- play_arrow Common Configuration for All VPNs
- play_arrow VPNs Overview
- play_arrow Assigning Routing Instances to VPNs
- play_arrow Distributing Routes in VPNs
- play_arrow Distributing VPN Routes with Target Filtering
- Configuring BGP Route Target Filtering for VPNs
- Example: BGP Route Target Filtering for VPNs
- Example: Configuring BGP Route Target Filtering for VPNs
- Configuring Static Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Example: Configuring Proxy BGP Route Target Filtering for VPNs
- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Reducing Network Resource Use with Static Route Target Filtering for VPNs
- play_arrow Configuring Forwarding Options for VPNs
- play_arrow Configuring Graceful Restart for VPNs
- play_arrow Configuring Class of Service for VPNs
- play_arrow Pinging VPNs
-
- play_arrow Common Configuration for Layer 2 VPNs and VPLS
- play_arrow Overview
- play_arrow Layer 2 VPNs Configuration Overview
- play_arrow Configuring Layer 2 Interfaces
- play_arrow Configuring Path Selection for Layer 2 VPNs and VPLS
- play_arrow Creating Backup Connections with Redundant Pseudowires
- play_arrow Configuring Class of Service for Layer 2 VPNs
- play_arrow Monitoring Layer 2 VPNs
- Configuring BFD for Layer 2 VPN and VPLS
- BFD Support for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Configuring BFD for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Connectivity Fault Management Support for EVPN and Layer 2 VPN Overview
- Configure a MEP to Generate and Respond to CFM Protocol Messages
-
- play_arrow Configuring Group VPNs
- play_arrow Configuring Public Key Infrastructure
- play_arrow Configuring Digital Certificate Validation
- play_arrow Configuring a Device for Certificate Chains
- play_arrow Managing Certificate Revocation
-
- play_arrow Configuring Layer 2 Circuits
- play_arrow Overview
- play_arrow Layer 2 Circuits Configuration Overview
- play_arrow Configuring Class of Service with Layer 2 Circuits
- play_arrow Configuring Pseudowire Redundancy for Layer 2 Circuits
- play_arrow Configuring Load Balancing for Layer 2 Circuits
- play_arrow Configuring Protection Features for Layer 2 Circuits
- Egress Protection LSPs for Layer 2 Circuits
- Configuring Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Example: Configuring an Egress Protection LSP for a Layer 2 Circuit
- Example: Configuring Layer 2 Circuit Protect Interfaces
- Example: Configuring Layer 2 Circuit Switching Protection
- play_arrow Monitoring Layer 2 Circuits with BFD
- play_arrow Troubleshooting Layer 2 Circuits
-
- play_arrow Configuring VPWS VPNs
- play_arrow Overview
- play_arrow Configuring VPWS VPNs
- Understanding FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring MPLS Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Understanding Multisegment Pseudowire for FEC 129
- Example: Configuring a Multisegment Pseudowire
- Configuring the FAT Flow Label for FEC 128 VPWS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPWS Pseudowires for Load-Balancing MPLS Traffic
-
- play_arrow Configuring VPLS
- play_arrow Overview
- play_arrow VPLS Configuration Overview
- play_arrow Configuring Signaling Protocols for VPLS
- VPLS Routing and Virtual Ports
- BGP Signaling for VPLS PE Routers Overview
- Control Word for BGP VPLS Overview
- Configuring a Control Word for BGP VPLS
- BGP Route Reflectors for VPLS
- Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Configuring Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Example: VPLS Configuration (BGP Signaling)
- Example: VPLS Configuration (BGP and LDP Interworking)
- play_arrow Assigning Routing Instances to VPLS
- Configuring VPLS Routing Instances
- Configuring a VPLS Routing Instance
- Support of Inner VLAN List and Inner VLAN Range for Qualified BUM Pruning on a Dual-Tagged Interface for a VPLS Routing Instance Overview
- Configuring Qualified BUM Pruning for a Dual-Tagged Interface with Inner VLAN list and InnerVLAN range for a VPLS Routing Instance
- Configuring a Layer 2 Control Protocol Routing Instance
- PE Router Mesh Groups for VPLS Routing Instances
- Configuring VPLS Fast Reroute Priority
- Specifying the VT Interfaces Used by VPLS Routing Instances
- Understanding PIM Snooping for VPLS
- Example: Configuring PIM Snooping for VPLS
- VPLS Label Blocks Operation
- Configuring the Label Block Size for VPLS
- Example: Building a VPLS From Router 1 to Router 3 to Validate Label Blocks
- play_arrow Associating Interfaces with VPLS
- play_arrow Configuring Pseudowires
- Configuring Static Pseudowires for VPLS
- VPLS Path Selection Process for PE Routers
- BGP and VPLS Path Selection for Multihomed PE Routers
- Dynamic Profiles for VPLS Pseudowires
- Use Cases for Dynamic Profiles for VPLS Pseudowires
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Basic Solutions
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Complex Solutions
- Configuring the FAT Flow Label for FEC 128 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Example: Configuring H-VPLS BGP-Based and LDP-Based VPLS Interoperation
- Example: Configuring BGP-Based H-VPLS Using Different Mesh Groups for Each Spoke Router
- Example: Configuring LDP-Based H-VPLS Using a Single Mesh Group to Terminate the Layer 2 Circuits
- Example: Configuring H-VPLS With VLANs
- Example: Configuring H-VPLS Without VLANs
- Configure Hot-Standby Pseudowire Redundancy in H-VPLS
- Sample Scenario of H-VPLS on ACX Series Routers for IPTV Services
- play_arrow Configuring Multihoming
- VPLS Multihoming Overview
- Advantages of Using Autodiscovery for VPLS Multihoming
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring BGP Autodiscovery for LDP VPLS
- Example: Configuring BGP Autodiscovery for LDP VPLS with User-Defined Mesh Groups
- VPLS Multihoming Reactions to Network Failures
- Configuring VPLS Multihoming
- Example: VPLS Multihoming, Improved Convergence Time
- Example: Configuring VPLS Multihoming (FEC 129)
- Next-Generation VPLS for Multicast with Multihoming Overview
- Example: Next-Generation VPLS for Multicast with Multihoming
- play_arrow Configuring Point-to-Multipoint LSPs
- play_arrow Configuring Inter-AS VPLS and IRB VPLS
- play_arrow Configuring Load Balancing and Performance
- Configuring VPLS Load Balancing
- Configuring VPLS Load Balancing Based on IP and MPLS Information
- Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
- Example: Configuring Loop Prevention in VPLS Network Due to MAC Moves
- Understanding MAC Pinning
- Configuring MAC Pinning on Access Interfaces for Bridge Domains
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains
- Configuring MAC Pinning on Access Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP)
- Configuring MAC Pinning on VPLS CE Interface
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance
- Configuring MAC Pinning on Access Interfaces for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces for Logical Systems
- Configuring MAC Pinning on Access Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP) for Logical Systems
- Configuring MAC Pinning on VPLS CE Interface for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance for Logical Systems
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance for Logical Systems
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Access Interfaces
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Trunk Interfaces
- Configuring Improved VPLS MAC Address Learning on T4000 Routers with Type 5 FPCs
- Understanding Qualified MAC Learning
- Qualified Learning VPLS Routing Instance Behavior
- Configuring Qualified MAC Learning
- play_arrow Configuring Class of Service and Firewall Filters in VPLS
- play_arrow Monitoring and Tracing VPLS
-
- play_arrow Configuration Statements and Operational Commands
ON THIS PAGE
Example: Interconnecting a Layer 2 VPN with a Layer 2 VPN
This example provides a step-by-step procedure for interconnecting and verifying a Layer 2 VPN with a Layer 2 VPN. It contains the following sections:
Requirements
This example uses the following hardware and software components:
Junos OS Release 9.3 or later
2 MX Series 5G Universal Routing Platforms
2 M Series Multiservice Edge Routers
1 T Series Core Routers
1 EX Series Ethernet Switches
Overview and Topology
Topology
The physical topology of the Layer 2 VPN to Layer 2 VPN connection example is shown in Figure 1.

The logical topology of a Layer 2 VPN to Layer 2 VPN connection is shown in Figure 2.

Configuration
In any configuration session, it is good practice to verify
periodically that the configuration can be committed using the commit check
command.
In this example, the router being configured is identified using the following command prompts:
CE1
identifies the customer edge 1 (CE1) routerPE1
identifies the provider edge 1 (PE1) routerCE3
identifies the customer edge 3 (CE3) routerPE3
identifies the provider edge 3 (PE3) routerCE5
identifies the customer edge 5 (CE5) routerPE5
identifies the provider edge 5 (PE5) router
This example is organized in the following sections:
- Configuring Protocols on the PE and P Routers
- Verifying the Layer 2 VPN to Layer 2 VPN Connection on Router PE3
- Verifying the Layer 2 VPN to Layer 2 VPN Connection on Router PE3
- Results
Configuring Protocols on the PE and P Routers
Step-by-Step Procedure
All of the PE routers and P routers are configured with
OSPF as the IGP protocol. The MPLS, LDP, and BGP protocols are enabled
on all of the interfaces except fxp.0
. Core-facing interfaces
are enabled with the MPLS address and inet address.
Configure all the PE and P routers with OSPF as the IGP. Enable the MPLS, LDP, and BGP protocols on all interfaces except
fxp.0
. The following configuration snippet shows the protocol configuration for Router PE1:content_copy zoom_out_map[edit] protocols { mpls { interface all; interface fxp0.0 { disable; } } bgp { group RR { type internal; local-address 192.0.2.1; family l2vpn { signaling; } neighbor 192.0.2.7; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } }
Configure the PE and P routers with OSPF as the IGP. Enable the MPLS, LDP, and BGP protocols on all interfaces except
fxp.0
. The following configuration snippet shows the protocol configuration for Router PE3:content_copy zoom_out_map[edit] protocols { mpls { interface all; interface fxp0.0 { disable; } } bgp { group RR { type internal; local-address 192.0.2.3; family l2vpn { signaling; } neighbor 192.0.2.7; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } }
Step-by-Step Procedure
Configuring the Layer 2 VPN Protocol and Interfaces
On Router PE1, configure the
ge-1/0/0
interface encapsulation. To configure the interface encapsulation, include theencapsulation
statement and specify theethernet-ccc
option (vlan-ccc encapsulation is also supported). Configure thege-1/0/0.0
logical interface family for circuit cross-connect functionality. To configure the logical interface family, include thefamily
statement and specify theccc
option. The encapsulation should be configured the same way for all routers in the Layer 2 VPN domain.content_copy zoom_out_map[edit interfaces] ge-1/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.1/24; } } }
On Router PE1, configure the Layer 2 VPN protocols. Configure the remote site ID as 3. Site ID 3 represents Router PE3 (Hub-PE). To configure the Layer 2 VPN protocols, include the
l2vpn
statement at the[edit routing-instances routing-instances-name protocols]
hierarchy level. Layer 2 VPNs use BGP as the signaling protocol.content_copy zoom_out_map[edit routing-instances] L2VPN { instance-type l2vpn; interface ge-1/0/0.0; route-distinguisher 65000:1; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE1 { site-identifier 1; interface ge-1/0/0.0 { remote-site-id 3; } } } } }
On Router PE5, configure the
ge-2/0/0
interface encapsulation by including theencapsulation
statement and specify theethernet-ccc
option. Configure the ge-1/0/0.0 logical interface family for circuit cross-connect functionality by including thefamily
statement and specifying theccc
option.content_copy zoom_out_map[edit interfaces] ge-2/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.5/24; } } }
On Router PE5, configure the Layer 2 VPN protocols by including the
l2vpn
statement at the[edit routing-instances routing-instances-name protocols]
hierarchy level. Configure the remote site ID as3
.content_copy zoom_out_map[edit routing-instances] L2VPN { instance-type l2vpn; interface ge-2/0/0.0; route-distinguisher 65000:5; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE5 { site-identifier 5; interface ge-2/0/0.0 { remote-site-id 3; } } } } }
On Router PE3, configure the
iw0
interface with two logical interfaces. To configure theiw0
interface, include theinterfaces
statement and specifyiw0
as the interface name. For the unit 0 logical interface, include thepeer-unit
statement and specify the logical interfaceunit 1
as the peer interface. For the unit 1 logical interface, include thepeer-unit
statement and specify the logical interfaceunit 0
as the peer interface.content_copy zoom_out_map[edit interfaces] iw0 { unit 0 { encapsulation ethernet-ccc; peer-unit 1; } unit 1 { encapsulation ethernet-ccc; peer-unit 0; } }
On Router PE3, configure the edge-facing
ge-1/0/1
interface encapsulation by including theencapsulation
statement and specifying theethernet-ccc
option.content_copy zoom_out_map[edit interfaces] ge-1/0/1 { encapsulation ethernet-ccc; unit 0 { family ccc; } }
On Router PE3, configure the logical loopback interface. The loopback interface is used to establish the targeted LDP sessions to Routers PE1 and Router PE5.
content_copy zoom_out_map[edit interfaces] lo0 { unit 0 { family inet { address 192.0.2.3/24; } } }
On Router PE3, enable the Layer 2 interworking protocol. To enable the Layer 2 interworking protocol, include the
l2iw
statement at the[edit protocols]
hierarchy level.content_copy zoom_out_map[edit protocols] l2iw;
On Router PE3, configure two Layer 2 VPN routing instances to terminate the Layer 2 VPN virtual circuits from Router PE1 and Router PE5, as shown.
content_copy zoom_out_map[edit routing-instances] L2VPN-PE1 { instance-type l2vpn; interface iw0.0; route-distinguisher 65000:3; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.0 { remote-site-id 1; } } } } } L2VPN-PE5 { instance-type l2vpn; interface iw0.1; route-distinguisher 65000:33; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.1 { remote-site-id 5; } } } } }
Verifying the Layer 2 VPN to Layer 2 VPN Connection on Router PE3
Step-by-Step Procedure
BGP is used for control plane signaling in a Layer 2 VPN. On Router PE1, use the
show bgp
command to verify that the BGP control plane for the Layer 2 VPN, has established a neighbor relationship with the route reflector that has IP address192.0.2.7
.Three Layer 2 VPN routes are received from the route reflector for each PE router in the topology.
content_copy zoom_out_mapuser@PE1> show bgp summary Groups: 1 Peers: 1 Down peers: 0 Table Tot Paths Act Paths Suppressed History Damp State Pending bgp.l2vpn.0 3 3 0 0 0 0 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/Received/Accepted/Damped... 192.0.2.7 65000 190 192 0 0 1:24:40 Establ bgp.l2vpn.0: 3/3/3/0 L2VPN.l2vpn.0: 3/3/3/0
On Router PE1, use the
show route
command to verify that the BGP Layer 2 VPN routes are stored in theL2VPN.l2vpn.0
routing table for each PE router.content_copy zoom_out_mapuser@PE1> show route table L2VPN.l2vpn.0 L2VPN.l2vpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden) + = Active Route, - = Last Active, * = Both 65000:1:1:3/96 *[L2VPN/170/-101] 01:31:53, metric2 1 Indirect 65000:3:3:1/96 *[BGP/170] 01:24:58, localpref 100, from 192.0.2.7 AS path: I > to 10.10.1.2 via xe-0/3/0.0 65000:5:5:3/96 *[BGP/170] 01:24:58, localpref 100, from 192.0.2.7 AS path: I > to 10.10.3.2 via xe-0/2/0.0 65000:33:3:5/96 *[BGP/170] 01:24:58, localpref 100, from 192.0.2.7 AS path: I > to 10.10.1.2 via xe-0/3/0.0
On Router PE1, use the
show ldp session
command to verify that targeted LDP sessions are established to the PE routers in the network and that the state isOperational
.content_copy zoom_out_mapuser@PE1> show ldp session Address State Connection Hold time 192.0.2.2 Operational Open 24 192.0.2.3 Operational Open 22 192.0.2.5 Operational Open 28
On Router PE1, use the
show l2vpn connections
command to verify that the Layer 2 VPN to site 3 on Router PE3 (Hub-PE) isUp
.content_copy zoom_out_mapuser@PE1> show l2vpn connections Layer-2 VPN connections: Legend for connection status (St) EI -- encapsulation invalid NC -- interface encapsulation not CCC/TCC/VPLS EM -- encapsulation mismatch WE -- interface and instance encaps not same VC-Dn -- Virtual circuit down NP -- interface hardware not present CM -- control-word mismatch -> -- only outbound connection is up CN -- circuit not provisioned <- -- only inbound connection is up OR -- out of range Up -- operational OL -- no outgoing label Dn -- down LD -- local site signaled down CF -- call admission control failure RD -- remote site signaled down SC -- local and remote site ID collision LN -- local site not designated LM -- local site ID not minimum designated RN -- remote site not designated RM -- remote site ID not minimum designated XX -- unknown connection status IL -- no incoming label MM -- MTU mismatch MI -- Mesh-Group ID not availble BK -- Backup connection ST -- Standby connection PF -- Profile parse failure PB -- Profile busy Legend for interface status Up -- operational Dn -- down Instance: L2VPN Local site: CE1 (1) connection-site Type St Time last up # Up trans 3 rmt Up Jan 5 18:08:25 2010 1 Remote PE: 192.0.2.3, Negotiated control-word: Yes (Null) Incoming label: 800000, Outgoing label: 800000 Local interface: ge-1/0/0.0, Status: Up, Encapsulation: ETHERNET 5 rmt OR
On Router PE1, use the
show route
command to verify that thempls.0
routing table is populated with the Layer 2 VPN routes used to forward the traffic using an LDP label. Notice that in this example, the router is pushing label8000000
.content_copy zoom_out_mapuser@PE1> show route table mpls.0 [edit] mpls.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden) + = Active Route, - = Last Active, * = Both 0 *[MPLS/0] 1w1d 11:36:44, metric 1 Receive 1 *[MPLS/0] 1w1d 11:36:44, metric 1 Receive 2 *[MPLS/0] 1w1d 11:36:44, metric 1 Receive 300432 *[LDP/9] 3d 04:25:02, metric 1 > to 10.10.2.2 via xe-0/1/0.0, Pop 300432(S=0) *[LDP/9] 3d 04:25:02, metric 1 > to 10.10.2.2 via xe-0/1/0.0, Pop 300768 *[LDP/9] 3d 04:25:02, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Pop 300768(S=0) *[LDP/9] 3d 04:25:02, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Pop 300912 *[LDP/9] 3d 04:25:02, metric 1 > to 10.10.3.2 via xe-0/2/0.0, Swap 299856 301264 *[LDP/9] 3d 04:24:58, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Swap 308224 301312 *[LDP/9] 3d 04:25:01, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Pop 301312(S=0) *[LDP/9] 3d 04:25:01, metric 1 > to 10.10.1.2 via xe-0/3/0.0, Pop 800000 *[L2VPN/7] 01:25:28 > via ge-1/0/0.0, Pop Offset: 4 ge-1/0/0.0 *[L2VPN/7] 01:25:28, metric2 1 > to 10.10.1.2 via xe-0/3/0.0, Push 800000 Offset: -4
Verifying the Layer 2 VPN to Layer 2 VPN Connection on Router PE3
Step-by-Step Procedure
On Router PE3, use the
show l2vpn connections
command to verify that the Layer 2 VPN connections from Router PE1 and Router PE5 areUp
and are using theiw0
interface.content_copy zoom_out_mapuser@PE3> show l2vpn connections Instance: L2VPN-PE1 Local site: CE3 (3) connection-site Type St Time last up # Up trans 1 rmt Up Jan 5 18:08:22 2010 1 Remote PE: 192.0.2.1, Negotiated control-word: Yes (Null) Incoming label: 800000, Outgoing label: 800000 Local interface: iw0.0, Status: Up, Encapsulation: ETHERNET 5 rmt OR Instance: L2VPN-PE5 Local site: CE3 (3) connection-site Type St Time last up # Up trans 1 rmt CN 5 rmt Up Jan 5 18:08:22 2010 1 Remote PE: 192.0.2.5, Negotiated control-word: Yes (Null) Incoming label: 800002, Outgoing label: 800000 Local interface: iw0.1, Status: Up, Encapsulation: ETHERNET
On Router PE3, use the
show ldp neighbor
command to verify that the targeted LDP session neighbor IP addresses are shown.content_copy zoom_out_mapuser@PE3> show ldp neighbor Address Interface Label space ID Hold time 192.0.2.1 lo0.0 192.0.2.1:0 44 192.0.2.2 lo0.0 192.0.2.2:0 42 192.0.2.4 lo0.0 192.0.2.4:0 31 192.0.2.5 lo0.0 192.0.2.5:0 44
On Router PE3, use the
show bgp summary
command to verify that the BGP control plane for the Layer 2 VPN, has established a neighbor relationship with the route reflector that has IP address192.0.2.7
.content_copy zoom_out_mapuser@PE3> show bgp summary Groups: 1 Peers: 1 Down peers: 0 Table Tot Paths Act Paths Suppressed History Damp State Pending bgp.l2vpn.0 2 2 0 0 0 0 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/Received/Accepted/Damped... 192.0.2.7 65000 10092 10195 0 0 3d 4:23:27 Establ bgp.l2vpn.0: 2/2/2/0 L2VPN-PE1.l2vpn.0: 2/2/2/0 L2VPN-PE5.l2vpn.0: 2/2/2/0
On Router PE3, use the
show ldp session
command to verify that targeted LDP sessions are established to all of the PE routers in the network and that the state isOperational
.content_copy zoom_out_mapuser@PE3> show ldp session Address State Connection Hold time 192.0.2.1
Operational
Open 24 192.0.2.2Operational
Open 22 192.0.2.4Operational
Open 20 192.0.2.5Operational
Open 24On Router PE3, use the
show route
command to verify that thempls.0
routing table is populated with the Layer 2 VPN routes used to forward the traffic using an LDP label. Notice that in this example, the router is swapping label800000
. Also notice the twoiw0
interfaces that are used for the Layer 2 interworking routes.content_copy zoom_out_mapuser@PE3>show route table mpls.0 mpls.0: 16 destinations, 18 routes (16 active, 2 holddown, 0 hidden) + = Active Route, - = Last Active, * = Both 0 *[MPLS/0] 1w1d 11:50:14, metric 1 Receive 1 *[MPLS/0] 1w1d 11:50:14, metric 1 Receive 2 *[MPLS/0] 1w1d 11:50:14, metric 1 Receive 308160 *[LDP/9] 3d 04:38:45, metric 1 > to 10.10.1.1 via xe-0/3/0.0, Pop 308160(S=0) *[LDP/9] 3d 04:38:45, metric 1 > to 10.10.1.1 via xe-0/3/0.0, Pop 308176 *[LDP/9] 3d 04:38:44, metric 1 > to 10.10.6.2 via xe-0/1/0.0, Pop 308176(S=0) *[LDP/9] 3d 04:38:44, metric 1 > to 10.10.6.2 via xe-0/1/0.0, Pop 308192 *[LDP/9] 00:07:18, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Swap 601649 to 10.10.6.2 via xe-0/1/0.0, Swap 299856 308208 *[LDP/9] 3d 04:38:44, metric 1 > to 10.10.5.1 via xe-0/2/0.0, Pop 308208(S=0) *[LDP/9] 3d 04:38:44, metric 1 > to 10.10.5.1 via xe-0/2/0.0, Pop 308224 *[LDP/9] 3d 04:38:42, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Pop 308224(S=0) *[LDP/9] 3d 04:38:42, metric 1 > to 10.10.20.1 via xe-0/0/0.0, Pop 800000 *[L2IW/6] 01:39:13, metric2 1 > to 10.10.6.2 via xe-0/1/0.0, Swap 800000 [L2VPN/7] 01:39:13 > via iw0.0, Pop Offset: 4 800002 *[L2IW/6] 01:39:13, metric2 1 > to 10.10.1.1 via xe-0/3/0.0, Swap 800000 [L2VPN/7] 01:39:13 > via iw0.1, Pop Offset: 4 iw0.0 *[L2VPN/7] 01:39:13, metric2 1 > to 10.10.1.1 via xe-0/3/0.0, Push 800000 Offset: -4 iw0.1 *[L2VPN/7] 01:39:13, metric2 1 > to 10.10.6.2 via xe-0/1/0.0, Push 800000 Offset: -4
Step-by-Step Procedure
Testing Layer 2 VPN to Layer 2 VPN Connectivity (CE1 to CE5)
On Router CE1, use the
ping
command to test connectivity to Router CE5. Notice that the response time is in milliseconds, confirming that the ping response is returned.content_copy zoom_out_mapuser@CE1>ping 198.51.100.11 PING 198.51.100.11 (198.51.100.11): 56 data bytes 64 bytes from 198.51.100.11: icmp_seq=1 ttl=64 time=22.425 ms 64 bytes from 198.51.100.11: icmp_seq=2 ttl=64 time=1.299 ms 64 bytes from 198.51.100.11: icmp_seq=3 ttl=64 time=1.032 ms 64 bytes from 198.51.100.11: icmp_seq=4 ttl=64 time=1.029 ms
On Router CE5, use the
ping
command to test connectivity to Router CE1. Notice that the response time is in milliseconds, confirming that the ping response is returned.content_copy zoom_out_mapuser@CE5>ping 198.51.100.1 PING 198.51.100.1 (198.51.100.1): 56 data bytes 64 bytes from 198.51.100.1: icmp_seq=0 ttl=64 time=1.077 ms 64 bytes from 198.51.100.1: icmp_seq=1 ttl=64 time=0.957 ms 64 bytes from 198.51.100.1: icmp_seq=2 ttl=64 time=1.057 ms 1.017 ms
Results
The configuration and verification of this example have been completed. The following section is for your reference.
The relevant sample configuration for Router PE1 follows.
Router PE1
chassis { dump-on-panic; fpc 1 { pic 3 { tunnel-services { bandwidth 1g; } } } network-services ethernet; } interfaces { xe-0/1/0 { unit 0 { family inet { address 10.10.2.1/30; } family mpls; } } xe-0/2/0 { unit 0 { family inet { address 10.10.3.1/30; } family mpls; } } xe-0/3/0 { unit 0 { family inet { address 10.10.1.1/30; } family mpls; } } ge-1/0/0 { encapsulation ethernet-ccc; unit 0 { family ccc; } } lo0 { unit 0 { family inet { address 192.0.2.1/24; } } } } routing-options { static { route 172.16.0.0/8 next-hop 172.19.59.1; } autonomous-system 65000; } protocols { mpls { interface all; interface fxp0.0 { disable; } } bgp { group RR { type internal; local-address 192.0.2.1; family l2vpn { signaling; } neighbor 192.0.2.7; } } ospf { traffic-engineering; area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } } routing-instances { L2VPN { instance-type l2vpn; interface ge-1/0/0.0; route-distinguisher 65000:1; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE1 { site-identifier 1; interface ge-1/0/0.0 { remote-site-id 3; } } } } } }
The relevant sample configuration for Router PE3 follows.
Router PE3
chassis { dump-on-panic; fpc 1 { pic 3 { tunnel-services { bandwidth 1g; } } } network-services ethernet; } interfaces { xe-0/0/0 { unit 0 { family inet { address 10.10.20.2/30; } family mpls; } } xe-0/1/0 { unit 0 { family inet { address 10.10.6.1/30; } family mpls; } } xe-0/2/0 { unit 0 { family inet { address 10.10.5.2/30; } family mpls; } } xe-0/3/0 { unit 0 { family inet { address 10.10.1.2/30; } family mpls; } } ge-1/0/1 { encapsulation ethernet-ccc; unit 0 { family ccc; } } iw0 { unit 0 { encapsulation ethernet-ccc; peer-unit 1; } unit 1 { encapsulation ethernet-ccc; peer-unit 0; } } lo0 { unit 0 { family inet { address 192.0.2.3/24; } } } } routing-options { static { route 172.16.0.0/8 next-hop 172.19.59.1; } autonomous-system 65000; } protocols { l2iw; mpls { interface all; interface fxp0.0 { disable; } } bgp { group RR { type internal; local-address 192.0.2.3; family l2vpn { signaling; } neighbor 192.0.2.7; } } ospf { area 0.0.0.0 { interface all; interface fxp0.0 { disable; } } } ldp { interface all; interface fxp0.0 { disable; } } } routing-instances { L2VPN-PE1 { instance-type l2vpn; interface iw0.0; route-distinguisher 65000:3; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.0 { remote-site-id 1; } } } } } L2VPN-PE5 { instance-type l2vpn; interface iw0.1; route-distinguisher 65000:33; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.1 { remote-site-id 5; } } } } } }