
AI Data Center Network with Juniper
Apstra, AMD GPUs, Broadcom NIC, AMD
Pollara NIC, and Vast Storage—Juniper
Validated Design (JVD)

Published

2025-12-23

Table of Contents

About this Document | 1

Solution Benefits | 2

AI Use Case and Reference Design | 5

Solution Architecture | 9

Fabric configuration Walkthrough using Juniper Apstra | 37

Terraform Automation of Apstra for the AI Fabric | 64

AMD Configuration | 65

DCQCN configuration for RDMA Traffic on NICs | 125

VAST Storage Configuration | 217

Network Connectivity Details (Reference Examples) | 226

JVD Validation Framework | 259

JVD Validation Goals and Scope | 259

JVD Validation Test Results Summary and Analysis | 264

Recommendations Summary | 264

Revision History | 265

ii

AI Data Center Network with Juniper Apstra, AMD
GPUs, Broadcom NIC, AMD Pollara NIC, and Vast
Storage—Juniper Validated Design (JVD)

Juniper Networks Validated Designs provide a comprehensive, end-to-end blueprint for deploying
Juniper solutions in your network. These designs are created by Juniper's expert engineers and tested to
ensure they meet your requirements. Using a validated design, you can reduce the risk of costly
mistakes, save time and money, and ensure that your network is optimized for maximum performance.

About this Document

This document describes the design requirements and implementation of an AI cluster infrastructure
connecting AMD MI300X GPU servers and Vast Storage systems, based on AI-optimized Juniper Data
Center Juniper QFX5240 series switches, which are configured and managed by Juniper Apstra and
Terraform automation. As part of this solution, both Broadcom Thor2 and AMD Pollara network
interface cards (NICs) have been validated for compatibility and performance.

All validation tests were conducted in Juniper’s AI Innovation Lab in Sunnyvale, CA, USA. In this open
lab, Juniper collaborates closely with customers and technology partners to develop AI solutions and
test deployments for a range of AI applications and models.

The AI Innovation Lab allows customers to see AI training and inference in action. Juniper performs
these tests running both customer-specific models as well as those from MLCommons for MLPerf
performance benchmarking and comparisons.

Nomenclature: For brevity, AMD Pensando Pollara 400 NIC will be referred to as AMD Pollara NIC
throughout thisdocument.

1

https://mlcommons.org/

Solution Benefits

IN THIS SECTION

Juniper Validated Design Benefits | 3

Juniper Apstra Benefits | 4

Juniper Networks has excelled in building and supporting AI networks following a scalable, robust, and
automated approach suitable for a range of cluster sizes. Unlike proprietary solutions that lock in
enterprises and can stifle AI innovation, Juniper’s standards-based solution assures the fastest
innovation, maximizes design flexibility, and prevents vendor lock-in on the Frontend, GPU Backend, and
Storage Backend AI fabric networks.

The Juniper Validated Design (JVD) for AI describes a structured approach for deploying high-
performance AI training and inference networks that minimize job completion time and maximize GPU
performance. Additionally, it incorporates industry best practices, and leverages Juniper’s extensive
expertise in building high-performance data center networks.

The design in this JVD employs a 3-stage Clos IP fabric architecture, utilizing Juniper QFX-series
switches as leaf and spine nodes. It integrates multi-vendor GPU servers and storage devices and is
deployed and managed using Juniper Apstra and Terraform Automation.

The integration with Juniper’s Apstra software and Terraform enables customers to orchestrate the
network infrastructure systematically, without requiring in-depth knowledge of the products and
technologies involved. This allows customers to easily build high-capacity, easy-to-operate network
fabrics that deliver high performance and increased reliability, which results in optimal JCT (Job
Completion Time) and maximized GPU utilization in the AI cluster.

The solution has been extensively tested and thoroughly documented by Juniper subject matter experts,
resulting in a validated design that is easy to follow, guarantees successful implementation, and
simplified management and troubleshooting tasks. This document provides comprehensive guidance on
how to deploy this solution, with clear descriptions of its components and step by step instructions to
connect and configure them.

2

Juniper Validated Design Benefits

JVDs are prescriptive blueprints for building data center fabrics using repeatable, validated, predictable,
and well documented network architecture solutions with guidelines for a successful deployment. Each
solution has been designed, fully tested, and documented by Juniper Networks experts with all the
necessary implementation details, including hardware components, software versions, connectivity, and
configuration steps.

To become a validated solution (JVD) and be approved for release, a solution must pass rigorous testing
with real-world workloads and applications. All features must satisfy operational and performance
criteria in real-world scenarios. Testing not only includes validating the design topology and
configuration steps, but also that all products in the JVD work together as expected, thereby mitigating
potential risks while deploying the solution.

The core benefits of JVDs solutions can be summarized as:

• Qualified Deployments—Qualified network design blueprints for data center fabrics, that follow best
practices and meet the requirements of each specific use case, and make the solution deployment
quicker, simpler, and more reliable.

• Scalable—Solutions that can scale beyond the initial design and support the adoption of different
hardware platforms based on customer requirements, and customers’ feedback can meet the needs
of most Juniper’s data center customers.

• Risk Mitigation— Prescriptive implementation guidelines guarantee that you have the right products,
the right software versions, an optimal architecture, and comprehensive deployment steps.

• Systematically Verified—Tested solutions using a suite of automated testing tools validate the
performance and reliability of all the components.

• Predictability— Detailed testing and careful documentation of the solution, including the capabilities
and limitations of its components, guarantees that the solution will operate as expected when
implemented according to the JVD guidelines.

• Repeatability— Unlocked value with repeatable network designs due to the prescriptive nature of
JVD designs as well as their applicability to common use cases in the data center environment. All
JVD customers benefit from lessons learned through lab testing and real-world deployments.

• Reliability— Tested with real traffic, JVD solutions are qualified to operate as designed after
deployment and with real-world traffic.

• Accelerated Deployment— Ease installation with step-by-step guidance automation, and prebuilt
integrations simplifies, and accelerates deployment, while reducing risks.

3

• Accelerated Decision-Making— Predefined combination of products, software, and architecture
removes the need to spend time comparing products, and deciding how the network should be built,
allowing to bridge business and technology requirements faster and reducing risks.

• Best Practice Networks— Better outcomes for a better experience. Juniper Validated Designs have
known characteristics and performance profiles to help you make informed decisions about your
network.

Juniper Apstra Benefits

Juniper Validated Designs in the data center start with the Apstra software, a multi-vendor, intent-based
networking system (IBNS) that provides closed-loop automation and assurance. Apstra translates
vendor-agnostic business intent and technical objectives to essential policy and device-specific
configurations. The system also validates user intent, as part of the initial deployment and continuously
thereafter, to ensure that the network state does not deviate from the intended state. Any anomaly or
deviation can be flagged, and remediation actions can be taken directly from Apstra.

The core benefits of Apstra are:

• Intent-based networking—Apstra automates configuration creation to realize the intent, deploys the
configuration to appropriate devices, and continuously validates the operating state against intended
state.

• Network Automation—Apstra is a multi-vendor network automation platform that is continuously
updated to work with the latest hardware and is extensively tested using modern DevOps practices.

• Recoverability—The Built-in rollback capability of Apstra allows to quickly restore the system to a
known-working configuration if needed.

• Day 2+ Management—Apstra’s rich data analysis capabilities, including Flow Data, reduce Mean Time
to Resolution (MTTR).

• Simplicity—Apstra simplifies network deployment and management. As an example, using Apstra to
implement a Data Center Interconnection (DCI), reduces complexity and makes it easy to unify
multiple data centers, while isolating failure domains for high availability and resilience.

4

AI Use Case and Reference Design

IN THIS SECTION

Frontend Overview | 6

GPU Backend Overview | 7

Storage Backend Overview | 8

The AI JVD Reference Design covers a complete end-to-end ethernet-based AI infrastructure, which
includes the Frontend fabric, GPU Backend (Graphics Processing Unit) fabric and Storage Backend fabric.
These three fabrics have a symbiotic relationship, while each provides unique functions to support AI
training and inference tasks. The use of Ethernet Networking in AI Fabrics enables our customers to
build high-capacity, easy-to-operate network fabrics that deliver the fastest job completion times,
maximize GPU utilization, and use limited IT resources.

The AI JVD reference design shown in Figure 1 on page 6 includes:

• Frontend Fabric: This fabric is the gateway network to the GPU nodes and storage nodes from the AI
tools residing in the headend servers. The Frontend GPU fabric allows users to interact with the GPU
and storage nodes to initiate training or inference workloads and to visualize their progress and
results, and provides an out-of-band path for RCCL (ROCm Communication Collectives Library).

• GPU Backend Fabric: This fabric connects the GPU nodes (which perform the computations tasks for
AI workflows). The GPU Backend fabric transfers high-speed information between GPUs during
training jobs, in a lossless matter. Traffic generated by the GPUs is transferred using RoCEv2 (RDMA
over Ethernet v2).

• Storage Backend Fabric: This fabric connects the high-availability storage systems (which hold the
large model training data) and the GPUs (which consume this data during training or inference jobs).
The Storage Backend fabric transfers high volumes of data in a seamless and reliable matter.

5

https://github.com/rocm/rccl

Figure 1: AI JVD Reference Design

Frontend Overview

The AI Frontend for AI encompasses the interface, tools, and methods that enable users to interact with
the AI systems, and the infrastructure that allows these interactions. The Frontend gives users the ability
to initiate training or inference tasks, and to visualize the results, while hiding the underlying technical
complexities.

The key components of the Frontend systems include:

• Model Scheduling: Tools and methods for managing scripted AI model jobs and commonly based on
SLURM (Simple Linux Utility for Resource Management) Workload Manager. These tools enable
users to send instructions, commands, and queries, either through a shell CLI or through a graphical
web-based interface to orchestrate learning and inference jobs running on the GPUs. Users can
configure model parameters, input data, and interpret results as well as initiate or terminate jobs
interactively. In the AI JVD, these tools are hosted on the Headend Servers connected to the AI
Frontend fabric.

• Management of AI Systems: Tools for managing (configuring, monitoring and performing
maintenance tasks) the AI storage and processing components. These tools facilitate building,

6

running, training, and utilizing AI models efficiently. Examples include SLURM, TensorFlow, PyTorch,
and Scikit-learn.

• Management of Fabric Components: Mechanisms and workflows designed to help users effortlessly
deploy and manage fabric devices according to their requirements and goals. It includes tasks such as
device onboarding, configuration management, and fabric deployment orchestration. This
functionality is provided by Juniper Apstra .

• Performance Monitoring and Error Analysis: Telemetry systems tracking key performance metrics
related to AI models, such as accuracy, precision, recall, and computational resource utilization (e.g.
CPU, GPU usage) which are essential for evaluating model effectiveness during training and inference
jobs. These systems also provide insights into error rates and failure patterns during training and
inference operations, and help identify issues such as model drift, data quality problems, or
algorithmic errors that may affect AI performance. Examples of these systems include Juniper Apstra
dashboards, TIG Stack, and Elasticsearch.

• Data Visualization: Applications and tools that allow users to visually comprehend insights generated
by AI models and workloads. They provide effective visualization that enhances understanding and
decision-making based on AI outputs. The same telemetry systems used to monitor and measure
System and Network level performance usually provide this visualization as well. Examples of these
tools include Juniper Apstra dashboards, TensorFlow, and TIG stack.

• User Interface: Routing and switching infrastructure that allows communication between the user
interface applications and tools and the AI systems executing the jobs, including GPUs and storage
devices. This infrastructure ensures seamless interaction between users and the computational
resources needed to leverage AI capabilities effectively.

• GPU-to-GPU control: Communication establishment, information exchange including, QP GIDs
(Global IDs), Local and remote buffer addresses, and RDMA keys (RKEYs for memory access
permissions)

GPU Backend Overview

The GPU Backend for AI encompasses the devices that execute learning and inference jobs or
computational tasks, that is the GPU servers where the data processing occurs, and the infrastructure
that allows the GPUs to communicate with each other to complete the jobs.

The key components of the GPU Backend systems include:

• AI Systems: Specialized hardware such as GPUs (Graphics Processing Units) and TPUs (Tensor
Processing Units) that can execute numerous calculations concurrently. GPUs are particularly adept
at handling AI workloads, including complex matrix multiplications and convolutions required to

7

complete learning and inference tasks. The selection and number of GPU systems significantly
impacts the speed and efficiency of these tasks.

• AI Software: Operating systems, libraries, and frameworks essential for developing and executing AI
models. These tools provide the environment necessary for coding, training, and deploying AI
algorithms effectively. The functions of these tools include:

• Data Management: Preprocessing, and transformation of data utilized in training and executing AI
models. This encompasses tasks such as cleaning, normalization, and feature extraction. Given the
volume and complexity of AI datasets, efficient data management strategies like parallel
processing and distributed computing are crucial.

• Model Management: Tasks related to the AI models themselves, including evaluation (e.g., cross-
validation), selection (choosing the optimal model based on performance metrics), and
deployment (making the model accessible for real-world applications).

• GPU Backend Fabric: Routing and switching infrastructure that allows GPU-to-GPU communication
for workload distribution, memory sharing, synchronization of model parameters, exchange of
results, etc. The design of this fabric can significantly impact the speed and efficiency of AI/ML
model training and inference jobs and in most cases shall provide lossless connectivity for GPU-to-
GPU traffic.

Storage Backend Overview

The AI storage backend for AI encompasses the hardware and software components for storing,
retrieving, and managing the vast amounts of data involved in AI workloads, and the infrastructure that
allows the GPUs to communicate with these storage components.

The key aspects of the storage backend include:

• High-Performance Storage Devices: Optimized for high I/O throughput, which is essential for
handling the intensive data processing requirements of the AI tasks such as deep learning. This
includes high-performance storage devices designed to facilitate fast access to data during model
training and to accommodate the storage needs of large datasets. These storage devices must
provide:

• Data Management Capabilities: Supports efficient data querying, indexing, and retrieval which are
crucial for minimizing preprocessing and feature extraction times in AI workflows, as well as for
facilitating quick data access during inference.

• Scalability: Accommodates growing data volumes and efficiently manages and stores massive
amounts of data over time, to support AI workloads often involving large-scale datasets.

8

• Storage Backend Fabric: Routing and switching infrastructure that provides the connectivity between
the GPU and the storage devices. This integration ensures that data can be efficiently transferred
between storage and computational resources, optimizing overall AI workflow performance. The
performance of the storage backend significantly impacts the efficiency and JCT of AI/ML
workflows. A storage backend that provides quick access to data can significantly reduce the amount
of time for training AI/ML models.

Solution Architecture

IN THIS SECTION

Frontend Fabric | 12

GPU Backend Fabric | 13

Backend GPU Rail Optimized Architecture | 21

Calculating the number of leaf, spines, servers and GPUs. | 23

Storage Backend Fabric | 26

Scaling | 29

Juniper Hardware and Software Solution Components | 30

IP Services for AI Networks | 32

Congestion Management | 33

Load Balancing | 34

Dynamic Load Balancing (DLB) | 34

Ethernet Network Adapter (NICs) for AI Data centers | 36

The three fabrics described in the previous section (Frontend, GPU Backend, and Storage Backend), are
interconnected together in the overall AI JVD solution architecture as shown in Figure 2.

Figure 2: AI JVD Solution Architecture'

9

We have built two different Clusters, as shown in Figure 3, which share the " Frontend fabric " on page
12 and "Storage Backend fabric" on page 26 but have separate " GPU Backend fabrics " on page 13.
Each cluster is made of two stripes following the " Rail Optimized Stripe Architecture " on page 21, but
include different switch models as Leaf and Spine nodes, as well as GPU server models.

Figure 3: AI JVD Lab Clusters

10

The GPU Backend in Cluster 1 consists of Juniper QFX5220, and QFX5230 switches as leaf nodes and
either QFX5230s switches or PTX10008 routers acting as spine nodes. The QFX5230s and PTX10008
have been validated acting as spine nodes separately, while maintaining the leaf nodes the same. Apstra
blueprints are used to switch between the setups with QFX5230s acting as spine nodes and the one
with PTX10008 acting as spine.

The GPU Backend in Cluster 2 consists of Juniper QFX5240 switches acting as both leaf nodes and
spine nodes and includes AMD MI300X GPU servers and Nvidia H100 GPU servers.

Details about Cluster 1, and the Nvidia GPU servers in Cluster 2 are included in the AI Data Center
Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated Design (JVD).

The rest of this document focuses on the AMD MI300X GPU servers and VAST storage and includes
server and storage configurations, specific for these systems.

It is important to notice that the type of switch and the number of switches acting as leaf and spine
nodes, as well as the number and speed of the links between them, is determined by the type of fabric
(Frontend, GPU Backend or Storage Backend) as they present different requirements. More details will
be included in the respective fabric description sections.

In the case of the GPU Backend fabric, the number of GPU servers, as well as the number of GPUs per
server, are also factors determining the number and switch type of the leaf and spine nodes.

11

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Frontend Fabric

The Frontend Fabric provides the infrastructure for users to interact with the AI systems to orchestrate
training and inference tasks workflows using tools such as SLURM. These interactions do not generate
heavy data flows nor have rigorous requirements regarding latency or packet drops; thus, they do not
impose rigorous demands on the fabric.

The Frontend Fabric design described in this JVD follows a traditional 3-stage IP Fabric architecture
without HA, as shown in Figure 4. This architecture provides a simple and effective solution for the
connectivity required in the Frontend. However, any fabric architecture including EVPN/VXLAN, could
be used. If an HA-capable Frontend Fabric is required we recommend following the 3-Stage with Juniper
Apstra JVD. An EVPN/VXLAN JVD specifically for AI will be developed in the future.

Figure 4: Frontend Fabric Architecture

NOTE: The Vast Storage cluster is not connected to the Frontend fabric.

The devices included in the Frontend fabric, and the connections between them, are summarized in the
following tables:

Table 1: Frontend devices

AMD GPU Servers Headend Servers Frontend Leaf Nodes
switch model

Frontend Spine Nodes
switch model

MI300X x 4

(MI300X-01 to
MI300X-04)

Headend-SVR x 3

(Headend-SVR-01 to
Headend-SVR-03)

QFX5130-32CD x 2

(frontend-leaf#; #= 1-2

QFX5130-32CD x 2

(frontend-spine#; #= 1-2)

12

https://www.juniper.net/documentation/us/en/software/jvd/jvd-3-stage-datacenterdesign-with-juniper-apstra/solution_benefits.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-3-stage-datacenterdesign-with-juniper-apstra/solution_benefits.html

Table 2: Connections between servers, leaf and spine nodes per cluster and stripe in the Frontend

GPU Servers <=>
Frontend Leaf Nodes

Headend Servers <=> Frontend
Leaf Nodes

Frontend Leaf Nodes <=>
Frontend Spine Nodes

1 x 100GE links

per GPU server to leaf connection

Total number of 100GE links
between

GPU servers and frontend leaf
nodes = 4

(4 servers x 1 link per server)

1 x 10GE links

per headend server to lead
connection

Total number of 10GE links
between

headend servers and frontend leaf
nodes = 3

(3 servers x 1 link/server)

2 x 400GE links

per leaf node to spine node
connection

Total number of 400GE links
between

frontend leaf nodes and spine
nodes = 8

(2 leaf nodes x 2 spines nodes

x 2 links per leaf to spine
connection)

This fabric is an L3 IP fabric using EBGP for route advertisement. The IP addressing and EBGP
configuration details are described in the networking section on this document.

GPU Backend Fabric

The GPU Backend fabric provides the infrastructure for GPUs to communicate with each other within a
cluster, using RDMA over Converged Ethernet (RoCEv2). RoCEv2 enhances data center efficiency,
reduces complexity, and optimizes data delivery across high-speed Ethernet networks.

Packet loss can significantly impact job completion times and therefore should be avoided. Therefore,
when designing the compute network infrastructure to support RoCEv2 for an AI cluster, one of the key
objectives is to provide a near lossless fabric, while also achieving maximum throughput, minimal
latency, and minimal network interference for the AI traffic flows. ROCEv2 is more efficient over lossless
networks, resulting in optimum job completion times.

The GPU Backend fabric in this JVD was designed with these goals in mind. The design follows a 3-stage
IP clos and "Rail Optimized Stripe architecture" on page 21 as shown in Figure 5.

Figure 5: GPU Backend Fabric Architecture

13

The devices that are part of the GPU Backend fabric, and the connections between them, are
summarized in the following tables:

Table 3: GPU Backend devices per cluster and stripe

Stripe GPU Servers GPU Backend Leaf
nodes switch model

GPU Backend Spine
nodes switch model

1 MI300X x 2

(MI300X-01 &
MI300X-02)

QFX5240-64OD x 8

(gpu-backend-001_leaf#;
#=1-8)

QFX5240-64OD x 4

(gpu-backend-spine#;
#=1-4)

2 MI300X x 2

(MI300X-03 &
MI300X-04)

QFX5240-64OD x 8

(gpu-backend-002_leaf#;
#=1-8)

Table 4: GPU Backend connections between servers, leaf nodes and spine nodes.

14

Stripe GPU Servers <=> GPU Backend
Leaf Nodes

GPU Backend Leaf Nodes <=> GPU
Backend Spine Nodes

1 8 (number of GPUs per server) x
400GE links

per MI300X server to leaf
connections

Total number of 400GE links
between

servers and leaf nodes = 16

(2 server x 8 links/server)

2 x 400GE links

per leaf node to spine node
connection

Total number of 400GE links
between

frontend leaf nodes and spine
nodes = 64

(8 leaf nodes x 4 spines nodes

x 2 links per leaf to spine
connection)

each leaf node and each spine
node)

2 8 (number of GPUs per server) x
400GE links

per MI300X server to leaf
connections

Total number of 400GE links
between

servers and leaf nodes = 16

(2 server x 8 links/server)

2 x 400GE links

per leaf node to spine node
connection

Total number of 400GE links
between

frontend leaf nodes and spine
nodes = 64

(8 leaf nodes x 4 spines nodes

x 2 links per leaf to spine
connection)

each leaf node and each spine
node)

• All the AMD MI300X GPU servers are connected to the GPU backend fabric using 400GE interfaces.

• This fabric is an L3 IP fabric that uses EBGP for route advertisement (This is described in the
networking section).

• Connectivity between the servers and the leaf nodes is L2 untagged vlan-based with IRB interfaces
on each leaf node acting as default gateway for the servers (described in the networking section).

15

The speed and number of links between the GPU servers and leaf nodes and between the leaf and spine
nodes determines the oversubscription factor. As an example, consider the number of GPU servers
available in the lab, and how they are connected to the GPU backend fabric as described above.

The bandwidth between the servers and the leaf nodes is 12.8 Tbps (Table 5), while the bandwidth
available between the leaf and spine nodes is also 25.6 Tbps (Table 6). This means that the fabric has
enough capacity to process all traffic between the GPUs even when this traffic is 100% inter-stripe and
has extra capacity to accommodate 4 more servers. With 4 additional servers the subscription factor
would be 1:1 (no oversubscription).

Table 5: Per stripe Server to Leaf Bandwidth

Server to Leaf Bandwidth per Stripe

Stripe Number of servers

per Stripe

Number of 400
Gbps

server ó leaf links
per server

(Same as number of
leaf nodes &

number of GPUs
per server)

Server <=> Leaf

Link Bandwidth

[Gbps]

Total Servers <=>
Leaf Links

Bandwidth per
stripe

[Tbps]

1 2 8 400 Gbps 2 x 8 x 400 Gbps =
6.4 Tbps

2 2 8 400 Gbps 2 x 8 x 400 Gbps =
6.4 Tbps

Total

Server <=> Leaf
Bandwidth

12.8 Tbps

Table 6: Per stripe Leaf to Spine Bandwidth

16

Leaf nodes to spine nodes bandwidth per Stripe

Stripe Number of

leaf nodes

Number of
spine nodes

Number of 400
Gbps

leaf ó spine links
per leaf node

Server <=> Leaf

Link Bandwidth

[Gbps]

Bandwidth

Leaf <=> Spine
Per Stripe

[Tbps]

1 8 4 2 400 8 x 2 x 2 x 400
Gbps =
12.8Tbps

2 8 4 2 400 8 x 2 x 2 x 400
Gbps =
12.8Tbps

Total

Leaf <=> Spine
Bandwidth

25.6 Tbps

Optimization in rail-optimized topologies refers to how GPU communication is managed to minimize
congestion and latency while maximizing throughput. A key part of this optimization strategy is keeping
traffic local whenever possible. By ensuring that GPU communication remains within the same rail or
stripe, or even within the server, the need to traverse spines or external links is reduced, which lowers
latency, minimizes congestion, and enhances overall efficiency.

While localizing traffic is prioritized, inter-stripe communication will be necessary in larger GPU clusters.
Inter-stripe communication is optimized by means of proper routing and balancing techniques over the
available links to avoid bottlenecks and packet loss.

The essence of optimization lies in leveraging the topology to direct traffic along the shortest and least-
congested paths, ensuring consistent performance even as the network scales. Traffic between GPUs in
the same servers can be forwarded locally across the internal Server fabric (vendor dependent), while
traffic between GPUs in different servers happens across the external GPU backend infrastructure.
Communication between GPUs in different servers can be intra-rail, or inter-rail/inter-stripe.

Intra-rail traffic is switched (processed at Layer 2) on the local leaf node. Following this design, data
between GPUs on different servers (but in the same stripe) is always moved on the same rail and across
one single switch. This guarantees GPUs are 1 hop away from each other and will create separate
independent high-bandwidth channels, which minimize contention and maximize performance. On the
other hand, inter-rail/inter-stripe traffic is routed across the IRB interfaces on the leaf nodes and the
spine nodes connecting the leaf nodes (processed at Layer 3).

17

Using the example for calculating the number of servers per stripe provided in the previous section, we
can see how:

• Communication between GPU 1 and GPU 2 in server 1 happens across the server’s internal fabric (1),

• Communication between GPUs 1 in servers 1- 4, and between GPUs 8 in servers 1- 4 happens
across Leaf 1 and Leaf 8 respectively (2), and

• Communication between GPU 1 and GPU 8 (in servers 1- 4) happens across leaf1, the spine nodes,
and leaf8 (3)

This is illustrated in Figure 12.

Figure 12: Inter-rail vs. Intra-rail GPU-GPU communication

On the AMD GPU servers specifically, the GPUs are connected via the AMD Infinity fabric (which
provides bidirectional 7x128GB/s per GPU). This fabric consists of seven high-bandwidth low-latency
links that create an interconnected 8-GPU mesh as shown in Figure 13.

Figure 13. AMD MI300XX architecture.

18

AMD MI300X GPUs leverage Infinity Fabric, to provide high-bandwidth, low-latency communication
between GPUs, CPUs, and other components. This interconnect can dynamically manage traffic
prioritization across links, providing an optimized path for communication within the node.

By default, AMD MI300X devices implement local optimization to minimize latency for GPU-to-GPU
traffic. Traffic between GPUs of the same rank remains intra-stripe. Figure 14 shows an example where
GPU1 in Server 1 communicates with GPU1 in Server 2. The traffic is forwarded by Leaf Node 1 and
remains within Rail 1.

19

Additionally, if GPU4 in Server 1 wants to communicate with GPU5 in Server 2, and GPU5 in Server 1 is
available as a local hop in AMD’s Infinity Fabric, the traffic naturally prefers this path to optimize
performance and keep GPU-to-GPU communication intra-rail.

Figure 14: GPU to GPU inter-rail communication between two servers with local optimization.

If local optimization is not feasible because of workload constraints, for example, the traffic must bypass
local hops (internal fabric) and use RDMA (off-node NIC-based communication). In such case, GPU4 in
Server 1 communicates with GPU5 in Server 2 by sending data directly over the NIC using RDMA,
which is then forwarded across the fabric, as shown in Figure 15.

Figure 15: GPU to GPU inter-rail communication between two servers without local optimization.

20

Backend GPU Rail Optimized Architecture

As previously described a Rail Optimized Stripe Architecture provides efficient data transfer between
GPUs, especially during computationally intensive tasks such as AI Large Language Models (LLM)
training workloads, where seamless data transfer is necessary to complete the tasks within a reasonable
timeframe. A Rail Optimized topology aims to maximize performance by providing minimal bandwidth
contention, minimal latency, and minimal network interference, ensuring that data can be transmitted
efficiently and reliably across the network.

In a Rail Optimized Architecture there are two important concepts: rail and stripe.

The GPUs on a server are numbered 1-8, where the number represents the GPU’s position in the server,
as shown in Figure 6. This number is sometimes called rank or more specifically "local rank" in
relationship to the GPUs in the server where the GPU sits, or "global rank" in relationship to all the
GPUs (in multiple servers) assigned to a single job.

A rail connects GPUs of the same order across one of the leaf nodes in the fabric; that is, rail Nth
connects all GPU in position Nth on all the servers, to leaf node Nth, as shown in Figure 6.

Figure 6: Rails in a Rail Optimized Architecture

A stripe refers to a design module or building block, comprised of multiple rails, and that includes a
number of Leaf nodes and GPU servers, as shown in Figure 7, that can be replicated to scale up the AI
cluster.

Figure 7: Stripes in a Rail Optimized Architecture

21

All traffic between GPUs of the same rank (intra-rail traffic) is forwarded at the leaf node level as shown
in Figure 11.

Figure 11: Intra-rail traffic example.

A stripe can be replicated to scale up the number of servers (N1) and GPUs (N2) in an AI cluster. Multiple
stripes (N3) are then connected across Spine switches as shown in Figure 8.

Figure 8: Multiple stripes connected via Spine nodes

22

Both Inter-rail and inter-stripe traffic will be forwarded across the spines nodes as shown in figure 9.

Figure 9. Inter-rail, and Inter-stripe GPU to GPU traffic example.

Calculating the number of leaf, spines, servers and GPUs.

The number of leaf nodes in a single stripe in a rail optimized architecture is defined by the number of
GPUs per server (number of rails). Each AMD MI300X GPU server includes 8 AMD Instinct MI300Xx
GPUs. Therefore, a single stripe includes 8 leaf nodes (8 rails).

23

Number of leaf nodes = number of GPUs x server = 8

The maximum number of servers supported in a single stripe (N1) is defined by the number of available
ports on the Leaf node which depends on the switches model.

The total bandwidth between the GPU servers and leaf nodes must match the total bandwidth between
leaf and spine nodes to maintain a 1:1 subscription ratio.

Assuming all the interfaces on the leaf node operate at the same speed, half of the interfaces will be
used to connect to the GPU servers, and the other half to connect to the spines. Thus, the maximum
number of servers in a stripe is calculated as half the number of available ports on each leaf node. Some
examples are included in Table 7.

Table 7: Maximum number of GPUs supported per stripe

Leaf Node
QFX switch Model

number of available
400 GE ports per
switch

Maximum number of
servers supported per
stripe for 1:1
Subscription
(N1)

GPUs per
server

Maximum number of
GPUs supported per
stripe
(N2)

QFX5220-32CD 32 32 ÷ 2 = 16 8 16 servers x 8 GPUs/
server = 128 GPUs

QFX5230-64CD 64 64 ÷ 2 = 32 8 32 servers x 8 GPUs/
server = 256 GPUs

QFX5240-64OD 128 128 ÷ 2 = 64 8 64 servers x 8 GPUs/
server = 512 GPUs

• QFX5220-32CD switches provide 32 x 400 GE ports => 16 will be used to connect to the servers
and 16 will be used to connect to the spine nodes.

• QFX5230-64CD switches provide up to 64 x 400 GE ports => 32 will be used to connect to the
servers and 32 will be used to connect to the spine nodes.

• QFX5240-64OD switches provide up to 128 x 400 GE ports => 64 will be used to connect to the
servers and 64 will be used to connect to the spine nodes.

NOTE: QFX5240-64OD switches come with 64 x 800GE ports which can break out into 2x400GE
ports, for a maximum of 128 400GE interfaces was shown in table 7.

To achieve larger scales, multiple stripes (N3) can be connected using a set of Spine nodes (N4), as shown
in Figure 9.

24

The number of stripes required (N3) is calculated based on the required number of GPUs, and the
maximum number of GPUs per stripe (N2).

For example, assume that the required number of GPUs (GPUs) is 16,000 and the fabric is using
QFX5240-64OD as leaf nodes.

The number of available 400G ports is 128 which means that:

• maximum number of servers per stripe (N1) = 64

• maximum number of GPUs per stripe (N2) = 512

To number of stripes (N3) required is calculated by diving the number of GPUs required, and the number
of GPUs per stripe as shown:

N 3 (number of stripes required) = GPUs ÷ N 2 (maximum number of GPUs per stripe) = 16000 ÷ 256 ≈
64 stripes

• With 64 stripes & 256 servers per stripe the cluster can provide 16,384 GPUs.

Knowing the number of stripes required (N 3) and the number of uplinks ports per leaf node (Y) you can
calculate how many spine nodes are required.

Remember X = Y = N1

First the total number of leaf nodes can be calculated by multiplying the number of stripes required by 8
(number of leaf nodes per stripe).

Total number of leaf nodes = N3 x 8 = 64 x 8 = 512

Then the total number of uplinks can be obtained multiplying the number of uplinks per leaf node (N1),

and the total number of leaf nodes.

Total number of uplinks = N1 x N3 = 64 x 512 = 32768

25

The number of spines required (N4) can then be determined by dividing the total number of uplinks by
the number of available ports on each spine node, which as for the leaf nodes, depends on the switch
model used for the spine role.

Number of spines required (N4) = 32768 / number of available ports on each spine node

For example, if the spine nodes are QFX5240, the number of available ports on each spine node is 128.

Table 8: Number of spines nodes for two stripes.

Spine Node
QFX switch Model

Maximum number of 400 GE
interfaces per switch

Number of spines required (N4) with 64 stripes

QFX5240-64OD 128 32768 ÷ 128 = 256

PTX10008 288 32768 ÷ 288 ~ 128

Storage Backend Fabric

In small clusters, it may be sufficient to use the local storage on each GPU server, or to aggregate this
storage together using open-source or commercial software. In larger clusters with heavier workloads,
an external dedicated storage system is required to provide dataset staging for ingest, and for cluster
checkpointing during training.

Two leading platforms, WEKA and Vast Storage, provide cutting-edge solutions for shared storage in
GPU environments. While we have tested both solutions in our lab, this JVD focuses on the Vast
Storage Solution. Thus, the rest of this, as well as other sections in this document will cover details
about Vast Storage devices and connectivity to the Storage Backend Fabric. Details about the WEKA
storage are included in the AI Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA
Storage—Juniper Validated Design (JVD).

The Storage Backend Fabric provides the connectivity infrastructure for storage devices to be accessible
from the GPU servers. The performance of this fabric significantly impacts the efficiency of AI
workflows. A storage system that provides quick access to data can significantly reduce the amount of
time for training AI models. Similarly, a storage system that supports efficient data querying and indexing
can minimize the completion time of preprocessing and feature extraction in an AI workflow.

The Storage Backend Fabric design in the JVD also follows a 3-stage IP clos architecture as shown in
Figure 16. There is no concept of rail-optimization in a storage cluster. Each GPU server has single
connections to the leaf nodes, instead of one connection per GPU.

Figure 16: Storage Backend Fabric Architecture

26

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

The Storage Backend devices included in this fabric, and the connections between them, are
summarized in the following tables:

Table 9: Storage Backend devices

Number of
GPU Servers

Number of
storage server

Storage Backend Leaf
nodes
switch model

Storage Backend Spine
nodes
(storage-spine#)
switch model

AMD MI300X x 4

(MI300X-#; # = 1-4)

Vast storage server x 8

(Vast#; #=1-8)

QFX5130-32CD x 6

(storage-leaf#; #=1-6)

4 connecting the GPU
servers, and

2 connecting the storage
devices

QFX5130-32CD x 2

(storage-spine#; #=1-2)

27

Number of
GPU Servers

Number of
storage server

Storage Backend Leaf
nodes
(storage-leaf#)
switch model

Storage Backend Spine
nodes
(storage-spine#)
switch model

AMD MI300X x 4

(MI300X-1 to MI300X-4)

Vast storage server x 8

(vast-1 to vast-8)

QFX5130-32CD x 6

(4 connecting the GPU
servers, and

2 connecting the storage
devices)

QFX5130-32CD x 2

QFX5230 and QFX5240 were also validated for the Storage Backend Leaf and Spine roles.

Table 10: Connections between servers, leaf and spine nodes in the Storage Backend

GPU Servers <=>
Storage Backend Leaf Nodes

Storage Servers <=>
Storage Backend Leaf Nodes

Storage Backend Leaf Nodes <=>
Storage Backend Spines nodes

1 x 200GE links

per GPU server to leaf node
connection

Total number of 200GE links
between

GPU servers and storage leaf nodes
= 8

(4 servers x 2 leaf nodes

x 1 link per server to leaf
connections) " (1) " on page 28

1 x 100GE links

per Vast C-node to leaf node
connection

Total number of 100GE links
between

Vast C-node and storage leaf nodes
= 16

(8 c-nodes x 2 leaf nodes

x 1 link per node to lead
connection) " (2) " on page 28

2 x 400GE links

OR

Total number of 400GE links
between

storage Backend leaf nodes and
spine nodes = 8

(4 leaf nodes x 2 spines nodes

x 2 links per leaf to spine
connection +

(2 leaf nodes x 2 spines nodes

x 3 links per leaf to spine
connection

(1) AMD MI300X servers are dual homed

(2) Vast storage C-nodes are dual homed

28

Scaling

The size of an AI cluster varies significantly depending on the specific requirements of the workload. The
number of nodes in an AI cluster is influenced by factors such as the complexity of the machine learning
models, the size of the datasets, the desired training speed, and the available budget. The number varies
from a small cluster with less than 100 nodes to a data center-wide cluster comprised of 10000s of
compute, storage, and networking nodes. A minimum of 4 spines must always be deployed for path
diversity and reduction of PFC failure paths.

Table 11: Fabric Scaling- Devices and Positioning

Fabric Scaling

Small Medium Large

upto 4096 GPU upto 8192 GPU 8192 and upto 73,728 GPU

Support for up to 4096 GPUs with
Juniper QFX5240-64CDs as spine
nodes and QFX5230-64CD as leaf
nodes (single or multi-stripe
implementations).

This 3-stage rail-based fabric
consists of up to 32 Spines and 128
leaf nodes, maintaining a 1:1
subscription.

The fabric provides physical
connectivity for up to 16 stripes,
with 32 servers (256 GPUs) per
stripe, for a total of 4096 GPUs.

Support for more than 4096 GPU
and upto 8192 GPUs with Juniper
QFX5240-64CDs as both Spine
and Leaf nodes.

This 3-stage rail-based fabric
consists of up to 64 spines, and up
to 128 leaf nodes, maintaining a 1:1
subscription.

The fabric provides physical
connectivity for up to 16 Stripes,
with 64 servers (512 GPUs) per
stripe, for a total of 8192 GPUs

Support of more than 8192 GPU
and upto . 73,728 GPUs with
Juniper PTX10000 Chassis as Spine
nodes and Juniper
QFX5240-64CDs as leaf nodes.

This 3-stage rail-based fabric
consists of up to 64 spines, and up
to 1152 leaf nodes, maintaining a
1:1 subscription.

The fabric provides physical
connectivity for up to 144 Stripes,
with 64 servers (512 GPUs) per
stripe, for a total of 73,728 GPUs.

29

(Continued)

Fabric Scaling

Small Medium Large

NOTE: To follow best practices, a minimum of 4 Spines should be deployed, even in a single-stripe
fabric.

Juniper Hardware and Software Solution Components

The Juniper products and software versions listed below pertain to the latest validated configuration for
the AI DC use case. As part of an ongoing validation process, we routinely test different hardware
models and software versions and update the design recommendations accordingly.

The version of Juniper Apstra in the setup is 5.0.0-a-12.

The following table summarizes the validated Juniper devices for this JVD and includes devices tested
for the AI Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper
Validated Design (JVD).

Table 12: Validated Devices and Positioning

30

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Validated Devices and Positioning

Fabric Leaf Switches Spine Switches

Frontend QFX5130-32CD QFX5130-32CD

GPU Backend QFX5230-64CD (CLUSTER 1-STRIPE
1)

QFX5220-32CD (CLUSTER 1-STRIPE
2)

QFX5240-64CD/QFX5241-64CD
(CLUSTER 2)

QFX5230-64CD (CLUSTER 1)

PTX10008 JNP10K-LC1201
(CLUSTER 1)

QFX5240-64CD/
QFX5241-64CD (CLUSTER 2)

Storage Backend QFX5220-32CD

QFX5230-64CD

QFX5240-64CD/QFX5241-64CD

QFX5220-32CD

QFX5230-64CD

QFX5240-64CD/
QFX5241-64CD

The following table summarizes the software versions tested and validated by role.

Table 13: Platform Recommended Release

Platform Role Junos OS Release

QFX5240-64CD GPU Backend Leaf 23.4X100-D20

QFX5241-64CD GPU Backend Spine 23.4X100-D42

QFX5220-32CD GPU Backend Leaf 23.4X100-D20

QFX5230-64CD GPU Backend Leaf 23.4X100-D20

QFX5240-64CD GPU Backend Spine 23.4X100-D20

QFX5241-64CD GPU Backend Spine 23.4X100-D42

QFX5230-64CD GPU Backend Spine 23.4X100-D20

31

(Continued)

Platform Role Junos OS Release

PTX10008 with LC1201 GPU Backend Spine 23.4R2-S3

QFX5130-32CD Frontend Leaf 23.43R2-S3

QFX5130-32CD Frontend Spine 23.43R2-S3

QFX5220-32CD Storage Backend Leaf 23.4X100-D20

QFX5230-64CD Storage Backend Leaf 23.4X100-D20

QFX5240-64CD Storage Backend Leaf 23.4X100-D20

QFX5241-64CD Storage Backend Leaf 23.4X100-D42

QFX5220-32CD Storage Backend Spine 23.4X100-D20

QFX5230-64CD Storage Backend Spine 23.4X100-D20

QFX5240-64CD Storage Backend Spine 23.4X100-D20

QFX5241-64CD Storage Backend Spine 23.4X100-D42

NOTE: For minimum software released for QFX5220-64CD, QFX5230-64CD, PTX10008 in the GPU
backend fabric, check the Recommendations Section in the AI Data Center Network with Juniper
Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated Design (JVD) .

IP Services for AI Networks

In the next few sections, we describe the various strategies that can be employed to handle traffic
congestion and traffic load distribution in the Backend GPU fabric.

32

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Congestion Management

AI clusters pose unique demands on network infrastructure due to their high-density, and low-entropy
traffic patterns, characterized by frequent elephant flows with minimal flow variation. Additionally, most
AI modes require uninterrupted packet flow with no packet loss for training jobs to be completed.

For these reasons, when designing a network infrastructure for AI traffic flows, the key objectives
include maximum throughput, minimal latency, and minimal network interference over a lossless fabric,
resulting in the need to configure effective congestion control methods.

Data Center Quantized Congestion Notification (DCQCN), has become the industry-standard for end-
to-end congestion control for RDMA over Converged Ethernet (RoCEv2) traffic. DCQCN congestion
control methods offer techniques to strike a balance between reducing traffic rates and stopping traffic
all together to alleviate congestion, without resorting to packet drops.

It is important to note that DCQCN is primarily required in the GPU backend fabric, where the majority
of AI workload traffic resides, while it is generally unnecessary in the frontend or storage backend."

DCQCN combines two different mechanisms for flow and congestion control:

• Priority-Based Flow Control (PFC), and

• Explicit Congestion Notification (ECN).

Priority-Based Flow Control (PFC) helps relieve congestion by halting traffic flow for individual traffic
priorities (IEEE 802.1p or DSCP markings) mapped to specific queues or ports. The goal of PFC is to stop
a neighbor from sending traffic for an amount of time (PAUSE time), or until the congestion clears. This
process consists of sending PAUSE control frames upstream requesting the sender to halt transmission
of all traffic for a specific class or priority while congestion is ongoing. The sender completely stops
sending traffic to the requesting device for the specific priority.

While PFC mitigates data loss and allows the receiver to catch up processing packets already in the
queue, it impacts performance of applications using the assigned queues during the congestion period.
Additionally, resuming traffic transmission post-congestion often triggers a surge, potentially
exacerbating or reinstating the congestion scenario.

We recommend configuring PFC only on the QFX devices acting as leaf nodes.

Explicit Congestion Notification (ECN), on the other hand, curtails transmit rates during congestion
while enabling traffic to persist, albeit at reduced rates, until congestion subsides. The goal of ECN is to
reduce packet loss and delay by making the traffic source decrease the transmission rate until the
congestion clears. This process entails marking packets with ECN bits at congestion points by setting the
ECN bits to 11 in the IP header. The presence of this ECN marking prompts receivers to generate
Congestion Notification Packets (CNPs) sent back to source, which signal the source to throttle traffic
rates.

33

Combining PFC and ECN offers the most effective congestion relief in a lossless IP fabric supporting
RoCEv2, while safeguarding against packet loss. To achieve this, when implementing PFC and ECN
together, their parameters should be carefully selected so that ECN is triggered before PFC.

For more information refer to Introduction to Congestion Control in Juniper AI Networks which explores
how to build a lossless fabric for AI workloads using DCQCN (ECN and PFC) congestion control
methods and DLB. The document was based on DLRM training model as a reference and demonstrates
how different congestion parameters such as ECN and PFC counters, input drops and tail drops can be
monitored to adjust configuration and build a lossless fabric infrastructure for RoCEv2 traffic.

NOTE: We provide general recommendations and describe the parameters validated in the lab.
However, each language model has a unique traffic profile and characteristics. Class of Service and load
balancing attributes must be tuned to meet your specific model requirements.

Load Balancing

The fabric architecture used in this JVD for both the Frontend and backend follows the 2-stage clos
design, with every leaf node connected to all the available spine nodes, and via multiple interfaces. As a
result, multiple paths are available between the leaf and spine nodes to reach other devices.

AI traffic characteristics may impede optimal link utilization when implementing traditional Equal Cost
Multiple Path (ECMP) Static Load Balancing (SLB) over these paths. This is because the hashing
algorithm which looks at specific fields in the packet headers will result in multiple flows mapped to the
same link due to their similarities. Consequently, certain links will be favored, and their high utilization
may impede the transmission of smaller low-bandwidth flows, leading to potential collisions, congestion
and packet drops. To improve the distribution of traffic across all the available paths either Dynamic
Load Balancing (DLB) or Global Load Balancing (GLB) can be implemented instead.

For this JVD Dynamic Load Balancing flowlet-mode was implemented on all the QFX leaf and spines
nodes. Global Load Balancing is also included as an alternative solution.

Additional testing was conducted on the QFX5240-64OD in the "GPU Backend Fabric" on page 13, to
evaluate the benefits of Selective Dynamic Load Balancing, and Reactive path rebalancing. Notice that
these load balancing mechanisms are only available on QFX devices.

Dynamic Load Balancing (DLB)

Dynamic Load Balancing (DLB) ensures that all paths are utilized more fairly, by not only looking at the
packet headers, but also considering real-time link quality based on port load (link utilization) and port

34

https://www.juniper.net/documentation/us/en/software/nce/congestion-control-ai-ml/congestion-control-ai-ml.pdf
https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet-switches/topics/topic-map/switches-interface-load-balancing.html#id-understanding-dynamic-load-balancing
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/glb.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/dlb-selective.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html

queue depth when selecting a path. This method provides better results when multiple long-lived flows
moving large amounts of data need to be load balanced.

DLB can be configured in two different modes:

- Per packet mode: packets from the same flow are sprayed across link members of an IP ECMP group,
which can cause packets to arrive out of order.

- Flowlet Mode: packets from the same flow are sent across a link member of an IP ECMP group. A
flowlet is defined as bursts of the same flow separated by periods of inactivity. If a flow pauses for
longer than the configured inactivity timer, it is possible to reevaluate the link members' quality, and for
the flow to be reassigned to a different link.

Selective Dynamic Load Balancing (SDLB): allows implementing DLB only to certain traffic. This feature
is only supported on QFX5240-64OD, and QFX5240-64QD, starting in Junos OS Evolved Release
23.4R2, at the time of this document's publication.

Reactive Path Rebalancing: allows a flow to be reassigned to a different (better) link, when the current
link quality deteriorates, even if no pause in the traffic flow has exceeded the configured inactivity timer.
This feature is only supported on QFX5240-64OD, and QFX5240-64QD, starting in Junos OS Evolved
Release 23.4R2, at the time of this document's publication.

Global Load Balancing (GLB):

GLB is an improvement on DLB which only considers the local link bandwidth utilization. GLB on the
other hand, has visibility into the bandwidth utilization of links at the next-to-next-hop (NNH) level. As a
result, GLB can reroute traffic flows to avoid traffic congestion farther out in the network than DLB can
detect.

AI-ML data centers have less entropy and larger data flows than other networks. Because hash-based
load balancing does not always effectively load-balance large data flows of traffic with less entropy,
dynamic load balancing (DLB) is often used instead. However, DLB considers only the local link
bandwidth utilization. For this reason, DLB can effectively mitigate traffic congestion only on the
immediate next hop. GLB more effectively load-balances large data flows by taking traffic congestion on
remote links into account.

GLB is only supported for QFX-5240 (TH5) starting on 23.4R2 and 24.4R1, requires a full 3-tier CLOS
architecture, and is limited to only one link between each spine and leaf. When there is more than one
interface or a bundle between a pair of leaf and spine, GLB won’t work. Also, GLB supports 64 profiles
in the table. This means there can be 64 leaves in the 3-stage Clos topology where GLB is running.

For additional details on the operation and configuration of GLB refer to Avoiding AI/ML traffic
congestion with global load balancing | HPE Juniper Networking Blogs

ADDITIONAL REFERENCES: Introduction to Congestion Control in Juniper AI Networks explores how
to build a lossless fabric for AI workloads using DCQCN (ECN and PFC) congestion control methods and
DLB. The document was based on DLRM training model as a reference and demonstrates how different

35

https://blogs.juniper.net/en-us/industry-solutions-and-trends/avoiding-ai-ml-traffic-congestion-with-global-load-balancing
https://blogs.juniper.net/en-us/industry-solutions-and-trends/avoiding-ai-ml-traffic-congestion-with-global-load-balancing
https://www.juniper.net/documentation/us/en/software/nce/congestion-control-ai-ml/congestion-control-ai-ml.pdf

congestion parameters such as ECN and PFC counters, input drops and tail drops can be monitored to
adjust configuration and build a lossless fabric infrastructure for RoCEv2 traffic.

Load Balancing in the Data Center provides a comprehensive deep dive into the various load-balancing
mechanisms and their evolution to suit the needs of the data center.

Ethernet Network Adapter (NICs) for AI Data centers

AI/ML workloads have increased in complexity and scale; networking becomes crucial for efficient job
completion times. The Network Adapters (NIC) are the connection points that connect the GPUs to the
data center fabrics and hence these NICs should be able to handle large amounts of data and should be
able to support high-speed, low-latency communications between GPU servers. Due to this at a
minimum, the NICs should be able to support some of the key AI/ML functionality such as below:

• RDMA over Converged Ethernet (RoCE) and congestion control.

• Ability to handle 400G data bidirectional with low latency.

• Advanced congestion control mechanisms that are sensitive and able to react to network congestion
and optimize traffic flow.

• Support GPU scalability ensuring robust performance even with increasing GPUs.

For Server NICs, we have two options:

• Broadcom Thor2—The Broadcom Thor2 network adapters were validated for AI/ML workloads and
job completion times.

• AMD Pollara—AMD Pollara 400 ethernet network adapters

For more information on AMD Pensando Pollara 400 (ethernet adapter) refer to this link.

36

https://s2.bl-1.com/h/dwpj6tJL?url=https://www.juniper.net/documentation/us/en/software/nce/load-balancing-in-data-center/load-balancing-in-data-center.pdf
https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-pollara-400-product-brief.pdf

Fabric configuration Walkthrough using Juniper
Apstra

IN THIS SECTION

Setting up the Apstra Server and Apstra ZTP Server | 38

Onboarding devices in the Apstra WEB UI | 38

Fabric Provisioning in the Apstra Web UI | 43

This section describes the steps to deploy the AI GPU Backend IP fabrics in the AI JVD lab, as an
example of how to deploy a fabric using Juniper Apstra. These steps will cover the AI GPU Backend IP
fabric using QFX5240-64CD switches in the spine and leaf role along with AMD GPU servers and Vast
storage devices.

The Apstra Blueprints for the Frontend, Storage Backend, and GPU backend for cluster 1 and cluster 2
fabrics have been created and can be seen in the Blueprint tab, as shown in Figure 17. We will show the
steps to create GPU backend for cluster 2 blueprint as an example. Similar steps should be followed to
set up the Frontend and Storage Backend fabrics. The configurations for these are included in the
Terraform repository described in the next section.

Figure 17: AI Fabric Blueprints in Apstra

37

Setting up the Apstra Server and Apstra ZTP Server

A configuration wizard launches upon connecting to the Apstra server VM for the first time. At this
point, passwords for the Apstra server, Apstra UI, and network configuration can be configured.

For more detailed information about installation and step-by-step configuration with Apstra, refer to the
Juniper Apstra User Guide. Additional guidance in this walkthrough is provided in the form of notes.

Onboarding devices in the Apstra WEB UI

There are two methods for adding Juniper devices into Apstra: manually (recommended method) or in
bulk using ZTP.

To add devices manually:

• In the Apstra UI navigate to Devices >> Agents >> Create Offbox Agents:

• This requires that the devices are preconfigured with a root password, a management IP and proper
static routing if needed, as well as ssh Netconf, so that they can be accessed and configured by
Apstra.

38

https://www.juniper.net/documentation/us/en/software/apstra5.0/apstra-user-guide/index.html

To add devices via ZTP:

• From the Apstra ZTP server, follow the ZTP steps described in the Juniper Apstra User Guide.

NOTE: Apstra imports the configuration from the devices into a baseline configuration called pristine
configuration, which is a clean, minimal, and free of any pre-existing settings that could interfere with
the intended network design managed by Apstra.

Apstra ignores the Junos configuration ‘groups’ stanza and does not validate any group configuration
listed in the inheritance model, refer to the configuration groups usage guide.

It is best practice to avoid setting loopbacks, interfaces (except management interface), routing-
instances (except management-instance) or any other settings as part of this baseline configuration.

Apstra sets the protocols LLDP and RSTP when the device is successfully Acknowledged.

The QFX5240 devices were onboarded using the manual method following these steps in the Apstra
Web UI:

Step 1: Create Agent Profile.

To create an Agent Profile, navigate to Devices >> Agent Profiles and then click on Create Agent Profile.

Figure 18. Create Agent Profile in Apstra

Enter the Agent profile name, select platform (Junos), and enter the username and password that will be
used by Apstra to communicate with the devices. Make sure the devices are configured with these same
username and password and have ssh Netconf enabled under system services.

For the purposes of this JVD, the same username and password are used across all devices. Thus, only
one Apstra Agent Profile is needed to onboard all the devices, making the process more efficient.

Figure 19: Apstra Agent Profile Parameters

39

https://www.juniper.net/documentation/us/en/software/apstra5.0/apstra-user-guide/index.html

After entering the required information click Create and confirm Agent Profile creation.

Figure 20: New Apstra Agent Profile Verification

Step 2: Create Offbox Agents for QFX devices.

To create Offbox Agents for the QFX devices navigate to Devices >> Managed Devices and then click on
Create Offbox Agents.

Make sure you select Offbox Agent(s).

Figure 21: Create Offbox Agent in Apstra

40

Identify the device(s) to onboard. You can enter a comma-separated list of hostnames, individual IP
addresses, or IP address ranges. An IP address range allows you to onboard multiple devices at once.

Select the platform, and Agent Profile (select the profile created in the previous step).

Figure 22: Adding a Range of IP Addresses in Apstra

Apstra uses the information from the profile that was created in the previous step, if “ Set username?”
and “ Set password?” are unchecked,

After entering the required information click Create.

Confirm that the devices have been added for onboarding. Once the offbox agent has been created,
devices will be added to the list of Managed Devices. Apstra will attempt to connect and if successful it
will populate the relevant information.

Figure 23: New devices being onboarded

41

Step 3: Create Onbox Agents and onboard AMD servers.

To create Offbox Agents for the AMD servers navigate to Devices >> Managed Devices and then click
on Create Offbox Agents.

Make sure you select Onbox Agent(s).

Figure 24: Create Offbox Agent in Apstra

Step 4: Acknowledge Managed Devices for Use in Apstra Blueprints.

The devices must be acknowledged by the user to complete the onboarding and allow them to be part
of Apstra Blueprints.

Figure 25: Acknowledging Managed Devices in Apstra Blueprints

42

Fabric Provisioning in the Apstra Web UI

The following steps outline the provisioning of the GPU Backend Fabric with Apstra.

Step 1: Create Interface Maps and Logical Devices for the QFX5240 devices.

NOTE: The QFX5240s port numbering in Junos OS Release 23.4R2 was modified. Table 14 shows the
differences between the old and the new port mappings.

Table 14. QFX5240-64DC port mappings

The Interface Map and Logical Devices for the QFX5240-64DC leaf and spine nodes were created
following the new port mapping as shown in Figures 26-29

Figure 26: Apstra Interface Map for the QFX5240 Spine Nodes

43

Figure 27: Apstra Logical Device for the QFX5240 Spine Nodes

Figure 28: Apstra Interface Map for the QFX5240 Leaf Nodes

Figure 29: Apstra Logical Device for the QFX5240 Leaf Nodes

44

Step 2: Create Interface Map and Logical Device for the AMD GPU servers.

The logical Device and Interface Map for the AMD MI300X GPU servers are shown in Figures 30-31
respectively.

Figure 30: Apstra Interface Map for the AMD Servers

Figure 31: Apstra Logical Device for the AMD Servers

45

Step 3: Create Rack type.

In Apstra, a Rack is technically equivalent to a stripe in the context of an AI Fabric

To create rack types and templates for the GPU Backend fabric, referencing the Logical Devices created
in the previous step, navigate to Design → Rack Types → Create in Builder, as shown in Figure 32.

Figure 32: Create Rack Type in Apstra

You can choose between Create In Builder or Create In Designer (graphical version). We demonstrate
the Create In Builder option here.

Enter a Rack type, and description, and select L3 Clos.

Figure 33: Creating a Rack in Apstra using the Create In Builder option.

Figure 34: Creating a Rack in Apstra using the Create In Builder option - Leaf nodes details

46

Under the Generic Systems tab add the MI300X devices and reference the logical device created in the
previous step, as shown in Figure 35.

Figure 35: Creating a Rack in Apstra using the Create In Builder option – Generic Systems (GPU servers)
details

47

Notice that as you add the devices, the preview section on the right side will be updated. You can
choose between viewing Logical Devices (Figures 34) or Topology (Figures 35).

Also, the topology created by Apstra follows the rail optimized architecture, which is a new feature
introduced in Apstra.

Step 4: Create Template.

To create a template that references the QFX5240 rack type created in the previous step, navigate to
Design -> Templates -> Create Template as shown in Figure 36.

Figure 36: Create Apstra Template

NOTE: You can choose between Create Template or Create AI Cluster Template (Select from pre-
existing designs). We demonstrate the Create Template option here.

48

Enter the name of the template, and select Type RACK BASED, policies ASN allocation Unique, and
Overlay Pure IP Fabric.

Figure 37: Creating a Template in Apstra - Parameters

Scroll down and select the Rack type and Spine logical device created in previous steps, set the number
of Racks (which is equivalent to saying two stripes) as 2, and the number of spines as 4. Click on create
when ready, as shown in Figure 38.

Figure 38: Creating a Template in Apstra - Structure

Figure 39: Verifying new template creation

49

Step 5: Create Configlets for DCQCN and DLB.

In the Apstra version used for this JVD, features such as ECN, PFC (DCQCN), and DLB are not natively
available. Therefore, Apstra configlets should be used to add these features to the configurations before
they are deployed to the fabric devices.

The configlet used for the DCQCN and DLB features on the QFX leaf nodes is as follows:

/* DLB configuration for Thor NIC2 Adapter */
hash-key {
 family inet {
 layer-3;
 layer-4;
 }
}
enhanced-hash-key {
 ecmp-dlb {
 flowlet {
 inactivity-interval 128;
 flowset-table-size 2048;
 }
 ether-type {
 ipv4;
 ipv6;
 }
 sampling-rate 1000000;
 }
}
protocols {
 bgp {
 global-load-balancing {
 load-balancer-only;
 }
 }

50

}
/* DCQCN configuration */
classifiers {
 dscp mydscp {
 forwarding-class CNP {
 loss-priority low code-points 110000;
 }
 forwarding-class NO-LOSS {
 loss-priority low code-points 011010;
 }
 }
}
drop-profiles {
 dp1 {
 interpolate {
 fill-level [55 90];
 drop-probability [0 100];
 }
 }
}
 shared-buffer {
 ingress {
 buffer-partition lossless {
 percent 66;
 dynamic-threshold 10;
 }
 buffer-partition lossless-headroom {
 percent 24;
 }
 buffer-partition lossy {
 percent 10;
 }
 }
 egress {
 buffer-partition lossless {
 percent 66;
 }
 buffer-partition lossy {
 percent 10;
 }
 }
 }
forwarding-classes {

51

 class CNP queue-num 3;
 class NO-LOSS queue-num 4 no-loss pfc-priority 3;
}
congestion-notification-profile {
 cnp {
 input {
 dscp {
 code-point 011010 {
 pfc;
 }
 }
 }
 output {
 ieee-802.1 {
 code-point 011 {
 flow-control-queue 4;
 }
 }
 }
 }
}
interfaces {
 et-* {
 congestion-notification-profile cnp;
 scheduler-map sm1;
 unit * {
 classifiers {
 dscp mydscp;
 }
 }
 }
}
scheduler-maps {
 sm1 {
 forwarding-class CNP scheduler s2-cnp;
 forwarding-class NO-LOSS scheduler s1;
 }
}
schedulers {
 s1 {
 drop-profile-map loss-priority any protocol any drop-profile dp1;
 explicit-congestion-notification;
 }

52

 s2-cnp {
 transmit-rate percent 5;
 priority strict-high;
 }
}

The configlet used for the DCQCN and DLB features on the QFX spine nodes is as follows:

/* DLB configuration */
hash-key {
 family inet
 layer-3;
 layer-4;
 }
}
enhanced-hash-key {
 ecmp-dlb {
 flowlet {

 inactivity-interval 128;

 flowset-table-size 2048;

 }

 ether-type {

 ipv4;

 ipv6;

 }

 sampling-rate 1000000;

 }

}

protocols {

 bgp {

53

 global-load-balancing {

 helper-only;

 }

 }

}

/* DCQCN configuration */

class-of-service {

 classifiers {

 dscp mydscp {

 forwarding-class CNP {

 loss-priority low code-points 110000;

 }

 forwarding-class NO-LOSS {

 loss-priority low code-points 011010;

 }

 }

 }

 drop-profiles {

 dp1 {

 interpolate {

 fill-level [55 90];

54

 drop-probability [0 100];

 }

 }

 }

 shared-buffer {

 ingress {

 buffer-partition lossless {

 percent 66;

 dynamic-threshold 10;

 }

 buffer-partition lossless-headroom {

 percent 24;

 }

 buffer-partition lossy {

 percent 10;

 }

 }

 egress {

 buffer-partition lossless {

 percent 66;

 }

 buffer-partition lossy {

55

 percent 10;

 }

 }

 }

 forwarding-classes {

 class CNP queue-num 3;

 class NO-LOSS queue-num 4 no-loss pfc-priority 3;

 }

 congestion-notification-profile {

 cnp {

 input {

 dscp {

 code-point 011010 {

 pfc;

 }

 }

 }

 output {

 ieee-802.1 {

 code-point 011 {

 flow-control-queue 4;

56

 }

 }

 }

 }

 }

 interfaces {

 et-* {

 congestion-notification-profile cnp;

 scheduler-map sm1;

 unit * {

 classifiers {

 dscp mydscp;

 }

 }

 }

 }

 scheduler-maps {

 sm1 {

 forwarding-class CNP scheduler s2-cnp;

 forwarding-class NO-LOSS scheduler s1;

 }

 }

57

 schedulers {

 s1 {

 drop-profile-map loss-priority any protocol any drop-profile dp1;

 explicit-congestion-notification;
 }
 s2-cnp {
 transmit-rate percent 5;
 priority strict-high;
 }
 }
}

To create these configlets navigate to:

Design -> Configlets -> Create Configlet and click on Create configlet.

Provide a name for the configlet, select the operating system, vendor and configuration mode and paste
the above configuration snippet on the template text box as shown below:

Figure 40: DCQCN Configlet Creation in Apstra

Step 6: Create the GPU Backend Fabric Blueprint.

Navigate to the Blueprints section and click on Create Blueprint, as shown in Figure 41.

Figure 41: Creating a Blueprint in Apstra

58

Provide a name for the new blueprint, select data center as the reference design, and select Rack-based.
Then select the template that was created in the previous step. You can review the Intent preview
before clicking Create.

Figure 42: New Blueprint Attributes in Apstra

Once the blueprint is successfully initiated by Apstra, it will be included in the Blueprint dashboard as
shown below.

Figure 43: New Blueprint Added to Blueprint Dashboard

Notice that the Deployment Status, Service Anomalies, Probe Anomalies and Root Causes are all shown
as N/A. This is because you will need to complete additional steps that include mapping the different
roles in the blueprint to the physical devices, defining which interfaces will be used, etc.

59

When you click on the blueprint name and enter the blueprint dashboard it will indicate that the
blueprint has not been deployed yet.

Figure 44: New Blueprint’s dashboard

The Staged view, as depicted in Figure 40, shows that the topology is correct, but attributes such as
mandatory ASNs and loopback addresses for the spines and the leaf nodes, and the spine to leaf links
addressing must still be provided by the user.

Figure 45: Undeployed Blueprint Dashboard

You will need to edit each one of these attributes and select from predefined pools of addresses and
ASNs, as shown in the example on Figure 46, to fix this issue.

60

Figure 46: Selecting ASN Pool for Spine Nodes

You will also need to select Interface Maps for each device’s role and along with assignment of system
IDs as shown in Figures 47-48.

Figure 47: Mapping Interface Maps to Spine Nodes

61

Figure 48: Mapping Spine Nodes to Physical Devices (System IDs)

Once all these steps are completed, you can commit the changes, and Apstra will generate and push the
vendor and device-type specific configurations to all devices in the blueprint. After this process is
complete, the fabric should be successfully deployed, as indicated by the green checkmarks shown in
Figure 49.

Figure 49: Active Blueprint.

Step 7: Apply the configlets previously created to the Blueprint.

The configlet should be applied to the devices, both leaf and spine roles within the blueprint.

62

Navigate back to the blueprint dashboard and the move to Staged -> Catalog -> Import.

Select the configlet you want to apply, and the device role where you want to apply it.

Figure 50: Applying DCQCN Configlets to Devices in Apstra

After successfully importing the configlet into the blueprint it should be listed in the catalog. You need
to commit the changes for the configuration to be deployed to the devices.

Figure 51: Applying DCQCN Configlets to Devices in Apstra

You can quickly check the status and the deployed configuration by clicking on each device in the Active
tab and selecting the rendered config under the Device tab on the right side.

63

Figure 52: Device configuration verification in Apstra

Terraform Automation of Apstra for the AI Fabric

IN THIS SECTION

AI Terraform Configs | 64

AI JVD Specific Terraform Configs | 65

AI Terraform Configs

Juniper has compiled a set of Terraform configs to help set up data center fabrics for an AI cluster.

The github repository for AI designs using Apstra can be found:

https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/

64

https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/

AI JVD Specific Terraform Configs

The AI JVD Specific Terraform Configs for Apstra will build blueprints for the reference AI cluster's
including the rail-optimized GPU Backend fabric, the Storage Backend fabric, and the Frontend fabric.

The github repository for this specific AI JVD can be found:

https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/

AMD Configuration

IN THIS SECTION

AMD MI300Xx Setting BIOS Parameters | 66

Identifying NICs and GPUs mappings | 67

AMD MI300x GPU Server and NIC Firmware and RCCL libraries | 68

Broadcom Thor 2 Ethernet Adapter | 68

AMD Pensando Pollara 400 Ethernet Adapter | 69

ROCm Communication Collectives Library (RCCL) | 71

NICs and GPUs mappings | 86

Communication Between GPUs on the Same NUMA Node (e.g., GPU1 ↔ GPU2): | 95

Communication Between GPUs on Different NUMA Nodes (e.g., GPU1 ↔ GPU4): | 96

Changing NIC attributes | 96

Editing and reapplying the network configuration (netplan) file | 96

AMD Pollara firmware and dependent libraries | 116

Congestion Control (CC) or ECN (Explicit congestion Notification) | 122

Priority Flow Control (PFC) | 123

TOS/DSCP for RDMA Traffic | 124

The AI servers covered as part of the JVD include 2 Supermicro AS-8125GS-TNMR2 Dual AMD EPYC
8U GPU and 2 Dell PowerEdge XE9680.

65

https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/

This section provides some guidelines to install and configure the interfaces and other relevant
parameters based on the AI JVD lab testing. Always refer to the official manufacturer documentation
when making changes and for more details.

AMD MI300Xx Setting BIOS Parameters

Each vendor has different BIOS settings based on differences in its UI and GPU mappings and the
servers' internal architectures.

SuperMicro AS-8125GS-TNMR2

Boot the server into Setup mode (the boot to supermicro splash will take several minutes to appear):

UEFI/BIOS Area Value

Advanced -> NB Configuration ACS Enable = Disable

Advanced -> NB Configuration -> xGMI xGMI Link Width Control = Manual

xGMI Force Link Width Control = Force

xGMI Force Link Width = 2

xGMI Max Link Width control = Manual

xGMI Link Max Speed = Auto

Advanced -> PCIe/PCI/PnP Configuration Above 4G Encoding: Enabled

Re-Size BAR Support: Enabled

SR-IOV Support: Enabled

Workload = Not Configured

DELL XE9680

The following BIOS settings are recommended by Dell for their XE9680 AI/ML server. The BIOS settings
disable IOMMU and ACS on the host as well.

66

UEFI/BIOS Area Value

BIOS -> Processor Settings Logical Processor = Disable

Virtualization Technology = Disable

SubNumaCluster = Disable

MADt Core cluster = Linear

1 BIOS -> Integrated Devices Global SRIOV = Disable 1

BIOS -> System Profile Setting Server System Profile = Performance

Workload = Not Configured

BIOS -> System Security AC Recovery Delay = Random (highly recommended)

1 Dell recommends “enabling” Global SR-IOV, but on the Dell DUTs in this lab setup, this setting was
incompatible with the THOR2 NIC port mode 0 for the storage and frontend fabrics (2x200Gb vs.
1x400Gb), causing the DUT to fault on boot. Consult with your Dell account team for recommendations
about this setting in your setup.”

Follow the configuration steps described in the Single-node network configuration for AMD Instinct
accelerators — GPU cluster networking documentation. Notice that the disable ACS script used in step
6, must also be run before any workloads, after a server has been rebooted.

Identifying NICs and GPUs mappings

Along with the fabric and GPU server setup, this JVD which covers the configuration and setup of
ethernet Network Adapters (or NIC) as below. The Broadcom BCM57608 (Thor2) ethernet network
adapter was validated in Phase 1. And in Phase2, the AMD Pollara 400 NIC cards are validated.

All 4 servers are equipped with:

• 8 x AMD Instinct MI300XX OAM GPUs

and either of the below NICs

• 8 x Single port 400/200/100/50/25/10GbE Broadcom BCM57608 (Thor2) adapter with 400Gbps
QDD-400G-DR4 transceivers used to connect to the GPU backend Fabric.

67

https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/single-node-config.html
https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/single-node-config.html
https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/single-node-config.html#disable-acs-script
https://www.amd.com/en/products/accelerators/instinct/mi300/platform.html
https://www.supermicro.com/manuals/other/datasheet-AOC-S400G-B1C.pdf
https://apps.juniper.net/hct/model/?component=QDD-400G-DR4

Or

• 8 x Single port 400G and 2 ports 200G and 4 ports 100/50/25G AMD Pensando Pollara 400
ethernet network adapter with Q112-400G-DR4 transceivers used to connect to the GPU backend
Fabric.

Note: Most of the setup commands will apply to both Thor2 and AMD Pollara 400 NIC. However in case
of any differences in steps same will be called out at appropriate places within the document.

Dell devices:

• 1 x Mellanox MT2910 Family NVIDIA® ConnectX®-7 SmartNIC with 100Gbps QSFP28 transceivers
to connect to the Frontend Fabric

• 2 x Mellanox MT2910 Family NVIDIA® ConnectX®-7 SmartNIC with 200Gbps QDD-2X200G-
AOC-5M transceivers to connect to the Frontend Fabric

AMD MI300x GPU Server and NIC Firmware and RCCL libraries

For the purposes of Broadcom Thor 2 NIC validation following are the main OS and firmware versions
configured on the MI300x GPU servers:

Broadcom Thor 2 Ethernet Adapter

Below are the details of the Operating System (OS), firmware and AMD libraries installed:

OS/Firmware Version

Ubuntu Ubuntu 24.04.2 LTS

Broadcom Thor2 NIC Firmware version 231.2.63.0

Following are the libraries installed for RCCL test for Thor2 Network adapter:

RCCL Test libraries Version command

rocm/noble 6.4.0.60400-47~24.04 amd64 apt list rocm

68

https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-pollara-400-product-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/pensando-technical-docs/product-briefs/pensando-pollara-400-product-brief.pdf
https://apps.juniper.net/hct/model/?component=QDD-400G-DR4
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://docs.broadcom.com/doc/DS_100G_QSFP28_SR4_AFBR_89CDDZ_2015_12_25_8
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://apps.juniper.net/hct/model/?component=QDD-2X200G-AOC-5M
https://apps.juniper.net/hct/model/?component=QDD-2X200G-AOC-5M

(Continued)

RCCL Test libraries Version command

Rccl 1 2.22.3.60400-47~24.04 amd64 apt list rccl

mpi (Open MPI) 5.0.8a1 mpirun –version

UCX

https://github.com/openucx/ucx.git

1.15.0 /opt/ucx/bin/ucx_info -v

Note: For AMD drivers and host utilities, please reach out to your regional AMD representative.

AMD Pensando Pollara 400 Ethernet Adapter

For the purposes of the AMD Pollara 400 NIC validation, the following are the main OS and firmware
versions configured on the MI300x GPU servers:

OS/Firmware Version

Ubuntu Ubuntu 22.04.5 LTS

AMD Pollara NIC Firmware version 1.110.0-a-79

Output of the ubuntu version 22.04 installed on the MI300 servers.

jnpr@mi300-01:~$ cat /etc/os-release

PRETTY_NAME="Ubuntu 22.04.5 LTS"

NAME="Ubuntu"

VERSION_ID="22.04"

VERSION="22.04.5 LTS (Jammy Jellyfish)"

VERSION_CODENAME=jammy

69

https://github.com/openucx/ucx.git

ID=ubuntu

ID_LIKE=debian

HOME_URL="https://www.ubuntu.com/"

SUPPORT_URL="https://help.ubuntu.com/"

BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

Output of the AMD Pollara 400 NIC card Firmware version

jnpr@mi300-01:~$ sudo nicctl show card --detail | grep Firmware

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Following are the libraries installed for RCCL test for AMD Pollara 400 NIC adaper:

RCCL Test libraries Version command

rocm/jammy 6.3.3.60303-74~22.04 amd64 apt list rocm

Rccl 1 7961624

70

(Continued)

RCCL Test libraries Version command

mpi (Open MPI) 5.1.0a1 /opt/ompi/bin/mpirun –version

UCX

https://github.com/openucx/ucx.git

1.20.0 /opt/ucx/bin/ucx_info -v

rccl-tests revision 6704fc6 Git branch https://github.com/
ROCm/rccl-tests.git

ANP Plugin2

Note: For AMD drivers and host utilities, please reach out to your regional AMD representative.

1. The RCCL library is private build version that AMD provided.

2. ANP Plugin version is private build provided by AMD.

For more information on installing these software and dependent libraries, high level steps are provided
later in section "AMD Pollara firmware and dependent libraries" on page 116, as these steps can only be
performed once the NICs and GPUs are mapped as described in sections below.

In this section we will explore some of the options to find information about and configure the NICs and
GPUs.

ROCm Communication Collectives Library (RCCL)

In AMD servers, the ROCm provides multi-GPU and multi-node collective communication primitives
optimized for AMD GPUs. These collectives implement send and receive operations such as all-reduce,
all-gather, reduce, broadcast, all-to-all, and so on across multiple GPUs in one or more GPU servers.

Communication between GPUs in a single server is implemented using xGMI (inter-chip global memory
interconnect), part of AMD's Infinity Fabric technology. The Infinity Fabric is a high-bandwidth, low-
latency interconnect for the various components within a system including CPUs, GPUs, memory, NICs
and other devices. xGMI provides socket-to-socket communication, allowing direct CPU-to-CPU or
GPU-to-GPU communication.

Communication between different servers is processed by RDMA-capable NICs (e.g., RoCEv2 over
Ethernet) and routed across the GPU backend fabric. These NICs can be used by any GPU at any time as

71

https://github.com/openucx/ucx.git
https://github.com/ROCm/rccl-tests.git
https://github.com/ROCm/rccl-tests.git
https://rocmdocs.amd.com/projects/rccl/en/latest/index.html

there is no hard coded 1-to-1 GPU to NIC mapping. However, the use of preferred communication paths
between GPUs and NICs creates the appearance of a 1:1 correspondence.

RCCL will always choose the path that has the best connection between GPUs and between GPUs and
NICs, aiming to optimize bandwidth, and latency. Optimized intra-node path will be taken before
forwarding inter-node.

The rocm-smi (Radeon Open Compute Platform System Management Interface) cli provides tools for
configuring and monitoring AMD GPUs. It can be used to identify GPUs hardware details as well as
topology information using the options such as:

--showproductname: show product details

--showtopo : show hardware topology information

--showtopoaccess : shows the link accessibility between GPUs

--showtopohops: shows the number of hops between GPUs

--showtopotype : shows the link type between GPUs

--showtoponuma : shows the numa nodes

--shownodesbw: shows the numa nodes bandwidth

--showhw: shows the hardware details

Examples from AMD Instinct MI300XX OAM:

The --showproductname shows the GPU series, model, and vendor along with additional details. The
example output shows AMD Instinct™ MI300XX Platform GPUs are installed in the server.

jnpr@MI300X-01:/proc$ rocm-smi --showproductname

============================ ROCm System Management Interface ============================

====================================== Product Info ======================================

GPU[0] : Card Series: AMD Instinct MI300XX OAM

GPU[0] : Card Model: 0x74a1

GPU[0] : Card Vendor: Advanced Micro Devices, Inc. [AMD/ATI]

GPU[0] : Card SKU: M3000100

72

https://manpages.debian.org/experimental/rocm-smi/rocm-smi.1.en.html#showtopo
https://manpages.debian.org/experimental/rocm-smi/rocm-smi.1.en.html#showtopoaccess
https://manpages.debian.org/experimental/rocm-smi/rocm-smi.1.en.html%22%20/l%20%22showtopohops
https://manpages.debian.org/experimental/rocm-smi/rocm-smi.1.en.html#showtopotype
https://manpages.debian.org/experimental/rocm-smi/rocm-smi.1.en.html#showtoponuma
https://www.amd.com/en/products/accelerators/instinct/mi300/platform.html

GPU[0] : Subsystem ID: 0x74a1

GPU[0] : Device Rev: 0x00

GPU[0] : Node ID: 2

GPU[0] : GUID: 28851

GPU[0] : GFX Version: gfx942

GPU[1] : Card Series: AMD Instinct MI300XX OAM

GPU[1] : Card Model: 0x74a1

GPU[1] : Card Vendor: Advanced Micro Devices, Inc. [AMD/ATI]

GPU[1] : Card SKU: M3000100

GPU[1] : Subsystem ID: 0x74a1

GPU[1] : Device Rev: 0x00

GPU[1] : Node ID: 3

GPU[1] : GUID: 51499

GPU[1] : GFX Version: gfx942

---more--

The --showhw options shows information about the GPUs in the system, including ID

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# rocm-smi --showhw -v

====================================== ROCm System Management Interface
=================================

=== Concise Hardware Info
=======================================

GPU NODE DID GUID GFX VER GFX RAS SDMA RAS UMC RAS VBIOS BUS
PARTITION ID

73

0 2 0x74a1 28851 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:05:00.0
0

1 3 0x74a1 51499 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:27:00.0
0

2 4 0x74a1 57603 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:47:00.0
0

3 5 0x74a1 22683 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:65:00.0
0

4 6 0x74a1 53458 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:85:00.0
0

5 7 0x74a1 26954 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:A7:00.0
0

6 8 0x74a1 16738 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:C7:00.0
0

7 9 0x74a1 63738 gfx942 ENABLED ENABLED ENABLED 113-M3000100-102 0000:E5:00.0
0

===
=========

== End of ROCm SMI Log
===

=== VBIOS ==

GPU[0] : VBIOS version: 113-M3000100-102

GPU[1] : VBIOS version: 113-M3000100-102

GPU[2] : VBIOS version: 113-M3000100-102

GPU[3] : VBIOS version: 113-M3000100-102

GPU[4] : VBIOS version: 113-M3000100-102

74

GPU[5] : VBIOS version: 113-M3000100-102

GPU[6] : VBIOS version: 113-M3000100-102

GPU[7] : VBIOS version: 113-M3000100-102

==

The fields are defined as follows:

GPU Index of the GPU on the system, starting from 0.

NODE NUMA (Non-Uniform Memory Access) node ID associated with the GPU.
Helps identify memory locality. Optimal GPU/NIC mapping often relies on
NUMA proximity

DID Device ID of the GPU. This is a unique identifier for the specific GPU model.

Useful for verifying the exact GPU model. For example, 0x74a1 corresponds
to an MI300X-series GPU.

GUID GPU Unique Identifier. This value is specific to each GPU and may relate to its
PCIe device.

Useful for distinguishing GPUs in a multi-GPU environment.

GFX VER The version of the GPU architecture (e.g., gfx942 is part of AMD's RDNA2
family).

In AMD GPUs, the GFX prefix is part of AMD's internal naming convention for
their GPU microarchitecture families.

GPU architecture hardware specifications — ROCm Documentation

GFX RAS Status of GPU RAS (Reliability, Availability, Serviceability) features. Indicates
error handling.

SDMA RAS Status of SDMA (System Direct Memory Access) RAS features.

UMC RAS Status of Unified Memory Controller (UMC) RAS features.

75

https://rocm.docs.amd.com/en/docs-6.0.2/reference/gpu-arch/gpu-arch-spec-overview.html

VBIOS VBIOS (Video BIOS) version. Indicates the firmware version running on the
GPU.

Identical firmware version (113-M3000100-102) for all GPUs indicates a
uniform configuration.

BUS PCIe bus address of the GPU. Helps map the GPU to its physical slot.

For example, 0000:05:00.0 is the PCIe address. It allows you to correlate
GPUs to physical slots or NUMA nodes.

PARTITION ID GPU partition or instance ID. For multi-instance GPUs (e.g., MI300X), this
would identify instances.All values are 0 indicate no multi-instance
partitioning is enabled for these GPUs.

The --showbus options shows PCI bus related information, including correspondence between GPU IDs
and PCI Bus IDs.

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# rocm-smi --showbus -i

============================ ROCm System Management Interface ============================

=== ID ===

GPU[0] : Device Name: AMD Instinct MI300XX OAM

GPU[0] : Device ID: 0x74a1

GPU[0] : Device Rev: 0x00

GPU[0] : Subsystem ID: 0x74a1

GPU[0] : GUID: 28851

GPU[1] : Device Name: AMD Instinct MI300XX OAM

GPU[1] : Device ID: 0x74a1

GPU[1] : Device Rev: 0x00

GPU[1] : Subsystem ID: 0x74a1

76

GPU[1] : GUID: 51499

GPU[2] : Device Name: AMD Instinct MI300XX OAM

GPU[2] : Device ID: 0x74a1

GPU[2] : Device Rev: 0x00

GPU[2] : Subsystem ID: 0x74a1

GPU[2] : GUID: 57603

---more---

==

======================================= PCI Bus ID =======================================

GPU[0] : PCI Bus: 0000:05:00.0

GPU[1] : PCI Bus: 0000:27:00.0

GPU[2] : PCI Bus: 0000:47:00.0

GPU[3] : PCI Bus: 0000:65:00.0

GPU[4] : PCI Bus: 0000:85:00.0

GPU[5] : PCI Bus: 0000:A7:00.0

GPU[6] : PCI Bus: 0000:C7:00.0

GPU[7] : PCI Bus: 0000:E5:00.0

==

================================== End of ROCm SMI Log ===================================

77

The --showmetrics option provides comprehensive information about the GPU status and performance,
including metrics such as temperature, clock frequency, power, and pcie bandwidth.

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# rocm-smi --showmetrics | grep
GPU.0

GPU[0] : Metric Version and Size (Bytes): 1.6 1664

GPU[0] : temperature_edge (C): N/A

GPU[0] : temperature_hotspot (C): 42

GPU[0] : temperature_mem (C): 35

GPU[0] : temperature_vrgfx (C): N/A

GPU[0] : temperature_vrsoc (C): 41

GPU[0] : temperature_vrmem (C): N/A

GPU[0] : average_gfx_activity (%): 0

GPU[0] : average_umc_activity (%): 0

GPU[0] : average_mm_activity (%): N/A

GPU[0] : average_socket_power (W): N/A

GPU[0] : energy_accumulator (15.259uJ (2^-16)): 4291409153508

GPU[0] : system_clock_counter (ns): 508330314785091

GPU[0] : average_gfxclk_frequency (MHz): N/A

GPU[0] : average_socclk_frequency (MHz): N/A

GPU[0] : average_uclk_frequency (MHz): N/A

GPU[0] : average_vclk0_frequency (MHz): N/A

GPU[0] : average_dclk0_frequency (MHz): N/A

78

GPU[0] : average_vclk1_frequency (MHz): N/A

GPU[0] : average_dclk1_frequency (MHz): N/A

GPU[0] : current_gfxclk (MHz): 134

GPU[0] : current_socclk (MHz): 28

GPU[0] : current_uclk (MHz): 900

GPU[0] : current_vclk0 (MHz): 29

GPU[0] : current_dclk0 (MHz): 22

GPU[0] : current_vclk1 (MHz): 29

GPU[0] : current_dclk1 (MHz): 22

GPU[0] : throttle_status: N/A

GPU[0] : current_fan_speed (rpm): N/A

GPU[0] : pcie_link_width (Lanes): 16

GPU[0] : pcie_link_speed (0.1 GT/s): 320

GPU[0] : gfx_activity_acc (%): 682809151

GPU[0] : mem_activity_acc (%): 60727622

GPU[0] : temperature_hbm (C): ['N/A', 'N/A', 'N/A', 'N/A']

GPU[0] : firmware_timestamp (10ns resolution): 507863813273800

GPU[0] : voltage_soc (mV): N/A

GPU[0] : voltage_gfx (mV): N/A

GPU[0] : voltage_mem (mV): N/A

GPU[0] : indep_throttle_status: N/A

GPU[0] : current_socket_power (W): 123

79

GPU[0] : vcn_activity (%): [0, 0, 0, 0]

GPU[0] : gfxclk_lock_status: 0

GPU[0] : xgmi_link_width: 0

GPU[0] : xgmi_link_speed (Gbps): 0

GPU[0] : pcie_bandwidth_acc (GB/s): 626812796806

GPU[0] : pcie_bandwidth_inst (GB/s): 18

---more---

The --showtopo options show how the GPUs in the systems can communicate with each other via XGMI
(Link Type) representing one hop between any two GPUs. The weight of 15 indicates this direct
communication is the preferred path.

jnpr@MI300X-01:~$ rocm-smi --showtopo

============================ ROCm System Management Interface ============================

================================ Weight between two GPUs =================================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

GPU0 0 15 15 15 15 15 15 15

GPU1 15 0 15 15 15 15 15 15

GPU2 15 15 0 15 15 15 15 15

GPU3 15 15 15 0 15 15 15 15

GPU4 15 15 15 15 0 15 15 15

GPU5 15 15 15 15 15 0 15 15

GPU6 15 15 15 15 15 15 0 15

GPU7 15 15 15 15 15 15 15 0

80

================================= Hops between two GPUs ==================================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

GPU0 0 1 1 1 1 1 1 1

GPU1 1 0 1 1 1 1 1 1

GPU2 1 1 0 1 1 1 1 1

GPU3 1 1 1 0 1 1 1 1

GPU4 1 1 1 1 0 1 1 1

GPU5 1 1 1 1 1 0 1 1

GPU6 1 1 1 1 1 1 0 1

GPU7 1 1 1 1 1 1 1 0

=============================== Link Type between two GPUs ===============================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

GPU0 0 XGMI XGMI XGMI XGMI XGMI XGMI XGMI

GPU1 XGMI 0 XGMI XGMI XGMI XGMI XGMI XGMI

GPU2 XGMI XGMI 0 XGMI XGMI XGMI XGMI XGMI

GPU3 XGMI XGMI XGMI 0 XGMI XGMI XGMI XGMI

GPU4 XGMI XGMI XGMI XGMI 0 XGMI XGMI XGMI

GPU5 XGMI XGMI XGMI XGMI XGMI 0 XGMI XGMI

GPU6 XGMI XGMI XGMI XGMI XGMI XGMI 0 XGMI

GPU7 XGMI XGMI XGMI XGMI XGMI XGMI XGMI 0

======================================= Numa Nodes =======================================

81

GPU[0] : (Topology) Numa Node: 0

GPU[0] : (Topology) Numa Affinity: 0

GPU[1] : (Topology) Numa Node: 0

GPU[1] : (Topology) Numa Affinity: 0

GPU[2] : (Topology) Numa Node: 0

GPU[2] : (Topology) Numa Affinity: 0

GPU[3] : (Topology) Numa Node: 0

GPU[3] : (Topology) Numa Affinity: 0

GPU[4] : (Topology) Numa Node: 1

GPU[4] : (Topology) Numa Affinity: 1

GPU[5] : (Topology) Numa Node: 1

GPU[5] : (Topology) Numa Affinity: 1

GPU[6] : (Topology) Numa Node: 1

GPU[6] : (Topology) Numa Affinity: 1

GPU[7] : (Topology) Numa Node: 1

GPU[7] : (Topology) Numa Affinity: 1

================================== End of ROCm SMI Log ===================================

Usage:

 cma_roce_tos OPTIONS

Options:

 -h show this help

 -d <dev> use IB device <dev> (default mlx5_0)

82

 -p <port> use port <port> of IB device (default 1)

 -t <TOS> set TOS of RoCE RDMA_CM applications (0)

The link type, number of hops, and weight can be also obtained using the specific options --
showtopoweight , --showtopotype, and –showtopoweight:

jnpr@MI300X-01:~/SCRIPTS$ rocm-smi --showtopoweight

============================ ROCm System Management Interface ============================

================================ Weight between two GPUs =================================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5
GPU6 GPU7

GPU0 0 15 15 15 15 15
15 15

GPU1 15 0 15 15 15 15
15 15

GPU2 15 15 0 15 15 15
15 15

GPU3 15 15 15 0 15 15
15 15

GPU4 15 15 15 15 0 15
15 15

GPU5 15 15 15 15 15 0
15 15

GPU6 15 15 15 15 15 15
0 15

GPU7 15 15 15 15 15 15
15 0

================================== End of ROCm SMI Log ===================================

83

jnpr@MI300X-01:~/SCRIPTS$ rocm-smi --showtopohops

============================ ROCm System Management Interface ============================

================================= Hops between two GPUs ==================================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5
GPU6 GPU7

GPU0 0 1 1 1 1 1
1 1

GPU1 1 0 1 1 1 1
1 1

GPU2 1 1 0 1 1 1
1 1

GPU3 1 1 1 0 1 1
1 1

GPU4 1 1 1 1 0 1
1 1

GPU5 1 1 1 1 1 0
1 1

GPU6 1 1 1 1 1 1
0 1

GPU7 1 1 1 1 1 1
1 0

================================== End of ROCm SMI Log ===================================

jnpr@MI300X-01:~/SCRIPTS$ rocm-smi --showtopotype

============================ ROCm System Management Interface ============================

=============================== Link Type between two GPUs ===============================

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5

84

GPU6 GPU7

GPU0 0 XGMI XGMI XGMI XGMI XGMI
XGMI XGMI

GPU1 XGMI 0 XGMI XGMI XGMI XGMI
XGMI XGMI

GPU2 XGMI XGMI 0 XGMI XGMI XGMI
XGMI XGMI

GPU3 XGMI XGMI XGMI 0 XGMI XGMI
XGMI XGMI

GPU4 XGMI XGMI XGMI XGMI 0 XGMI
XGMI XGMI

GPU5 XGMI XGMI XGMI XGMI XGMI 0
XGMI XGMI

GPU6 XGMI XGMI XGMI XGMI XGMI XGMI
0 XGMI

GPU7 XGMI XGMI XGMI XGMI XGMI XGMI
XGMI 0

================================== End of ROCm SMI Log ===================================

The --shownodesbw shows the bandwidth available internally for GPU to GPU internal communication:

jnpr@MI300X-01:/home/ben$ rocm-smi --shownodesbw

============================ ROCm System Management Interface ============================

======================================= Bandwidth ==

 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7

GPU0 N/A 50000-50000 50000-50000 50000-50000 50000-50000 50000-50000
50000-50000 50000-50000

GPU1 50000-50000 N/A 50000-50000 50000-50000 50000-50000 50000-50000

85

50000-50000 50000-50000

GPU2 50000-50000 50000-50000 N/A 50000-50000 50000-50000 50000-50000
50000-50000 50000-50000

GPU3 50000-50000 50000-50000 50000-50000 N/A 50000-50000 50000-50000
50000-50000 50000-50000

GPU4 50000-50000 50000-50000 50000-50000 50000-50000 N/A 50000-50000
50000-50000 50000-50000

GPU5 50000-50000 50000-50000 50000-50000 50000-50000 50000-50000 N/A
50000-50000 50000-50000

GPU6 50000-50000 50000-50000 50000-50000 50000-50000 50000-50000
50000-50000 N/A 50000-50000

GPU7 50000-50000 50000-50000 50000-50000 50000-50000 50000-50000
50000-50000 50000-50000 N/A

Format: min-max; Units: mps

"0-0" min-max bandwidth indicates devices are not
connected directly

================================== End of ROCm SMI Log ===================================

For additional options and details check:

rocm-smi-h

For more information about ROCm-SMI as well as for the newer AMD-SMI cli please check: ROCm
Documentation, AMD SMI documentation, ROCm and AMD SMI

NICs and GPUs mappings

Next is to perform mapping of the NIC to GPUs as shown in the below steps. These will be same for
both Thor2 and AMD Pollara 400 NIC.

86

https://rocm.docs.amd.com/en/latest/what-is-rocm.html
https://rocm.docs.amd.com/en/latest/what-is-rocm.html
https://rocmdocs.amd.com/projects/amdsmi/en/latest/how-to/amdsmi-cli-tool.html
https://rocm.blogs.amd.com/software-tools-optimization/amd-smi-overview/README.html

The information from other commands can be combined with some of the options above to find
correlation between GPU and NICs following these steps:

1. Identify NUMA Nodes and GPUs

Use the output from rocm-smi --showtoponuma or just rocm-smi --showtopo to find mappings between GPUs
and NUMA nodes.

Look for NUMA Affinity for each GPU in the output. A description of what this attribute means is
included later in this section.

Note down which GPUs are associated with which NUMA nodes.

Example:

jnpr@MI300X-01:/proc$ rocm-smi --showtoponuma

============================ ROCm System Management Interface ============================

======================================= Numa Nodes =======================================

GPU[0] : (Topology) Numa Node: 0

GPU[0] : (Topology) Numa Affinity: 0

GPU[1] : (Topology) Numa Node: 0

GPU[1] : (Topology) Numa Affinity: 0

GPU[2] : (Topology) Numa Node: 0

GPU[2] : (Topology) Numa Affinity: 0

GPU[3] : (Topology) Numa Node: 0

GPU[3] : (Topology) Numa Affinity: 0

GPU[4] : (Topology) Numa Node: 1

GPU[4] : (Topology) Numa Affinity: 1

GPU[5] : (Topology) Numa Node: 1

GPU[5] : (Topology) Numa Affinity: 1

87

GPU[6] : (Topology) Numa Node: 1

GPU[6] : (Topology) Numa Affinity: 1

GPU[7] : (Topology) Numa Node: 1

GPU[7] : (Topology) Numa Affinity: 1

================================== End of ROCm SMI Log ===================================

GPU 0–3 → NUMA Node 0

GPU 4–7 → NUMA Node 1

2. Identify NUMA Nodes for NICs

Navigate to the /sys/class/net/ directory and check the NUMA node affinity for each network
interface (excluding lo or docker interfaces):

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker)'); do

 numa_node=$(cat /sys/class/net/$iface/device/numa_node 2>/dev/null)

 echo "Interface: $iface, NUMA Node: $numa_node"

done

Note the NUMA node affinity for each NIC interface.

EXAMPLE:

jnpr@MI300X-01:~/SCRIPTS$ for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker)'); do

 numa_node=$(cat /sys/class/net/$iface/device/numa_node 2>/dev/null)

 echo "Interface: $iface, NUMA Node: $numa_node"

done

Interface: ens61f1np1, NUMA Node: 1

Interface: enxbe3af2b6059f, NUMA Node:

88

Interface: gpu0_eth, NUMA Node: 0

Interface: gpu1_eth, NUMA Node: 0

Interface: gpu2_eth, NUMA Node: 0

Interface: gpu3_eth, NUMA Node: 0

Interface: gpu4_eth, NUMA Node: 1

Interface: gpu5_eth, NUMA Node: 1

Interface: gpu6_eth, NUMA Node: 1

Interface: gpu7_eth, NUMA Node: 1

Interface: mgmt_eth, NUMA Node: 1

Interface: stor0_eth, NUMA Node: 0

Interface: stor1_eth, NUMA Node: 0

3. Correlate GPUs to NICs Based on NUMA Affinity

Using the NUMA node affinity from Step 1 (GPUs) and Step 2 (NICs), to map each GPU to NICs within
the same NUMA node:

EXAMPLE:

GPU0 (NUMA 0):

 - NIC: gpu0_eth (NUMA 0)

 - NIC: gpu1_eth (NUMA 0)

 - NIC: gpu2_eth (NUMA 0)

 - NIC: gpu3_eth (NUMA 0)

 - NIC: stor0_eth (NUMA 0)

89

 - NIC: stor1_eth (NUMA 0)

GPU4 (NUMA 1):

 - NIC: gpu4_eth (NUMA 1)

 - NIC: gpu5_eth (NUMA 1)

 - NIC: gpu6_eth (NUMA 1)

 - NIC: gpu7_eth (NUMA 1)

 - NIC: mgmt_eth (NUMA 1)

NOTE: You can also use the following script to automate the steps above:

jnpr@MI300X-01:~/SCRIPTS$ cat GPU-to-NIC_YL.sh

#!/bin/bash

Temporary data files

gpu_to_numa_file="GPU-to-NUMA.tmp"

nic_to_numa_file="NIC-to-NUMA.tmp"

output_file="NIC-to-GPU.txt"

Clear or create the output file

> "$output_file"

Step 1: Parse GPUs and NUMA nodes

echo "Step 1: Parsing GPUs and NUMA Nodes..."

rocm-smi --showtoponuma > /tmp/rocm_smi_output.tmp 2>/dev/null

if [[$? -ne 0]]; then

 echo "Error: rocm-smi is not installed or failed to run."

90

 exit 1

fi

Extract GPU and NUMA information

grep "GPU" /tmp/rocm_smi_output.tmp | grep "Numa Node" | awk -F'[:]' '{print $2, $NF}' | sed
's/^/GPU /' > "$gpu_to_numa_file"

Step 2: Parse NICs and NUMA nodes

echo "Step 2: Parsing NICs and NUMA Nodes..."

> "$nic_to_numa_file"

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker)'); do

 numa_node=$(cat /sys/class/net/$iface/device/numa_node 2>/dev/null)

 if [[$numa_node -ge 0]]; then

 echo "NIC $iface, NUMA Node: $numa_node" >> "$nic_to_numa_file"

 fi

done

Step 3: Match GPUs to NICs based on NUMA affinity

echo "Step 3: Mapping GPUs to NICs..."

while read -r gpu_entry; do

 gpu=$(echo "$gpu_entry" | awk '{print $2}')

 gpu_numa=$(echo "$gpu_entry" | awk '{print $NF}')

 echo "GPU$gpu (NUMA $gpu_numa):" >> "$output_file"

 while read -r nic_entry; do

 nic=$(echo "$nic_entry" | awk '{print $2}' | sed 's/,//')

91

 nic_numa=$(echo "$nic_entry" | awk '{print $NF}')

 if [["$gpu_numa" == "$nic_numa"]]; then

 echo " - NIC: $nic" >> "$output_file"

 fi

 done < "$nic_to_numa_file"

done < "$gpu_to_numa_file"

Output the result

echo "Mapping complete! Results saved in $output_file."

cat "$output_file"

EXAMPLE:

jnpr@MI300X-01:~/SCRIPTS$./GPU-to-NIC_YL.sh

Step 1: Parsing GPUs and NUMA Nodes...

Step 2: Parsing NICs and NUMA Nodes...

Step 3: Mapping GPUs to NICs...

Mapping complete! Results saved in NIC-to-GPU.txt.

GPU0 (NUMA 0):

 - NIC: gpu0_eth

 - NIC: gpu1_eth

 - NIC: gpu2_eth

 - NIC: gpu3_eth

 - NIC: stor0_eth

92

 - NIC: stor1_eth

GPU0 (NUMA 0):

 - NIC: gpu0_eth

 - NIC: gpu1_eth

 - NIC: gpu2_eth

 - NIC: gpu3_eth

 - NIC: stor0_eth

 - NIC: stor1_eth

GPU0 (NUMA 0):

 - NIC: gpu0_eth

 - NIC: gpu1_eth

 - NIC: gpu2_eth

 - NIC: gpu3_eth

 - NIC: stor0_eth

 - NIC: stor1_eth

GPU0 (NUMA 0):

 - NIC: gpu0_eth

 - NIC: gpu1_eth

 - NIC: gpu2_eth

 - NIC: gpu3_eth

 - NIC: stor0_eth

 - NIC: stor1_eth

93

GPU1 (NUMA 1):

 - NIC: ens61f1np1

 - NIC: gpu4_eth

 - NIC: gpu5_eth

 - NIC: gpu6_eth

 - NIC: gpu7_eth

 - NIC: mgmt_eth

GPU1 (NUMA 1):

 - NIC: ens61f1np1

 - NIC: gpu4_eth

 - NIC: gpu5_eth

 - NIC: gpu6_eth

 - NIC: gpu7_eth

 - NIC: mgmt_eth

GPU1 (NUMA 1):

 - NIC: ens61f1np1

 - NIC: gpu4_eth

 - NIC: gpu5_eth

 - NIC: gpu6_eth

 - NIC: gpu7_eth

 - NIC: mgmt_eth

94

GPU1 (NUMA 1):

 - NIC: ens61f1np1

 - NIC: gpu4_eth

 - NIC: gpu5_eth

 - NIC: gpu6_eth

 - NIC: gpu7_eth

 - NIC: mgmt_eth

You will notice that there is not a 1:1 GPU to NIC association. Instead, multiple NIC interfaces are
associated with the GPU. This is because they belong to the same Non-Uniform Memory Access
(NUMA) node affinity.

Systems employing a NUMA architecture contain collections of hardware resources including CPUs,
GPUs memory, and PCIe devices (including NICs), grouped together in what is known as a “NUMA
node”. These resources are considered "local" to each other. From the point of view of a GPU, devices in
the same NUMA node are the most closely associated with that GPU. The NUMA node is identified by
the NUMA Affinity.

Multiple NICs and GPUs may be connected to the same PCIe complex or switch within a NUMA node.
This makes the NICs accessible to all GPUs sharing that complex. However, while all NICs in a NUMA
node are accessible to any GPU in the same node, the NICs are allocated dynamically for usage by a
given GPU, based on availability, traffic type, latency, and so on.

Communication Between GPUs on the Same NUMA Node (e.g., GPU1 ↔
GPU2):

GPUs on the same NUMA node (e.g., GPU1 and GPU2) communicate directly over the high-bandwidth,
low-latency interconnect, such as Infinity Fabric (in AMD systems).

These interconnects avoid the CPU and main memory entirely, offering much faster communication
compared to NUMA-crossing communication. Since both GPUs are "local" to the same memory
controller and CPU, the communication path is highly optimized.

95

Communication Between GPUs on Different NUMA Nodes (e.g., GPU1 ↔
GPU4):

Communication between GPUs on different NUMA nodes (e.g., GPU1 on NUMA 0 and GPU4 on NUMA
1) must traverse additional layers of the system architecture, which introduces higher latency. The path
typically follows:

• GPU1 → CPU (NUMA 0): Data is sent from GPU1 to the CPU on NUMA 0.

• Inter-NUMA Link: The CPUs in NUMA 0 and NUMA 1 are connected via an interconnect such as
Infinity Fabric or UPI (Ultra Path Interconnect).

• CPU (NUMA 1) → GPU4: The data is forwarded from the CPU on NUMA 1 to GPU4.

Changing NIC attributes

This section shows you how to add or change a NIC’s Interface Name, MTU, DNS, IP Addresses and
Routing table entries.

Editing and reapplying the network configuration (netplan) file

The network configuration is described in the netplan *.yaml file found under: /etc/netplan/.

Notice that the actual file name might vary. Examples:

/etc/netplan/01-netcfg.yaml

/etc/netplan/00-installer-config.yaml

Changing any interface attribute involves editing this file and reapplying the network plan as shown
below:

1. Find the default names of the logical interfaces.

You can use the following steps to achieve this:

Thor2 NIC output:

jnpr@MI300X-01:~$

> devnames1;

96

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker|virbr)'); do

 device=$(ethtool -i $iface 2>/dev/null | grep 'bus-info' | awk '{print $2}');

 if [[$device != 0000:*]];

 then device="0000:$device"; fi;

 model=$(lspci -s $device 2>/dev/null | awk -F ': ' '{print $2}'); echo "$iface:$model" >>
devnames1;

done

jnpr@MI300X-01:~$ cat devnames1

ens61f1np1:Mellanox Technologies MT2910 Family [ConnectX-7]

enxbe3af2b6059f:

ens41np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens42np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens32np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens31np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens21np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens22np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens12np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens11np0:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

ens61f0np0:Mellanox Technologies MT2910 Family [ConnectX-7]

ens50f0np0:Mellanox Technologies MT2910 Family [ConnectX-7]

ens50f1np1:Mellanox Technologies MT2910 Family [ConnectX-7]

Interface ens31np0:

97

Where

• en: ethernet network interface.

• s31: indicates the physical location of the network interface on the system bus. slot number 31 on
the bus.

• np0:

• n: Network (indicates it's a network port).

• p0: Port 0 (indicates it's the first port of this network interface).

AMD Pollara 400 NIC output

jnpr@mi300-01:~# > devnames1;

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker|virbr)'); do

 device=$(ethtool -i $iface 2>/dev/null | grep 'bus-info' | awk '{print $2}');

 if [[$device != 0000:*]];

 then device="0000:$device"; fi;

 model=$(lspci -s $device 2>/dev/null | awk -F ': ' '{print $2}'); echo "$iface:$model" >>
devnames1;

done

jnpr@mi300-01:~# cat devnames1

ens61f1np1:Mellanox Technologies MT2910 Family [ConnectX-7]

eth3:

gpu0_eth:Pensando Systems DSC Ethernet Controller

gpu1_eth:Pensando Systems DSC Ethernet Controller

gpu2_eth:Pensando Systems DSC Ethernet Controller

gpu3_eth:Pensando Systems DSC Ethernet Controller

98

gpu4_eth:Pensando Systems DSC Ethernet Controller

gpu5_eth:Pensando Systems DSC Ethernet Controller

gpu6_eth:Pensando Systems DSC Ethernet Controller

gpu7_eth:Pensando Systems DSC Ethernet Controller

mgmt_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor0_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor1_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

You can use the script gpunic.py to find mappings between GPUs and NIC per pcie bus, to identify
how the NICS need to be renamed for consistency.

EXAMPLE:

jnpr@MI300X-01:~/SCRIPTS$ sudo python3 amd_map_nic_gpu.py

bus 0000:00:01.1:

 0000:05:00.0 (gpu) - GPU0

 0000:08:00.0 (gpu) - -

 0000:08:00.1 (gpu) - -

 0000:08:00.2 (gpu) - -

 0000:09:00.0 (nic) - gpu0_eth

bus 0000:20:01.1:

 0000:25:00.0 (gpu) - -

 0000:25:00.1 (gpu) - -

 0000:25:00.2 (gpu) - -

 0000:26:00.0 (nic) - gpu1_eth

99

 0000:29:00.0 (gpu) - GPU1

bus 0000:20:03.1:

 0000:31:00.0 (nic) - stor0_eth

 0000:31:00.1 (nic) - stor1_eth

bus 0000:40:01.1:

 0000:45:00.0 (gpu) - -

 0000:45:00.1 (gpu) - -

 0000:45:00.2 (gpu) - -

 0000:46:00.0 (nic) - gpu2_eth

 0000:49:00.0 (gpu) - GPU2

bus 0000:60:01.1:

 0000:65:00.0 (gpu) - GPU3

 0000:68:00.0 (gpu) - -

 0000:68:00.1 (gpu) - -

 0000:68:00.2 (gpu) - -

 0000:69:00.0 (nic) - gpu3_eth

bus 0000:60:05.4:

 0000:6e:00.0 (gpu) - -

bus 0000:80:01.1:

 0000:85:00.0 (gpu) - GPU4

 0000:88:00.0 (gpu) - -

100

 0000:88:00.1 (gpu) - -

 0000:88:00.2 (gpu) - -

 0000:89:00.0 (nic) - gpu4_eth

bus 0000:a0:01.1:

 0000:a5:00.0 (gpu) - -

 0000:a5:00.1 (gpu) - -

 0000:a5:00.2 (gpu) - -

 0000:a6:00.0 (nic) - gpu5_eth

 0000:a9:00.0 (gpu) - GPU5

bus 0000:c0:01.1:

 0000:c5:00.0 (gpu) - -

 0000:c5:00.1 (gpu) - -

 0000:c5:00.2 (gpu) - -

 0000:c6:00.0 (nic) - gpu6_eth

 0000:c9:00.0 (gpu) - GPU6

bus 0000:c0:03.1:

 0000:d2:00.0 (nic) - mgmt_eth

 0000:d2:00.1 (nic) - ens61f1np1

bus 0000:e0:01.1:

 0000:e5:00.0 (gpu) - GPU7

 0000:e8:00.0 (gpu) - -

 0000:e8:00.1 (gpu) - -

101

 0000:e8:00.2 (gpu) - -

 0000:e9:00.0 (nic) - gpu7_eth

To further identify the interfaces, you can use the sudo ethtool <device> | grep Speed command.

jnpr@MI300X-01:~/SCRIPTS$ sudo ethtool ens61f0np0| grep Speed

 Speed: 400000Mb/s

jnpr@MI300X-01:~/SCRIPTS$ sudo ethtool enp47s0f0np0| grep Speed

 Speed: 200000Mb/s

jnpr@MI300X-01:~/SCRIPTS$ sudo ethtool enp208s0f0np0| grep Speed

 Speed: 100000Mb/s

You want to make sure that the NICs connected to the GPU Backend fabric, the Storage Backend
fabric, and the Frontend fabric are 400GE interfaces, 200GE interfaces, and 100GE interfaces
respectively.

DEFAULT INTERFACE NAME NEW NAME Speed

enp6s0np0 gpu0_eth 400GE

enp35s0np0 gpu1_eth 400GE

enp67s0np0 gpu2_eth 400GE

enp102s0np0 gpu3_eth 400GE

enp134s0np0 gpu4_eth 400GE

enp163s0np0 gpu5_eth 400GE

enp195s0np0 gpu6_eth 400GE

enp230s0np0 gpu7_eth 400GE

102

(Continued)

DEFAULT INTERFACE NAME NEW NAME Speed

enp47s0f0np0 stor0_eth 200GE

enp47s0f0np1 stor1_eth 200GE

enp208s0f0np0 mgmt_eth 100GE

2. Find the interface’s MAC address:

You can use the ip link show <device> command.

EXAMPLE:

jnpr@MI300X-01:~/SCRIPTS$ ip link show ens61f0np0 | grep "link/ether"

 link/ether 5c:25:73:66:c3:ee brd ff:ff:ff:ff:ff:ff

jnpr@MI300X-01:~/SCRIPTS$ ip link show enp35s0np0 | grep "link/ether"

 link/ether 5c:25:73:66:bc:5e brd ff:ff:ff:ff:ff:ff

DEFAULT INTERFACE NAME NEW NAME MAC address

enp6s0np0 gpu0_eth 7c:c2:55:bd:75:d0

enp35s0np0 gpu1_eth 7c:c2:55:bd:79:20

enp67s0np0 gpu2_eth 7c:c2:55:bd:7d:f0

enp102s0np0 gpu3_eth 7c:c2:55:bd:7e:20

enp134s0np0 gpu4_eth 7c:c2:55:bd:75:10

enp163s0np0 gpu5_eth 7c:c2:55:bd:7d:c0

enp195s0np0 gpu6_eth 7c:c2:55:bd:84:90

103

(Continued)

DEFAULT INTERFACE NAME NEW NAME MAC address

enp230s0np0 gpu7_eth 7c:c2:55:bd:83:10

enp47s0f0np0 stor0_eth 5c:25:73:66:bc:5e

enp47s0f0np1 stor1_eth 5c:25:73:66:bc:5f

enp208s0f0np0 mgmt_eth 5c:25:73:66:c3:ee

3. Modify the netplan configuration file using the new name and MAC addresses determined in the
previous steps.

EXAMPLE:

network:

 version: 2

 ethernets:

 gpu0_eth:

 match:

 macaddress: 7c:c2:55:bd:75:d0 <= MAC address associated to the original ens61f0np0.
Will become gpu0_eth.

 dhcp4: false

 mtu: 9000 <= Interface’s MTU (default = 1500)

 addresses:

 - 10.200.16.18/24 <= New IP address(s)

 routes:

 - to: 10.200.0.0/16 <= New route(s). Example shows route for 10.200.0.0/16 via
10.200.16.254

104

 via: 10.200.16.254

 from: 10.200.16.18

 set-name: gpu0_eth <= New interface name

---more---

Make sure to keep proper indentation, and hyphens were appropriate (e.g. before IP addresses,
routes, etc.) when editing the file. For the IP addresses make sure to include the subnet mask.

The following is an example of the netplan configuration file for one of the MI300X servers in the
lab:

jnpr@MI300X-01:/etc/netplan$ cat 00-installer-config.yaml

network:

 version: 2

 ethernets:

 mgmt_eth:

 match:

 macaddress: 5c:25:73:66:c3:ee

 dhcp4: false

 addresses:

 - 10.10.1.25/31

 nameservers:

 addresses:

 - 8.8.8.8

105

 routes:

 - to: default

 via: 10.10.1.24

 set-name: mgmt_eth

 stor0_eth:

 match:

 macaddress: 5c:25:73:66:bc:5e

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.100.5.3/31

 routes:

 - to: 10.100.0.0/21

 via: 10.100.5.2

 set-name: stor0_eth

 stor1_eth:

 match:

 macaddress: 5c:25:73:66:bc:5f

 dhcp4: false

 mtu: 9000

 addresses:

106

 - 10.100.5.5/31

 routes:

 - to: 10.100.0.0/21

 via: 10.100.5.4

 set-name: stor1_eth

 gpu0_eth:

 match:

 macaddress: 7c:c2:55:bd:75:d0

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.16.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.16.254

 from: 10.200.16.18

 set-name: gpu0_eth

 gpu1_eth:

 match:

 macaddress: 7c:c2:55:bd:79:20

 dhcp4: false

 mtu: 9000

107

 addresses:

 - 10.200.17.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.17.254

 from: 10.200.17.18

 set-name: gpu1_eth

 gpu2_eth:

 match:

 macaddress: 7c:c2:55:bd:7d:f0

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.18.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.18.254

 from: 10.200.18.18

 set-name: gpu2_eth

 gpu3_eth:

 match:

108

 macaddress: 7c:c2:55:bd:7e:20

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.19.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.19.254

 from: 10.200.19.18

 set-name: gpu3_eth

 gpu4_eth:

 match:

 macaddress: 7c:c2:55:bd:75:10

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.20.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.20.254

 from: 10.200.20.18

 set-name: gpu4_eth

109

 gpu5_eth:

 match:

 macaddress: 7c:c2:55:bd:7d:c0

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.21.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.21.254

 from: 10.200.21.18

 set-name: gpu5_eth

 gpu6_eth:

 match:

 macaddress: 7c:c2:55:bd:84:90

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.22.18/24

 routes:

 - to: 10.200.0.0/16

110

 via: 10.200.22.254

 from: 10.200.22.18

 set-name: gpu6_eth

 gpu7_eth:

 match:

 macaddress: 7c:c2:55:bd:83:10

 dhcp4: false

 mtu: 9000

 addresses:

 - 10.200.23.18/24

 routes:

 - to: 10.200.0.0/16

 via: 10.200.23.254

 from: 10.200.23.18

 set-name: gpu7_eth

4. Save the file and apply the changes using the netplan apply command.

jnpr@MI300X-01:/etc/netplan$ sudo netplan apply

jnpr@MI300X-01:/etc/netplan$

5. Verify the changes were correctly applied.

Check that the new interface names are correct:

Thor2 NIC output:

root@MI300X-01:/home/jnpr/SCRIPTS#
> devnames;

111

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker|virbr)'); do

 device=$(ethtool -i $iface 2>/dev/null | grep 'bus-info' | awk '{print $2}');

 if [[$device != 0000:*]];

 then device="0000:$device"; fi;

 model=$(lspci -s $device 2>/dev/null | awk -F ': ' '{print $2}'); echo "$iface:$model" >>
devnames;

done

root@MI300X-01:/home/jnpr/SCRIPTS# cat devnames

ens61f1np1:Mellanox Technologies MT2910 Family [ConnectX-7]

enxbe3af2b6059f:

gpu0_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu1_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu2_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu3_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu4_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu5_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu6_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu7_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

mgmt_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor0_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor1_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

112

Notice that the gpu#_eth (#=0-7) interfaces are Broadcom BCM97608 interfaces while the mgmt_eth
and stor#_eth interfaces are Mellanox MT2910 (ConnectX-7) interfaces. This will become important in
the next section where we will cover the interfaces CoS configuration.

AMD Pollara NIC output for same command:

jnpr@mi300-01:~$ > devnames;

for iface in $(ls /sys/class/net/ | grep -Ev '^(lo|docker|virbr)'); do

 device=$(ethtool -i $iface 2>/dev/null | grep 'bus-info' | awk '{print $2}');

 if [[$device != 0000:*]];

 then device="0000:$device"; fi;

 model=$(lspci -s $device 2>/dev/null | awk -F ': ' '{print $2}'); echo "$iface:$model" >>
devnames;

done

jnpr@mi300-01:~$ cat devnames

ens61f1np1:Mellanox Technologies MT2910 Family [ConnectX-7]

eth3:

gpu0_eth:Pensando Systems DSC Ethernet Controller

gpu1_eth:Pensando Systems DSC Ethernet Controller

gpu2_eth:Pensando Systems DSC Ethernet Controller

gpu3_eth:Pensando Systems DSC Ethernet Controller

gpu4_eth:Pensando Systems DSC Ethernet Controller

gpu5_eth:Pensando Systems DSC Ethernet Controller

gpu6_eth:Pensando Systems DSC Ethernet Controller

gpu7_eth:Pensando Systems DSC Ethernet Controller

113

mgmt_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor0_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

stor1_eth:Mellanox Technologies MT2910 Family [ConnectX-7]

Notice that the gpu#_eth (#=0-7) interfaces are AMD Pollara 400 NIC interfaces while the mgmt_eth
and stor#_eth interfaces are Mellanox MT2910 (ConnectX-7) interfaces. This will become important in
the next section where we will cover the interfaces CoS configuration. eth3 interface is the supermicro
IPMI interface.

Verify that the IP addresses were configured correctly:

user@MI300X-03:~/scripts$ ip address show gpu0_eth

4: gpu0_eth: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP group default qlen 1000

 link/ether 6c:92:cf:87:cc:00 brd ff:ff:ff:ff:ff:ff

 inet 10.200.24.22/24 brd 10.200.24.255 scope global gpu0_eth

 valid_lft forever preferred_lft forever

 inet6 fe80::6e92:cfff:fe87:cc00/64 scope link

 valid_lft forever preferred_lft forever

OR

jnpr@MI300X-01:/etc/netplan$ ifconfig gpu0_eth

gpu0_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

 inet 10.200.16.18 netmask 255.255.255.0 broadcast 10.200.16.255

 inet6 fe80::7ec2:55ff:febd:75d0 prefixlen 64 scopeid 0x20<link>

 ether 7c:c2:55:bd:75:d0 txqueuelen 1000 (Ethernet)

 RX packets 253482 bytes 28518251 (28.5 MB)

114

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 38519 bytes 10662707 (10.6 MB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Check that the routes were added correctly to the routing table:

jnpr@MI300X-01:/etc/netplan$ route | grep mgmt_eth

default _gateway 0.0.0.0 UG 0 0 0 mgmt_eth

10.10.1.24 0.0.0.0 255.255.255.254 U 0 0 0 mgmt_eth

jnpr@MI300X-01:/etc/netplan$ route | grep gpu0_eth

10.200.0.0 10.200.16.254 255.255.0.0 UG 0 0 0 gpu0_eth

10.200.16.0 0.0.0.0 255.255.255.0 U 0 0 0 gpu0_eth

OR

user@MI300X-03:~/scripts$ ip route show | grep gpu0_eth

10.200.24.0/24 dev gpu0_eth proto kernel scope link src 10.200.24.22

Check address resolution:

jnpr@MI300X-01:/etc/netplan$ ping google.com -c 5 -n

PING google.com (142.250.188.14) 56(84) bytes of data.

64 bytes from 142.250.188.14: icmp_seq=1 ttl=113 time=2.16 ms

64 bytes from 142.250.188.14: icmp_seq=2 ttl=113 time=2.43 ms

64 bytes from 142.250.188.14: icmp_seq=3 ttl=113 time=191 ms

64 bytes from 142.250.188.14: icmp_seq=4 ttl=113 time=50.6 ms

64 bytes from 142.250.188.14: icmp_seq=5 ttl=113 time=12.0 ms

115

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4005ms

rtt min/avg/max/mdev = 2.158/51.596/190.818/71.851 ms

AMD Pollara firmware and dependent libraries

Note: For AMD drivers and host utilities, please reach out to your regional AMD representative.

For brevity the steps described here only pertain to enabling RCCL test for AMD Pollara 400 NIC and
hence all the necessary dependent software and libraries are required to be installed for RCCL test to
run. The steps involved pertain to the libraries listed in AMD Server and NIC Firmware and RCCL
supporting libraries table.

1. Ensure that ubuntu OS version is 22.04 as suggested in section AMD Server and NIC Firmware and
RCCL supporting libraries

Install ROCm library as suggested in below steps.

wget https://repo.radeon.com/amdgpu-install/6.3.3/ubuntu/jammy/amdgpu-
install_6.3.60303-1_all.deb

sudo apt install ./amdgpu-install_6.3.60303-1_all.deb

sudo apt update

sudo apt install amdgpu-dkms rocm

sudo apt install cmake libstdc++-12-dev

2. Install RCCL library as suggested in below steps. Note that the RCCL and ANP are private libraries
provided by AMD.

tar xf rccl-7961624_may21.tgz

cd rccl-7961624

116

./install.sh -l --prefix=build --disable-mscclpp --disable-msccl-kernel

3. Install Unified Communication Framework (UCX). The Unified Communication Framework (UCX), is
an open source, cross-platform framework designed to provide a common set of communication
interfaces for various network programming models and interfaces, refer AMD documentation for
more information.

sudo apt install libtool

git clone https://github.com/openucx/ucx.git

cd ucx

./autogen.sh

mkdir build

cd build

../configure --prefix=/opt/ucx --with-rocm=/opt/rocm

../configure --prefix=/opt/ucx

make -j $(nproc)

sudo make -j $(nproc) install

4. Next Install OpenMPI. Note that the OpenMPI is a GitHub link and hence GitHub credentials may be
required. The Open MPI Project is an open source Message Passing Interface implementation that is
developed and maintained by a consortium of academic, research, and industry partners. Open MPI
is therefore able to combine the expertise, technologies, and resources from all across the High
Performance Computing community in order to build the best MPI library available, refer OpenMPI
for more information.

sudo apt install flex

git clone --recursive https://github.com/open-mpi/ompi.git

cd ompi

117

https://instinct.docs.amd.com/projects/gpu-cluster-networking/en/latest/how-to/gpu-enabled-mpi.html#rocm-aware-open-mpi-on-infiniband-and-roce-networks-using-ucx
https://www.open-mpi.org/

./autogen.pl

mkdir build

cd build

../configure --prefix=/opt/ompi --with-ucx=/opt/ucx --with-rocm=/opt/rocm

make -j $(nproc)

sudo make install

5. Install Pollara drivers and firmware. This is AMD provided firmware bundle. This firmware will also
install the ‘nicctl’ command line utility to interact with the Pollara NICs and run commands to reset
cards or configure QOS etc.

Prerequisites

sudo apt install device-tree-compiler policycoreutils ninja-build jq pkg-config libnl-3-dev
libnl-route-3-dev libpci-dev

Untar the bundle itself

tar xf ainic_bundle_1.113.0-a-2.tar.gz

cd into the bundle directory

cd ainic_bundle_1.113.0-a-2

untar the host software

tar xf host_sw_pkg.tar.gz

cd into the host software directory

cd host_sw_pkg

install the drivers and software

sudo ./install.sh

118

Output of the Firmware version:

jnpr@MI300-01:~/ainic_bundle_1.110.0-a-79$ sudo nicctl update firmware --image ./
ainic_fw_salina.tar --log-file /tmp/amd_ainic_upgrade.log

--

Card Id Stage Progress

--

42424650-4c32-3530-3130-313346000000 Done 100% [02:50.941]

42424650-4c32-3530-3130-313844000000 Done 100% [02:41.200]

42424650-4c32-3530-3130-313242000000 Done 100% [02:51.584]

42424650-4c32-3530-3130-304341000000 Done 100% [02:51.281]

42424650-4c32-3530-3130-313434000000 Done 100% [02:31.062]

42424650-4c32-3530-3130-314537000000 Done 100% [02:51.480]

42424650-4c32-3530-3130-314436000000 Done 100% [02:51.077]

42424650-4c32-3530-3130-304435000000 Done 100% [02:51.367]

NIC 42424650-4c32-3530-3130-313346000000 (0000:06:00.0) : Successful

NIC 42424650-4c32-3530-3130-313844000000 (0000:23:00.0) : Successful

NIC 42424650-4c32-3530-3130-313242000000 (0000:43:00.0) : Successful

NIC 42424650-4c32-3530-3130-304341000000 (0000:66:00.0) : Successful

NIC 42424650-4c32-3530-3130-313434000000 (0000:86:00.0) : Successful

NIC 42424650-4c32-3530-3130-314537000000 (0000:a3:00.0) : Successful

NIC 42424650-4c32-3530-3130-314436000000 (0000:c3:00.0) : Successful

119

NIC 42424650-4c32-3530-3130-304435000000 (0000:e6:00.0) : Successful

6. Once the firmware install is complete, then run the reset card so as to reflect the firmware version.

Pollara NIC output of Firmware update

jnpr@mi300-01:~$ sudo nicctl reset card --all

NIC 42424650-4c32-3530-3130-313346000000 (0000:06:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-313844000000 (0000:23:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-313242000000 (0000:43:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-304341000000 (0000:66:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-313434000000 (0000:86:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-314537000000 (0000:a3:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-314436000000 (0000:c3:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-304435000000 (0000:e6:00.0) : Card reset triggered, wait for
completion (75 secs)

NIC 42424650-4c32-3530-3130-313346000000 (0000:06:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-313844000000 (0000:23:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-313242000000 (0000:43:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-304341000000 (0000:66:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-313434000000 (0000:86:00.0) : Card reset successful

120

NIC 42424650-4c32-3530-3130-314537000000 (0000:a3:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-314436000000 (0000:c3:00.0) : Card reset successful

NIC 42424650-4c32-3530-3130-304435000000 (0000:e6:00.0) : Card reset successful

jnpr@mi300-01:~$ sudo nicctl show card --detail | grep Firm

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

Firmware version : 1.110.0-a-79

7. Install ANP plugin. ANP is a plugin library designed to enhance the RCCL collective communication
library with extended network transport support. The ANP Plugin library is a private AMD library.

sudo apt install libboost-dev

export RCCL_BUILD=/home/${User}/pollara/rccl-7961624/build/release

export MPI_INCLUDE=/opt/ompi/include

export MPI_LIB_PATH=/opt/ompi/lib

make RCCL_BUILD=$RCCL_BUILD MPI_INCLUDE=$MPI_INCLUDE MPI_LIB_PATH=$MPI_LIB_PATH

8. Lastly Build the RCCL tests.

Build rccl-tests

121

git clone https://github.com/ROCm/rccl-tests.git

cd rccl-tests

make MPI=1 MPI_HOME=/opt/ompi NCCL_HOME=/home/${User}/pollara/rccl-7961624/build/release
CUSTOM_RCCL_LIB=/home/${User}/pollara/rccl-7961624/build/release/librccl.so -j $(nproc)

make MPI=1 MPI_HOME=/opt/ompi NCCL_HOME=/home/dbarmann/pollara/rccl-7961624/build/release
HIP_HOME=/home/${User}/pollara/rccl-7961624/build/release CUSTOM_RCCL_LIB=/home/${User}/
pollara/rccl-7961624/build/release/librccl.so -j $(nproc)

Configuring AMD DCQCN (ECN/PFC) and TOS/DSCP for RDMA Traffic

In the "IP Services for AI Networks section" on page 32 we discussed the need for congestion control
and traffic prioritization in the Backend GPU fabric to transport RoCE traffic between GPU servers. For
these mechanisms to work properly, the servers need to be configured to properly react to congestions
notifications from both ECN and PFC, and to mark the RDMA and non-RDMA traffic properly (matching
the classification configuration of the fabric). We will cover how to configure the AMD servers to meet
this requirement.

Congestion Control (CC) or ECN (Explicit congestion Notification)

Congestion Control (CC) or ECN (Explicit congestion Notification) is a standard (RFC 3168) backpressure
mechanism for ethernet network devices that signals congestion and causes the traffic to temporarily
slow down to avoid packet drops

ECN for RoCE traffic relies on fabric switches that can detect congestion and implement ECN marking
for traffic downstream, and devices that can respond to these markings, as shown in Figure 63.

• the receiving NIC or Notification point (NP) which transmits CNP when receiving ECN marked
packets

• the sending NIC or Reaction point (RP) that receives the CNP packets and reacts accordingly.

Figure 53: DCQCN – ECN Operation

122

Details about DCQCN – ECN (Congestion Control in Broadcom terminology) implementation in the
BCM5741X Ethernet network adapter acting as NP and RP, can be found in the following documents
Traffic Control Synopsis and RoCE Congestion Control.

Priority Flow Control (PFC)

Priority Flow Control (PFC) is a standard (IEEE 802.1Qbb) backpressure mechanism for ethernet
network devices that signals congestion and causes traffic on a particular priority to temporarily stop to
avoid packet drops.

PFC for RoCE traffic relies on fabric switches that can detect congestion and generate PFC Pause
frames upstream and devices that can respond to these markings:

• the sending NIC that receives the PFC Pause frames and reacts accordingly.

Details about DCQCN – PFC implementation in BCM5741X Ethernet network adapters acting as RP
can be found in the following documents Traffic Control Synopsis, Priority Flow Control Feature in
Ethernet Network Adapters, and Quality of Service

Figure 54: DCQCN – PFC Operation

123

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/traffic-control-synopsis.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/traffic-control-synopsis.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/introduction/features/priority-flow-control-user.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/introduction/features/priority-flow-control-user.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/quality-of-service.html

TOS/DSCP for RDMA Traffic

RDMA traffic must be properly marked to allow the switch to correctly classify it, and to place it in the
lossless queue for proper treatment. Marking can be either DSCP within the IP header, or PCP in the
ethernet frame vlan-tag field. Whether DSCP or PCP is used depends on whether the interface between
the GPU server and the switch is doing vlan tagging (802.1q) or not. Figure 64 shows how RDMA and
CNP are marked differently and as a result, the fabric switch classified and schedules the two types of
packets differently.

Figure 55: TOS/DSCP operation

124

DCQCN configuration for RDMA Traffic on NICs

IN THIS SECTION

Broadcom BCM57608 Thor2 DCQCN configuration for RDMA Traffic | 125

Default DCQN-ECN/PFC attributes in AMD servers. | 125

Mapping Broadcom and logical interface names to configure DCQN-ECN/PFC and TOS/DSCP for
RDMA Traffic attributes in AMD servers | 126

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes in AMD servers (Broadcom
interfaces) | 130

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes directly | 132

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes using niccli | 145

Priority to traffic class mappings | 168

Applications to traffic class mappings | 169

Non-volatile memory (NVM) options related to class of service. | 176

Configuring DCQCN and RoCE traffic marking values using bnxt_setupcc.sh | 180

Monitor interface and ECN/PFC operation: | 192

Configuring the server to use the management interface for RCCL control traffic: | 205

AMD Pollara DCQCN configuration for RDMA Traffic | 206

Broadcom BCM57608 Thor2 DCQCN configuration for RDMA Traffic

Default DCQN-ECN/PFC attributes in AMD servers.

The network interface adapters are configured with the following Class of Service (including DCQCN-
ECN) parameters for RoCE traffic:

For Thor2 NIC adapter:

• RoCEv2 (RDMA over IPv4) enabled

• Congestion Control (ECN) and PFC enabled

125

• RoCE traffic tagged with DSCP 26 on PRIORITY 3

• RoCE CNP traffic tagged with DSCP 48 and PRIORITY 7

Mapping Broadcom and logical interface names to configure DCQN-
ECN/PFC and TOS/DSCP for RDMA Traffic attributes in AMD servers

DCQCN ECN, PFC and traffic marking need to be configured on the interfaces connected to the GPU
backend; that is on the gpu#_eth (#=0-7) interfaces only.

On the section "Changing NIC attributes" on page 96 section of these document, we determined that
the gpu#_eth interfaces in our servers, are Broadcom BCM97608 (shown below) NICs.

root@MI300X-01:/home/jnpr/SCRIPTS# cat devnames | grep gpu

gpu0_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu1_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu2_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu3_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu4_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu5_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu6_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

gpu7_eth:Broadcom Inc. and subsidiaries BCM57608 25Gb/50Gb/100Gb/200Gb/400Gb Ethernet (rev 11)

All the steps for configuring Class of Service in this section will be focused on these Broadcom
interfaces.

We will be using a combination of Linux system commands and Broadcom tools to enable, tune and
monitor DCQCN ECN/PFC operation and RoCE traffic marking. For some of these commands we will
need to find the Broadcom interface name associated with each gpu interface. Follow these steps to find
these mappings:

126

1. Find the PCI address of each gpu#_eth interface using the following logic:

for iface in $(ls /sys/class/net | grep -E 'gpu[0-9]+_eth'); do

 pci_addr=$(readlink -f /sys/class/net/$iface/device | awk -F '/' '{print $NF}')

 echo "$iface => $pci_addr"

done1

EXAMPLE:

root@MI300X-01:/home/jnpr/SCRIPTS# for iface in $(ls /sys/class/net | grep -E
'gpu[0-9]+_eth'); do

 pci_addr=$(readlink -f /sys/class/net/$iface/device | awk -F '/' '{print $NF}')

 echo "$iface => $pci_addr"

done

gpu0_eth => 0000:06:00.0

gpu1_eth => 0000:23:00.0

gpu2_eth => 0000:43:00.0

gpu3_eth => 0000:66:00.0

gpu4_eth => 0000:86:00.0

gpu5_eth => 0000:a3:00.0

gpu6_eth => 0000:c3:00.0

gpu7_eth => 0000:e6:00.0

127

2. Find the bnxt_re# (#=0-7) devices that corresponds to each PCI address using the following logic:

for pci in $(find /sys/class/infiniband -type l -exec basename {} \;); do

 pci_addr=$(readlink -f /sys/class/infiniband/$pci/device | awk -F '/' '{print $NF}')

 echo "$pci => $pci_addr" |grep bnxt

done

EXAMPLE:

root@MI300X-01:/home/jnpr/SCRIPTS# for pci in $(find /sys/class/infiniband -type l -exec
basename {} \;); do

 pci_addr=$(readlink -f /sys/class/infiniband/$pci/device | awk -F '/' '{print $NF}')

 echo "$pci => $pci_addr" |grep bnxt

done

bnxt_re5 => 0000:a3:00.0

bnxt_re3 => 0000:66:00.0

bnxt_re1 => 0000:23:00.0

bnxt_re6 => 0000:c3:00.0

bnxt_re4 => 0000:86:00.0

bnxt_re2 => 0000:43:00.0

bnxt_re0 => 0000:06:00.0

bnxt_re7 => 0000:e6:00.0

3. MAP the GPU interface bnxt_re# or mlx5_# interface names.

Combine the outputs from steps 1 and 2 to create a full mapping from gpu#_eth to bnxt_re# or mlx5_#.
You can see from the outputs that for example gpu0_eth corresponds to bnxt_re3 (0000:66:00.0)

128

You can use the following logic to simplify the process:

echo "GPU-to-NIC Mapping:"

for iface in $(ls /sys/class/net | grep -E 'gpu[0-9]+_eth'); do

 pci_addr=$(readlink -f /sys/class/net/$iface/device | awk -F '/' '{print $NF}')

 rdma_dev=$(find /sys/class/infiniband -type l -exec basename {} \; | while read rdma; do

 rdma_pci=$(readlink -f /sys/class/infiniband/$rdma/device | awk -F '/' '{print $NF}')

 if [["$pci_addr" == "$rdma_pci"]]; then echo "$rdma"; fi

 done)

 echo "$iface => $pci_addr => $rdma_dev"

done

EXAMPLE:

root@MI300X-01:/home/jnpr/SCRIPTS# echo "GPU-to-NIC Mapping:"

for iface in $(ls /sys/class/net | grep -E 'gpu[0-9]+_eth'); do

 pci_addr=$(readlink -f /sys/class/net/$iface/device | awk -F '/' '{print $NF}')

 rdma_dev=$(find /sys/class/infiniband -type l -exec basename {} \; | while read rdma; do

 rdma_pci=$(readlink -f /sys/class/infiniband/$rdma/device | awk -F '/' '{print $NF}')

 if [["$pci_addr" == "$rdma_pci"]]; then echo "$rdma"; fi

 done)

 echo "$iface => $pci_addr => $rdma_dev"

done

GPU-to-NIC Mapping:

129

gpu0_eth => 0000:06:00.0 => bnxt_re0

gpu1_eth => 0000:23:00.0 => bnxt_re1

gpu2_eth => 0000:43:00.0 => bnxt_re2

gpu3_eth => 0000:66:00.0 => bnxt_re3

gpu4_eth => 0000:86:00.0 => bnxt_re4

gpu5_eth => 0000:a3:00.0 => bnxt_re5

gpu6_eth => 0000:c3:00.0 => bnxt_re6

gpu7_eth => 0000:e6:00.0 => bnxt_re7

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes
in AMD servers (Broadcom interfaces)

Some of the parameters related to DCQN-ECN/PFC and TOS/DSCP are listed in the following table:

Table 15. Server DCQCN configuration parameters

PARAMETER DESCRIPTION DEFAULT

cc_mode 0 for Deterministic Marking (DCQCN-D)

1 for Probabilistic Marking (DCQCN-P)

1

cnp_ecn Enables/disables ECN 0x1
(enabled)

cnp_dscp DSCP value for RoCE congestion notification packets 48

cnp_prio Priority for RoCE congestion notification packets 7

130

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1/deterministic-marking.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1/probabilistic-marking--dcqcn-p-.html

(Continued)

PARAMETER DESCRIPTION DEFAULT

cnp_ratio_th Defines the threshold ratio for generating CNPs. It determines the rate at
which CNPs are sent in response to congestion, helping to control the
feedback mechanism's aggressiveness.

0x0

ecn_enable Enable congestion control. 0x1
(enabled)

ecn_marking Enables tagging of packets as ECN-enabled. ECN = 01 0x1
(enabled)

default_roce_m
ode

Sets the default RoCE mode for RDMA RoCE v2

default_roce_to
s

Sets the default ToS value for RDMA traffic 104

roce_dscp DSCP value for RoCE packets. 26

roce_prio Priority for RoCE packets. 3

rtt Time period (µs) over which cnp and transmitted packets counts accumulate.
At the end of rtt, the ratio between CNPs and TxPkts is computed, and the CP
is updated.

40 μs.

BCM95741X Ethernet network adapters support three transmit and receive queues for each Ethernet
port: 0, 4, and 5.

BCM95750X Ethernet network adapters support eight transmit and receive queues for each Ethernet
port: 0 through 7.

By default, all queues are configured for weighted-fair-queueing (WFQ), with priority 0 traffic mapped to
queue 4.

When the RoCE bnxt_re driver is loaded, CoSQ 0 is configured for lossless traffic, and CoSQ 5 is
changed from WFQ to strict priority (SP) for CNP processing.

RoCE and CNP traffic can be tagged with different DSCP values or use VLAN tags instead.

By default, the ToS field is set to 104, which means DSCP is set to 48 and the ECN bits are set to 10
(ECN-enabled).

131

These parameters can be adjusted using three different methods:

• Configuring DCQCN/RDMA marking values directly

• Configuring DCQCN/RDMA marking values using Broadcom tools such as niccli, or lldptool directly

• Configuring DCQCN/RDMA marking values using the bnxt_setupcc.sh utility, which uses either niccli or
lldptool (default) behind the scenes.

The following sections will describe the steps to make changes using these different options.

NOTE: Please ensure all changes are consistent with the configuration of switches within the fabric.
Example:

set class-of-service classifiers dscp mydscp forwarding-class CNP loss-priority low code-points
110000

set class-of-service classifiers dscp mydscp forwarding-class NO-LOSS loss-priority low code-
points 011010

set class-of-service forwarding-classes class NO-LOSS pfc-priority 3

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes
directly

You can make changes to the DCQCN and traffic marking by directly editing the files that contain the
values of each parameter. This method is the easiest, and does not require installation of any additional

132

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/manually-reconfiguring-network-parameters/configuring-congestion-control-with-bnxt_setupccsh.html#configuring-congestion-control-with-bnxt_setupccsh_codeblock_amw_vzc_zpb

tools, however, it is not an option for PFC related parameters, nor is it supported on all types of network
adapters.

To complete these changes for a specific interface, you must be under in the proper interface directory,
following these steps:

1. Create interface directories for qos related values

We determined the mappings between the gpu#_eth interfaces and the corresponding Broadcom
interface names

GPU-to-NIC Mapping:

gpu0_eth => 0000:06:00.0 => bnxt_re0

gpu1_eth => 0000:23:00.0 => bnxt_re1

gpu2_eth => 0000:43:00.0 => bnxt_re2

gpu3_eth => 0000:66:00.0 => bnxt_re3

gpu4_eth => 0000:86:00.0 => bnxt_re4

gpu5_eth => 0000:a3:00.0 => bnxt_re5

gpu6_eth => 0000:c3:00.0 => bnxt_re6

gpu7_eth => 0000:e6:00.0 => bnxt_re7

We will use the Broadcom interface names to create the directories (rdma_cm and bnxt_re) where
the DCQCN attributes as well as other parameters and statistics will be located for each interface.

The interface specific directories do not exist until created using the following commands:

cd /sys/kernel/config

mkdir -p /rdma_cm/<Broadcom-interface-name>

mkdir -p /bnxt_re/<Broadcom-interface-name>

Notice that these two directories must be present.

root@MI300X-01:/# cd /sys/kernel/config/ls

bnxt_re rdma_cm

133

If the rdma_cm directory for example is missing, try the following:

root@MI300X-01:/sys/kernel/config# sudo modprobe rdma_cm

root@MI300X-01:/sys/kernel/config# lsmod | grep rdma_cm

rdma_cm 147456 0

iw_cm 61440 1 rdma_cm

ib_cm 151552 1 rdma_cm

ib_core 507904 6 rdma_cm,iw_cm,bnxt_re,ib_uverbs,mlx5_ib,ib_cm

EXAMPLE:

root@MI300X-01:/# cd /sys/kernel/config/bnxt_re

root@MI300X-01:/sys/kernel/config/bnxt_re#

(NO FILES LISTED)

root@MI300X-01:/# cd /sys/kernel/config/rdma_cm

root@MI300X-01:/sys/kernel/config/rdma_cm# ls

(NO FILES LISTED)

root@MI300X-01:/sys/kernel/config# mkdir -p rdma_cm/bnxt_re0

root@MI300X-01:/sys/kernel/config# mkdir -p bnxt_re/bnxt_re0

root@MI300X-01:/sys/kernel/config# ls rdma_cm

bnxt_re0

root@MI300X-01:/sys/kernel/config# ls bnxt_re

134

bnxt_re0

root@MI300X-01:/sys/kernel/config# mkdir -p rdma_cm/bnxt_re1

root@MI300X-01:/sys/kernel/config# mkdir -p bnxt_re/bnxt_re1

root@MI300X-01:/sys/kernel/config# ls rdma_cm

bnxt_re0 bnxt_re1

root@MI300X-01:/sys/kernel/config# ls bnxt_re

bnxt_re0 bnxt_re1

Repeat these steps for all the gpu interfaces.

NOTE: You must be a root user to make these changes.

jnpr@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc$ sudo echo -n 0x1 > ecn_enable

-bash: ecn_enable: Permission denied.

jnpr@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc$ sudo bash

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# sudo echo -n 0x1 > ecn_enable

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc#

The new directories will contain values pertaining to ECN, ROCE traffic and other functions:

root@MI300X-01:/sys/kernel/config# cd rdma_cm/bnxt_re0/ports/1

root@MI300X-01:/sys/kernel/config/rdma_cm/bnxt_re0/ports/1# ls

default_roce_mode default_roce_tos

root@MI300X-01:/sys/kernel/config/rdma_cm/bnxt_re0/ports/1# cd /sys/kernel/config/bnxt_re/
bnxt_re0/ports/1

root@MI300X-02:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1$ ls

135

cc tunables

root@MI300X-02:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1$ ls tunables

acc_tx_path cq_coal_en_ring_idle_mode dbr_pacing_algo_threshold

en_qp_dbg snapdump_dbg_lvl user_dbr_drop_recov_timeout

cq_coal_buf_maxtime cq_coal_normal_maxbuf dbr_pacing_enable

gsi_qp_mode stats_query_sec cq_coal_during_maxbuf

dbr_def_do_pacing dbr_pacing_time min_tx_depth

user_dbr_drop_recov

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/# ls cc

abs_max_quota act_cr_factor act_rel_cr_th actual_cr_shift_correction_en

advanced ai_rate_incr ai_rtt_th1 ai_rtt_th2

apply bw_avg_weight cc_ack_bytes cc_mode

cf_rtt_th cnp_dscp cnp_ecn cnp_prio

cnp_ratio_th cp_bias cp_bias_en cp_exp_update_th

cr_min_th cr_prob_fac cr_width disable_prio_vlan_tx

ecn_enable ecn_marking exp_ai_rtts exp_crcp_ratio

fair_cr_th fr_num_rtts g inact_th

init_cp init_cr init_tr l64B_per_rtt

lbytes_per_usec max_cp_cr_th max_quota min_quota

min_time_bet_cnp random_no_red_en red_div red_rel_rtts_th

reduce_cf_rtt_th reset_cc_cr_th roce_dscp roce_prio

rt_en rtt rtt_jitter_en sc_cr_th1

136

sc_cr_th2 tr_lb tr_prob_fac tr_update_cyls

tr_update_mode

You can find a description of some of these parameters, as well as their current value using cat apply
within the /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# directory.

EXAMPLE:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat apply

ecn status (ecn_enable) : Enabled

ecn marking (ecn_marking) : ECT(1)

congestion control mode (cc_mode) : DCQCN-P

send priority vlan (VLAN 0) : Disabled

running avg. weight(g) : 8

inactivity threshold (inact_th) : 10000 usec

initial current rate (init_cr) : 0xc8

initial target rate (init_tr) : 0x320

cnp header ecn status (cnp_ecn) : ECT(1)

rtt jitter (rtt_jitter_en) : Enabled

link bytes per usec (lbytes_per_usec) : 0x7fff byte/usec

current rate width (cr_width) : 0xe bits

minimum quota period (min_quota) : 0x4

maximum quota period (max_quota) : 0x7

absolute maximum quota period(abs_max_quota) : 0xff

137

64B transmitted in one rtt (l64B_per_rtt) : 0xf460

roce prio (roce_prio) : 3

roce dscp (roce_dscp) : 26

cnp prio (cnp_prio) : 7

cnp dscp (cnp_dscp) : 48

2. Enable RoCEv2 operation.

Even though RoCEv2 should be the default mode, the command to enable RoCEv2 is shown here.

NOTE: This change is made under the rdma_cm directory

root@MI300X-01:/# cd /sys/kernel/config/rdma_cm/bnxt_re0/ports/1

root@MI300X-01:/sys/kernel/config/rdma_cm/bnxt_re0/ports/1# ls

default_roce_mode default_roce_tos

root@MI300X-01:/sys/kernel/config/rdma_cm/bnxt_re0/ports/1# echo RoCE v2 > default_roce_mode

NOTE: Enter the value exactly as shown including the space: “RoCE v2” (case sensitive).

After setting the parameter, apply the new values as follows:

echo -n 0x1 > apply

Verify the changes:

root@MI300X-01:/sys/kernel/config/rdma_cm/bnxt_re1/ports/1# cat default_roce_mode

RoCE v2

3. Enable ECN response and notification functions.

138

Even though ECN should be enabled by default, the command to enable ECN is shown here.

root@MI300X-01:/# cd /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc

NOTE: This change is made under the bnxt_re0 directory.

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# echo -n 0x1 > ecn_enable

If needed, you can disable ECN by entering echo -n 0x0 > ecn_enable instead.

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# echo -n 0x1 > ecn_enable

When ECN is enabled on the Broadcom interfaces, they will respond to CNP packets (RP) and will
generate CNP packets when ECN-marked are received (NP).

To disable it, enter echo -n 0x0 > cnp_ecn instead.

After setting the parameter, apply the new values:

echo -n 0x1 > apply

Verify the changes:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat ecn_enable

0x1

You can also enable the marking of both CNP and ROCE packets as ECN-eligible (meaning, these
packets can be marked across the network when congestion occurs).

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_ecn 0x1

To summarize these attributes:

ecn_enable Enables/Disables the RP (response point) side of ECN. It enables the device to respond to CNP
packets. Default = 1 (enable)

139

cnp_ecn Configures marking CNP packets as ECN-eligible. Either a value of 01 or 10 for ECT field.

ecn_marking Configures marking ROCE packets as ECN-eligible. Either a value of 01 or 10 for ECT field.

1. Configure the DSCP and PRIO values for CNP and RoCEv2 packets.

NOTE: Configuring these values manually, as shown below, is not an option for all types of Broadcom
interface cards. For example, for BCM95741X devices you can use this method to configure the ECN,
and RoCE priority values but on the BCM95750X/BCM97608 devices you can configure roce_dscp,
ecn_dscp .

See Broadcom Ethernet Network Adapter Congestion Control Parameters

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc#

echo -n 0x30 > cnp_dscp

DSCP value as 48 (30 in HEX)

NOTE: These changes are made under the bnxt_re0 directory.

echo -n 0x1a > roce_dscp

DSCP value as 26 (1a in HEX)

echo -n 0x7 > cnp_prio

echo -n 0x3 > roce_prio

NOTE: The following error indicates that changing the value of this parameter directly is not
supported. In the case of BCM97608 roce_prio, and cnp_prio need to be configured using
bnxt_setupcc.sh (described later).

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# echo -n 0x3 > roce_prio

bash: echo: write error: Invalid argument

140

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control-tuning-parameters/setting-congestion-control-parameters.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/manually-reconfiguring-network-parameters/configuring-congestion-control-with-bnxt_setupccsh.html#configuring-congestion-control-with-bnxt_setupccsh_codeblock_amw_vzc_zpb

After setting the parameter, apply the new values:

echo -n 0x1 > apply

Verify the changes:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_dscp

0x30

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_dscp

0x1a

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_prio

0x7

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_prio

0x3

2. Configure the DCQCN algorithm (under the bnxt_re directory).

The default DCQCN Congestion Control (cc-mode) algorithm in Broadcom Ethernet network adapter
is DCQCN-P. The mode can be changed using these commands:

NOTE: This change is made under the bnxt_re0 directory.

To use DCQCN-P configure:

cd /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc/

echo -n 1 > cc_mode

echo -n 1 > apply

cat apply

141

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1/probabilistic-marking--dcqcn-p-.html

To use DCQCN-D configure:

root@MI300X-01:/

cd /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc/

echo -n 0 > cc_mode

echo -n 1 > apply

3. Check all the attributes that were configured.

The following command shows all the interface parameters:

root@MI300X-01:/

cd /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc/

echo -n 1 > advanced

echo -n 1 > apply

cat apply

For more information on the DCQCN algorithm in Broadcom Ethernet network adapter check the
following documents: Changing Congestion Control Mode Settings and RoCE Congestion Control

EXAMPLE:

We have highlighted some ECN/CNP related parameters:

root@MI300X-01:/sys/kernel/config#

cd /sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc/

echo -n 1 > advanced

echo -n 1 > apply

cat apply

142

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1/deterministic-marking.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/changing-congestion-control-mode-settings.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/advanced-network-configuration/congestion-control1.html

ecn status (cnp_ecn) : Enabled
 ecn marking (ecn_marking) : ECT(1)
 congestion control mode (cc_mode) : DCQCN-P

send priority vlan (VLAN 0) : Disabled

running avg. weight(g) : 8

inactivity threshold (inact_th) : 10000 usec

initial current rate (init_cr) : 0xc8

initial target rate (init_tr) : 0x320

round trip time (rtt) : 45 usec

cnp header ecn status (cnp_ecn) : ECT(1)

rtt jitter (rtt_jitter_en) : Enabled

link bytes per usec (lbytes_per_usec) : 0x7fff byte/usec

current rate width (cr_width) : 0xe bits

minimum quota period (min_quota) : 0x4

maximum quota period (max_quota) : 0x7

absolute maximum quota period(abs_max_quota) : 0xff

64B transmitted in one rtt (l64B_per_rtt) : 0xf460

minimum time between cnps (min_time_bet_cnp) : 0x0 usec

initial congestion probability (init_cp) : 0x3ff

target rate update mode (tr_update_mode) : 1

target rate update cycle (tr_update_cyls) : 0x0

fast recovery rtt (fr_num_rtts) : 0x5 rtts

active increase time quanta (ai_rate_incr) : 0x1

143

reduc. relax rtt threshold (red_rel_rtts_th) : 0x2 rtts

additional relax cr rtt (act_rel_cr_th) : 0x50 rtts

minimum current rate threshold (cr_min_th) : 0x0

bandwidth weight (bw_avg_weight) : 0x5

actual current rate factor (act_cr_factor) : 0x0

current rate level to max cp (max_cp_cr_th) : 0x3ff

cp bias state (cp_bias_en) : Disabled

log of cr fraction added to cp (cp_bias) : 0x3

cr threshold to reset cc (reset_cc_cr_th) : 0x32a

target rate lower bound (tr_lb) : 0x1

current rate probability factor (cr_prob_fac) : 0x3

target rate probability factor (tr_prob_fac) : 0x5

current rate fairness threshold (fair_cr_th) : 0x64

reduction divider (red_div) : 0x1

rate reduction threshold (cnp_ratio_th) : 0x0 cnps

extended no congestion rtts (exp_ai_rtts) : 0x8 rtt

log of cp to cr ratio (exp_crcp_ratio) : 0x7

use lower rate table entries (rt_en) : Disabled

rtts to start cp track cr (cp_exp_update_th) : 0x1a4 rtt

first threshold to rise ai (ai_rtt_th1) : 0x40 rtt

second threshold to rise ai (ai_rtt_th2) : 0x80 rtt

144

actual rate base reduction threshold (cf_rtt_th) : 0x15e rtt

first severe cong. cr threshold (sc_cr_th1) : 0x0

second severe cong. cr threshold (sc_cr_th2) : 0x0

cc ack bytes (cc_ack_bytes) : 0x44

reduce to init rtts threshold(reduce_cf_rtt_th) : 0x3eb rtt

random no reduction of cr (random_no_red_en) : Enabled

actual cr shift correction (actual_cr_shift_correction_en) : Enabled

roce prio (roce_prio) : 3

roce dscp (roce_dscp) : 26

cnp prio (cnp_prio) : 7
 cnp dscp (cnp_dscp) : 0

Configuring DCQN-ECN/PFC and TOS/DSCP for RDMA Traffic attributes
using niccli

You can make changes to the DCQCN and traffic marking using the NICCLI Configuration Utility.

niccli is a management tool for Broadcom Ethernet network adapters that provides detailed information,
including type, status, serial number, and firmware version. It also enables the configuration of interface
attributes such as DCQCN-ECN, PFC, and TOS/DSCP for optimizing RDMA traffic.

NOTE: The niccli tools needs to be installed in your system.

Installing the NICCLI Configuration Utility

root@MI300X-01:/$ which niccli

/usr/bin/niccli

root@MI300X-01:/usr/bin$ ls niccli -l

145

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/nic-cli-configuration-utility/nic-configuration-utility.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/nic-cli-configuration-utility/installing-the-niccli-configuration-utility.html

lrwxrwxrwx 1 18896 1381 18 Sep 25 18:52 niccli -> /opt/niccli/niccli

You can obtain a summary of the interface adapters and ethernet ports that can be managed with niccli
present on the server using niccli listdev, or list-eth as show in the example below.

root@MI300X-01:/home/jnpr# niccli --listdev

1) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#1 Port#1)

 Device Interface Name : gpu0_eth

 MAC Address : 7C:C2:55:BD:75:D0

 PCI Address : 0000:06:00.0

2) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#2 Port#1)

 Device Interface Name : gpu1_eth

 MAC Address : 7C:C2:55:BD:79:20

 PCI Address : 0000:23:00.0

3) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#3 Port#1)

 Device Interface Name : gpu2_eth

 MAC Address : 7C:C2:55:BD:7D:F0

 PCI Address : 0000:43:00.0

4) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#4 Port#1)

 Device Interface Name : gpu3_eth

 MAC Address : 7C:C2:55:BD:7E:20

 PCI Address : 0000:66:00.0

146

5) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#5 Port#1)

 Device Interface Name : gpu4_eth

 MAC Address : 7C:C2:55:BD:75:10

 PCI Address : 0000:86:00.0

6) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#6 Port#1)

 Device Interface Name : gpu5_eth

 MAC Address : 7C:C2:55:BD:7D:C0

 PCI Address : 0000:A3:00.0

7) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#7 Port#1)

 Device Interface Name : gpu6_eth

 MAC Address : 7C:C2:55:BD:84:90

 PCI Address : 0000:C3:00.0

8) Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet Controller (Adp#8 Port#1)

 Device Interface Name : gpu7_eth

 MAC Address : 7C:C2:55:BD:83:10

 PCI Address : 0000:E6:00.0

root@MI300X-01:/home/jnpr# niccli --list-eth

 BoardId Interface PCIAddr

 1) BCM57608 gpu0_eth 0000:06:00.0

 2) BCM57608 gpu1_eth 0000:23:00.0

 3) BCM57608 gpu2_eth 0000:43:00.0

 4) BCM57608 gpu3_eth 0000:66:00.0

147

 5) BCM57608 gpu4_eth 0000:86:00.0

 6) BCM57608 gpu5_eth 0000:A3:00.0

 7) BCM57608 gpu6_eth 0000:C3:00.0

 8) BCM57608 gpu7_eth 0000:E6:00.0

You can use niccli in either oneline mode, interactive mode, or batch mode. The niccli -h help provides a
high level description of these modes. In this section, we will show some examples of how to use the
oneline and interactive modes for DCQCN-ECN, PFC, and TOS/DSCP configuration.

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# niccli --help

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

NIC CLI - Help Option

--help / -h Displays the following help page.

Utility provides three modes of execution,

 1. Interactive Mode

 To launch in interactive mode :

 <NIC CLI executable> [-i <index of the target>] | -pci <NIC pci address>

 After launching in interactive mode, execute 'help' command to

 display the list of available commands.

 2. Oneline Mode

 To launch in Oneline mode :

148

 <NIC CLI executable> [-i <index of the target>] | -pci <NIC pci address> <command>

 To list available commands in Oneline mode :

 <NIC CLI executable> [-i <index of the target>] | -pci <NIC pci address> help

 Legacy Nic command syntax :

 To launch in Oneline mode :

 <NIC CLI executable> [-dev [<index of the target> | <mac addr> | <NIC pci
address>]] <command>

 To list available commands in Oneline mode :

 <NIC CLI executable> [-dev [<index of the target> | <mac addr> | <NIC pci
address>]] help

 3. Batch Mode

 To launch in batch mode :

 <NIC CLI executable> [-i <index of the target>] | -pci <NIC pci address> --batch
<batch file>

 NOTE: Batch mode requires flat text file with utility supported commands.

 Commands have to be provided in ascii format with the valid parameters.

 Supported commands can be listed using One-Line mode or Interactive mode

 Upon failure of any commands, utility will exit without continuing with other commands

List available targets for Oneline or Batch mode

 <NIC CLI executable> --list

 <NIC CLI executable> --listdev

Entering niccli with no options allows you to work in the interactive mode, where you select an adapter/
interface (by index) and then the proper <command> (e.g. show, get_qos, set_map) to obtain information or
make changes to the selected interface.

149

You can identify the interface index corresponding to each interface using the method described in the
Mapping Broadcom interface name with logical interface name section. This will give you the mappings
between interfaces and pcie address which you can then correlate with the output of niccli below.

Once identified, enter the interface index (first column in the output) as shown in the example below.

EXAMPLE:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# niccli

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

--

 BoardId MAC Address FwVersion PCIAddr Type Mode

 1) BCM57608 7C:C2:55:BD:75:D0 230.2.49.0 0000:06:00.0 NIC PCI

 2) BCM57608 7C:C2:55:BD:79:20 230.2.49.0 0000:23:00.0 NIC PCI

 3) BCM57608 7C:C2:55:BD:7D:F0 230.2.49.0 0000:43:00.0 NIC PCI

 4) BCM57608 7C:C2:55:BD:7E:20 230.2.49.0 0000:66:00.0 NIC PCI

 5) BCM57608 7C:C2:55:BD:75:10 230.2.49.0 0000:86:00.0 NIC PCI

 6) BCM57608 7C:C2:55:BD:7D:C0 230.2.49.0 0000:A3:00.0 NIC PCI

 7) BCM57608 7C:C2:55:BD:84:90 230.2.49.0 0000:C3:00.0 NIC PCI

 8) BCM57608 7C:C2:55:BD:83:10 230.2.49.0 0000:E6:00.0 NIC PCI

Enter the target index to connect with : 1

BCM57608>

Once you are at the prompt for the selected NIC, you can enter commands such as show,
device_health_check, listdev, and listeth)

150

BCM57608> show

NIC State : Up

Device Type : THOR2

PCI Vendor ID : 0x14E4

PCI Device ID : 0x1760

PCI Revision ID : 0x11

PCI Subsys Vendor ID : 0x15D9

PCI Subsys Device ID : 0x1D42

Device Interface Name : gpu0_eth

MAC Address : 7C:C2:55:BD:75:D0

Base MAC Address : 7C:C2:55:BD:75:D0

Serial Number : OA248S074777

Part Number : AOC-S400G-B1C

PCI Address : 0000:06:00.0

Chip Number : BCM57608

Chip Name : THOR2

Description : Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet
Controller

---more---

BCM57608> devid

Device Interface Name : gpu0_eth

151

PCI Vendor ID : 0x14E4

PCI Device ID : 0x1760

PCI Revision ID : 0x11

PCI Subsys Vendor ID : 0x15D9

PCI Subsys Device ID : 0x1D42

PCI Address : 0000:06:00.0

BCM57608> device_health_check

Device Health Information :

 SBI Mismatch Check : OK

 SBI Booted Check : OK

 SRT Mismatch Check : OK

 SRT Booted Check : OK

 CRT Mismatch Check : OK

 CRT Booted Check : OK

 Second RT Image : CRT Image

 Second RT Image Redundancy : Good

 Image Fastbooted Check : OK

 Directory Header Booted Check : OK

 Directory Header Mismatch Check : OK

 MBR Corrupt Check : OK

 NVM Configuration : OK

152

 FRU Configuration : OK

 Overall Device Health : Healthy

BCM57608> devid

Device Interface Name : gpu0_eth

PCI Vendor ID : 0x14E4

PCI Device ID : 0x1760

PCI Revision ID : 0x11

PCI Subsys Vendor ID : 0x15D9

PCI Subsys Device ID : 0x1D42

PCI Address : 0000:06:00.0

Entering

niccli -i <interface-index>
<command>

allows you to issue the same commands but including the target interface and then the command, all in
one line. The niccli -list command can be used to determine the interface index.

EXAMPLE

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# niccli --list

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

 BoardId MAC Address FwVersion PCIAddr Type Mode

153

 1) BCM57608 7C:C2:55:BD:75:D0 230.2.49.0 0000:06:00.0 NIC PCI

 2) BCM57608 7C:C2:55:BD:79:20 230.2.49.0 0000:23:00.0 NIC PCI

 3) BCM57608 7C:C2:55:BD:7D:F0 230.2.49.0 0000:43:00.0 NIC PCI

 4) BCM57608 7C:C2:55:BD:7E:20 230.2.49.0 0000:66:00.0 NIC PCI

 5) BCM57608 7C:C2:55:BD:75:10 230.2.49.0 0000:86:00.0 NIC PCI

 6) BCM57608 7C:C2:55:BD:7D:C0 230.2.49.0 0000:A3:00.0 NIC PCI

 7) BCM57608 7C:C2:55:BD:84:90 230.2.49.0 0000:C3:00.0 NIC PCI

 8) BCM57608 7C:C2:55:BD:83:10 230.2.49.0 0000:E6:00.0 NIC PCI

The sudo niccli help provides an extensive list of commands and options available for both interactive
and one-line mode.

root@MI300X-01:/home/jnpr# sudo niccli help

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

Commands sets - Generic/Offline

list - Lists all the compatible devices

listdev - Lists all the compatible devices (NIC legacy syntax)

devid - Query Broadcom device id's.

pkgver - Display FW PKG version installed on the device.

verify - Verify FW packages & NVM

nvm-list - Display NVM components and its associated versions.

154

nvmview - View NVM directories data

list-eth - Lists all NIC devices with ethernet interface names

help - Lists the available commands

quit - Quits from the application

Commands for platform 'BCM57xxx Performance NIC' and interface 'Direct PCIe'

show - Shows NIC specific device information

coredump - Retrieves coredump data from device.

snapdump - Retrieves snapdump data from device.

version - Display the current version of the application

txfir - Network Interface Card Transmission Finite

 - Impulse Response

msixmv - Display and configure the number of MSIX max

 - vectors values for VF's per each PF

scan - Scan PCI devices in the topology

pcie - Show/Execute pcie operation

nvm - NVRAM Option Management

pfalloc - Configure and Query for the number of PFs per PCIe

 - endpoint

rfd - Restores NVM configuration to factory defaults

backuppowercfg - Backup Power Configuration

155

tsio - TSIO function capability on the pin

ingressqos - Query and configure the ingressqos parameters

egressqos - Query and configure the egressqos parameters

dutycycle - Set duty cycle on TSIO outgoing signal

dllsource - Set the DLL source for PHC

vf - Configure and Query for a trusted VF

rxportrlmt - Configure the receive side port rate limit

rxrlmt - Query the configured receive side rate control parameters

rxeprlmt - Configure the receive side rate control parameters for a given
endpoint

txpartitionrlmt - Query and Configure the transmit side partition rate limit applies
to traffic

 - sent from a partition, which is one PF and all of its child VFs

txportrlmt - Query and Configure the transmit side of port rate limit

txeprlmt - Query and Configure the PCIe endpoint transmit rate control

vf - Configure and Query for a trusted VF

pfc - Configure the priority-based flow control for a given priority

apptlv - Configure the priority for the AppTLV

tcrlmt - Configure the rate limit for each traffic class

ets - Configure the enhanced transmission selection, priority to traffic
class and bandwidths

up2tc - Configure the user priorities to traffic classes

getqos - Query the configured enhanced transmission selection, priority to
traffic class and bandwidths

156

listmap - List the priority to traffic class and queueid mapping

dscp2prio - Query the dscp to priority mapping

reset - Reset the device

synce - Configure the synchronous ethernet profile

dscdump - Retrieves dscdump for device

ptp - PTP extended parameters operation

prbs_test - Run PRBS loopback test

serdes - Plots the serdes pci and ethernet eye and prints the horizontal and
vertical margin values

Legacy NVM commands : - Query commands

--------------------- - ---------------

device_info - Query Broadcom device information and default hardware

 - resources profile version.

device_temperature - Query the device temperature in Celsius.

get_backup_power_config - Query backup power configuration of the device.

moduleinfo - Query the PHY module information.

nvm_measurement - Query the active NVM configuration.

get_ptp_extended - Query the PTP extended parameters.

getoption - Query current NVM configuration option settings

 - of a device.

pcie_counters - Display the pcie counters.

157

saveoptions - Save NVM configuration options on the device

 - to a file.

get_sync_ethernet - Get the synchronous ethernet frequency profile

get_txfir - Query the TX FIR settings.

cert_provision_state - Query the imported certificate chain on the device.

read - Read the NVM item data and write its contents to a file.

mh_pf_alloc - Query the number of PFs per PCIe endpoint.

 - This command is supported only on Thor devices.

get_tsio_function_pin - Query TSIO function capability on the pin.

Legacy NVM commands : - Debug commands

--------------------- - ---------------

device_health_check - Checks the device health.

backup - Backup NVM contents to a file

Legacy NVM commands : - Configuration commands

--------------------- - ---------------

reset_ap - Reset management processor.

setoption - Configure NVM configuration option settings

 - of a device.

msix_max_vectors - Configure the number of MSI-X max vectors per

158

 - VF for each PF.

loopback - Query/perform loopback config.

add_ntuple_filter - Add ntuple flow filter.

free_ntuple_filter - Free ntuple flow filter.

cfgtunnel - query/config custom tunnel port/rss.

write - Create or overwrite NVM data item with a file.

set_txfir - Configures the TX FIR settings

set_ptp_extended - Set PTP extended parameters

mh_pf_alloc - Query/Configure the number of PFs per PCIe endpoint.

 - This command is supported only on Thor devices.

restore_factory_defaults - Restores NVM configuration to factory defaults

resmgmt - Query and Configure resources of the device.

Legacy NVM commands : - FW update commands

--------------------- - ---------------

fw_sync - Synchronize primary & secondary FW images

livepatch - Query, Activate and Deactivate the patch in live

install - Install/Update FW

Legacy QoS Rx commands : - Rx Qos commands

--------------------- - ---------------

rx_port_ratelimit - The user can configure rx rate control that applies to all traffic

159

in a rx CoS queue group.

rx_endpoint_ratelimit - The user can configure endpoint rx rate control that applies to all
traffic in a rx CoS queue group.

get_rx_ratelimits - The user can query the rx rate limits.

Legacy QoS Tx commands : - Tx Qos commands

--------------------- - ---------------

partition_tx_ratelimit - This command is used to configure partition tx rate limit.

get_partition_tx_ratelimit - This command is used to query the partition rate limit
configuration for a given partition.

get_tx_port_ratelimit - This command is used to query the tx side of port rate limit.

tx_port_ratelimit - This command is used to configure the tx side of port rate limit

tx_endpoint_ratelimit - This command is used to configure PCIe endpoint tx rate limit.

get_tx_endpoint_ratelimits - This command is used to query the tx endpoint rate limits.

Legacy DCB commands : - Data Center Bridging commands

--------------------- - ---------------

set_pfc - This command is used to enable PFC on a given priority

set_apptlv - This command is used to configure the priority of the AppTLV.

ratelimit - This command is used to configure the rate limit for each traffic
class.

set_ets - This command is used to configure the DCB parameters.

set_map - This command is used to configure the priority to traffic class.

160

get_qos - This command is used to query the DCB parameters.

dump - This command is used to dump the priority to cos mapping.

get_dscp2prio - This command is used to query the dscp to priority mapping.

NOTE: We will use the one-line mode for all the examples below to obtain information and make
configuration changes.

The following examples show you how to use niccli to obtain information about a specific interface.

1. Check interface status.

The niccli -i <interface> show provides details about the interface such as type, MAC address,
firmware, serial number, device health, temperature and so on.

EXAMPLE:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# sudo niccli -i 1 show

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

NIC State : Up

Device Type : THOR2

PCI Vendor ID : 0x14E4

PCI Device ID : 0x1760

PCI Revision ID : 0x11

PCI Subsys Vendor ID : 0x15D9

PCI Subsys Device ID : 0x1D42

Device Interface Name : gpu0_eth

MAC Address : 7C:C2:55:BD:75:D0

161

Base MAC Address : 7C:C2:55:BD:75:D0

Serial Number : OA248S074777

Part Number : AOC-S400G-B1C

PCI Address : 0000:06:00.0

Chip Number : BCM57608

Chip Name : THOR2

Description : Supermicro PCIe 400Gb Single port QSFP56-DD Ethernet
Controller

Firmware Name : PRIMATE_FW

Firmware Version : 230.2.49.0

RoCE Firmware Version : 230.2.49.0

HWRM Interface Spec : 1.10.3

Kong mailbox channel : Not Applicable

Active Package Version : 230.2.52.0

Package Version on NVM : 230.2.52.0

Active NVM config version : 0.0.5

NVM config version : 0.0.5

Reboot Required : No

Firmware Reset Counter : 0

Error Recovery Counter : 0

Crash Dump Timestamp : Not Available

Secure Boot : Enabled

162

Secure Firmware Update : Enabled

FW Image Status : Operational

Crash Dump Available in DDR : No

Device Temperature : 57 Celsius

PHY Temperature : Not Available

Optical Module Temperature : 65 Celsius

Device Health : Good

2. Check QoS settings

The sudo niccli -i <interface-index> dscp2prio and sudo niccli -i 1 listmap -pri2cos commands show
mappings between DSCP and Priority vales, and between priority vales, traffic classes (TC) and the
output queues.

root@MI300X-01:/home/jnpr# sudo niccli -i 1 dscp2prio

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

dscp2prio mapping:

 priority:7 dscp: 48

 priority:3 dscp: 26

root@MI300X-01:/home/jnpr# sudo niccli -i 2 listmap -pri2cos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

163

Base Queue is 0 for port 0

Priority TC Queue ID

 0 0 4

 1 0 4

 2 0 4

 3 1 0

 4 0 4

 5 0 4

 6 0 4

 7 2 5

The outputs in the example show the defaults for:

• Queues status. Only queues 0, 1, and 2 are enabled.

• Priority to DSCP mappings: priority 7 => DSCP 48 & priority 3 => DSCP 26.

• Priority to TC (traffic class) and queue mappings: priority 7 => TC2 (queue 0) => DSCP 48 & priority 3
=> TC1 (queue 5) => DSCP 26.

NOTE: The output might be confusing, the Queue ID displayed is an internal CoS queue number. This
really means queuing of traffic class 0, 1, and 2 are enabled, all other traffic classes are disabled.

The sudo niccli -i <interface-index> get_qos command provides a summary of the QoS configuration on the
interface.

EXAMPLE:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# sudo niccli -i 1 get_qos

164

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

IEEE 8021QAZ ETS Configuration TLV:

 PRIO_MAP: 0:0 1:0 2:0 3:1 4:0 5:0 6:0 7:2

 TC Bandwidth: 50% 50% 0%

 TSA_MAP: 0:ets 1:ets 2:strict

IEEE 8021QAZ PFC TLV:

 PFC enabled: 3

IEEE 8021QAZ APP TLV:

 APP#0:

 Priority: 7

 Sel: 5

 DSCP: 48

 APP#1:

 Priority: 3

 Sel: 5

 DSCP: 26

 APP#2:

 Priority: 3

 Sel: 3

 UDP or DCCP: 4791

165

TC Rate Limit: 100% 100% 100% 0% 0% 0% 0% 0%

IEEE 802.1Qaz ETS Configuration TLV: shows the Enhanced Transmission Selection (ETS) configuration

PRIO_MAP: 0:0 1:0 2:0 3:1 4:0 5:0 6:0 7:2 Maps priorities to Traffic Classes (TC)

Priority 0, 1, 2, 4, 5, 6 → TC 0

Priority 3 → TC 1

Priority 7 → TC 2

TC Bandwidth: 50% 50% 0% Allocates bandwidth percentages to traffic classes.

TC 0: 50% of the total bandwidth.

TC 1: 50%.

TC 2: 0%.

TSA_MAP: 0:ets 1:ets 2:strict Together with TC Bandwidth, TSA_MAP allocates resources
and defines service priority for each TC. Equivalent to
schedulers & scheduler-map in Junos.

Specifies the Transmission Selection Algorithm (TSA) used
for each TC:

TC 0 and TC 1 use ETS (Enhanced Transmission Selection)
and share the available bandwidth 50/50

TC 2 uses strict priority, meaning TC 2 traffic will always be
sent first

IEEE 802.1Qaz PFC TLV: defines traffic classification using the APP TLV (Type-Length-Value) format

PFC enabled: 3 Indicates that PFC is enabled on priority 3.

Other priorities do not have PFC enabled.

PFC ensures that traffic with this priority can pause instead
of being dropped during congestion.

IEEE 802.1Qaz APP TLV

166

https://www.bing.com/ck/a?!&&p=d02ac3c1ebdc34c625f680801d5472d7d438d4846ae411218059edb8fafacbc0JmltdHM9MTczNzY3NjgwMA&ptn=3&ver=2&hsh=4&fclid=209d5358-ae3a-6265-08f4-4624af3d6327&psq=8021QAZ&u=a1aHR0cHM6Ly8xLmllZWU4MDIub3JnL2RjYi84MDItMXFhei8&ntb=1

(Continued)

IEEE 802.1Qaz ETS Configuration TLV: shows the Enhanced Transmission Selection (ETS) configuration

APP#0:

Priority: 7

Sel: 5

DSCP: 48

APP#1:

Priority: 3

Sel: 5

DSCP: 26

APP#2:

Priority: 3

Sel: 3

UDP or DCCP: 4791

Maps traffic to Traffic Classes. Equivalent to multifield
classifiers in Junos.

APP#0: Traffic marked with DSCP = 48 is mapped to priority
7

APP#1: Traffic marked with DSCP = 48 is mapped to priority
3

APP#2: UDP or DCCP traffic with port = 4791 (RoCEv2) is
mapped to priority 3

TC Rate Limit: 100% 100% 100% 0% 0% 0% 0%
0%

TC 0, TC 1, and TC 2 can use up to 100% of the bandwidth
allocated to them.

TC 3 through TC 7 are set to 0%, meaning they are not
currently configured to transmit traffic.

If needed, change the priority to traffic class mappings or the applications to traffic class mappings.

We recommend keeping the default settings and making sure they are consistent with the class-of-
service configuration on the leaf nodes in the GPU backend fabric.

[edit class-of-service classifiers]

jnpr@gpu-backend-rack1-001-leaf1# show

dscp mydscp {

 forwarding-class CNP {

 loss-priority low code-points 110000; <= DSCP = 48

167

 }

 forwarding-class NO-LOSS {

 loss-priority low code-points 011010; <= DSCP = 26

 }

 }

}

[edit class-of-service forwarding-classes]

jnpr@gpu-backend-rack1-001-leaf1# show

class CNP queue-num 3;

class NO-LOSS queue-num 4 no-loss pfc-priority 3;

If there are any requirements to change the priority to traffic class mappings or the applications to traffic
class mappings the following commands can be used:

Priority to traffic class mappings

BCM57608> help up2tc

 DESCRIPTION :

 This command is used to set the user priorities to traffic classes.

 SYNTAX :

 up2tc -p <priority[0-7]:tc>, ...>

-p: Comma separated list mapping user priorities to traffic classes.

168

EXAMPLE:

BCM57608> sudo niccli -i 1 get_qos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

IEEE 8021QAZ ETS Configuration TLV:

PRIO_MAP: 0:1 1:1 2:0 3:0 4:1 5:1 6:0 7:0 <= default

---more---

 BCM57608> up2tc -p 0:0,1:0,2:1,3:1,4:1,5:1,6:1,7:0

User priority to traffic classes are configured successfully.

BCM57608> sudo niccli -i 1 get_qos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

IEEE 8021QAZ ETS Configuration TLV:

PRIO_MAP: 0:0 1:0 2:1 3:1 4:1 5:1 6:1 7:0

---more---

Applications to traffic class mappings

BCM57608> help apptlv

 DESCRIPTION :

169

 This command is used to configure the priority of the AppTLV

 SYNTAX :

 apptlv -add -app <priority,selector,protocol>

 apptlv -del -app <priority,selector,protocol>

EXAMPLE:

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ APP TLV:

 APP#1:

 Priority: 7

 Sel: 5

 DSCP: 48

 APP#2:

 Priority: 3

 Sel: 5

 DSCP: 26

 APP#3:

 Priority: 3

 Sel: 3

170

 UDP or DCCP: 4791

BCM57608> apptlv -add -app 5,1,35093

AppTLV configured successfully.

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ APP TLV:

 APP#0:

 Priority: 5

 Sel: 1

 Ethertype: 0x8915

 APP#1:

 Priority: 7

 Sel: 5

 DSCP: 48

 APP#2:

 Priority: 3

 Sel: 5

 DSCP: 26

171

 APP#3:

 Priority: 3

 Sel: 3

 UDP or DCCP: 4791

BCM57608> BCM57608> apptlv -del -app 5,1,35093

AppTLV deleted successfully.

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ APP TLV:

 APP#0:

 Priority: 7

 Sel: 5

 DSCP: 48

 APP#1:

 Priority: 3

 Sel: 5

 DSCP: 26

 APP#2:

 Priority: 3

 Sel: 3

172

 UDP or DCCP: 4791

---more---

If needed, change ETS configuration attributes

We recommend keeping the default settings and making sure they are consistent with the class-of-
service configuration on the leaf nodes in the GPU backend fabric.

[edit class-of-service forwarding-classes]

jnpr@gpu-backend-rack1-001-leaf1# show

class CNP queue-num 3;

class NO-LOSS queue-num 4 no-loss pfc-priority 3;

BCM57608> help ets

 DESCRIPTION :

 This command is used to configure the enhanced transmission selection,

 priority to traffic class and traffic class bandwidths.

 SYNTAX :

 ets -tsa <tc[0-7]:[ets|strict], ...> -up2tc <priority[0-7]:tc>, ...> -tcbw <list>

 -tsa: Transmission selection algorithm, sets a comma separated list of traffic classes
to

 the corresponding selection algorithm. Valid algorithms include "ets" and "strict".

 -up2tc: Comma separated list mapping user priorities to traffic classes.

 -tcbw: Comma separated list of bandwidths for each traffic class the first value

 being assigned to traffic class 0 and the second to traffic class 1 and so on.

173

EXAMPLE:

BCM57608> sudo niccli -i 1 get_qos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

IEEE 8021QAZ ETS Configuration TLV:

 PRIO_MAP: 0:1 1:1 2:0 3:0 4:1 5:1 6:0 7:0

 TC Bandwidth: 50% 50% 0%

 TSA_MAP: 0:ets 1:ets 2:strict

IEEE 8021QAZ PFC TLV:

 PFC enabled: 3

---more---

BCM57608> ets -tsa 0:ets,1:ets,2:ets -up2tc 0:0,1:0,2:0,3:0,4:0,5:1,6:0,7:0 -tcbw 50,25,25

Enhanced transmission selection (ets) configured successfully.

BCM57608> sudo niccli -i 1 get_qos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

IEEE 8021QAZ ETS Configuration TLV:

 PRIO_MAP: 0:0 1:0 2:0 3:0 4:0 5:1 6:0 7:0

 TC Bandwidth: 50% 25% 25%

 TSA_MAP: 0:ets 1:ets 2:ets

174

If needed, configure PFC

BCM57608> help pfc

 DESCRIPTION :

 This command is used to enable priority-based flow control on a given priority.

 SYNTAX :

 pfc -enable <pfc list>

 The valid range is from 0 to 7. Where list is a comma-separated value for each pfc.

 To disable the pfc, user needs to provide a value of 0xFF.

EXAMPLE:

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ PFC TLV:

 PFC enabled: 3 <= default; PFC enabled for priority 3

---more---

BCM57608> pfc -enable 0xFF <= disables pfc on all priorities.

pfc configured successfully.

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ PFC TLV:

 PFC enabled: none <= pfc disabled on all priorities.

---more---

175

BCM57608> pfc -enable 5

pfc configured successfully.

BCM57608> sudo niccli -i 1 get_qos

---more---

IEEE 8021QAZ PFC TLV:

 PFC enabled: 5 <= PFC enabled for priority 5

---more---

The following command attempts to enable the pfc on priority 5 and 6 and demonstrates that only one
queue (one priority) can be configured as a lossless queue (PFC-enabled).

BCM57608> pfc -enable 5,6

ERROR: Hardware doesn't support more than 1 lossless queues to configure pfc.

ERROR: Failed to enable pfc.

Non-volatile memory (NVM) options related to class of service.

The sudo niccli -i <target> nvm -getoption retrieves and displays the configurable Non-Volatile Memory
(NVM) options for the specified NIC interface, including details like their names, current values, and
configuration scopes.

root@MI300X-01:/# sudo niccli -i 1 nvm -getoption

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

176

 NAME SCOPE

 -------------------------------------- ----------

 mac_address FUNCTION

 port_hide_capable DEVICE

 port_operation_capability DEVICE

 port_operation_mode DEVICE

 crypto_offload_selection DEVICE

 pf_pci_bar2_size PORT

 max_num_pf_msix_vectors DEVICE

 min_num_pf_msix_vectors DEVICE

 pcie_relaxed_ordering DEVICE

 multiroot_mode DEVICE

 pf_pps_rate DEVICE

 vf_pps_rate DEVICE

---more---

where the SCOPE column in the output of the niccli command indicates the level at which a particular
option is applied or configured within the device hierarchy.

SCOPE DESCRIPTION

FUNCTION Applies to a specific physical function (PF) of the NIC, where a PF represents a full PCIe
function with independent configuration (e.g. a single NIC is divided into multiple logical
functions)

DEVICE Applies to the entire physical device (the setting affects the whole NIC, regardless of how many
ports, functions, or virtual resources are configured on it).

177

(Continued)

SCOPE DESCRIPTION

PORT Applies to an individual port on the NIC. Multi-port NICs may allow port-specific configurations
that do not impact other ports.

NOTE: The scope in the command is only required for FUNCTION and PORT scope options.

niccli nvm also allows checking and adjusting CoS related hardware-level settings stored in the NIC's
firmware.

root@MI300X-01:/# sudo niccli -i 1 nvm -getoption |egrep "roce|ecn|cnp|rdma"

 rdma_capable DEVICE

 roce_hw_responder_retx DEVICE

 roce_hw_requester_retx DEVICE

 disable_roce_hwrm_host_log DEVICE

 support_rdma FUNCTION

 disable_rdma_sriov FUNCTION

 enable_roce_dcn DEVICE

root@MI300X-01:/# sudo niccli -dev 1 getoption -name
rdma_capable

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

rdma_capable = Enabled

root@MI300X-01:/# sudo niccli -dev 1 getoption -name support_rdma -scope 0

178

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

--

support_rdma = True

Although it is unlikely that you would need to change the values on these options, you can use

sudo niccli -dev <target>
setoption -name <option>

for that purpose.

EXAMPLE:

root@MI300X-01:/# sudo niccli -i 1 getoption -name cosq_mode -h

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

Name : cosq_mode

Description : Bitmask indicating which CoS queues (RX and TX) are lossy or lossless.

 Each bit represents a specific queue where bit 0 represents

 queue 0 and bit 7 represents queue 7.

 A value of 0 indicates that the queue is lossy.

 A value of 1 indicates that the queue is lossless.

 If option cosq_mode_valid is set to 0, then this option is not honored.

Option Type : Single Instance Type

Valid values : 0 to 255

179

root@MI300X-01:/# sudo niccli -i 1 getoption -name cosq_mode

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

cosq_mode = 0x0 (0)

root@MI300X-01:/# sudo niccli -i 1 setoption -name cosq_mode -value 128

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

cosq_mode is set successfully

Please reboot the system to apply the configuration

Notice that a reboot is required for the change to be applied

root@MI300X-01:/# sudo niccli -i 1 getoption -name cosq_mode

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

cosq_mode = 0x80 (128)

Configuring DCQCN and RoCE traffic marking values using
bnxt_setupcc.sh

Using the bnxt_setupcc.sh utility, which can simplify the process.

180

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/manually-reconfiguring-network-parameters/configuring-congestion-control-with-bnxt_setupccsh.html#configuring-congestion-control-with-bnxt_setupccsh_codeblock_amw_vzc_zpb

The bnxt_setupcc.sh utility simplifies enabling or disabling both ECN and PFC, and changing the values of
DSCP and PRIO for both ROCE and CNP packets for a given interface.

Under the hood it uses niccli (default) or lldptool which can be selected as part of the command.

You need to enter bnxt_setupcc.sh followed by your selected options as described in the help menu:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# bnxt_setupcc.sh

Usage: bnxt_setupcc.sh [OPTION]...

 -d RoCE Device Name (e.g. bnxt_re0, bnxt_re_bond0)

 -i Ethernet Interface Name (e.g. p1p1 or for bond, specify slave interfaces like -i
p6p1 -i p6p2)

 -m [1-3] 1 - PFC only

 2 - CC only

 3 - PFC + CC mode

 -v 1 - Enable priority vlan

 -r [0-7] RoCE Packet Priority

 -s VALUE RoCE Packet DSCP Value

 -c [0-7] RoCE CNP Packet Priority

 -p VALUE RoCE CNP Packet DSCP Value

 -b VALUE RoCE Bandwidth percentage for ETS configuration - Default is 50%

 -t [2] Default mode (Only RoCE v2 is supported - Input Ignored)

 -C VALUE Set CNP Service Type

 -u [1-3] Utility to configure QoS settings

 1 - Use bnxtqos utility. Will disable lldptool if enabled. (default)

 2 - Use lldptool

181

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/RoCE/manually-reconfiguring-network-parameters/configuring-congestion-control-with-bnxt_setupccsh.html#configuring-congestion-control-with-bnxt_setupccsh_codeblock_amw_vzc_zpb

 3 - Use Broadcom niccli utility. Will disable lldptool if enabled.

 -h display help

EXAMPLE:

The default DSCP marking for CNP packets for interface gpu0 (bnxt_re0) is 0 as shown in the output
below:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat apply | grep cnp

ecn status (cnp_ecn) : Enabled

cnp header ecn status (cnp_ecn) : ECT(1)

minimum time between cnps (min_time_bet_cnp) : 0x0 usec

rate reduction threshold (cnp_ratio_th) : 0x0 cnps

cnp prio (cnp_prio) : 7

cnp dscp (cnp_dscp) : 0

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat apply | grep cc

congestion control mode (cc_mode) : DCQCN-P

cr threshold to reset cc (reset_cc_cr_th) : 0x32a

cc ack bytes (cc_ack_bytes) : 0x44

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_prio

0x7

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_dscp

0x0

182

bnxt_setupcc.sh can be used to change it to the value expected by the fabric (48) as follows:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc#

bnxt_setupcc.sh -d bnxt_re0 -i gpu0_eth -u 3 -p 48 -c 6 -s 26 -r 5 -m 3

ENABLE_PFC = 1 ENABLE_CC = 1

ENABLE_DSCP = 1 ENABLE_DSCP_BASED_PFC = 1

L2 50 RoCE 50

Using Ethernet interface gpu0_eth and RoCE interface bnxt_re0

Setting pfc/ets 0000:06:00.0

---more---

AppTLV configured successfully.

Where:

• -u 3: Uses Broadcom niccli utility

• -p 48: Sets the DSCP value for CNP packets to 48 (0x30)

• -c: Configures the priority for CNP packets to 6

• -s: Defines the DSCP value for regular RoCE packets to 26 (0x1a)

• -r: Sets the priority for regular RoCE packets to 5

• -m 3: Configures both PFC and congestion control (ECN).

NOTE: Device (-i) is required for the script to complete. Also, you cannot configure only one of the
DSCP/PRIO values. You need to configure CNP-DSCP value (-p) , CNP-PRI value (-c), RoCE-DSCP (-s),
and RoCE-PRIO (-r) for the command to work.

Verify the results with:

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat apply | grep cnp

ecn status (cnp_ecn) : Enabled

183

cnp header ecn status (cnp_ecn) : ECT(1)

minimum time between cnps (min_time_bet_cnp) : 0x0 usec

rate reduction threshold (cnp_ratio_th) : 0x0 cnps

cnp prio (cnp_prio) : 6

cnp dscp (cnp_dscp) : 48

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat apply | grep roce

roce prio (roce_prio) : 5

roce dscp (roce_dscp) : 26

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_prio

0x6

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat cnp_dscp

0x30 <= 48 is HEX

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat roce_dscp

0x1a <= 26 is HEX

root@MI300X-01:/sys/kernel/config/bnxt_re/bnxt_re0/ports/1/cc# cat roce_prio

0x5

NOTE: You need to make sure that not only bnxt_setupcc.sh is installed and executable, but also that at
least one of the tools (niccli or lldptool) is installed.

The following example shows that bnxt_setupcc.sh and niccli are installed, but lldptool is not. It also shows
examples of installing and using the lldptool.

root@MI300X-01:/# which bnxt_setupcc.sh

/usr/local/bin/bnxt_setupcc.sh

184

root@MI300X-01:/usr/local/bin# ls bnxt_setupcc.sh -l

-rwxr-xr-x 1 root root 14761 Jan 17 18:06 bnxt_setupcc.sh

root@MI300X-01:/$ which niccli

/usr/bin/niccli

root@MI300X-01:/usr/bin$ ls niccli -l

lrwxrwxrwx 1 18896 1381 18 Sep 25 18:52 niccli -> /opt/niccli/niccli

root@MI300X-01:/opt/niccli$ ls niccli -l

-rwxr-xr-x 1 18896 1381 609 Sep 25 18:52 niccli

root@MI300X-01:/$ which lldptool

The lldptool is used to check or modify the LLDP (Link Layer Discovery Protocol) settings. To enable
LLDP you need to install lldpad, which also installs lldptool automatically.

To install lldpad and lldptool follow these steps:

1. Install required dependencies.

Before installing lldpad, ensure that the necessary libraries are installed by running the following
command:

• sudo apt install libconfig9 libnl-3-200

• libconfig9 – A configuration file processing library.

• libnl-3-200 – A library for interacting with the Linux Netlink interface.

1. Install lldpad.

Install lldpad by running the following command:

• sudo apt install lldpad

This package enables LLDP on the system, allowing it to exchange network topology information
with other devices.

2. Enable lldpad.

Enable lldp using systemctl:

• sudo systemctl enable lldpad

185

This creates a systemd service that ensures lldpad is always running after a reboot.

3. Start the lldpad service

Activate lldp using systemctl:

• sudo systemctl start lldpad

This activates lldpad immediately, allowing it to process LLDP packets.

NOTE:

To restart lldpad manually, use: sudo systemctl restart lldpad

To disable lldpad from starting at boot, use: sudo systemctl disable lldpad

4. Verify the installation

Check the service status using systemctl

user@MI300X-01:/etc/apt$ sudo systemctl status lldpad

● lldpad.service - Link Layer Discovery Protocol Agent Daemon.

 Loaded: loaded (/usr/lib/systemd/system/lldpad.service; enabled; preset: enabled)

 Active: active (running) since Fri 2025-02-14 00:16:40 UTC; 2min 2s ago

TriggeredBy: ● lldpad.socket

 Docs: man:lldpad(8)

 Main PID: 695860 (lldpad)

 Tasks: 1 (limit: 629145)

 Memory: 1.3M (peak: 2.0M)

 CPU: 510ms

 CGroup: /system.slice/lldpad.service

 └─695860 /usr/sbin/lldpad -t

186

Feb 14 00:16:40 MI300X-01 systemd[1]: Started lldpad.service - Link Layer Discovery Protocol
Agent Daemon..

This ensures the tool is installed and ready to use. If everything is working properly, you should see an
"active (running)" status.

You can use lldptool to enable or disable LLDP on an interface, and to check the LLDP status and the
neighbors discovered on that interface. The lldptool -h shows you all the different options:

user@MI300X-01:/etc/apt$ lldptool -h

Usage:

 lldptool <command> [options] [arg] general command line usage format

 lldptool go into interactive mode

 <command> [options] [arg] general interactive command format

Options:

 -i [ifname] network interface

 -V [tlvid] TLV identifier

 may be numeric or keyword (see below)

 -c <argument list> used with get TLV command to specify

 that the list of configuration elements

 should be retrieved

 -d use to delete specified argument from

 the configuration. (Currently

 implemented for DCBX App TLV settings)

 -n "neighbor" option for command

187

 -r show raw message

 -R show only raw messages

 -g destination agent (may be one of):

 - nearestbridge (nb) (default)

 - nearestcustomerbridge (ncb)

 - nearestnontpmrbridge (nntpmrb)

Commands:

 license show license information

 -h|help show command usage information

 -v|version show version

 -p|ping ping lldpad and query pid of lldpad

 -q|quit exit lldptool (interactive mode)

 -S|stats get LLDP statistics for ifname

 -t|get-tlv get TLVs from ifname

 -T|set-tlv set arg for tlvid to value

 -l|get-lldp get the LLDP parameters for ifname

 -L|set-lldp set the LLDP parameter for ifname

TLV identifiers:

 chassisID : Chassis ID TLV

 portID : Port ID TLV

 TTL : Time to Live TLV

188

 portDesc : Port Description TLV

 sysName : System Name TLV

 sysDesc : System Description TLV

 sysCap : System Capabilities TLV

 mngAddr : Management Address TLV

 macPhyCfg : MAC/PHY Configuration Status TLV

 powerMdi : Power via MDI TLV

 linkAgg : Link Aggregation TLV

 MTU : Maximum Frame Size TLV

 LLDP-MED : LLDP-MED Settings

 medCap : LLDP-MED Capabilities TLV

 medPolicy : LLDP-MED Network Policy TLV

 medLoc : LLDP-MED Location TLV

 medPower : LLDP-MED Extended Power-via-MDI TLV

 medHwRev : LLDP-MED Hardware Revision TLV

 medFwRev : LLDP-MED Firmware Revision TLV

 medSwRev : LLDP-MED Software Revision TLV

 medSerNum : LLDP-MED Serial Number TLV

 medManuf : LLDP-MED Manufacturer Name TLV

 medModel : LLDP-MED Model Name TLV

 medAssetID : LLDP-MED Asset ID TLV

 CIN-DCBX : CIN DCBX TLV

189

 CEE-DCBX : CEE DCBX TLV

 evb : EVB Configuration TLV

 evbcfg : EVB draft 0.2 Configuration TLV

 vdp : VDP draft 0.2 protocol configuration

 IEEE-DCBX : IEEE-DCBX Settings

 ETS-CFG : IEEE 8021QAZ ETS Configuration TLV

 ETS-REC : IEEE 8021QAZ ETS Recommendation TLV

 PFC : IEEE 8021QAZ PFC TLV

 APP : IEEE 8021QAZ APP TLV

 PVID : Port VLAN ID TLV

 PPVID : Port and Protocol VLAN ID TLV

 vlanName : VLAN Name TLV

 ProtoID : Protocol Identity TLV

 vidUsage : VID Usage Digest TLV

 mgmtVID : Management VID TLV

 linkAggr : Link Aggregation TLV

 uPoE : Cisco 4-wire Power-via-MDI TLV

user@MI300X-01:/etc/apt$ sudo lldptool -S -i gpu0_eth

Total Frames Transmitted = 0

Total Discarded Frames Received = 0

Total Error Frames Received = 0

190

Total Frames Received = 92

Total Discarded TLVs = 0

Total Unrecognized TLVs = 8

Total Ageouts = 0

user@MI300X-01:/etc/apt$ sudo lldptool -L -i gpu0_eth AMDinStatus=rxtx

AMDinStatus = rxtx

user@MI300X-01:/etc/apt$ sudo lldptool -S -i gpu0_eth

Total Frames Transmitted = 5

Total Discarded Frames Received = 0

Total Error Frames Received = 0

Total Frames Received = 94

Total Discarded TLVs = 0

Total Unrecognized TLVs = 8

Total Ageouts = 0

user@MI300X-01:/etc/apt$ sudo lldptool -t -i gpu0_eth

Chassis ID TLV

 MAC: 7c:c2:55:bd:75:d0

Port ID TLV

 MAC: 7c:c2:55:bd:75:d0

Time to Live TLV

 120

IEEE 8021QAZ ETS Configuration TLV

191

 Willing: yes

 CBS: not supported

 MAX_TCS: 3

 PRIO_MAP: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0

 TC Bandwidth: 0% 0% 0% 0% 0% 0% 0% 0%

 TSA_MAP: 0:strict 1:strict 2:strict 3:strict 4:strict 5:strict 6:strict 7:strict

IEEE 8021QAZ PFC TLV

 Willing: yes

 MACsec Bypass Capable: no

 PFC capable traffic classes: 1

 PFC enabled: none

End of LLDPDU TLV

Check the Installing and Configuring Software Manually section of the Broadcom Ethernet Network
Adapter User Guide or Installing the NICCLI Configuration Utility for more details.

Monitor interface and ECN/PFC operation:

Once you have the Broadcom name for a particular gpu as described at the beginning of this section,
you can locate the directories where the interface’s operation status, as well as RoCE traffic and
Congestion Control statistics are located.

1. Navigate to the corresponding directory

/sys/class/infiniband/<Broadcom-interface-name>

EXAMPLE:

192

https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/manual-software-installation-and-configuration.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters.html
https://techdocs.broadcom.com/us/en/storage-and-ethernet-connectivity/ethernet-nic-controllers/bcm957xxx/adapters/Configuration-adapter/nic-cli-configuration-utility/installing-the-niccli-configuration-utility.html#concept.dita_d3303fde-e786-4fd4-b0b6-e3a28fd60a82

For gpu0_eth:

root@MI300X-01:/home/jnpr/SCRIPTS# cd /sys/class/infiniband/bnxt_re3

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls

device fw_ver hca_type hw_rev node_desc

node_guid node_type ports power subsystem sys_image_guid uevent

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls device/net/gpu3_eth/

addr_assign_type address addr_len broadcast carrier

carrier_changes carrier_down_count carrier_up_count device dev_id

dev_port dormant duplex flags gro_flush_timeout

ifalias ifindex iflink link_mode mtu name_assign_type

napi_defer_hard_irqs netdev_group operstate phys_port_id phys_port_name

phys_switch_id power proto_down queues speed

statistics subsystem testing threaded tx_queue_len

type uevent

Here you can check attributes such as operational state, address, mtu, speed, and interface statistics
(including transmit and received packets, dropped packets, as well as ECN-marked packets, CNP packets
received and CNP packets transmitted):

root@MI300X-01:/sys/class/infiniband/bnxt_re3# cat device/net/gpu3_eth/operstate

up

root@MI300X-01:/sys/class/infiniband/bnxt_re3# cat device/net/gpu3_eth/address

7c:c2:55:bd:7e:20

root@MI300X-01:/sys/class/infiniband/bnxt_re3# cat device/net/gpu3_eth/mtu

193

9000

root@MI300X-01:/sys/class/infiniband/bnxt_re3# cat device/net/gpu3_eth/speed

400000

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls device/net/gpu3_eth/statistics

collisions multicast rx_bytes rx_compressed rx_crc_errors

rx_dropped rx_errors rx_fifo_errors rx_frame_errors rx_length_errors

rx_missed_errors rx_nohandler rx_over_errors rx_packets tx_aborted_errors

tx_bytes tx_carrier_errors tx_compressed tx_dropped tx_errors

tx_fifo_errors tx_heartbeat_errors tx_packets tx_window_errors tx_fifo_errors

rx_dropped rx_frame_errors rx_nohandlertx_aborted_errors tx_compressed tx_window_errors

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls ports/1

cap_mask cm_rx_duplicates cm_rx_msgs cm_tx_msgs cm_tx_retries

counters gid_attrs gids hw_counters lid

lid_mask_count link_layer phys_state pkeys rate

sm_lid sm_sl state

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls ports/1/counters/ -m

excessive_buffer_overrun_errors link_downed link_error_recovery

local_link_integrity_errors port_rcv_constraint_errors port_rcv_data

port_rcv_errors port_rcv_packets port_rcv_remote_physical_errors

port_rcv_switch_relay_errors port_xmit_constraint_errors port_xmit_data

194

port_xmit_discards port_xmit_packets port_xmit_wait

symbol_error VL15_dropped

To check ECN statistics, check the related counters for the specific interface:

root@MI300X-01:/sys/class/infiniband/bnxt_re3# ls ports/1/hw_counters/ -m

active_ahs active_cqs active_mrs active_mws

active_pds active_qps active_rc_qps active_srqs

active_ud_qps bad_resp_err db_fifo_register dup_req

lifespan local_protection_err local_qp_op_err max_retry_exceeded

mem_mgmt_op_err missing_resp oos_drop_count pacing_alerts

pacing_complete pacing_reschedule recoverable_errors remote_access_err

remote_invalid_req_err remote_op_err res_cmp_err res_cq_load_err

res_exceed_max res_exceeds_wqe res_invalid_dup_rkey res_irrq_oflow

resize_cq_cnt res_length_mismatch res_mem_err res_opcode_err

res_rem_inv_err res_rx_domain_err res_rx_invalid_rkey res_rx_no_perm

res_rx_pci_err res_rx_range_err res_srq_err res_srq_load_err

res_tx_domain_err res_tx_invalid_rkey res_tx_no_perm res_tx_pci_err

res_tx_range_err res_unaligned_atomic res_unsup_opcode res_wqe_format_err

rnr_naks_rcvd rx_atomic_req rx_bytes rx_cnp_pkts

rx_ecn_marked_pkts rx_good_bytes rx_good_pkts rx_out_of_buffer

rx_pkts rx_read_req rx_read_resp rx_roce_discards

rx_roce_errors rx_roce_only_bytes rx_roce_only_pkts rx_send_req

195

rx_write_req seq_err_naks_rcvd to_retransmits tx_atomic_req

tx_bytes tx_cnp_pkts tx_pkts tx_read_req

tx_read_resp tx_roce_discards tx_roce_errors tx_roce_only_bytes

tx_roce_only_pkts tx_send_req tx_write_req unrecoverable_err

watermark_ahs watermark_cqs watermark_mrs watermark_mws

watermark_pds watermark_qps watermark_rc_qps watermark_srqs

watermark_ud_qps

root@MI300X-01:/sys/class/infiniband#

for iface in /sys/class/infiniband/*/ports/1/hw_counters/rx_ecn_marked_pkts; do

 echo "$(basename $(dirname $(dirname $(dirname $(dirname "$iface"))))) : $(cat "$iface")"

done

bnxt_re0 : 0

bnxt_re1 : 1102

bnxt_re2 : 532

bnxt_re3 : 707

bnxt_re4 : 474

bnxt_re5 : 337

bnxt_re6 : 970

bnxt_re7 : 440

root@MI300X-01:/sys/class/infiniband#

for iface in /sys/class/infiniband/*/ports/1/hw_counters/tx_cnp_pkts; do

 echo "$(basename $(dirname $(dirname $(dirname $(dirname "$iface"))))) : $(cat "$iface")"

196

done

bnxt_re0 : 0

bnxt_re1 : 1102

bnxt_re2 : 532

bnxt_re3 : 707

bnxt_re4 : 474

bnxt_re5 : 337

bnxt_re6 : 970

bnxt_re7 : 440

root@MI300X-01:/sys/class/infiniband#

for iface in /sys/class/infiniband/*/ports/1/hw_counters/rx_cnp_pkts; do

 echo "$(basename $(dirname $(dirname $(dirname $(dirname "$iface"))))) : $(cat "$iface")"

done

bnxt_re0 : 0

bnxt_re1 : 830

bnxt_re2 : 0

bnxt_re3 : 375

bnxt_re4 : 734

bnxt_re5 : 23

bnxt_re6 : 2395

bnxt_re7 : 2291

197

To check PFC statistics use:

ethtool -s <InterfaceIndex> |egrep "pfc_frames|roce_pause"|more

EXAMPLE:

root@MI300X-01:/sys/class/infiniband# for iface in $(ls /sys/class/net/ | grep '^gpu'); do

 echo "$iface :"

 sudo ethtool -S "$iface" | egrep "pfc_frames|roce_pause"

done

gpu0_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 22598

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

gpu1_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 194626

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

gpu2_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 451620

 continuous_roce_pause_events: 0

198

 resume_roce_pause_events: 0

gpu3_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 492042

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

gpu4_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 407113

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

gpu5_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 290378

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

gpu6_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 228918

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

199

gpu7_eth :

 rx_pfc_frames: 0

 tx_pfc_frames: 477572

 continuous_roce_pause_events: 0

 resume_roce_pause_events: 0

root@MI300X-01:/sys/class/infiniband#

for iface in $(ls /sys/class/net/ | grep '^gpu'); do

 echo "$iface :"

 sudo ethtool -S "$iface" | grep cos | grep -v ": 0"

done

gpu0_eth :

 rx_bytes_cos0: 9529443988084

 rx_packets_cos0: 3319036491

 rx_bytes_cos4: 18230144638154

 rx_packets_cos4: 5955503873

 rx_discard_bytes_cos4: 3032625534

 rx_discard_packets_cos4: 736191

 tx_bytes_cos0: 27757371721830

 tx_packets_cos0: 9297694711

 tx_bytes_cos4: 604920

 tx_packets_cos4: 2628

gpu1_eth :

200

 rx_bytes_cos0: 27969554019118

 rx_packets_cos0: 9565740297

 rx_bytes_cos4: 4193860

 rx_packets_cos4: 47350

 tx_bytes_cos0: 27738638134736

 tx_packets_cos0: 9184463836

 tx_bytes_cos4: 619484

 tx_packets_cos4: 2686

 tx_bytes_cos5: 81548

 tx_packets_cos5: 1102

gpu2_eth :

 rx_bytes_cos0: 27961559203510

 rx_packets_cos0: 9438688373

 rx_bytes_cos4: 4134654

 rx_packets_cos4: 46526

 tx_bytes_cos0: 27177768852872

 tx_packets_cos0: 9028738664

 tx_bytes_cos4: 619444

 tx_packets_cos4: 2686

 tx_bytes_cos5: 39368

 tx_packets_cos5: 532

201

gpu3_eth :

 rx_bytes_cos0: 27886187894460

 rx_packets_cos0: 9394306658

 rx_bytes_cos4: 4161424

 rx_packets_cos4: 46910

 tx_bytes_cos0: 27963541263338

 tx_packets_cos0: 9314918707

 tx_bytes_cos4: 619624

 tx_packets_cos4: 2688

 tx_bytes_cos5: 52318

 tx_packets_cos5: 707

gpu4_eth :

 rx_bytes_cos0: 27760098268028

 rx_packets_cos0: 9493708902

 rx_bytes_cos4: 4190302

 rx_packets_cos4: 47275

 tx_bytes_cos0: 27943026331154

 tx_packets_cos0: 9175330615

 tx_bytes_cos4: 619068

 tx_packets_cos4: 2683

 tx_bytes_cos5: 35076

 tx_packets_cos5: 474

202

gpu5_eth :

 rx_bytes_cos0: 27742656661456

 rx_packets_cos0: 9603877462

 rx_bytes_cos4: 4136456

 rx_packets_cos4: 46558

 tx_bytes_cos0: 27862529155204

 tx_packets_cos0: 9053600792

 tx_bytes_cos4: 619318

 tx_packets_cos4: 2686

 tx_bytes_cos5: 24938

 tx_packets_cos5: 337

gpu6_eth :

 rx_bytes_cos0: 27204139187706

 rx_packets_cos0: 9417550449

 rx_bytes_cos4: 4309610

 rx_packets_cos4: 48912

 tx_bytes_cos0: 27939647032856

 tx_packets_cos0: 9122722262

 tx_bytes_cos4: 619248

 tx_packets_cos4: 2685

 tx_bytes_cos5: 71780

203

 tx_packets_cos5: 970

gpu7_eth :

 rx_bytes_cos0: 27985967658372

 rx_packets_cos0: 9636086344

 rx_bytes_cos4: 4303716

 rx_packets_cos4: 48823

 tx_bytes_cos0: 27949102839310

 tx_packets_cos0: 9149097911

 tx_bytes_cos4: 619138

 tx_packets_cos4: 2684

 tx_bytes_cos5: 32560

 tx_packets_cos5: 440

BCM57608> sudo niccli -i 2 listmap -pri2cos

NIC CLI v231.2.63.0 - Broadcom Inc. (c) 2024 (Bld-94.52.34.117.16.0)

Base Queue is 0 for port 0

Priority TC Queue ID

 0 0 4

 1 0 4

204

 2 0 4

 3 1 0

 4 0 4

 5 0 4

 6 0 4

 7 2 5

Configuring the server to use the management interface for RCCL control
traffic:

ROCm Communication Collectives Library (RCCL) creates TCP sessions to coordinate processes and
exchange Queue Pair information for RoCE, GIDs (Global IDs), Local and remote buffer addresses,
RDMA keys (RKEYs for memory access permissions)

NOTE: This traffic is separate from the RoCEv2 traffic (port 4791) and is used for synchronizing model
parameters, partial results operations, etc.

These TCP sessions are created when the job starts and by default use one of the GPU interfaces (same
interfaces used for RoCEv2 traffic).

Example:

jnpr@MI300X-01:~$ netstat -atn | grep 10.200 | grep "ESTABLISHED"

tcp 0 0 10.200.4.8:47932 10.200.4.2:43131 ESTABLISHED

tcp 0 0 10.200.4.8:46699 10.200.4.2:37236 ESTABLISHED

tcp 0 0 10.200.2.8:60502 10.200.13.2:35547 ESTABLISHED

tcp 0 0 10.200.4.8:37330 10.200.4.2:55355 ESTABLISHED

tcp 0 0 10.200.4.8:56438 10.200.4.2:53947 ESTABLISHED

205

---more---

It is recommended that the management interface connected to the (Frontend Fabric) is used. To achieve
this, include the following when starting a job: export NCCL_SOCKET_IFNAME="mgmt_eth". The same
environment variable applies to both NCCL and RCCL.

Example:

jnpr@MI300X-01:~$ netstat -atn | grep 10.10.1 | grep "ESTABLISHED"

tcp 0 0 10.10.1.0:44926 10.10.1.2:33149 ESTABLISHED

tcp 0 0 10.10.1.0:46705 10.10.1.0:40320 ESTABLISHED

tcp 0 0 10.10.1.0:54661 10.10.1.10:52452 ESTABLISHED

---more---

NOTE: ECN is enabled by default for these sessions; net.ipv4.tcp_ecn = 1 , but can be disable with: sudo
sysctl -w net.ipv4.tcp_ecn=0

AMD Pollara DCQCN configuration for RDMA Traffic

For the AMD Pollara validation, DCQCN needs to be enabled and QOS has to be applied on the AMD
NIC cards.

1. Configure QOS on the NICs using the script. The DSCP parameters are equivalent to the values
suggested in Table 15. Server DCQCN configuration parameters.

jnpr@mi300-01:~$ cat /usr/local/bin/jnpr-setupqos.sh

#!/bin/bash

for i in $(sudo /usr/sbin/nicctl show port | grep Port | awk {'print $3'}); do sudo /usr/sbin/
nicctl update port -p $i --pause-type pfc --rx-pause enable --tx-pause enable; done

cts_dscp=48

cts_prio=2

206

data_dscp=26

data_prio=3

sudo nicctl update qos --classification-type dscp

sudo nicctl update qos dscp-to-priority --dscp $cts_dscp --priority $cts_prio

sudo nicctl update qos dscp-to-priority --dscp $data_dscp --priority $data_prio

sudo nicctl update qos pfc --priority $cts_prio --no-drop enable

sudo nicctl update qos pfc --priority $data_prio --no-drop enable

sudo nicctl update qos dscp-to-purpose --dscp $cts_dscp --purpose xccl-cts

2. Using AMD nicctl command line Utility below are the QOS parameters configured:

jnpr@mi300-01:~$ sudo nicctl show qos | more

NIC : 42424650-4c32-3530-3130-313346000000 (0000:06:00.0)

Port : 0490812b-9860-4242-4242-000011010000

 Classification type : DSCP

 DSCP-to-priority :

 DSCP bitmap : 0xfffefffffbffffff ==> priority : 0

 DSCP bitmap : 0x0001000000000000 ==> priority : 2

 DSCP bitmap : 0x0000000004000000 ==> priority : 3

 DSCP : 0-25, 27-47, 49-63 ==> priority : 0

 DSCP : 48 ==> priority : 2

 DSCP : 26 ==> priority : 3

 DSCP-to-purpose : 48 ==> xccl-cts

207

 PFC :

 PFC priority bitmap : 0xc

 PFC no-drop priorities : 2,3

 Scheduling :

 --

 Priority Scheduling Bandwidth Rate-limit

 Type (in %age) (in Gbps)

 --

 0 DWRR 0 N/A

 2 DWRR 0 N/A

 3 DWRR 0 N/A

NIC : 42424650-4c32-3530-3130-313844000000 (0000:23:00.0)

Port : 0490812b-9fb0-4242-4242-000011010000

 Classification type : DSCP

 DSCP-to-priority :

 DSCP bitmap : 0xfffefffffbffffff ==> priority : 0

 DSCP bitmap : 0x0001000000000000 ==> priority : 2

 DSCP bitmap : 0x0000000004000000 ==> priority : 3

 DSCP : 0-25, 27-47, 49-63 ==> priority : 0

 DSCP : 48 ==> priority : 2

 DSCP : 26 ==> priority : 3

208

 DSCP-to-purpose : 48 ==> xccl-cts

 PFC :

 PFC priority bitmap : 0xc

 PFC no-drop priorities : 2,3

--More--

3. The rdma link command can be used to check if the roce-devices association to the AMD Pollara NIC
cards exist.

jnpr@mi300-01:~$ rdma link | grep gpu

link rocep9s0/1 state ACTIVE physical_state LINK_UP netdev gpu0_eth

link rocep38s0/1 state ACTIVE physical_state LINK_UP netdev gpu1_eth

link rocep70s0/1 state ACTIVE physical_state LINK_UP netdev gpu2_eth

link roceo1/1 state ACTIVE physical_state LINK_UP netdev gpu3_eth

link rocep137s0/1 state ACTIVE physical_state LINK_UP netdev gpu4_eth

link rocep166s0/1 state ACTIVE physical_state LINK_UP netdev gpu5_eth

link rocep198s0/1 state ACTIVE physical_state LINK_UP netdev gpu6_eth

link rocep233s0/1 state ACTIVE physical_state LINK_UP netdev gpu7_eth

The roce-devices are created when the ionic_rdma kernel module is loaded and should create the
below roce-device file for each NIC card.

jnpr@mi300-01:/sys/class/infiniband$ find /sys/class/infiniband -type l

/sys/class/infiniband/rocep137s0

/sys/class/infiniband/rocep38s0

/sys/class/infiniband/rocep70s0

209

/sys/class/infiniband/roceo1

/sys/class/infiniband/rocep166s0

/sys/class/infiniband/rocep233s0

/sys/class/infiniband/rocep198s0

/sys/class/infiniband/rocep9s0

4. To configure DCQCN on the AMD Pollara NICs, run below script with appropriate parameters.

jnpr @mi300-01:~$ cat /usr/local/bin/jnpr-enable-dcqcn.sh

#!/bin/bash

TOKEN_BUCKET_SIZE=800000

AI_RATE=160

ALPHA_UPDATE_INTERVAL=1

ALPHA_UPDATE_G=512

INITIAL_ALPHA_VALUE=64

RATE_INCREASE_BYTE_COUNT=431068

HAI_RATE=300

RATE_REDUCE_MONITOR_PERIOD=1

RATE_INCREASE_THRESHOLD=1

RATE_INCREASE_INTERVAL=1

CNP_DSCP=48

ROCE_DEVICES=$(rdma link | grep gpu | awk '{ print $2 }' | awk -F/ '{ print $1 }' | paste -sd
" ")

210

for roce_dev in $ROCE_DEVICES

do

 sudo nicctl update dcqcn -r $roce_dev -i 1 \

 --token-bucket-size $TOKEN_BUCKET_SIZE \

 --ai-rate $AI_RATE \

 --alpha-update-interval $ALPHA_UPDATE_INTERVAL \

 --alpha-update-g $ALPHA_UPDATE_G \

 --initial-alpha-value $INITIAL_ALPHA_VALUE \

 --rate-increase-byte-count $RATE_INCREASE_BYTE_COUNT \

 --hai-rate $HAI_RATE \

 --rate-reduce-monitor-period $RATE_REDUCE_MONITOR_PERIOD \

 --rate-increase-threshold $RATE_INCREASE_THRESHOLD \

 --rate-increase-interval $RATE_INCREASE_INTERVAL \

 --cnp-dscp $CNP_DSCP

Done

5. Using the nicctl command check the DCQCN profile for each roce-device.

jnpr@mi300-01:~$ sudo nicctl show dcqcn --roce-device rocep137s0 | more

ROCE device : rocep137s0

 DCQCN profile id : 7

 Status : Disabled

 Rate reduce monitor period : 100

211

 Alpha update interval : 100

 Clamp target rate : 0

 Rate increase threshold : 1

 Rate increase byte count : 431068

 Rate increase in AI phase : 200

 Alpha update G value : 50

 Minimum rate : 1

 Token bucket size : 4000000

 Rate increase interval : 10

 Rate increase in HAI phase : 200

 Initial alpha value : 64

 DSCP value used for CNP : 48

 DCQCN profile id : 5

 Status : Disabled

 Rate reduce monitor period : 100

 Alpha update interval : 100

 Clamp target rate : 0

 Rate increase threshold : 1

 Rate increase byte count : 431068

 Rate increase in AI phase : 200

 Alpha update G value : 50

 Minimum rate : 1

212

 Token bucket size : 4000000

 Rate increase interval : 10

 Rate increase in HAI phase : 200

 Initial alpha value : 64

 DSCP value used for CNP : 48

 DCQCN profile id : 3

 Status : Disabled

 Rate reduce monitor period : 100

 Alpha update interval : 100

 Clamp target rate : 0

 Rate increase threshold : 1

 Rate increase byte count : 431068

 Rate increase in AI phase : 200

 Alpha update G value : 50

 Minimum rate : 1

 Token bucket size : 4000000

 Rate increase interval : 10

 Rate increase in HAI phase : 200

 Initial alpha value : 64

 DSCP value used for CNP : 48

--More—

213

6. Finally run the rccl_test.sh script as below. The example below shows the tests run for “All reduce”.

jnpr@mi300-01:/mnt/nfsshare/source/aicluster/rccl-tests$./run-rccl.sh

Running all_reduce, channels 64, qps 1 ...

Num nodes: 2

+ tee --append /mnt/nfsshare/logs/rccl/MI300-RAILS-ALL/06062025_18_03_35/test.log

+ /opt/ompi/bin/mpirun --np 16 --allow-run-as-root -H MI300-01:8,MI300-02:8 --bind-to numa -x
NCCL_IB_GID_INDEX=1 -x UCX_UNIFIED_MODE=y -x NCCL_IB_PCI_RELAXED_ORDERING=1 -x
NCCL_GDR_FLUSH_DISABLE=1 -x RCCL_GDR_FLUSH_GPU_MEM_NO_RELAXED_ORDERING=0 -x PATH=/opt/ompi/
bin:/opt/rocm/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/
games:/usr/local/games:/snap/bin -x LD_LIBRARY_PATH=/home/dbarmann/pollara/rccl-7961624/build/
release:/home/dbarmann/pollara/amd-anp-new/build:/opt/ompi/lib: -x
UCX_NET_DEVICES=gpu0_eth,gpu1_eth,gpu2_eth,gpu3_eth,gpu4_eth,gpu5_eth,gpu6_eth,gpu7_eth -x
NCCL_IB_HCA=rocep9s0,rocep38s0,rocep70s0,roceo1,rocep137s0,rocep166s0,rocep198s0,rocep233s0 --
mca btl '^vader,openib' --mca btl_tcp_if_include mgmt_eth -x NCCL_MIN_NCHANNELS=64 -x
NCCL_MAX_NCHANNELS=64 -x NCCL_IB_QPS_PER_CONNECTION=1 -x NCCL_TOPO_DUMP_FILE=/tmp/
system_run2.txt -x HSA_NO_SCRATCH_RECLAIM=1 -x NCCL_GDRCOPY_ENABLE=0 -x NCCL_IB_TC=106 -x
NCCL_IB_FIFO_TC=192 -x NCCL_IGNORE_CPU_AFFINITY=1 -x RCCL_LL128_FORCE_ENABLE=1 -x
NCCL_PXN_DISABLE=0 -x NCCL_DEBUG=INFO -x NET_OPTIONAL_RECV_COMPLETION=1 -x
NCCL_IB_USE_INLINE=1 -x NCCL_DEBUG_FILE=/mnt/nfsshare/logs/rccl/MI300-RAILS-ALL/
06062025_18_03_35/nccl-debug.log -x 'LD_PRELOAD=/home/dbarmann/pollara/amd-anp-new/build/
librccl-net.so /home/dbarmann/pollara/rccl-7961624/build/release/librccl.so' /mnt/nfsshare/
source/aicluster/rccl-tests/build/all_reduce_perf -b 1024 -e 16G -f 2 -g 1 -n 20 -m 1 -c 1 -w
5_# nThread 1 nGpus 1 minBytes 1024 maxBytes 17179869184 step: 2(factor) warmup iters: 5
iters: 20 agg iters: 1 validation: 1 graph: 0_#

rccl-tests: Version develop:b0a3841+

Using devices

Rank 0 Group 0 Pid 18335 on mi300-01 device 0 [0000:05:00] AMD Instinct MI300X

Rank 1 Group 0 Pid 18336 on mi300-01 device 1 [0000:29:00] AMD Instinct MI300X

Rank 2 Group 0 Pid 18337 on mi300-01 device 2 [0000:49:00] AMD Instinct MI300X

Rank 3 Group 0 Pid 18340 on mi300-01 device 3 [0000:65:00] AMD Instinct MI300X

214

Rank 4 Group 0 Pid 18338 on mi300-01 device 4 [0000:85:00] AMD Instinct MI300X

Rank 5 Group 0 Pid 18341 on mi300-01 device 5 [0000:a9:00] AMD Instinct MI300X

Rank 6 Group 0 Pid 18342 on mi300-01 device 6 [0000:c9:00] AMD Instinct MI300X

Rank 7 Group 0 Pid 18339 on mi300-01 device 7 [0000:e5:00] AMD Instinct MI300X

Rank 8 Group 0 Pid 16249 on mi300-02 device 0 [0000:05:00] AMD Instinct MI300X

Rank 9 Group 0 Pid 16251 on mi300-02 device 1 [0000:29:00] AMD Instinct MI300X

Rank 10 Group 0 Pid 16250 on mi300-02 device 2 [0000:49:00] AMD Instinct MI300X

Rank 11 Group 0 Pid 16254 on mi300-02 device 3 [0000:65:00] AMD Instinct MI300X

Rank 12 Group 0 Pid 16255 on mi300-02 device 4 [0000:85:00] AMD Instinct MI300X

Rank 13 Group 0 Pid 16253 on mi300-02 device 5 [0000:a9:00] AMD Instinct MI300X

Rank 14 Group 0 Pid 16252 on mi300-02 device 6 [0000:c9:00] AMD Instinct MI300X

Rank 15 Group 0 Pid 16256 on mi300-02 device 7 [0000:e5:00] AMD Instinct MI300X

#

out-of-
place in-place

size count type redop root time algbw busbw #wrong
time algbw busbw #wrong

(B) (elements) (us) (GB/s) (GB/s)
(us) (GB/s) (GB/s)

 1024 256 float sum -1 41.61 0.02 0.05 0
53.55 0.02 0.04 0

 2048 512 float sum -1 43.79 0.05 0.09 0
50.54 0.04 0.08 0

 4096 1024 float sum -1 45.75 0.09 0.17 0
45.21 0.09 0.17 0

215

 8192 2048 float sum -1 46.50 0.18 0.33 0
47.75 0.17 0.32 0

 16384 4096 float sum -1 60.52 0.27 0.51 0
48.90 0.34 0.63 0

 32768 8192 float sum -1 49.68 0.66 1.24 0
52.57 0.62 1.17 0

 65536 16384 float sum -1 53.75 1.22 2.29 0
52.74 1.24 2.33 0

 131072 32768 float sum -1 69.16 1.90 3.55 0
56.83 2.31 4.32 0

 262144 65536 float sum -1 69.31 3.78 7.09 0
63.17 4.15 7.78 0

 524288 131072 float sum -1 77.16 6.79 12.74 0
80.51 6.51 12.21 0

 1048576 262144 float sum -1 127.5 8.23 15.42 0
107.6 9.75 18.28 0

 2097152 524288 float sum -1 125.0 16.78 31.46 0
130.9 16.02 30.04 0

 4194304 1048576 float sum -1 149.5 28.06 52.61 0
148.4 28.26 52.99 0

 8388608 2097152 float sum -1 222.9 37.63 70.55 0
231.6 36.21 67.90 0

 16777216 4194304 float sum -1 321.3 52.21 97.90 0
326.2 51.43 96.43 0

 33554432 8388608 float sum -1 436.2 76.93 144.25 0
447.0 75.06 140.75 0

 67108864 16777216 float sum -1 678.9 98.85 185.35 0
684.6 98.02 183.79 0

216

 134217728 33554432 float sum -1 1164.6 115.25 216.10 0
1148.1 116.90 219.19 0

 268435456 67108864 float sum -1 1550.3 173.15 324.66 0
1563.9 171.65 321.84 0

 536870912 134217728 float sum -1 2979.9 180.16 337.81 0
2977.6 180.30 338.07 0

 1073741824 268435456 float sum -1 5824.8 184.34 345.64 0
5859.5 183.25 343.59 0

 2147483648 536870912 float sum -1 11596 185.20 347.25 0
11611 184.94 346.77 0

 4294967296 1073741824 float sum -1 520420 8.25 15.47 0
23190 185.21 347.27 0

 8589934592 2147483648 float sum -1 46157 186.10 348.94 0
46150 186.13 349.00 0

 17179869184 4294967296 float sum -1 568668 30.21 56.65 0
91823 187.10 350.81 0

Errors with asterisks indicate errors that have exceeded the maximum threshold.

Out of bounds values : 0 OK

Avg bus bandwidth : 117.077

#

VAST Storage Configuration

IN THIS SECTION

VAST storage cluster components in the AI JVD lab | 219

217

VAST storage cluster components connections and management | 221

VAST Universal Storage GUI | 222

 | 223

Network Configuration for the Juniper Vast Storage Cluster | 223

VAST NFS: | 224

Common Setting and recommendations | 225

The VAST Data Platform is a modern, all-flash storage solution designed to support AI, machine learning
(ML), and high-performance computing (HPC) workloads at any scale. By leveraging a disaggregated and
shared everything (DASE) architecture, VAST eliminates traditional storage bottlenecks, delivering high
throughput, low latency, and simplified data management.

By integrating VAST Data into the AI JVD design, we ensure that AI workloads have the performance,
scalability, and resilience necessary to drive next-generation innovation. We selected the VAST Data
Platform as part of the AI JVD design due to the following advantages:

• High Performance: Vast Data's architecture leverages all-flash storage for unparalleled data access
speeds, making it ideal for AI/ML workloads, real-time analytics, and high-performance computing
(HPC) environments.

• Scalability: With a disaggregated, shared-nothing architecture, Vast Data scales seamlessly from
terabytes to exabytes without sacrificing performance. This design overcomes the limitations of
traditional storage solutions and allows enterprises to grow efficiently.

• Unified Storage: Vast Data provides a single platform supporting multiple storage protocols, including
NFS, S3, and SMB. Its ability to support both file and object storage offers flexibility in managing
diverse data sets.

218

• Data Resilience: With advanced erasure coding and fault-tolerant architecture, Vast Data ensures
data protection and high availability, even in the event of hardware failures.

• Ease of Management: The platform features a streamlined management experience, offering a single
global namespace and real-time system monitoring for simplified operations and scalability.

• Support for GPUs: Vast Data's architecture is optimized for GPU-driven workloads, making it a
perfect fit for environments focused on AI, machine learning, and other compute-intensive
applications.

• Low Latency: The flash-optimized design provides ultra-low-latency data access, essential for real-
time data processing and analytics tasks.

The Vast Data Platform empowers enterprises to unlock the full potential of AI-driven insights while
maintaining a highly resilient, scalable, and manageable data storage environment.

VAST storage cluster components in the AI JVD lab

In VAST Data's architecture, a Quad Server Chassis or CBox (Compute Box) is a 2U high-density chassis
that houses four dual-Xeon servers, each running VAST Server Containers. These servers, known as C-
nodes, handle the compute services within a VAST cluster. The CBox works in conjunction with the
DBox (Data Box), which provides the storage component of the system. DBoxes and CBoxes serve
distinct roles:

• DBox: Provides storage capacity, housing NVMe SSDs that store data.

• CBox: Offers computational resources, running VAST's software services to manage and access the
stored data. It delivers the necessary processing power to manage and access the stored data
efficiently

Management of both DBoxes and CBoxes is centralized through VAST's management system, which
provides a unified interface for configuring, monitoring, and maintaining the entire storage cluster.

The tested VAST solution for this JVD comprises a 7 Rack Unit that includes:

• 2 x CBOX (QUAD-4N-IL-2NIC) – 4 Slot Modular Chassis

• Housing 8 C-nodes (4 C-nodes per C BOX)

• Each C-node with

• 2 x 100GE NICs &

• 1 x Ice Lake Gen4

• 1 x Ceres DBOX (DF-3015) - 4 Slot Modular Chassis

219

• Houses 4 D-nodes

• Each D-node comes with 2 x 100GE NICs

• Houses 22 NVMe SSDs (15.363 TB each)

Total of 338TB of raw storage and 240TB of usable storage.

• 2 x Internal Mellanox switches (SN2100) for the VAST NVMe fabric

Figure 56: 2 x 1 VAST solution

220

VAST storage cluster components connections and management

The VAST Storage cluster is managed by the Vast Control and Orchestration Layer (VMS), which
oversees C-Nodes, D-Nodes, networking, security, monitoring, and overall system operations.

While it is possible to interact with VMS via CLI, VAST offers a powerful web-based UI (VAST Universal
Storage GUI) that provides an intuitive way to configure, manage, and maintain the cluster—a key
differentiator from traditional storage systems that are often CLI-driven.

All VMS management functions (from creating NFS exports to expanding the cluster) are exposed via a
RESTful API. To simplify integration and usage, VMS publishes its API via Swagger, allowing for
interactive documentation and code generation across different programming languages. Instead of
directly controlling the system, both the GUI and CLI act as frontends consuming the RESTful API.

VMS runs on the C-Nodes, and the Universal Storage GUI is accessible from any web browser via a
floating management IP assigned to the cluster as shown in Figure 57

Figure 57: VAST Universal Storage GUI connection

As also shown in Figure 57, all the cluster components are connected to the OOB management network,
and the VMS IP address is assigned out of the same IP address range.

For more details about the Vast storage solution, you can review this whitepaper from Vast: The VAST
Data Platform

221

https://www.vastdata.com/whitepaper.pdf
https://www.vastdata.com/whitepaper.pdf

VAST Universal Storage GUI

The dashboard of the GUI displays capacity, physical and logical usage, overall performance, read/write
bandwidth, IOPS, and overall latency in a user-friendly graphical format as shown in Figure 58

Figure 58: VAST Universal Storage GUI Dashboard

Under the infrastructure tab, you can check the configuration and status of all the cluster components
including cboxes and C-nodes, dboxes and D-nodes, SSDs, NICs, and so on.

Figure 59: VAST Universal Storage GUI Infrastructure details

222

For more details about using the GUI check VAST Cluster 5.1 Administrator's Guide

Network Configuration for the Juniper Vast Storage Cluster

As described in the Storage Backend sections, the Vast servers are dual-homed, and connected to
separate storage backend switches (storage-leaf 5 and storage-leaf 6) using 100GE ports

Figure 60: Vast to Storage fabric Connectivity

223

https://support.vastdata.com/s/document-item?bundleId=vast-cluster-administrator-s-guide5.1&topicId=getting-started.html

The storage leaf nodes are configured with IRB interfaces (irb.3 and irb.4), which have IP addresses
10.100.3.254 and 10.100.4.254, respectively.

The C-Nodes dynamically receive IP addresses from the Virtual IP (VIP) pool and take responsibility for
responding to ARP requests for their assigned VIPs.

The system automatically rebalances VIPs and load distribution whenever a C-Node fails, is removed, or
a new node is added.

• If a C-Node goes offline due to failure or intentional removal, the VIPs it was serving are redistributed
across the remaining C-Nodes

• If a new C-Node is added, some VIPs are reassigned to integrate the node into the load-balancing
mechanism.

To ensure optimal load balancing and fault tolerance, VAST recommends configuring each VIP pool with
2 to 4 times as many VIPs as there are C-Nodes. This ensures that in the event of a node failure, its load
is distributed across multiple remaining C-Nodes rather than overburdening just one.

VAST NFS:

The Lab Servers use VAST’s proprietary kernel module for higher performance. The kernel module
allows for a 70% to 100% performance improvement.

224

fstab settings on the AMD GPU server:

10.100.3.1:/default /mnt/vast nfs
nconnect=8,remoteports=10.100.3.1-10.100.3.8,rw,noatime,rsize=32768,wsize=32768,nolock,tcp,intr,f
sc,nofail 0 0

Documentation about the Kernal Module and setup can be found here: https://vastnfs.vastdata.com/
docs/4.0/Intro.html

Common Setting and recommendations

When you order your VAST system, you will be asked to complete an initial site survey with IP
addresses, and other details so your system can be configured accordingly, by Vast support. The Vast
GUI will be installed and ready.

We recommend the following:

• Set the MTU to 9000

• VAST NFS Kernel on servers

• Enable multipathing this server fstab settings

• Configure the VIP pools with 2 to 4 times as many VIPs as there are C-Nodes

Figure 61: Storage Interface Connectivity

225

https://vastnfs.vastdata.com/docs/4.0/Intro.html
https://vastnfs.vastdata.com/docs/4.0/Intro.html

Network Connectivity Details (Reference Examples)

IN THIS SECTION

Frontend Network Connectivity | 226

IP addressing | 227

Routing information | 230

GPU Backend Network Connectivity | 235

IP addressing | 235

Routing information | 240

Storage Backend Network Connectivity | 247

IP addressing | 247

Routing information | 252

This section provides detailed examples for each fabric, as reference. It describes the IP connectivity
across the common Frontend, and Storage Backend fabrics, and the GPU Backend fabric in Cluster 2.

Regardless of whether you are using Apstra with or without Terraform automation, the IP address Pools,
ASN Pools, and interface addresses are automatically assigned and configured with little interaction
from the administrator unless desired.

Notice that all the addresses shown in this section represent the IP addressing schema used in the
Juniper lab to validate the design.

Frontend Network Connectivity

The Frontend fabric consists of two spine nodes (QFX5130-32CD) and two leaf nodes
(QFX5130-32CD), where one leaf node is used to connect the GPU servers and Headend servers
(frontend-leaf1), and one is used to connect the Storage devices (frontend-leaf2).

NOTE: Vast storage systems are NOT connected to the Frontend Fabric. Because this JVD is focused on
Vast only, we will not cover the storage systems connectivity to the frontend.

226

IP addressing

The Frontend fabric is designed as a Layer 3 IP Fabric, with two 400GE links between each frontend-
leaf# node and each frontend-spine# node as shown in Figure 62. These links are configured with /31 IP
addresses, as shown in Table 16.

Figure 62: Frontend Spine to Leaf Nodes Connectivity

Table 16: Frontend Interface Addresses

Spine node Leaf node Spine IP address Leaf IP address

frontend-spine1 frontend-leaf1 10.0.5.0/31

10.0.5.2/31

10.0.5.1/31

10.0.5.3/31

frontend-spine1 frontend-leaf2 10.0.5.4/31

10.0.5.6/31

10.0.5.5/31

10.0.5.7/31

227

(Continued)

Spine node Leaf node Spine IP address Leaf IP address

frontend-spine2 frontend-leaf1 10.0.5.8/31

10.0.5.10/31

10.0.5.9/31

10.0.5.11/31

frontend-spine2 frontend-leaf2 10.0.5.12/31

10.0.5.14/31

10.0.5.13/31

10.0.5.15/31

NOTE: All the Autonomous System numbers and IP addresses, including the devices loopback interface
addresses (shown in table 17), are assigned by Apstra from predefined pools of resources and based on
the defined intent.

Table 17: Frontend Loopback Addresses

Device Loopback interface address

frontend-spine1 10.0.3.0/32

frontend-spine2 10.0.3.1/32

frontend-leaf1 10.0.1.0/32

frontend-leaf2 10.0.1.1/32

The MI300X GPU Servers and Headend servers are all connected to frontend-leaf1 as shown in Figure
63.

Figure 63: Frontend Leaf Nodes to GPU Servers Connectivity

228

The links between these servers and frontend-leaf1 are configured with /31 subnets from the
10.0.5.0/24 subnet.

The links between the Headend servers and frontend-leaf1 do not have IP addresses assigned on the
leaf node side. Layer 3 connectivity to the fabric is provided via an irb interface with address
10.10.3.1/24. The headend servers are configured with addresses out of 10.10.3.0/24 and use
10.10.3.1 as their default gateway. This is shown in table 18.

Table 18: Frontend Leaf Nodes to GPU Servers Interfaces Addresses

GPU Server Leaf node GPU Server IP address Leaf IP address

MI300X GPU Server 1 frontend-leaf1 10.10.1.25/31 10.10.1.24/31

MI300X GPU Server 2 10.10.1.27/31 10.10.1.26/31

MI300X GPU Server 3 10.10.1.31/31 10.10.1.30/31

MI300X GPU Server 4 10.10.1.33/31 10.10.1.32/31

Headend Server 1 10.10.3.2/24 10.10.3.1/24 (irb.3)

229

(Continued)

GPU Server Leaf node GPU Server IP address Leaf IP address

Headend Server 1 10.10.3.3/24

Headend Server 1 10.10.3.4/24

Routing information

EBGP is configured between the IP addresses assigned to the spine-leaf links. There are two EBGP
sessions between each frontend-leaf# node and each frontend-spine#

Table 19: Frontend Sessions

Spine node Leaf node Spine Leaf ASN Spine IP
address

Leaf IP
address

frontend-spine1 frontend-leaf1 4201032300 4201032400 10.0.5.0/31

10.0.5.2/31

10.0.5.1/31

10.0.5.3/31

frontend-spine1 frontend-leaf2 4201032401 10.0.5.4/31

10.0.5.6/31

10.0.5.4/31

10.0.5.7/31

frontend-spine2 frontend-leaf1 4201032301 4201032400 10.0.5.8/31

10.0.5.10/31

10.0.5.9/31

10.0.5.11/31

frontend-spine2 frontend-leaf2 4201032401 10.0.5.12/31

10.0.5.14/31

10.0.5.13/31

10.0.5.15/31

NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the
document.

On the frontend-leaf1 node, BGP policies are configured by Apstra to advertise the following routes to
the spine nodes:

• frontend-leaf1 node loopback interface address

230

• frontend-leaf# nodes frontend-spine# nodes links /31 subnet address

• AMD MI300X-0# to frontend-leaf1 node links /31 subnet address

• frontend-leaf1 irb interface subnets (connecting the Headend servers)

Table 20: Frontend Leaf to Frontend Spines advertised routes

Leaf Node Peer(s) Advertised routes Adv. BGP
Communities

frontend-leaf1 frontend-spine1
&

frontend-spine2

Leaf1
Loopback:10.0.4.0/32

Leaf1-spines
links:10.0.5.0/31

10.0.5.2/31

10.0.5.8/31

10.0.5.10/31

GPU servers <=>
frontend spine
links:10.10.1.24/
31

10.10.1.26/31

10.10.1.30/31

10.10.1.32/31

Headend servers’
subnet:

10.10.3.0/24

3:20007

21001:26000

Figure 64: Frontend Leaf 1 to Frontend Spines advertised routers – routes to AMD MI300X servers and
Headend Servers

231

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the
frontend-leaf2 leaf node:

• frontend-spine# node loopback interface address

• frontend-leaf# nodes loopback interface address

• frontend-spine# nodes frontend-leaf# nodes links /31 subnet address

• AMD MI300X-0# to frontend-leaf1 node links /31 subnet address

• frontend-leaf1 irb interface subnets (connecting the Headend servers)

Figure 65: Frontend Spines to Frontend Leaf 2 advertised routers – routes to AMD MI300X servers and
Headend Servers

232

Table 21 Frontend Spine to Frontend Leaf Advertised Routes

Leaf Node Peer(s) Advertised Routes BGP Communities

frontend-spine1 frontend-leaf1 Loopbacks:10.0.3.0
/32

10.0.4.0/32

Leaf1-spines
links:10.0.5.0/31

10.0.5.2/31

10.0.5.8/31

10.0.5.10/31

.

.

.

GPU servers <=>
frontend spine
links:10.10.1.24/31

10.10.1.26/31

10.10.1.30/31

10.10.1.32/31

Headend servers’
subnet:

10.10.3.0/24

0:15

1:20007

21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)

233

(Continued)

Leaf Node Peer(s) Advertised Routes BGP Communities

frontend-spine2 frontend-leaf1 Loopbacks:10.0.3.1
/32

10.0.4.0/32

Leaf1-spines
links:10.0.5.0/31

10.0.5.2/31

10.0.5.8/31

10.0.5.10/31

.

.

.

GPU servers <=>
frontend spine
links:10.10.1.24/31

10.10.1.26/31

10.10.1.30/31

10.10.1.32/31

Headend servers’
subnet:

10.10.3.0/24

0:15

2:20007
21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)

NOTE: Equivalent policies are in place to advertise routes from frontend-leaf2

Advertising these subnets has the goal of allowing communication between the headend servers and
the MI300X GPU server for AI job orchestration and monitoring, and between the headend servers and
the storage devices connected to frontend-leaf2. Communication between the headend servers and
storage devices is not discussed further in this document. Remember that the Vast storage devices are
not connected to the frontend fabric.

Figure 66: Headend servers to GPU servers and storage devices across the frontend fabric.

234

GPU Backend Network Connectivity

The GPU backend fabric consists of four spine nodes (QFX5230-64CD) and eight leaf nodes
(QFX5230-64CD) per stripe. Two AMD MI300X GPU servers are connected to each stripe, following
the rail-optimized architecture described earlier in this document.

IP addressing

The GPU backend fabric is designed as a Layer 3 IP Fabric, with two 400GE links between each gpu-
backend-leaf# node and each gpu-backend-spine# node as shown in Figure 67. These links are
configured with /31 IP addresses, as shown in Table 22 and Figure 67.

Figure 67: GPU Backend Spine to GPU Backend Leaf Nodes Connectivity

235

Table 22: GPU Backend Interface Addresses (sample)

Stripe # Leaf node Leaf node Spine IP address Leaf IP address

1 gpu-backend-001-
leaf1

gpu-backend-
spine1

10.0.2.65/31

10.0.2.67/31

10.0.2.1/31

10.0.2.3/31

1 gpu-backend-001-
leaf1

gpu-backend-
spine2

10.0.2.69/31

10.0.2.71/31

10.0.2.5/31

10.0.2.7/31

1 gpu-backend-001-
leaf1

gpu-backend-
spine3

10.0.2.73/31

10.0.2.75/31

10.0.2.9/31

10.0.2.11/31

1 gpu-backend-001-
leaf1

gpu-backend-
spine4

10.0.2.77/31

10.0.2.79/31

10.0.2.65/31

10.0.2.67/31

1 gpu-backend-001-
leaf2

gpu-backend-
spine1

10.0.2.81/31

10.0.2.83/31

10.0.2.69/31

10.0.2.71/31

1 gpu-backend-001-
leaf2

gpu-backend-
spine2

10.0.2.85/31

10.0.2.87/31

10.0.2.73/31

10.0.2.75/31

. . .

236

NOTE: All the Autonomous System numbers and IP addresses, including the devices loopback interface
addresses (shown in table 23), are assigned by Apstra from predefined pools of resources and based on
the defined intent.

Table 23: GPU Backend Loopback Addresses (sample)

Stripe # Device Loopback Interface Address

- gpu-backend-spine1 10.0.0.0/32

- gpu-backend-spine2 10.0.0.1/32

- gpu-backend-spine3 10.0.0.2/32

- gpu-backend-spine4 10.0.0.3/32

1 gpu-backend-001-leaf1 10.0.1.0/32

1 gpu-backend-001-leaf2 10.0.1.1/32

1 gpu-backend-001-leaf3 10.0.1.2/32

. . .

The AMD MI300X GPU Servers and Headend servers are all connected to gpu-backend-00#-leaf#
nodes following the rail optimized architecture, as shown in Figure 68.

Figure 68: AMD MI300X GPU Servers connections to Storage Backend fabric

237

The links between the AMD MI300X GPU servers and the gpu-backend-00#-leaf# nodes do not have IP
addresses assigned on the leaf node side. Layer 3 connectivity to the fabric is provided via irb interfaces
with addresses 10.200.N.254/16, where N = 16, 17… (stripe/rail specific subnet), and the interfaces
connected to the GPU servers are configured as L2 interfaces and are part of a unique vlan, as shown in
Figure 69.

Figure 69: AMD MI300X GPU Servers rail optimized connections to Leaf nodes

238

Each rail in the cluster is mapped to a different /24 IP subnet. The GPU servers are configured with
addresses out of 10.200.N.<server>/24 and use 10.200.N.254/14 as their default gateway. Where:

Server name <server> IP addresses

MI300X-01 18 10.200.N.18 24

MI300X-02 20 10.200.N.20 24

MI300X-03 22 10.200.N.22 24

MI300X-04 24 10.200.N.24 24

Table 24: GPU Backend Servers to Leaf Nodes Connectivity

239

Stripe # Device Rail # VLAN #/
IRB #

Subnet IRB on leaf Connected
device(s)

1 gpu-backend-
leaf 1

1 18 10.200.16.
0/24

10.200.16.254 GPU 1 from the 2
GPU servers in
the stripe

1 gpu-backend-
leaf 2

2 19 10.200.17.
0/24

10.200.17.254 GPU 2 from the 2
GPU servers in
the stripe

1 gpu-backend-
leaf 3

3 20 10.200.18.
0/24

10.200.18.254 GPU 3 from the 2
GPU servers in
the stripe

. . .

Routing information

EBGP is configured between the IP addresses assigned to the spine-leaf links. There are two EBGP
sessions between each gpu-backend-leaf# node and each gpu-backend-spine#.

Table 25: GPU Backend Sessions

Stripe # Spine Node Leaf Node Spine ASN Leaf ASN Spine IP
Address

Leaf IP
Address

1 gpu-backend-
spine1

gpu-backend-001-
leaf1

420103210
0

420103220
0

10.0.2.0/31

10.0.2.2/31

10.0.2.1/31

10.0.2.3/31

1 gpu-backend-
spine1

gpu-backend-001-
leaf2

420103220
1

10.0.2.4/31

10.0.2.6/31

10.0.2.5/31

10.0.2.7/31

1 gpu-backend-
spine1

gpu-backend-001-
leaf3

420103220
2

10.0.2.8/31

10.0.2.10/3
1

10.0.2.9/31

10.0.2.11/3
1

240

(Continued)

Stripe # Spine Node Leaf Node Spine ASN Leaf ASN Spine IP
Address

Leaf IP
Address

.

. .

1 gpu-backend-
spine2

gpu-backend-001-
leaf1

420103210
1

420103220
8

10.0.2.64/3
1

10.0.2.66/3
1

10.0.2.65/3
1

10.0.2.67/3
1

1 gpu-backend-
spine2

gpu-backend-001-
leaf2

420103220
9

10.0.2.68/3
1

10.0.2.70/3
1

10.0.2.69/3
1

10.0.2.71/3
1

1 gpu-backend-
spine2

gpu-backend-001-
leaf3

420103221
0

10.0.2.72/3
1

10.0.2.74/3
1

10.0.2.73/3
1

10.0.2.75/3
1

. . .

NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the
document.

On the Leaf nodes, BGP policies are configured by Apstra to advertise the following routes to the spine
nodes:

• gpu-backend-000#leaf# nodes loopback interface addresses

• gpu-backend-000#leaf# nodes to gpu-backend-spine# nodes links /31 subnet address

• gpu-backend-00#-leaf# irb interface subnets (connecting the GPU servers)

Figure 70: GPU Backend Leaf to GPU Backend Spine advertised routers – routes to Vast AMD devices

241

Table 26: GPU Backend Leaf Node Advertised Routes

242

Stripe # Device Advertised routes BGP community

1 gpu-backend-001-leaf 1 10.0.1.0/32

10.200.16.0/24

10.0.2.64/31

10.0.2.65/31

10.0.2.68/31

10.0.2.70/31

10.0.2.72/31

10.0.2.74/31

10.0.2.76/31

10.0.2.78/31

3:20007

21001:26000

1 gpu-backend-001-leaf2 10.0.1.1/32

10.200.17.0/24

10.0.2.82/31

10.0.2.84/31

10.0.2.86/31

10.0.2.88/31

10.0.2.90/31

10.0.2.92/31

10.0.2.94/31

10.0.2.96/31

4:20007

21001:26000

243

(Continued)

Stripe # Device Advertised routes BGP community

1 gpu-backend-001-leaf3 10.0.1.2/32

10.200.18.0/24

10.0.2.98/31

10.0.2.100/31

10.0.2.102/31

10.0.2.104/31

10.0.2.106/31

10.0.2.108/31

10.0.2.110/31

10.0.2.112/31

5:20007

21001:26000

. . .

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the gpu-
backend-00#-leaf# nodes:

• gpu-backend-spine# node loopback interface address

• gpu-backend-00#-leaf# nodes loopback interface address

• gpu-backend-spine# nodes gpu-backend-00#-leaf# nodes links /31 subnet address

• gpu-backend-00#-leaf# irb interface subnets (connecting the GPU servers)

Figure 71: GPU Backend Spine to GPU Backend Leaf advertised routers – routes to Vast AMD devices

244

Table 27: GPU Backend Spine Node Advertised Routes

245

Stripe # Spine Node Advertised Routes BGP Community

1 gpu-backend-spine 1 10.0.0.0/32

10.0.0.1/32

10.0.0.2/32

10.0.0.3/32

10.0.1.0/31

10.0.1.2/31

10.0.1.3/31 …

10.200.16.0/24

10.200.17.0/24 …

0:15 1:20007

21001:26000

1 gpu-backend-spine 2 10.0.0.0/32

10.0.0.1/32

10.0.0.2/32

10.0.0.3/32

10.0.1.0/31

10.0.1.2/31

10.0.1.3/31 …

10.200.16.0/24

10.200.17.0/24 …

0:15 2:20007

21001:26000

. . .

Advertising these subnets has the goal of allowing communication between the GPUs across all rails in
stripes 1 and 2.

Figure 72: Communication Across Rails

246

Storage Backend Network Connectivity

The Storage Backend fabric consists of two spine nodes (QFX5220-32CD) and six leaf nodes
(QFX5220-32CD), where two leaf nodes (storage-backend-gpu-leaf3 and storage-backend-gpu-leaf4)
provide connectivity to the Vast storage devices, and the other four provide connectivity to the GPU
servers including the AMD MI300X servers (storage-backend-gpu-leaf5 and storage-backend-gpu-leaf6)
and other GPU servers in the lab.

IP addressing

The GPU Backend fabric is designed as a Layer 3 IP Fabric, with either two 400GE links between each
storage-backend-gpu-leaf# node and each storage-backend-spine# node as shown in Figure 73. These
links are configured with /31 IP addresses, as shown in Table 28.

Figure 73: Storage Backend Spine to Storage Backend GPU Leaf Nodes Connectivity

247

Table 28: Storage Backend Interface Addresses

Spine node Leaf node Spine IP Address Leaf IP Address

storage-backend-spine 1 storage-backend-gpu-leaf
1

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.1/31

10.0.8.3/31

10.0.8.5/31

storage-backend-spine1 storage-backend-gpu-
leaf2

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.7/31

10.0.8.9/31

10.0.8.11/31

storage-backend-spine1 storage-leaf 1 10.0.8.12/31

10.0.8.14/31

10.0.8.13/31

10.0.8.15/31

storage-backend-spine1 storage-leaf 2 10.0.8.16/31

10.0.8.18/31

10.0.8.17/31

10.0.8.19/31

storage-backend-spine2 storage-backend-gpu-
leaf1

10.0.8.20/31

10.0.8.22/31

10.0.8.24/31

10.0.8.21/31

10.0.8.23/31

10.0.8.25/31

248

(Continued)

Spine node Leaf node Spine IP Address Leaf IP Address

storage-backend-spine2 storage-backend-gpu-
leaf2

10.0.8.26/31

10.0.8.28/31

10.0.8.30/31

10.0.8.27/31

10.0.8.29/31

10.0.8.31/31

storage-backend-spine2 storage-leaf 1 10.0.8.32/31

10.0.8.34/31

10.0.8.33/31

10.0.8.35/31

storage-backend-spine2 storage-leaf 2 10.0.8.36/31

10.0.8.38/31

10.0.8.37/31

10.0.8.39/31

NOTE: All the Autonomous System numbers and IP addresses, including the devices loopback interface
addresses (shown in table 29), are assigned by Apstra from predefined pools of resources and based on
the defined intent.

Table 29: Storage Backend Loopback Interfaces

Device Loopback Interface Address

storage-backend-spine1 10.0.6.0/32

storage-backend-spine2 10.0.6.1/32

storage-backend-gpu-leaf3 10.0.7.2/32

storage-backend-gpu-leaf4 10.0.7.3/32

storage-backend-gpu-leaf5 10.0.7.4/32

storage-backend-gpu-leaf6 10.0.7.5/32

The Vast C-nodes and AMD MI300Xs are dual homed and connected to storage leaf nodes 3-4, and 5-6
respectively.

Table 30. Vast storage and GPU servers to Backend fabric connections

249

Device Loopback Interface Address

Vast01--Vast08 storage-backend-gpu-leaf3

storage-backend-gpu-leaf4

MI300X-01-- MI300X-04 storage-backend-gpu-leaf5

storage-backend-gpu-leaf6

The links between the VAST C-nodes and the storage-backend-leaf# nodes do not have IP addresses
assigned on the leaf node side. Layer 3 connectivity to the fabric is provided via the irb.3 and irb.4
interfaces with addresses 10.200.3.254/24 (storage-backend-leaf3) 10.200.4.254/24 (storage-backend-
leaf4) respectively. The interfaces connected to the GPU servers are configured as L2 interfaces and are
part of a unique vlan which the irb interfaces are part of. This is similar to the GPU Backend Servers to
Leaf Nodes Connectivity described in the previous section.

On the Vast side of these links, the C-nodes are dynamically assigned responsibility for traffic destined
to the addresses that are part of the Virtual IP address pools 10.100.3.0/24 and 10.100.4.0/24, (under
Network Access in the WebUI), as shown in the following table.

Figure 74: AMD M300I servers and Vast Storage connectivity to the Storage Backend

Table 31: Vast Storage to Leaf Nodes Interface Addresses

250

Vast node Leaf Node VAST C-node IP Address Leaf IP Address

Vast C-node 1 storage-backend-leaf 3 10.100.3.5/24 10.100.3.254/24 (irb.3)

Vast C-node 1 storage-backend-leaf 4 10.100.4.4/24 10.100.4.254/24 (irb.4)

Vast C-node 2 storage-backend-leaf 3 10.100.3.6/24 10.100.3.254/24 (irb.3)

Vast C-node 2 storage-backend-leaf 4 10.100.4.2/24 10.100.4.254/24 (irb.4)

Vast C-node 3 storage-backend-leaf 3 10.100.3.4/24 10.100.3.254/24 (irb.3)

Vast C-node 3 storage-backend-leaf 4 10.100.4.5/24 10.100.4.254/24 (irb.4)

Vast C-node 4 storage-backend-leaf 3 10.100.3.1/24 10.100.3.254/24 (irb.3)

Vast C-node 4 storage-backend-leaf 4 10.100.4.8/24 10.100.4.254/24 (irb.4)

Vast C-node 5 storage-backend-leaf 3 10.100.3.3/24 10.100.3.254/24 (irb.3)

Vast C-node 5 storage-backend-leaf 4 10.100.4.3/24 10.100.4.254/24 (irb.4)

Vast C-node 6 storage-backend-leaf 3 10.100.3.8/24 10.100.3.254/24 (irb.3)

Vast C-node 6 storage-backend-leaf 4 10.100.4.1/24 10.100.4.254/24 (irb.4)

Vast C-node 7 storage-backend-leaf 3 10.100.3.7/24 10.100.3.254/24 (irb.3)

Vast C-node 7 storage-backend-leaf 4 10.100.4.6/24 10.100.4.254/24 (irb.4)

Vast C-node 8 storage-backend-leaf 3 10.100.3.2/24 10.100.3.254/24 (irb.3)

Vast C-node 8 storage-backend-leaf 4 10.100.4.7/24 10.100.4.254/24 (irb.4)

The links between the GPU servers and storage-backend-gpu-leaf# are configured with /31 subnets out
of 10.100.1/24 by Apstra.

Table 32: GPU Servers to Storage GPU Backend Interface Addresses

251

GPU Server Leaf Node GPU Server IP Address Leaf IP Address

MI300X-01 storage-backend-gpu-
leaf5

10.100.5.1/31 10.100.5.0/31

MI300X-01 storage-backend-gpu-
leaf6

10.100.6.1/31 10.100.6.0/31

MI300X-02 storage-backend-gpu-
leaf5

10.100.5.3/31 10.100.5.2/31

MI300X-02 storage-backend-gpu-
leaf6

10.100.6.3/31 10.100.6.2/31

MI300X-03 storage-backend-gpu-
leaf5

10.100.5.5/31 10.100.5.4/31

MI300X-03 storage-backend-gpu-
leaf6

10.100.6.5/31 10.100.6.4/31

MI300X-04 storage-backend-gpu-
leaf5

10.100.5.7/31 10.100.5.6/31

MI300X-04 storage-backend-gpu-
leaf6

10.100.6.7/31 10.100.6.6/31

Routing information

EBGP is configured between the IP addresses assigned to the spine-leaf links. There are two EBGP
sessions between each storage-backend-leaf# node and each storage-backend-spine#, as shown in
Figure 75

Table 33: Storage Backend Sessions

252

Spine Node Leaf Node Spine ASN Leaf ASN Spine IP
Address

Leaf IP
Address

storage-backend-
spine1

storage-backend-gpu-
leaf3

420103250
0

4201032602 10.0.8.12/31

10.0.8.14/31

10.0.8.13/31

10.0.8.15/31

storage-backend-
spine1

storage-backend-gpu-
leaf4

4201032603 10.0.8.16/31

10.0.8.18/31

10.0.8.17/31

10.0.8.19/31

storage-backend-
spine1

storage-backend-gpu-
leaf5

4201032604 10.0.8.40/31

10.0.8.42/31

10.0.8.41/31

10.0.8.43/31

storage-backend-
spine1

storage-backend-gpu-
leaf6

4201032605 10.0.8.46/31

10.0.8.48/31

10.0.8.47/31

10.0.8.49/31

storage-backend-
spine2

storage-backend-gpu-
leaf3

420103250
1

4201032602 10.0.8.32/31

10.0.8.34/31

10.0.8.33/31

10.0.8.35/31

storage-backend-
spine2

storage-backend-gpu-
leaf4

4201032603 10.0.8.36/31

10.0.8.38/31

10.0.8.37/31

10.0.8.39/31

storage-backend-
spine2

storage-backend-gpu-
leaf5

4201032604 10.0.8.52/31

10.0.8.54/31

10.0.8.53/31

10.0.8.55/31

storage-backend-
spine2

storage-backend-gpu-
leaf6

4201032605 10.0.8.56/31

10.0.8.58/31

10.0.8.57/31

10.0.8.59/31

On the Leaf nodes, BGP policies are configured by Apstra to advertise the following routes to the spine
nodes:

• storage-backend-leaf# nodes loopback interface addresses

• storage-backend-leaf# nodes to storage-backend-spine# interfaces subnets

• storage-backend-leaf3, storage-backend-leaf4 nodes irb interface (connection to Vast C-nodes)

253

• storage-backend-leaf5, storage-backend-leaf6 nodes to storage-backend-spine# interfaces subnets
(connection to MI300X servers)

Figure 75: Storage Backend Leaf to Storage Backend Spines advertised routers – routes to Vast Storage
devices and MI300X servers

Table 34: Storage Backend Leaf Node Advertised Routes

Leaf Node Peer Advertised Routes BGP Communities

storage-backend-
leaf3

storage-backend-
spine1 &

storage-backend-
spine2

10.0.7.2/32

10.0.8.12/31

10.0.8.14/31

10.0.8.32/31

10.0.8.34/31

10.100.3.0/24

5:20007

21001:26000

254

(Continued)

Leaf Node Peer Advertised Routes BGP Communities

storage-backend-
leaf4

storage-backend-
spine1 &

storage-backend-
spine2

10.0.7.3/32

10.0.8.16/31

10.0.8.18/31

10.0.8.36/31

10.0.8.38/31

10.100.4.0/24

6:20007

21001:26000

storage-backend-
leaf5

storage-backend-
spine1 &

storage-backend-
spine2

10.0.7.4/32

10.0.8.40/31

10.0.8.42/31

10.0.8.52/31

10.0.8.54/31

10.100.5.0/31

10.100.5.2/31

10.100.5.4/31

10.100.5.6/31

7:20007

21001:26000

storage-backend-
leaf6

storage-backend-
spine1 &

storage-backend-
spine2

10.0.7.5/32

10.0.8.46/31

10.0.8.48/31

10.0.8.58/31

10.0.8.60/31

10.100.6.0/31

10.100.6.2/31

10.100.6.4/31

10.100.6.6/31

8:20007

21001:26000

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the leaf
nodes:

• storage-backend-leaf# nodes loopback interface addresses

• storage-backend-spine# nodes loopback interface addresses

• storage-backend-leaf# nodes to storage-backend-spine# interfaces subnets

• storage-backend-leaf3, storage-backend-leaf4 nodes irb interface (connection to Vast C-nodes)

• storage-backend-leaf5, storage-backend-leaf6 nodes to storage-backend-spine# interfaces subnets
(connection to MI300X servers)

255

Figure 76: Storage Backend Spine to Storage Backend Leafs advertised routers – routes to Vast Storage
devices and MI300X servers

Table 35: Storage Backend Spine Node Advertised Routes

Leaf Node Peer Advertised Routes BGP
Communities

storage-
backend-spine1

storage-
backend-leaf3

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.3/32

10.0.7.4/32

10.0.7.5/32

10.100.4.0/24

10.100.5.0/31

10.100.5.2/31

10.100.5.4/31

10.100.5.6/31

10.100.6.0/31

10.100.6.2/31

10.100.6.4/31

10.100.6.6/31

10.0.8.33/31 …

10.0.8.41/31 …

10.0.8.49/31 …

0:15

6:20007

21001:26000

256

(Continued)

Leaf Node Peer Advertised Routes BGP
Communities

storage-
backend-spine1

storage-
backend-leaf4

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.4/32

10.0.7.5/32

10.100.3.0/24

10.100.5.0/31

10.100.5.2/31

10.100.5.4/31

10.100.5.6/31

10.100.6.0/31

10.100.6.2/31

10.100.6.4/31

10.100.6.6/31

10.0.8.13/31 …

10.0.8.41/31 …

10.0.8.49/31 …

0:15

6:20007

21001:26000

storage-
backend-spine1

storage-
backend-leaf5

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

10.0.7.5/32

10.100.3.0/24

10.100.4.0/24

10.0.8.13/31 …

10.0.8.33/31 …

10.0.8.41/31 …

0:15

6:20007

21001:26000

storage-
backend-spine1

storage-
backend-leaf6

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

10.0.7.4/32

10.100.3.0/24

10.100.4.0/24

10.0.8.13/31 …

10.0.8.33/31 …

10.0.8.49/31 …

0:15

6:20007

21001:26000

257

(Continued)

Leaf Node Peer Advertised Routes BGP
Communities

storage-
backend-spine2

storage-
backend-leaf5

10.0.6.1/32

10.0.7.0/32

10.0.7.1/32

10.0.7.3/32

10.0.7.4/32

10.0.7.5/32

10.100.4.0/24 10.100.6.0/31

10.100.6.2/31

10.100.6.4/31

10.100.6.6/31

10.0.8.33/31 …

10.0.8.41/31 …

10.0.8.49/31 …

0:15

4:20007

21001:26000

. . .

Advertising these subnets has the goal of allowing communication between the MI300X GPU servers
and Vast Storage devices.

Figure 77: Communication between GPU servers and Storage devices

258

JVD Validation Framework

IN THIS SECTION

Platforms / Devices Under Test (DUT) on this JVD | 259

Platforms / Devices Under Test (DUT) on this JVD

To review the software versions and platforms on which this JVD was validated by Juniper Networks,
see the Validated Platforms and Software section in this document.

NOTE:

QFX5220-64CD, and QFX5230-64CD acting as leaf nodes, as well as QFX5230-64CD and PTX10008
acting as spine nodes are covered in AI Data Center Network with Juniper Apstra, NVIDIA GPUs, and
WEKA Storage—Juniper Validated Design (JVD). The same document also covers WEKA storage and
NVIDIA GPUs servers.

JVD Validation Goals and Scope

IN THIS SECTION

Tests Objectives | 260

Tests Scope | 260

Other features tested | 261

Tested Optics | 261

259

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/validated-platforms.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Tests Objectives

The primary objectives of the JVD testing can be summarized as:

• Qualification of the complete AI fabric design functionality including the Frontend, GPU Backend,
and Storage Backend fabrics, and connectivity between AMD GPUs and Vast Storage.

• Qualification of the deployment steps based on Juniper Apstra.

• Ensure the design is well-documented and will produce a reliable, predictable deployment for the
customer.

The qualification objectives included validating:

• Validation of blueprint deployment, device upgrade, incremental configuration pushes/provisioning,
Telemetry/Analytics checking, failure mode analysis, congestion avoidance and mitigation, and
verification of host, storage, and GPU traffic.

Tests Scope

The AI JVD testing for the described network included the following:

• Design and blueprint deployment through Apstra of three distinct fabrics

• Fabric operation and monitoring through Apstra analytics and telemetry dashboard

• Congestion management with PFC and ECN, including failure scenarios

• End-to-end traffic flow, with Dynamic Load Balancing (DLB)

• System health, ARP, ND, MAC, BGP (route, next hop), interface traffic counters, and so on

• Software operation verification (no anomalies, or issues found)

• AI fabric with Juniper Apstra successfully performing under the following required scenarios (must):

• Node failure (reboot)

• Interface failures (interface down/up, Laser on/off):

Under these scenarios the following were evaluated/validated:

• Completion of AI Job models within MLCommons Training benchmarks

• Traffic recovery was validated after all failure scenarios.

• impact to the fabric and check anomalies reporting in Apstra.

260

Other features tested

• Broadcom 97608 THOR2 NICs

• Mellanox Connect-X NIC card default settings.

• DSCP and CNP configuration on the NICs

• Connectivity between fabric-connected hosts created by Apstra towards NSX-managed hosts.

• BERT/LLAMA3 test completion times

• Llama2 Inference against existing infrastructure.

Refer to the test report for more information.

Tested Optics

Table 37: Frontend Fabric Optics

Frontend Fabric

Part number Optics Name Device Role Device Model Interface/NIC type

740-085351 QSFP56-
DD-400GBASE-
DR4

spine QFX5130-32CD QSFP-DD

740-085351 QSFP56-
DD-400GBASE-
DR4

leaf QFX5130-32CD QSFP-DD

740-061405 QSFP-100GBASE-
SR4-T2

leaf QFX5130-32CD QSFP28

740-046565 QSFP+-40G-SR4
w/ 4x10G breakout
cable.

leaf QFX5130-32CD QSFP+

AFBR-709SMZ AVAGO 10GBASE-
SR SFP+ 300m

Server SuperMicro
Headend Server

Intel X710

261

(Continued)

Frontend Fabric

AFBR-89CDDZ AVAGO 100GbE
QSFP28 300m

GPU

Server

AMD MI300Xx Dell
XE96880

BCM97608 THOR2

AFBR-89CDDZ AVAGO 100GbE
QSFP28 300m

GPU

Server

AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

ConnectX-7

Table 38: Backend Storage Fabric Optics

Backend Storage Fabric

Part number Optics Name Device Role Device Model Interface/NIC type

740-085351 QSFP56-
DD-400GBASE-
DR4

spine QFX5220-32CD QSFP-DD

740-085351 QSFP56-
DD-400GBASE-
DR4

leaf QFX5220-32CD QSFP-DD

740-058734 QSFP-100GBASE-
SR4

leaf QFX5220-32CD QSFP28

720-128730 QSFP56-
DD-2x200GBASE-
CR4-CU-2.5M w/
400G DAC
Breakout into
2X200G

leaf QFX5220-32CD QSFP-DD

740-061405 QSFP-100GBASE-
SR4

leaf QFX5220-32CD QSFP28

262

(Continued)

Backend Storage Fabric

740-159002 QSFP56-
DD-2x200G-
BOAOC-5M

GPU Server AMD MI300Xx Dell
XE9680

BCM97608 THOR2

740-159002 QSFP56-
DD-2x200G-
BOAOC-5M

GPU Server AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

ConnectX-7

740-061405 QSFP-100GBASE-
SR4

Storage Vast Storage CBOX ConnectX-6

740-061405 QSFP-100GBASE-
SR4

Storage Vast Storage DBOX ConnectX-6

Table 39: Backend GPU Fabric

Backend GPU Fabric

Part number Optics Name Device Role Device Model Interface/NIC type

740-174933 OSFP-800G-DR8 spine QFX5240-64OD

QFX5241-64OD

OSPF800

740-174933 OSFP-800G-DR8 leaf QFX5240-64OD

QFX5241-64OD

OSPF800

740-085351 QDD-400G-DR4 GPU Server AMD MI300Xx Dell
XE9680

BCM97608 THOR2

740-085351 QDD-400G-DR4 GPU Server AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

BCM97608 THOR2

263

NOTE:

For optics tested on QFX5220-64CD, QFX5230-64CD, PTX10008, WEKA storage and NVIDIA GPUs
servers check AI Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper
Validated Design (JVD) Tested Optics Section.

JVD Validation Test Results Summary and Analysis

For a detailed test results report, contact your Juniper representative.

Recommendations Summary

The AI Data Center Network with Juniper Apstra, AMD GPUs, and VAST Storage JVD follows an
industry-standard dedicated IP Fabric design. Three distinct fabrics provide maximum efficiency while
maintaining focus on AI model scale, expedited completion times, and rapid evolution with the advent of
AI technologies.

To follow best practice recommendations:

• A minimum of 4 spines in each fabric is suggested.

Though the design for cluster 1 in this document only includes only 2 spines, we found that under
certain dual failure scenarios, combined with congestion, the fabric becomes susceptible to PFC storms
(not vendor-unique). We recommend deploying the solution with 4 spines as described for the
QFX5240/QFX5241 fabric (cluster 2) even when using different switch models.

• Follow a rail-optimized fabric and maintain a 1:1 relation with bandwidth subscription and Leaf to
GPU symmetry.

• Implement Dynamic Load Balancing (DLB) instead of traditional ECMP for optimal load distribution.

• Implement DCQCN (PFC and ECN) to ensure a lossless fabric in the GPU Backend Fabric, and
possibly in the Storage Backend Fabric as required per vendor recommendation.

• Configure DCQCN (PFC and ECN) parameters on the AMD servers and change the NCCL_SOCKET
interface to be the management (frontend) interface.

• The minimum recommended Junos OS releases for this JVD are:

• Junos OS Release 23.4X100-D20 for the Juniper QFX5240-64CD

264

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

• Junos OS Release 23.4X100-D42 for the Juniper QFX5241-64CD

NOTE: For minimum software released for QFX5220-64CD, QFX5230-64CD, PTX10008, check the AI
Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated Design
(JVD) Recommendations Section.

The Juniper hardware listed in the Juniper Hardware and Software Components section are the best-
suited switch platforms regarding features, performance, and the roles specified in this JVD.

Revision History

Table 40: Revision History

Date Version Description

Dec 2025 JVD-AICLUSTERDC-AIML-
AMD-03-03

Added QFX5241, and GLB configuration.

Update Rail Optimized Section.

June 2025 JVD-AICLUSTERDC-AIML-
AMD-03-02

Added Pollara

February 2025 JVD-AICLUSTERDC-AIML-
AMD-03-01

Initial Publish

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without notice. Copyright © 2025 Juniper Networks,
Inc. All rights reserved.

265

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

	Table of Contents
	About this Document
	Solution Benefits
	AI Use Case and Reference Design
	Solution Architecture
	Fabric configuration Walkthrough using Juniper Apstra
	Terraform Automation of Apstra for the AI Fabric
	AMD Configuration
	DCQCN configuration for RDMA Traffic on NICs
	VAST Storage Configuration
	Network Connectivity Details (Reference Examples)
	JVD Validation Framework
	JVD Validation Goals and Scope
	JVD Validation Test Results Summary and Analysis
	Recommendations Summary
	Revision History

