- play_arrow Overview
- play_arrow Precision Time Protocol
- play_arrow Precision Time Protocol Overview
- play_arrow Precision Time Protocol Clocks
- PTP Boundary Clock Overview
- Example: Configure PTP Boundary Clock
- Example: Configure PTP Boundary Clock With Unicast Negotiation
- Configure PTP TimeTransmitter Clock
- Configure PTP TimeReceiver Clock
- Example: Configure Ordinary TimeReceiver Clock With Unicast-Negotiation
- Example: Configure Ordinary TimeReceiver Clock Without Unicast-Negotiation
- PTP Transparent Clocks
- Configure PTP Transparent Clock
- play_arrow Precision Time Protocol Profiles
- play_arrow PHY Timestamping
- play_arrow Precision Time Protocol over Ethernet
- PTP over Ethernet Overview
- Guidelines to Configure PTP over Ethernet
- Configure PTP Dynamic Ports for Ethernet Encapsulation
- Configure PTP Multicast TimeTransmitter and TimeReceiver Ports for Ethernet Encapsulation
- Example: Configure PTP over Ethernet for Multicast TimeTransmitter, TimeReceiver, and Dynamic Ports
- play_arrow Precision Time Protocol Additional Features
- Precision Time Protocol (PTP) over Link Aggregation Group (LAG)
- Precision Time Protocol (PTP) Trace Overview
- Line Card Redundancy for PTP
- Timing Defects and Event Management on Routing Platforms
- SNMP MIB for Timing on Routing Platforms
- PTP Passive Port Performance Monitoring on PTX10004 and PTX10008 Devices
-
- play_arrow Global Navigation Satellite System (GNSS)
- play_arrow GPS Systems on Routing Platforms
- play_arrow Integrated GNSS on Routing Platforms
- play_arrow GNSS Configuration for Routers Using External GNSS Receiver
- play_arrow Assisted Partial Timing Support (APTS) on Routing Platforms
-
- play_arrow Synchronous Ethernet
- play_arrow Synchronous Ethernet Overview
- play_arrow Synchronous Ethernet on 10-Gigabit Ethernet MIC
-
- play_arrow Clock Synchronization
- play_arrow Clock Synchronization Concepts
- play_arrow Clock Synchronization for ACX Series Routers
- play_arrow Clock Synchronization for MX Series Routers
- play_arrow Clock Synchronization for PTX Series Routers
- play_arrow Centralized Clocking
-
- play_arrow Hybrid Mode
- play_arrow Hybrid Mode Overview
- play_arrow Hybrid Mode and ESMC Quality-Level Mapping
- Configure Hybrid Mode and ESMC Quality-Level Mapping Overview
- Configure Hybrid Mode with Mapping of the PTP Clock Class to the ESMC Quality-Level
- Configure Hybrid Mode with a User-Defined Mapping of the PTP Clock Class to the ESMC Quality-Level
- Example: Configure Hybrid Mode and ESMC Quality-Level Mapping on ACX Series Router
- Example: Configure Hybrid Mode and ESMC Quality-Level Mapping on MX240 Router
-
- play_arrow Configuration Statements and Operational Commands
- play_arrow Appendix
Configure Devices to Listen to Multicast Messages Using NTP
Configure the local router or switch to listen for multicast messages using NTP. It listens for, and synchronizes to, succeeding multicast messages.
When you are using NTP, you can configure the local router or switch to listen for multicast
messages on the local network to discover other servers on the same subnet by including the
multicast-client
statement at the [edit system ntp]
hierarchy level:
[edit system ntp] user@host# set multicast-client address
When the router or switch receives a multicast message for the first time, it measures the nominal network delay using a brief client-server exchange with the remote server. It then enters multicast client mode, in which it listens for, and synchronizes to, succeeding multicast messages.
You can specify one or more IP addresses. (You must specify an address, not a hostname.) If
you do, the router or switch joins those multicast groups. If you do not specify any
addresses, the software uses 224.0.1.1
.
To avoid accidental or malicious disruption in this mode, both the local and remote systems must use authentication and the same trusted key and key identifier.