlow on Devices Running Junos OS | 4

Example: OpenFlow Traffic Steering Across MPLS
Networks Using MPLS LSP Tunnel Cross-Connects

IN THIS SECTION

Requirements | 156
Overview | 156
Configuration | 158
Verification | 175
Troubleshooting | 181

On MX Series routers that support OpenFlow, you can direct traffic from OpenFlow networks over
MPLS networks by using logical tunnel interfaces and MPLS LSP tunnel cross-connects. This example



shows how to configure MX Series routers to send traffic between two remote OpenFlow networks
over an MPLS-based network using MPLS LSP tunnel cross-connects.

Requirements

This example uses the following hardware and software components for the OpenFlow-enabled routers:
e MX240 routers running Junos OS Release 13.3 or a later release.

¢ OpenFlow software package with a software package release that matches the Junos OS release of
the device on which it is installed

e TCP connection between the router and an OpenFlow controller

e Connection between the fxpO management interface of the router and the management network,
which is reachable from the controller IP address

Overview

IN THIS SECTION

Topology | 157

In this example, you configure MPLS LSP tunnel cross-connects to connect two remote OpenFlow
networks that are separated by an MPLS network. Figure 2 on page 157 shows the topology used in this
example.

This example has three routers: a provider router (P) and two provider edge routers (PE1 and PE2).
Router P resides within an MPLS network. Routers PE1 and PE2 are OpenFlow-enabled routers, each
with the ge-1/0/0.0 interface configured to accept and forward OpenFlow traffic and two MPLS
interfaces that connect to Router P. The network uses OSPF as the IPG, and it has two LSPs: LSP 1-3
routes traffic from PE1 to PE2, and LSP 3-1 routes traffic from PE2 to PE1.

You stitch the OpenFlow interface to the MPLS LSP using two logical tunnel interfaces, I1t-1/1/10.0 and
[t-1/1/10.100. You configure the first logical tunnel interface, It-1/1/10.0, as a Layer 2 interface with
encapsulation ethernet-bridge and family bridge. This interface participates in OpenFlow. The second
logical tunnel interface, It-1/1/10.100, uses circuit cross-connect (CCC) encapsulation. You configure



[t-1 and It-2 interfaces as peers, so that traffic entering one logical interface is automatically directed to
the second logical interface.

On the PE1 and PE2 routers, you configure an MPLS LSP tunnel cross-connect at the [edit protocols
connections remote-interface-switch] hierarchy level using the logical tunnel interface with CCC
encapsulation. This configuration makes an association between the CCC interface and two LSPs, one
for transmitting MPLS packets from the local device to the remote device and the other for receiving
MPLS packets on the local device from the remote device.

For traffic flowing from PE1 to PE2, the OpenFlow controller must install flow entries on PE1 that direct
the desired OpenFlow traffic from ge-1/0/0.0 as the OpenFlow ingress port to I1t-1/1/10.0 as the output
port. On PE2, the OpenFlow controller must install flow entries that direct the OpenFlow traffic from
[t-1/1/10.0 as the OpenFlow ingress port to ge-1/0/0.0 as the output port. Similarly, for traffic flowing
from PE2 to PE1, the OpenFlow controller must install flow entries on PE2 that direct the desired
OpenFlow traffic from ge-1/0/0.0 as the OpenFlow ingress port to It-1/1/10.0 as the output port. On
PE1, the OpenFlow controller must install flow entries that direct the OpenFlow traffic from It-1/1/10.0
as the OpenFlow ingress port to ge-1/1/0.0 as the output port.

Topology

Figure 2: Connecting OpenFlow Networks Using MPLS Tunnel Cross-Connects

OpenFlow

OpenFlow

Metwaork Network
MPLS
MNetwork
PE1 P1 PEZ2
A 10.00.0.0/24 2 2 10.10.2.0/24 3
i ]
ge-1/0/0.0 % % % ge-1/0/0.0
(OpenFlow) 1 10.10.1.0/24 U 1010.3.0/24 .3 (OpenFlow)
o !
I LSP1-3
1t-1/1/10.0 LSP 3-1 t-1/1/10.0
(OpenFlow/bridge) (OpenFlow/bridge)
Circuit
cross-connect
1t-1/1/10.100 t-1/1/10.100
(CCC) (CCC)

lo0:

PE1 10.1.1.1/32
P1 10.22.2/32
PE2 10.3.3.3/32

gO&14TE



Configuration

IN THIS SECTION

CLI Quick Configuration | 158

Configuring the Ingress Provider Edge Router (PE1) | 161
Configuring the Provider Router (P) | 166

Configuring the Egress Provider Edge Router (PE2) | 170

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any
line breaks, change any details necessary to match your network configuration, copy and paste the
commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Device PE1

set chassis fpc 1 pic 1 tunnel-services bandwidth 1g

set interfaces ge-1/0/0 encapsulation ethernet-bridge

set interfaces ge-1/0/0 unit 0 family bridge

set interfaces ge-1/1/0 unit 0 family inet address 10.10.0.1/24
set interfaces ge-1/1/0 unit 0 family mpls

set interfaces ge-1/1/1 unit 0 family inet address 10.10.1.1/24
set interfaces ge-1/1/1 unit 0 family mpls

set interfaces 1t-1/1/10 unit @ encapsulation ethernet-bridge
set interfaces 1t-1/1/10 unit @ peer-unit 100

set interfaces 1t-1/1/10 unit @ family bridge

set interfaces 1t-1/1/10 unit 100 encapsulation ethernet-ccc
set interfaces 1t-1/1/10 unit 100 peer-unit 0

set interfaces 1t-1/1/10 unit 100 family ccc

set interfaces 100 unit @ family inet address 10.1.1.1/32

set protocols rsvp interface ge-1/1/0.0

set protocols rsvp interface ge-1/1/1.0

set protocols mpls label-switched-path 1-3 from 10.1.1.1

set protocols mpls label-switched-path 1-3 to 10.3.3.3

set protocols mpls interface ge-1/1/0.0

set protocols mpls interface ge-1/1/1.0



set protocols ospf traffic-engineering

set protocols ospf area 0.0.0.0 interface ge-1/1/0.0

set protocols ospf area 0.0.0.0 interface ge-1/1/1.0

set protocols connections remote-interface-switch 1-3-ccc interface 1t-1/1/10.100
set protocols connections remote-interface-switch 1-3-ccc transmit-1lsp 1-3
set protocols connections remote-interface-switch 1-3-ccc receive-1sp 3-1
set protocols openflow switch s1 interfaces ge-1/0/0.0 port-id 1

set protocols openflow switch s1 interfaces 1t-1/1/10.0 port-id 2

set protocols openflow switch s1 controller protocol tcp port 6633

set protocols openflow switch s1 controller address 10.94.175.213

set routing-instances r1 instance-type virtual-switch

set routing-instances r1 bridge-domains bd1 interface ge-1/0/0.0

set routing-instances r1 bridge-domains bd1 interface 1t-1/1/10.0

set routing-options router-id 10.1.1.1

Device P

set interfaces ge-1/1/0 unit 0 family inet address 10.10.0.2/24

0
set interfaces ge-1/1/0 unit 0 family mpls
set interfaces ge-1/1/1 unit 0 family inet address 10.10.1.2/24
set interfaces ge-1/1/1 unit 0 family mpls
0 family inet address 10.10.2.2/24
0 family mpls
0 family inet address 10.10.3.2/24
set interfaces ge-1/1/3 unit 0 family mpls
set interfaces 100 unit @ family inet address 10.2.2.2/32

set protocols rsvp interface ge-1/1/0.

set interfaces ge-1/1/2 unit
set interfaces ge-1/1/2 unit

set interfaces ge-1/1/3 unit

set protocols rsvp interface ge-1/1/1.
set protocols rsvp interface ge-1/1/2.
set protocols rsvp interface ge-1/1/3.
set protocols mpls interface ge-1/1/0.
set protocols mpls interface ge-1/1/1.
set protocols mpls interface ge-1/1/2.

o ©O O O o oo

set protocols mpls interface ge-1/1/3.
set protocols mpls interface 100.0
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set protocols ospf area 0.0.0.0 interface ge-1/1/0.0
set protocols ospf area 0.0.0.0 interface ge-1/1/1.0
set protocols ospf area 0.0.0.0 interface ge-1/1/2.0
set protocols ospf area 0.0.0.0 interface ge-1/1/3.0



set protocols ospf area 0.0.0.0 interface 100.0

set routing-options router-id 10.2.2.2

Device PE2

set chassis fpc 1 pic 1 tunnel-services bandwidth 1g

set interfaces ge-1/0/0 encapsulation ethernet-bridge

set interfaces ge-1/0/0 unit @ family bridge

set interfaces ge-1/1/2 unit 0 family inet address 10.10.2.3/24
set interfaces ge-1/1/2 unit 0 family mpls

set interfaces ge-1/1/3 unit 0 family inet address 10.10.3.3/24
set interfaces ge-1/1/3 unit 0 family mpls

set interfaces 1t-1/1/10 unit 0 encapsulation ethernet-bridge

set interfaces 1t-1/1/10 unit @ peer-unit 100

set interfaces 1t-1/1/10 unit @ family bridge

set interfaces 1t-1/1/10 unit 100 encapsulation ethernet-ccc

set interfaces 1t-1/1/10 unit 100 peer-unit 0

set interfaces 1t-1/1/10 unit 100 family ccc

set interfaces 100 unit 0 family inet address 10.3.3.3/32

set protocols rsvp interface ge-1/1/2.0

set protocols rsvp interface ge-1/1/3.0

set protocols mpls label-switched-path 3-1 from 10.3.3.3

set protocols mpls label-switched-path 3-1 to 10.1.1.1

set protocols mpls interface ge-1/1/2.0

set protocols mpls interface ge-1/1/3.0

set protocols ospf traffic-engineering

set protocols ospf area 0.0.0.0 interface ge-1/1/2.0

set protocols ospf area 0.0.0.0 interface ge-1/1/3.0

set protocols connections remote-interface-switch 3-1-ccc interface 1t-1/1/10.100
set protocols connections remote-interface-switch 3-1-ccc transmit-1lsp 3-1
set protocols connections remote-interface-switch 3-1-ccc receive-1sp 1-3
set protocols openflow switch s1 interfaces ge-1/0/0.0 port-id 1
set protocols openflow switch s1 interfaces 1t-1/1/10.0 port-id 2
set protocols openflow switch s1 controller protocol tcp port 6633
set protocols openflow switch s1 controller address 10.94.175.213
set routing-instances r1 instance-type virtual-switch

set routing-instances r1 bridge-domains bd1 interface ge-1/0/0.0
set routing-instances r1 bridge-domains bd1 interface 1t-1/1/10.0
set routing-options router-id 10.3.3.3



Configuring the Ingress Provider Edge Router (PE1)

Step-by-Step Procedure

To configure Router PE1:

1. Create tunnel interfaces by configuring the DPC and its corresponding PIC to use tunneling
services.

[edit]
user@E1# set chassis fpc 1 pic 1 tunnel-services bandwidth 1g

2. Configure the OpenFlow interface as a Layer 2 interface.

[edit interfaces]
user@PE1# set ge-1/0/0 encapsulation ethernet-bridge
user@PE1# set ge-1/0/0 unit 0 family bridge

3. Configure the OpenFlow virtual switch routing instance.

[edit]

user@PE1# set routing-instances r1 instance-type virtual-switch

user@E1# set routing-instances r1 bridge-domains bd1 interface ge-1/0/0.0
user@PE1# set routing-instances r1 bridge-domains bd1 interface 1t-1/1/10.0

4. Configure the OpenFlow controller.

[edit protocols openflow]
user@PE1# set switch s1 controller address 10.94.175.213
user@PE1# set switch s1 controller protocol tcp port 6633

5. Configure the interfaces participating in OpenFlow.

[edit protocols openflow]
user@E1# set switch s1 interfaces ge-1/0/0.0 port-id 1
user@PE1# set switch s1 interfaces 1t-1/1/10.0 port-id 2



6. Configure the loopback interface and router ID.

[edit]
user@PE14# set interfaces 100 unit @ family inet address 10.1.1.1/32
user@PE1# set routing-options router-id 10.1.1.1

7. Configure the MPLS interfaces.

[edit interfaces]

user@PE1# set ge-1/1/0 unit 0 family inet address 10.10.0.1/24
user@PE1# set ge-1/1/0 unit @ family mpls

user@PE1# set ge-1/1/1 unit 0 family inet address 10.10.1.1/24
user@PE1# set ge-1/1/1 unit @ family mpls

8. Configure the logical tunnel interface.

[edit interfaces]

user@PE1# set 1t-1/1/10 unit 0 family bridge

user@PE1# set 1t-1/1/10 unit 0 encapsulation ethernet-bridge
user@PE1# set 1t-1/1/10 unit 0 peer-unit 100

user@PE1# set 1t-1/1/10 unit 100 family ccc

user@PE14# set 1t-1/1/10 unit 100 encapsulation ethernet-ccc
user@PE1# set 1t-1/1/10 unit 100 peer-unit 0

9. Enable RSVP, MPLS, and OSPF on the interfaces connected to Router P.

[edit protocols]

user@PE14# set rsvp interface ge-1/1/0.0

user@PE1# set rsvp interface ge-1/1/1.0

user@PE1# set mpls interface ge-1/1/0.0

user@PE1# set mpls interface ge-1/1/1.0

user@PE1# set ospf area 0.0.0.0 interface ge-1/1/0.0
user@PE1# set ospf area 0.0.0.0 interface ge-1/1/1.0



10. Enable traffic engineering for OSPF.

[edit protocols]
user@PE1# set ospf traffic-engineering

11. Configure the MPLS LSP from PE1 to PE2.

[edit protocols]
user@PE1# set mpls label-switched-path 1-3 from 10.1.1.1
user@PE1# set mpls label-switched-path 1-3 to 10.3.3.3

12. Configure the MPLS LSP tunnel cross-connects.

[edit protocols]
user@PE1# set connections remote-interface-switch 1-3-ccc interface 1t-1/1/10.100
user@PE1# set connections remote-interface-switch 1-3-ccc transmit-1sp 1-3

user@PE1# set connections remote-interface-switch 1-3-ccc receive-1lsp 3-1

13. Commit the configuration.

[edit]
user@PE1# commit

Results

From configuration mode, confirm your configuration by entering the show command. If the output does
not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this show command output includes only the configuration that is relevant to this example.
Any other configuration on the system has been replaced with ellipses (...).

chassis {
fpc 1 {
pic 1 {
tunnel-services {
bandwidth 1g;



interfaces {
ge-1/0/0 {
encapsulation ethernet-bridge;
unit @ {
family bridge;

}
ge-1/1/0 {
unit 0 {
family inet {
address 10.10.0.1/24;
}
family mpls;

}
ge-1/1/1 {
unit 0 {
family inet {
address 10.10.1.1/24;
}
family mpls;

}
1t-1/1/10 {
unit 0 {
encapsulation ethernet-bridge;
peer-unit 100;
family bridge;
}
unit 100 {
encapsulation ethernet-ccc;
peer-unit 0;

family ccc;

}
100 {
unit 0 {
family inet {
address 10.1.1.1/32;



protocols {

rsvp {
interface ge-1/1/0.0;
interface ge-1/1/1.0;

}
mpls {
label-switched-path 1-3 {
from 10.1.1.1;
to 10.3.3.3;
}
interface ge-1/1/0.0;
interface ge-1/1/1.0;
}
ospf {
traffic-engineering;
area 0.0.0.0 {
interface ge-1/1/0.0;
interface ge-1/1/1.0;
}
}

connections {
remote-interface-switch 1-3-ccc {
interface 1t-1/1/10.100;
transmit-1sp 1-3;

receive-1lsp 3-1;

}

}

openflow {
switch s1 {

interfaces {
ge-1/0/0.0 port-id 1;
1t-1/1/10.0 port-id 2;

}
controller {
protocol {
tep {
port 6633;
}



address 10.94.175.213;

routing-instances {
r1 {
instance-type virtual-switch;
bridge-domains {
bd1 {
interface ge-1/0/0.0;
interface 1t-1/1/10.0;

routing-options {
router-id 10.1.1.1;

Configuring the Provider Router (P)

Step-by-Step Procedure

To configure Router P:

1. Configure the loopback interface and router ID.

[edit]
user@# set interfaces 1lo@ unit @ family inet address 10.2.2.2/32
user@P# set routing-options router-id 10.2.2.2

2. Configure the MPLS interfaces.

[edit interfaces]
user@P# set ge-1/1/0 unit @ family inet address 10.10.0.2/24
user@P# set ge-1/1/0 unit 0 family mpls



user@P# set ge-1/1/1 unit @ family inet address 10.10.1.2/24
user@P# set ge-1/1/1 unit @ family mpls
user@P# set ge-1/1/2 unit @ family inet address 10.10.2.2/24
user@P# set ge-1/1/2 unit @ family mpls
user@P# set ge-1/1/3 unit @ family inet address 10.10.3.2/24
user@P# set ge-1/1/3 unit @ family mpls

3. Enable RSVP, MPLS, and OSPF on the interfaces connected to PE1 and PE2.

[edit protocols]

user@P# set rsvp interface ge-1/1/0.
user@P# set rsvp interface ge-1/1/1.
user@P# set rsvp interface ge-1/1/2.

o ©o ©o o

user@P# set rsvp interface ge-1/1/3.
user@P# set mpls interface 100.0
user@P# set mpls interface ge-1/1/0.0

user@P# set mpls interface ge-1/1/1.0

user@P# set mpls interface ge-1/1/2.0

user@P# set mpls interface ge-1/1/3.0

user@P# set ospf area 0.0.0.0 interface fxp0.0 disable
user@P# set ospf area 0.0.0.0 interface ge-1/1/0.0
user@P# set ospf area 0.0.0.0 interface ge-1/1/1.0
user@P# set ospf area 0.0.0.0 interface ge-1/1/2.0
user@P# set ospf area 0.0.0.0 interface ge-1/1/3.0
user@P# set ospf area 0.0.0.0 interface 100.0

4. Enable traffic engineering for OSPF.

[edit protocols]
user@P# set ospf traffic-engineering

5. Commit the configuration.

[edit]
user@P# commit



Results

From configuration mode, confirm your configuration by entering the show command. If the output does
not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this show command output includes only the configuration that is relevant to this example.
Any other configuration on the system has been replaced with ellipses {...).

interfaces {
ge-1/1/0 {
unit @ {
family inet {
address 10.10.0.2/24;

}
family mpls;
}
}
ge-1/1/1 {
unit @ {
family inet {
address 10.10.1.2/24;
}
family mpls;
}
}
ge-1/1/2 {
unit 0 {
family inet {
address 10.10.2.2/24;
}
family mpls;
}
}
ge-1/1/3 {
unit @ {
family inet {
address 10.10.3.2/24;
}
family mpls;
}
}
100 {

unit @ {



family inet {
address 10.2.2.2/32;

protocols {
rsvp {
interface ge-1/1/0.

interface ge-1/1/1.

interface ge-1/1/2.

S © ©

interface ge-1/1/3.
}
mpls {

interface ge-1/1/0.

interface ge-1/1/1.

interface ge-1/1/2.

S O ©

interface ge-1/1/3.
interface 100.0;
}
ospf {
traffic-engineering;
area 0.0.0.0 {
interface fxp0.0 {
disable;
}
interface ge-1/1/0.0;
interface ge-1/1/1.0;
interface ge-1/1/2.0;
interface ge-1/1/3.0;
interface 100.0;

routing-options {
router-id 10.2.2.2;



Configuring the Egress Provider Edge Router (PE2)

Step-by-Step Procedure

To configure Router PE2:

1. Create tunnel interfaces by configuring the DPC and its corresponding PIC to use tunneling
services.

[edit]
user@PE2# set chassis fpc 1 pic 1 tunnel-services bandwidth 1g

2. Configure the OpenFlow interface as a Layer 2 interface.

[edit interfaces]
user@PE2# set ge-1/0/0 encapsulation ethernet-bridge
user@PE2# set ge-1/0/0 unit 0 family bridge

3. Configure the OpenFlow virtual switch routing instance.

[edit]

user@PE2# set routing-instances r1 instance-type virtual-switch

user@PE2# set routing-instances r1 bridge-domains bd1 interface ge-1/0/0.0
user@PE2# set routing-instances r1 bridge-domains bd1 interface 1t-1/1/10.0

4. Configure the OpenFlow controller.

[edit protocols openflow]
user@PE2# set switch s1 controller protocol tcp port 6633
user@PE2# set switch s1 controller address 10.94.175.213

5. Configure the interfaces participating in OpenFlow.

[edit protocols openflow]
user@PE2# set switch s1 interfaces ge-1/0/0.0 port-id 1
user@PE2# set switch s1 interfaces 1t-1/1/10.0 port-id 2



6. Configure the loopback interface and router ID.

[edit]
user@PE2# set interfaces 100 unit @ family inet address 10.3.3.3/32

user@PE2# set routing-options router-id 10.3.3.3

7. Configure the MPLS interfaces.

[edit interfaces]

user@PE2# set ge-1/1/2 unit 0 family inet address 10.10.2.3/24
user@PE2# set ge-1/1/2 unit @ family mpls

user@PE2# set ge-1/1/3 unit 0 family inet address 10.10.3.3/24
user@PE2# set ge-1/1/3 unit @ family mpls

8. Configure the logical tunnel interface.

[edit interfaces]

user@PE2# set 1t-1/1/10 unit 0 family bridge

user@PE2# set 1t-1/1/10 unit 0 encapsulation ethernet-bridge
user@PE2# set 1t-1/1/10 unit 0 peer-unit 100

user@PE2# set 1t-1/1/10 unit 100 family ccc

user@PE2# set 1t-1/1/10 unit 100 encapsulation ethernet-ccc
user@PE2# set 1t-1/1/10 unit 100 peer-unit 0

9. Enable RSVP, MPLS, and OSPF on the interfaces connected to Router P.

[edit protocols]

user@PE2# set rsvp interface ge-1/1/2.0

user@PE2# set rsvp interface ge-1/1/3.0

user@PE2# set mpls interface ge-1/1/2.0

user@PE2# set mpls interface ge-1/1/3.0

user@PE2# set ospf area 0.0.0.0 interface ge-1/1/2.0
user@PE2# set ospf area 0.0.0.0 interface ge-1/1/3.0



10. Enable traffic engineering for OSPF.

[edit protocols]
user@PE2# set ospf traffic-engineering

11. Configure the MPLS LSP from PE2 to PE1.

[edit protocols]
user@PE2# set mpls label-switched-path 3-1 from 10.3.3.3
user@PE2# set mpls label-switched-path 3-1 to 10.1.1.1

12. Configure the MPLS LSP tunnel cross-connects.

[edit protocols]
user@PE2# set connections remote-interface-switch 3-1-ccc interface 1t-1/1/10.100
user@PE2# set connections remote-interface-switch 3-1-ccc transmit-1lsp 3-1

user@PE2# set connections remote-interface-switch 3-1-ccc receive-1sp 1-3

13. Commit the configuration.

[edit]
user@PE2# commit

Results

From configuration mode, confirm your configuration by entering the show command. If the output does
not display the intended configuration, repeat the configuration instructions in this example to correct it.
For brevity, this show command output includes only the configuration that is relevant to this example.
Any other configuration on the system has been replaced with ellipses (...).

chassis {
fpc 1 {
pic 1 {
tunnel-services {
bandwidth 1g;



interfaces {
ge-1/0/0 {
encapsulation ethernet-bridge;
unit @ {
family bridge;

}
ge-1/1/2 {
unit 0 {
family inet {
address 10.10.2.3/24;
}
family mpls;

}
ge-1/1/3 {
unit 0 {
family inet {
address 10.10.3.3/24;
}
family mpls;

}
1t-1/1/10 {
unit 0 {
encapsulation ethernet-bridge;
peer-unit 100;
family bridge;
}
unit 100 {
encapsulation ethernet-ccc;
peer-unit 0;

family ccc;

}
100 {
unit 0 {
family inet {
address 10.3.3.3/32;



protocols {

rsvp {
interface ge-1/1/2.0;
interface ge-1/1/3.0;

}
mpls {
label-switched-path 3-1 {
from 10.3.3.3;
to 10.1.1.1;
}
interface ge-1/1/2.0;
interface ge-1/1/3.0;
}
ospf {
traffic-engineering;
area 0.0.0.0 {
interface ge-1/1/2.0;
interface ge-1/1/3.0;
}
}

connections {
remote-interface-switch 3-1-ccc {
interface 1t-1/1/10.100;
transmit-1lsp 3-1;

receive-1lsp 1-3;

}

}

openflow {
switch s1 {

interfaces {
ge-1/0/0.0 port-id 1;
1t-1/1/10.0 port-id 2;

}
controller {
protocol {
tep {
port 6633;
}



address 10.94.175.213;

routing-instances {
r1 {
instance-type virtual-switch;
bridge-domains {
bd1 {
interface ge-1/0/0.0;
interface 1t-1/1/10.0;

routing-options {
router-id 10.3.3.3;

Verification

IN THIS SECTION

Verifying that the OpenFlow Controller Connection Is Up | 176
Verifying that the OpenFlow Interfaces Are Up | 176

Verifying that the MPLS LSP Is Operational | 177

Verifying that the MPLS LSP Cross-Connect Is Operational | 179
Verifying the Routes | 180

Confirm that the configuration is working properly.



Verifying that the OpenFlow Controller Connection Is Up

Purpose

On each of the OpenFlow-enabled routers, verify that the connection state for the OpenFlow controller

is up.

Action

Issue the show openflow controller operational mode command, and verify that the controller connection
state is up.

user@E1> show openflow controller
Openflowd controller information:
Controller socket: 11

Controller IP address: 10.94.175.213
Controller protocol: tcp

Controller port: 6633

Controller connection state: up
Number of connection attempt: 1
Controller role: equal

Meaning

The output shows that the connection state of the OpenFlow controller is up, in addition to other
information about the controller.

Verifying that the OpenFlow Interfaces Are Up

Purpose

On each of the OpenFlow-enabled routers, verify that the OpenFlow interfaces are up.



Action

Issue the show openflow interfaces operational mode command, and verify that the state of each interface
is Up. For example, on PE1:

user@E1> show openflow interfaces

Switch name: si

Interface Name: ge-1/0/0.0

Interface port number: 1

Interface Hardware Address: 00:00:5e:00:53:b1
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Enabled
Interface media type: Fiber

Interface state: Up

Switch name: si

Interface Name: 1t-1/1/10.0

Interface port number: 2

Interface Hardware Address: 00:00:5e:00:53:be
Interface speed: 1Gb Full-duplex

Interface Auto-Negotiation: Disabled
Interface media type: Fiber

Interface state: Up

Meaning

The output shows that the state of each OpenFlow interface is Up, in addition to other information about
the interfaces.

Verifying that the MPLS LSP Is Operational

Purpose

On each edge router, verify that the MPLS LSP state is Up.



Action

Issue the show mpls 1sp operational mode command, and verify that each LSP is operational.

user@PE1> show mpls lsp

Ingress LSP: 1 sessions

To From State Rt P ActivePath LSPname
10.3.3.3 10.1.1.1 Up 0 * 1-3
Total 1 displayed, Up 1, Down 0

Egress LSP: 1 sessions

To From State Rt Style Labelin Labelout LSPname
10.1.1.1 10.3.3.3 Up @ 1 FF 299776 = 3=
Total 1 displayed, Up 1, Down 0

Transit LSP: 0 sessions
Total @ displayed, Up @, Down 0

user@PE2> show mpls 1sp

Ingress LSP: 1 sessions

To From State Rt P ActivePath LSPname
10.1.1.1 10.3.3.3 Up 0 * 3-1
Total 1 displayed, Up 1, Down 0

Egress LSP: 1 sessions

To From State Rt Style Labelin Labelout LSPname
10.3.3.3 10.1.1.1 Up 0 1 FF 299840 -1-3
Total 1 displayed, Up 1, Down @

Transit LSP: @ sessions

Total @ displayed, Up @, Down 0

Meaning

The output shows that each LSP is operational.



Verifying that the MPLS LSP Cross-Connect Is Operational

Purpose

Verify that the MPLS LSP circuit cross-connect is operational.

Action

Issue the show connections remote-interface-switch operational mode command, and verify that the circuit
cross-connect state is Up.

user@E1> show connections remote-interface-switch
CCC and TCC connections [Link Monitoring On]
[...Output truncated...]

Connection/Circuit Type St Time last up # Up trans
1-3-ccc rmt-if Up Apr 18 22:30:54 1
1t-1/1/10.100 intf Up
1-3 tlsp Up
3-1 rlsp Up

user@PE2> show connections remote-interface-switch
CCC and TCC connections [Link Monitoring On]
[...Output truncated...]

Connection/Circuit Type St Time last up # Up trans
3-1-ccc rmt-if Up Apr 18 15:07:04 1
1t-1/1/10.100 intf Up
3-1 tlsp Up
1-3 rlsp Up
Meaning

The output from both routers indicates that the circuit cross-connect is operational.



Verifying the Routes

Purpose

Ensure that the routes from the CCC interface over the LSP are active.

Action

Issue the show route ccc 1t-1/1/10.100 command.

user@PE1> show route ccc 1t-1/1/10.100

mpls.0: 6 destinations, 6 routes (6 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

1t-1/1/10.100 *[CCC/7/1] 00:34:54, metric 2
> to 10.10.1.2 via ge-1/1/1.0, label-switched-path 1-3

user@E2> show route ccc 1t-1/1/10.100

mpls.0: 6 destinations, 6 routes (6 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

1t-1/1/10.100 *[CCC/7/1] 00:35:48, metric 2
> to 10.10.2.2 via ge-1/1/2.0, label-switched-path 3-1

Meaning

The sample output shows that the circuit cross-connect uses the configured LSPs with the MPLS
interface as the exit interface.



Troubleshooting

IN THIS SECTION

Troubleshooting the Circuit Cross-Connect | 181

Troubleshooting the Circuit Cross-Connect

Problem

The OpenFlow-enabled router does not route OpenFlow traffic to the remote OpenFlow network.

Solution

In order to direct traffic from the local OpenFlow network to the remote OpenFlow network, the
OpenFlow controller must install flow entries that select the appropriate traffic and forward it to the
correct OpenFlow interface. For traffic flowing from PE1 to PE2, the OpenFlow controller must install
flow entries on PE1 that direct OpenFlow traffic from ge-1/0/0.0 to It-1/1/10.0, and it must install flow
entries on PE2 that direct the OpenFlow traffic from It-1/1/10.0 to ge-1/0/0.0. Similarly, for traffic
flowing from PE2 to PE1, the OpenFlow controller must install flow entries on PE2 that direct the
desired OpenFlow traffic from ge-1/0/0.0 to It-1/1/10.0, and it must install flow entries on PE1 that
direct the OpenFlow traffic from It-1/1/10.0 to ge-1/1/0.0.

Understanding OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP Tunnel Cross-
Connects | 154

Configuring Support for OpenFlow on MX Series Routers | 79



CHAPTER

Configuration Statements and
Operational Commands

OpenFlow Operational Mode Commands | 183

Junos CLI Reference Overview | 184




OpenFlow Operational Mode Commands

Table 42 on page 183 summarizes the operational mode commands that you can use to monitor and
troubleshoot OpenFlow operations on an OpenFlow-enabled device running Junos OS. Commands are
listed in alphabetical order.

Table 42: OpenFlow Operational Mode Commands

Command Task

show openflow capability Display support information for OpenFlow features, actions, and match
conditions on the device.

show openflow controller Display OpenFlow controller information and status.

show openflow filters Display information for filters bound to OpenFlow interfaces.

show openflow flows Display OpenFlow flow information.

show openflow groups Display OpenFlow groups information.

show openflow interfaces Display physical characteristics and status information for interfaces

participating in OpenFlow.

show openflow statistics flows Display statistics for OpenFlow flow entries.

show openflow statistics groups Display statistics for OpenFlow groups.

show openflow statistics interfaces = Display statistics for interfaces participating in OpenFlow.

show openfilow statistics packet Display statistics for packet-in and packet-out actions.

show openflow statistics queue Display statistics for OpenFlow queues in hardware.

show openflow statistics summary = Display summary statistics for all OpenFlow flows.



Table 42: OpenFlow Operational Mode Commands (Continued)

Command Task

show openflow statistics tables Display statistics for OpenFlow flow tables.

show openflow summary Display summary information for OpenFlow flows.

show openflow switch Display OpenFlow message statistics for OpenFlow virtual switches.

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Learn about the
syntax and options that make up the statements and commands and understand the contexts in which
you'll use these CLI elements in your network configurations and operations.

e Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

e Configuration Statements

e Operational Commands


https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	Overview
	OpenFlow Support on Juniper Networks Devices
	Understanding Support for OpenFlow on Devices Running Junos OS
	Understanding OpenFlow Operation and Forwarding Actions on Devices Running Junos OS
	Understanding the Virtual Switch Connection to the OpenFlow Controller on Devices Running Junos OS
	Understanding the OpenFlow Version Negotiation Between the Controller and Devices Running Junos OS
	Understanding OpenFlow Flows and Filters on Devices Running Junos OS
	Understanding How the OpenFlow Destination MAC Address Rewrite Action Works
	Understanding OpenFlow Flow Instructions on Devices Running Junos OS
	Understanding How the OpenFlow Group Action Works
	Understanding OpenFlow Flow Entry Timers on Devices Running Junos OS
	Understanding OpenFlow Barrier Messages on Devices Running Junos OS
	Understanding OpenFlow Multipart Messages on Devices Running Junos OS
	Supported Open Standards
	OpenFlow v1.0 Compliance Matrix for Devices Running Junos OS
	OpenFlow v1.0 Compliance Matrix for QFX5100 and EX4600 Switches
	OpenFlow v1.0 Compliance Matrix for EX4550 Switches
	OpenFlow v1.3.1 Compliance Matrix for Devices Running Junos OS

	OpenFlow Basic Configuration
	Configuring Support for OpenFlow on MX Series Routers
	Configuring the OpenFlow Interfaces
	Configuring the OpenFlow Protocol
	Configuring the OpenFlow Routing Instance

	Example: Enabling OpenFlow on MX Series Routers
	Requirements
	Overview
	Configuration
	Verification

	Configuring Support for OpenFlow on EX9200 Switches
	Configuring the OpenFlow Interfaces
	Configuring the OpenFlow Protocol
	Configuring the OpenFlow Routing Instance

	Example: Enabling OpenFlow on EX9200 Switches
	Requirements
	Overview and Topology
	Configuration
	Verification

	Configuring Support for OpenFlow on QFX5100 and EX4600 Switches
	Configuring the OpenFlow Interfaces
	Configuring the OpenFlow Protocol

	Example: Enabling OpenFlow on QFX5100 and EX4600 Switches
	Requirements
	Overview
	Configuration
	Verification

	Configuring Support for OpenFlow on EX4550 Switches
	Configuring the OpenFlow Interfaces
	Configuring the OpenFlow Protocol

	Example: Enabling OpenFlow on EX4550 Switches
	Requirements
	Overview
	Configuration
	Verification


	Configuring OpenFlow Hybrid Interfaces
	Understanding OpenFlow Hybrid Interfaces on Devices Running Junos OS
	Configuring OpenFlow Hybrid Interfaces on MX Series Routers
	Configuring the Hybrid Physical Interface
	Configuring the Hybrid Interface Logical Units
	Configuring the Non-Hybrid Interfaces
	Configuring OpenFlow
	Configuring the Virtual Switch Routing Instances

	Example: Configuring OpenFlow Hybrid Interfaces on MX Series Routers
	Requirements
	Overview
	Configuration
	Verification

	Configuring OpenFlow Hybrid Interfaces on EX9200 Switches
	Configuring the Hybrid Physical Interface
	Configuring the Hybrid Interface Logical Units
	Configuring the Non-Hybrid Interfaces
	Configuring OpenFlow
	Configuring the Virtual Switch Routing Instances

	Example: Configuring OpenFlow Hybrid Interfaces on EX9200 Switches
	Requirements
	Overview and Topology
	Configuration
	Verification


	Configuring OpenFlow Traffic Steering Across MPLS Networks
	Understanding OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP Tunnel Cross-Connects
	Example: OpenFlow Traffic Steering Across MPLS Networks Using MPLS LSP Tunnel Cross-Connects
	Requirements
	Overview
	Configuration
	Verification
	Troubleshooting


	Configuration Statements and Operational Commands
	OpenFlow Operational Mode Commands
	Junos CLI Reference Overview


