- play_arrow Common Configuration for All VPNs
- play_arrow VPNs Overview
- play_arrow Assigning Routing Instances to VPNs
- play_arrow Distributing Routes in VPNs
- play_arrow Distributing VPN Routes with Target Filtering
- Configuring BGP Route Target Filtering for VPNs
- Example: BGP Route Target Filtering for VPNs
- Example: Configuring BGP Route Target Filtering for VPNs
- Configuring Static Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Example: Configuring Proxy BGP Route Target Filtering for VPNs
- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Reducing Network Resource Use with Static Route Target Filtering for VPNs
- play_arrow Configuring Forwarding Options for VPNs
- play_arrow Configuring Graceful Restart for VPNs
- play_arrow Configuring Class of Service for VPNs
- play_arrow Pinging VPNs
-
- play_arrow Common Configuration for Layer 2 VPNs and VPLS
- play_arrow Overview
- play_arrow Layer 2 VPNs Configuration Overview
- play_arrow Configuring Layer 2 Interfaces
- play_arrow Configuring Path Selection for Layer 2 VPNs and VPLS
- play_arrow Creating Backup Connections with Redundant Pseudowires
- play_arrow Configuring Class of Service for Layer 2 VPNs
- play_arrow Monitoring Layer 2 VPNs
- Configuring BFD for Layer 2 VPN and VPLS
- BFD Support for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Configuring BFD for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Connectivity Fault Management Support for EVPN and Layer 2 VPN Overview
- Configure a MEP to Generate and Respond to CFM Protocol Messages
-
- play_arrow Configuring Group VPNs
- play_arrow Configuring Public Key Infrastructure
- play_arrow Configuring Digital Certificate Validation
- play_arrow Configuring a Device for Certificate Chains
- play_arrow Managing Certificate Revocation
-
- play_arrow Configuring Layer 2 Circuits
- play_arrow Overview
- play_arrow Layer 2 Circuits Configuration Overview
- play_arrow Configuring Class of Service with Layer 2 Circuits
- play_arrow Configuring Pseudowire Redundancy for Layer 2 Circuits
- play_arrow Configuring Load Balancing for Layer 2 Circuits
- play_arrow Configuring Protection Features for Layer 2 Circuits
- Egress Protection LSPs for Layer 2 Circuits
- Configuring Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Example: Configuring an Egress Protection LSP for a Layer 2 Circuit
- Example: Configuring Layer 2 Circuit Protect Interfaces
- Example: Configuring Layer 2 Circuit Switching Protection
- play_arrow Monitoring Layer 2 Circuits with BFD
- play_arrow Troubleshooting Layer 2 Circuits
-
- play_arrow Configuring VPWS VPNs
- play_arrow Overview
- play_arrow Configuring VPWS VPNs
- Understanding FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring MPLS Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Understanding Multisegment Pseudowire for FEC 129
- Example: Configuring a Multisegment Pseudowire
- Configuring the FAT Flow Label for FEC 128 VPWS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPWS Pseudowires for Load-Balancing MPLS Traffic
-
- play_arrow Connecting Layer 2 VPNs and Circuits to Other VPNs
- play_arrow Connecting Layer 2 VPNs to Other VPNs
- play_arrow Connecting Layer 2 Circuits to Other VPNs
- Using the Layer 2 Interworking Interface to Interconnect a Layer 2 Circuit to a Layer 2 VPN
- Applications for Interconnecting a Layer 2 Circuit with a Layer 2 Circuit
- Example: Interconnecting a Layer 2 Circuit with a Layer 2 VPN
- Example: Interconnecting a Layer 2 Circuit with a Layer 2 Circuit
- Applications for Interconnecting a Layer 2 Circuit with a Layer 3 VPN
- Example: Interconnecting a Layer 2 Circuit with a Layer 3 VPN
-
- play_arrow Configuration Statements and Operational Commands
Configuring the Label Block Size for VPLS
VPLS MPLS packets have a two-label stack. The outer label is used for normal MPLS forwarding in the service provider’s network. If BGP is used to establish VPLS, the inner label is allocated by a PE router as part of a label block. One inner label is needed for each remote VPLS site. Four sizes are supported. We recommend using the default size of 8, unless the network design requires a different size for optimal label usage, to allow the router to support a larger number of VPLS instances.
In the VPLS documentation, the word router in terms such as PE router is used to refer to any device that provides routing functions.
If you allocate a large number of small label blocks to increase efficiency, you also increase the number of routes in the VPLS domain. This has an impact on the control plane overhead.
Changing the configured label block size causes all existing pseudowires to be deleted. For example, if you configure the label block size to be 4 and then change the size to 8, all existing label blocks of size 4 are deleted, which means that all existing pseudowires are deleted. The new label block of size 8 is created, and new pseudowires are established.
Four label block sizes are supported: 2, 4, 8, and 16. Consider the following scenarios:
2—Allocate the label blocks in increments of 2. For a VPLS domain that has only two sites with no future expansion plans.
4—Allocate the label blocks in increments of 4.
8 (default)—Allocate the label blocks in increments of 8.
16—Allocate the label blocks in increments of 16. A label block size of 16 enables you to minimize the number of routes in the VPLS domain. Use this setting only if the number of routes is the most important concern.
Use Feature Explorer to determine if a feature is supported on your platform and release.
Configure the label block size:
[edit routing-instances instance-name protocols vpls] user@router# set label-block-size 2