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Al Data Center Network with Juniper Apstra,
NVIDIA GPUs, and WEKA Storage—Juniper
Validated Design (JVD)

Juniper Networks Validated Designs provide a comprehensive, end-to-end blueprint for deploying
Juniper solutions in your network. These designs are created by Juniper's expert engineers and tested to
ensure they meet your requirements. Using a validated design, you can reduce the risk of costly
mistakes, save time and money, and ensure that your network is optimized for maximum performance.

About this Document

This document describes the design requirements and implementation of an Al cluster network to
connect NVIDIA GPUs and WEKA Storage systems, based on Al-optimized Juniper Data Center Juniper
QFX series switches and PTX Series Routers, which are configured and managed by Juniper Apstra and
Terraform automation.

All validation tests were conducted in Juniper’s Al Innovation Lab in Sunnyvale, CA, USA. In this open
lab, Juniper collaborates closely with customers and technology partners to develop Al solutions and
test deployments for a range of Al applications and models.

The Al Innovation Lab allows customers to see Al training and inference in action, running on an NVIDIA
GPU and WEKA Storage cluster. Juniper performs these tests running both customer-specific models as
well as those from MLCommons for MLPerf performance benchmarking and comparisons.

Solution Benefits
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Juniper Networks has excelled in building and supporting Al networks following a scalable, robust, and
automated approach suitable for a range of cluster sizes. Unlike proprietary solutions that lock in
enterprises and can stifle Al innovation, Juniper’s standards-based solution assures the fastest
innovation, maximizes design flexibility, and prevents vendor lock-in on the Frontend, GPU Backend, and
Storage Backend Al fabric networks.

The Juniper Validated Design for Al provides a structured method for deploying high-performance Al
training and inference networks, aimed at minimizing job completion time and maximizing GPU
performance. This design employs a 3-stage Clos IP fabric architecture utilizing Juniper QFX and PTX
switches. It integrates NVIDIA GPUs and WEKA storage and is deployed and managed using Juniper’s
Apstra software and Terraform Automation, incorporating best practices and Juniper'’s extensive
experience in building Data Center networks.

The integration with Juniper’s Apstra software and Terraform enables customers to orchestrate the
network infrastructure systematically, without requiring in-depth knowledge of the products and
technologies involved. This allows customers to easily build high-capacity, easy-to-operate network
fabrics that deliver high performance, increased reliability, which result in optimal JCT (Job Completion
Time) and maximized GPU utilization in the Al cluster.

The solution has been extensively tested and thoroughly documented by Juniper subject matter experts,
resulting in a validated design that is easy to follow, guarantees successful implementation, and
simplified management and troubleshooting tasks. This document provides comprehensive guidance on
how to deploy this solution, with clear descriptions of its components and step by step instructions to
connect and configure them.

Juniper Validated Design Benefits

JVDs are prescriptive blueprints for building data center fabrics using repeatable, validated, predictable,
and well documented network architecture solutions with guidelines for a successful deployment. Each
solution has been designed, fully tested, and documented by Juniper Networks experts with all the
necessary implementation details, including hardware components, software versions, connectivity, and
configuration steps.

To become a validated solution (JVD) and be approved for release, a solution must pass rigorous testing
with real-world workloads and applications. All features must satisfy operational and performance
criteria in real-world scenarios. Testing not only includes validating the design topology and
configuration steps, but also that all products in the JVD work together as expected, thereby mitigating
potential risks while deploying the solution.

The core benefits of JVDs solutions can be summarized as:



¢ Qualified Deployments—Qualified network design blueprints for data center fabrics, that follow best
practices and meet the requirements of each specific use case, and make the solution deployment
quicker, simpler, and more reliable.

e Scalable—Solutions that can scale beyond the initial design and support the adoption of different
hardware platforms based on customer requirements, and customers’ feedback can meet the needs
of most Juniper’s data center customers.

¢ Risk Mitigation— Prescriptive implementation guidelines guarantee that you have the right products,
right software versions, optimal architecture, and deployment steps.

o Systematically Verified—Tested solutions using a suite of automated testing tools validate the
performance and reliability of all the components.

e Predictability— Detailed testing and careful documentation of the solution, including the capabilities
and limitations of its components, guarantees that the solution will operate as expected when
implemented according to the JVD guidelines.

e Repeatability— Unlocked value with repeatable network designs due to the prescriptive nature of
JVD designs as well as their applicability to common use cases in the data center environment. All
JVD customers benefit from lessons learned through lab testing and real-world deployments.

o Reliability— Tested with real traffic, JVD solutions are qualified to operate as designed after
deployment and with real-world traffic.

e Accelerated Deployment— Ease installation with step-by-step guidance automation, and prebuilt
integrations simplifies, and accelerates deployment, while reducing risks.

o Accelerated Decision-Making— Predefined combination of products, software, and architecture
removes the need to spend time comparing products, and deciding how the network should be built,
allowing to bridge business and technology requirements faster and also reducing risks.

e Best Practice Networks— Better outcomes for a better experience. Juniper Validated Designs have
known characteristics and performance profiles to help you make informed decisions about your
network.

Juniper Apstra Benefits

Juniper Validated Designs in the data center start with the Apstra software, a multi-vendor, intent-based
networking system (IBNS) that provides closed-loop automation and assurance. Apstra translates
vendor-agnostic business intent and technical objectives to essential policy and device-specific
configurations. The system also validates user intent, as part of the initial deployment and continuously
thereafter, to ensure that the network state does not deviate from the intended state. Any anomaly or
deviation can be flagged, and remediation actions can be taken directly from Apstra.



The core benefits of Apstra are:

¢ Intent-based networking—Apstra automates configuration creation to realize the intent, deploys the
configuration to appropriate devices, and continuously validates the operating state against intended
state.

e Network Automation—Apstra is a multi-vendor network automation platform that is continuously
updated to work with the latest hardware and is extensively tested using modern DevOps practices.

e Recoverability—The Built-in rollback capability of Apstra allows to quickly restore the system to a
known-working configuration if needed.

e Day 2+ Management—Apstra’s rich data analysis capabilities, including Flow Data, reduce Mean Time
to Resolution (MTTR).

o Simplicity—Apstra simplifies network deployment and management. As an example, using Apstra to
implement a Data Center Interconnection (DCI), reduces complexity and makes it easy to unify
multiple data centers, while isolating failure domains for high availability and resilience.

Al Use Case and Reference Design

IN THIS SECTION

Frontend Overview | 5
GPU Backend Overview | 7

Storage Backend Overview | 7

The Al JVD Reference Design covers a complete end-to-end ethernet-based Al infrastructure, which
includes the Frontend fabric, GPU Backend (Graphics Processing Unit) fabric and Storage Backend fabric.
These three fabrics have a symbiotic relationship, while each provides unique functions to support Al
training and inference tasks. The use of Ethernet Networking in Al Fabrics enables our customers to
build high-capacity, easy-to-operate network fabrics that deliver the fastest job completion times,
maximize GPU utilization, and use limited IT resources.

The Al JVD reference design shown in "Figure 1" on page 5 includes:

o Frontend Fabric: This fabric is the gateway network to the GPU nodes and storage nodes from the Al
tools residing in the headend servers. The Frontend GPU fabric allows users to interact with the GPU



and storage nodes to initiate training or inference workloads and to visualize their progress and
results. It also provides an out-of-band path for NCCL (NVIDIA Collective Communications Library)
collective communication.

e GPU Backend Fabric: This fabric connects the GPU nodes (which perform the computations tasks for
Al workflows). The GPU Backend fabric transfers high-speed information between GPUs during
training jobs, in a lossless matter. Traffic generated by the GPUs is transferred using RoCEv2 (RDMA
over Ethernet v2).

e Storage Backend Fabric: This fabric connects the high-availability storage systems (which hold the
large model training data) and the GPUs (which consume this data during training or inference jobs).
The Storage Backend fabric transfers high volumes of data in a seamless and reliable matter.

Figure 1: Al JVD Reference Design
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Frontend Overview

The Al Frontend for Al encompasses the interface, tools, and methods that enable users to interact with
the Al systems, and the infrastructure that allows these interactions. The Frontend gives users the ability
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to initiate training or inference tasks, and to visualize the results, while hiding the underlying technical
complexities.

The key components of the Frontend systems include:

¢ Model Scheduling: Tools and methods for managing scripted Al model jobs, and commonly based on
SLURM (Simple Linux Utility for Resource Management) Workload Manager. These tools enable
users to send instructions, commands, and queries, either through a shell CLI or through a graphical
web-based interface to orchestrate learning and inference jobs running on the GPUs. Users can
configure model parameters, input data, and interpret results as well as initiate or terminate jobs
interactively. In the Al JVD, these tools are hosted on the Headend Servers connected to the Al
Frontend fabric.

¢ Management of Al Systems: Tools for managing (configuring, monitoring and performing
maintenance tasks) the Al storage and processing components. These tools facilitate building,
running, training, and utilizing Al models efficiently. Examples include SLURM, TensorFlow, PyTorch,
and Scikit-learn.

¢ Management of Fabric Components: Mechanisms and workflows designed to help users effortlessly
deploy and manage fabric devices according to their requirements and goals. It includes tasks such as
device onboarding, configuration management, and fabric deployment orchestration. This
functionality is provided by Juniper Apstra .

¢ Performance Monitoring and Error Analysis: Telemetry systems tracking key performance metrics
related to Al models, such as accuracy, precision, recall, and computational resource utilization (e.g.
CPU, GPU usage) which are essential for evaluating model effectiveness during training and inference
jobs. These systems also provide insights into error rates and failure patterns during training and
inference operations, and help identify issues such as model drift, data quality problems, or
algorithmic errors that may affect Al performance. Examples of these systems include Juniper Apstra
dashboards, TIG Stack, and Elasticsearch.

o Data Visualization: Applications and tools that allow users to visually comprehend insights generated
by Al models and workloads. They provide effective visualization that enhances understanding and
decision-making based on Al outputs. The same telemetry systems used to monitor and measure
System and Network level performance usually provide this visualization as well. Examples of this
tools include Juniper Apstra dashboards, TensorFlow, and TIG stack.

e User Interface: routing and switching infrastructure that allows communication between the user
interface applications and tools and the Al systems executing the jobs, including GPUs and storage
devices. This infrastructure ensures seamless interaction between users and the computational
resources needed to leverage Al capabilities effectively.

e GPU-to-GPU control: communication establishment, information exchange including, QP GIDs
(Global IDs), Local and remote buffer addresses, and RDMA keys (RKEYs for memory access
permissions)



GPU Backend Overview

The GPU Backend for Al encompasses the devices that execute learning and inference jobs or
computational tasks, that is the GPU servers where the data processing occurs, and the infrastructure
that allows the GPUs to communicate with each other to complete the jobs.

The key components of the GPU Backend systems include:

e Al Systems: Specialized hardware such as GPUs (Graphics Processing Units) and TPUs (Tensor
Processing Units) that can execute numerous calculations concurrently. GPUs are particularly adept
at handling Al workloads, including complex matrix multiplications and convolutions required to
complete learning and inference tasks. The selection and number of GPU systems significantly
impacts the speed and efficiency of these tasks.

o Al Software: Operating systems, libraries, and frameworks essential for developing and executing Al
models. These tools provide the environment necessary for coding, training, and deploying Al
algorithms effectively. The functions of these tools include:

o Data Management: preprocessing, and transformation of data utilized in training and executing Al
models. This encompasses tasks such as cleaning, normalization, and feature extraction. Given the
volume and complexity of Al datasets, efficient data management strategies like parallel
processing and distributed computing are crucial.

¢ Model Management: tasks related to the Al models themselves, including evaluation (e.g., cross-
validation), selection (choosing the optimal model based on performance metrics), and
deployment (making the model accessible for real-world applications).

e GPU Backend Fabric: routing and switching infrastructure that allows GPU-to-GPU communication
for workload distribution, memory sharing, synchronization of model parameters, exchange of
results, etc. The design of this fabric can significantly impact the speed and efficiency of Al/ML
model training and inference jobs and in most cases shall provide lossless connectivity for GPU-to-
GPU traffic.

Storage Backend Overview

The Al storage backend for Al encompasses the hardware and software components for storing,
retrieving, and managing the vast amounts of data involved in Al workloads, and the infrastructure that
allows the GPUs to communicate with these storage components.

The key aspects of the storage backend include:

¢ High-Performance Storage Devices: optimized for high 1/O throughput, which is essential for
handling the intensive data processing requirements of the Al tasks such as deep learning. This



includes high-performance storage devices designed to facilitate fast access to data during model
training and to accommodate the storage needs of large datasets. These storage devices must
provide:

¢ Data Management Capabilities: which support efficient data querying, indexing, and retrieval and
are crucial for minimizing preprocessing and feature extraction times in Al workflows, as well as
for facilitating quick data access during inference.

e Scalability: which accommodates growing data volumes and efficiently manages and stores
massive amounts of data over time, to support Al workloads often involving large-scale datasets.

e Storage Backend Fabric: routing and switching infrastructure that provides the connectivity between
the GPU and the storage devices. This integration ensures that data can be efficiently transferred
between storage and computational resources, optimizing overall Al workflow performance. The
performance of the storage backend significantly impacts the efficiency and JCT of Al/ML
workflows. A storage backend that provides quick access to data can significantly reduce the amount
of time for training Al/ML models.

Solution Architecture
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The three fabrics described in the previous section (Frontend, GPU Backend, and Storage Backend), are
interconnected together in the overall Al JVD solution architecture as shown in Figure 2.

Figure 2: Al JVD Solution Architecture
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NOTE: The number and switch type of the leaf and spine nodes, as well as the number and
speed of the links between them, is determined by the type of fabric (Frontend, GPU Backend or
Storage Backend) as they present different requirements. More details will be included in the
respective fabric description sections.In the case of the GPU Backend fabric, the number of GPU
servers, as well as the number of GPUs per server, are also factors determining the number and
switch type of the leaf and spine nodes.
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I Frontend Fabric

The Frontend Fabric provides the infrastructure for users to interact with the Al systems to orchestrate
training and inference tasks workflows using tools such as SLURM. These interactions do not generate
heavy data flows nor have stringent requirements regarding latency or packet drops; thus, they do not

impose rigorous demands on the fabric.

The Frontend Fabric design described in this JVD follows a traditional 3-stage IP Fabric architecture
without HA, as shown in Figure 3. This architecture provides a simple and effective solution for the
connectivity required in the Frontend. However, any fabric architecture including EVPN/VXLAN, could
be used. If an HA-capable Frontend Fabric is required we recommend following the 3-Stage with Juniper
Apstra JVD.

Figure 3: Frontend Fabric Architecture
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The devices included in the Frontend fabric, and the connections between them, are summarized in the
following table:

Table 1: Frontend devices
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Nvidia DGX GPU Weka Storage

Servers Servers

A100 x 8 Weka Storage
Server x 8

H100 x 4

Headend Servers

Headend-SVR x 3

Frontend

Leaf Nodes switch

model

Frontend Spine
Nodes switch model
(frontend-spine#)

(frontend-gpu-leaf

&

frontend-weka-leaf)

QFX5130-32CD x 2

QFX5130-32CD x 2

Table 2: Connections between servers, leaf and spine nodes per cluster and stripe in the Frontend

GPU Servers to <=>
Frontend Leaf Nodes

1 x 100GE links

between each GPU server
(A100-01to A100-08, &
H100-01to H100-04)
and the frontend-gpu-leaf
switch.

Weka Storage Servers
<=>

Frontend Leaf Nodes

1 x 100GE links

between each storage
server ( weka-1 to
weka-8) and the
frontend-weka-leaf
switch.

Headend Servers <=>
Frontend Leaf Nodes

1 x 10GE links

between each headend
server ( Headend-SVR-01
to Headend-SVR-03) and
the frontend-weka-leaf
switch.

Frontend Spine Nodes
<=>

Frontend Leaf Nodes

2 x 400GE links

between each leaf node
and each spine node.

NOTE: This fabric is a pure L3 IP fabric using EBGP for route advertisement. The IP addressing
and EBGP configuration details are described in the networking section on this document.

GPU Backend Fabric

The GPU Backend fabric provides the infrastructure for GPUs to communicate with each other within a
cluster, using RDMA over Converged Ethernet (RoCEv2). ROCEv2 boosts data center efficiency, reduces
overall complexity, and increases data delivery performance by enabling the GPUs to communicate as
they would with the InfiniBand protocol.

Packet loss can significantly impact job completion times and therefore should be avoided. Therefore,
when designing the compute network infrastructure to support RoCEv2 for an Al cluster, one of the key
objectives is to provide a lossless fabric, while also achieving maximum throughput, minimal latency, and



minimal network interference for the Al traffic flows. ROCEv2 is more efficient over lossless networks,
resulting in optimum job completion times.

The GPU Backend fabric in this JVD was designed with these goals in mind and follows a 3-stage IP clos
architecture combined with NVIDIA’s "Backend GPU Rail Optimized Stripe Architecture" on page 18
(discussed in the next section), as shown in Figure 4.

Figure 4: GPU Backend Fabric Architecture
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We have built two different Custers in the Al lab, as shown in Figure 5, which share the same " Frontend
fabric " on page 10and " Storage Backend fabric " on page 22 but have separate GPU Backend fabrics.
Each cluster is comprised of two stripes following the " Rail Optimized Stripe Architecture described on

page 17 " on page 18, but include different switch models as Leaf and Spine nodes, as well as Nvidia's
server models.

NOTE: These two clusters are not yet connected to each other and were tested separately. We

have plans to connect them together using Juniper PTX devices as spine nodes in future JVD
releases. Details for the two clusters will be included in this section.

Figure 5: Al JVD Lab Clusters
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The GPU Backend in Cluster 1 consists of Juniper QFX5220, and QFX5230 switches as leaf nodes and
either QFX5230s switches or PTX10008 routers acting as spine nodes. We tested the QFX5230s and
PTX10008, acting as spine nodes separately, while maintaining the leaf nodes the same.

NOTE: To facilitate switching between the setups using QFX5230s acting as spine nodes and the
PTX10008 acting as spine, the two configurations of the Backend GPU blueprint in Apstra were
saved and either one can be deployed at any time.

The GPU Backend in Cluster 2 consists of Juniper QFX5240 switches acting as both leaf nodes and
spine nodes.

The GPU Backend devices included in this fabric, and the connections between them, are summarized in

the following table:

Table 3: GPU Backend devices per cluster and stripe

Cluster Stripe Nvidia DGX GPU GPU Backend Leaf GPU Backend Spine
Servers Nodes switch model Nodes switch model
(gpu-backend-leaf#) (gpu-backend-
spine#)
1 1 A100-01to QFX5230-64CD x8 QFX5230-64CD x 2
A100-04

OR



(Continued)

Cluster Stripe
1 2
2 1
2 2

Nvidia DGX GPU
Servers

A100-05to
A100-08

H100-01 to
H100-02

H100-03to
H100-04

GPU Backend Leaf
Nodes switch model
(gpu-backend-leaf#)

QFX5220-32CD x 8

QFX5240-640D x 8

QFX5240-640D x 8

GPU Backend Spine
Nodes switch model
(gpu-backend-
spine#)

PTX10008 w/

JNP10K-LC1201

QFX5230-640D x 4

Table 4: Connections between servers, leaf and spine nodes per cluster and stripe in the GPU Backend

Cluster Stripe
1 1
1 2
2 1

GPU Servers <=>
GPU Backend Leaf Nodes

1 x 200GE links

between each A100
server and each leaf node
(200GE x 8 links per
server)

1 x 200GE links

between each A100
server and each leaf
nodes (200GE x 8 links
per server)

1 x 400GE links

between each H100
server and each leaf
nodes (400GE x 8 links
per server)

GPU Backend Spine
Nodes <=>
GPU Backend Leaf Nodes

2 X 400GE links

between each leaf node
and each spines node (2 x
400GE x 2 links per leaf
node)

2 x 400GE links

between each leaf node
and each spines node (2 x
400GE x 2 links per leaf
node)

2 x 400GE links

between each leaf node
and each spines node (2 x
400GE x 4 links per leaf
node)



(Continued)

Cluster Stripe GPU Servers <=> GPU Backend Spine
GPU Backend Leaf Nodes Nodes <=>
GPU Backend Leaf Nodes

2 2 1 x 400GE links 2 X 400GE links
between each H100 between each leaf node
server and each leaf and each spines node (2 x
nodes (400GE x 8 links 400GE x 4 links per leaf
per server) node)

e The Nvidia A100 servers in the lab are connected to the fabric using 200GE interfaces while the
H100 servers used 400GE interfaces.

e This fabric is a pure L3 IP fabric that uses EBGP for route advertisement (described in the networking
section).

e Connectivity between the servers and the leaf nodes is L2 vlan-based with an IRB on the leaf nodes
acting as default gateway for the servers (described in the networking section).

NOTE: The speed and number of links between the GPU servers and leaf nodes and between
the leaf and spine nodes determines the oversubscription factor. As an example, consider the
number of GPU servers available in the lab, and how they are connected to the GPU backend
fabric as described above.

Table 5: Server to Leaf Bandwidth per stripe (per Cluster)

Cluster Al Systems Servers per Server <=> Leaf = Bandwidth of Total Bandwidth
(server type) Stripe Links per Server  Server <=> Leaf = Servers <=>
Links [Gbps] Leaf per stripe
[Tbps}
1 A100 4 8 200 4x8x

200/1000 = 6.4

2 H100 2 8 400 2x8x
400/1000 = 6.4

Table 6: Leaf to Spine Bandwidth per stripe
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Leaf <=> Spine Links Per Speed Of Number of Spine Nodes Total Bandwidth

Spine Node & Per Stripe Leaf <=> Spine Links Leaf <=> Spine Per Stripe
[Gbps] [Tbps]

8 2 x 400 2 12.8

The (over)subscription rate is simply calculated by comparing the numbers from the two tables above:

In cluster 1, the bandwidth between the servers and the leaf nodes is 6.4 Tbps per stripe, while the
bandwidth available between the leaf and spine nodes is 12.8 Tbps per stripe. This means that the fabric
has enough capacity to process all traffic between the GPUs even when this traffic was 100% inter-

stripe, while still having extra capacity to accommodate additional servers without becoming
oversubscribed.

Figure 6: Extra Capacity Example
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We also tested connecting the H100 GPU servers along the A100 servers to the stripes in Cluster 1 as
follows:

Figure 7: 1:1 Subscription Example
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Table 7: Server to Leaf Bandwidth per stripe per cluster with all servers connected to same cluster



Cluster Al Systems Servers per
Stripe
1 A100 4
H100 2

Server <=> Leaf
Links per Server

Server <=> Leaf
Links
Bandwidth
[Gbps]

200

400

Total Bandwidth
of Server <=>
Leaf Links

Total Servers
<=> Leaf Links
Bandwidth per
stripe

[Tbps]

4 x8x
200/1000 = 6.4

2x8x
400/1000 = 6.4

12.8

The bandwidth between the servers and the leaf nodes is now 12.8 Tbps per stripe, while the
bandwidth available between the leaf and spine nodes is also 12.8 Tbps per stripe (as shown in table
above). This means that the fabric has enough capacity to process all traffic between the GPUs even
when this traffic was 100% inter-stripe, but now there is no extra capacity to accommodate additional
servers. The subscription factor in this case is 1:1 (no subscription).

To run oversubscription testing, we disabled some of the interfaces between the leaf and spines to
reduce the available bandwidth as shown in the example in Figure 8:

Figure 8: 2:1 Oversubscription Example
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The total Servers to Leaf Links bandwidth per stripe has not changed. It is still 12.8 Tbps as shown in

table 3 in the previous scenario.

However, the bandwidth available between the leaf and spine nodes is now only 6.4 Tbps per stripe.

Table 8: Leaf to Spine Bandwidth per Stripe



Leaf <=> Spine Links Per Speed Of Number of Spine Nodes Total Bandwidth

Spine Node & Per Stripe Leaf <=> Spine Links Leaf <=> Spine Per Stripe
[Gbps] [Thps]
8 1 x 400 2 6.4

This means that the fabric no longer has enough capacity to process all traffic between the GPUs even if
this traffic was 100% inter-stripe, potentially causing congestion and traffic loss. The oversubscription
factor in this case is 2:1.

Backend GPU Rail Optimized Stripe Architecture

A Rail Optimized Stripe Architecture provides efficient data transfer between GPUs, especially during
computationally intensive tasks such as Al Large Language Models (LLM) training workloads, where
seamless data transfer is necessary to complete the tasks within a reasonable timeframe. A Rail
Optimized topology aims to maximize performance by providing minimal bandwidth contention, minimal
latency, and minimal network interference, ensuring that data can be transmitted efficiently and reliably
across the network.

In a Rail Optimized Stripe Architecture a stripe refers to a design module or building block, that can be
replicated to scale up the Al cluster as shown in Figure 9.

Figure 9: Rail Optimized Stripe

Connections to H 1 1 i i 1 : STRIPE1

Spine switches | | | | | | | | |

8 Leaf nodes per stripe —,i =
QFX5220-32CDor H
QFX5230-64CD or 1

QFX5240-640D 1

8 GPUs per server
N1 servers per stripe H

The number of leaf switches in a single stripe is always 8 and is determined by the number of GPUs per
server (Each NVIDIA DGX H100 GPU server includes 8 NVIDIA H100 Tensor core GPUs).

The maximum number of servers supported in a single stripe (N1) is determined by the Leaf node switch
model. This is because to provide 1:1 subscription, the number of interfaces connecting the GPU
servers, and the leaf nodes should be equal to the number of interfaces between the leaf and spine
nodes.

Table 9: Maximum number of GPUs supported per stripe



Leaf Node
QFX Model

QFX5220-
32CD

QFX5230-
64CD

QFX5240-
640D

Maximum Maximum
number of  number of

400 GE

supported

interfaces servers per
per switch  stripe (N1)

32

64

64

16

32

32

Maximum
number of
GPUs
supported
per stripe

16x8 =
128

32x8-=
256

32x8=
256

e QFX5220-32CD switches provide 32 x 400 GE ports (16 can be used to connect to the servers and
16 will be used to connect to the spine nodes)

e QFX5230-64CD and QFX5240-640D switches provide 64 x 400 GE ports (32 can be used to
connect to the servers and 32 will be used to connect to the spine nodes)

To achieve larger scales, multiple stripes can be connected across Spine switches as shown in Figure 10.

Figure 10: Spines-connected Stripes
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For example, assume that the desired number of GPUs is 16,000 and the fabric is using either
QFX5230-64CD or QFX5240-640D:

e the number of servers per stripe (N4) = 32 => the maximum number of GPUs supported per stripe =

256




N, = 16000/256 = 63 stripes
o with N, = 64 stripes & N4 servers = 32 the cluster can provide 16,384 GPUs.
e with N, =72 & N4 servers = 32 the cluster can provide 18432 GPUs.

The Stripes in the Al JVD setup consists of 8 Juniper QFX5220-32CD, QFX5230-64CD or
QFX5240-640D depending on the cluster and stripe. The number of GPUs supported on each cluster/
stripe is shown in table 10.

Table 10: Maximum number of GPUs supported per cluster

Cluster Stripe Leaf Node QFX model Maximum number of
GPUs supported per
stripe

1 1 QFX5230-64CD 16x8 =128

1 2 QFX5220-32CD 32x8=256

Total number of GPUs supported by the cluster = 384

2 1 QFX5240-640D 32x8=256

2 2 QFX5240-640D 32x8=256

Total number of GPUs supported by the cluster =512

What is Rail Optimized?

The GPUs on each server are numbered 1-8, where the number represents the GPU'’s position in the
server, as shown in Figure 11.

Figure 11: Rail Optimized Connections Between GPUs and Leaf Nodes
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Communication between GPUs in the same server happens internally via high throughput NV-Links
(Nvidia links) channels attached to internal NV-Switches, while communication between GPUs in
different servers happens across the QFX fabric, which provides 400Gbps GPU-to-GPU bandwidth.
Communication across the fabric occurs between GPUs on the same rail, which is the basis of the Rail-
optimized architecture: Rails connect GPUs of the same order across one of the leaf nodes; that is, rail N
connects GPUs in position N in all the servers across leaf switch N.

Figure 12 represents a topology with one stripe and 8 rails connecting GPUs 1-8 across leaf switches
1-8 respectively.

The example shows that communication between GPU 7 and GPU 8 in Server 1 happens internally
across Nvidia’s NVlinks/NV-switch (not shown), while communication between GPU 1 in Server 1 and
GPU 1 in Server N1 happens across Leaf switch 1 (within the same rail).

Notice that if any communication between GPUs in different stripes and different servers is required
(e.g. GPU 4 in server 1 communicating with GPU 5 in Server N1), data is first moved to a GPU interface
in the same rail as the destination GPU, thus sending data to the destination GPU without crossing rails.

Following this design, data between GPUs on different servers (but in the same stripe) is always moved
on the same rail and across one single switch, which guarantees GPUs are 1 hop away from each other
and creates separate independent high-bandwidth channels, which minimize contention and maximize
performance.

Notice that this example is presuming Nvidia's PXN feature is enabled. PXN can be easily enabled/
disabled before a training or inference job in initiated.

Figure 12: GPU to GPU Communication Between Two Servers with PXN Enabled
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For reference, Figure 13 shows an example with PXN disabled.

Figure 13: GPU to GPU Communication Between Two Servers Without PXN Enabled
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The example shows that communication between GPU 4 in Server 1 and GPU 5 in Server N1 goes
across Leaf switch 1, the Spine nodes, and Leaf switch 5 (between two different rails).

I Storage Backend Fabric
The Storage Backend fabric provides the connectivity infrastructure for storage devices to be accessible
from the GPU servers.

The performance of the storage infrastructure significantly impacts the efficiency of Al workflows. A
storage system that provides quick access to data can significantly reduce the amount of time for




training Al models. Similarly, a storage system that supports efficient data querying and indexing can
minimize the completion time of preprocessing and feature extraction in an Al workflow.

The Storage Backend fabric design in the JVD also follows a 3-stage IP clos architecture as shown in
Figure 16. There is no concept of rail-optimization in a storage cluster. Each GPU server has a single
connection to the leaf nodes, instead of 8.

Figure 16: Storage Backend Fabric Architecture
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The Storage Backend devices included in this fabric, and the connections between them, are
summarized in the following table:
Table 16: Storage Backend devices
Nvidia DGX GPU Servers  Weka Storage Servers Storage Backend Leaf Storage Backend Spine
Nodes switch model Nodes switch model
(storage-backend-gpu- (storage-backend-spine#)
leaf & storage-backend-
weka-leaf)
A100 x 8 Weka storage server x 8 QFX5130-32CD x 4 QFX5130-32CD x 2
H100 x 4 (2 storage-backend-gpu-

leafnodes, and

2 storage-backend-weka-
leafnodes)

Table 17: Connections between servers, leaf and spine nodes in the Storage Backend
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GPU Servers <=>
Storage Backend GPU Leaf Nodes

1 x 100GE links

between each H100 server and the
storage-backend-gpu-leaf switch

1 x 200GE links

between each A100 server and the
storage-backend-gpu-leaf switch

Weka Storage Servers <=>
Storage Backend Weka Leaf Nodes

1 x 100GE links

between each storage server
(weka-1 to weka-8) and the
storage-backend-weka-leaf switch
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Storage Backend Spine Nodes <=>
Storage Backend Leaf nodes

2 x 400GE links

between each leaf and spine nodes
and the storage-backend-weka-leaf
switch

3 x 400GE links

between each leaf and spine nodes
and the storage-backend-gpu-leaf
switch

The NVIDIA servers hosting the GPUs have dedicated storage network adapters (NVIDIA ConnectX)
that support both the Ethernet and InfiniBand protocols and provide connectivity to external storage

arrays.

Communications between GPUs and the storage devices leverage the WEKA distributed POSIX client
which enables multiple data paths for transfer of stored data from the WEKA nodes to the GPU client
servers. The WEKA client leverages the Data Plane Development Kit (DPDK) to offload TCP packet
processing from the Operating System Kernel to achieve higher throughput.

This communication is supported by the Storage Backend fabric described in the previous section and

exemplified in Figure 17.

Figure 17: GPU Backend to Storage Backend Communication
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WEKA Storage Solution

In small clusters, it may be sufficient to use the local storage on each GPU server, or to aggregate this
storage together using open-source or commercial software. In larger clusters with heavier workloads,
an external dedicated storage system is required to provide dataset staging for ingest, and for cluster
checkpointing during training. This JVD describes the infrastructure for dedicated storage using WEKA
storage.

WEKA is a distributed data platform that allows high performance and concurrent access and allows all
GPU Servers in the cluster to efficiently utilize a shared storage resource. With extreme 1/O capabilities,
the WEKA system can service the needs of all servers and scale to support hundreds or even thousands
of GPUs.

Toward the end of this document, you can find more details on the WEKA storage system, including
configuration settings, driver details, and more.

Scaling

The size of an Al cluster varies significantly depending on the specific requirements of the workload. The
number of nodes in an Al cluster is influenced by factors such as the complexity of the machine learning
models, the size of the datasets, the desired training speed, and the available budget. The number varies

from a small cluster with less than 100 nodes to a data center-wide cluster comprising of 10000s of
compute, storage, and networking nodes. A minimum of 4 spines must always be deployed for path
diversity and reduction of PFC failure paths.

Table 18: Fabric Scaling - Devices and Positioning

Small

64 - 2048 GPU

With support for up to 2048 GPUs,
the Juniper QFX5240-64CDs or
QFX5230-64CD can be used as
Spine and leaf devices to support
single or dual-stripe applications. To
follow best practice
recommendations, a minimum of 4
Spines should be deployed, even in
a single-stripe fabric.

Medium

2048 - 8192 GPU

With support for 2048 - 8192
GPUs, the Juniper
QFX5240-64CDs can be used as
Spine and leaf devices to achieve
appropriate scale. This 3-stage, rail-
based fabric design provides
physical connectivity to 16 Stripes
from 64 Spines and 1024 leaf
nodes, maintaining a 1:1
subscription throughput model.

Large

8192 - 32768 GPU

For infrastructures supporting more
than 8192 GPUs, the Juniper
PTX1000x Chassis spine and
QFX5240 leaf nodes can support
up to 32768 GPUs. This 3-stage,
rail-based fabric design provides
physical connectivity to 64 Stripes
from 64 Spines and 4096 leaf
nodes, maintaining a 1:1
subscription throughput model.
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Juniper continues in its rapid innovation for increased scalability and low Job Completion Times in Al
network fabrics with our recently introduced QFX5240 TH5 switch, delivering 64 ports of high-density
800GDbE ports in a 2U fixed form factor with software to provide advanced network services tuned to
the specific needs of Al workloads. These advanced services include Selective Load Balancing, Global
Load Balancing, ISSU Fast Boot, Reactive Path Balancing, and more.

Juniper Hardware and Software Components

For this solution design, the Juniper products and software versions are below. The design documented
in this JVD is considered the baseline representation for the validated solution. As part of a complete
solutions suite, we routinely swap hardware devices with other models during iterative use case testing.
Each switch platform validated in this document goes through the same rigorous role-based testing
using specified versions of Junos OS and Apstra management software.

I Juniper Hardware Components

The following table summarizes the switches tested and validated by role for the Al Data Center
Network with Juniper Apstra JVD.

Table 19: Validated Devices and Positioning
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https://www.juniper.net/us/en/products/switches/qfx-series/qfx5240-data-center-switches.html
https://www.juniper.net/documentation/us/en/software/nce/load-balancing-in-data-center/load-balancing-in-data-center.pdf

Solution

Frontend Fabric

GPU Backend Fabric

Storage Backend Fabric

Leaf Switches

QFX5130-32CD

QFX5230-64CD (CLUSTER 1-STRIPE
1)

QFX5220-32CD (CLUSTER 1-STRIPE
2)

QFX5240-640D (CLUSTER 2)

QFX5220-32CD

Spine Switches

QFX5130-32CD

QFX5230-64CD (CLUSTER 1)

PTX10008 JNP10K-LC1201
(CLUSTER 1)

QFX5240-64CD (CLUSTER 2)

QFX5220-32CD

Juniper Software Components

The following table summarizes the software versions tested and validated by role.

Table 20: Platform Recommended Release

Platform

QFX5130-32CD

QFX5130-32CD

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

QFX5230-64CD

QFX5230-64CD

QFX5240-64CD

QFX5240-64CD

Role

Frontend Leaf

Frontend Spine

Storage Backend Leaf

Storage Backend Spine

GPU Backend Leaf

GPU Backend Leaf

GPU Backend Spine

GPU Backend Leaf

GPU Backend Spine

Junos OS Release

23.43R2-S3

23.43R2-S3

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D20



(Continued)
Platform Role Junos OS Release

PTX10008 with LC1201 GPU Backend Spine 23.4R2-S3

IP Services for Al Networks

As described in the next few sections, various strategies can be employed to handle traffic congestion in
the Al network.

Congestion Management

Al clusters pose unique demands on network infrastructure due to their high-density, and low-entropy
traffic patterns, characterized by frequent elephant flows with minimal flow variation. Additionally, most
Al modes require uninterrupted packet flow with no packet loss for training jobs to be completed.

For these reasons, when designing a network infrastructure for Al traffic flows, the key objectives
include maximum throughput, minimal latency, and minimal network interference over a lossless fabric,
resulting in the need to configure effective congestion control methods.

Data Center Quantized Congestion Notification (DCQCN), has become the industry-standard for end-
to-end congestion control for RDMA over Converged Ethernet (RoCEv2) traffic. DCQCN congestion
control methods offer techniques to strike a balance between reducing traffic rates and stopping traffic
all together to alleviate congestion, without resorting to packet drops.

DCQCN combines two different mechanisms for flow and congestion control:
e Priority-Based Flow Control (PFC), and
e Explicit Congestion Notification (ECN).

Priority-Based Flow Control (PFC) helps relieve congestion by halting traffic flow for individual traffic
priorities (IEEE 802.1p or DSCP markings) mapped to specific queues or ports. The goal of PFC is to stop
a neighbor from sending traffic for an amount of time (PAUSE time), or until the congestion clears. This
process consists of sending PAUSE control frames upstream requesting the sender to halt transmission
of all traffic for a specific class or priority while congestion is ongoing. The sender completely stops
sending traffic to the requesting device for the specific priority.



While PFC mitigates data loss and allows the receiver to catch up processing packets already in the
gueue, it impacts performance of applications using the assigned queues during the congestion period.
Additionally, resuming traffic transmission post-congestion often triggers a surge, potentially
exacerbating or reinstating the congestion scenario.

We recommend configuring PFC only on the QFX devices acting as spine nodes.

Explicit Congestion Notification (ECN), on the other hand, curtails transmit rates during congestion
while enabling traffic to persist, albeit at reduced rates, until congestion subsides. The goal of ECN is to
reduce packet loss and delay by making the traffic source decrease the transmission rate until the
congestion clears. This process entails marking packets with ECN bits at congestion points by setting the
ECN bits to 11 in the IP header. The presence of this ECN marking prompts receivers to generate
Congestion Notification Packets (CNPs) sent back to source, which signal the source to throttle traffic
rates.

Combining PFC and ECN offers the most effective congestion relief in a lossless IP fabric supporting
RoCEv2, while safeguarding against packet loss. To achieve this, when implementing PFC and ECN
together, their parameters should be carefully selected so that ECN is triggered before PFC.

Load Balancing

The fabric architecture used in this JVD for both the Frontend and backend follows the 2-stage clos
design, with every leaf node connected to all the available spine nodes, and via multiple interfaces. As a
result, multiple paths are available between the leaf and spine nodes to reach other devices.

Al traffic characteristics may impede optimal link utilization when implementing traditional Equal Cost
Multiple Path (ECMP) Static Load Balancing (SLB) over these paths. This is because the hashing
algorithm which looks at specific fields in the packet headers will result in multiple flows mapped to the
same link due to their similarities. Consequently, certain links will be favored, and their high utilization
may impede the transmission of smaller low-bandwidth flows, leading to potential collisions, congestion
and packet drops. To improve the distribution of traffic across all the available paths either Dynamic
Load Balancing (DLB) or Global Load Balancing (GLB) can be implemented instead.

For this JVD Dynamic Load Balancing flowlet-mode was implemented on all the QFX leaf and spines
nodes. Additional testing was conducted on the QFX5240-640D in the "GPU Backend Fabric cluster 2"
on page 11, to evaluate the benefits of Selective Dynamic Load Balancing, Reactive path rebalancing,
and Global Load Balancing.

NOTE: These load balancing mechanisms are only available on the QFX devices.


https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet-switches/topics/topic-map/switches-interface-load-balancing.html#id-understanding-dynamic-load-balancing
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/dlb-selective.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/glb.html

Dynamic Load Balancing (DLB)

DLB ensures that all paths are utilized more fairly, by not only looking at the packet headers, but also
considering real-time link quality based on port load (link utilization) and port queue depth, when
selecting a path. This method provides better results when multiple long-lived flows moving large
amounts of data need to be load balanced.

DLB can be configured in two different modes:

e e Per packet mode: packets from the same flow are sprayed across link members of an IP ECMP
group, which can cause packets to arrive out of order.

¢ Flowlet Mode: packets from the same flow are sent across a link member of an IP ECMP group. A
flowlet is defined as bursts of the same flow separated by periods of inactivity. If a flow pauses
for longer than the configured inactivity timer, it is possible to reevaluate the link members
quality, and for the flow to be reassigned to a different.

Some enhancements have been introduced for the QFX5230s and QFX5240s in recent versions of
Junos OS.

e Selective Dynamic Load Balancing (SDLB): allows implementing DLB only to certain traffic. This
feature is only supported on QFX5230-64CD, QFX5240-640D, and QFX5240-64QD, starting in
Junos OS Evolved Release 23.4R2, at the time this document publication.

e Reactive path rebalancing : allows a flow to be reassigned to a different (better) link, when the
current link quality deteriorates, even if no pause in the traffic flow has exceeded the configured
inactivity timer. This feature is only supported on QFX5240-640D, and QFX5240-64QD, starting in
Junos OS Evolved Release 23.4R2, at the time this document publication.

Global load balancing (GLB):

GLB is an improvement on DLB which only considers the local link bandwidth utilization. GLB on the
other hand, has visibility into the bandwidth utilization of links at the next-to-next-hop (NNH) level. As a
result, GLB can reroute traffic flows to avoid traffic congestion farther out in the network than DLB can
detect.

NOTE: Each Language model will have a different traffic profile and characteristics, and
therefore, class of service will need to be tuned to the specific model or models in use.
Introduction to Congestion Control in Juniper Al Networks explores how to build a lossless fabric
for Al workloads using DCQCN (ECN and PFC) congestion control methods and DLB. The


https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/dlb-selective.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html
https://www.juniper.net/documentation/us/en/software/nce/congestion-control-ai-ml/congestion-control-ai-ml.pdf

document was based on DLRM training model as a reference and demonstrates how different
congestion parameters such as ECN and PFC counters, input drops and tail drops can be
monitored to adjust configuration and build a lossless fabric infrastructure for RoCEv2 traffic.
Load Balancing in the Data Center provides a comprehensive deep dive into the various load-
balancing mechanisms and their evolution to suit the needs of the data center.

Configuration Walkthrough
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This section describes the steps to deploy one of the Al GPU Backend IP fabrics in the Al JVD lab, as an
example of how to deploy new fabrics, using Juniper Apstra.

These steps will cover the Al GPU Backend IP fabric is Cluster 1 which consists of QFX5230-64CD
switches in the spine role and QFX5230-64CD (stripe 1) and QFX5220-32CD (stripe 2) switches in the
GPU Backend leaf role along with associated NVIDIA GPU servers and WEKA storage devices.

Similar steps should be followed to set up the Frontend and Storage Backend fabrics, as well as the Al
GPU Backend IP fabric. The configurations for these are included in the Terraform repository described
in the next section.


https://s2.bl-1.com/h/dwpj6tJL?url=https://www.juniper.net/documentation/us/en/software/nce/load-balancing-in-data-center/load-balancing-in-data-center.pdf

The Apstra Blueprints for all the fabrics have been created in the JVD Al lab, as shown in Figure 18.

Figure 18: Al Fabric Blueprints in Apstra
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For more detailed information about installation and step-by-step configuration with Apstra, refer to the
Juniper Apstra User Guide. Additional guidance in this walkthrough is provided in the form of notes.

Apstra: Configure Apstra Server and Apstra ZTP Server

A configuration wizard launches upon connecting to the Apstra server VM for the first time. At this
point, passwords for the Apstra server, Apstra Ul, and network configuration can be configured.
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https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

Apstra: Onboard the devices into Apstra

There are two methods for adding Juniper devices into Apstra for management: manually or in bulk
using ZTP.

To add devices manually (recommended):
¢ In the Apstra Ul navigate to Devices >> Agents >> Create Offbox Agents:

e This requires that the devices are preconfigured with a root password, a management IP and proper
static routing if needed, as well as ssh Netconf, so that they can be accessed and configured by
Apstra.

To add devices via ZTP:
e From the Apstra ZTP server, follow the ZTP steps described in the Juniper Apstra User Guide.

To add the QFX switches into Apstra, first log into the Apstra Web Ul, choose the manual method of
device addition as per above, and provide the appropriate username and password matching those
preconfigured on the devices. Make sure the routers are configured accordingly.

NOTE: Apstra imports the configuration from the devices into a baseline configuration called
pristine configuration, which is a clean, minimal, and free of any pre-existing settings that could
interfere with the intended network design managed by Apstra. Apstra ignores the Junos
configuration ‘groups’ stanza and does not validate any group configuration listed in the
inheritance model, refer to the configuration groups usage guide. It is best practice to avoid
setting loopbacks, interfaces (except management interface), routing-instances (except
management-instance) or any other settings as part of this baseline configuration. Apstra sets the
protocols LLDP and RSTP when the device is successfully Acknowledged.

Onboarding devices

To onboard the devices, follow these steps:

1) Apstra Web Ul: Create Agent Profile

For the purposes of this JVD, the same username and password are used across all devices. Thus, only
one Apstra Agent Profile is needed to onboard all the devices, making the process more efficient.


https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

To create an Agent Profile, navigate to Devices >> Agent Profiles and then click on Create Agent Profile.

Figure 19: Creating an Agent Profile in Apstra

Create Agent Profile

Profile Parameters.

Open Options ()

2) Apstra Web Ul: Add Range of IP Addresses for Onboarding Devices

An IP address range can be provided to bulk onboard devices in Apstra. The ranges shown in the
example below are shown for demonstration purposes only.

To onboard devices, navigate to Devices >> Agents and then click on Create Offbox Agents.

Figure 20: Adding a Range of IP Addresses in Apstra
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Username (will be taken from profile)
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Password (will be taken from profile)
Set password?
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3) Apstra Web Ul: Acknowledge Managed Devices for Use in Apstra

Blueprints

Once the offbox agent creation has been successfully executed for each device, the devices must be
acknowledged by the user to complete the onboarding and make them part of the Apstra Blueprints.
This moves the device state from OOS-QUARANTINE to OOS-READY.

Figure 21: Acknowledging Managed Devices in Apstra Blueprints
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I Apstra: Fabric Provisioning

The following steps outline the provisioning of the GPU Backend Fabric with Apstra.

1) Apstra Web Ul: Create Logical Devices and Interface Maps with Device
Profiles

The GPU Backend fabric in Apstra uses a combination of QFX5230-64CD’s (stripe-1) and
QFX5220-32CD'’s (stripe-2) for the leaf nodes and QFX5230-64CD's for the spines. Logical Devices and
Interface Maps must be created for the two types of switches.

For the QFX5230-64CD leaf nodes, the Logical Device and Interface Map are shown in Figures 22 and
23:

Figure 22: Apstra Logical Device for the QFX5230 Leaf Nodes

7 & » Design Logical Devices + Al-LabLeaf Medium 30x400, 26x200 and 163400 v2

Upditing the logical device ports may not be allowed because it is referenced by Al-Lableaf Medium 30x400, 32x200 and 18x400_QFX5230-64CD v2 interface map.

Name

Al-Lableaf Medium 30x400, 26x200 and 16x400 v2

PANEL #1
Connected to

72 ports x 200 Gbps )0 Gb
Superspine » Spine » Leaf » Access e Superspine  Spine » Leaf » Access s Superspine » Spine » Leaf # Access . Superspine » Spine « Leaf » Access »
Peer o Unused « Generic Peer o Unused ¢ Generic Peer » Unused ¢ Generic Peer ¢ Unused o Generic

5] o] ]l <)
o[l ] =)
DEEEmn
5 | B

Figure 23: Apstra Interface Map for the QFX5230 Leaf Nodes
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v @ » Design » Interface Maps » Al-Lableaf Medium 30x400, 32x200 and 18x400__QFX5230-64CD v¥

Name Al-Lableaf Medium 30x400, 32x200 and 18x400_QFX5230-64CD v§
Logical device Al-Lableaf Medium 30x400, 26x200 and 16x400v2 #*
Device profile Juniper QFX5230-64CD 7

Interface map preview

Connected to=

46 x 400 Gbps 26 x 200 Gbp:
Superspine  Spine « Leaf  Access » Peer o Unused « Generic Superspine » Spine » Leaf  Access « Peer « Unused » Generic

[ [ o] fol o] |- [ESIRRIRRIREG] - | - | - | - [
0 I

SRl Tl - - |- [ [l
[ -] [SSelslaalas] ][] [o)

} Unused interfaces (5)

Logical Device Device Profile
EEE
gEE
gEEEn ]
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[ ]
=

For the QFX5220 leaf nodes, the Logical Device and Interface Map are shown in Figures 24 and 25:

Figure 24: Apstra Logical Device for the QFX5220 Leaf Nodes

= Juniper Apstra™ tr # » Design» Logical Devices » Al-LabLeaf Small 16x400, 16x200 and 8x400
£ Blueprints
= back to list
e Z ® ®
Updating the logical device ports may not be allowed because it is referenced by Al-LabLeaf Small 16x400, 16x200 and 8x400_ QFX5220-32CD interface map.
Name
Al-LablLeaf Small 14x400, 16x200 and 8x400
PANEL #1
Connected to ~
40 ports 16 x 200 Gbps
Superspine o Spine « Leaf « Access »  Superspine » Spine » Leaf » Access «
Peer s Unused » Generic Peer s Unused » Generic

Favorites

Figure 25: Apstra Interface Map for the QFX5220 Leaf Nodes
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Juniper Apstra™ 7 @ » Design  Interface Maps + Al-LabLeaf Small 16x400, 16x200 and 8x400__QFX5220-32CD
b, Eftapiors Name Al-LabLeaf Small 16x400, 16x200 and 8x400_QFX5220-32CD
Devices
Logical device Al-LabLeaf Small 16x400, 16x200 and 8x400 r*
Device profile Juniper_QFX5220-32CD &

Interface map preview

Cannected to~

24 x 400 Gbps 1 )0 Gb

Superspine » Spine » Leaf » Access » Peer » Unused » Generic Superspine » Spine « Leaf » Access » Peer » Unused » Generlc

1 A 1 1 0
I

» Unused interfaces (2)

Logical Device Device Profile

For the QFX5230 leaf nodes, the Logical Device and Interface Map are shown in Figures 26 and 27:

Figure 26: Apstra Logical Device for the QFX5230 Spine Nodes

ug Juniper Apstra™ ¢ 4 » Design» Logical Devices » Al-Spine 64x400

8 Blueprints

= back to list

® & ¥
Updating the logical device ports may not be allowed because it is referenced by Al-Spine 64x400_QFX5230-64CD interface map.
Name
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PANEL #1
Connectedta -

64 ports
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25 Extemal Systems

& Platiorm

Far

Figure 27: Apstra Interface Map for the QFX5230 Spine Nodes
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¢ # » Design » Interface Maps » Al-Spine 64x400_QFX5230-64CD

Name. Al-Spine 64x400_QFX5230-64CD

Intert revi
terface map preview ..

Connected to «

64 x 400 Gbps
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For the QFX5240 spine and leaf nodes, the Logical Device and Interface Map are shown in Figures
28-29 and 30-31 respectively.

NOTE: Even though the QFX5240s are not part of the fabric deployment example in this section,
we are including the Logical Device and Interface Map creation for the QFX5240s to highlight
the changes made to the port numbering in Junos OS Release 23.4R2, which requires completely
different logical devices and interface maps.

The following table shows the differences between the old and the new port mappings.

OLD PORT MAPPING (22.2X100

0 (8x100G) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 (unused) 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
32 (8x100G) 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
33 (unused) 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
NEW PORT MAPPING (23.4R2)

0 (8x100G) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
1 (2x400G or 1x800G) 5 13 17 21 25 29 33 37 41 45 49 53 57 61
2 (8x100G) 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
3 (2x400G or 1x800G) 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

The Logical Device and Interface Map included below were created following the new port mapping.

Figure 28: Apstra Logical Device for the QFX5240 Spine Nodes
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Figure 30: Apstra Interface Map for the QFX5240 Leaf Nodes
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% Juniper Apstra™ ¥r 4@ » Design » Logical Devices » Al-Lab-Leaf Rack1 64x800 5240 (New Port Profile)
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For the PTX10008 spine nodes also tested in cluster 1, the Logical Device and Interface Map are shown
in Figures 32-33.

Figure 32: Apstra Interface Map for the PTX Spine Nodes
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Figure 33: Apstra Logical Device for the PTX Spine Nodes
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2) Apstra Web Ul: Create Rack types and Template in Apstra for the GPU
Backend Fabric

Once the Logical Devices and Interface Maps are created, create the necessary rack types for the GPU
Backend fabric.
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The design requires two rack types: one with the QFX5230 leaf nodes (stripe 1) and another with the
QFX5220 leaf nodes (stripe 2).

For the sake of brevity, only the snippet of the QFX5230 rack type is shown in Figure 34.
Figure 34: Creating a Rack in Apstra

Edit Rack Type x

Summary
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Configuration Preview
Lea pology L
Lo Y ;)
" Lea1 1 Leat3 1 Leafs_1 Leaf7_1
Name” ... spocoo ©OOOGCOO O©OODGOO  OOOGOO
i Leaf2 1 Leatd 1 Leafé_1 Leafs_1
uuuuuuuuuuuuuuuuuuuuuuuu
Leaf Logical Device”  ggo0gg@e 00000906  ©O09EEOE 00000800
dgx.n100_1 hex 21001 hgx.a100.2 hex.2100.4
Iv2
008000 so00ppe
Links per spine (72 available) " Link speed " dgx_h100_2 hex_a100 3

Redundancy Protocol
© None MLAG ESI

Leaf |

Name "

Links per spine (72 available) * Link speed

400 Gbps

Once both the racks are ready, a Template is created in Apstra by navigating to Design -> Templates ->
Create Template.

The new Template references the QFX5230 and QFX5220 rack types created in the previous step, and
is deployed as a pure IP fabric, as shown in Figure 35.

Figure 35: Creating a Template in Apstra
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I 3) Apstra Web Ul: Create a Blueprint for GPU Backend Fabric

Once the Apstra Template is ready, create a Blueprint for the GPU Backend fabric by navigating to the
Blueprints and clicking on Create Blueprint as shown in Figure 36.

Figure 36: Creating a Blueprint in Apstra

“mz Juniper Apstra™ ir @& » Blueprints

8 Blueprints

B Devices § © Create Blueprint
deployment Root Build Build
Design Seatus Cavses Emors Warnings \

Provide a name for the new blueprint, select data center as the reference design, and select Rack-based.
Then select the template that was created in the previous step which will include the two rack types
that were created for the QFX5230 leaf nodes and the QFX5220 leaf nodes.
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Figure 37: New Blueprint Attributes in Apstra
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Template *

Al Cluster GPU Fabric - Medium x

Spine to Leaf Links Underlay Type
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Spine to Superspine Links
O Ipv4 1Pv6 RFC-5549 IPv4-Pvé Dual Stack

Once the blueprint is successfully initiated by Apstra, it will be included in the Blueprint dashboard as
shown below.

Figure 38: New Blueprint Added to Blueprint Dashboard

@  Blueprints

©

Q 1-4.0f 4

2
8
B
]
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Backend GPU Fabric

Deployment Status NA

Service Anamalies NIA

Probe Anomalies NA

Notice that the Deployment Status, Service Anomalies, Probe Anomalies and Root Causes all shown as
N/A. This is because you will need to complete additional steps that inlcudes mapping the different roles
in the blueprint to the physical devices, defining which interfaces will be used, etc.

When you click on the blueprint name and enter the blueprint dashboard it will indicate that the
blueprint has not been deployed yet.
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Figure 39: New Blueprint’s dashboard
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The Staged view as depicted in Figure 40 shows that the topology is correct, but attributes such as
mandatory ASNs and loopback addressing for the spines and the leaf nodes, and the spine to leaf links
addressing must be provided by the user.

Figure 40: Undeployed Blueprint Dashboard
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You will need to edit each one of these attributes and select from predefined pools of addresses and
ASNs, as shown in the example on Figure 41, to fix this issue.



Figure 41: Selecting ASN Pool for Spine Nodes
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You will also need to select Interface Maps for each devices’ role and along with assignment of system

IDs as shown in Figures 42-43.

Figure 42: Mapping Interface Maps to Spine Nodes

Update interface map for Al-Spine 64x400

| (4 )
- Q 1-20f2 Selection  Build
|
| o D 3
[ a
=
Mame & Interface Map & Device Profile E B 9
0 selected |
Manage Interface Maps ¢
spinel Al-Spine 64x400__QFX5230-64CD x Juniper QFX5230-64CD
AlSpine 64x400
| - ‘\ 12062
spine2 Al-Spine 64x400__QFX5230-64CD x Juniper_QFX5230-64CD 4
|
‘ Node Name S Device Profile &
Update Assignments | spine1
o |

FCTR /- LabLeaf Medium 323400,
32x200 and 16x400
Al-LabLeaf Small 16x400,
16x200 and 8x400
H100 Server GPU 8x200G
foptional)

PR AL00 Server GPU 8x200G
foptional)



48

Figure 43: Mapping Spine Nodes to Physical Devices (System IDs)
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Once all these steps are completed, you can commit all the changes and Apstra will generate and push
all the necessary vendor-specific configuration to the nodes. Once this has been completed you should
be able to view an active blueprint that represents the successfully deployed fabric as shown in Figure
44,

Figure 44: Mapping Spine Nodes to Physical Devices 2 (System IDs)
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Apstra Web Ul: Creating Configlets in Apstra for DCQCN and DLB

As of Apstra 4.2.1, features such as ECN and PFC (DCQCN), and DLB are not natively available. Thus, to

deploy the necessary configuration to enable these features on the fabric devices, Apstra Configlets are
used.

The configuration used for the DCQCN and DLB features on the QFX devices is as follows:

/* DLB configuration */
forwarding-options {
enhanced-hash-key {
ecmp-dlb {
flowlet;
ether-type {
ipv4;

}
hash-key {
family inet {
layer-3;
layer-4;

/* DCQCN configuration */
class-of-service {
classifiers {
dscp mydscp {
forwarding-class CNP {
loss-priority low code-points 110000;
}
forwarding-class NO-LOSS {

loss-priority low code-points 011010;

}
}
}
drop-profiles {
dp1 {

interpolate {
fill-level [ 55 90 1;



drop-probability [ @ 100 1;

}
shared-buffer {
ingress {
buffer-partition lossless {
percent 80;
}
buffer-partition lossless-headroom {
percent 10;
}
buffer-partition lossy {

percent 10;

}
egress {
buffer-partition lossless {
percent 80;
}
buffer-partition lossy {

percent 10;

}
forwarding-classes {

class CNP queue-num 3;

class NO-LOSS queue-num 4 no-loss pfc-priority 3;
}
congestion-notification-profile {

cnp {

input {
dscp {
code-point 011010 {
pfc;

}
output {
ieee-802.1 {
code-point 011 {

flow-control-queue 4;



}
}
}
interfaces {
et-* {
congestion-notification-profile cnp;
scheduler-map smi;
unit * {
classifiers {
dscp mydscp;
}
}
}
}
scheduler-maps {
sml {
forwarding-class CNP scheduler s2-cnp;
forwarding-class NO-LOSS scheduler si;
}
}
schedulers {
s1 {
drop-profile-map loss-priority any protocol any drop-profile dpl;
explicit-congestion-notification;
}
s2-cnp {
transmit-rate percent 5;
priority strict-high;
}
}

The configuration used for the DCQCN features on the PTX10008 as spine devices is as follows:

/* DCQCN configuration */
class-of-service {
classifiers {
dscp mydscp {
forwarding-class rdma-cnp {

loss-priority low code-points 110000;



forwarding-class rdma-ecn {

loss-priority low code-points 011010;

}

drop-profiles {

dp-ecn {
fill-level 1 drop-probability @;
fill-level 3 drop-probability 100;
}

}

forwarding-classes {

class network-control queue-num 3;

class other queue-num 2;

class rdma-cnp queue-num 0;

class rdma-ecn queue-num 1 no-loss;

}

monitoring-profile {

mp1 {
export-filters filt1 {
peak-queue-length {
percent 0;
}
queue [ 0 1 1;
}
}
}
interfaces {
et-* {
scheduler-map sched-map-aiml;
monitoring-profile mp1;
unit * {
classifiers {
dscp mydscp;
}
}
}
}

scheduler-maps {
sched-map-aiml {
forwarding-class network-control scheduler sched-nc;
forwarding-class other scheduler sched-other;

forwarding-class rdma-cnp scheduler sched-cnp;



forwarding-class rdma-ecn scheduler sched-ecn;

}
schedulers {
sched-cnp {
transmit-rate percent 1;
priority high;

}

sched-ecn {
transmit-rate percent 97;
buffer-size temporal 4063;
priority medium-high;
drop-profile-map loss-priority any protocol any drop-profile dp-ecn;
explicit-congestion-notification;

}

sched-nc {
transmit-rate percent 1;
priority medium-high;

}

sched-other {
priority low;

To create the DCQCN configlets navigate to Design -> Configlets -> Create Configlet, and click on
Create configlet.

Provide a name for the config, select the operating system, vendor and configuration mode and paste
the above configuration snippet on the template text box as shown below:

Figure 45: DCQCN Configlet Creation in Apstra
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The configlet should be applied to the devices, both leaf and spine roles within the blueprint. Navigate
back to the blueprint dashboard and the move to Staged -> Catalog -> Import. Select the configlet you
want to apply, and the device role where you want to apply it.

Figure 46: Applying DCQCN Configlets to Devices in Apstra
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After successfully importing the configlet into the blueprint it should be listed in the catalog. You need
to commit the changes for the configuration to be deployed to the devices.



Figure 47: Applying DCQCN Configlets to Devices in Apstra
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NVIDIA® ConnectX® family of network interface cards (NICs) offer advanced hardware offload and
acceleration features, and speeds up to 400G, supporting both Ethernet and Infiniband protocols.

Always refer to the official manufacturer documentation when making changes. This section provides
some guidelines based on the Al JVD lab testing.

Converting NVIDIA ConnectX NICs from Infiniband to Ethernet

By default, the NVIDIA ConnectX NICs are set to operate as Infiniband interfaces and must be
converted to Ethernet using the mixconfig tool.

1) Check the status of the ConnectX NICs using sudo mst status.

NOTE: Mellanox Software Tools (MST) is part of the Mellanox firmware tools suite and can be
used to manage and interact with Mellanox network adapters.

user@A100-01:/dev/mst$ sudo mst -h
Usage:
/usr/bin/mst {start|stop|status|remote|server|restart|save|load|rm|add|help|version|gearbox|
cable} Type "/usr/bin/mst help" for detailed help
user@A100-01:/dev/mst$ sudo mst status | egrep "module|load"
MST modules:
MST PCI module loaded
MST PCI configuration module loaded

Start the mst service or load the mst modules if necessary.



Example:

user@H100-01:~$ sudo mst start
Starting MST (Mellanox Software Tools) driver set
Loading MST PCI module - Success
[warn] mst_pciconf is already loaded, skipping
Create devices
Unloading MST PCI module (unused) - Success
user@A100-01:~/scripts$ sudo mst status
MST modules:

MST PCI module is not loaded

MST PCI configuration module loaded

The example shows “MST PCl module is not loaded”. To load it, use the command modprobe mst_pci.

user@A100-01:/dev/mst$ sudo modprobe mst_pci
user@A100-01:/dev/mst$ sudo mst status
MST modules:

MST PCI module loaded
MST PCI configuration module loaded

2) Identify the interface that you want to convert.

This sudo mst status -v command will provide a list of Mellanox devices (ConnectX-6 and ConnectX-7
NICs) detected on the system, along with their type, Mellanox device name, PCl addresses, RDMA
interface name, NET interface name, and NUMA ID, as shown in the example below:

user@A100-01:/dev/mst$ sudo mst status -v

MST modules:

MST PCI module loaded
MST PCI configuration module loaded

PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
ConnectX7(rev:0) /dev/mst/mt4129_pciconf7.1 cb:00.1 mlx5_13 net-eth13 1



ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX7(rev:
ConnectX6DX(rev:0)
ConnectX6DX(rev:0)
ConnectX6(rev:

ConnectX6(rev:

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

0)
0)

/dev/mst/mt4129_pciconf7

/dev/mst/mt4129_pciconf6.

/dev/mst/mt4129_pciconf6

/dev/mst/mt4129_pciconf5.

/dev/mst/mt4129_pciconf5

/dev/mst/mt4129_pciconf4.

/dev/mst/mt4129_pciconf4

/dev/mst/mt4129_pciconf3.

/dev/mst/mt4129_pciconf3

/dev/mst/mt4129_pciconf2.

/dev/mst/mt4129_pciconf2

/dev/mst/mt4129_pciconf1.

/dev/mst/mt4129_pciconf1

/dev/mst/mt4129_pciconf@.

/dev/mst/mt4129_pciconf0

/dev/mst/mt4125_pciconf@.

/dev/mst/mt4125_pciconf0

/dev/mst/mt4123_pciconf@.

/dev/mst/mt4123_pciconf0

Cable devices:

mt4129_pciconf7_cable_0
mt4129_pciconf6_cable_0
mt4129_pciconf5_cable_0
mt4129_pciconf4_cable_0
mt4129_pciconf3_cable_0
mt4129_pciconf2_cable_0
mt4129_pciconf1_cable_0
mt4129_pciconf@_cable_0
mt4125_pciconf@_cable_0
mt4123_pciconf@_cable_0

—_

—_

—_

—_

—_

—_

—_

—_

—_

cb:
c8:
c8:
8e:
8e:
8b:
8b:
52:
52:

51
51
1"
"

Oe:
Oe:
2c:
2c:
a9g:
a9:

00.
00.
00.
00.
00.
00.
00.
00.
00.
:00.
:00.
:00.
:00.
00.
00.
00.
00.
00.
00.

mlx5_12
mlx5_11
mlx5_10
mlx5_19
mlx5_18
mlx5_17
mlx5_1
mlx5_3
mlx5_2
mlx5_1
mlx5_0
mlx5_9
mlx5_8
mlx5_7
mlx5_6
mlx5_5
mlx5_4
mlx5_15
mlx5_14

For the first interface in the list, you can identify the following:

¢ Type = ConnectX7(rev:0)

net-gpu6_eth
net-enp200s0f1np1
net-gpu7_eth
net-eth19
net-gpu5_eth
net-enp139s0finp1
net-gpud_eth
net-enp82s0finpl
net-gpu3_eth
net-enp81s0finpl
net-gpu2_eth
net-enp17s0finpl
net-gpul_eth
net-enp14s0finpl
net-gpud_eth
net-enp44s0finpl
net-mgmt_eth
net-eth15

net-weka_eth

Mellanox device name = mt4129_pciconf7 (/dev/mst/mt4129_pciconf7)

PCI addresses = ¢b:00.0

RDMA interface name = mix5_12

NET interface name = net-gpué_eth

- O©O © © © ©O O 0o oo o @«

—_



e NUMA=1

Notice that for some of the interfaces the name follows the standard Linux interface naming scheme
(e.g. net-enp14s0finp1), while others do not (e.g. net-gpuO_eth). The interface names that do not follow
the standard are user defined names for easy identification purposes. That means the default name was
changed in the /etc/netplan/. We will show an example of how to do this later in this section.

3) Identify what mode a given interface is running using
mixconfig -d <device> query

EXAMPLE:

user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7 query | grep LINK_TYPE
LINK_TYPE_P1 1B(1)
LINK_TYPE_P2 IB(1) <= indicates link is operating in Infiniband mode

Notice that you need to use the Mellanox device name, including the path (/dev/mst/mt4129 _pciconf7).
Also, LINK_TYPE_P1 and LINK_TYPE_P2 refer to the two physical ports in a dual-port Mellanox adapter.
4) If an interface is operating in Infiniband mode, you can change the mode for ethernet mode using
mixconfig -d <device> set [LINK_TYPE_P1=<link_type>] [LINK_TYPE_P2=<link_type>]

EXAMPLE:

user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7 set LINK_TYPE_P1=2
LINK_TYPE_P2=2

Device #1:

Device type: ConnectX7

Name : MCX755106AS-HEA_Ax

Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-

port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot Enabled
Device: /dev/mst/mt4129_pciconf7

Configurations: Next Boot New
LINK_TYPE_P1 ETH(2) ETH(2)
LINK_TYPE_P2 ETH(2) ETH(2)

Apply new Configuration? (y/n) [n] : y

Applying... Done!

-I- Please reboot machine to load new configurations.

user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7 query | grep LINK_TYPE



LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2) <= indicates link is operating in Ethernet mode

Again, notice that you need to use the Mellanox device name, including the path (/dev/mst/
mt4129_pciconf7).

NOTE: Changes via mixconfig require the box to be power cycled.

To check the status of the interface you can use the mixlink:

user@A100-01:/dev/mst$ sudo mlxlink -d /dev/mst/mt4129_pciconf4

Operational Info

State : Active

Physical state : LinkUp

Speed 1 2006

Width : 4X

FEC : Standard_RS-FEC - (544,514)
Loopback Mode : No Loopback

Auto Negotiation : ON

Supported Info

Enabled Link Speed (Ext.) : 0x00003ff2
(200G_2X,200G_4X,100G_1X,100G_2X, 100G_4X,50G_1X, 50G_2X, 40G, 25G, 10G, 1G)
Supported Cable Speed (Ext.) : 0x000017f2

(200G_4X,100G_2X,100G_4X,50G_1X,50G_2X, 40G, 25G, 10G, 1G)
Troubleshooting Info

Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed

Tool Information

Firmware Version : 28.39.2048
amBER Version 2 2.22
MFT Version : mft 4.26.0-93

For more details, you can refer to:

HowTo Find Mellanox Adapter Type and Firmware/Driver version (Linux) (nvidia.com)


https://enterprise-support.nvidia.com/s/article/howto-find-mellanox-adapter-type-and-firmware-driver-version--linux-x

Firmware Support and Downloads - Identifying Adapter Cards (nvidia.com)

Identifying NICs and GPUs mappings and assigning the appropriate
interface name

NICs can be used by any GPU at any time; it is not hard coded that a given GPU can only communicate
with the outside world using a specific NIC card. However, there are preferred communication paths
between GPUs and NICs, which in some cases could be seen as a 1:1 correspondence between them.
This will be shown in the steps below.

NCCL (NVIDIA Collective Communications Library) will choose the path that has the best connection
from a given GPU to one of the NICs.

To identify the paths selected by NCCL and what the best path between a GPU and a NIC is, follow
these steps:

Use the nvidia-smi topo -m command, which displays topological information about the system, to
identify the connection type between GPUs and NICs:

EXAMPLES:
e DGX H100:

Figure 48. Nvidia H100 System Management Interface (SMI) system topology information
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Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
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https://network.nvidia.com/support/firmware/identification/
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System Management Interface SMI | NVIDIA Developer
Based on our research:

Table 21: Performance per connection type

Connection Type Description Performance
PIX PCle on the same switch Good

PXB PCle through multiple switches, but  Good
not host bridge

PHB PCle switch and across a host OK
bridge on the same NUMA - uses
CPU

NODE PCle switch and across multiple Bad
host bridge on the same NUMA

SYS PCle switch and across QPI/UPI Very Bad
bus between NUMA nodes - uses
CPU

NV# NVLink Very Good

e HGX A100:

Figure 49. Nvidia A100 System Management Interface (SMI) system topology information
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https://developer.nvidia.com/system-management-interface

I Identify PBX Connections
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If you focus on the highlighted sections of the nvidia-smi output, you can see that for each GPU there is
one or more NIC connection(s) of type PXB. This is the preferred “direct” path from each GPU to a given
NIC. That means, when the GPU needs to communicate to a remote device, it will use one of these

specific NICs, as the first option.

e DGX H100:

Figure 50. Nvidia H100 System Management Interface (SMI) system topology PBX connections
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Figure 51. Nvidia A100 System Management Interface (SMI) system topology PBX connections
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NOTE: These paths are fixed.

You can also find these mappings in Nvidia’s A100 or H100 user guides.

For example, on an DGX H100/H200 System the port mappings according to the NVIDIA's DGX H100/
H200 System User Guide table 5 and table 6 is as follows:

Table 22: GPU to NIC Mappings

Port ConnectX GPU Default RDMA NIC

OSFP4P2 CX1 0 ibp24s0 mix5_0 NICO
OSFP3P2 CX3 1 ibp64s0 mix5_3 NIC3
OSFP3P1 CX2 2 ibp79s0 mix5_4 NIC4


https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#id6
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#id6

(Continued)

Port
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Table 23: GPU to NIC Connections
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For more information and for the mappings on the A100 systems check:
Introduction to the NVIDIA HGX A100 System — NVIDIA HGX A100 User Guide 1 documentation

Introduction to NVIDIA DGX H100/H200 Systems — NVIDIA DGX H100/H200 User Guide 1
documentation

Changing NIC attributes

The following sections describe how to change NIC attributes.


https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#dgx-h100-200-system-topology
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#dgx-h100-200-system-topology

How to Change a NIC'’s Interface Name, and Assign IP Addresses and

Routes

NIC attributes such as the IP address or the interface name can be made by editing and reapplying the

netplan.

The network configuration is described in the file: /etc/netplan/01-netcfg.yaml as shown in the example
table below. Any attribute changes involve editing this file and reapplying the network plan as will be

shown in the examples later in this section.

Table 24: Nvidia HGX A100 interface configuration example:

netcfg.yaml output

jvd@A100-01:/etc/netplan$ more 01-netcfg.yaml

# This is the network config written
by 'subiquity’

network:

version: 2

ethernets:

mgmt_eth:

match:

macaddress: 7c:c2:55:42:b2:28

dhcp4: false

addresses:

-10.10.1.0/31

nameservers:

addresses:

-8.8.8.8

gpuO_eth:

match:

macaddress: 94:6d:ae:54:72:22

dhcp4: false

mtu: 9000

addresses:

- 10.200.0.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.0.254

from: 10.200.0.8

set-name: gpuQ_eth

gpul_eth:

gpué_eth:

match:

macaddress: 94:6d:ae:5b:28:70

dhcp4: false

mtu: 9000

addresses:

-10.200.4.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.4.254

from: 10.200.4.8

set-name: gpu4_eth

gpu5_eth:



(Continued)

netcfg.yaml output

routes:

- to: default

via: 10.10.1.1

set-name: mgmt_eth

weka_eth:

match:

macaddress: b8:3f:d2:8b:68:e0

dhcp4: false

mtu: 9000

addresses:

-10.100.1.0/31

routes:

- to: 10.100.0.0/22

via: 10.100.1.1

set-name: weka_eth

match:

macaddress: 94:6d:ae:5b:01:d0

dhcp4: false

mtu: 9000

addresses:

-10.200.1.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.1.254

from: 10.200.1.8

set-name: gpul_eth

gpu2_eth:

match:

macaddress: 94:6d:ae:5b:28:60

dhcp4: false

mtu: 9000

addresses:

- 10.200.2.8/24

routes:

match:

macaddress: 94:6d:ae:5b:27:f0

dhcp4: false

mtu: 9000

addresses:

-10.200.5.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.5.254

from: 10.200.5.8

set-name: gpu5_eth

gpué_eth:

match:

macaddress: 94:6d:ae:54:78:e2

dhcp4: false

mtu: 9000

addresses:

- 10.200.6.8/24

routes:



(Continued)

netcfg.yaml output

- to: 10.200.0.0/16

via: 10.200.2.254

from: 10.200.2.8

set-name: gpu2_eth

gpu3_eth:

match:

macaddress: 94:6d:ae:5b:01:e0

dhcp4: false

mtu: 9000

addresses:

-10.200.3.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.3.254

from: 10.200.3.8

set-name: gpu3_eth

- to: 10.200.0.0/16

via: 10.200.6.254

from: 10.200.6.8

set-name: gpué_eth

gpu7_eth:

match:

macaddress: 94:6d:ae:54:72:12

dhcp4: false

mtu: 9000

addresses:

-10.200.7.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.7.254

from: 10.200.7.8

set-name: gpu7_eth

To Map an Interface Name to a Specific NIC (Physical Interface)

Map the interface name to the MAC of the physical interface in the configuration file:



Figure 53. Nvidia A100 physical interface identification example

user@AlOO—Ol:/etc/netglan$ ifconfig | grep enp
Enp20350£inpl: flags—4099<UP,BROADCAST ,MULTICAST> mtu 1500

user@Al100-01:/etc/netplan$ ifconfig enp203s0flnpl
enp203s0£finpl: flags=4099<UP,BROADCAST  MULTICAST> mtu 1500
ether 94:6d:ae:54:78:e3 txqueuelen 1000 (Ethernet)
RX packets 0 _bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enp203s0£f1np. <= default logical interface name with MAC =94:6d:ae:54:78:e3,

2 <

where:

en = ethernet network interface.

p203s0 = physical location of the network interface.
203 bus number.

sO = slot number O on the bus.

f1 = function number 1 for the network interface.

npl = Network Port 1.

enpds18t1 pci @089:04:0a.1

| | | domain <- 9060

|
| |
| |
en| | | --> ethernet
L |
pa| | --> prefix/bus number (4) <-- 84 |
| | |
s1@8| --» slot/device number (10) <-- 16 |
| |
f1 --> function number (1) {-- 1

Function O: Might be the primary Ethernet interface.
Function 1: Might be a second Ethernet interface.
Function 2: Might be a management or diagnostics interface.

Figure 54. Nvidia A100 netplan file modification example



==—Ore——=
new _interface:
" match:|
macaddress: 94:6d:ae:54:78:e3
dhébﬂ: false
mtu: 9000
addresses:
- 10.200.16.1/24
routes:
- to: 10.200.0.0/16
via: 10.200.16.254
from: 10.200.16.1
set-name: QEWITTACETNaNe <= new logical interface name with MAC =94:6d:ae:54:78:e3
—— INSERT -

You can find the names of all the logical interfaces on the devnames file:

user@A100-01:/etc/network$ more devnames

enp139s0fonp@:Mellanox Technologies MT2910 Family [ConnectX-7]
enp139s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]
enp142s0fonp0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp142s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]
enp14s0fOnp0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp14s0finpl:Mellanox Technologies MT2910 Family [ConnectX-7]
enp17s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp17s0f1npl:Mellanox Technologies MT2910 Family [ConnectX-7]
enp200s0fonp0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp200s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]
enp203s0fonp0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp203s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]
enp44s0f0:Intel Corporation Ethernet Controller X710 for 10GBASE-T
enp44s0f1:Intel Corporation Ethernet Controller X710 for 10GBASE-T
enp44s0f2:Intel Corporation Ethernet Controller X710 for 10 Gigabit SFP+
enp44s0f3:Intel Corporation Ethernet Controller X710 for 10 Gigabit SFP+
enp81s0f@np@:Mellanox Technologies MT2910 Family [ConnectX-7]
enp81s@finpl:Mellanox Technologies MT2910 Family [ConnectX-7]
enp82s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]
enp82s0finpl:Mellanox Technologies MT2910 Family [ConnectX-7]
ibp169s0f@:Mellanox Technologies MT28908 Family [ConnectX-6]
ibp169s0f1:Mellanox Technologies MT28908 Family [ConnectX-6]

Apply the changes using the netplan apply command

Figure 55. Nvidia A100 netplan application example
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user@Al00-01:/etc/netplan$ sudo ip link set dev enp203s0flnpl down

user@Al00-01:/etc/netplan$ ifconfig enp203s0flnpl
enp203s0flnpl: error fetching interface information: Device not found

user@AlOO—Ol:/etc/netglan$ sudo netplan apply

user@Al100-01:/etc/netplan$ ifconfig new iface name
: flags=4099<UP, BROADCAST, MULTICAST> % 9000
ether 94:6d:ae:54:78:e3 txgqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

I To Change the NIC Name

Change the value of set-name in the configuration file and save the changes:

Figure 56. Nvidia A100 netplan interface name change example



jvd@A100-01:/ete/netplan$ ifconfig gpuld eth <= current name
gpul_eth: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 5000

inet 10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255
ineté feB0::966d:aeff:fe54:7222 prefixlen 64 gcopeid 0x20<link>

ether 94:6d:2e:54:72:22 txqueuelen 1000 (Ethernet)

RX packets 2079477652 bytes 17618315023885 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0

TX packets 2082335255 bytes 17741532549214 (17.7 TB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0O

jvd@AlOO—Ol:/gﬁg/neEBlanS vi Ol-netcfg.yaml
—-——-more—-—-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.8/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8

set—name: 1= current name

jvdeal100-01:/ete/netplan$ cat Ol-netcfg.yaml
-——more——-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcp4: false
mtu: 5000
addresses:
- 10.200.0.8/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8

set-name: gpul eth0 <= new name

i

Apply the Changes Using the netplan apply command

Figure 57. Nvidia A100 netplan interface name change application and verification example
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Figure 45. Nvidia A100 netplan interface name change application and verification example

user@A100-01:/etc/netplan$ sudo netplan apply

user@Al100-01:/etc/netplan$ ifconfig gpul eth0 <= new name
gpul0_eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 9000
inet 10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255
inet6 feB0::966d:aeff:feb4:7222 prefixlen 64 scopeid 0x20<1link>
ether 94:6d:ae:54:72:22 txgueuelen 1000 (Ethernet)
RX packets 2079477704 bytes 17618315028610 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame O
TX packets 2082335268 bytes 17741532551122 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

To Change the Current IP Address or Assign an IP Address to the NIC

Change or add the address under the proper interface in the configuration file, and save the changes:

Figure 58. Nvidia A100 netplan interface IP address change example

user@Al100-01:/etc/netplan$ ifconfig gpul_eth
gpuO eth0: flags=4163<UP,.BROADCAST, RUNNING, MULTICAST> mtu 9000
10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255 <= current IP address
1net6 - feB0::966d:aeff:fe54:7222 Qreflxlen 64 scogeld 0x20<1ink>
ether 94:6d:2e:54:72:22 txgueuelen 1000 (Ethernet)
RX packets 2079477704 bytes 17618315028610 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0
TX packets 2082335268 bytes 17741532551122 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

user@thO—Ul:/g&g/netglan$ vi Ol-netcfg.yaml
——-mnore—-—-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcpd: false
mtu: 9000
addresses:
- 10:200.0.8/24 <= current IP address

user@Al00-01:/etc/netplan$ vi Ol-netcfg.yaml
———-more-—-—-
gpul eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcpd: false
mtu: 9000
addresses:
- 10.200.0.18/24 <= new IP address

Wd

Enter the IP addresses preceded with a hyphen and indented; make sure to add the subnet mask.
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Apply the Changes Using the netplan apply Command

Figure 59. Nvidia A100 netplan interface new IP address application and verification example

user@Al00-01:/etc/netplan$ sudo netplan apply

user@A100-01:/etc/netplan$ ifconfig gpul_eth
gpul_eth: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 9000
inet 10.200.0.18 netmask 255.255.255.0 broadcast 10.200.0.255 <=new IP address
inet6 feB80::966d:aeff:feb4:7222 prefixlen 64 scopeid 0x20<link>
ether 94:6d:a2e:54:72:22 txqueuelen 1000 (Ethernet)
RX packets 2079478284 bytes 17618315075628 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0
TX packets 2082335328 bytes 17741532561365 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

I To Change or Add Routes to the NIC

Change or add the routes under the proper interface in the configuration file and save the changes.

Figure 60. Nvidia A100 netplan additional routes example

jvd@A100-02:~$% route | grep gpu0

<= current routes

jvd@A100-01:/etc/netplan$ vi Ol-netcfg.yaml
—-—-more---
gpul_eth:
match:
macaddress: 94:6d:2e:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.8/24

routes:

set-name: gpu0_eth

jvd@al100-01:/etc/netplan$ vi Ol-netcfg.yaml
—-—-more---
gpu0 eth:
match:
macaddress: 94:6d:2e:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.18/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8
- to: 10.100.0.0/16
via: 10.200.0.254 <= new route

set-name: gpul _eth

Apply the changes using the netplan apply command



Figure 61. Nvidia A100 netplan additional routes application and verification example:

user@A100-01:/etc/netplan$ sudo netplan apply

user@al00-01:/etc/netplan$ route| grep gpul

SARA

10.100.0.0 10.200.0.254 255.255.0.0 uG 0 0 0 gpu0_eth <= new route
10.200.0.0 0.0.0.0 255.255.255.0 U 0 0 0 gpu0_eth
10.200.0.0 10.200.0.254 255.255.0:0 UG 0 (1] 0 gpu0_eth

Configuring NVIDIA DCQCN - ECN

Figure 62: NVIDIA DCQCN - ECN
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Starting from MLNX_OFED 4.1 ECN is enabled by default (in the firmware).
To confirm that ECN is enabled, use the following command: mixconfig -d <device> q | grep ROCE_CC

Example:

root@A100-01:/home/ylara# mlxconfig -d mlx5_0 q | grep ROCE_CC
ROCE_CC_PRIO_MASK_P1 255
ROCE_CC_PRIO_MASK_P2 255

A mask of 255 means DCQCN (ECN) is enabled for all TC (traffic classes) configured on the NIC.



To disable ECN you can change the mask using the following command: mixconfig -d <device> s
ROCE_CC_PRIO_MASK_P1=<mask>

Example:

root@A100-01:/home/ylara# sudo mlxconfig -d mlx5_0 s ROCE_CC_PRIO_MASK_P1=0
Device #1:

Device type: ConnectX7

Name: MCX755106AS-HEA_Ax

Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-
port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot Enabled
Device: mlx5_0

Configurations: Next Boot New

ROCE_CC_PRIO_MASK_P1 0 0
Apply new Configuration? (y/n) [n] :

If you want to avoid being asked whether you want to apply the new configuration you an include the -y
option as shown in the following example:

root@A100-01:/home/ylara# sudo mlxconfig -d mlx5_0 -y s ROCE_CC_PRIO_MASK_P1=0
Device #1:

Device type: ConnectX7

Name: MCX755106AS-HEA_Ax

Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-
port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot Enabled
Device: mlx5_0

Configurations: Next Boot New

ROCE_CC_PRIO_MASK_P1 0 0

Apply new Configuration? (y/n) [n] : vy

Applying... Done!

-I- Please reboot machine to load new configurations.

The output states that a server reboot is required. As an alternative, you can reset the interface using
the command: mixfwreset -d <device> -1 3 -y r

NOTE: The device can be entered as /dev/mst/mt4129_pciconf2 or mix5_0 (gpuO_eth is not a
valid format for this command)



Example:

root@A100-01:/home/ylara# mlxfwreset -d mlx5_0 -1 3 -y r
Requested reset level for device, /dev/mst/mt4129_pciconf2:
3: Driver restart and PCI reset

Continue with reset?[y/N] y

-I- Sending Reset Command To Fw -Done
-I- Stopping Driver -Done
-I- Resetting PCI -Done
-I- Starting Driver -Done
-I- Restarting MST -Done

-I- FW was loaded successfully.

ECN operations parameters are located on the following path /sys/class/net/<interface>/ecn

Use the following command to find the interface:

jvd@A100-01:~/$ 1s /sys/class/net/

docker® enpl14s@finpl enp17s@finpl enp44s0finpl gpud_eth gpud_eth gpu6_eth mgmt_eth
enp139s0finpl enp169s0fOnp@ enp200s0finpl enp81s0finpl gpul_eth gpud_eth gpu7_eth ush@
enp142s0finpl enp169s0finpl enp203s0finpl enp82s0finpl gpu2_eth gpu5_eth lo
jvd@A100-01:/sys/class/net/gpud_eth/ecn$ 1s

roce_np roce_rp

NOTE: ECN bits on the IP header are always marked with 10 for RoCE traffic.

Notification Point (NP) Parameters

When the ECN-enabled receiver receives ECN-marked RoCE packets, it responds by sending CNP
(Congestion Notification Packets).

The following commands describe the notification parameters:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ 1s /roce_np/

cnp_802p_prio cnp_dscp enable min_time_between_cnps



Examples:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/cnp_802p_prio
6

cnp_802p_prio = the value of the PCP (Priority Code Point) field of the CNP packets.

PCP is a 3-bit field within an Ethernet frame header when using VLAN tagged frames as defined by IEEE
802.1Q.

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/cnp_dscp
48

cnp_dscp = the value of the DSCP (Differentiated Services Code Point) field of the CNP packets.

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/min_time_between_cnps
4

min_time_between_cnps = minimal time between two consecutive CNPs sent. if ECN-marked RoCE
packet arrives in a period smaller than min_time_between_cnps since previous sent CNP, no CNP will be
sent as a response. This value is in microseconds. Default = 0

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/enable/*
1
1
1
1

The output shows that roce_np is enabled for all priority values.

NOTE: Sending CNP packets is handled globally per port, any priority enabled here will set
sending CNP packets to on (1).



To change the attributes described above, use the mixconfig utility:

mlxconfig -d /dev/mst/<mst_module> -y s CNP_DSCP_P1=<value> CNP_802P_PRIO_P1=<value>

Example:

jvd@A100-01:/dev/mst$ sudo mst start

Starting MST (Mellanox Software Tools) driver set
Loading MST PCI module - Success

[warn] mst_pciconf is already loaded, skipping
Create devices

Unloading MST PCI module (unused) - Success
jvd@A100-01:~/scripts$ ./map_full_mellanox.sh

Mellanox Device to mlx and Network Interface Mapping:
/dev/mst/mt4123_pciconf® => mlx5_14 => enp169s0fOnpd (0000:a9:00.0)
/dev/mst/mt4125_pciconf@ => mlx5_4 => mgmt_eth (0000:2c:00.0)
/dev/mst/mt4129_pciconf@ => mlx5_6 => gpu@_eth (0000:0e:00.0)
/dev/mst/mt4129_pciconf1 => mlx5_8 => gpul_eth (0000:11:00.0)
/dev/mst/mt4129_pciconf2 => mlx5_0 => gpu2_eth (0000:51:00.0)
/dev/mst/mt4129_pciconf3 => mlx5_2 => gpu3_eth (0000:52:00.0)
/dev/mst/mt4129_pciconf4 => mlx5_16 => gpu4_eth (0000:8b:00.0)
/dev/mst/mt4129_pciconf5 => mlx5_18 => gpu5_eth (0000:8¢:00.0)
/dev/mst/mt4129_pciconf6 => mlx5_10 => gpu7_eth (0000:c8:00.0)
/dev/mst/mt4129_pciconf7 => mlx5_12 => gpu6_eth (0000:cb:00.0)
jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlxconfig -d /dev/mst/mt4129_pciconf@ -y set
CNP_DSCP_P1=40 CNP_802P_PRIO_P1=7

Device #1:

Device type: ConnectX7

Name : MCX755106AS-HEA_Ax

Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-

port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot Enabled
Device: /dev/mst/mt4129_pciconf0

Configurations: Next Boot New
CNP_DSCP_P1 48 40
CNP_802P_PRIO_P1 6 7

Apply new Configuration? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.



Reaction Point (RP) Parameters

When the ECN-enabled sender receives CNP packets, it responds by slowing down transmission for the
specified flows (priority).

The following parameters define how traffic flows will be rate limited, after CNP packets arrival:

jvd@A100-01:/sys/class/net$ 1s gpu@_eth/ecn/roce_rp/

clamp_tgt_rate enable rpg_ai_rate rpg_max_rate rpg_time_reset
clamp_tgt_rate_after_time_inc  initial_alpha_value rpg_byte_reset rpg_min_dec_fac
dce_tcp_g rate_reduce_monitor_period rpg_gd
rpg_min_rate dce_tcp_rtt rate_to_set_on_first_cnp
rpg_hai_rate rpg_threshold

Examples:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_rp/enable/*
1
1
1

1
1
jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_rp/rpg_max_rate
0

rpg_max_rate = Maximum rate at which reaction point node can transmit. Once this limit is reached, RP
is no longer rate limited.

This value is configured in Mbits/sec. Default = O (full speed - no max)

The output shows that roce_rp is enabled for all priority values.

NOTE: Handling CNP is configured per priority.

To check the ECN statistics use: ethtool -S <interface> | grep ecn



Example:

jvd@A100-01:~/scripts$ ethtool -S gpu@_eth | grep ecn
rx_ecn_mark: 0
rx_xsk_ecn_mark: 0
rx@_ecn_mark: 0
rx1_ecn_mark:
rx2_ecn_mark:
rx3_ecn_mark:
rx4_ecn_mark:
rx5_ecn_mark:
rx6_ecn_mark:
rx7_ecn_mark:

S © © © O OO

rx8_ecn_mark:

---more---

I NVIDIA DCQCN - PFC Configuration

IEEE 802.1Qbb applies pause functionality to specific classes of traffic on the Ethernet link.

Figure 63: NVIDIA DCQCN - PFC Configuration
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To check whether PFC is enabled on an interface use: minx_qos -i <interface>

Example:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlnx_gos -i gpu@_eth
DCBX mode: 0S controlled



Priority trust state: dscp

dscp2prio mapping:
prio:@ dscp:07,06,05,04,03,02,01,00,
prio:1 dscp:15,14,13,12,11,10,09,08,
prio:2 dscp:23,22,21,20,19,18,17,16,
prio:3 dscp:31,30,29,28,27,26,25,24,
prio:4 dscp:39,38,37,36,35,34,33,32,
prio:5 dscp:47,46,45,44,43,42,41,40,
prio:6 dscp:55,54,53,52,51,50,49,48,
prio:7 dscp:63,62,61,60,59,58,57,56,

default priority:

Receive buffer size (bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280

Cable len: 7

PFC configuration:
priority e 1 2 3 4 5 6 17
enabled 6 0 0 1 0 o 0 o
buffer 6 0 0 1 0 0 0

tc: 0 ratelimit: unlimited, tsa: vendor
priority: 1

tc: 1 ratelimit: unlimited, tsa: vendor
priority: @

tc: 2 ratelimit: unlimited, tsa: vendor
priority: 2

tc: 3 ratelimit: unlimited, tsa: vendor
priority: 3

tc: 4 ratelimit: unlimited, tsa: vendor
priority: 4

tc: 5 ratelimit: unlimited, tsa: vendor
priority: 5

tc: 6 ratelimit: unlimited, tsa: vendor
priority: 6

tc: 7 ratelimit: unlimited, tsa: vendor

priority: 7

To enable/disable PFC use: mlnx_gos -i <interface> --pfc
<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>

Example:

- Check the current configuration:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlnx_qgos -i gpu@_eth
DCBX mode: 0S controlled



Priority trust state: dscp

dscp2prio mapping:

prio:
prio:
prio:
prio:
prio:
prio:
prio:

prio:

0 dscp:
1 dscp:
2 dscp:
3 dscp:
4 dscp:
5 dscp:
6 dscp:
7 dscp:

default priority:

Receive buffer size

Cable len: 7

PFC configuration:

priority
enabled
buffer

---more---

07,06,05,04,03,02,01,00,
15,14,13,12,11,10,09,08,
23,22,21,20,19,18,17,16,
31,30,29,28,27,26,25,24,
39,38,37,36,35,34,33,32,
47,46,45,44,43,42,41,40,
55,54,53,52,51,50,49,48,
63,62,61,60,59,58,57,56,

(bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280

()
()
()
u—y
()
()
()
()

The output in the example, indicates that PFC is enable for Priority 3.

e Enable PFC for priority 2 and disable PFC for priority 3:

NOTE: This example shows how to change the configuration; make sure it matches the PFC
configuration on the leaf nodes (set class-of-service forwarding-classes class NO-LOSS pfc-

priority 3).

jvd@A100-01:~/scripts$ sudo mlnx_gos -i gpu@_eth --pfc 0,0,1,0,0,0,0,0
DCBX mode: 0S controlled
Priority trust state: dscp

dscp2prio mapping:

prio:
prio:
prio:
prio:
prio:
prio:
prio:

prio:

0 dscp:
1 dscp:
2 dscp:
3 dscp:
4 dscp:
5 dscp:
6 dscp:
7 dscp:

default priority:

Receive buffer size

07,06,05,04,03,02,01,00,
15,14,13,12,11,10,09, 08,
23,22,21,20,19,18,17, 16,
31,30,29,28,27,26,25,24,
39,38,37, 36,35, 34,33, 32,
47,46,45,44,43 42, 41,40,
55,54,53,52,51,50,49, 48,
63,62,61,60,59,58,57, 56,

(bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280



Cable len: 7
PFC configuration:
priority 0o 1 2
3 4 5 6 1
enabled 0 0 1
0 0 0 0 0
buffer 0 0 1
0 0 0 0 0

==c{ERg===

e Check PFC statistics:

jvd@A100-01:~/scripts$ ethtool -S gpu@_eth | grep pause
rx_pause_ctrl_phy: 8143294
tx_pause_ctrl_phy: 502
rx_prio3_pause: 8143294
rx_prio3_pause_duration: 10848932
tx_prio3_pause: 502
tx_prio3_pause_duration: 30445
rx_prio3_pause_transition: 4071126
tx_pause_storm_warning_events: 0
tx_pause_storm_error_events: 0

NOTE: The Pause counters are visible via ethtool only for priorities on which PFC is enabled.

NVIDIA TOS/DSCP Configuration for RDMA-CM QPS (RDMA Traffic)

Figure 64: NVIDIA TOS/DSCP
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RDMA traffic must be properly marked to allow the switch to correctly classify it, and to place it in the
lossless queue for proper treatment. Marking can be either DSCP within the IP header, or PCP in the
ethernet frame vlan-tag field. Whether DSCP or PCP is used depends on whether the interface between
the GPU server and the switch is doing vlan tagging (802.1q) or not.

To check the current configuration and to change the values of TOS for the RDMA outbound traffic, use
the cma_roce_tos script that is part of MLNX_OFED 4.0.

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo cma_roce_tos -h
Set/Show RoCE default TOS of RDMA_CM applications

Usage:
cma_roce_tos OPTIONS
Options:
-h show this help
-d <dev> use IB device <dev> (default mlx5_0)
-p <port> use port <port> of IB device (default 1)
-t <T0S> set TOS of RoCE RDMA_CM applications (@)

To check the current value of the TOS field enter sudo cma_roce_tos without any options.

Example:

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo cma_roce_tos
106

In the example, the current TOS value = 106, which means a DSCP value = 48 and the ECN bits set to
10.



NOTE: The TOS field is 8 bits, while the DSCP is 6 bits. To set a DSCP value of X, you need to
multiply this value by 4 (SHIFT 2). For example, to set DSCP value of 24, (24x4=96). Set the TOS
bit to 96. You need to add 2 to include the ECN.

ECHN
(RFC314E)
ECT  CE

DSCP IP PRECEDENCE

TYPE OF SERVICE FIELD (TOS)

BINARY DECIMAL HEX DECIMAL HEX NAME
VALUE VALUE VALUE VALUE

wotoss| o [1 [ afJoJaJolaJo] 106 | [ [ 26 | oaa [ 3 [ ox3 [ Flash

CLASS

I DROF FROE

To change the value use: cma_roce_tos -d <ib_device> -t <TOS>

You need to enter the ib_device in this command. The following script automatically does the mapping
between the physical interfaces and the ib_device.

map_full_mellanox.sh
#!/bin/bash
# Script to map Mellanox devices to mlx and network interfaces
# Get Mellanox device PCI addresses
mst_status=$(sudo mst status | awk '
/\/dev\/mst/ {
dev = $1
}
/domain:bus:dev.fn/ {
pci = $1
printf "%s: %s\n", dev, pci
}
)
# Get network interface PCI addresses
iface_status=$(for iface in $(1s /sys/class/net/); do
pci_addr=$(ethtool -i $iface 2>/dev/null | grep bus-info | awk '{print $2}')
if [ ! -z "$pci_addr" J; then
echo "$iface: $pci_addr"
fi



done)
# Get network interface to mlx interface mapping
mlx_iface_status=$(for iface in $(1s /sys/class/net/); do
if [ -d /sys/class/net/$iface/device/infiniband_verbs J]; then
mlx_iface=$(cat /sys/class/net/$iface/device/infiniband_verbs/*/ibdev)
echo "$iface: $mlx_iface"
fi
done)
# Combine and print the mapping
echo "Mellanox Device to mlx and Network Interface Mapping:"

echo "$mst_status" | while read -r mst_line; do

mst_dev=$(echo $mst_line | awk -F ': ' '{print $1}')

mst_pci=$(echo $mst_line | awk -F '=| ' '{print $3}')

iface=$(echo "$iface_status" | grep $mst_pci | awk -F ': ' '{print $1}')
iface_pci=$(echo "$iface_status" | grep $mst_pci | awk -F ': ' '{print $2}')
mlx_iface=$(echo "$mlx_iface_status" | grep $iface | awk -F ': ' '{print $2}')

if [ ! -z "$iface" ] 8 [ ! -z "$mlx_iface" 1; then
echo "$mst_dev => $mlx_iface => $iface ($iface_pci)"
fi

done

Example:

Figure 65. script results example

jvd@Al00-01:~/scripts$ ./map full mellanox.sh

Mellanox Device to mlx and Network Interface Mapping:
/dev/mst/mt4123 pciconfl => mlx5 14 => enple9s0f0np0 (0000:a9:00.0)
/dev/mst/mt4125 pciconfl => mlx5 4 => mgmt eth (0000:2c:00.0)
/dev/mst/mtd4129 pciconfl => mlx5 6 => GPUO_eth (0000:0e:00.0)
/dev/mst/mtd4129 pciconfl => mlx5 8 => GPUl_eth (0000:11:00.0)
/dev/mst/mt4129 pciconf2 => mlx5 0 => GPU2 eth (0000:51:00.0)
/dev/mst/mt4129 pciconf3 => mlx5 2 => GPU3_eth (0000:52:00.0)
/dev/mst/mt4129 pciconfd4 => mlx5 16 => GPU4_eth (0000:8b:00.0)

/dev/mst/mt4129 pciconf5 => mlx5 18 => GPU5_eth (0000:8e:00.0)
/dev/mst/mt4129 pciconfé => mlx5 10 => GPU7_eth (0000:c8:00.0)

/dev/mst/mt4129 pciconf7 => mlx5 12 => GPU6_eth (0000:cb:00.0)

jvd@A100-01:~/scripts$ cma_ roce tos -d mlx5 6 -t 194
194

jvd@A100-01:~/scripts$ cma_roce tos —-d mlx5 6
194

Figure 66. Reference TOS, DSCP Mappings:
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Configuring NVIDIA to use the management interface for NCCL control
traffic:

NCCL uses TCP sessions to connect processes together and exchange QP information for RoCE, GIDs
(Global IDs), Local and remote buffer addresses, RDMA keys (RKEYs for memory access permissions)

NOTE: These are separate to the RoCEv2 traffic (port 4791) used for synchronizing model
parameters, partial results operations, etc.

These sessions are created when the job starts and by default use one of the GPU interfaces (same
interfaces used for RoCEv2 traffic).

Example:

ylara@A100-01:~$ netstat -atn | grep 10.200 | grep "ESTABLISHED"
tep 0 0 10.200.4.8:47932 10.200.4.2:43131 ESTABLISHED



tep 0 0 10.200.4.8:46699 10.200.4.2:37236 ESTABLISHED
tep 0 0 10.200.2.8:60502 10.200.13.2:35547 ESTABLISHED
tep 0 0 10.200.4.8:37330 10.200.4.2:55355 ESTABLISHED
tep 0 0 10.200.4.8:56438 10.200.4.2:53947 ESTABLISHED
---more---

It is recommended, move to the management interface (connected to the (Frontend Fabric) including the
following parameter when starting a job: export NCCL_SOCKET_IFNAME="mgmt_eth"

Example:

ylara@A100-01:~$ netstat -atn | grep 10.10.1 | grep "ESTABLISHED"

tcp 0 0 10.10.1.0:44926 10.10.1.2:33149 ESTABLISHED
tep 0 0 10.10.1.0:46705 10.10.1.0:40320 ESTABLISHED
tcp 0 0 10.10.1.0:54661 10.10.1.10:52452 ESTABLISHED
---more---

NOTE: ECN is enabled by default for these sessions; net.ipv4.tcp_ecn = 1, but can be disable
with: sudo sysct! -w net.ipv4.tcp_ecn=0.

Terraform Automation of Apstra for the Al Fabric

IN THIS SECTION

Al Terraform Configs | 90
Al JVD Specific Terraform Configs | 91

Al Terraform Configs

Juniper has compiled a set of Terraform configs to help set up data center fabrics for an Al cluster. Al
training requires a dedicated GPU Backend fabric, a dedicated Storage Backend fabric, and a Frontend
fabric. Here we show such Apstra-managed network fabrics deploying logical devices, racks and



templates for DGX (or HGX equivalent) servers based on A100 and H100 GPUs having 200GE and
400GE access connectivity respectively. The logical devices, racks and templates defined here create the
NVIDIA Rail-optimized topology.

The github repository for Al designs using Apstra can be found:

https:/github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/

Al JVD Specific Terraform Configs

Based on the Al cluster designs with rail-optimized GPU fabrics of various sizes, this Terraform config for
Apstra will build a set of 3 blueprints for a reference Al cluster's dedicated GPU Backend fabric, a
dedicated Storage Backend fabric, and a Frontend fabric.

This example shall serve as a Juniper Validated Design (JVD) set of configurations that can be applied to
larger clusters. It has two NVIDIA rail-optimized groups with Juniper QFX5220 leaf switches in one
stripe of 8 and QFX5230 leaf switches in another stripe of 8. It has options for both QFX5230 spines or
high-radix PTX10008 spines, with examples here for A100s and H100-based servers in uniform racks or
as deployed in the "Lab Leaf" rack with mixed server access for half A100 and half H100 connectivity to
serve as an example, and because that is what is used in the real lab test environment for this
configuration.

The github repository for this specific Al JVD can be found:

https:/github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/


https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/
https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/

Figure 67: Sample GPU Backend Terraform Template
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Figure 68: Sample GPU Backend Terraform Template: Rack Type
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Figure 69: Sample GPU Backend Terraform Template: Logical Device
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Figure 70: Terraform Template: All Templates Examples

] ¢ @ » Design» Templates

Juniper Apstra™

Name %

Al Cluster 64 DGX Server Frontend Management Fabric
Al Cluster 64 DGX-A100 (512 GPUs)

Al Cluster 64 DGX-A100 (512 GPUs) Storage Fabric

Al Cluster 64 DGX-H100 (512 GPUs)

Resources Al Cluster 64 DGX-H100 (512 GPUs) Storage Fabric

Ty
B
e

External Systems

Al Cluster 128 DGX Server Frontend Management Fabric

Al Cluster 128 DGX-A100 (1024 GPUs)

Platform

w

Favorites

Al Cluster 128 DGX-A100 (1024 GPUs) Storage Fabric

Al Cluster 128 DGX-H100 (1024 GPUs)

Al Cluster 128 DGX-H100 (1024 GPUs) Storage Fabric

Al Cluster 256 DGX Server Frontend Management Fabric

Al Cluster 256 DGX-A100 (2048 GPUs)

Al Cluster 256 DGX-A100 (2048 GPUs) Storage Fabric

Al Cluster 256 DGX-H100 (2048 GPUs)

Al Cluster 256 DGX-H100 (2048 GPUs) Storage Fabric

Al Cluster 640 DGX-H100 (5120 GPUs)

Al Cluster 1152 DGX-A100 (9216 GPUs)

Type ¢

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

RACK BASED

F & §

Connected to

Overlay Control Protocol %

MP-EBGP EVPN

Static VXLAN

Static VXLAN

Static VXLAN

Static VXLAN

MP-EBGP EVPN

Static VXLAN

Static VXLAN

Static VXLAN

Static VXLAN

MP-EBGP EVPN

Static VXLAN

Static VXLAN

Static VXLAN

Static VXLAN

Static VXLAN

Static VXLAN
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Validation Framework

IN THIS SECTION

Platforms / Devices Under Test (DUT) | 94

Platforms / Devices Under Test (DUT)

Table 25: Platforms / Devices Under Test (DUT)

Component

Architecture

Spine nodes

Leaf nodes

Frontend

3-stage clos

QFX5130-32CD x 2

QFX5130-32CD x 1
( frontend-gpu-leaf)
QFX5130-32CD x 1

( frontend-weka-leaf )

Storage Backend

3-stage clos

QFX5220-32CD x 2

QFX5220-32CD x 2

( storage-backend-gpu-
leaf)

QFX5220-32CD x 2

( storage-backend-
weka-leaf )

GPU Backend (Cluster 1 and 2)

3-stage clos rail optimized

QFX5230-64CD x 2 (cluster 1)

PTX-10008 JNP10K-LC1201
(cluster 1)

QFX5240-640D x 2 (cluster 2)

QFX5220-64CD x 8 (cluster 1 -
stripe 1)

QFX5230-64CD x 8 (cluster 1 -
stripe 2)

QFX5240-64CD x 8 (cluster 2 -
stripes 1-2)



(Continued)

Component

Leaf nodes <=>

spine node links

Number of NVIDIA
DGX

H100 GPU servers

Number of NVIDIA
HGX

A100 GPU servers

NVIDIA DGX H100
GPU servers <=>

GPU leaf nodes links

NVIDIA HGX A100
GPU servers <=>

GPU leaf nodes links

Frontend

2 x 400GE
(per frontend-leaf<=>

frontend-spine link)

2 (Cluster 2 - stripe 1)

2 (Cluster 2 - stripe 2)

4 (Cluster 1 - stripe 1)

4 (Cluster 1 - stripe 1)

1 x 100GE
(per gpu server <=>

frontend-gpu-leaflink)

1 x 100GE
(per gpu server <=>

frontend-gpu-leaflink)

Storage Backend

2 x 400GE

(per storage-backend-
weka-leaf

<=> storage-backend-
spine)

3 x 400GE

(per storage-backend-
gpu-leaf

<=> storage-backend-
spine)

1 x 200GE
(per gpu server <=>

storage-backend-gpu-
leaflink)

1 x 100GE
(per gpu server <=>

storage-backend-gpu-
leaflink)

GPU Backend (Cluster 1 and 2)

2 x 400GE
(per gpu-backend-spine <=>

gpu-backend-leaf link)

1 x 400GE (Cluster 2)
(per gpu server <=>

gpu-backend-leaf link)

1 x 200GE (Cluster 1)
(per gpu server <=>

gpu-backend-leaf link)



(Continued)

Component

Total number of GPUs

WEKA storage servers

WEKA storage servers

<=>

WEKA storage leaf
nodes links

Frontend Storage Backend GPU Backend (Cluster 1 and 2)

96: 32 x stripe in cluster 1

16 x stripe in cluster 2

8
1 x 100GE 1 x 200GE N/A
(per weka server <=> (per weka server <=>

frontend-weka-leaflink)  storage-backend-weka-
leaflink)

Network Connectivity: Reference Examples

IN THIS SECTION

Frontend Network Connectivity | 97

GPU Backend Network Connectivity | 113

Storage Backend Network Connectivity | 122

For those who want more details, this section provides insight into the setup of each fabric and the
expected values for the reference examples.

The section describes the IP connectivity across the common Frontend, and Storage Backend fabrics,
and the GPU Backend fabric in Cluster 1, Stripe 1. The GPU Backend fabrics for cluster 1, stripe 2, and
cluster 2 follow the same model.

Regardless of whether you are using Apstra with or without Terraform automation with Apstra, the IP
addressing Pools, ASN Pools, and interface addresses are largely automatically assigned and configured
with little interaction from the administrator unless desired.



Notice that all the addresses shown in this section represent the IP addressing schema used in the
Juniper lab to validate the design.

Frontend Network Connectivity

The Frontend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and spine nodes
are configured with /31 IP addresses, as shown in Table 26. The fabric consists of 2 spine nodes and 2
leaf nodes, where 1 leaf node is used to connect to the storage servers (named frontend-weka-leaf 1)
and 1 is used to connect to the GPU servers (named frontend-ai-leaf1). Additionally, the Headend
Servers that execute the workload manager (Slurm) for Al Training and Inference models reside in this

fabric.

NOTE: In this example, leaf nodes connecting to the GPU servers in the Frontend fabric are
named frontend-ai-leaf# instead of frontend-gpu-leaf# but they represent the same role.

There are two 400GE links between each frontend-weka-leaf 1 node and the spine nodes and two
400GE links between each frontend-ai-leaf1 node and the spine nodes as shown in Figure 71.

Figure 71: Frontend Spine to Leaf Nodes Connectivity

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.0/31 10.0.5.4/31 10.0.5.8/31 10.0.5.12/31
10.0.5.2/31 10.0.5.6/31 10.0.5.10/31 10.0.5.14/31
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.1/31 10.0.5.9/31 10.0.5.5/31 10.0.5.13/31
10.0.5.3/31 10.0.5.11/31 10.0.5.7/31 10.0.5.15/31
rontend ontend
001-leafl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 001-leafl

Table 26: Frontend Interface Addresses



Spine node Leaf node Spine IP address Leaf IP address

frontend-spinel frontend-ai-leaf1 10.0.5.0/31 10.0.5.1/31
10.0.5.2/31 10.0.5.3/31
frontend-spinel frontend-weka-leaf1 10.0.5.4/31 10.0.5.5/31
10.0.5.6/31 10.0.5.7/31
frontend-spine2 frontend-ai-leaf1 10.0.5.8/31 10.0.5.9/31
10.0.5.10/31 10.0.5.11/31
frontend-spine2 frontend-weka-leaf1 10.0.5.12/31 10.0.5.13/31
10.0.5.14/31 10.0.5.15/31

NOTE: All the Autonomous System and IP addresses are assigned by Apstra (from predefined
pools of resources) based on the intent.

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.

Table 27: Frontend Loopback Addresses

Device Loopback interface address
frontend-spinel 10.0.3.0/32
frontend-spine2 10.0.3.1/32
frontend-ai-leaf1 10.0.1.0/32
frontend-weka-leaf1 10.0.1.1/32

The H100 GPU Servers and A100 GPU Servers are all connected to the frontend-ai-leaf1 node.

The links between the GPU servers and the leaf node Leaf 1 are assigned /31 subnets out of
10.0.5.0/24, shown in Figure 72 and Table 28.



Figure 72: Frontend Leaf Nodes to GPU Servers Connectivity

frontend-
ai-leaf-
001-leafl

inet.0
100.0 10.0.4.0/32

et-0/0/4

et-0/0/7 et-0/0/20

10.10.1.17/31  10.10.1.23/31 10.10.1.1/31

E5E- - EaE- BEs- - [EeE]

H100 GPU
Server 1

H100 GPU  A100 GPU
Server 4 Server 1

A100 GPU

Table 28: Frontend Leaf Nodes to GPU Servers Interfaces Addresses

GPU Server

H100 GPU Server 1

H100 GPU Server 2

H100 GPU Server 3

H100 GPU Server 4

A100 GPU Server 1

A100 GPU Server 2

A100 GPU Server 3

A100 GPU Server 4

A100 GPU Server 5

Leaf node

frontend-ai-leaf1

GPU Server IP address

10.10.1.17/31

10.10.1.19/31

10.10.1.21/31

10.10.1.23/31

10.10.1.1/31

10.10.1.3/31

10.10.1.5/31

10.10.1.7/31

10.10.1.9/31

Leaf IP address

10.100.1.9/31

10.100.1.11/31

10.100.1.1/31

10.100.1.3/31

10.100.1.5/31

10.100.1.7/31

10.100.2.9/31

10.100.2.11/31

10.100.2.1/31




(Continued)

GPU Server Leaf node GPU Server IP address
A100 GPU Server 6 10.10.1.11/31
A100 GPU Server 7 10.10.1.13/31
A100 GPU Server 8 10.10.1.15/31

Leaf IP address

10.100.2.3/31

10.100.2.5/31

10.100.2.7/31

The WEKA storage servers are all connected to the frontend-weka-leaf 1 node.

The links to these servers do not have IP addresses assigned on the leaf node. Layer 3 connectivity is
provided via an irb interface with an address out of subnet 10.10.2.1/24. The WEKA servers are

assigned addresses out of 10.10.2.0/24, as shown Figure 73 and Table 29.

Figure 73: Frontend Leaf Nodes to WEKA Storage Connectivity

- frontend-
inet.0 weka-leaf-

100.0 10.0.4.1/32 001-leafl
irb..

2
10102124 | VLAN2
10.10.2.0/24

7 T
el0/0/a et 0/0/5 £1-0/0/11

10.10.22 / 101023 10.10.2.9

NEEE=L  EEE=GD

Weka Weka Weka
storage 1 storage 2 storage 8

Table 29: Frontend Leaf Nodes to WEKA Storage Interface Addresses

GPU Server Leaf node WEKA Server IP Address
WEKA Storage Server 1 frontend-weka-leaf1 10.10.2.2/24
WEKA Storage Server 2 10.10.2.3/24

WEKA Storage Server 3 10.10.2.4/24

Leaf IP Address

10.10.2.1/24 (irb.2)



(Continued)

GPU Server Leaf node WEKA Server IP Address  Leaf IP Address
WEKA Storage Server 4 10.10.2.5/24
WEKA Storage Server 5 10.10.2.6/24
WEKA Storage Server 6 10.10.2.7/24
WEKA Storage Server 7 10.10.2.8/24
WEKA Storage Server 8 10.10.2.9/24

The Headend servers executing the workload manager are all connected to the frontend-ai-leaf1 node.

The links to these servers do not have IP addresses assigned on the leaf node. Layer 3 connectivity is
provided via an irb interface with the address 10.10.3.1/24. The headend servers assigned addresses
out of 10.10.3.0/24, as shown in Figure 74 and table below.

Figure 74: Frontend Leaf Nodes to Headend Servers Connectivity

frontend- inet.0

ai-leaf-
001.leafl 100.0 10.0.4.0/32
irb.3
VLAN 3 {10 10.3.1/24
10.10.3.0/24
, !
et-0/0/8:0 et-0/0/8:1  et-0/0/8:2
10.10.3.3 10.10.38

headend-svr-01 headend-svr-02  headend-svr-03




EBGP is configured between the IP addresses assigned to the spine-leaf nodes links. There will be 2
EBGP sessions between the frontend-ai-leaf# node and each spine node, and 2 EBGP sessions between
each frontend-weka-leaf # node and each of the spine nodes, as shown in Figure 75.

Figure 75: Frontend EBGP

Frontend-Spine-1

inet.0
100.0 10.0.3.0/32

Frontend-Spine-2

inet.0
100.0 10.0.3.1/32

et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.0/31 10.0.5.4/31 10.0.5.8/31 10.0.5.12/31
10.0.5.2/31 10.0.5.6/31 10.0.5.10/31 10.0.5.14/31
A A
EBGP x 2 | i
¥ \
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0- 1 et-0/0/2-3
10.0.5.1/31 10.0.5.9/31 10.0.5.5/31 10.0.5.13/31
10.0.5.3/31 10.0.5.11/31 10.0.5.7/31 10.0.5.15/31
fn:ontend— inet.0 inet.0 frontend-
S‘a'f_j‘;fl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 "‘Efé‘fflf:ffi
Table 30: Frontend Sessions
Spine node Leaf node Spine Leaf ASN Spine IP Leaf IP address
address
frontend-spinel frontend-ai-leaf1 4201032300 4201032400 10.0.5.0/31 10.0.5.1/31
10.0.5.2/31 10.0.5.3/31
frontend-spinel frontend-weka- 4201032401 10.0.5.4/31 10.0.5.4/31
leaf1
10.0.5.6/31 10.0.5.7/31
frontend-spine2 frontend-ai-leaf1 4201032301 4201032400 10.0.5.8/31 10.0.5.9/31
10.0.5.10/31 10.0.5.11/31
frontend-spine2 frontend-weka- 4201032401 10.0.5.12/31 10.0.5.13/31
leaf 1
10.0.5.14/31 10.0.5.15/31




NOTE: All the Autonomous System and community values are assigned by Apstra (from
predefined pools of resources) based on the intent.

On the frontend-ai-leaf1 nodes BGP policies are configured by Apstra to advertise the following routes

to the spine nodes:

e frontend-ai-leafl node own loopback interface address,
e frontend-ai-leafl node to spines interfaces subnets and
e GPU servers to frontend-ai-leafl node link subnets.

o WEKA server's management subnet

Figure 76: Frontend Leaf to GPU Servers BGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32

i
ol
o
/1
10.0.4.0/32 A
10.0.5.0/31 y //
10.0.5.2/31 ... S/

10.10.1.16/31 ...
10.10.1.22/31

frontend- inet.0
ai-leaf- inet.
001-leafl 100.0 10.0.1.0/32

..... / \

7 T
et-0/0/4 et-0/0/7 et-0/0/20 et-0/0/27
10.10.1.17/31 10.10.1.23/31 10.10.1.1/31 10.10.1.15/31

10.10.1.16/31 10.10.1.22/31 10.10]1.0/31 10.10.1.16/31
Ll =1=|=1" 1 5 e m— "o — " —
EEE- - [EEe- FEE-] - [EEe-)
H100 GPU H100 GPU  A100 GPU A100 GPU
Server 1 Server 4 Server 1 Server 8

Figure 77: Frontend Leaf to Headend Server BGP



Frontend-Spine-1

Frontend-Spine-2

inet.0
100.0 10.0.3.0/32

inet.0
100.0 10.0.3.1/32

—_—————
————

10.10.3.0/24

frontend-
ai-leaf-
001-leafl

inet.0
100.0 10.0.4.0/32

irb.3

VLAN 3 {10 10.3.1/24
10.10.3.0/24
3

7
et-0/0/8:0

T
et-0/0/8:1  et-0/0/8:2

headend-svr-01

headend-svr-02  headend-svr-03

Table 31: Frontend Leaf to GPU/Headend Servers Advertised Routes
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Leaf Node Peer(s) Advertised Routes BGP Communities

frontend-ai-leaf1 frontend-spinel & Loopback: GPU servers <=> 3:20007

frontend-spine2 frontend spine links:
10.0.4.0/32 21001:26000

10.10.1.16/31
Leaf-spines links:

10.10.1.18/31

10.0.5.0/31

10.10.1.20/31
10.0.5.2/31

10.10.1.22/31
10.0.5.8/31

10.10.1.0/31
10.0.5.10/31

10.10.1.2/31

10.10.1.4/31

10.10.1.6/31

10.10.1.8/31

10.10.1.10/31
10.10.1.12/31
10.10.1.14/31

WEKA Management
server’s subnet:

10.10.3.0/24

On the frontend-weka-leaf 1 node BGP policies are configured by Apstra to advertise the following
routes to the spine nodes:

e frontend-weka-leaf 1 node own loopback interface address,
e frontend-weka-leaf 1 node to spines interfaces subnets and
e \WEKA storage server’s subnet

Figure 78: Frontend Leaf to WEKA Storage BGP



Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
IR
I I
| |
\J o
2N\ | 10.0.4.1/32
Y 10.0.5.4/31
10.0.5.6/31...
10.10.2.0/24
i
o | et
100.0 10.0.4.1/32 001-leafl
irb.2
10.10.2.1/24 | VLAN2Z
10.10.2.0/24
I/ ! AY
et-0/0/4  et-0/0/5 t-0/0/11
10.10.2.2 10.10.23 10.10.2.9
Weka Weka Weka
storage 1 storage 2 storage 8

Table 32: Frontend Leaf to Weka Storage Advertised Routes

Leaf Node Peer(s) Advertised Routes BGP Communities

GPU servers <=> 4:20007

1 frontend spine links:
frontend-spine2 10.0.4.1/32

frontend-weka-leaf  frontend-spinel & Loopback:
21001:26000

10.10.2.0/24

Leaf-spines links:

10.0.5.4/31

10.0.5.6/31

10.0.5.12/31

10.0.5.14/31

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the
frontend-ai-leaf node:

e frontend-spine node own loopback interface address

e frontend-weka-leaf 1 loopback interface address



e frontend-spine to frontend-weka-leaf 1 nodes interfaces subnets
o WEKA storage server’s subnet (learned from frontend-weka-leaf1)

Figure 79: Frontend Spine to Frontend Leaf for GPU/Headed Servers BGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
T1
i
10.0.3.0/32 10.0.3.1/32
10.0.4.1/32 10.0.4.1/32
10.0.5.0/31 10.0.5.4/31
10.0.5.2/31.. 10.0.5.6/31...
10.10.2.0/24 10.10.2.0/24
:
H .
1 ’,
rontend o | fontend
001-leafl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 001-leafl
irb.2
10.10.2.1/24 VLAN 2
10.10.2.0/24
I/ ! AY
et-0/0/4  et-0/0/5 £t-0/0/11
10.10.22 10.10.23
Weka Weka Weka
storage 1 storage 2 storage 8

Table 33: Frontend Spine to Frontend Leaf for GPU/Headed Servers Advertised Routes



Leaf Node Peer(s)

frontend-spinel frontend-ai-leaf

frontend-spine2 frontend-ai-leaf

Advertised Routes

Loopback:
10.0.3.0/32
10.0.4.0/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.4/31
10.0.5.6/31
10.0.5.12/31

10.0.5.14/31

Loopbacks:
10.0.3.1/32
10.0.4.0/32
Leaf-spines links:
10.0.5.4/31
10.0.5.6/31
10.0.5.8/31
10.0.5.10/31
10.0.5.12/31

10.0.5.14/31

WEKA Servers
subnet:

10.10.2.0/24

WEKA Servers
subnet:

10.10.2.0/24

BGP Communities

0:15
1:20007
21001:26000

Except for
10.0.4.0/32

(0:15 3:20007
21001:26000)

0:15
2:20007
21001:26000

Except for
10.0.4.0/32

(0:15 3:20007
21001:26000)

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the

frontend-weka-leaf 1 leaf node:

e spine node own loopback interface address

e frontend-ai-leafl loopback interface address

e spine to frontend-ai-leaf1 nodes interfaces subnets

e GPU servers to frontend-ai-leafl node link subnets



Figure 80: Frontend Spine to Frontend Leaf for WEKA Storage Headend Server BGP
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Figure 81: Frontend Spine to Frontend Leaf for WEKA Storage GPU Server BGP
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Table 34 Frontend Spine to Frontend Leaf for WEKA Storage Advertised Routes




Leaf Node

frontend-spinel

Peer(s)

frontend-ai-leaf

Advertised Routes

Loopback:
10.0.3.0/32
10.0.4.1/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.4/31
10.0.5.6/31
10.0.5.8/31

10.0.5.10/31

GPU server <=>
frontend spine links:

10.10.1.16/31
10.10.1.18/31
10.10.1.20/31
10.10.1.22/31
10.10.1.0/31
10.10.1.2/31
10.10.1.4/31
10.10.1.6/31
10.10.1.8/31
10.10.1.10/31
10.10.1.12/31
10.10.1.14/31

WEKA Server’s
Management
subnet:

10.10.3.0/24

BGP Communities

0:15
1:20007
21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)



(Continued)

Leaf Node

frontend-spine2

Peer(s)

frontend-ai-leaf

Advertised Routes

Loopbacks:
10.0.3.1/32
10.0.4.1/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.8/31
10.0.5.10/31
10.0.5.12/31

10.0.5.14/31

GPU servers <=>
frontend spine links:

10.10.1.16/31
10.10.1.18/31
10.10.1.20/31
10.10.1.22/31
10.10.1.0/31
10.10.1.2/31
10.10.1.4/31
10.10.1.6/31
10.10.1.8/31
10.10.1.10/31
10.10.1.12/31

10.10.1.14/31

WEKA Management

server's subnet:

10.10.3.0/24

BGP Communities

0:15

2:20007
21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)

By advertising the subnet assigned to the links between the leaf nodes and the GPU/storage servers,
communication between GPUs and the WEKA storage and WEKA management servers is possible

across the fabric.
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Figure 82: GPU Server to WEKA storage and WEKA Management Servers
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NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the
document.

I GPU Backend Network Connectivity

The GPU Backend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and spine
nodes are configured with /31 IP addresses and are running EBGP. The fabric consists of 2 spine nodes,
and 8 spine nodes (per stripe).

There is a single 400GE link between each leaf node and the spine nodes.



Figure 83: GPU Backend Spine to GPU Backend Leaf Nodes Connectivity
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:’“ke"d' 100.0 I1?)9_0_1.0/32 backend- 100.0 I1noe.0_1_1/32 backend- 100.0 I1';;.0.1.2/32 mes
eafl leaf2 leaf3
Table 35: GPU Backend Interface Addresses
Stripe # Spine node Leaf node Spine IP address Leaf IP address
1 gpu-backend-spine  gpu-backend-leafl 10.0.2.0/31 10.0.2.1/31
1
10.0.2.2/31 10.0.2.3/31
1 gpu-backend-spine  gpu-backend-leaf2  10.0.2.4/31 10.0.2.5/31
1
10.0.2.6/31 10.0.2.7/31
1 gpu-backend-spine  gpu-backend-leaf3  10.0.2.8/31 10.0.2.9/31
1
10.0.2.10/31 10.0.2.11/31




(Continued)

Stripe # Spine node

1 gpu-backend-spine
2

1 gpu-backend-spine
2

1 gpu-backend-spine
2

Leaf node

gpu-backend-leaf1

gpu-backend-leaf2

gpu-backend-leaf3

Spine IP address

10.0.2.64/31

10.0.2.66/31

10.0.2.68/31

10.0.2.70/31

10.0.2.72/31

10.0.2.74/31

Leaf IP address

10.0.2.65/31

10.0.2.67/31

10.0.2.69/31

10.0.2.71/31

10.0.2.73/31

10.0.2.75/31

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.

NOTE: All IP addresses are assigned by Apstra (from predefined pools of resources) based on the

intent.

Table 36: GPU Backend Loopback Addresses

Stripe # Device

1 gpu-backend-spinel
1 gpu-backend-spine2
1 gpu-backend-leaf1

1 gpu-backend-leaf2
1 gpu-backend-leaf3

Loopback Interface Address

10.0.0.0/32

10.0.0.1/32

10.0.1.0/32

10.0.1.1/32

10.0.1.2/32

Each leaf node is assigned a /24 subnet out of 10.200/16 and a unique VLAN ID to provide connectivity
to the GPU servers. Layer 3 connectivity is provided via an irb interface with an address out of the
specific IP subnet, as shown in the table below.

Because each leaf node represents a rail, where all the GPUs with a given number connect, each rail in
the cluster is mapped to a different /24 IP subnet.



Figure 84: GPU Backend Servers to Leaf Nodes Connectivity

gpu-backend- inet.0 gpu-backend- inet.0 gpu-backend- inet.0
leaf1 100.0 10.0.1.0/32 leaf2 100.0 10.0.1.1/32 leaf3 oo1001232 || """
irb.2 irb.3 irb.4
10.200.0.254/24 | VLAN 2 10.200.1.254/24 | VLAN 3 10.200.2.254/24 | VLAN 4
et-0/0/4 | & et-0/0/5 et-0/0/4 § et-0/0/5 et-0/0/4 et-0/0/5
10.200.0.2/24 § 10.200.2.2/24 10.200.0.4/24 g [710-200.2.4/24
800000 00000000 ...
e e e EOBDEE0D
Table 37: GPU Backend Servers to Leaf Nodes Connectivity
Stripe # Device Rail # VLAN # Subnet IRBonleaf  Connected
device(s)
1 gpu-backend- 1 2 10.200.0.0/ 10.200.0.25 GPU 1 from
leaf1 24 4 all 8 GPU
servers
1 gpu-backend- 2 3 10.200.1.0/ 10.200.1.25 GPU 2 from
leaf2 24 4 all 8 GPU
servers
1 gpu-backend- 3 4 10.200.2.0/ 10.200.2.25 GPU 3 from
leaf3 24 4 all 8 GPU

servers
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EBGP is configured between the IP addresses assigned to the spine-leaf nodes links, as shown in Figure
81. There will be 2 EBGP sessions between each gpu-backend-leaf # node and each gpu-backend-spine
#

Figure 85: GPU Backend BGP Sessions

gpu-backend-spinel

gpu-backend-spine2

10.0.2.2/31

10.0.2.6/31 10.0.2.10/31
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et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3
10.0.2.1/31 10.0.2.65/31 10.0.2.5/31 10.0.2.69/31 10.0.2.9/31 10.0.2.73/31
10.0.2.3/31 10.0.2.67/21 10.0.2.7/31 10.0.2.71/31 10.0.2.11/31 10.0.2.75/31
gpu- — gpu- S 0 “ gpu- net.0
:’E‘Cke"d' 100.0 I1r:)e.().1.c)/32 backend- 100.0 I1n(;£.0.1.1/32 backend- 100.0 I1r:)e.t).1.2/32 mes
eafl leaf2 leaf3
Table 38: GPU Backend Sessions
Stripe # Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP
Address Address
1 gpu-backend- gpu-backend- 420103210 420103220 10.0.2.0/31 10.0.2.1/31
spinel leaf1 0 0
10.0.2.2/31 10.0.2.3/31
1 gpu-backend- gpu-backend- 420103220 10.0.2.4/31 10.0.2.5/31
spinel leaf2 1
10.0.2.6/31 10.0.2.7/31
1 gpu-backend- gpu-backend- 420103220 10.0.2.8/31 10.0.2.9/31
spinel leaf3 2
10.0.2.10/3 10.0.2.11/3

1

1




(Continued)

Stripe # Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP
Address Address
1 gpu-backend- gpu-backend- 420103210 420103220 10.0.2.64/3 10.0.2.65/3
spine2 leaf1 1 0 1 1

10.0.2.66/3 10.0.2.67/3

1 1
1 gpu-backend- gpu-backend- 420103220 10.0.2.68/3 10.0.2.69/3
spine2 leaf2 1 1 1

10.0.2.70/3  10.0.2.71/3

1 1
1 gpu-backend- gpu-backend- 420103220 10.0.2.72/3 10.0.2.73/3
spine2 leaf3 2 1 1

10.0.2.74/3  10.0.2.75/3
1 1

NOTE: All the Autonomous System and community values are assigned by Apstra (from
predefined pools of resources) based on the intent.

On the Leaf nodes, BGP policies are configured by Apstra to advertise the following routes to the spine
nodes:

e Leaf node own loopback interface address



e |eaf to spine interfaces subnets and

e irb interface subnet

Figure 86: GPU Backend Leaf Node BGP

gpu-backend-spinel

inet.0
100.0 10.0.0.0/32

gpu-backend-spine2

inet.0
100.0 10.0.0.0/32

77
et-0/0/0-1
10.0.2.0/31
10.0.2.2/31

“
EBGP /A

10.0.1.0/32
10.0.2.0/31 ... <
10.0.2.64/31 ... 75
10.200.0.0/24 -~

et-0/0/0-1
10.0.2.1/21
10.0.2.3/21

et-0/0/2-3 i
10.0.2.65/31 ‘
10.0.2.67/31

gpu-backend-
leafl

inet.0
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10.0.2.64/31
7 10.0.2.66/31

Table 39: GPU Backend Leaf Node Advertised Routes

Stripe #

Device

gpu-backend-leaf 1

Advertised routes

10.0.1.0/32
10.0.2.0/31
10.0.2.64/31

10.200.0.0/24

BGP community

3:20007

21001:26000




(Continued)

Stripe # Device Advertised routes

1 gpu-backend-leaf 2 10.0.1.1/32
10.0.2.4/31
10.0.2.68/31

10.200.1.0/24

1 gpu-backend-leaf 3 10.0.1.2/32
10.0.2.8/31
10.0.2.72/31

10.200.2.0/24

BGP community

4:20007

21001:26000

5:20007

21001:26000

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the leaf

nodes:

e spine node own loopback interface address
e leaf nodes’ loopback interface address

e spine to leaf interfaces subnets

e irb interface subnet, as shown below:

Figure 87: GPU Backend Spine Node BGP
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inet.0
100.0 10.0.0.0/32
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inet.0
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leaf1 100.0 I1r:)e.().1.c)/32 leaf2 100.0 I1n(;£.0.1.1/32 leaf3 100.0 I1r:)e.t).1.2/32 mes
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Table 40: GPU Backend Spine Node Advertised Routes
Stripe # Spine Node Advertised Routes BGP Community
1 gpu-backend-spine 1 10.0.0.0/32 0:15 X:20007
10.0.2.0/31 21001:26000
10.0.2.4/31 ...
10.200.1.0/24 ...
1 gpu-backend-spine 2 10.0.0.1/32 0:15 X:20007
10.0.2.64/31 21001:26000
10.0.2.68/31 ...

10.200.1.0/24 ...




By advertising the irb interfaces subnet, communication between GPUs in different rails is possible

across the fabric.

Figure 88: Communication Across Rails
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NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the

document.

I Storage Backend Network Connectivity

The Storage Backend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and

spine nodes are configured with /31 IP addresses as shown in the table below. The fabric consists of 2

spine nodes and 4 leaf nodes, where 2 leaf nodes are used to connect the storage servers (hamed

storage-backend-weka-leaf #)and 2 are used to connect to the GPU servers (named storage-backend-

gpu-leaf #).

There are three 400GE links between each storage-backend-weka-leaf #node and the spine nodes and

two 400GE links between each storage-backend-gpu-leaf # node and the spine nodes as shown in

Figure 89.

Figure 89: Storage Backend Spine to Storage Backend GPU Leaf Nodes Connectivity
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Figure 90: Storage Backend Spine to Storage Backend WEKA Storage Leaf Nodes Connectivity
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Table 41: Storage Backend Interface Addresses



Spine node

storage-backend-spine 1

storage-backend-spinel

storage-backend-spinel

storage-backend-spinel

storage-backend-spine2

storage-backend-spine2

storage-backend-spine2

storage-backend-spine2

Leaf node

storage-backend-gpu-leaf
1

storage-backend-gpu-
leaf2

storage-backend-weka-
leaf1

storage-backend-weka-
leaf2

storage-backend-gpu-
leaf1

storage-backend-gpu-
leaf2

storage-backend-weka-
leaf1

storage-backend-weka-
leaf2

Spine IP Address

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.12/31

10.0.8.14/31

10.0.8.16/31

10.0.8.18/31

10.0.8.20/31

10.0.8.22/31

10.0.8.24/31

10.0.8.26/31

10.0.8.28/31

10.0.8.30/31

10.0.8.32/31

10.0.8.34/31

10.0.8.36/31

10.0.8.38/31

Leaf IP Address

10.0.8.1/31

10.0.8.3/31

10.0.8.5/31

10.0.8.7/31

10.0.8.9/31

10.0.8.11/31

10.0.8.13/31

10.0.8.15/31

10.0.8.17/31

10.0.8.19/31

10.0.8.21/31

10.0.8.23/31

10.0.8.25/31

10.0.8.27/31

10.0.8.29/31

10.0.8.31/31

10.0.8.33/31

10.0.8.35/31

10.0.8.37/31

10.0.8.39/31



NOTE: All IP addresses are assigned by Apstra (from predefined pools of resources) based on the

intent.

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.

Table 42: Storage Backend Loopback Interfaces

Device

storage-backend-spinel

storage-backend-spine2

storage-backend-gpu-leaf1

storage-backend-gpu-leaf2

storage-backend-weka-leaf1

storage-backend-weka-leaf2

Loopback Interface Address

10.0.6.0/32

10.0.6.1/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

The H100 GPU Servers and A100 GPU Servers are connected to the storage backend leaf switches as

summarized in the following table.

Table 43: Storage GPU Backend Servers to Leaf Nodes Connectivity

GPU servers

H100-1

H100-2

A100-1

A100-2

A100-3

A100-4

Leaf Node

storage-backend-gpu-leaf1



(Continued)

GPU servers Leaf Node

H100-3 storage-backend-gpu-leaf2
H100-4

A100-5

A100-6

A100-7

A100-8

The links between the GPU servers and storage-backend-gpu-leaf1 are assigned /31 subnets out of
10.100.1/24, while the links between the GPU servers and storage-backend-gpu-leaf 2 are assigned /31
subnets out of 10.100.2/24, as shown in Figure 91.

Figure 91: GPU Servers to Storage Backend GPU Leaf nodes Connectivity
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Table 44: GPU Servers to Storage GPU Backend Interface Addresses

GPU Server Leaf Node GPU Server IP Address Leaf IP Address

H100 GPU Server 1 storage-backend-gpu-feaf 10.100.1.8/31 10.100.1.9/31
1

H100 GPU Server 2 storage-backend-gpu-leaf 10.100.1.10/31 10.100.1.11/31
1

A100 GPU Server 1 storage-backend-gpu-feaf 10.100.1.0/31 10.100.1.1/31
1

A100 GPU Server 2 storage-backend-gpu-leaf  10.100.1.2/31 10.100.1.3/31
1

A100 GPU Server 3 storage-backend-gpu-leaf 10.100.1.4/31 10.100.1.5/31
1

A100 GPU Server 4 storage-backend-gpu-leaf 10.100.1.6/31 10.100.1.7/31
1

H100 GPU Server 3 storage-backend-gpu-leaf 10.100.2.8/31 10.100.2.9/31
2

H100 GPU Server 4 storage-backend-gpu-leaf 10.100.2.10/31 10.100.2.11/31
2

A100 GPU Server 5 storage-backend-gpu-leaf 10.100.2.0/31 10.100.2.1/31
2

A100 GPU Server 6 storage-backend-gpu-leaf  10.100.2.2/31 10.100.2.3/31
2

A100 GPU Server 7 storage-backend-gpu-leaf 10.100.2.4/31 10.100.2.5/31
2

A100 GPU Server 8 storage-backend-gpu-leaf 10.100.2.6/31 10.100.2.7/31

2

Like the GPU servers, the WEKA storage servers are connected to the two storage-backend-weka-leaf #
nodes as shown Figure 92.

Figure 92: WEKA Storage servers to Leaf Nodes Connectivity
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Each GPU server to leaf node connection is assigned a /31 subnet out of 10.100.0.0/24, as shown in

the following table.

Table 45: WEKA Storage Servers to Leaf Nodes Interface Addresses

WEKA Server

WEKA storage Server 1

WEKA storage Server 2

WEKA storage Server 3

WEKA storage Server 4

Leaf Node

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

WEKA Server IP Address

10.100.0.0/31

10.100.0.2/31

10.100.0.4/31

10.100.0.5/31

Leaf IP Address

10.100.0.1/31

10.100.0.3/31

10.100.0.5/31

10.100.0.7/31




(Continued)

WEKA Server

WEKA storage Server 5

WEKA storage Server 6

WEKA storage Server 7

WEKA storage Server 8

WEKA storage Server 1

WEKA storage Server 2

WEKA storage Server 3

WEKA storage Server 4

WEKA storage Server 5

WEKA storage Server 6

WEKA storage Server 7

WEKA storage Server 8

Notice that the leaf nodes in this case are using physical interfaces to connect to the storage servers.

Leaf Node

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1
storage-backend-weka-

leaf 1

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1

WEKA Server IP Address

10.100.0.8/31

10.100.0.10/31

10.100.0.12/31

10.100.0.14/31

10.100.0.16/31

10.100.0.18/31

10.100.0.20/31

10.100.0.22/31

10.100.0.24/31

10.100.0.26/31

10.100.0.28/31

10.100.0.30/31

Thus, no irb interface or vlan id are used for this connectivity.

Leaf IP Address

10.100.0.9/31

10.100.0.11/31

10.100.0.13/31

10.100.0.15/31

10.100.0.17/31

10.100.0.19/31

10.100.0.21/31

10.100.0.23/31

10.100.0.25/31

10.100.0.27/31

10.100.0.29/31

10.100.0.31/31



EBGP is configured between the IP addresses assigned to the links between the spine and the leaf

nodes as shown in Figure 93.

There will be 3 EBGP sessions between each storage-backend-weka-leaf # node and the spine nodes.

Similarly, there will be 2 EBGP sessions between each storage-backend-gpu-leaf # node.

Figure 93: Storage Backend Spine to Storage Backend Leave for GPU Servers EBGP
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Figure 94: Storage Backend Spine to Storage Backend Leave for WEKA Servers EBGP
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Table 46: Storage Backend Sessions
Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP
Address Address
storage-backend-  storage-backend-gpu- 420103250 4201032600 10.0.8.0/31 10.0.8.1/31
spinel leaf1 0
10.0.8.2/31 10.0.8.3/31
10.0.8.4/31 10.0.8.5/31
storage-backend-  storage-backend-gpu- 4201032601 10.0.8.6/31 10.0.8.7/31
spinel leaf2
10.0.8.8/31 10.0.8.9/31
10.0.8.10/31 10.0.8.11/31
storage-backend-  storage-backend- 4201032602 10.0.8.12/31 10.0.8.13/31
spinel weka-leafl
10.0.8.14/31 10.0.8.15/31
storage-backend-  storage-backend- 4201032603 10.0.8.16/31 10.0.8.17/31
spinel weka-leaf2
10.0.8.18/31 10.0.8.19/31




(Continued)

Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP

Address Address
storage-backend-  storage-backend-gpu- 420103250 4201032600 10.0.8.20/31 10.0.8.21/31
spine2 leafl 1

10.0.8.22/31 10.0.8.23/31

10.0.8.24/31 10.0.8.25/31
storage-backend-  storage-backend-gpu- 4201032601 10.0.8.26/31 10.0.8.27/31
spine2 leaf2

10.0.8.28/31 10.0.8.29/31

10.0.8.30/31 10.0.8.31/31
storage-backend-  storage-backend- 4201032602 10.0.8.32/31 10.0.8.33/31
spine2 weka-leafl

10.0.8.34/31 10.0.8.35/31
storage-backend-  storage-backend- 4201032603 10.0.8.36/31 10.0.8.37/31
spine2 weka-leaf2

10.0.8.38/31 10.0.8.39/31

On the Leaf nodes BGP policies are configured by Apstra to advertise the following routes to the spine

nodes:

NOTE: All the Autonomous System and community values are assigned by Apstra (from
predefined pools of resources) based on the intent.

e Leaf node own loopback interface address,

e |eaf to spine interfaces subnets and
o GPU/WEKA storage server to leaf node link subnets.

Figure 95: Storage Backend Leaf BGP
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Table 47: Storage Backend Leaf Node Advertised Routes
Leaf Node Peer Advertised Routes BGP Communities

storage-backend-
gpu-leafl

storage-backend-
gpu-leaf2

storage-backend-
spinel &

storage-backend-
spine2

storage-backend-
spinel &

storage-backend-
spine2

10.0.7.0/32

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.20/31 ...

10.0.7.1/32

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.26/31 ...

10.100.1.0/31

10.100.1.2/31 ...

10.100.2.0/31

10.100.2.2/31 ...

3:20007

21001:26000

4:20007

21001:26000




(Continued)

Leaf Node

storage-backend-
weka-leafl

storage-backend-
weka-leaf2

Peer

storage-backend-
spinel &

storage-backend-
spine2

storage-backend-
spinel &

storage-backend-
spine2

Advertised Routes

10.0.7.2/32

10.0.8.12/31

10.0.8.14/31

10.0.8.32/31 ...

10.0.7.3/32

10.0.8.16/31

10.0.8.17/31

10.0.8.36/31 ...

10.100.0.16/31

10.100.0.18/31 ...

10.100.0.16/31

10.100.0.18/31 ...

BGP Communities

5:20007

21001:26000

6:20007

21001:26000

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the leaf

nodes:

e spine node own loopback interface address

e leaf nodes’ loopback interface address

e spine to leaf interfaces subnets

o GPU/WEKA storage server to leaf node link subnets.

Figure 96: Storage Backend Spine BGP
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Table 48: Storage Backend Spine Node Advertised Routes
Spine Node Peer Advertised Routes BGP
Communities
storage-backend-  storage-backend-gpu- 10.0.6.0/32 10.0.8.6/31 10.100.0.0/31 3:20007
spinel leaf1
10.0.7.1/32 10.0.8.8/31 10.100.0.2/31 21001:26000
10.0.7.2/32 10.0.8.10/31
10.100.2.0/31
10.0.7.3/32 10.0.8.12/31

10.0.8.14/31

10.100.2.2/31




(Continued)

Spine Node Peer
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Spine Node Peer
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Spine Node

Peer

storage-backend-weka-

leaf 2

Advertised Routes

10.0.6.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.12/31

10.0.8.14/31

10.100.0.0/31
10.100.0.2/31

10.100.2.0/31

10.100.2.2/31

BGP
Communities

By advertising the subnet assigned to the links between the leaf nodes and the GPU/storage servers,
communication between GPUs and the storage servers is possible across the fabric.

Figure 97: Storage Subnet Advertisement
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NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the

document.
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The WEKA Data Platform is a software-based solution built to modernize enterprise data stacks. Its
advanced Al-native, data pipeline-oriented architecture delivers high performance at scale, so Al
workloads run faster and work more efficiently.

We selected the WEKA Data Platform as part of the Al JVD design due to the following benefits:

o High Performance: Weka's architecture is designed for extreme performance, making it suitable for
Al/ML workloads, big data analytics, and high-performance computing (HPC) environments.

o Scalability: Weka can scale from a few terabytes to exabytes of data, allowing customers to grow
their storage capacity without compromising performance. WEKA's distributed architecture differs
from typical scale-up style storage systems, appliances, and hypervisor-based, software-defined
storage solutions. It overcomes traditional storage scaling and file-sharing limitations that can be a
bottleneck to large-scale Al deployments making one of the preferred choices for customers.

¢ Unified Storage: Weka provides a single storage solution that can support multiple protocols (e.g.,
NFS, SMB, POSIX, S3), providing flexibility to access and manage the data and allowing Nvidia’s
GPUDirect Storage access.

e Data Resilience: Weka offers advanced data protection features, including erasure coding, which
ensures data resilience and protection against hardware failures. With a minimum configuration of six
storage servers the cluster can survive two-server failure.

o Ease of Management: Weka's software-defined storage solution is easy to deploy and manage, with a
user-friendly interface and automated management features. It can be installed on any standard



AMD EPYC™ or Intel Xeon™ Scalable Processor-based hardware with the appropriate memory, CPU
processor, networking, and NVMe solid-state drives.

e Support for GPUs: Weka is optimized for GPU acceleration, making it an ideal storage solution for
environments that heavily rely on GPU computing, such as Al and machine learning applications.

e Low Latency: The architecture of Weka allows for very low-latency access to data, which is crucial
for applications that require real-time data processing.

Weka storage cluster in the Al JVD lab

We built the WEKA storage cluster with eight SuperMicro-based servers connected to the Storage
Backend fabric providing 242TB of usable storage. WEKA recommends eight cluster nodes and requires
a minimum of six nodes for production deployment.

Each WEKA Server has the following specifications:

o AMD EPYC 9454P processors

e 384GB System Memory

e OSdrives: 2x 1.92TB M.2 NVMe Data Center SSD (PCle 4.0)
o Data drives: 7x 7.68TB U.2 NVMe Data Center SSD (PCle 4.0)

e Onboard OOB network connection (RJ45) and the following additional interface cards:

e 1 x NVIDIA Mellanox ConnectX-6 DX Adapter Card, 100GE, dual-port QSFP28, PCle 4.0 x16

e 2 x NVIDIA Mellanox ConnectX-6 VPI Adapter Card, HDR IB & 200GE, dual-port QSFP56, OCP
3.0

e Software:

e The operating system installed is Ubuntu 22.04 LTS.
o WEKA release version tested in this design is 4.2.5.
o WEKA Flash Tier license w/SnapShot and high-performance protocol services

e (POSIX, NFS-W, S3 and SMB-W)



Common Setting Changes Required

WEKA strongly recommends certain BIOS settings, and that Mellanox drivers are matched across all
nodes. For convenience, these changes are documented here.

NOTE: WEKA makes available a Weka Management Service (WMS) tool that can be used to
automate the BIOS settings changes, verify your configuration, including driver revisions, and
deploy the WEKA version you have. This can be downloaded from the WEKA website, located
here: https:/get.weka.io/ui/wms/download. Juniper highly recommends utilizing the WMS for
configuring the WEKA cluster. All the devices are configured to perform ECMP load balancing, as
explained later in the document.

BIOS settings:

The BIOS settings can be changed by applying the bios_settings.ymil:

Supermicro:
AMD:

ACPISRATL3CacheAsNUMADomain#0099: Disabled
IOMMU#QQEA: Disabled
NUMANodesPerSocket#703F: Auto
SMTControl#00CB: Disabled
SR-I0VSupport#0067: Enabled
DFCstates#7104: Disabled

GlobalC-stateControl#00CD: Disabled

NOTE: This is an AMD CPU-powered cluster; the settings may be different for Intel based CPUs.

For more details on how to apply these changes refer to: GitHub - weka/bios_tool: A tool for viewing/
setting bios_settings for Weka servers


https://get.weka.io/ui/wms/download
https://github.com/weka/bios_tool
https://github.com/weka/bios_tool

Network Configuration for the Juniper WEKA Cluster

As described in the Storage Backend sections, the WEKA servers are dual-homed, and are connected to
separate storage backend switches ( storage-backend-weka-leaf 1 and storage-backend-weka-leaf 2)
using 200GE ports in the NVIDIA Mellanox ConnectX-6 VPI Adapter Card. The additional QSFP28
100Gbe ports are not used in this JVD but can be used for front-end ingress/egress traffic, staging and

management.

Figure 98: Storage Interface Connectivity
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NOTE: The ports on the switch side must be configured with no auto negotiation and set to

200G speed.

OFED Drivers:

WEKA recommends following Nvidia's recommendation for OFED (Mellanox) drivers when using

Connect-X cards. NVIDIA Documentation - Installing Mellanox OFED.

Driver Release Should be 5.8 or Later.

Ensure that all versions for OFED drivers are aligned across all nodes in the WEKA cluster (i.e. ensure

weka01 has the appropriate OFED installed).
For Ubuntu, the following command is recommended:

./mInxofedinstall --force --dkms --all.


https://docs.nvidia.com/networking/display/mlnxofedv461000/installing+mellanox+ofed

The following script can also be run (as root) on all machines to set the appropriate Mellanox firmware
settings.

#!/bin/bash

mst start

for MLXDEV in /dev/mst/* ; do
mlxconfig -d ${MLXDEV} -y s ADVANCED_PCI_SETTINGS=1 PCI_WR_ORDERING=1
mlxfwreset -y -d ${MLXDEV} reset

done

netplan apply

mst stop

Best Practices for WEKA Data Platform with Juniper Switches

Our cluster is configured using the WEKA distributed POSIX client, which requires some tuning to be
integrated to the rest of the design.

We recommend the following:

e Set the MTU to 9000

o If the back-end storage fabric is shared with another resource, set up appropriate CoS prioritization
to ensure the Al ingest and checkpoint traffic is not interrupted by other applications network 1/0
requests.

If GPU Direct Storage is being used instead of the WEKA distributed POSIX client, congestion
management and mitigation capability on the network utilizing Explicit Congestion Notification
(ECN) and Priority Flow Control (PFC) must be set up.

WEKA also provides tools that can be used to test and measure network activity from a WEKA system
perspective.



The command line tool ‘weka stats’ reports a percentage output of ‘good’ network performance.

weka stats --start-time -24h --end-time -1m --show-internal --stat
GOODPUT_TX_RATIO,GOODPUT_RX_RATIO

When the output is shown as a percentage, anything below 85% indicates potential issues that require
further examination.

Examples:

NODE CATEGORY TIMESTAMP STAT VALUE

all network  2024-06-14T12:58:00 GOODPUT_RX_RATIO 99.7636 %

all network  2024-06-14T12:58:00 GOODPUT_TX_RATIO 99.7636 %

all network  2024-06-14T12:57:00 GOODPUT_RX_RATIO 99.7663 %

all network  2024-06-14T12:57:00 GOODPUT_TX_RATIO 99.7663 %

all network  2024-06-14T12:56:00 GOODPUT_RX_RATIO 99.752 %

all network  2024-06-14T12:56:00 GOODPUT_TX_RATIO 99.752 %

all network  2024-06-14T12:55:00 GOODPUT_RX_RATIO 99.7578 %

all network  2024-06-14T12:55:00 GOODPUT_TX_RATIO 99.7578 %

all network  2024-06-14T12:54:00 GOODPUT_RX_RATIO 99.7795 %

all network  2024-06-14T12:54:00 GOODPUT_TX_RATIO 99.7795 %

all network  2024-06-14T12:53:00 GOODPUT_RX_RATIO 99.7685 %

all network  2024-06-14T12:53:00 GOODPUT_TX_RATIO 99.7685 %

all network  2024-06-14T12:52:00 GOODPUT_RX_RATIO 99.775 %

all network  2024-06-14T12:52:00 GOODPUT_TX_RATIO 99.775 %



weka stats --category=network --show-internal --stat DROPPED_PACKETS --start-time -24h --end-

time -1m -Z

NODE CATEGORY TIMESTAMP STAT VALUE

all  network  2024-06-14T13:06:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T13:05:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T13:04:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T13:03:00 DROPPED_PACKETS Packets/Sec
all network  2024-06-14T13:02:00 DROPPED_PACKETS Packets/Sec
all network  2024-06-14T13:01:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T13:00:00 DROPPED_PACKETS Packets/Sec
all network  2024-06-14T12:59:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T12:58:00 DROPPED_PACKETS Packets/Sec
all network  2024-06-14T12:57:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T12:56:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T12:55:00 DROPPED_PACKETS Packets/Sec
all network  2024-06-14T12:54:00 DROPPED_PACKETS Packets/Sec
all  network  2024-06-14T12:53:00 DROPPED_PACKETS Packets/Sec

If the weka stats command reports dropped packets as shown, further investigation is warranted.

More details and additional tools can be found on the WEKA website Manually prepare the system for
WEKA configuration | W E K A.


https://docs.weka.io/planning-and-installation/bare-metal/setting-up-the-hosts
https://docs.weka.io/planning-and-installation/bare-metal/setting-up-the-hosts

Test Objectives

The primary objectives of the JVD testing can be summarized as:

e Qualification of the complete Al fabric design functionality including the Frontend, GPU Backend,
and Storage Backend fabrics, and connectivity between NVIDIA GPUs and WEKA Storage.

e Qualification of the deployment steps based on Juniper Apstra.

e Ensure the design is well-documented and will produce a reliable, predictable deployment for the
customer.

The qualification objectives included validating:

¢ validation of blueprint deployment, device upgrade, incremental configuration pushes/provisioning,
Telemetry/Analytics checking, failure mode analysis, congestion avoidance and mitigation, and
verification of host, storage, and GPU traffic.

Test Goals

The Al JVD testing for the described network included the following:

o Design and blueprint deployment through Apstra of three distinct fabrics

Fabric operation and monitoring through Apstra analytics and telemetry dashboard

e Congestion management with PFC and ECN, including failure scenarios

e End-to-end traffic flow, with Dynamic Load Balancing

e System health, ARP, ND, MAC, BGP (route, next hop), interface traffic counters, and so on
e Software operation verification (no anomalies, or issues found)

e Al fabric with Juniper Apstra successfully performing under the following required scenarios (must):

e Node failure (reboot)

e Interface failures (interface down/up, Laser on/off):
Under these scenarios the following were evaluated/validated:
e Completion of Al Job models within MLCommons Training benchmarks
o Traffic recovery was validated after all failure scenarios.

e impact to the fabric and check anomalies reporting in Apstra.



Other features tested:

e Mellanox Connect-X NIC card default settings.

e DSCP and CNP configuration on the NICs

o Connectivity between fabric-connected hosts created by Apstra towards NSX-managed hosts.
o BERT/DLRM test completion times

e Llama2 Inference against existing infrastructure.

Refer to the test report for more information.

Tested Optics

Table 49: Frontend Fabric Optics

Part number Optics Name Device Role Device Model

740-085351 QSFP56-DD-400GBASE-  SPINE QFX5130-32CD
DR4

740-085351 QSFP56-DD-400GBASE-  LEAF QFX5130-32CD
DR4

740-061405 QSFP-100GBASE-SR4-T2  LEAF QFX5130-32CD

740-046565 QSFP+-40G-SR4 LEAF QFX5130-32CD

AFBR-709SMZ AVAGO 10GBASE-SR Server SuperMicro Headend
SFP+ 300m Server

AFBR-89CDDZ AVAGO 100GbE QSFP28  Server Weka Storage Server
300m

AFBR-89CDDZ AVAGO 100GbE QSFP28  Server SuperMicro A100 HGX
300m Server

AFBR-89CDDZ AVAGO 100GbE QSFP28  Server NVIDIA H100 DGX

300m Server



Table 50: Storage Fabric Optics

Part number Optics Name Device Role Device Model

740-085351 QSFP56-DD-400GBASE-DR4 SPINE QFX5220-32CD

740-085351 QSFP56-DD-400GBASE-DR4 LEAF QFX5220-32CD

740-058734 QSFP-100GBASE-SR4 LEAF QFX5220-32CD

720-128730 QSFP56-DD-2x200GBASE-CR4- LEAF QFX5220-32CD
CU-2.5M

NON-JNPR QSFP28-100G-DR LEAF QFX5220-32CD

720-128730 QSFP56-DD-2x200GBASE-CR4- Server Weka Storage Server
CU-2.5M

720-128730 QSFP56-DD-2x200GBASE-CR4- Server SuperMicro A100 HGX
CU-2.5M Server

740-159003 QSFP56-DD-2x200G-BOAOC-7M  Server NVIDIA H100 DGX

Server

Table 51: Backend GPU Fabric - Cluster 1 (HGX-A100)

Part number Optics Name Device Role Device Model
740-085351 QSFP56-DD-400GBASE-DR4 SPINE QFX5230-64CD
740-085351 QSFP56-DD-400GBASE-DR4 SPINE PTX10008
740-085351 QSFP56-DD-400GBASE-DR4 LEAF QFX5230-64CD
740-046565 QSFP+-40G-SR4 LEAF QFX5230-64CD
740-159003 QSFP56-DD-2x200G-BOAOC-7M  LEAF QFX5230-64CD
720-128730 QSFP56-DD-2x200GBASE-CR4- LEAF QFX5230-64CD
CU-2.5M

740-085351 QSFP56-DD-400GBASE-DR4 LEAF QFX5220-32CD



(Continued)

Part number Optics Name Device Role Device Model

720-128730 QSFP56-DD-2x200GBASE-CR4- LEAF QFX5220-32CD
CU-25

720-128730 QSFP56-DD-2x200GBASE-CR4- Server SuperMicro A100 HGX
CU-2.5M Server

Table 52: Backend GPU Fabric - Cluster 2 (DGX-H100)

Part number Optics Name Device Role Device Model

740-174933 OSFP-800G-DR8 SPINE QFX5240-640D

740-174933 OSFP-800G-DR8 LEAF QFX5240-640D

MMS4X00-NS-FLT NVIDIA 800Gbps Twin- Server NVIDIA H100 DGX
port OSFP 2x400Gb_s Server

Single Mode 2xDR4 100m

Results Summary and Analysis

For a detailed test results report, please contact your Juniper representative.

Recommendations

The Al Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage JVD follows an
industry-standard dedicated IP Fabric design. Three distinct fabrics provide maximum efficiency while
maintaining focus on Al model scale, expedited completion times, and rapid evolution with the advent of
Al technologies.

To follow best practice recommendations:

e A minimum of 4 spines in each fabric is suggested.



NOTE: Though the design for cluster 1 in this document only includes only 2 spines, we found
that under certain dual failure scenarios, combined with congestion, the fabric becomes
susceptible to PFC storms (not vendor-unique). We recommend deploying the solution with 4
spines as described for the QFX5240s fabric (cluster 2) even when using different switch models.

e Follow a rail-optimized fabric and maintain a 1:1 relation with bandwidth subscription and Leaf to
GPU symmetry.

e Implement Dynamic Load Balancing instead of traditional ECMP for optimal load distribution.

¢ Implement DCQCN (PFC and ECN) to ensure a lossless fabric in the GPU Backend Fabric, and
possibly in the Storage Backend Fabric as required per vendor recommendation.

e The minimum recommended Junos OS releases for this JVD are:

e Junos OS Release 23.4R2-S3 is for the Juniper QFX5130-32CD

e Junos OS Release 23.4X100-D20 for the Juniper QFX5220-32CD
e Junos OS Release 23.4X100-D20 for the Juniper QFX5230-64CD
e Junos OS Release 23.4X100-D20 for the Juniper QFX5240-64CD
e Junos OS Release 23.4R2-S3 for the Juniper PTX10008

e Configure DCQCN (PFC and ECN) parameters on the Nvidia servers and change the NCCL_SOCKET
interface to be the management (frontend) interface.

The Juniper hardware listed in the Juniper Hardware and Software Components section are the best-
suited switch platforms regarding features, performance, and the roles specified in this JVD.

Table 53: Revision History

Date Version Description
December 2024 JVD-AICLUSTERDC-AIML-02-08 Added PTX as spine.
November 2024 JVD-AICLUSTERDC-AIML-02-05 Utilized Junos OS Evolved Release

23.4X100-D20 for the leaf and
spine switches.
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