_JUﬂ | per | Engineering

Simplicity

NETWORKS

Published
2025-12-23

Table of Contents

About this Document | 1

Solution Benefits | 1

Juniper Validated Design Benefits | 2
Juniper Apstra Benefits | 3

Al Use Case and Reference Design | 4
Frontend Overview | 5

GPU Backend Overview | 7

Storage Backend Overview | 7
Solution Architecture | 8

Frontend Fabric | 11

GPU Backend Fabric | 12

Rail Optimized Fabric | 17

Backend GPU Rail Optimized Stripe Architecture | 19

Calculating the number of leaf and spine nodes, Servers, and GPUs in a rail optimized
architecture | 22

Storage Backend Fabric | 26
Scaling | 29

Juniper Hardware and Software Components | 30

IP Services for Al Networks | 32

Configuration Walkthrough | 36

NVIDIA Configuration | 70

Terraform Automation of Apstra for the Al Fabric | 114

Validation Framework | 118

Network Connectivity: Reference Examples | 120
WEKA Storage Solution | 163

Tested Optics | 171

Results Summary and Analysis | 174
Recommendations | 174

Revision History | 175

Al Data Center Network with Juniper Apstra,
NVIDIA GPUs, and WEKA Storage—Juniper
Validated Design (JVD)

Juniper Networks Validated Designs provide a comprehensive, end-to-end blueprint for deploying
Juniper solutions in your network. These designs are created by Juniper's expert engineers and tested to
ensure they meet your requirements. Using a validated design, you can reduce the risk of costly
mistakes, save time and money, and ensure that your network is optimized for maximum performance.

About this Document

This document describes the design requirements and implementation details of an Al cluster
infrastructure with a GPU backend IP Fabric. This fabric is built based on Al-optimized Juniper Data
Center QFX series switches, and PTX Series Routers, which are configured and managed by Juniper
Apstra and Terraform automation. The cluster includes Nvidia H100 DGX as well as AMD MI300X GPU
servers, and WEKA Storage systems.

All validation tests were conducted in Juniper’s Al Innovation Lab in Sunnyvale, CA, USA. In this open
lab, Juniper collaborates closely with customers and technology partners to develop Al solutions and
test deployments for a range of Al applications and models.

The Al Innovation Lab allows customers to see Al training and inference in action, running on an NVIDIA
GPU and WEKA Storage cluster. Juniper performs these tests running both customer-specific models as
well as those from MLCommons for MLPerf performance benchmarking and comparisons.

Solution Benefits

IN THIS SECTION

Juniper Validated Design Benefits | 2

Juniper Apstra Benefits | 3

https://mlcommons.org/

Juniper Networks has excelled in building and supporting Al networks following a scalable, robust, and
automated approach suitable for a range of cluster sizes. Unlike proprietary solutions that lock in
enterprises and can stifle Al innovation, Juniper’s standards-based solution assures the fastest
innovation, maximizes design flexibility, and prevents vendor lock-in on the Frontend, GPU Backend, and
Storage Backend Al fabric networks.

The Juniper Validated Design (JVD) for Al describes a structured approach for deploying high-
performance Al training and inference networks that minimize job completion time and maximize GPU
performance. Additionally, it incorporates industry best practices, and leverages Juniper’s extensive
expertise in building high-performance data center networks.

This design in this JVD employs a 3-stage Clos IP fabric architecture utilizing Juniper QFX and PTX
switches. It integrates NVIDIA GPUs and WEKA storage and is deployed and managed using Juniper’s
Apstra software and Terraform Automation, incorporating best practices and Juniper’s extensive
experience in building Data Center networks.

The integration with Juniper’s Apstra software and Terraform enables customers to orchestrate the
network infrastructure systematically, without requiring in-depth knowledge of the products and
technologies involved. This allows customers to easily build high-capacity, easy-to-operate network
fabrics that deliver high performance, increased reliability, which result in optimal JCT (Job Completion
Time) and maximized GPU utilization in the Al cluster.

The solution has been extensively tested and thoroughly documented by Juniper subject matter experts,
resulting in a validated design that is easy to follow, guarantees successful implementation, and
simplified management and troubleshooting tasks. This document provides comprehensive guidance on
how to deploy this solution, with clear descriptions of its components and step by step instructions to
connect and configure them.

Juniper Validated Design Benefits

JVDs are prescriptive blueprints for building data center fabrics using repeatable, validated, predictable,
and well documented network architecture solutions with guidelines for a successful deployment. Each
solution has been designed, fully tested, and documented by Juniper Networks experts with all the
necessary implementation details, including hardware components, software versions, connectivity, and
configuration steps.

To become a validated solution (JVD) and be approved for release, a solution must pass rigorous testing
with real-world workloads and applications. All features must satisfy operational and performance
criteria in real-world scenarios. Testing not only includes validating the design topology and
configuration steps, but also that all products in the JVD work together as expected, thereby mitigating
potential risks while deploying the solution.

The core benefits of JVDs solutions can be summarized as:

¢ Qualified Deployments—Qualified network design blueprints for data center fabrics, that follow best
practices and meet the requirements of each specific use case, and make the solution deployment
quicker, simpler, and more reliable.

e Scalable—Solutions that can scale beyond the initial design and support the adoption of different
hardware platforms based on customer requirements, and customers’ feedback can meet the needs
of most Juniper’s data center customers.

¢ Risk Mitigation— Prescriptive implementation guidelines guarantee that you have the right products,
right software versions, optimal architecture, and deployment steps.

o Systematically Verified—Tested solutions using a suite of automated testing tools validate the
performance and reliability of all the components.

e Predictability— Detailed testing and careful documentation of the solution, including the capabilities
and limitations of its components, guarantees that the solution will operate as expected when
implemented according to the JVD guidelines.

e Repeatability— Unlocked value with repeatable network designs due to the prescriptive nature of
JVD designs as well as their applicability to common use cases in the data center environment. All
JVD customers benefit from lessons learned through lab testing and real-world deployments.

o Reliability— Tested with real traffic, JVD solutions are qualified to operate as designed after
deployment and with real-world traffic.

e Accelerated Deployment— Ease installation with step-by-step guidance automation, and prebuilt
integrations simplifies, and accelerates deployment, while reducing risks.

o Accelerated Decision-Making— Predefined combination of products, software, and architecture
removes the need to spend time comparing products, and deciding how the network should be built,
allowing to bridge business and technology requirements faster and also reducing risks.

e Best Practice Networks— Better outcomes for a better experience. Juniper Validated Designs have
known characteristics and performance profiles to help you make informed decisions about your
network.

Juniper Apstra Benefits

Juniper Validated Designs in the data center start with the Apstra software, a multi-vendor, intent-based
networking system (IBNS) that provides closed-loop automation and assurance. Apstra translates
vendor-agnostic business intent and technical objectives to essential policy and device-specific
configurations. The system also validates user intent, as part of the initial deployment and continuously
thereafter, to ensure that the network state does not deviate from the intended state. Any anomaly or
deviation can be flagged, and remediation actions can be taken directly from Apstra.

The core benefits of Apstra are:

¢ Intent-based networking—Apstra automates configuration creation to realize the intent, deploys the

configuration to appropriate devices, and continuously validates the operating state against intended
state.

e Network Automation—Apstra is a multi-vendor network automation platform that is continuously
updated to work with the latest hardware and is extensively tested using modern DevOps practices.

e Recoverability—The Built-in rollback capability of Apstra allows to quickly restore the system to a
known-working configuration if needed.

e Day 2+ Management—Apstra’s rich data analysis capabilities, including Flow Data, reduce Mean Time
to Resolution (MTTR).

o Simplicity—Apstra simplifies network deployment and management. As an example, using Apstra to
implement a Data Center Interconnection (DCI), reduces complexity and makes it easy to unify
multiple data centers, while isolating failure domains for high availability and resilience.

Al Use Case and Reference Design

IN THIS SECTION

Frontend Overview | 5
GPU Backend Overview | 7

Storage Backend Overview | 7

The Al JVD Reference Design covers a complete end-to-end ethernet-based Al infrastructure, which
includes the Frontend fabric, GPU Backend fabric and Storage Backend fabric. These three fabrics have
a symbiotic relationship, while each provides unique functions to support Al training and inference tasks.
The use of Ethernet Networking in Al Fabrics enables our customers to build high-capacity, easy-to-
operate network fabrics that deliver the fastest job completion times, maximize GPU utilization, and use
limited IT resources.

The Al JVD reference design shown in No Link Title includes:

o Frontend Fabric: This fabric is the gateway network to the GPU nodes and storage nodes from the Al
tools residing in the headend servers. The Frontend GPU fabric allows users to interact with the GPU

and storage nodes to initiate training or inference workloads and to visualize their progress and
results. It also provides an out-of-band path for NCCL (NVIDIA Collective Communications Library)
collective communication.

e GPU Backend Fabric: This fabric connects the GPU nodes (which perform the computations tasks for
Al workflows). The GPU Backend fabric transfers high-speed information between GPUs during
training jobs, in a lossless matter. Traffic generated by the GPUs is transferred using RoCEv2 (RDMA
over Ethernet v2).

e Storage Backend Fabric: This fabric connects the high-availability storage systems (which hold the
large model training data) and the GPUs (which consume this data during training or inference jobs).
The Storage Backend fabric transfers high volumes of data in a seamless and reliable matter.

Figure 1: Al JVD Reference Design

HEADEND-SVR-0# (#=1-3):

GPU and Weka management + shared storage + Al tools

FRONTEND

FABRIC
o % / FRONTEND
=4 LEAF/SPINE NODES
(@] mgmt
= interface
m ' S~ GPU SERVERS
z oooooooo| interace
E | A100/H100, MI300 3-stage Clos 3]
(o) | storage GPU IP or =] WEKA STORAGE
. E interfaces interfaces EVPN/VXLAN TGQ ===s) SERVERS
[G] " 2 Dedicated High speed
storage
; BACKEND GPU m interage storage
z FABRIC
GPU BACKEND
% LEAF/SPINE NODES -
© G ~==== VAST STORAGE
:ET:]ETE'= SERVERS
S Dedicated High speed
storage storage
interfaces
BACKEND

I
5
STORAGE |
Vi

i/ STORAGE BACKEND
LEAF/SPINE NODES

Frontend Overview

The Al Frontend for Al encompasses the interface, tools, and methods that enable users to interact with
the Al systems, and the infrastructure that allows these interactions. The Frontend gives users the ability
to initiate training or inference tasks, and to visualize the results, while hiding the underlying technical
complexities.

The key components of the Frontend systems include:

https://www.bing.com/ck/a?!&&p=ee7a43e6ab6a478e79365077817b67855b63d3fe7686365381fb44483d48c092JmltdHM9MTczNDM5MzYwMA&ptn=3&ver=2&hsh=4&fclid=207661fb-7015-6f00-1567-74c471076e94&psq=NCCL&u=a1aHR0cHM6Ly9kZXZlbG9wZXIubnZpZGlhLmNvbS9uY2Ns&ntb=1

Moadel Scheduling: Tools and methods for managing scripted Al model jobs and commonly based on
SLURM (Simple Linux Utility for Resource Management) Workload Manager. These tools enable
users to send instructions, commands, and queries, either through a shell CLI or through a graphical
web-based interface to orchestrate learning and inference jobs running on the GPUs. Users can
configure model parameters, input data, and interpret results as well as initiate or terminate jobs
interactively. In the Al JVD, these tools are hosted on the Headend Servers connected to the Al
Frontend fabric.

Management of Al Systems: Tools for managing (configuring, monitoring and performing
maintenance tasks) the Al storage and processing components. These tools facilitate building,
running, training, and utilizing Al models efficiently. Examples include SLURM, TensorFlow, PyTorch,
and Scikit-learn.

Management of Fabric Components: Mechanisms and workflows designed to help users effortlessly
deploy and manage fabric devices according to their requirements and goals. It includes tasks such as
device onboarding, configuration management, and fabric deployment orchestration. This
functionality is provided by Juniper Apstra .

Performance Monitoring and Error Analysis: Telemetry systems tracking key performance metrics
related to Al models, such as accuracy, precision, recall, and computational resource utilization (e.g.
CPU, GPU usage) which are essential for evaluating model effectiveness during training and inference
jobs. These systems also provide insights into error rates and failure patterns during training and
inference operations, and help identify issues such as model drift, data quality problems, or
algorithmic errors that may affect Al performance. Examples of these systems include Juniper Apstra
dashboards, TIG Stack, and Elasticsearch.

Data Visualization: Applications and tools that allow users to visually comprehend insights generated
by Al models and workloads. They provide effective visualization that enhances understanding and
decision-making based on Al outputs. The same telemetry systems used to monitor and measure
System and Network level performance usually provide this visualization as well. Examples of these
tools include Juniper Apstra dashboards, TensorFlow, and TIG stack.

User Interface: routing and switching infrastructure that allows communication between the user
interface applications and tools and the Al systems executing the jobs, including GPUs and storage
devices. This infrastructure ensures seamless interaction between users and the computational
resources needed to leverage Al capabilities effectively.

GPU-to-GPU control: communication establishment, information exchange including, QP GIDs
(Global IDs), Local and remote buffer addresses, and RDMA keys (RKEYs for memory access
permissions)

GPU Backend Overview

The GPU Backend for Al encompasses the devices that execute learning and inference jobs or
computational tasks, that is the GPU servers where the data processing occurs, and the infrastructure
that allows the GPUs to communicate with each other to complete the jobs.

The key components of the GPU Backend systems include:

e Al Systems: Specialized hardware such as GPUs (Graphics Processing Units) and TPUs (Tensor
Processing Units) that can execute numerous calculations concurrently. GPUs are particularly adept
at handling Al workloads, including complex matrix multiplications and convolutions required to
complete learning and inference tasks. The selection and number of GPU systems significantly
impacts the speed and efficiency of these tasks.

o Al Software: Operating systems, libraries, and frameworks essential for developing and executing Al
models. These tools provide the environment necessary for coding, training, and deploying Al
algorithms effectively. The functions of these tools include:

o Data Management: preprocessing, and transformation of data utilized in training and executing Al
models. This encompasses tasks such as cleaning, normalization, and feature extraction. Given the
volume and complexity of Al datasets, efficient data management strategies like parallel
processing and distributed computing are crucial.

¢ Model Management: tasks related to the Al models themselves, including evaluation (e.g., cross-
validation), selection (choosing the optimal model based on performance metrics), and
deployment (making the model accessible for real-world applications).

e GPU Backend Fabric: routing and switching infrastructure that allows GPU-to-GPU communication
for workload distribution, memory sharing, synchronization of model parameters, exchange of
results, etc. The design of this fabric can significantly impact the speed and efficiency of Al/ML
model training and inference jobs and in most cases shall provide lossless connectivity for GPU-to-
GPU traffic.

Storage Backend Overview

The Al storage backend for Al encompasses the hardware and software components for storing,
retrieving, and managing the vast amounts of data involved in Al workloads, and the infrastructure that
allows the GPUs to communicate with these storage components.

The key aspects of the storage backend include:

¢ High-Performance Storage Devices: optimized for high 1/O throughput, which is essential for
handling the intensive data processing requirements of the Al tasks such as deep learning. This

includes high-performance storage devices designed to facilitate fast access to data during model
training and to accommodate the storage needs of large datasets. These storage devices must
provide:

¢ Data Management Capabilities: which support efficient data querying, indexing, and retrieval and
are crucial for minimizing preprocessing and feature extraction times in Al workflows, as well as
for facilitating quick data access during inference.

e Scalability: which accommodates growing data volumes and efficiently manages and stores
massive amounts of data over time, to support Al workloads often involving large-scale datasets.

e Storage Backend Fabric: routing and switching infrastructure that provides the connectivity between
the GPU and the storage devices. This integration ensures that data can be efficiently transferred
between storage and computational resources, optimizing overall Al workflow performance. The
performance of the storage backend significantly impacts the efficiency and JCT of Al/ML
workflows. A storage backend that provides quick access to data can significantly reduce the amount
of time for training Al/ML models.

Solution Architecture

IN THIS SECTION

Frontend Fabric | 11

GPU Backend Fabric | 12

Rail Optimized Fabric | 17

Backend GPU Rail Optimized Stripe Architecture | 19

Calculating the number of leaf and spine nodes, Servers, and GPUs in a rail optimized
architecture | 22

Storage Backend Fabric | 26
Scaling | 29
Juniper Hardware and Software Components | 30

IP Services for Al Networks | 32

The three fabrics described in the previous section (Frontend, GPU Backend, and Storage Backend), are
interconnected together in the overall Al JVD solution architecture as shown in Figure 2.

Figure 2: Al JVD Solution Architecture

sooooooa GPU SERVERS X 8 (CLUSTER 1) 4 "
ST GRUSERVERS X 8 [CLUSTER 2) ! BACKEND GPU FABRIC (GPU CLUSTERS 1 -2) :

(=550 STORAGE SERVERS X 16

My ; backend-spinel backend-spine2
SPINENODES: H Epu- nd-spinel gpu- nd-spine.
m:mwmmhmm . —

[=—=——r—yp i
JUNIPER QFXS220 (Storage Backend) .
JUNIPER QFXS230 OF H
JUNIPER PTXL0008 {590 Backend Chuster 1) |
JUNIPER QF XSO (GPUBackend Chuster 2} |
SRS |EAF NOOES:
JUNIPER OFXS130 [Frontand]
JUNIPER QFX5220 [Stoe ge Backend) + STRIPES1 & 2
JUNIPER QF X5230 (Backend Chuster 1 Strige1)
IUNIPER QFXS220 (Backend Chuster 1 Stripe?) » |
IUNIPER QF 5240 (61 Backend Cluster 2]

u-backend hack, 2 . % Backend =
i i et P jeata . leafs leafs e T et

OOB MGT

FRONTEND FABRIC

. EEEEEEEEN EEEEEEEER
[l s sl EaTeTa T v =

| frontend-leafl 4 I j 2

! frontend-spinel 5, 400GE__ EEEEEEE 100GE %‘ ;
| e :: W : "

i ====H i

5 frontend-spine2 _~ | o mﬁ?ﬁu b sl:a d-leafd mm‘r fs b ‘I::'Ti‘rrfs :
i E==aht—_ —_—, fm'“en"z : iz L3 esslamies = = :||:|:|:|:|:= i

I
|
5
T Storagel 2 [Sdyises
Storagel_3 :_—._‘7_‘ i " o
Headend-SVR-0# [# = 0 - 3] el
GPU and storage management + Slom].al_il L {C) '
shared storage + Al tools H ¥ H
o BACKEND STORAGE :
i

FABRIC

Slura]'et_s e ;

Storagez_1 (s 13}
Storage2_2 ==

Storage2_3 @ L:'
Storage2_4 (e . 3

Storage2_8 (S

We have built two different Clusters, as shown in Figure 3, which share the " Frontend fabric " on page
11 and " Storage Backend fabric " on page 26 but have separate " GPU Backend fabrics " on page

12. Each cluster is made of two stripes following the " Rail Optimized Stripe Architecture " on page

17, but include different switch models as Leaf and Spine nodes, as well as GPU server models.

Figure 3: Al JVD Lab Clusters

CLUSTER 1 CLUSTER 2

QFX5230/PTX1008 || QFX5230/PTX1008 QFX5240 QFX5240 QFX5240 QFX5240
GPU BACKEND GPU BACKEND GPU BACKEND ‘GPU BACKEND GPU BACKEND GPU BACKEND
SPINE1 SPINE 2 SPINE1 SPINE 1 SPINE1 SPINE 1
=

2% 400G links 2 x 400G links = e
per leaf node / per leaf node / ==
T T emeerl{] STRIPE2 ! | STRIPEL | f | STRIPE2

| BxQFX5230s | | 8x QFX5220s | | 8x QFX5240s ' 8xQFX5240s |

| BACKEND GPU | 6 1006 | BACKEND GPU | 51016 | BACKEND GPU | 8 x 1006 | BACKEND GPU { s 1006

i links. | links | links links.

| FABRIC LEAFs ! FABRICLEAFs (X || FABRIC LEAFs . FABRIC LEAFs
v e

M-) S) N
7= | J%

S99geses | (Sgsesneg _ ESmsAsag
N —

NVIDIA AL00-4 NVIDIA A100-5 NVIDIA A100-

e — |

1x 2006 links per GPU server (A100)
1 x 4006 links per GPU server (H100)

[4xQFX5220s
! BACKEND
FRONTEND | === WeKA | STORAGE I
| FeRC === wika2 | FABRIC)
T 1 x 100G links E===11 weras 2 x 100G links i aroito
l l per weka server WEKA4 per weka server n -”

E===p

1 x 10G links

per headend server | 4XQRKG130s |

The GPU Backend in Cluster 1 consists of Juniper QFX5220, and QFX5230 switches as leaf nodes and
either QFX5230s switches or PTX10008 routers acting as spine nodes and includes Nvidia A100 GPU
servers. The QFX5230s and PTX10008 acting as spine nodes have been validated separately, while
maintaining the leaf nodes the same. Apstra blueprints are used to switch between the setups with
QFX5230s acting as spine nodes and the one with PTX10008 acting as spine.

The GPU Backend in Cluster 2 consists of Juniper QFX5240 switches acting as both leaf nodes and
spine nodes and includes AMD MI300X GPU servers and Nvidia H100 GPU servers.

The rest of this document focuses on the Nvidia servers and Weka storage and includes server and
storage configurations, specific for these systems.

It is important to notice that the type of switch and the number of switches acting as leaf and spine
nodes, as well as the number and speed of the links between them, is determined by the type of fabric
(Frontend, GPU Backend or Storage Backend) as they present different requirements. More details will
be included in the respective fabric description sections.

In the case of the GPU Backend fabric, the number of GPU servers, as well as the number of GPUs per
server, are also factors determining the number and switch type of the leaf and spine nodes.

Frontend Fabric

The Frontend Fabric provides the infrastructure for users to interact with the Al systems to orchestrate
training and inference tasks workflows using tools such as SLURM. These interactions do not generate
heavy data flows nor have rigorous requirements regarding latency or packet drops; thus, they do not
impose rigorous demands on the fabric.

The Frontend Fabric design described in this JVD follows a traditional 3-stage IP Fabric architecture
without HA, as shown in Figure 4. This architecture provides a simple and effective solution for the
connectivity required in the Frontend. However, any fabric architecture including EVPN/VXLAN, could
be used. If an HA-capable Frontend Fabric is required we recommend following the 3-Stage with Juniper
Apstra JVD.

Figure 4: Frontend Fabric Architecture

oooconoooo ooocobooo ooocobooo
EEEEEEE® EEEEEEE® HEEHEHEEE | aaa

GPU server 3

GPU server 1

GPU server 2

a8ennoen| Nvidia GPU A100 servers x 8 (cluster 1)
HEREEEEE] Nyidia GPU H100 serversx 4 (cluster 2)

) ——=——1 Weka Storage Servers x 8
__ § (Dedicated Storage)

SPINE SWITCHES:
===—=FH JUNIPER QFX5130 (Frontend)

LEAF SWITCHES:
JUNIPER QFX5130 (Frontend)

Headend-SVR-0# [#=0 - 3]
Weka management servers ~ Weka-4

Weka-8

The devices included in the Frontend fabric, and the connections between them, are summarized in the
following table:

Table 1: Frontend devices

Nvidia DGX Weka Storage Headend Frontend Frontend Spine

GPU Servers Servers Servers Nodes switch model
Leaf Nodes switch model

frontend-spine#
frontend-leaf#

(#=1-2)
(#=1-2)

https://www.juniper.net/documentation/us/en/software/jvd/jvd-3-stage-datacenterdesign-with-juniper-apstra/solution_benefits.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-3-stage-datacenterdesign-with-juniper-apstra/solution_benefits.html

A100 x 8 Weka Storage Headend-SVR x | QFX5130-32CD x 2 QFX5130-32CD x 2

Server x 8 3
H100 x 4

Table 2: Connections between servers, leaf and spine nodes per cluster and stripe in the Frontend

GPU Servers to <=> Weka Storage Servers Headend Servers <=> Frontend Spine Nodes <=>
<=>

Frontend Leaf Nodes Frontend Leaf Nodes Frontend Leaf Nodes
Frontend Leaf Nodes

1 x 100GE links 1 x 100GE links 1 x 10GE links 2 x 400GE links
between each GPU server = between each storage between each headend | between each leaf node and
server weka# (#=1-8) and = server Headend- each spine node.

A100-0#, H100-01# SVR-O# (#=1-3) and
frontend-leaf2

(#=1-8 for A100 and 1-4 frontend-leaf2
for H100) and frontend-
leaf1

This fabric is a pure L3 IP fabric using EBGP for route advertisement. The IP addressing and EBGP
configuration details are described in the networking section on this document.

GPU Backend Fabric

The GPU Backend fabric provides the infrastructure for GPUs to communicate with each other within a
cluster, using RDMA over Converged Ethernet (RoCEv2). ROCEv2 boosts data center efficiency, reduces
overall complexity, and increases data delivery performance by enabling the GPUs to communicate as
they would with the InfiniBand protocol.

Packet loss can impact job completion times and should be avoided. Therefore, when designing the
network infrastructure to support RoCEv2 for an Al cluster, one of the key objectives is to provide a
lossless fabric, while also achieving maximum throughput, minimal latency, and minimal network
interference for the Al traffic flows. ROCEv2 is more efficient over lossless networks, resulting in
optimum job completion times.

The GPU Backend fabric in this JVD was designed with these goals in mind and follows a 3-stage IP clos
architecture combined with NVIDIA’s Rail Optimized Stripe Architecture (discussed in the next section),
as shown in Figure 5.

Figure 5: GPU Backend Fabric Architecture

__ .
L — e 1
Nvidia GPU A100 servers (cluster 1)
i ‘gggggggg Nvidia GPU H100 servers (cluster 2) BACKEND GPU FABRIC :
(GPU CLUSTERS 1 - 2)
| ====pg SPINESWITCHES: gpu-backend- gpu-backend- I
I====FH JUNIPER QFX5230 OR JUNIPER PTX10008 (GPU Backend Cluster 1) spinel spine2
JUNIPER QFX5240 (GPU Backend Cluster 2)
LEAF SWITCHES:
JUNIPER QFX5230 (Backend Cluster 1 Stripe1)

(i
JUNIPER QFX5220 (Backend Cluster 1 Stripe2)
JUNIPER QFX5240 (GPU Backend Cluster 2)

___________________________ S

| STRIPEs1-2

GPU Server 1

oooobooo
HEEHHEEE

The GPU Backend devices included in this fabric, and the connections between them, are summarized in
the following table:

Table 3: GPU Backend devices per cluster and stripe

Cluster Stripe Nvidia DGX GPU GPU Backend Leaf GPU Backend Spine
Servers Nodes switch model | Nodes switch model

(gpu-backend-leaf#) | (gpu-backend-

spine#)
1 1 A100-01 to QFX5230-64CD x8 ' QFX5230-64CD x 2
A100-04
OR
1 2 A100-05to QFX5220-32CD x8 @ PTX10008 w/
A100-08
JNP10K-LC1201
2 1 H100-01to QFX5240-640D x QFX5230-640D x
H100-02 8 4
2 2 H100-03to QFX5240-640D x
H100-04 8

Table 4: Connections between servers, leaf and spine nodes per cluster and stripe in the GPU Backend

Cluster Stripe GPU Servers <=> GPU Backend Spine Nodes <=>

GPU Backend Leaf Nodes GPU Backend Leaf Nodes

13

1 1
1 2
2 1
2 2

1 x 200GE links

between each A100 server and each
leaf node (200GE x 8 links per server)

1 x 200GE links

between each A100 server and each
leaf nodes (200GE x 8 links per server)

1 x 400GE links

between each H100 server and each
leaf nodes (400GE x 8 links per server)

1 x 400GE links

between each H100 server and each
leaf nodes (400GE x 8 links per server)

2 x 400GE links

between each leaf node and each spines
node (2 x 400GE x 2 links per leaf node)

2 x 400GE links

between each leaf node and each spines
node (2 x 400GE x 2 links per leaf node)

2 x 400GE links

between each leaf node and each spines
node (2 x 400GE x 4 links per leaf node)

2 x 400GE links

between each leaf node and each spines
node (2 x 400GE x 4 links per leaf node)

e All the Nvidia A100 servers in the lab are connected to the QFX5220 and QFX5230 leaf nodes in
cluster 1 using 200GE interfaces, while the H100 servers are connected to the QFX5240 leaf nodes
in cluster 2 using 400GE interfaces.

e This fabric is a pure L3 IP fabric (either IPv4 or IPV6) that uses EBGP for route advertisement
(described in the networking section).

e Connectivity between the servers and the leaf nodes is L2 vlan-based with an IRB on the leaf nodes
acting as default gateway for the servers (described in the networking section).

The speed and number of links between the GPU servers and leaf nodes and between the leaf and spine
nodes determines the oversubscription factor. As an example, consider the number of GPU servers
available in the lab, and how they are connected to the GPU backend fabric as described above.

Table 5: Per cluster, per stripe Server to Leaf Bandwidth

Server to Leaf Bandwidth per Stripe (per Cluster)

Cluster

type)

Al Systems (server

Servers per Server <=> Leaf Bandwidth Total Bandwidth
Stripe Links per Server of Server
<=> Leaf Servers <=> Leaf

Links [Gbps] = Per stripe [Tbps}

1 A100 4 8 200 4 x 8 x 200/1000

=64
2 H100 2 8 400 2 x 8 x 400/1000
= 6.4
Table 6: Per cluster, per stripe Leaf to Spine Bandwidth
Leaf to Spine Bandwidth per Stripe
Leaf <=> Spine Links Per Speed Of Number of Spine Nodes Total Bandwidth
Spine Node & Per Stripe
Leaf <=> Spine Links Leaf <=> Spine Per
Stripe
[Gbps]
[Tbps]
8 2 x 400 2 12.8

The (over)subscription rate is simply calculated by comparing the numbers from the two tables above:

In cluster 1, the bandwidth between the servers and the leaf nodes is 6.4 Tbps per stripe, while the
bandwidth available between the leaf and spine nodes is 12.8 Tbps per stripe. This means that the fabric
has enough capacity to process all traffic between the GPUs even when this traffic was 100% inter-

stripe, while still having extra capacity to accommodate additional servers without becoming
oversubscribed.

Figure 6: Extra Capacity Example

2x400G x8x 2=12.8T

LEAF NODES

(200G x 4) x 8 =6.4T

[1]2]3]4]s 67]8} X4
EEEEEESE]

We also tested connecting the H100 GPU servers along the A100 servers to the stripes in Cluster 1 as
follows:

Figure 7: 1:1 Subscription Example

SPINE NODES &

2 x 400G

LEAF NODES

[a]2]3]a s 6]7]s]
EEEEEEEE]

1 2]54 5 67 8]
DEEEEEeR

X2

2x400G x 8 x 2=12.8T

(200G x 4 + 400G x 2) x 8 =12.8T

Table 7: Per cluster, per stripe Server to Leaf Bandwidth with all servers connected to same cluster

Server to Leaf Bandwidth per Stripe

Cluster Al Systems Servers per | Server <=> Leaf
Stripe Links per Server
1 A100 4 8
H100 2 8

Server <=> Leaf
Links Bandwidth

[Gbps]

200

400

Total Bandwidth of
Server <=> Leaf
Links

Total Servers <=>
Leaf Links

Bandwidth per
stripe

[Tbps]

4 x 8 x200/1000 =
6.4

2 x 8 x 400/1000 =
6.4

12.8

The bandwidth between the servers and the leaf nodes is now 12.8 Tbps per stripe, while the
bandwidth available between the leaf and spine nodes is also 12.8 Thps per stripe (as shown in table
above). This means that the fabric has enough capacity to process all traffic between the GPUs even
when this traffic was 100% inter-stripe, but now there is no extra capacity to accommodate additional
servers. The subscription factor in this case is 1:1 (no subscription).

To run oversubscription testing, we disabled some of the interfaces between the leaf and spines to
reduce the available bandwidth as shown in the example in Figure 8:

Figure 8: 2:1 Oversubscription Example

SPINE NODES = X 2
1 x 400G
1x400G x8 x 2 =6.4T
LEAF NODES X8
(200G x 4 + 400G x 2) x 8 = 12.8T
08006000 88008000 \ -
EEEREEEE DEEEE2ee

The total Servers to Leaf Links bandwidth per stripe has not changed. It is still 12.8 Tbps as shown in
table 3 in the previous scenario.

However, the bandwidth available between the leaf and spine nodes is now only 6.4 Tbps per stripe.

Table 8: Per Stripe Leaf to Spine Bandwidth

Leaf to Spine Bandwidth per Stripe

Leaf <=> Spine Links Per Speed Of Number of Spine Nodes Total Bandwidth
Spine Node & Per Stripe
Leaf <=> Spine Links Leaf <=> Spine Per
Stripe
[Gbps]
[Tbps]
8 1 x 400 2 6.4

This means that the fabric no longer has enough capacity to process all traffic between the GPUs even if

this traffic was 100% inter-stripe, potentially causing congestion and traffic loss. The oversubscription
factor in this case is 2:1.

Rail Optimized Fabric

The GPUs on each server are numbered 1-8, where the number represents the GPU'’s position in the
server, as shown in Figure 11.

Figure 11: Rail Optimized Connections Between GPUs and Leaf Nodes

node 1
node 3
node 4
node 6
node 7
node 8

1 I i STRIPE 1 i

|
|
FEEREEE

-----# | eaf node 2
--—--» Leaf node 5
-----% Lea
—-—-=> | egl
—————» |ea

u-----» Lea
m--—--—» Leal
B

! 1
| Leafnode 1 Leaf node 2 Leaf node 3 Leafnode 4 Leafnode5 Leaf node 6 Leafnode 7 Leaf node 8 !
E (Rail 1) (Rail 2) (Rail 3) (Rail 4) (Rail 5) (Rail 6) (Rail 7) (Rail 8)

—

s

=

Nth GPU on each

server connected to EEEEEDED| |(DEEEEEHE PEREEREE
the Nth leaf switch

5 GPU Server 1 GPU Server 2 GPU S N
(Nth rail) ' ervert

......

Communication between GPUs in the same server happens internally via high throughput NV-Links
(Nvidia links) channels attached to internal NV-Switches, while communication between GPUs in
different servers happens across the QFX fabric, which provides 400Gbps GPU-to-GPU bandwidth.
Communication across the fabric occurs between GPUs on the same rail, which is the basis of the Rail-
optimized architecture: Rails connect GPUs of the same order across one of the leaf nodes; that is, rail N
connects GPUs in position N in all the servers across leaf switch N.

Figure 12 represents a topology with one stripe and 8 rails connecting GPUs 1-8 across leaf switches
1-8 respectively.

The example shows that communication between GPU 7 and GPU 8 in Server 1 happens internally
across Nvidia’s NVlinks/NV-switch (not shown), while communication between GPU 1 in Server 1 and
GPU 1 in Server N1 happens across Leaf switch 1 (within the same rail).

Notice that if any communication between GPUs in different stripes and different servers is required
(e.g. GPU 4 in server 1 communicating with GPU 5 in Server N1), data is first moved to a GPU interface
in the same rail as the destination GPU, thus sending data to the destination GPU without crossing rails.

Following this design, data between GPUs on different servers (but in the same stripe) is always moved
on the same rail and across one single switch, which guarantees GPUs are 1 hop away from each other
and creates separate independent high-bandwidth channels, which minimize contention and maximize
performance.

Notice that this example is presuming Nvidia's PXN feature is enabled. PXN can be easily enabled/
disabled before a training or inference job in initiated.

Figure 12: GPU to GPU Communication Between Two Servers with PXN Enabled

https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/

Leaf node 1 Leaf node 2 Leaf node 3 Leaf node 4 Leaf node 5 Leaf node 6 Leaf node 7 Leaf node 8
(Rail 1) (Rail 2) Rail 3 Rail 4 Rail 5 Rail & Rail 7 Rail 8

communication =~ —— ——
between GPU Nth in - =

one server and GPU
Nth in another server
across a single rail
(one hop away)

3 73
HHHHHHHH
f
I
H H HHHH

GPU Server 1 GPU Server Nq

For reference, Figure 13 shows an example with PXN disabled.

Figure 13: GPU to GPU Communication Between Two Servers Without PXN Enabled

Spine nodes

-

y

Leaf node 1 Leaf node 2 Leaf node 3 Leaf node 4 Leaf node 5 Leaf node 8 Leafnode 7 Leafnode 8
(Rail 1) (Rail 2) Rail 3 Rail 4 Rail 5 Rail & Rail 7 Rail 8

communication =~ —on] ——
between GPU Nth in = |=—-

one server and GPU
Nth in another server
across a single rail
(one hop away)

it

E Gy 7]

GPU Server 1 GPU Server Nq

The example shows that communication between GPU 4 in Server 1 and GPU 5 in Server N1 goes
across Leaf switch 1, the Spine nodes, and Leaf switch 5 (between two different rails).

Backend GPU Rail Optimized Stripe Architecture

As previously described a Rail Optimized Stripe Architecture provides efficient data transfer between
GPUs, especially during computationally intensive tasks such as Al Large Language Models (LLM)
training workloads, where seamless data transfer is necessary to complete the tasks within a reasonable
timeframe. A Rail Optimized topology aims to maximize performance by providing minimal bandwidth
contention, minimal latency, and minimal network interference, ensuring that data can be transmitted
efficiently and reliably across the network.

20

In a Rail Optimized Stripe Architecture there are two important concepts: rail and stripe.

The GPUs on a server are numbered 1-8, where the number represents the GPU'’s position in the server,
as shown in Figure 6. This number is sometimes called rank or more specifically "local rank" in
relationship to the GPUs in the server where the GPU sits, or "global rank" in relationship to all the
GPUs (in multiple servers) assigned to a single job.

A rail connects GPUs of the same order across one of the leaf nodes in the fabric; that is, rail Nth
connects all GPUs in position Nth on all the servers, to leaf node Nth, as shown in Figure 9.

Figure 9: Rails in a Rail Optimized Architecture

LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
NODE1 NODE2 NODE3 NODE4 NODE5 NODE6 NODE7 NODES8
(RAILT) (RAIL2) (RAIL3) (RAIL4) (RAIL5) (RAIL6) (RAIL7) (RAILS)

m_- LEAF NODE 5

* a.- LEAF NODE 6

n.---__--> LEAF NODE 1
m.-----> LEAF NODE 2
m.------> LEAF NODE 3
B.------> LEAF NODE 4

* a.- LEAF NODE 7
* m.- LEAF NODE 8

FEEEEEEE

Nth GPU on each
server connected to
the Nth leaf switch
(Nth rail)

GPU Server 1 GPU Server 2 GPU Server N

A stripe refers to a design module or building block, comprised of multiple rails, and that includes a
number of Leaf nodes and GPU servers.

Figure 10: Stripes in a Rail Optimized Architecture

LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
NODE1 NODE2 NODE3 NODE4 NODE5 NODE6 NODE7 NODES
(RAILT) (RAIL2) (RAIL3) (RAIL4) (RAIL5) (RAIL6) (RAIL7) (RAILS)

8 Rails —
(8 Leaf nodes)

N1 servers

N2 - GPUs =8 * Nj_ GPU Server 1 GPU Server 2 GPU Server Ny STRIPE

All traffic between GPUs of the same rank (intra-rail traffic) is forwarded at the leaf node level as shown
in Figure 11.

Figure 11: Intra-rail GPU to GPU traffic example.

INTRA-RAIL COMMUNICATION

A

a a
GPU SERVER 1 7 GPU SERVER 2

m_-------> LEAF NODE 5
* a_._-----> LEAF NODE 6

m.-----> LEAF NODE 3
ﬂ'"""" LEAF NODE 4

n.---_---> LEAF NODE 1
m,------> LEAF NODE 2

* m..-.-.-.> LEAF NODE 7
* m.-------> LEAF NODE 8

LEAF
NODE 1
(RAIL 1)
EEEEEEEE
HEE R

Nth GPU on each
server connected to
the Nth leaf switch
(Nth rail)

A stripe can be replicated to scale up the number of servers (N1) and GPUs (N,) in an Al cluster. Multiple

stripes (N3) are then connected across Spine switches as shown in Figure 12.

Figure 12: Multiple stripes connected via Spine nodes

SPINE 1

SPINE 2

N4 Spine switches —8M88 —»

STRIPE 1
Stripe 1 Stripe 1 Stripe 1 i Stripe Stripe 1

Leaf2 Leaf4 Leaf § Leaf6 Leaf?7 Leaf 8

Rail 2 (Rai (Rail 4) (Rail 5) i (Rail 8)

== =3 " CEEE= " E= N e

8 Rails 5
(8 Leaf nodes)

1]2 3]4a[5]6/7]8
> HEEEEEEE

N2 - GPUs = N1 i GPU Server 1 GPU Server 2 GPU Server Ng

N1 servers

Both Inter-rail and inter-stripe traffic will be forwarded across the spines nodes as shown in figure 13.

Figure 13. Inter-rail, and Inter-stripe GPU to GPU traffic example.

21

INTER-RAIL COMMUNICATION INTER-STRIPE COMMUNICATION

éaanaaaa maanaaaé éaanaaaa maanaaaé
PEEEEERE PPENREEE, EERERAEE PEPEERER

STRIPE 1 SERVER 1 STRIPE 1 SERVER 2 STRIPE 1 SERVER 1 STRIPE 2 SERVER 1

SPINE 1 SPINE 2

! Stripe 2
| Leaf1
R o D 7 e e N
=-==§: STRIPE 1
i Stripe 1
\ Leaf 8
o ! (Rail 8)

Calculating the number of leaf and spine nodes, Servers, and GPUs in a
rail optimized architecture

The number of leaf nodes in a single stripe in a rail optimized architecture is defined by the number of
GPUs per server (number of rails). Each NVIDIA DGX H100 GPU server includes 8 NVIDIA H100 Tensor
core GPUs. Therefore, a single stripe includes 8 leaf nodes (8 rails).

Number of leaf nodes = number of GPUs per server = 8

The maximum number of servers supported in a single stripe (N1) is defined by the number of available
ports on the Leaf node which depends on the switches model.

The total bandwidth between the GPU servers and leaf nodes must match the total bandwidth between
leaf and spine nodes to maintain a 1:1 subscription ratio.

Assuming all the interfaces on the leaf node operate at the same speed, half of the interfaces will be
used to connect to the GPU servers, and the other half to connect to the spines. Thus, the maximum
number of servers in a stripe is calculated as half the number of available ports on each leaf node. Some
examples are included in Table 14.

22

Figure 14. Number of uplinks and downlinks for 1:1 subscription factor

Total number of ports per leaf = X +Y
X =Y => 1:1 subscription factor

Connectionsto 1 | ‘ ‘ | ‘ ‘ | I 5
Spine switches é
(Uplinks) LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF I E
NODE 1 NODE2 NODE3 NODE4 NODE5 NODE6 NODE7 NODES8 2

(RAIL 1) (RAIL2) (RAIL3) (RAIL4) (RAIL 5) (RAIL6) (RAIL7) (RAIL 8)
.,,E';"':" 2] x, ! _z(a7 I FFala "j:': P l Tl :: 0 B ,::?:' = 1= 2
. i g
Connectionsto —1 B
Spine switches ;
(downlinks) 0] |BBoosceo] ... - £
EEEEEEEE] =
GPU SERVER 1 GPU SERVER 2 GPU SERVER N2 STRIPE >”<

| the diagram X represents the number of downlink (links between leaf nodes and the GPU servers),
while Y represents the number of uplinks (links between the leaf nodes and the spine nodes). To allow
for a 1:1 subscription factor, X must be equal to Y.

The number of available ports on each leaf node is equal to X + Y or 2 * X.

Because all servers in a stripe have one port connected to every leaf in the stripe the maximum number
of servers in the stripe (N1) is equal X.

N1 (maximum number of servers per stripe) = number of available ports + 2

The maximum number of GPUs in the stripe is calculated by simply multiplying by the number of GPUs
per server.

N2 (maximum number of GPUs) = N1 (maximum number of servers per stripe) * 8

The total number of available ports is dependent on the switch model used for the leaf node. Table 9
shows some examples.

Table 9: Maximum number of GPUs supported per stripe

Leaf Node total number of Maximum number of GPUs per Maximum number of
QFX switch Model available 400 GE servers supported per server GPUs supported per
ports per switch stripe for 1:1 stripe
Subscription (N)
(N4)
QFX5220-32CD 32 32+2=16 8 16 servers x 8 GPUs/

server = 128 GPUs

(Continued)

Leaf Node total number of
QFX switch Model available 400 GE
ports per switch

QFX5230-64CD 64

QFX5240-640D 128

Maximum number of GPUs per
servers supported per server
stripe for 1:1

Subscription

(N4)

64+2=32 8

128 + 2 =64 8

Maximum number of
GPUs supported per
stripe

(N2)

32 servers x 8 GPUs/
server = 256 GPUs

64 servers x 8 GPUs/
server = 512 GPUs

e QFX5220-32CD switches provide 32 x 400 GE ports (16 will be used to connect to the servers and
16 will be used to connect to the spine nodes)

e QFX5230-64CD switches provide up to 64 x 400 GE ports (32 will be used to connect to the servers
and 32 will be used to connect to the spine nodes).

e QFX5240-640D switches provide up to 128 x 400 GE ports (64 will be used to connect to the
servers and 64 will be used to connect to the spine nodes).

NOTE: QFX5240-640D switches come with 64 x 800GE ports which can break out into 2x400GE
ports, for a maximum of 128 400GE interfaces was shown in table 7.

¢ To achieve larger scales, multiple stripes (N3) can be connected using a set of Spine nodes (Ny), as

shown in Figure 10.

Figure 10: Multiple Stripes connected across Spine nodes.

Stripe 1
Leaf2
Rail 2

=

8 Rails

SPINE 1 SPINE 2

STRIPE 1

Stripe 1 Stripe 1 i i ~ Stripe 1
Leaf4 Leaf § Ls Leaf 8

(Rail 4) (Rail 5

(8 Leaf nodes)

|
1
1

rE===== " EEEE=——
1
1
1

N4 servers |

HEHEEEHEEE

HEEHEEEE

-—
N2 = GPUs=8* N1 E GPU Server 1

8)

24

The number of stripes required is calculated based on the number of GPUs required, and the number of
GPUs supported per stripe.

For example, assume that the required number of GPUs (GPUs) is 16,000 and the fabric is using
QFX5240-640D as leaf nodes.

The number of available 400G ports is 128, which means that:

e the maximum number of servers per stripe (N¢) = 64
e the maximum number of GPUs per stripe (N,) = 512

To number of stripes (N3) required is calculated by diving the number of GPUs required, and the number

of GPUs per stripe as shown:

N 3 (number of stripes) = GPUs/ N , (maximum number of GPUs per stripe) = 16000/256 = 64 stripes
o with 64 stripes & 256 servers per stripe the cluster can provide 16,384 GPUs.

e with N2 =72 & N1 servers = 32 the cluster can provide 18432 GPUs.

o With 64 stripes & 256 servers per stripe the cluster can provide 16,384 GPUs.

Knowing the number of stripes required (N 3) and the number of uplinks ports per leaf node (Y) you can

calculate how many spine nodes are required.
Remember X =Y = N1

First the total number of leaf nodes can be calculated by multiplying the number of stripes required by 8
(number of leaf nodes per stripe).

Total number of leaf nodes = N3 x8 = 64 x8 = 512

Then the total number of uplinks can be obtained multiplying the number of uplinks per leaf node (N4),
and the total number of leaf nodes.

Total number of uplinks = Ny x N3 = 64 x 512 = 32768

The number of spines required (N4) can then be determined by dividing the total number of uplinks by

the number of available ports on each spine node, which as for the leaf nodes, depends on the switch
model used for the spine role.

Number of spines required (N4) = 32768 / number of available ports on each spine node
For example, if the spine nodes are QFX5240, the number of available ports on each spine node is 128.

Table 8: Number of spines nodes for two stripes.

Spine Node Maximum number of 400 GE Number of spines required (N4) with 64 stripes
QFX switch Model interfaces per switch

QFX5240-640D 128 32768 + 128 = 256

PTX10008 288 32768 + 288 ~ 128

Storage Backend Fabric

IN THIS SECTION

WEKA Storage Solution | 28

The Storage Backend fabric provides the connectivity infrastructure for storage devices to be accessible
from the GPU servers.

The performance of the storage infrastructure significantly impacts the efficiency of Al workflows. A
storage system that provides quick access to data can significantly reduce the amount of time for
training Al models. Similarly, a storage system that supports efficient data querying and indexing can
minimize the completion time of preprocessing and feature extraction in an Al workflow.

The Storage Backend fabric design in the JVD also follows a 3-stage IP clos architecture as shown in
Figure 16. There is no concept of rail-optimization in a storage cluster. Each GPU server has a single
connection to the leaf nodes, instead of 8.

Figure 16: Storage Backend Fabric Architecture

&
storage- storage- §
backend- backend- N
gpu-Leafl gpu-Leaf2

storage-
backend-

storage-
backend-

N ———— Ol
P = ——[OIc
Weka-3 (s
N ———— i

; .

BACKEND |

We.ka-B - T '
:' storage-backend-spinel storage-backend-spine2 STORAGE FABRIC !
The Storage Backend devices included in this fabric, and the connections between them, are
summarized in the following table:
Table 16: Storage Backend devices
Nvidia DGX Weka Storage Servers | Storage Backend Leaf Nodes Storage Backend Spine Nodes

GPU Servers switch model switch model

(storage-backend-gpu-leaf & (storage-backend-spine#)
storage-backend-weka-leaf)

A100 x 8 Weka storage server x = QFX5130-32CD x 4 QFX5130-32CD x 2
8
H100 x 4 (2 storage-backend-gpu-leaf
nodes, and

2 storage-backend-weka-leaf
nodes)

QFX5230 and QFX5240 were also validated for the Storage Backend Leaf and Spine roles.

Table 17: Connections between servers, leaf and spine nodes in the Storage Backend

GPU Servers <=> Weka Storage Servers <=> Storage Backend Spine Nodes <=>

Storage Backend Leaf nodes
Storage Backend GPU Leaf Nodes Storage Backend Weka Leaf Nodes

1 x 100GE links

between each H100 server and the
storage-backend-gpu-leaf switch

1 x 200GE links

between each A100 server and the
storage-backend-gpu-leaf switch

1 x 100GE links

between each storage server
(weka-1 to weka-8) and the
storage-backend-weka-leaf switch

28

2 x 400GE links

between each leaf and spine nodes
and the storage-backend-weka-leaf
switch

3 x 400GeE links

between each leaf and spine nodes
and the storage-backend-gpu-leaf
switch

The NVIDIA servers hosting the GPUs have dedicated storage network adapters (NVIDIA ConnectX)
that support both the Ethernet and InfiniBand protocols and provide connectivity to external storage

arrays.

Communications between GPUs and the storage devices leverage the WEKA distributed POSIX client
which enables multiple data paths for transfer of stored data from the WEKA nodes to the GPU client
servers. The WEKA client leverages the Data Plane Development Kit (DPDK) to offload TCP packet
processing from the Operating System Kernel to achieve higher throughput.

This communication is supported by the Storage Backend fabric described in the previous section and

exemplified in Figure 17.

Figure 17: GPU Backend to Storage

Backend Communication

storage-
backend-
weka-Leafl

I
I
I
]
Weka-1 ‘=
Weka2 == 3
Weka-3 ‘:
Weka-4 ‘=
: :

storage-—
backend-

storage-backend-spinel storage-backend-spine2

i
storage- storage- i
backend- backend- '
gpu-Leafl gpu-Leaf2 |
. i

===]

|

i

i
i
Storage Servers i
i
i
i

BACKEND !
STORAGE FABRIC

WEKA Storage Solution

In small clusters, it may be sufficient to use the local storage on each GPU server, or to aggregate this
storage together using open-source or commercial software. In larger clusters with heavier workloads,

an external dedicated storage system is required to provide dataset staging for ingest, and for cluster
checkpointing during training. This JVD describes the infrastructure for dedicated storage using WEKA
storage.

WEKA is a distributed data platform that allows high performance and concurrent access and allows all
GPU Servers in the cluster to efficiently utilize a shared storage resource. With extreme 1/O capabilities,
the WEKA system can service the needs of all servers and scale to support hundreds or even thousands
of GPUs.

Toward the end of this document, you can find more details on the WEKA storage system, including
configuration settings, driver details, and more.

Scaling

The size of an Al cluster varies significantly depending on the specific requirements of the workload. The
number of nodes in an Al cluster is influenced by factors such as the complexity of the machine learning
models, the size of the datasets, the desired training speed, and the available budget. The number varies

from a small cluster with less than 100 nodes to a data center-wide cluster comprising 10000s of

compute, storage, and networking nodes. A minimum of 4 spines must always be deployed for path
diversity and reduction of PFC failure paths.

Table 18: Fabric Scaling - Devices and Positioning

Small

64 - 2048 GPU

With support for up to 2048 GPUs,
the Juniper QFX5240-64CD/
QFX5241-64CD or
QFX5230-64CD can be used as
Spine and leaf devices to support
single or dual-stripe applications. To
follow best practice
recommendations, a minimum of 4
Spines should be deployed, even in
a single-stripe fabric.

Medium

2048 - 8192 GPU

With support for 2048 - 8192
GPUs, the Juniper
QFX5240-64CD/QFX5241-64CD
can be used as Spine and leaf
devices to achieve appropriate
scale. This 3-stage, rail-based fabric
design provides physical
connectivity to 16 Stripes from 64
Spines and 1024 leaf nodes,
maintaining a 1:1 subscription
throughput model.

Large

8192 - 32768 GPU

For infrastructures supporting more
than 8192 GPUs, the Juniper
PTX1000x Chassis spine and
QFX5240-64CD/QFX5241-64CD
leaf nodes can support up to 32768
GPUs. This 3-stage, rail-based
fabric design provides physical
connectivity to 64 Stripes from 64
Spines and 4096 leaf nodes,
maintaining a 1:1 subscription
throughput model.

(Continued)

Small

30

Medium Large

: 32 x}400G(1:1) 32'[s006(1:1) |

. QFX5230-64CD . QFX5230-64CD

8 x Leafs
Small-Rail Stripe 1
GPU Per Rail 256 —

¥ X8 Stripes
Total GPU 2048

T 64 x Spines 64 x Spines

-u PTX10016 -o PTX10016

5 QFX5240-64QD 5 QFX5240-64QD

64 x{400G(1:1) 64'x/400G(1:1) B 64 x{400G(1:1) B 54'x[400G(1:1)

= QFX5240-64QD = QFX5240-64QD = QFX5240-64QD = QFX5240-64QD

8 x Leafs 8 x Leafs

Med-Rail Stripe 1

Large-Rail Stripe 1

GPU Per Rail 1024 " ‘ GPU Per Rail 4096 " ‘
x16 Stripes X64 Stripes
Total GPU 8192 Total GPU 32768

Juniper Hardware and Software Components

IN THIS SECTION

® Juniper Hardware Components | 30

©® Juniper Software Components | 31

For this solution design, the Juniper products and software versions are below. The design documented
in this JVD is considered the baseline representation for the validated solution. As part of a complete
solutions suite, we routinely swap hardware devices with other models during iterative use case testing.
Each switch platform validated in this document goes through the same rigorous role-based testing
using specified versions of Junos OS and Apstra management software.

Juniper Hardware Components

The following table summarizes the validated Juniper devices for this JVD, and includes devices tested
for Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage—Juniper Validated

Design (JVD)

Table 19: Validated Devices and Positioning

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/index.html

Solution Leaf Switches Spine Switches

Frontend Fabric QFX5130-32CD QFX5130-32CD

GPU Backend Fabric QFX5230-64CD (CLUSTER 1-STRIPE 1) QFX5230-64CD (CLUSTER 1)

QFX5220-32CD (CLUSTER 1-STRIPE 2) PTX10008 JNP10K-LC1201 (CLUSTER 1)

QFX5240-64CD/QFX5241-64CD QFX5240-64CD/QFX5241-64CD
(CLUSTER 2) (CLUSTER 2)

Storage Backend Fabric | QFX5220-32CD QFX5220-32CD
QFX5230-64CD QFX5230-64CD
QFX5240-64CD/QFX5241-64CD QFX5240-64CD/QFX5241-64CD

Juniper Software Components

The following table summarizes the software versions tested and validated by role.

Table 20: Platform Recommended Release

Platform Role Junos OS Release
QFX5240-64CD GPU Backend Leaf 23.4X100-D20
QFX5241-64CD GPU Backend Spine 23.4X100-D42
QFX5220-32CD GPU Backend Leaf 23.4X100-D20
QFX5230-64CD GPU Backend Leaf 23.4X100-D20
QFX5240-64CD GPU Backend Spine 23.4X100-D20
QFX5241-64CD GPU Backend Spine 23.4X100-D42
QFX5230-64CD GPU Backend Spine 23.4X100-D20

PTX10008 with LC1201 GPU Backend Spine 23.4R2-S3

(Continued)

Platform

QFX5130-32CD

QFX5130-32CD

QFX5220-32CD

QFX5230-64CD

QFX5240-64CD

QFX5241-64CD

QFX5220-32CD

QFX5230-64CD

QFX5240-64CD

QFX5241-64CD

Role

Frontend Leaf

Frontend Spine

Storage Backend Leaf

Storage Backend Leaf

Storage Backend Leaf

Storage Backend Leaf

Storage Backend Spine

Storage Backend Spine

Storage Backend Spine

Storage Backend Spine

IP Services for Al Networks

IN THIS SECTION

Congestion Management | 33

Load Balancing | 34

Dynamic Load Balancing (DLB) | 34

Global load balancing (GLB): | 35

Junos OS Release

23.43R2-S3

23.43R2-S3

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D42

23.4X100-D20

23.4X100-D20

23.4X100-D20

23.4X100-D42

Congestion Management

Al clusters pose unique demands on network infrastructure due to their high-density, and low-entropy
traffic patterns, characterized by frequent elephant flows with minimal flow variation. Additionally, most
Al modes require uninterrupted packet flow with no packet loss for training jobs to be completed.

For these reasons, when designing a network infrastructure for Al traffic flows, the key objectives
include maximum throughput, minimal latency, and minimal network interference over a lossless fabric,
resulting in the need to configure effective congestion control methods.

Data Center Quantized Congestion Notification (DCQCN), has become the industry-standard for end-
to-end congestion control for RDMA over Converged Ethernet (RoCEv2) traffic. DCQCN congestion
control methods offer techniques to strike a balance between reducing traffic rates and stopping traffic
all together to alleviate congestion, without resorting to packet drops.

DCQCN combines two different mechanisms for flow and congestion control:
e Priority-Based Flow Control (PFC), and
e Explicit Congestion Notification (ECN).

Priority-Based Flow Control (PFC) helps relieve congestion by halting traffic flow for individual traffic
priorities (IEEE 802.1p or DSCP markings) mapped to specific queues or ports. The goal of PFC is to stop
a neighbor from sending traffic for an amount of time (PAUSE time), or until the congestion clears. This
process consists of sending PAUSE control frames upstream requesting the sender to halt transmission
of all traffic for a specific class or priority while congestion is ongoing. The sender completely stops
sending traffic to the requesting device for the specific priority.

While PFC mitigates data loss and allows the receiver to catch up processing packets already in the
gueue, it impacts performance of applications using the assigned queues during the congestion period.
Additionally, resuming traffic transmission post-congestion often triggers a surge, potentially
exacerbating or reinstating the congestion scenario.

We recommend configuring PFC only on the QFX devices acting as spine nodes.

Explicit Congestion Notification (ECN), on the other hand, curtails transmit rates during congestion
while enabling traffic to persist, albeit at reduced rates, until congestion subsides. The goal of ECN is to
reduce packet loss and delay by making the traffic source decrease the transmission rate until the
congestion clears. This process entails marking packets with ECN bits at congestion points by setting the
ECN bits to 11 in the IP header. The presence of this ECN marking prompts receivers to generate
Congestion Notification Packets (CNPs) sent back to source, which signal the source to throttle traffic
rates.

Combining PFC and ECN offers the most effective congestion relief in a lossless IP fabric supporting
RoCEv2, while safeguarding against packet loss. To achieve this, when implementing PFC and ECN
together, their parameters should be carefully selected so that ECN is triggered before PFC.

Load Balancing

The fabric architecture used in this JVD for both the Frontend and backend follows the 2-stage clos
design, with every leaf node connected to all the available spine nodes, and via multiple interfaces. As a
result, multiple paths are available between the leaf and spine nodes to reach other devices.

Al traffic characteristics may impede optimal link utilization when implementing traditional Equal Cost
Multiple Path (ECMP) Static Load Balancing (SLB) over these paths. This is because the hashing
algorithm which looks at specific fields in the packet headers will result in multiple flows mapped to the
same link due to their similarities. Consequently, certain links will be favored, and their high utilization
may impede the transmission of smaller low-bandwidth flows, leading to potential collisions, congestion
and packet drops. To improve the distribution of traffic across all the available paths either Dynamic
Load Balancing (DLB) or Global Load Balancing (GLB) can be implemented instead.

For this JVD Dynamic Load Balancing flowlet-mode was implemented on all the QFX leaf and spines
nodes. Global Load Balancing is also included as an alternative solution.

Additional testing was conducted on the QFX5240-640D/QFX5241-640D in the "GPU Backend Fabric
cluster 2" on page 12, to evaluate the benefits of Selective Dynamic Load Balancing, and Reactive path
rebalancing. Notice that these load balancing mechanisms are only available on QFX devices.

Dynamic Load Balancing (DLB)

DLB ensures that all paths are utilized more fairly, by not only looking at the packet headers, but also
considering real-time link quality based on port load (link utilization) and port queue depth, when
selecting a path. This method provides better results when multiple long-lived flows moving large
amounts of data need to be load balanced.

DLB can be configured in two different modes:

o Per packet mode: packets from the same flow are sprayed across link members of an IP ECMP group,
which can cause packets to arrive out of order.

¢ Flowlet Mode: packets from the same flow are sent across a link member of an IP ECMP group. A
flowlet is defined as bursts of the same flow separated by periods of inactivity. If a flow pauses for
longer than the configured inactivity timer, it is possible to reevaluate the link members quality, and
for the flow to be reassigned to a different.

Some enhancements have been introduced for the QFX5230s and QFX5240s in recent versions of
Junos OS.

e Selective Dynamic Load Balancing (SDLB): allows implementing DLB only to certain traffic. This
feature is only supported on QFX5230-64CD, QFX5240-640D, and QFX5240-64QD, starting in
Junos OS Evolved Release 23.4R2, at the time this document publication.

https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet-switches/topics/topic-map/switches-interface-load-balancing.html#id-understanding-dynamic-load-balancing
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/glb.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/dlb-selective.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html
https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/dlb-selective.html

e Reactive path rebalancing : allows a flow to be reassigned to a different (better) link, when the
current link quality deteriorates, even if no pause in the traffic flow has exceeded the configured
inactivity timer. This feature is only supported on QFX5240-640D, and QFX5240-64QD, starting in
Junos OS Evolved Release 23.4R2, at the time this document publication.

Global load balancing (GLB):

GLB is an improvement on DLB which only considers the local link bandwidth utilization. GLB on the
other hand, has visibility into the bandwidth utilization of links at the next-to-next-hop (NNH) level. As a
result, GLB can reroute traffic flows to avoid traffic congestion farther out in the network than DLB can
detect.

Al-ML data centers have less entropy and larger data flows than other networks. Because hash-based
load balancing does not always effectively load-balance large data flows of traffic with less entropy,
dynamic load balancing (DLB) is often used instead. However, DLB considers only the local link
bandwidth utilization. For this reason, DLB can effectively mitigate traffic congestion only on the
immediate next hop. GLB more effectively load-balances large data flows by taking traffic congestion on
remote links into account.

GLB is only supported for QFX-5240 (TH5) starting on 23.4R2 and 24.4R1, requires a full 3-tier CLOS
architecture, and is limited to only one link between each spine and leaf. When there is more than one
interface or a bundle between a pair of leaf and spine, GLB won't work. Also, GLB supports 64 profiles
in the table. This means there can be 64 leaves in the 3-stage Clos topology where GLB is running.

For additional details on the operation and configuration of GLB refer to Avoiding Al/ML traffic
congestion with global load balancing | HPE Juniper Networking Blogs

ADDITIONAL REFERENCES:

Introduction to Congestion Control in Juniper Al Networks explores how to build a lossless fabric for Al
workloads using DCQCN (ECN and PFC) congestion control methods and DLB. The document was
based on DLRM training model as a reference and demonstrates how different congestion parameters
such as ECN and PFC counters, input drops and tail drops can be monitored to adjust configuration and
build a lossless fabric infrastructure for RoCEv2 traffic.

Load Balancing in the Data Center provides a comprehensive deep dive into the various load-balancing
mechanisms and their evolution to suit the needs of the data center.

https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/topic-map/reactive-path-rebalancing.html
https://blogs.juniper.net/en-us/industry-solutions-and-trends/avoiding-ai-ml-traffic-congestion-with-global-load-balancing
https://blogs.juniper.net/en-us/industry-solutions-and-trends/avoiding-ai-ml-traffic-congestion-with-global-load-balancing
https://www.juniper.net/documentation/us/en/software/nce/congestion-control-ai-ml/congestion-control-ai-ml.pdf
https://s2.bl-1.com/h/dwpj6tJL?url=https://www.juniper.net/documentation/us/en/software/nce/load-balancing-in-data-center/load-balancing-in-data-center.pdf

Configuration Walkthrough

IN THIS SECTION

Apstra: Configure Apstra Server and Apstra ZTP Server | 37

Apstra: Onboard the devices into Apstra | 37

Onboarding Devices | 38

1) Apstra Web Ul: Create Agent Profile | 38

2) Apstra Web Ul: Add Range of IP Addresses for Onboarding Devices | 39

3) Apstra Web Ul: Acknowledge Managed Devices for Use in Apstra Blueprints | 40
Apstra: Fabric Provisioning | 41

1) Apstra Web Ul: Create Logical Devices and Interface Maps with Device Profiles | 41
2) Apstra Web Ul: Create Rack types and Template in Apstra for the GPU Backend Fabric | 47
3) Apstra Web Ul: Create a Blueprint for GPU Backend Fabric | 49

Apstra Web Ul: Creating Configlets in Apstra for DCQCN and DLB | 54

This section describes the steps to deploy one of the Al GPU Backend IP fabrics in the Al JVD lab, as an
example of how to deploy new fabrics, using Juniper Apstra.

These steps will cover the Al GPU Backend IP fabric is Cluster 1 which consists of QFX5230-64CD
switches in the spine role and QFX5230-64CD (stripe 1) and QFX5220-32CD (stripe 2) switches in the
GPU Backend leaf role along with associated NVIDIA GPU servers and WEKA storage devices.

Similar steps should be followed to set up the Frontend and Storage Backend fabrics, as well as the Al
GPU Backend IP fabric. The configurations for these are included in the Terraform repository described
in the next section.

The Apstra Blueprints for all the fabrics have been created in the JVD Al lab, as shown in Figure 18.

Figure 18: Al Fabric Blueprints in Apstra

@ » Blueprints
O © Create Blueprint

. a 1404

Backend GPU Fabric Backend Storage Fabric Frontend Mgmt Fabric

]
L]
=
i
o
S}
w

ecoB

B @
@ (0]
@ @
@ @

QFX5240 GPU Fabric

Physical Structure:

For more detailed information about installation and step-by-step configuration with Apstra, refer to the
Juniper Apstra User Guide. Additional guidance in this walkthrough is provided in the form of notes.

Apstra: Configure Apstra Server and Apstra ZTP Server

A configuration wizard launches upon connecting to the Apstra server VM for the first time. At this
point, passwords for the Apstra server, Apstra Ul, and network configuration can be configured.

Apstra: Onboard the devices into Apstra

There are two methods for adding Juniper devices into Apstra for management: manually or in bulk
using ZTP.

To add devices manually (recommended):

37

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

¢ In the Apstra Ul navigate to Devices >> Agents >> Create Offbox Agents:

e This requires that the devices are preconfigured with a root password, a management IP and proper
static routing if needed, as well as ssh Netconf, so that they can be accessed and configured by
Apstra.

To add devices via ZTP:

e From the Apstra ZTP server, follow the ZTP steps described in the Juniper Apstra User Guide.

To add the QFX switches into Apstra, first log into the Apstra Web Ul, choose the manual method of
device addition as per above, and provide the appropriate username and password matching those
preconfigured on the devices. Make sure the routers are configured accordingly.

NOTE: Apstra imports the configuration from the devices into a baseline configuration called pristine
configuration, which is a clean, minimal, and free of any pre-existing settings that could interfere with
the intended network design managed by Apstra.

Apstra ignores the Junos configuration ‘groups’ stanza and does not validate any group configuration
listed in the inheritance model, refer to the configuration groups usage guide.

It is best practice to avoid setting loopbacks, interfaces (except management interface), routing-
instances (except management-instance) or any other settings as part of this baseline configuration.

Apstra sets the protocols LLDP and RSTP when the device is successfully Acknowledged.

Onboarding Devices

1) Apstra Web Ul: Create Agent Profile

For the purposes of this JVD, the same username and password are used across all devices. Thus, only
one Apstra Agent Profile is needed to onboard all the devices, making the process more efficient.

To create an Agent Profile, navigate to Devices >> Agent Profiles and then click on Create Agent Profile.

Figure 19: Creating an Agent Profile in Apstra

https://www.juniper.net/documentation/us/en/software/apstra4.2/apstra-user-guide/index.html

Create Agent Profile

Profile Parameters

Open Options)

2) Apstra Web Ul: Add Range of IP Addresses for Onboarding Devices

An IP address range can be provided to bulk onboard devices in Apstra. The ranges shown in the
example below are shown for demonstration purposes only.

To onboard devices, navigate to Devices >> Agents and then click on Create Offbox Agents.

Figure 20: Adding a Range of IP Addresses in Apstra

Create Offbox System Agent(s)

Agent Parameters
Device Addresses (25 max) *

17216.101-172.16.10.5

Operation Mode
© FULLCONTROL TELEMETRY ONLY

Platform

Junos (from agent profile) will be used if the platform will not be selected

Username (will be taken from profile)

Set username?

Password (will be taken from profile)
Set password?

Agent Profile

INPR_user

3) Apstra Web Ul: Acknowledge Managed Devices for Use in Apstra

Blueprints

Once the offbox agent creation has been successfully executed for each device, the devices must be
acknowledged by the user to complete the onboarding and make them part of the Apstra Blueprints.
This moves the device state from OOS-QUARANTINE to OOS-READY.

Figure 21: Acknowledging Managed Devices in Apstra Blueprints

S8z Juniper Apstra™ 7 @ » Devices » Managed Devices

8 Blueprints - Q Fiberssooied: 1
Devices

Filter selectedby © all selectedonly unselected only

Managed Devices

Agent Profies
Packages

OSimages

Mansgement 1P & Device Key @ Device Profie =

evice Profies

@ Design

& Resources
& Analytics

3% Exteral Systems

& Platform

fr Favorites

= Active Jobs: 0

ice Informaton

5 ACTIVE

Acksowtedged? @

Biveprine

1-180f 18

Agent information

Last Job Type &

UPGRADE

CHECK

UPGRADE

UPGRADE

CHECK

INSTALL

INSTALL

INSTALL

INSTALL

INSTALL

41

I Apstra: Fabric Provisioning

The following steps outline the provisioning of the GPU Backend Fabric with Apstra.

1) Apstra Web Ul: Create Logical Devices and Interface Maps with Device
Profiles

The GPU Backend fabric in Apstra uses a combination of QFX5230-64CD’s (stripe-1) and
QFX5220-32CD'’s (stripe-2) for the leaf nodes and QFX5230-64CD's for the spines. Logical Devices and
Interface Maps must be created for the two types of switches.

For the QFX5230-64CD leaf nodes, the Logical Device and Interface Map are shown in Figures 22 and
23:

Figure 22: Apstra Logical Device for the QFX5230 Leaf Nodes

7 & » Design Logical Devices + Al-LabLeaf Medium 30x400, 26x200 and 163400 v2

Upditing the logical device ports may not be allowed because it is referenced by Al-Lableaf Medium 30x400, 32x200 and 18x400_QFX5230-64CD v2 interface map.

Name

Al-Lableaf Medium 30x400, 26x200 and 16x400 v2

PANEL #1
Connected to

72 ports x 200 Gbps)0 Gb
Superspine » Spine » Leaf » Access e Superspine Spine » Leaf » Access s Superspine » Spine » Leaf # Access . Superspine » Spine « Leaf » Access »
Peer o Unused « Generic Peer o Unused ¢ Generic Peer » Unused ¢ Generic Peer ¢ Unused o Generic

5] o]]l <)
o[l] =)
DEEEmn
5 | B

Figure 23: Apstra Interface Map for the QFX5230 Leaf Nodes

42

v @ » Design » Interface Maps » Al-Lableaf Medium 30x400, 32x200 and 18x400__QFX5230-64CD v¥

Name Al-Lableaf Medium 30x400, 32x200 and 18x400_QFX5230-64CD v§
Logical device Al-Lableaf Medium 30x400, 26x200 and 16x400v2 #*
Device profile Juniper QFX5230-64CD 7

Interface map preview

Connected to=

46 x 400 Gbps 26 x 200 Gbp:
Superspine Spine « Leaf Access » Peer o Unused « Generic Superspine » Spine » Leaf Access « Peer « Unused » Generic

[[o] fol o] |- [ESIRRIRRIREG] - | - | - | - [
0 I

SRl Tl - - |- [[l
[-] [SSelslaalas]][] [o)

} Unused interfaces (5)

Logical Device Device Profile
EEE
gEE
gEEEn]
] L L]
[]
=

For the QFX5220 leaf nodes, the Logical Device and Interface Map are shown in Figures 24 and 25:

Figure 24: Apstra Logical Device for the QFX5220 Leaf Nodes

= Juniper Apstra™ tr # » Design» Logical Devices » Al-LabLeaf Small 16x400, 16x200 and 8x400
£ Blueprints
= back to list
e Z ® ®
Updating the logical device ports may not be allowed because it is referenced by Al-LabLeaf Small 16x400, 16x200 and 8x400_ QFX5220-32CD interface map.
Name
Al-LablLeaf Small 14x400, 16x200 and 8x400
PANEL #1
Connected to ~
40 ports 16 x 200 Gbps
Superspine o Spine « Leaf « Access » Superspine » Spine » Leaf » Access «
Peer s Unused » Generic Peer s Unused » Generic

Favorites

Figure 25: Apstra Interface Map for the QFX5220 Leaf Nodes

43

Juniper Apstra™ 7 @ » Design Interface Maps + Al-LabLeaf Small 16x400, 16x200 and 8x400__QFX5220-32CD
b, Eftapiors Name Al-LabLeaf Small 16x400, 16x200 and 8x400_QFX5220-32CD
Devices
Logical device Al-LabLeaf Small 16x400, 16x200 and 8x400 r*
Device profile Juniper_QFX5220-32CD &

Interface map preview

Cannected to~

24 x 400 Gbps 1)0 Gb

Superspine » Spine » Leaf » Access » Peer » Unused » Generic Superspine » Spine « Leaf » Access » Peer » Unused » Generlc

1 A 1 1 0
I

» Unused interfaces (2)

Logical Device Device Profile

For the QFX5230 leaf nodes, the Logical Device and Interface Map are shown in Figures 26 and 27:

Figure 26: Apstra Logical Device for the QFX5230 Spine Nodes

ug Juniper Apstra™ ¢ 4 » Design» Logical Devices » Al-Spine 64x400

8 Blueprints

= back to list

® & ¥
Updating the logical device ports may not be allowed because it is referenced by Al-Spine 64x400_QFX5230-64CD interface map.
Name
Al-Spine 642400
PANEL #1
Connectedta -

64 ports
Supersping o Spine ¢ Leal o Access o
Peer & Unused » Generic

25 Extemal Systems

& Platiorm

Far

Figure 27: Apstra Interface Map for the QFX5230 Spine Nodes

44

tr # » Design terface Maps + Al-Spine 64x400__QFX5230-64CD

Name Al-Spine 64x400_QFX5230-64CD
Loghcal device. Al-Spine 64x400 o+

Device profie Juniper QFX5230-64CD 7

Intert revi
terface map preview ..

Connected to «

64 x 400 Gbps
Superspine Spine o Leal « Access = Peer « Unused » Generlc

Logical Device Device Profile

pAg A A A]]]
e T e T)
A T
T

For the QFX5240 spine and leaf nodes, the Logical Device and Interface Map are shown in Figures
28-29 and 30-31 respectively.

Even though the QFX5240s are not part of the fabric deployment example in this section, we are
including the Logical Device and Interface Map creation for the QFX5240s to highlight the changes
made to the port numbering in Junos OS Release 23.4R2, which requires completely different logical
devices and interface maps.

The following table shows the differences between the old and the new port mappings.

OLD PORT MAPPING (22.2X100

0 (8x100G) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 (unused) 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
32 (8x100G) 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
33 (unused) 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
NEW PORT MAPPING (23.4R2)

0 (8x100G) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
1 (2x400G or 1x800G) 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
2 (8x100G) 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
3 (2x400G or 1x800G) 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

The Logical Device and Interface Map included below were created following the new port mapping.

Figure 28: Apstra Logical Device for the QFX5240 Spine Nodes

Juniper Apstra™

Blueprints
Devices
sign

Logical Devices
Interface Mags:
Rack Ty

Tenpla

Config Tempiates
Configlets
Property Sets
TCPUDP Ports

Tags

B3 Resources
& Analytics
32 External Systems

€ putiorm

¥ Favori

Blueprints
Devices
Design

Logical Devices
Interface Maps.
Rack Types
Templates
Config Templates
Configlets
Property Sets
TCP/UDP Ports
Tags

Resources

Analytics

External Systems
Platform

Favorites

@ + Design + Logical Devices » Al-Spine-Large 64x800 5240 (New Port Profile)

Upidating the logical device ports may not be allowed because it is referenced by Al-Spine-Large 64x800_QFX5240-640D-NNP interface map,

Name

Al-Spine-Large 64x800 5240 (New Port Profile)

PANEL #1
Connected o+
64 ports 32 x 800 Gbps
Superspine o Spine » Leaf o Access Superspine » Spine » Leaf » Access
o Peer s Unused o Generic » Peer o Unused o Generic

¥z @ » Design» Interface Maps » Al-Spine-Large 64x800__QFX5240-640D-NNP

+ back to list

Zz & ¥
Name Al-Spine-Large 64x800__QFX5240-640D-NNP
Logical device Al-Spine-Large 64x800 5240 (New Port Profile) e*
Device profile Juniper_QFX5240-640D_2
Interface map preview =
SUMM Connected to~
32 x 400 Gbps 32 x 800 Gbps
Superspine e Spine e Leaf ® Access ® Peer ® Unused e Generic Superspine e Spine e Leaf ® Access @ Peer ® Unused e Generic

S Click on interface to toggle the details

Figure 30: Apstra Interface Map for the QFX5240 Leaf Nodes

45

% Juniper Apstra™ ¥r 4@ » Design » Logical Devices » Al-Lab-Leaf Rack1 64x800 5240 (New Port Profile)

42

Blueprints
+ back to list

4 -
Devices el

L]

Design

T Updating the logical device ports may not be allowed because it is referenced by Juniper_ QFX5240-640D____
ices

Al-Lab-Leaf Rack1 64x800-NPP interface map.
Interface Maps
Rack Types
Templates
Config Templates
Configlets PANEL #1

Property Sets) s
TCP/UDP Ports

Tags

Name

Al-Lab-Leaf Rack1 64x800 5240 (New Port Profile)

Connected to~

64 ports

Spine Access ® Unused Generic Spine Access ® Unused Generic

Resources 32 x 800 Gbps
Superspine o Spine o Leaf » Access
© Peer o Unused e Generic

Analytics
External Systems.
Platform

Favorites

fr @ » Design Interface Maps + Juniper_QFX5240-640D____Al-Lab-Leaf Rack2 64x800-NPP
2 Blueprints =
Z ® W
B Devices
Name Juniper_QFX5240-640D____Al-Lab-Leaf Rack2 64x800-NPP
Logical device Al-Lab-Leaf Rack2 64x800 5240 (New Port Profile)
Templates =
Device profile Juniper_QFX5240-640D_2 e+
Config Templates
Configlets
iy See Interface map preview a =
TCP/UDP Ports
Tags
B3 Resources A Connected to~
@ Anaytics
_ 8 x 400 Gbps 24 x 400 Gbps 32 x 800 Gbps
3£ External Systes Spine Access » Unused » Generic Superspine » Spine » Leaf » Access » Peer » Unused » Generic

& Platform

T Favorites

For the PTX10008 spine nodes also tested in cluster 1, the Logical Device and Interface Map are shown
in Figures 32-33.

Figure 32: Apstra Interface Map for the PTX Spine Nodes

47

JUNIREr

Figure 33: Apstra Logical Device for the PTX Spine Nodes

- De terface Mags + AL-PTX-720400G

Logial Device Dievice Profde

SEESOSEESEEECEEESS
]
COCUCLOLNOOOOUNEGLD
COGLOLGLOLLLGLGONS

2) Apstra Web Ul: Create Rack types and Template in Apstra for the GPU
Backend Fabric

Once the Logical Devices and Interface Maps are created, create the necessary rack types for the GPU
Backend fabric.

The design requires two rack types: one with the QFX5230 leaf nodes (stripe 1) and another with the
QFX5220 leaf nodes (stripe 2).

For the sake of brevity, only the snippet of the QFX5230 rack type is shown in Figure 34.

Figure 34: Creating a Rack in Apstra

Edit Rack Type x

Summary
Name *
GPU-BK-Med-1-1v8|

Description

Al Rail-optimized Rack Group of up to 32 H100-based or 64 A100-based Servers. 1 spine uplinks

Fabric Connectivity Design *
© L3Clos

Use this option to design rack types used in 3-stage and 5-stage fobric template

L3 Collapsed

Configuration Preview

Leafs AccessSwitches Generic Systems Topology Logical Devices

Leat 'y v |
. Leaf1_1 Leat3_1 LeafS_1
Name ecocon cococeo cocoooo acog

o
lesll Leaf2_1 Leatd_1 Leafé_ Leaf8_1
@ooco000 cocoocoo cocoooo cooooo
Leaf Logical Device epoos000 0oo00o00 @e00g000 coopogoD
dgx.n100.1 hgx.a100.1 hgx. 1002 hgx 1004
Al-Lableaf Medium 30x400, 26x200 and 16x400 v2 x
apoosoas cooasoas
Links per spine (72 available) Link speed” _h100 2 hgx_a100_3
400 Gbps. x

Redundancy Protocel
© None MLAG ESI

Leaf |

Name *
Leat2

Leaf Logical Device "

Al-Lableaf Medium 30x400, 26x200 and 16x400 v2 =
Links per spine (72 available) * Link speed *
400 Gbps *

Once both the racks are ready, a Template is created in Apstra by navigating to Design -> Templates ->
Create Template.

The new Template references the QFX5230 and QFX5220 rack types created in the previous step, and
is deployed as a pure IP fabric, as shown in Figure 35.

Figure 35: Creating a Template in Apstra

--_ Juniper Apstra™ {r @& » Design» Templates » Al Cluster GPU Fabric - Medium
421207
Blueprints
Name Al Cluster GPU Fabric - Medium
ces
@ Design Type B RACK BASED
Logical Devices
Intertace Maps Topology Preview
Rack Types
Templates Selected Rack
Config Templates
(=
Property Sets
TCP/UDP Ports (2 Expand Nodes? (8 Show Links?
Tags
B8 Resources
& At LT TR E
= e e et
3£ Bdemal Systems eopen mowon PR . A —
Leafi Leatd 1 Leats 1 Leal) 1 Leatd 1 Leati 1
oooabe asoobo @ooobo soooao asoobo cooobo @aoowe oaooBo
© Platiorm
acao aoaa aoao sooa aooo soaa acco oo
Leaf2 | Leatd 1 Leats 1 Leatd 1 Leatd 1 Leaté 1 Leatd 1 Leat2 1
1 Favorites acoote acoobo acoobo 600080 acoobo eo00B0 aaoobo oa05B0
aooopom ‘oo oo ‘eocapoon oacmom ‘cacapomn Gooapom
hgxald0 i hgx al00 hgxalD04 dgehi0n2 dgxhi001 hgx 21001 hgal00 2 hgx al00.4
aooopom concpom oncnom oomam
hgx i 2 dgx_h100.1 dgx_h100.2 hgx 31003
Structure
Spines 2 of Al-Spine 64x4!
Tags
1 of GPU-Backend-Med (6 generic systems)
Rack Types t
1 of GPU-Backend-Sml (6 g ic syste
Policies
Overlay Control Protocol Pure |P Fabric
ASN Allocation Policy (spine) Unique

I 3) Apstra Web Ul: Create a Blueprint for GPU Backend Fabric

Once the Apstra Template is ready, create a Blueprint for the GPU Backend fabric by navigating to the
Blueprints and clicking on Create Blueprint as shown in Figure 36.

Figure 36: Creating a Blueprint in Apstra

“mz Juniper Apstra™ ir @& » Blueprints

8 Blueprints

B Devices § © Create Blueprint
deployment Root Build Build
Design Seatus Cavses Emors Warnings \

Provide a name for the new blueprint, select data center as the reference design, and select Rack-based.
Then select the template that was created in the previous step which will include the two rack types
that were created for the QFX5230 leaf nodes and the QFX5220 leaf nodes.

49

Figure 37: New Blueprint Attributes in Apstra
Create Blueprint x

Blueprint parameters
Name *
Backend GPU Fabric
Reference Design *

© Datacenter

Freeform

Filter Templates
All © RACK BASED POD BASED COLLAPSED

Template *

Al Cluster GPU Fabric - Medium x

Spine to Leaf Links Underlay Type
O IPv4 IPv6 RFC-5549 IPv4-IPv6 Dual Stack

Spine to Superspine Links
O Ipv4 1Pv6 RFC-5549 IPv4-Pvé Dual Stack

Once the blueprint is successfully initiated by Apstra, it will be included in the Blueprint dashboard as
shown below.

Figure 38: New Blueprint Added to Blueprint Dashboard

@ Blueprints

©

Q 1-4.0f 4

2
8
B
]
=3
=]

Backend GPU Fabric

Deployment Status NA

Service Anamalies NIA

Probe Anomalies NA

Notice that the Deployment Status, Service Anomalies, Probe Anomalies and Root Causes all shown as
N/A. This is because you will need to complete additional steps that inlcudes mapping the different roles
in the blueprint to the physical devices, defining which interfaces will be used, etc.

When you click on the blueprint name and enter the blueprint dashboard it will indicate that the
blueprint has not been deployed yet.

50

51

Figure 39: New Blueprint’s dashboard

¢ @ » Blueprints » Backend GPU Fabric » Dashboard

-
L

B Bueprints @@ Dashboard |+ Analytics [staged 85 Uncommitted (®) Active D Time Voyager
B Devices
& Design Not Deployed Yet

To deploy blueprint and gain access to telemeiry data, bulld blueprint in Staging tab and apply changes

Logical Devices
Interface Maps
Rack Types
Templates

The Staged view as depicted in Figure 40 shows that the topology is correct, but attributes such as
mandatory ASNs and loopback addressing for the spines and the leaf nodes, and the spine to leaf links
addressing must be provided by the user.

Figure 40: Undeployed Blueprint Dashboard

az Juniper Apstra™ ¢z # » Blueprints » Backend GPU Fabric » Dashboard i oo
£ Blueprnts €D Dashboard | Analytics (&) staged =5 Uncommitted (@) Active D Time Voyager
B
7] T Findbytags
Logical Devices
Skt g [4] (o] D [©] (o]
B Physical 8. Virtual @ Policies [Catalog = Tasks B, Connectivity Templates <@ Fabric Settings
Topology ~ Modes links Interfaces Racks Pods Layer Uncommitted Changes x Selection Build
QMNodes Q Links Has Uncommitted Changes [4 B A] [© |
¥ B o
Tgs =
Selected Rack Selected Node Topology Label
Manage Interface Maps /*
) Resources ; i z prg :

i Anal Al-Spine 64x400

32x200 and 16x400
& pattorm

f Small 16%400,

Al-LabLeaf
16x200 and Bx400

T Favorites

H100 Server GPU 8x200G
foptional)

3% Extemal Systens © bondtogest (@) Showlinks? A Lablesf Medium 32x400,
A o
a

jer GPU Bx200G

o I
fop

You will need to edit each one of these attributes and select from predefined pools of addresses and
ASNs, as shown in the example on Figure 41, to fix this issue.

Figure 41: Selecting ASN Pool for Spine Nodes

[ac: PR
o B 1-50f 10
b]

o Pool Name

52

Selection Build

oD
£
g 8 9
\ ASHs - Spes
' n ' ASNs - Leafs

Loopback IPs - Spines
‘ m Loopback IPs - Leafs
‘ Link 1Ps - Spines<>Leafs

You will also need to select Interface Maps for each devices’ role and along with assignment of system

IDs as shown in Figures 42-43.

Figure 42: Mapping Interface Maps to Spine Nodes

Update interface map for Al-Spine 64x400

| (4)
- Q 1-20f2 Selection Build
|
| o D 3
[a
=
Mame & Interface Map & Device Profile E B 9
0 selected |
Manage Interface Maps ¢
spinel Al-Spine 64x400__QFX5230-64CD x Juniper QFX5230-64CD
AlSpine 64x400
| - ‘\ 12062
spine2 Al-Spine 64x400__QFX5230-64CD x Juniper_QFX5230-64CD 4
|
‘ Node Name S Device Profile &
Update Assignments | spine1
o |

FCTR /- LabLeaf Medium 323400,
32x200 and 16x400
Al-LabLeaf Small 16x400,
16x200 and 8x400
H100 Server GPU 8x200G
foptional)

PR AL00 Server GPU 8x200G
foptional)

53

Figure 43: Mapping Spine Nodes to Physical Devices (System IDs)

Assign Systems
= o
Q 1-180f 18 & g 8t
Name 2 Role 2 Hostname & System D & Deploy Mode ¢ Assigned System IDs - Managed
N
©O Deploy Nodes
.) T . Ready - 1-18of 18
spine: Spine spinel /
GP330(10.161.37.164) Drain
Undeploy Node System ID
Deploy
Ready
spine2 Spine spine2
Drain
A
Undeploy
)
Deploy -
back Read
8pu_backend_med_001_leafl Leaf gpubackand-med L v
. e 00 001-leaf1 N
rain
Undeploy
Deploy
)
" . Ready
Rou backend med 001 leaf2 Leaf £pur tackend toed - il ae R
Update Assignments gpu_backend_med_001_leaf8

Once all these steps are completed, you can commit all the changes and Apstra will generate and push
all the necessary vendor-specific configuration to the nodes. Once this has been completed you should
be able to view an active blueprint that represents the successfully deployed fabric as shown in Figure
44,

Figure 44: Mapping Spine Nodes to Physical Devices 2 (System IDs)

= Juniper Apstra™ 7 @ » Blueprints » Backend GPU Fabric » Active » Physical » Status > R o
& Blueprints @ Dashboard | Analytics Staged *& Uncommitted (@) Active D Time Voyager
Devices
ign 7] Q Y Findbytags
Logical Devices ro]
8 Physical & Virtual @ Policies (53 Catalog @ Query & Anomalies 2, Connectivity Templates <I@ Fabric Settings
Topology Modes Links Interfaces Racks Pods Layer Anomalles: All Services - Selection Status
Property Sets W '
QNotes Q Links B o Anomalies
TCR/UDP Perts
Anomalies: Al Services
Selected Rack Selected Node Topology Label
Name Anomaies: BGP

Anomalies: Cabling
ot S 0 Eonanoes: () Showlinks?
i Anomalies: Config

8 Platform

Anomal me
PR omalies: Hostrame
Favorites 06000006000000D500005000
Anomalies: Interface
Anomalies: LAG

Anomalies: Liveness

Anomalies: MLAG

LLLL LR

Apstra Web Ul: Creating Configlets in Apstra for DCQCN and DLB

As of Apstra 4.2.1, features such as ECN and PFC (DCQCN), and DLB are not natively available. Thus, to

deploy the necessary configuration to enable these features on the fabric devices, Apstra Configlets are
used.

The configlet used for the DCQCN and DLB features on the QFX leaf nodes is as follows:

U /* DLB configuration */
hash-key {
family inet {
layer-3;

layer-4;

enhanced-hash-key {
ecmp-dlb {
flowlet {
inactivity-interval 128;

flowset-table-size 2048;

ether-type {
ipv4;

ipv6;

sampling-rate 1000000;

protocols {

bgp {

global-load-balancing {

load-balancer-only;

/* DCQCN configuration */

class-of-service {

classifiers {

dscp mydscp {

forwarding-class CNP {

loss-priority low code-points 110000;

forwarding-class NO-LOSS {

loss-priority low code-points 011010;

drop-profiles {

dp1 {

interpolate {

fill-level [55 90 1;

drop-probability [@ 100 1;

shared-buffer {

ingress {

buffer-partition lossless {

percent 66;

dynamic-threshold 10;

buffer-partition lossless-headroom {

percent 24;

buffer-partition lossy {

percent 10;

egress {

buffer-partition lossless {

percent 66;

buffer-partition lossy {

percent 10;

forwarding-classes {

class CNP queue-num 3;

class NO-LOSS queue-num 4 no-loss pfc-priority 3;

congestion-notification-profile {

cnp {

input {

dscp {

code-point 011010 {

pfc;

output {

ieee-802.1 {

code-point 011 {

flow-control-queue 4;

interfaces {

et-* {

congestion-notification-profile cnp;

scheduler-map smi;

unit * {

classifiers {

dscp mydscp;

scheduler-maps {

sml {

forwarding-class CNP scheduler s2-cnp;

forwarding-class NO-LOSS scheduler si;

schedulers {

s1 {

drop-profile-map loss-priority any protocol any drop-profile dpl;

explicit-congestion-notification;

}

s2-cnp {
transmit-rate percent 5;
priority strict-high;

}

The configlet used for the DCQCN and DLB features on the QFX spine nodes is as follows:

[/* DLB configuration */

hash-key {

family inet {

layer-3;

layer-4;

enhanced-hash-key {

ecmp-dlb {

flowlet {

inactivity-interval 128;

flowset-table-size 2048;

ether-type {

ipv4;

ipvé6;

sampling-rate 1000000;

protocols {

bgp {

global-load-balancing {

helper-only;

/* DCQCN configuration */

class-of-service {

classifiers {

dscp mydscp {

forwarding-class CNP {

loss-priority low code-points 110000,

forwarding-class NO-LOSS {

loss-priority low code-points 011010;

drop-profiles {

dp1 {

interpolate {

fill-level [55 90 1;

drop-probability [@ 100 1;

shared-buffer {

ingress {

buffer-partition lossless {

percent 66;

dynamic-threshold 10;

buffer-partition lossless-headroom {

percent 24;

buffer-partition lossy {

percent 10;

egress {

buffer-partition lossless {

percent 66;

buffer-partition lossy {

percent 10;

forwarding-classes {

class CNP queue-num 3;

class NO-LOSS queue-num 4 no-loss pfc-priority 3;

congestion-notification-profile {

cnp {
input {
dscp {
code-point 011010 {
pfc;
}
}
}
output {
ieee-802.1 {
code-point 011 {
flow-control-queue 4;
}
}
}

interfaces {

et-* {

congestion-notification-profile cnp;

scheduler-map smi;

unit * {

classifiers {

dscp mydscp;

scheduler-maps {

sml {

forwarding-class CNP scheduler s2-cnp;

forwarding-class NO-LOSS scheduler si;

schedulers {

s1 {

drop-profile-map loss-priority any protocol any drop-profile dpi;

explicit-congestion-notification;

s2-cnp {

transmit-rate percent 5;

priority strict-high;

The configuration used for the DCQCN features on the PTX10008 as spine devices is as follows:

NOTE: when using PTX10008 as a spine node, GLB is not an option.

. /* DCQCN configuration */

class-of-service {

classifiers {

dscp mydscp {

forwarding-class rdma-cnp {

loss-priority low code-points 110000;

forwarding-class rdma-ecn {

loss-priority low code-points 011010;

drop-profiles {

dp-ecn {

fill-level 1 drop-probability @;

fill-level 3 drop-probability 100;

forwarding-classes {

class network-control queue-num 3;

class other queue-num 2;

class rdma-cnp queue-num 0;

class rdma-ecn queue-num 1 no-loss;

monitoring-profile {

mp1 {

export-filters filtl {

peak-queue-length {

percent 0;

queue [0 1 1;

interfaces {

et-* {

scheduler-map sched-map-aiml;

monitoring-profile mpl;

unit * {

classifiers {

dscp mydscp;

scheduler-maps {

sched-map-aiml {

forwarding-class network-control scheduler sched-nc;

forwarding-class other scheduler sched-other;

forwarding-class rdma-cnp scheduler sched-cnp;

forwarding-class rdma-ecn scheduler sched-ecn;

schedulers {

sched-cnp {

transmit-rate percent 1;

priority high;

}

sched-ecn {
transmit-rate percent 97;
buffer-size temporal 4063;
priority medium-high;
drop-profile-map loss-priority any protocol any drop-profile dp-ecn;
explicit-congestion-notification;

}

sched-nc {
transmit-rate percent 1;
priority medium-high;

}

sched-other {

priority low;

To create the DCQCN configlets navigate to Design -> Configlets -> Create Configlet, and click on
Create configlet.

Provide a name for the config, select the operating system, vendor and configuration mode and paste
the above configuration snippet on the template text box as shown below:

Figure 45: DCQCN Configlet Creation in Apstra

Juniper Apstra™ 17 @ » Design» Configlets O Datacenter Only

© Create Configlet

Design

Logical Devices
Interface Maps
Rack Types
Tempistes

Create Configlet

B2 Resources

@i Anatytics

3% External Systems

& Piatiorm © Herarchica Hierarchical

T Favorites

The configlet should be applied to the devices, both leaf and spine roles within the blueprint. Navigate
back to the blueprint dashboard and the move to Staged -> Catalog -> Import. Select the configlet you
want to apply, and the device role where you want to apply it.

Figure 46: Applying DCQCN Configlets to Devices in Apstra

?r @& » Blueprints » Backend GPU Fabric » Active + Physical » Status > & o
@D Dashboard |+ Analytics & staged S Uncommitted (@) Active D Time Voyager

Y rindbytags

o o o o [o]

E Physical ¥ Virtual @ Policies [Catalog = Tasks &, Connectivity Templates 1@ Fabric Settings

[2]

Logieal Devices Interface Maps PropertySets Configlets AAAServers Tags
Configle Import Configlet from Global Catalog
T © Import Configlet
contetr
= e : \

B Resources
Py Contige siope

3% External Systems ole in "spine’, Teaf

8 Patform

¥ Favorites

1]

After successfully importing the configlet into the blueprint it should be listed in the catalog. You need
to commit the changes for the configuration to be deployed to the devices.

Figure 47: Applying DCQCN Configlets to Devices in Apstra
1 4 » Blueprints » Backend GPU Fabric » Active » Physical » Status P
2 ~ o]
€D Dashboard | Analytics [staged 85 Uncommitted (&) Active D Time Voyager
T Findbytgs
[4] [o | [o (o] [o]
E Pt X Virtual @ Pol 5 Catalog. =T P <G F g
[o]
l De faps Prog Configlets AA
a 1101
Name Node Condition Actions
N 3 o u
[©]
ed + Logical Diff] L 4 t o
(a] g Q
D Dashboard | Analytics [@) staged 85 Uncommitted (@) Active D Time Voyager
(o} (o] [4]
D) Logical Diff) Full Nodes Dift £ Build Errors (D Warnings @ Commit Check
1-10f1
Type ¢ Action 3 Name
DCQEN for Al Devic

NVIDIA Configuration

IN THIS SECTION

Converting NVIDIA ConnectX NICs from Infiniband to Ethernet | 71

Identifying NICs and GPUs Mappings and Assigning the Appropriate Interface Name | 78

Identify PBX Connections | 80

Changing NIC attributes | 84

How to Change a NIC’s Interface Name, and Assign IP Addresses and Routes | 84

To Map an Interface Name to a Specific NIC (Physical Interface) | 87

To Change the NIC Name | 90

To Change the Current IP Address or Assign an IP Address to the NIC | 92

To Change or Add Routes to the NIC | 93
Configuring NVIDIA DCQCN - ECN | 94

Notification Point (NP) Parameters | 97

Reaction Point (RP) Parameters | 100

NVIDIA DCQCN - PFC Configuration | 102

NVIDIA TOS/DSCP Configuration for RDMA-CM QPS (RDMA Traffic) | 109
Configuring NVIDIA to Use the Management Interface for NCCL Control Traffic | 113

NVIDIA® ConnectX® family of network interface cards (NICs) offer advanced hardware offload and
acceleration features, and speeds up to 400G, supporting both Ethernet and Infiniband protocols.

Always refer to the official manufacturer documentation when making changes. This section provides
some guidelines based on the Al JVD lab testing.

Converting NVIDIA ConnectX NICs from Infiniband to Ethernet

By default, the NVIDIA ConnectX NICs are set to operate as Infiniband interfaces and must be
converted to Ethernet using the mixconfig tool.

1) Check the status of the ConnectX NICs using sudo mst status.

NOTE: Mellanox Software Tools (MST) is part of the Mellanox firmware tools suite and can be used to
manage and interact with Mellanox network adapters.

° user@A100-01:/dev/mst$ sudo mst -h
Usage:

/usr/bin/mst {start|stop|status|remote|server|restart|save|load|rm|add|help|version|

gearbox|cable} Type "/usr/bin/mst help" for detailed help
user@A100-01:/dev/mst$ sudo mst status | egrep "module|load"
MST modules:

MST PCI module loaded

MST PCI configuration module loaded

Start the mst service or load the mst modules if necessary.

Example:

. user@H100-01:~$ sudo mst start

Starting MST (Mellanox Software Tools) driver set

Loading MST PCI module - Success

[warn] mst_pciconf is already loaded, skipping

Create devices

Unloading MST PCI module (unused) - Success

user@A100-01:~/scripts$ sudo mst status

MST modules:

MST PCI module is not loaded

MST PCI configuration module loaded

The example shows “MST PCl module is not loaded”. To load it, use the command modprobe mst_pci.

° user@A100-01:/dev/mst$ sudo modprobe mst_pci

user@A100-01:/dev/mst$ sudo mst status

MST modules:

MST PCI module loaded

MST PCI configuration module loaded

2) Identify the interface that you want to convert,

This sudo mst status -v command will provide a list of Mellanox devices (ConnectX-6 and ConnectX-7
NICs) detected on the system, along with their type, Mellanox device name, PCl addresses, RDMA
interface name, NET interface name, and NUMA ID, as shown in the example below:

. user@A100-01:/dev/mst$ sudo mst status -v

MST modules:

MST PCI module loaded

MST PCI configuration module loaded

PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
ConnectX7(rev:0) /dev/mst/mt4129_pciconf7.1 ¢b:00.1 mlx5_13 net-eth13 1
ConnectX7(rev:0) /dev/mst/mt4129_pciconf7 cb:00.0 mlx5_12 net-gpub_eth 1

—_

ConnectX7(rev:0) /dev/mst/mt4129_pciconf6.1 ¢8:00.1 mlx5_11 net-enp200s0finpl 1

ConnectX7(rev:0) /dev/mst/mt4129_pciconf6 c8:00.0 mlx5_10 net-gpu7_eth 1
ConnectX7(rev:0) /dev/mst/mt4129_pciconf5.1 8e:00.1 mlx5_19 net-eth19 1
ConnectX7(rev:0) /dev/mst/mt4129_pciconf5 8€:00.0 mlx5_18 net-gpu5_eth 1

—_

ConnectX7(rev:0) /dev/mst/mt4129_pciconf4.1 8b:00.1 mlx5_17 net-enp139s@finpl 1

ConnectX7(rev:0) /dev/mst/mt4129_pciconf4 80:00.0 mlx5_1 net-gpud_eth 1

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX7(rev:

ConnectX6DX(rev:0)

ConnectX6DX(rev:0)

ConnectX6(rev:

ConnectX6(rev:

Cable devices:

0)

0)

0)

0)

0)

0)

0)

0)

0)

0)

/dev/mst/mt4129_pciconf3.

/dev/mst/mt4129_pciconf3

/dev/mst/mt4129_pciconf2.

/dev/mst/mt4129_pciconf2

/dev/mst/mt4129_pciconf1.

/dev/mst/mt4129_pciconf1

/dev/mst/mt4129_pciconf0.

/dev/mst/mt4129_pciconf0

/dev/mst/mt4125_pciconf0.

/dev/mst/mt4125_pciconf0

/dev/mst/mt4123_pciconf0.

/dev/mst/mt4123_pciconf0

mt4129_pciconf7_cable_0

mt4129_pciconf6_cable_0

mt4129_pciconf5_cable_0

mt4129_pciconf4_cable_0

mt4129_pciconf3_cable_0

mt4129_pciconf2_cable_0

mt4129_pciconf1_cable_0

52:

52:

51

51

"

"

Oe:

Oe:

2cC:

2cC:

ag:

ag:

00.

00.

:00.

:00.

:00.

:00.

00.

00.

00.

00.

00.

00.

mlx5_3

mlx5_2

mlx5_1

mlx5_0

mlx5_9

mlx5_8

mlx5_7

mlx5_6

mlx5_5

mlx5_4

mlx5_15

mlx5_14

net-enp82s0finpl

net-gpu3_eth

net-enp81s0finpl

net-gpu2_eth

net-enp17s0finpl

net-gpul_eth

net-enp14s0finpl

net-gpud_eth

net-enp44s0finpl

net-mgmt_eth

net-eth15

net-weka_eth

mt4129_pciconf@_cable_0

mt4125_pciconf@_cable_0

mt4123_pciconf@_cable_0

For the first interface in the list, you can identify the following:

¢ Type = ConnectX7(rev:0)

¢ Mellanox device name = mt4129_pciconf7 (/dev/mst/mt4129_pciconf7)
e PCl addresses = cb:00.0

e RDMA interface name = mIx5_12

e NET interface name = net-gpué_eth

e NUMA=1

Notice that for some of the interfaces the name follows the standard Linux interface naming scheme
(e.g. net-enp14s0finp1), while others do not (e.g. net-gpuO_eth). The interface names that do not follow
the standard are user defined names for easy identification purposes. That means the default name was
changed in the /etc/netplan/. We will show an example of how to do this later in this section.

3) Identify what mode a given interface is running using
mixconfig -d <device> query

Example:

o user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7query | grep LINK_TYPE

LINK_TYPE_P1 1B(1)

LINK_TYPE_P2 IB(1) <= indicates link is operating in Infiniband mode

Notice that you need to use the Mellanox device name, including the path (/dev/mst/mt4129 pciconf7).

Also, LINK_TYPE_P1 and LINK_TYPE_P2 refer to the two physical ports in a dual-port Mellanox adapter.
4) If an interface is operating in Infiniband mode, you can change the mode for ethernet mode using
mixconfig -d <device> set [LINK_TYPE_P1=<link_type>] [LINK_TYPE_P2=<link_type>]

Example

° user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7 set LINK_TYPE_P1=2
LINK_TYPE_P2=2

Device #1:
Device type: ConnectX7
Name: MCX755106AS-HEA_Ax
Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB;
Dual-port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot
Enabled
Device: /dev/mst/mt4129_pciconf7
Configurations: Next Boot New
LINK_TYPE_P1 ETH(2) ETH(2)
LINK_TYPE_P2 ETH(2) ETH(2)

Apply new Configuration? (y/n) [n] : y

Applying... Done!

-I- Please reboot machine to load new configurations.

user@A100-01:~/scripts$ sudo mlxconfig -d /dev/mst/mt4129_pciconf7query | grep LINK_TYPE

LINK_TYPE_P1 ETH(2)

LINK_TYPE_P2 ETH(2) <= indicates link is operating in Ethernet mode

Again, notice that you need to use the Mellanox device name, including the path (/dev/mst/
mt4129 pciconf7).

Changes via mixconfig require the box to be power cycled.

To check the status of the interface you can use the mixlink:

user@A100-01:/dev/mst$ sudo mlxlink -d /dev/mst/mt4129_pciconf4

Operational Info

State : Active

Physical state : LinkUp

Speed 1 2006

Width : 4Ax

FEC : Standard_RS-FEC - (544,514)
Loopback Mode : No Loopback

Auto Negotiation : ON

Supported Info

Enabled Link Speed (Ext.) : 0x00003ff2
(200G_2X,200G_4X,100G_1X,100G_2X, 100G_4X,50G_1X,50G_2X, 40G, 25G, 10G, 1G)

Supported Cable Speed (Ext.) 1 0x000017f2
(200G_4X,100G_2X,100G_4X,50G_1X,50G_2X, 40G, 25G, 10G, 1G)

Troubleshooting Info

Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed

Tool Information

Firmware Version : 28.39.2048
amBER Version :2.22

MFT Version : mft 4.26.0-93

For more details you can refer to:
HowTo Find Mellanox Adapter Type and Firmware/Driver version (Linux) (nvidia.com)

Firmware Support and Downloads - Identifying Adapter Cards (nvidia.com)

Identifying NICs and GPUs Mappings and Assigning the Appropriate
Interface Name

NICs can be used by any GPU at any time; it is not hard coded that a given GPU can only communicate
with the outside world using a specific NIC card. However, there are preferred communication paths
between GPUs and NICs, which in some cases could be seen as a 1:1 correspondence between them.
This will be shown in the steps below.

NCCL (NVIDIA Collective Communications Library) will choose the path that has the best connection
from a given GPU to one of the NICs.

To identify the paths selected by NCCL and what the best path between a GPU and a NIC is, follow
these steps:

Use the nvidia-smi topo -m command, which displays topological information about the system, to
identify the connection type between GPUs and NICs:

EXAMPLES:

e DGXH100:

https://enterprise-support.nvidia.com/s/article/howto-find-mellanox-adapter-type-and-firmware-driver-version--linux-x
https://network.nvidia.com/support/firmware/identification/
https://www.bing.com/ck/a?!&&p=c86c0481568213b6JmltdHM9MTcyMTc3OTIwMCZpZ3VpZD0wMjI0ZDEzNS1jNWVjLTZlYTctMDNjYS1jNWYzYzRmZTZmNjgmaW5zaWQ9NTIxOQ&ptn=3&ver=2&hsh=3&fclid=0224d135-c5ec-6ea7-03ca-c5f3c4fe6f68&psq=nccl&u=a1aHR0cHM6Ly9kZXZlbG9wZXIubnZpZGlhLmNvbS9uY2Ns&ntb=1

Figure 48. Nvidia H100 System Management Interface (SMI) system topology information

jvd@H100
GPUD GEOL GPU2
x NV §Vie
NV18 X NV18
NVis NV18 X
HVis HVIB B8
w1 BViE NY18
NV BB HYAB.
WVis N8 W08
wie NIB NE
PXB SYs SXS
sYs s¥s SIS
SYs SYs SYs
SYS PXB SYS
sYs S5 Pxe
SYS X3 res
VTS N p-x i3
5¥s 2.5 e
SYS XS Eves
xS X3 SR
s¥s o s
NIC11 SYS s Ssis
Legend:
X = Self
SYS = Connection
NODE = Connection
PHB = Connection
PXB = Connection
PIX = Connection
NV# = Connection

NIC Legend:

NICO: mlx5 0
NICl: mlx5 1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5 8
NIC9: mlx5_9

NIC10:
NIC11:

mlx5 10
mlx5_11

cEo3 B

NVI& W18
NV1E NV18
NV NV18

GRBnEREEEnRAERE-
8

traversing
traversing
traversing
traversing
traversing
traversing

-01:~% nvidia-smi to

Geus

HV18
NV18
NV18

B8 SR

Po
GeU6

B3 UERRRREIRRE - 22211
Bz HEREEE - 323

-m
GPUT
W18
V18
NV18

I® O N D I I ES
PXB SYS 5YS 5YS SYS SYS SYS SYS SYS
SYS SYS SYS PXB SYS SYS SYS SYS SYS
SYS SYS SYS S5YS PXB SYS SYS SYS SYS
st oS5 S5 S5 85 BB SS 5SSy
SYS £ 63 & S8 & S¥8 B SYS &
B O A A S T O]
sts oSS S5 s S5 S5 &5 & 88
s¥s = & & o) X5 e & =
x SYs B X5 Ere) X5 P23 OB
EORE S - S < S R S S A]
SX5 PIX x SYs Ere) S¥5 S e e
3 X3 &5 x sYs 5 S re pres
&3 S 26 253 x SYsS 253 e e
X3 e &S 28 Ere) x SYS Er e Eres
8B g3 &5 88 & 2 X L2id el
X3 X3 26 250 e 5 A3 x PIX
83 X3 &5 S5 Ere) 85 XS PIX X
23 P13 2 E 5 5 e &S 2)
3 163 26 263 &3 £ €3 &3 Ere
s B RS RS 88 2 86 & 86

g

s¥§ sYS svs
s¥s s¥S s¥s
sY§ 5¥s s¥s
&\, B
StS X5 5
PXB SYS X5
S PXB 5Ys
S¥E B PXB
XS e 3,
& 2 6
S¥S B 3
AL 2 N
AR 26 xR
S X5 3
L 243 R
i NE L2 e
SYs X5 8Y3.
x s¥s s
s1s x sys
&S x

PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PCIe as well as a PCIe Host Bridge (typically the CPU)

multiple PCIe bridges (without traversing the PCIe Host Bridge)

at most a single PCIe bridge
a bonded set of # NVLinks

System Management Interface SMI | NVIDIA Developer

Based on our research:

Table 21: Performance per connection type

Connection Type

PIX

PXB

PHB

NODE

SYS

Description

PCle on the same switch

PCle through multiple switches, but
not host bridge

PCle switch and across a host
bridge on the same NUMA - uses
CPU

PCle switch and across multiple
host bridge on the same NUMA

PCle switch and across QPI/UPI
bus between NUMA nodes - uses
CPU

Performance

Good

Good

OK

Bad

Very Bad

CPU_ALLinity

0-55,112-167
0-55,112-167
0-55,112-167
0-55,112-167
56-111,168-223
56-111,168-223
56-111,168-223
56-111,168-223

MrerrOOOO

79

https://developer.nvidia.com/system-management-interface

NV# NVLink Very Good

o HGXA100:

Figure 49.Nvidia A100 System Management Interface (SMI) system topology information

|user@A100—01:~/scripts$ nvidia-smi topo -m
GPUL GPU3

Gruz Geud o oy I IE) I I Y R G EW pizcolibiicaofpica izl sficuficiouici grciriuici ol sicrd

X W12 jiz W2 Wap Wiz NOE KDE NOE WOE NOE NOD PXD BB BB OSiS NS S N8 09 80 80 N3 S5 me 0-esz-1m D B7A

w1z X ™MZ Bz M2 NV12 MODE NODE MODE MODE N(DE NODE PXB PXB PXB SiS SX§ SIS Si§ SYS S5 S8 SX§ S¥S §i§ 0-63,128-191 0 HAA

vz maz X Wiz WAz WOz PXB PXB EXR PBXB NODE WODE MONR WDE NDE SVS Sis SiS S SIS SN NS RS XS 0-63,128-11 0 K/A

Wiz W17 WAz X waz B 5y NooE HOE WDE StS) 35 08 B¢ B8 NS oceamas o WA

Wiz WAZ WAZ Wiz WAT WAY sis SiS Si5 SuS svs 5is Sts S¢S noE WOE WOE Hooe x5 PG ea-127,192-255 1 WA

Bt i iz i Wz Wi2 Wi2 SiS SiS SIS §iS S¥S sis SiS Sy NDE WODE NDE NODE BB BB XD 64-127/192-255 1 WA

. PR X W12 SIS SIS SIS SiS S¥S sis S1S SIS BB PG PXB NODE NODE NODE NODE 64-127/192-255 1 NrA

Wiz W12 waz Wiz sis sis sys sus svs sis sis sis BB PG PO NODE NODE NODE NCDE 4127152255 1 WA
NODE NODE PXB SYS S¥S X PIX PIX PIX NODE HODE HODE NODE SYS S¥S SYS SYS SYS SYS SYS
NODE NODE PXB SYS SYS PIX X PIX PIX NODE HODE NODE NODE SYS 5YS 5YS 5YS SYS 5YS SYS
NODE NODE PXB S¥S S¥YS PIX PIX X PIX HODE HODE HODE MNODE SYS SYS SYS SYS SYS SYS SYS
NODE NODE PXB SYS SYS PIX PIX PIX X RODE 5YS SYS SYS SYS
NOOE NCDE WCDE, RooE BOE WDE SIS SIS BN RS 98
SLj] NODE NODE NODE SYS SYS NODE NODE NODE NODE PIX NODE HODE MNODE SYS SiS S5YS SY¥S SYS SYS SYS
PXB NODE SYS 5YS NODE NODE NODE NODE NODE X PXB PXB SYS 5YS S5YS 5YS S5YS 5YS SYS

PXB
PXB FXB NODE

GPUS
ez
nz
naz
w2
X
waz
Wiz
w1z
Y8
5YS
S¥S§
S¥S§
5YS§
S¥§
s¥S§
S¥§
NICB PXB PXB NODE S¥S
S¥S§
NODE
NODE
HODE
NODE
HODE
PXB
PXB
PXB

el
waz BB,
WAz BB
w2 NODE S S8
R 2 28
WA b4 sis WoE Hooe
X sis sis NODE NODE vXB
w2 svs sis B HOOE oDE
Wiz svs sis O HoOE oo
SYS 'NODE 'NODE SYS SYS SYS
5YS NODE 'NODE SYS S5YS SYS
SYS 'NODE 'NODE Y SYS SYS SYS
SYS NODE NODE NODE MODE MNODE SYS SYS SYS SYS SYS SYS
S5 S §K5 NODE WDE WDE NDE X PIX DR ETaT s
S¥S X 'NODE SYS SYS SYS
NODE PIX (5YS 5YS Y SYS
S¥S S¥S S¥S NODE NODE NODE NODE NODE NODE PIX PXB PXB SYS SYS SYS SYS SYS SYS SYS SYS SYS SYS
SYS NODE PXB SYS SYS SYS SYS SYS SYS SYS
SYS NODE PXB SYS SYS 5YS
'NODE SYS SYS PXB NODE 'NODE
'NODE 5Y¥S S5YS PXB HNODE 'NODE
'NODE S5YS SYS PIX NODE 'NODE
'NODE SYS SYS X NODE 'NODE
'NODE SYS SYS NIDE X 'NODE
'NODE SYS SYS RODE PIX 'NODE
PXB S¥S S¥S NODE NODE PXB
SYS SYS NODE NODE
PXB SYS SYS NODE NODE PIX
svs sis NoE HODE

L EFEER

NICS PXB PXB NODE SYS SYS NODE NODE HODE NODE NODE PXB PIX X SYS SYS SiS SYS SYS SYS SYS
NIC10 5YS S§X§ SX§ PXB PXB SYS SIS SXS SYS SYS sts S¥s sus X PIX PXB NODE NODE NODE WODE
Ic1L FIO PXB PXB SYS SYS SYS SYS SYS s¥s SYS SYS PIX X PXB NODE HODE NODE HODE
NIC12 5YS S§K§ 8X§ PXB PXB SYS SYS SYS SYS S¥S s¥5 SYS SYS PXB PXB X NODE NODE NODE HODE
NIC13 5YS §Y§ 8X8 PXB PXB SYS SIS SYS SYS S¥S s¥5 SYS SIS PXB PXB PIX NODE NODE NODE NODE
Q@ sy Sx§ SiS NODE NODE SYS SYS SYS S¥S SYS sY5 SYS SYS NODE NODE HODE PIX HODE NODE NODE
w1 SR A NODE NODE SYS SIS SYS S¥S SYS sts SYS SYS NODE NODE NODE X NODE NODE NODE
NIC16 svs Sx§ S8 MODE SiS SYS S¥S S¥S S¥S s¥s S¥S SYS NODE NODE NODE NOOE X PIX FPXB
NIC17 5YS S¥5 §X8 NODE SYS SIS SYS SYS S¥S sts SYS SYS NODE NODE NODE NODE PIX X

HIC1E 5Y5 S§X§ §X8 MODE NODE SYS SIS SIS SYS StS sts SYS SYS NODE NODE NODE NODE PXB PXB

NIC1S SYS 5XS SIS PXB PXB MNODE NODE SYS SYS SYS SYS SYS s¥s SYS SYS NODE NODE NODE NODE PXB PXB PIX X

Identify PBX Connections

If you focus on the highlighted sections of the nvidia-smi output, you can see that for each GPU there is
one or more NIC connection(s) of type PXB. This is the preferred “direct” path from each GPU to a given
NIC. That means, when the GPU needs to communicate to a remote device, it will use one of these
specific NICs, as the first option.

o DGXH100:

Figure 50. Nvidia H100 System Management Interface (SMI) system topology PBX connections

PUO GPU1 GPU2 GPU3 GPU4 GPUS GPU6 GPU
Z PXB SYS SYS SYS SYS SYS SYS SYS

SYS PXB SYS SYS SYS SYs, SYS SYS,
il sys sYs PXB SYs sYs SYs sYs SYS
SYs sYs SYS PXB SYs SYS sYS SYS

3 SYs sYS SYS SYS. PXB SYs SYS SYS.
sYs sYs SYS SYS. sYs PXB sYs sYS

% sYs SYs. SYS sYs sYs SYs. PXB sYs
SYS SYS SYs S¥Ys SYS SYS SYs PXB

MConnmx—? m ConnectxTNetwarkiodke [0 NvMe [I7]] PCleSwitches [NvSwitch —— PCle m 100GbE — CPU communication

o HGXA100:

Figure 51. Nvidia A100 System Management Interface (SMI) system topology PBX connections

PUO GPU1 GPU2 GPU3 GPU4 GPUS GPU6 GPU

NODE NODE PXB PXB SYs SYS. SYS. SYS.
NODE NODE PXB PXB sYs sYs sYs sYs
NODE NODE PXB PXB sys sYs. sYS. sYs.
NODE NODE PXB PXB sys SYS. SYS. SYS.
PXB PXB NODE NODE SYS SYS SYS SYS
PXB PXB NODE NODE SYS SYs. SYs. SYs.
PXB PXB NODE NODE SYS sYs. sYS. sYS.
PXB PXB NODE NODE SYS SYS SYS SYS
sYs SYS sYS. SYS. NODE NODE PXB PXB.
sYs sYs sYs sYs NODE NODE PXB PXB
SYs SYS SYS SYS. NODE NODE PXB PXB
SYs SYs SYs SYS NODE NODE PXB PXB
SYS SYS 3YS. SYS. PXB PXB NODE NODE
sYs sys sYs sYs PXB PXB NODE NODE
sYs SYS. sYs. sYs PXB PXB NODE NODE
SYS SYS SYs SYs PXB PXB NODE NODE

These paths are fixed.
You can also find these mappings in Nvidia’s A100 or H100 user guides.

For example, on an DGX H100/H200 System the port mappings according to the NVIDIA's DGX H100/
H200 System User Guide table 5 and table 6 is as follows:

Table 22: GPU to NIC Mappings

Port ConnectX GPU Default RDMA NIC
OSFP4P2 CXx1 0 ibp24s0 mix5_0 NICO
OSFP3P2 CX3 1 ibp64s0 mix5_3 NIC3
OSFP3P1 CX2 2 ibp79s0 mix5_4 NIC4
OSFP4P1 CX0 3 ibp94s0 mix5_5 NIC5
OSFP1P2 Ccx1 4 ibp154s0 miIx5_6 NICé
OSFP2P2 CX3 5 ibp192s0 mix5_9 NIC9
OSFP2P1 CX2 6 ibp206s0 mix5_10 NIC10
OSFP1P1 CX0 7 ibp220s0 mix5_11 NIC11

Table 23: GPU to NIC Connections

82

https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#id6
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#id6

NIC

NICO

NIC3

NIC4

NIC5

NICé

NIC9

NIC10

NIC11

GPUO GPU1 GPU2 GPU3 GPU4 GPU5
PXB SYS SYS SYS SYS SYS
SYS PXB SYS SYS SYS SYS
SYS SYS PXB SYS SYS SYS
SYS SYS SYS PXB SYS SYS

SYS

SYS

SYS SYS SYS PXB SYS

SYS SYS SYS SYS PXB

SYS SYS SYS SYS SYS SYS
SYS SYS SYS SYS SYS SYS
Siot 1: Dual port ConnectX-7 card 4 x OSFP ports, each provides Slot 2: Dual port ConnectX-7 car

2xUSB 3.1 ports

Slot 3: 100 Gb/s Ethernet NIC

connectivity to two ConnectX-7

cards for a total of 8 x 400Gb/s ports Siot 4: M2 PCie cartter for

Dual 1.92TB NVMe boot drives

;';:?;2;& o 4-digit 7-segment LED
VGA port code display for simplified
{monitor) troubleshooting
Rty Srata 10GDERK-4S for [Unit dentification oo
Management Remote Host OS | (UID) push button Power
Management and LED button

(BMC)

") AL 2 n o
W Pl SR RETIENNTIS B BOTFRER

rn 17 n

GPU6

SYS

SYS

SYS

SYS

SYS

SYS

PXB

SYS

GPU7

SYS

SYS

SYS

SYS

SYS

SYS

SYS

PXB

83

ConnectX Device Network Module/CPU

OSFPIPI cxo 1 7 ibp220s0 mixs_11
OSFPIP dc000 | ibp220s0 mixs_11 osF 1 . 4 1bp15450 mix5_6
OSFP1P; a:00.0 i 5450 x5_6 o
OEFRiRE: || De iy o) OSFP2P1 cx2 1 6 ibp20650 mix5_10
OsFRZP ce0D0 | ibp206s0 mix5_10 = = =

QSFP2P2 CX3 1 ibp192s0 mix5_9
OSFPZP2 | <0000 | ibp192s0 mixs_9

OSFP3P1 cx2 0 2 ibp79s0 mix5_a
OSFP3P 4f000 ibp79s0 mix5_4

0SFP3P2 cx3 0 ibp64s0
OSFPIP2 | 40000 | ibp4sO mixs_3

OSFP4PI =] o 3 ibp94s0 mix5_5
OSFP4P 5e:00.0 ibp94s0 mix5_5

OSFP4P2 cx1 o o ibp24s0 mix5_0
OSFP4P2 | 18000 | ibp24s0 mix5_0
Slot1 P1 2a:00.0 ibp170s0f0 mix5_7
Sot1P2 | 22001 enp170s0f Inp1 bp170s0f Inp| mhs_8
slotz P1 20000 | ibpa1sofo enpd15070npO mixs_1
Slot2 p2 29:00.1 enp41sof inp1 bp41s0finp mixs_2
Slot3 Pl 82000 | ensBf0 N/A irdma0
Slt3P2 | 8200.1 ensefl NA irdmal
On-board 0b:00.0 eno3 N/A

For more information and for the mappings on the A100 systems check:
Introduction to the NVIDIA HGX A100 System — NVIDIA HGX A100 User Guide 1 documentation

Introduction to NVIDIA DGX H100/H200 Systems — NVIDIA DGX H100/H200 User Guide 1
documentation

Changing NIC attributes

The following sections describe how to change NIC attributes.

How to Change a NIC'’s Interface Name, and Assign IP Addresses and
Routes

NIC attributes such as the IP address or the interface name can be made by editing and reapplying the
netplan.

The network configuration is described in the file: /etc/netplan/01-netcfg.yaml as shown in the example
table below. Any attribute changes involve editing this file and reapplying the network plan as will be
shown in the examples later in this section.

Table 24: Nvidia HGX A100 interface configuration example:

netcfg.yaml output

jvd@A100-01:/etc/netplan$ more 01-netcfg.yaml

https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#dgx-h100-200-system-topology
https://docs.nvidia.com/dgx/dgxh100-user-guide/introduction-to-dgxh100.html#dgx-h100-200-system-topology

This is the network config
written by 'subiquity’

network:

version: 2

ethernets:

mgmt_eth:

match:

macaddress: 7c:c2:55:42:b2:28

dhcp4: false

addresses:

-10.10.1.0/31

nameservers:

addresses:

-8.8.8.8

routes:

- to: default

via: 10.10.1.1

set-name: mgmt_eth

weka_eth:

match:

macaddress: b8:3f:d2:8b:68:e0

gpuO_eth:

match:

macaddress: 94:6d:ae:54:72:22

dhcp4: false

mtu: 9000

addresses:

- 10.200.0.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.0.254

from: 10.200.0.8

set-name: gpuO_eth

gpul_eth:

match:

macaddress: 94:6d:ae:5b:01:d0

dhcp4: false

mtu: 9000

addresses:

-10.200.1.8/24

routes:

gpu4_eth:

match:

macaddress: 94:6d:ae:5b:28:70

dhcp4: false

mtu: 9000

addresses:

- 10.200.4.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.4.254

from: 10.200.4.8

set-name: gpu4_eth

gpu5_eth:

match:

macaddress: 94:6d:ae:5b:27:f0

dhcp4: false

mtu: 9000

addresses:

- 10.200.5.8/24

routes:

dhcp4: false

mtu: 9000

addresses:

- 10.100.1.0/31

routes:

- t0: 10.100.0.0/22

via: 10.100.1.1

set-name: weka_eth

- to: 10.200.0.0/16

via: 10.200.1.254

from: 10.200.1.8

set-name: gpul_eth

gpu2_eth:

match:

macaddress: 94:6d:ae:5b:28:60

dhcp4: false

mtu: 9000

addresses:

- 10.200.2.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.2.254

from: 10.200.2.8

set-name: gpu2_eth

gpu3_eth:

match:

macaddress: 94:6d:ae:5b:01:e0

dhcp4: false

- to: 10.200.0.0/16

via: 10.200.5.254

from: 10.200.5.8

set-name: gpu5_eth

gpué_eth:

match:

macaddress: 94:6d:ae:54:78:e2

dhcp4: false

mtu: 9000

addresses:

- 10.200.6.8/24

routes:

- to: 10.200.0.0/16

via: 10.200.6.254

from: 10.200.6.8

set-name: gpué_eth

gpu7_eth:

match:

macaddress: 94:6d:ae:54:72:12

dhcp4: false

mtu: 9000 mtu: 9000
addresses: addresses:
-10.200.3.8/24 -10.200.7.8/24
routes: routes:

- to: 10.200.0.0/16 - to: 10.200.0.0/16
via: 10.200.3.254 via: 10.200.7.254
from: 10.200.3.8 from: 10.200.7.8
set-name: gpu3_eth set-name: gpu7_eth

To Map an Interface Name to a Specific NIC (Physical Interface)

Map the interface name to the MAC of the physical interface in the configuration file:
Figure 53. Nvidia A100 physical interface identification example

user@Al00-01:/etc/netplan$ ifconfig | grep enp
enp203s0flnpl: flags=4099<UP,BROADCAST MULTICAST> mtu 1500

user@Al00-01:/etc/netplan$ ifconfig enp203s0£flnpl
enp203s0£finpl: flags=4099<UP,BROADCAST MULTICAST> mtu 1500
ether 94:6d:ae:54:78:e3 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enp203s0£f1np. <= default logical interface name with MAC =94:6d:ae:54:78:e3,

4 <

where:

en = ethernet network interface.

p203s0 = physical location of the network interface.
203 bus number.

sO = slot number O on the bus.

f1 = function number 1 for the network interface.

87

npl = Network Port 1

enpds16fl pci 8890:04:8a.1

| | | domain <- 9080

|
|
en| | | --> ethernet
L
pa| | --> prefix/bus number (4) <-- P4
| |
s1@| --» slot/device number (18) <-- 18
|
f1 --» function number (1) {--

Function O: Might be the primary Ethernet interface.
Function 1: Might be a second Ethernet interface.

Function 2: Might be a management or diagnostics interface.
Figure 54. Nvidia A100 netplan file modification example

user@Al00-01:/etc/netplan$ vi Ol-netcfg.yaml
———MOre—==

macaddress: 94:6d:ae:54:78:e3
dhcpd: false
mtu: 9000
addresses:
- 10.200.16.1/24
routes:
- to: 10.200.0.0/16
via: 10.200.16.254
from: 10.200.16.1

set-name: [EWMILACENNANE <= new logical interface name with MAC =94:6d:ae:54:78:e3

—— INSERT -

You can find the names of all the logical interfaces on the devnames file:

° user@A100-01:/etc/network$ more devnames

enp139s0fonpd:Mellanox Technologies MT2910 Family [ConnectX-7]

enp139s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]

enp142s0fonpd:Mellanox Technologies MT2910 Family [ConnectX-7]

enp142s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]

|
|
|
|
|
|
|
|
|
1

88

enp14s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp14s0finpl:Mellanox Technologies MT2910 Family [ConnectX-7]

enp17s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp17s0f1npl:Mellanox Technologies MT2910 Family [ConnectX-7]

enp200s0fonp0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp200s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]

enp203s0fonp0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp203s0finp1:Mellanox Technologies MT2910 Family [ConnectX-7]

enp44s0f0:Intel Corporation Ethernet Controller X710 for 10GBASE-T

enp44s0f1:Intel Corporation Ethernet Controller X710 for 10GBASE-T

enp44s0f2:Intel Corporation Ethernet Controller X710 for 10 Gigabit SFP+

enp44s0f3:Intel Corporation Ethernet Controller X710 for 10 Gigabit SFP+

enp81s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp81s@finpl:Mellanox Technologies MT2910 Family [ConnectX-7]

enp82s0f@np0:Mellanox Technologies MT2910 Family [ConnectX-7]

enp82s0finpl:Mellanox Technologies MT2910 Family [ConnectX-7]

ibp169s0f0:Mellanox Technologies MT28908 Family [ConnectX-6]

ibp169s0f1:Mellanox Technologies MT28908 Family [ConnectX-6]

Apply the changes using the netplan apply command

Figure 55. Nvidia A100 netplan application example

90

user@Al00-01:/etc/netplan$ sudo ip link set dev enp203s0flnpl down

user@Al00-01:/etc/netplan$ ifconfig enp203s0flnpl
enp203s0flnpl: error fetching interface information: Device not found

user@AlOO—Ol:/etc/netglan$ sudo netplan apply

user@Al100-01:/etc/netplan$ ifconfig new iface name
: flags=4099<UP, BROADCAST, MULTICAST> % 9000
ether 94:6d:ae:54:78:e3 txgqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

I To Change the NIC Name

Change the value of set-name in the configuration file and save the changes:

Figure 56. Nvidia A100 netplan interface name change example

jvd@A100-01:/ete/netplan$ ifconfig gpuld eth <= current name
gpul_eth: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 5000

inet 10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255
ineté feB0::966d:aeff:fe54:7222 prefixlen 64 gcopeid 0x20<link>

ether 94:6d:2e:54:72:22 txqueuelen 1000 (Ethernet)

RX packets 2079477652 bytes 17618315023885 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0

TX packets 2082335255 bytes 17741532549214 (17.7 TB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0O

jvd@AlOO—Ol:/gﬁg/neEBlanS vi Ol-netcfg.yaml
—-——-more—-—-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.8/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8

set—name: 1= current name

jvdeal100-01:/ete/netplan$ cat Ol-netcfg.yaml
-——more——-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcp4: false
mtu: 5000
addresses:
- 10.200.0.8/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8

set-name: gpul eth0 <= new name

i

Apply the Changes Using the netplan apply command

Figure 57. Nvidia A100 netplan interface name change application and verification example

91

Figure 45. Nvidia A100 netplan interface name change application and verification example

user@A100-01:/etc/netplan$ sudo netplan apply

user@Al100-01:/etc/netplan$ ifconfig gpul eth0 <= new name
gpul0_eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 9000
inet 10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255
inet6 feB0::966d:aeff:feb4:7222 prefixlen 64 scopeid 0x20<1link>
ether 94:6d:ae:54:72:22 txgueuelen 1000 (Ethernet)
RX packets 2079477704 bytes 17618315028610 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame O
TX packets 2082335268 bytes 17741532551122 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

To Change the Current IP Address or Assign an IP Address to the NIC

Change or add the address under the proper interface in the configuration file, and save the changes:

Figure 58. Nvidia A100 netplan interface IP address change example

user@Al100-01:/etc/netplan$ ifconfig gpul_eth
gpuO eth0: flags=4163<UP,.BROADCAST, RUNNING, MULTICAST> mtu 9000
10.200.0.8 netmask 255.255.255.0 broadcast 10.200.0.255 <= current IP address
1net6 - feB0::966d:aeff:fe54:7222 Qreflxlen 64 scogeld 0x20<1ink>
ether 94:6d:2e:54:72:22 txgueuelen 1000 (Ethernet)
RX packets 2079477704 bytes 17618315028610 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0
TX packets 2082335268 bytes 17741532551122 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

user@thO—Ul:/g&g/netglan$ vi Ol-netcfg.yaml
——-mnore—-—-—
gpul_eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcpd: false
mtu: 9000
addresses:
- 10:200.0.8/24 <= current IP address

user@Al00-01:/etc/netplan$ vi Ol-netcfg.yaml
———-more-—-—-
gpul eth:
match:
macaddress: 94:6d:ae:54:72:22
dhcpd: false
mtu: 9000
addresses:
- 10.200.0.18/24 <= new IP address

Wd

Enter the IP addresses preceded with a hyphen and indented; make sure to add the subnet mask.

93

Apply the Changes Using the netplan apply Command

Figure 59. Nvidia A100 netplan interface new IP address application and verification example

user@Al00-01:/etc/netplan$ sudo netplan apply

user@A100-01:/etc/netplan$ ifconfig gpul_eth
gpul_eth: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 9000
inet 10.200.0.18 netmask 255.255.255.0 broadcast 10.200.0.255 <=new IP address
inet6 feB80::966d:aeff:feb4:7222 prefixlen 64 scopeid 0x20<link>
ether 94:6d:a2e:54:72:22 txqueuelen 1000 (Ethernet)
RX packets 2079478284 bytes 17618315075628 (17.6 TB)
RX errors 0 dropped 8 overruns 0 frame 0
TX packets 2082335328 bytes 17741532561365 (17.7 TB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

I To Change or Add Routes to the NIC

Change or add the routes under the proper interface in the configuration file, and save the changes.

Figure 60. Nvidia A100 netplan additional routes example

jvd@A100-02:~$% route | grep gpu0

<= current routes

jvd@A100-01:/etc/netplan$ vi Ol-netcfg.yaml
—-—-more---
gpul_eth:
match:
macaddress: 94:6d:2e:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.8/24

routes:

set-name: gpu0_eth

jvd@al100-01:/etc/netplan$ vi Ol-netcfg.yaml
—-—-more---
gpu0 eth:
match:
macaddress: 94:6d:2e:54:72:22
dhcp4: false
mtu: 9000
addresses:
- 10.200.0.18/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.8
- to: 10.100.0.0/16
via: 10.200.0.254 <= new route

set-name: gpul _eth

Apply the changes using the netplan apply command

Figure 61. Nvidia A100 netplan additional routes application and verification example:

user@A100-01:/etc/netplan$ sudo netplan apply

user@al00-01:/etc/netplan$ route| grep gpul

AR

10.100.0.0 10.200.0.254 255.255.0.0 uG 0 0 0 gpu0_eth <= new route
10.200.0.0 0.0.0.0 255.255.255.0 U 0 0 0 gpu0_eth
10.200.0.0 10.200.0.254 255.255.0:0 UG 0 (1] 0 gpu0_eth

I Configuring NVIDIA DCQCN - ECN

Figure 62: NVIDIA DCQCN - ECN

§ Il CONGESTION %
ECN-ENABLED ECN-ENABLED ECN-ENABLED ECN-ENABLED
SENDER SWITCH SWITCH RECEIVER

3
(LT -

g

P
UDP/IB TRANSPORT hester [EN-T0]
P
header ng
L
ECN = EXPLICIT CONGESTION NOTIFICATION header
ECT = ECN CAPABLE TRANSPORT
s T CONGESTIONEXPERIENCED - Congestion Notification
- Q .
ECE - CEECHO header packets (CNP)
CWR = CONGESTION WINDOW REDUCED
CNP = CONGESTION NOTIFICATION PACKETS
NP = NOTIFICATION POINT - |
RP = REACTIONPOINT header
PFC = PRIORITY FLOW CONTROL TX RATE @

Starting from MLNX_OFED 4.1 ECN is enabled by default (in the firmware).
To confirm that ECN is enabled, use the following command: mixconfig -d <device> q | grep ROCE_CC

Example:

° root@A100-01:/home/ylara# mlxconfig -d mlx5_0 q | grep ROCE_CC
ROCE_CC_PRIO_MASK_P1 255

ROCE_CC_PRIO_MASK_P2 255

A mask of 255 means DCQCN (ECN) is enabled for all TC (traffic classes) configured on the NIC.

To disable ECN you can change the mask using the following command: mixconfig -d <device> s
ROCE_CC_PRIO_MASK_P1=<mask>

Example:

° root@A100-01:/home/ylara# sudo mlxconfig -d mlx5_0 s ROCE_CC_PRIO_MASK_P1=0
Device #1:
Device type: ConnectX7
Name: MCX755106AS-HEA_Ax
Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-
port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot
Enabled
Device: mlx5_0
Configurations: Next Boot New

ROCE_CC_PRIO_MASK_P1 0 0

Apply new Configuration? (y/n) [n] :

If you want to avoid being asked whether you want to apply the new configuration you an include the -y
option as shown in the following example:

° root@A100-01:/home/ylara# sudo mlxconfig -d mlx5_0 -y s ROCE_CC_PRIO_MASK_P1=0

Device #1:

Device type: ConnectX7

Name: MCX755106AS-HEA_Ax

Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB; Dual-

port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot
Enabled

Device: mlx5_0

Configurations: Next Boot New

ROCE_CC_PRIO_MASK_P1 0 0

Apply new Configuration? (y/n) [n] : vy

Applying... Done!

-I- Please reboot machine to load new configurations.

The output states that a server reboot is required. As an alternative, you can reset the interface using
the command: mixfwreset -d <device> -1 3 -y r.

The device can be entered as /dev/mst/mt4129_pciconf2 or mix5_0 (gpuO_eth is not a valid format for
this command)

Example:

° root@A100-01:/home/ylara# mlxfwreset -d mlx5_0 -1 3 -y r

Requested reset level for device, /dev/mst/mt4129_pciconf2:

3: Driver restart and PCI reset

Continue with reset?[y/N] y

-I- Sending Reset Command To Fw -Done
-I- Stopping Driver -Done
-I- Resetting PCI -Done
-I- Starting Driver -Done
-I- Restarting MST -Done

-I- FW was loaded successfully.

ECN operations parameters are located on the following path /sys/class/net/<interface>/ecn

Use the following command to find the interface:

° jvd@A100-01:~/$ 1s /sys/class/net/
docker® enp14s@finpl enp17s@finpl enp44s0finpl gpud_eth gpu3_eth gpu6_eth mgmt_eth
enp139s0finpl enp169s0fOnpd enp200s0finpl enp81s0finpl gpul_eth gpud_eth gpu7_eth ush@
enp142s0finpl enp169s0finpl enp203s0finpl enp82s0finpl gpu2_eth gpu5_eth lo
jvd@A100-01:/sys/class/net/gpud_eth/ecn$ 1s

roce_np roce_rp

ECN bits on the IP header are always marked with 10 for RoCE traffic.

Notification Point (NP) Parameters

When the ECN-enabled receiver receives ECN-marked RoCE packets, it responds by sending CNP
(Congestion Notification Packets).

The following commands describe the notification parameters:

o jvd@A100-01:/sys/class/net/gpud_eth/ecn$ 1s /roce_np/

cnp_802p_prio cnp_dscp enable min_time_between_cnps
Examples:

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/cnp_802p_prio

cnp_802p_prio = the value of the PCP (Priority Code Point) field of the CNP packets.

PCP is a 3-bit field within an Ethernet frame header when using VLAN tagged frames as defined by IEEE
802.1Q.

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/cnp_dscp

48

cnp_dscp = the value of the DSCP (Differentiated Services Code Point) field of the CNP packets.

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/min_time_between_cnps

min_time_between_cnps = minimal time between two consecutive CNPs sent. if ECN-marked RoCE
packet arrives in a period smaller than min_time_between_cnps since previous sent CNP, no CNP will be
sent as a response. This value is in microseconds. Default = O

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_np/enable/*

The output shows that roce_np is enabled for all priority values.

NOTE: Sending CNP packets is handled globally per port, any priority enabled here will set sending CNP
packets to on (1).

To change the attributes described above, use the mixconfig utility:

° mlxconfig -d /dev/mst/<mst_module> -y s CNP_DSCP_P1=<value> CNP_802P_PRIO_P1=<value>

Example:

° jvd@A100-01:/dev/mst$ sudo mst start

Starting MST (Mellanox Software Tools) driver set

Loading MST PCI module - Success

[warn] mst_pciconf is already loaded, skipping

Create devices

Unloading MST PCI module (unused) - Success

jvd@A100-01:~/scripts$./map_full_mellanox.sh

Mellanox Device to mlx and Network Interface Mapping:
/dev/mst/mt4123_pciconf@ => mlx5_14 => enp169s0fOnpd (0000:a9:00.0)
/dev/mst/mt4125_pciconf@ => mlx5_4 => mgmt_eth (0000:2c:00.0)
/dev/mst/

mt4129_pciconf@

=> mlx5_6 => gpud_eth (0000:0e:00.0)
/dev/mst/mt4129_pciconf1 => mlx5_8 => gpul_eth (0000:11:00.0)
/dev/mst/mt4129_pciconf2 => mlx5_0 => gpu2_eth (0000:51:00.0)
/dev/mst/mt4129_pciconf3 => mlx5_2 => gpu3_eth (0000:52:00.0)
/dev/mst/mt4129_pciconf4 => mlx5_16 => gpu4_eth (0000:8b:00.0)
/dev/mst/mt4129_pciconf5 => mlx5_18 => gpu5_eth (0000:8¢:00.0)

/dev/mst/mt4129_pciconf6 => mlx5_10 => gpu7_eth (0000:c8:00.0)

/dev/mst/mt4129_pciconf7 => mlx5_12 => gpu6_eth (0000:cb:00.0)

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlxconfig -d /dev/mst/

mt4129_pciconf@
-y set CNP_DSCP_P1=40 CNP_802P_PRIO_P1=7

Device #1:
Device type: ConnectX7
Name: MCX755106AS-HEA_Ax
Description: NVIDIA ConnectX-7 HHHL Adapter Card; 200GbE (default mode) / NDR20@ IB;
Dual-port QSFP112; PCIe 5.0 x16 with x16 PCIe extension option; Crypto Disabled; Secure Boot
Enabled
Device: /dev/mst/mt4129_pciconf0
Configurations: Next Boot New
CNP_DSCP_P1 48 40
CNP_802P_PRIO_P1 6 7

Apply new Configuration? (y/n) [n] : y

Applying... Done!

-I- Please reboot machine to load new configurations.

Reaction Point (RP) Parameters

jvd@A100-01:/sys/class/net$ ls gpu@_eth/ecn/roce_rp/

clamp_tgt_rate enable rpg_ai_rate rpg_max_rate

When the ECN-enabled sender receives CNP packets, it responds by slowing down transmission for the
specified flows (priority).

The following parameters define how traffic flows will be rate limited, after CNP packets arrival:

rpg_time_reset

clamp_tgt_rate_after_time_inc initial_alpha_value rpg_byte_reset rpg_min_dec_fac

dce_tcp_g rate_reduce_monitor_period rpg_gd
rpg_min_rate dce_tcp_rtt rate_to_set_on_first_cnp
rpg_hai_rate rpg_threshold

Examples:

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_rp/enable/*

jvd@A100-01:/sys/class/net/gpud_eth/ecn$ cat roce_rp/rpg_max_rate

rpg_max_rate = Maximum rate at which reaction point node can transmit. Once this limit is reached, RP
is no longer rate limited.

This value is configured in Mbits/sec. Default = O (full speed - no max)
The output shows that roce_rp is enabled for all priority values.
NOTE: Handling CNP is configured per priority.

To check the ECN statistics use: ethtool -S <interface> | grep ecn

Example:

° jvd@A100-01:~/scripts$ ethtool -S gpu@_eth | grep ecn
rx_ecn_mark: ©
rx_xsk_ecn_mark: 0
rx@_ecn_mark: 0
rx1_ecn_mark: 0
rx2_ecn_mark: 0
rx3_ecn_mark: 0
rx4_ecn_mark: 0
rx5_ecn_mark: 0
rx6_ecn_mark: 0
rx7_ecn_mark: 0
rx8_ecn_mark: 0

---more---

NVIDIA DCQCN - PFC Configuration

IEEE 802.1Qbb applies pause functionality to specific classes of traffic on the Ethernet link.

Figure 63: NVIDIA DCQCN - PFC Configuration

NVIDIA
e = @%
I

- =z==mz=m

NVIDIA

l=1=I=Lr]

| TEEsE==s *,l—‘ TEEE=mEsERt T S
PAUSE FPC-ENABLED PAUSE FPC-ENABLED ' . FPC-ENABLED
<::| FRAMESP QFX SWITCH <::I FRAMES QFXSWITCH congestion QFX SWITCH

NVIDIA

-

FPC-ENABLED FPC-ENABLED FPC-ENABLED
= PAUSE :
QFX SWITCH < QFXSWITCH congestion QFX SWITCH
FRAMES g

NVIDIA

[l =1=I=LT]

B -~

To check whether PFC is enabled on an interface use: minx_qos -i <interface>

Example:

o jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlnx_gos -i gpu@_eth

DCBX mode: OS controlled

Priority trust state: dscp

dscp2prio mapping:

prio:@ dscp:07,06,05,04,03,02,01,00,

prio:1 dscp:15,14,13,12,11,10,09,08,

prio:2 dscp:23,22,21,20,19,18,17,16,

prio:3 dscp:31,30,29,28,27,26,25,24,

prio:4 dscp:39,38,37,36,35,34,33,32,

prio:5 dscp:47,46,45,44,43,42,41,40,

prio:6 dscp:55,54,53,52,51,50,49,48,

prio:7 dscp:63,62,61,60,59,58,57,56,

default priority:

Receive buffer size (bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280

Cable len: 7

PFC configuration

priority o 1 2

enabled 0 0 0

buffer 0 0 0

tc: 0 ratelimit: unlimited, tsa: vendor

priority: 1

tc: 1 ratelimit: unlimited, tsa: vendor

priority: @

tc: 2 ratelimit: unlimited, tsa: vendor

priority: 2

tc: 3 ratelimit: unlimited, tsa: vendor

priority: 3

tc: 4 ratelimit: unlimited, tsa: vendor

priority: 4

tc: 5 ratelimit: unlimited, tsa: vendor

priority: 5

tc: 6 ratelimit: unlimited, tsa: vendor

priority: 6

tc: 7 ratelimit: unlimited, tsa: vendor

priority: 7

To enable/disable PFC use: mlnx_gos -i <interface> --pfc
<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>

Example:

- Check the current configuration:

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo mlnx_gos -i gpu@_eth

DCBX mode: 0S controlled

Priority trust state: dscp

dscp2prio mapping:

prio:@ dscp:07,06,05,04,03,02,01,00,

prio:1 dscp:15,14,13,12,11,10,09,08,

prio:2 dscp:23,22,21,20,19,18,17,16,

prio:3 dscp:31,30,29,28,27,26,25,24,

prio:4 dscp:39,38,37,36,35,34,33,32,

prio:5 dscp:47,46,45,44,43,42,41,40,

prio:6 dscp:55,54,53,52,51,50,49,48,

prio:7 dscp:63,62,61,60,59,58,57,56,

default priority:

Receive buffer size (bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280

Cable len: 7

PFC configuration

priority o 1 2

[3%)

enabled 0o 0 0

buffer 0o 0 0

---more---

The output in the example, indicates that PFC is enable for Priority 3.
e Enable PFC for priority 2 and disable PFC for priority 3:

This example shows how to change the configuration; make sure it matches the PFC configuration on
the leaf nodes (set class-of-service forwarding-classes class NO-LOSS pfc-priority 3).

° jvd@A100-01:~/scripts$ sudo mlnx_gos -i gpu@_eth --pfc 0,0,
1

,0,0,0,0,0

DCBX mode: OS controlled

Priority trust state: dscp

dscp2prio mapping:
prio:0 dscp:07,06,05,04,03,02,01,00,
prio:1 dscp:15,14,13,12,11,10,09,08,

prio:2 dscp:23,22,21,20,19,18,17,16,

prio:3 dscp:31,30,29,28,27,26,25,24,

prio:4 dscp:39,38,37,36,35,34,33,32,

prio:5 dscp:47,46,45,44,43,42,41,40,

prio:6 dscp:55,54,53,52,51,50,49,48,

prio:7 dscp:63,62,61,60,59,58,57,56,

default priority:

Receive buffer size (bytes): 19872,243072,0,0,0,0,0,0,max_buffer_size=2069280

Cable len: 7

PFC configuration:

priority 0 1
2

lw

enabled 0 0

buffer 0 0

---more---

e Check PFC statistics:

jvd@A100-01:~/scripts$ ethtool -S gpu@_eth | grep pause

rx_pause_ctrl_phy: 8143294

tx_pause_ctrl_phy: 502

rx_prio3
_pause: 8143294

rx_prio3
_pause_duration: 10848932

tx_prio3
_pause: 502

tx_prio3
_pause_duration: 30445

rx_prio3
_pause_transition: 4071126

tx_pause_storm_warning_events: 0

tx_pause_storm_error_events: 0

NOTE: The Pause counters are visible via ethtool only for priorities on which PFC is enabled.

NVIDIA TOS/DSCP Configuration for RDMA-CM QPS (RDMA Traffic)

Figure 64: NVIDIA TOS/DSCP

5% bandwidth
strict-high
— 1

Control traffic (e.g. CNP) \

le
NVIDIA Hop e | DSCP = 48 (110000) ||:> / Q4 -
== s2-cnp

. O
Al/ML (RDMA) traffic
BEE - | AUMLRoMA . £
o | DSCP = 26 (0110101]| > 3 +
o [rcrsom]y | Moross z
oader | PCP=3(011) s1 3]
" 1
Traffic from GPUs. ECN-ENABLED no-loss, pfc priority + Z
drop-profiledpl + —Q
SV\CIZI?EH congestion-netification-profile cnp g

RDMA traffic must be properly marked to allow the switch to correctly classify it, and to place it in the
lossless queue for proper treatment. Marking can be either DSCP within the IP header, or PCP in the
ethernet frame vlan-tag field. Whether DSCP or PCP is used depends on whether the interface between
the GPU server and the switch is doing vlan tagging (802.1q) or not.

To check the current configuration and to change the values of TOS for the RDMA outbound traffic, use
the cma_roce_tos script that is part of MLNX_OFED 4.0.

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo cma_roce_tos -h

Set/Show RoCE default TOS of RDMA_CM applications

Usage:
cma_roce_tos OPTIONS
Options:
-h show this help
-d <dev> use IB device <dev> (default mlx5_0)
-p <port> use port <port> of IB device (default 1)
-t <T0S> set TOS of RoCE RDMA_CM applications (@)

To check the current value of the TOS field enter sudo cma_roce_tos without any options.

Example:

110

° jvd@A100-01:/sys/class/net/gpud_eth/ecn$ sudo cma_roce_tos

106

In the example, the current TOS value = 106, which means a DSCP value = 48 and the ECN bits set to
10.

NOTE: The TOS field is 8 bits, while the DSCP is 6 bits. To set a DSCP value of X, you need to multiply
this value by 4 (SHIFT 2). For example, to set DSCP value of 24, (24x4=96). Set the TOS bit to 96. You
need to add 2 to include the ECN.

ECHN
(RFC314E)
ECT CE

DSCP IP PRECEDENCE

TYPE OF SERVICE FIELD (TOS)

BINARY DECIMAL HEX DECIMAL HEX NAME
VALUE VALUE VALUE VALUE

wotoss| o [1 [afJoJaJolaJo] 106 | [[26 | oaa [3 [ox3 [Flash

CLASS

I DROF FROE

To change the value use: cma_roce_tos -d <ib_device> -t <TOS>

You need to enter the ib_device in this command. The following script automatically does the mapping
between the physical interfaces and the ib_device.

° map_full_mellanox.sh

#!/bin/bash

Script to map Mellanox devices to mlx and network interfaces

Get Mellanox device PCI addresses

mst_status=$(sudo mst status | awk '

/\/dev\/mst/ {

dev = $1

/domain:bus:dev.fn/ {

pci = $1

printf "%s: %s\n", dev, pci

")

Get network interface PCI addresses

iface_status=$(for iface in $(1s /sys/class/net/); do

pci_addr=$(ethtool -i $iface 2>/dev/null | grep bus-info | awk '{print $2}')

if [! -z "$pci_addr" 1; then

echo "$iface: $pci_addr"

fi

done)

Get network interface to mlx interface mapping

mlx_iface_status=$(for iface in $(1s /sys/class/net/); do

if [-d /sys/class/net/$iface/device/infiniband_verbs J]; then

mlx_iface=$(cat /sys/class/net/$iface/device/infiniband_verbs/*/ibdev)

echo "$iface: $mlx_iface"

fi

done)

Combine and print the mapping

echo "Mellanox Device to mlx and Network Interface Mapping:"

112

echo "$mst_status" | while read -r mst_line; do

mst_dev=$(echo $mst_line | awk -F ': ' '{print $1}')

mst_pci=$(echo $mst_line | awk -F '=| ' '{print $3}')

iface=$(echo "$iface_status" | grep $mst_pci | awk -F ': ' '{print $1}')
iface_pci=$(echo "$iface_status" | grep $mst_pci | awk -F ': ' '{print $2}')
mlx_iface=$(echo "$mlx_iface_status" | grep $iface | awk -F ': ' '{print $2}')

if [! -z "$iface"] 8 [! -z "$mlx_iface" 1; then

echo "$mst_dev => $mlx_iface => $iface ($iface_pci)"

fi

done

Example:

Figure 65. script results example

jvd@A100-01:~/scripts$./map_full mellanox.sh

Mellanox Device to mlx and Network Interface Mapping:
/dev/mst/mt4123 pciconf(l => mlx5_14 => enpl69s0£f0np0 (0000:a9:00.0)
/dev/mst/mt4125 pciconf0 => mlx5_4 => mgmt eth (0000:2c:00.0)
/dev/mst/mt4129 pciconfl => mlx5 6 => GPUO_eth (0000:0e:00.0)
/dev/mst/mt4129 pciconfl => mlx5 8 => GPUl_eth (0000:11:00.0)
/dev/mst/mt4129 pciconf2 => mlx5 0 => GPU2 eth (0000:51:00.0)
/dev/mst/mt4129 pciconf3 => mlx5 2 => GPU3_eth (0000:52:00.0)
/dev/mst/mt4129 pciconfd4 => mlx5 16 => GPU4_eth (0000:8b:00.0)
/dev/mst/mt4129 pciconf5 => mlx5 18 => GPU5_eth (0000:8e:00.0)
/dev/mst/mt4129 pciconfé => mlx5 10 => GPU7_eth (0000:c8:00.0)
/dev/mst/mt4129 pciconf7 => mlx5 12 => GPU6_eth (0000:cb:00.0)

jvd@Al00-01:~/scripts$ cma roce tos -d mlx5 6 -t 194
194

jvd@A100-01:~/scripts$ cma roce tos —-d mlx5_6
194

Figure 66. Reference TOS, DSCP Mappings:

D5CP

TYPE OF SERVICE FIELD (TOS)

BINARY DECIMAL DECIMAL
VALUE VALUE
a 0 0 a|a 0 0 a 0 0x0 a w0
0 0 1 0|0 0 0 0 32 Ox20 il 8
0 1 0 0|0 0 0 0 B4 Ox40 16 0x10
a 1 1 a|a 0 0 a 96 Ox60 24 0x18
1 0 0 0|0 0 0 0 128 Ox80 32 0x20
1 0 1 a|a 0 0 a 150 DA 40 0x28
NP i1|1(0|0|0|0O|0O]| O 192 OxCO 48 030
1 1 1 a|a 0 0 a 224 OxED 56 0x38
a 0 1 a 1 0 0 a 40 Ox23 10 OxA
a 0 1 1[0 0 0 a A8 0x30 12 OxC
0 0 1 1 1 0 0 0 55 Ox38 14 OxE
a 1 0 a 1 0 0 a 72 Ox43 18 0x12
0 1 0 1|0 0 0 0 20 0x50 20 Ox14
a 1 0 1 1 0 0 a 38 Ox53 22 Ox16
NO-LOE3| 0 1 1 1] 1 0| o0fao 104 Ox63 26 OxlA
0 1 1 1|0 0 0 0 112 0x70 28 0x1C
0 1 1 1 1 0 0 0 120 Ox78 30 Ox1E
1 0 0 0 1 0 0 0 136 Ox88 34 Ox22
1 0 0 1|0 0 0 0 144 0x90 36 Ox24
1 0 0 1 1 0 0 a 152 0x93 38 0x26
1 L1 1 1 1 L1 0 1] 184 B3 46 Ox2E
AS5
DROF FROS

Configuring NVIDIA to Use the Management Interface for NCCL Control
Traffic

NCCL uses TCP sessions to connect processes together and exchange QP information for RoCE, GIDs
(Global IDs), Local and remote buffer addresses, RDMA keys (RKEYs for memory access permissions)

These are separate to the RoCEv2 traffic (port 4791) used for synchronizing model parameters, partial
results operations, and so on.

These sessions are created when the job starts and by default use one of the GPU interfaces (same
interfaces used for RoCEv2 traffic).

Example:

° ylara@A100-01:~$ netstat -atn | grep 10.200 | grep "ESTABLISHED"
tep 0 0 10.200.4.8:47932 10.200.4.2:43131 ESTABLISHED

tep 0 0 10.200.4.8:46699 10.200.4.2:37236 ESTABLISHED

tep 0 0 10.200.2.8:60502 10.200.13.2:35547 ESTABLISHED

tep 0 0 10.200.4.8:37330 10.200.4.2:55355 ESTABLISHED

tep 0 0 10.200.4.8:56438 10.200.4.2:53947 ESTABLISHED

---more---

It is recommended, move to the management interface (connected to the (Frontend Fabric) including the
following parameter when starting a job: export NCCL_SOCKET_IFNAME="mgmt_eth"

Example:

° ylara@A100-01:~$ netstat -atn | grep 10.10.1 | grep "ESTABLISHED"

tep 0 0 10.10.1.0:44926 10.10.1.2:33149 ESTABLISHED
tep 0 0 10.10.1.0:46705 10.10.1.0:40320 ESTABLISHED
tep 0 0 10.10.1.0:54661 10.10.1.10:52452 ESTABLISHED
---more---

ECN is enabled by default for these sessions; net.jpv4.tcp_ecn = 1, but can be disable with: sudo sysctf -
w net.ipv4.tcp_ecn=0

Terraform Automation of Apstra for the Al Fabric

IN THIS SECTION

Al Terraform Configs | 115
Al JVD Specific Terraform Configs | 115

Al Terraform Configs

Juniper has compiled a set of Terraform configs to help set up data center fabrics for an Al cluster. Al
training requires a dedicated GPU Backend fabric, a dedicated Storage Backend fabric, and a Frontend
fabric. Here we show such Apstra-managed network fabrics deploying logical devices, racks and
templates for DGX (or HGX equivalent) servers based on A100 and H100 GPUs having 200GE and
400GE access connectivity respectively. The logical devices, racks and templates defined here create the
NVIDIA Rail-optimized topology.

The github repository for Al designs using Apstra can be found:

https:/github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/

Al JVD Specific Terraform Configs

Based on the Al cluster designs with rail-optimized GPU fabrics of various sizes, this Terraform config for
Apstra will build a set of 3 blueprints for a reference Al cluster's dedicated GPU Backend fabric, a
dedicated Storage Backend fabric, and a Frontend fabric.

This example shall serve as a Juniper Validated Design (JVD) set of configurations that can be applied to
larger clusters. It has two NVIDIA rail-optimized groups with Juniper QFX5220 leaf switches in one
stripe of 8 and QFX5230 leaf switches in another stripe of 8. It has options for both QFX5230 spines or
high-radix PTX10008 spines, with examples here for A100s and H100-based servers in uniform racks or
as deployed in the "Lab Leaf" rack with mixed server access for half A100 and half H100 connectivity to
serve as an example, and because that is what is used in the real lab test environment for this
configuration.

The github repository for this specific Al JVD can be found:

https:/github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/

https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-designs/
https://github.com/Juniper/terraform-apstra-examples/tree/master/ai-cluster-jvd/

Figure 67: Sample GPU Backend Terraform Template

¢ 4 » Design » Templates + Al Cluster 64 DGX-A100 (512 GPUs)

Name Al Cluster 64 DGX-A100 (512 GPUS)
Type B RACK BASED
Topology Preview
Selected Rack

3 BpandNodes? [Show Links?

i T
GX-A100_11
v

1 s
‘GX-A100_12

e

I
GX-A100.13

66 o o'aae oo 5o ob o oo a o' 6’0 /ot o 6 6 6 ool
DGX-A100_23 DGX-A100_31 DGX-A100_15 DGX-A100_2

| |) | | | [|| | |

o 000660 o a o p o060 60 000000 00600600 o o o 0o
DGX-A100_24 DGX-A100_32 DGX-A100_8 DGX-A200_1 DGX-A100_2

Figure 68: Sample GPU Backend Terraform Template: Rack Type
1r @& » Design» Rack Types » Al 16xA100

+= back to list

ExpandedView Compact View

Topology Preview
g o oD o] b b'6 6 8 8
DGX-A100_10 S DGX-A100_14
=
A SR e L e s
E/ -] D(f(V-E 3 E}-"ﬁ/ Pty ﬁ 6\,E\D\ﬂ
DGX-A100_3 DGX-A100_7 DGX-A100_11 ™~ DGX-A100_15
e — 777 /%0 0\ (I Y A AN . (N
L b b P G700 I AATAR Y AN
DGX-A100_4 DGX-A100_8 DGX-A100_12 DGX-A100_16
Summary
Display Name Al 16xA100

Fabric Connectivity Design L3 Clos

116

117

Figure 69: Sample GPU Backend Terraform Template: Logical Device

Y7 @ » Design » Logical Devices » Al-Leaf 32+32x400

= back to list

ZF & W
Name
Al-Leaf 32+32x400
PANEL #1
TOTAL PORT GROUPS Connectedto~
64 ports
Superspine » Spine o Leaf » Generic Superspine o Spine e Leaf » Access o Peer
Unused o Generic
Figure 70: Terraform Template: All Templates Examples
us ¢ @ » Design» Templates
Juniper Apstra™
Name & Type & Overlay Control Protocol %
Al Cluster 64 DGX Server Frontend Management Fabric H RACKBASED MP-EBGP EVPN
Al Cluster 64 DGX-A100 (512 GPUs) H RACKBASED Static VXLAN
Al Cluster 64 DGX-A100 (512 GPUs) Storage Fabric B RACK BASED Static VXLAN
Al Cluster 64 DGX-H100 (512 GPUs) B RACKBASED Static VXLAN
Resources Al Cluster 64 DGX-H100 (512 GPUs) Storage Fabric B RACKBASED Static VXLAN
o
E_:ELJ Al Cluster 128 DGX Server Frontend Management Fabric B RACKBASED MP-EBGP EVPN
External Systems
Al Cluster 128 DGX-A100 (1024 GPUs) B RACKBASED Static VXLAN
fisttomm Al Cluster 128 DGX-A100 (1024 GPUs) Storage Fabric B RACKBASED Static VXLAN
ﬁ Al Cluster 128 DGX-H100 (1024 GPUs) B RACK BASED Static VXLAN
Favorites
Al Cluster 128 DGX-H100 (1024 GPUs) Storage Fabric B RACKBASED Static VXLAN
Al Cluster 256 DGX Server Frontend Management Fabric B RACKBASED MP-EBGP EVPN
Al Cluster 256 DGX-A100 (2048 GPUs) B RACK BASED Static VXLAN
Al Cluster 256 DGX-A100 (2048 GPUs) Storage Fabric B RACKBASED Static VXLAN
Al Cluster 256 DGX-H100 (2048 GPUs) B RACK BASED Static VXLAN
Al Cluster 256 DGX-H100 (2048 GPUs) Storage Fabric B RACK BASED Static VXLAN
Al Cluster 640 DGX-H100 (5120 GPUs) B RACK BASED Static VXLAN

Al Cluster 1152 DGX-A100 (9216 GPUs) B RACKBASED Static VXLAN

Validation Framework

IN THIS SECTION

Platforms / Devices Under Test (DUT) | 118

Platforms / Devices Under Test (DUT)

Table 25: Platforms / Devices Under Test (DUT)

Component Frontend Storage Backend

Architecture 3-stage clos 3-stage clos

Spine nodes QFX5130-32CD x 2 QFX5220-32CD x 2
Leaf nodes QFX5130-32CD x 1 QFX5220-32CD x 2
(frontend-gpu-leaf) (storage-backend-gpu-
leaf)

QFX5130-32CD x 1

QFX5220-32CD x 2
(frontend-weka-leaf)

(storage-backend-
weka-leaf)

GPU Backend (Cluster 1 and 2)

3-stage clos rail optimized

QFX5230-64CD x 2 (cluster 1)

PTX-10008 JNP10K-LC1201
(cluster 1)

QFX5240-640D x 2 (cluster 2)

QFX5241-640D x 2 (cluster 2)

QFX5220-64CD x 8 (cluster 1 -
stripe 1)

QFX5230-64CD x 8 (cluster 1 -
stripe 2)

QFX5240-64CD x 8 (cluster 2 -
stripes 1-2)

QFX5241-640D x 2 (cluster 2)

(Continued)

Component

Leaf nodes <=>

spine node links

Number of NVIDIA
DGX

H100 GPU servers

Number of NVIDIA
HGX

A100 GPU servers

NVIDIA DGX H100
GPU servers <=>

GPU leaf nodes links

NVIDIA HGX A100
GPU servers <=>

GPU leaf nodes links

Frontend

2 x 400GE
(per frontend-leaf <=>

frontend-spine link)

2 (Cluster 2 - stripe 1)

2 (Cluster 2 - stripe 2)

4 (Cluster 1 - stripe 1)

4 (Cluster 1 - stripe 1)

1 x 100GE
(per gpu server <=>

frontend-gpu-leaflink)

1 x 100GE
(per gpu server <=>

frontend-gpu-leaflink)

Storage Backend

2 x 400GE

(per storage-backend-
weka-leaf

<=> storage-backend-
spine)

3 x 400GE

(per storage-backend-
gpu-leaf

<=> storage-backend-
spine)

1 x 200GE
(per gpu server <=>

storage-backend-gpu-
leaflink)

1 x 100GE
(per gpu server <=>

storage-backend-gpu-
leaf link)

GPU Backend (Cluster 1 and 2)

2 x 400GE
(per gpu-backend-spine <=>

gpu-backend-leaf link)

1 x 400GE (Cluster 2)
(per gpu server <=>

gpu-backend-leaf link)

1 x 200GE (Cluster 1)
(per gpu server <=>

gpu-backend-leaf link)

(Continued)

Component

Total number of GPUs

WEKA storage servers

WEKA storage servers
<=>

WEKA storage leaf
nodes links

Frontend Storage Backend GPU Backend (Cluster 1 and 2)

96: 32 x stripe in cluster 1

16 x stripe in cluster 2

8

1 x 100GE 1 x 200GE N/A
(per weka server <=> (per weka server <=>
frontend-weka-leaf storage-backend-weka-

link) leaflink)

Network Connectivity: Reference Examples

IN THIS SECTION

Frontend Network Connectivity | 121

GPU Backend Network Connectivity | 137

Storage Backend Network Connectivity | 146

For those who want more details, this section provides insight into the setup of each fabric and the

expected values for the reference examples.

The section describes the IP connectivity across the common Frontend, and Storage Backend fabrics,
and the GPU Backend fabric in Cluster 1, Stripe 1. The GPU Backend fabrics for cluster 1, stripe 2, and
cluster 2 follow the same model.

Regardless of whether you are using Apstra with or without Terraform automation with Apstra, the IP
addressing Pools, ASN Pools, and interface addresses are largely automatically assigned and configured
with little interaction from the administrator unless desired.

Notice that all the addresses shown in this section represent the IP addressing schema used in the
Juniper lab to validate the design.

Frontend Network Connectivity

The Frontend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and spine nodes
are configured with /31 IP addresses, as shown in Table 26. The fabric consists of 2 spine nodes and 2
leaf nodes, where 1 leaf node is used to connect to the storage servers (named frontend-weka-leaf 1)
and 1 is used to connect to the GPU servers (named frontend-ai-leaf1). Additionally, the Headend
Servers that execute the workload manager (Slurm) for Al Training and Inference models reside in this
fabric.

In this example, leaf nodes connecting to the GPU servers in the Frontend fabric are named frontend-ai-
leaf# instead of frontend-gpu-leaf# but they represent the same role.

There are two 400GE links between each frontend-weka-leaf 1 node and the spine nodes and two
400GE links between each frontend-ai-leaf1 node and the spine nodes as shown in Figure 71.

Figure 71: Frontend Spine to Leaf Nodes Connectivity

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.0/31 10.0.5.4/31 10.0.5.8/31 10.0.5.12/31
10.0.5.2/31 10.0.5.6/31 10.0.5.10/31 10.0.5.14/31
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.1/31 10.0.5.9/31 10.0.5.5/31 10.0.5.13/31
10.0.5.3/31 10.0.5.11/31 10.0.5.7/31 10.0.5.15/31
rontend hwo] fotend
001-leafl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 001-leafl

Table 26: Frontend Interface Addresses

Spine node Leaf node Spine IP address Leaf IP address

frontend-spinel frontend-ai-leaf1 10.0.5.0/31 10.0.5.1/31
10.0.5.2/31 10.0.5.3/31
frontend-spinel frontend-weka-leaf1 10.0.5.4/31 10.0.5.5/31
10.0.5.6/31 10.0.5.7/31
frontend-spine2 frontend-ai-leaf1 10.0.5.8/31 10.0.5.9/31
10.0.5.10/31 10.0.5.11/31
frontend-spine2 frontend-weka-leaf1 10.0.5.12/31 10.0.5.13/31
10.0.5.14/31 10.0.5.15/31

NOTE: all the Autonomous System and IP addresses are assigned by Apstra (from predefined pools of
resources) based on the intent.

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.

Table 27: Frontend Loopback Addresses

Device Loopback interface address
frontend-spinel 10.0.3.0/32
frontend-spine2 10.0.3.1/32
frontend-ai-leaf1 10.0.1.0/32
frontend-weka-leaf1 10.0.1.1/32

The H100 GPU Servers and A100 GPU Servers are all connected to the frontend-ai-leaf1 node.

The links between the GPU servers and the leaf node Leaf 1 are assigned /31 subnets out of
10.0.5.0/24, shown in Figure 72 and Table 28.

Figure 72: Frontend Leaf Nodes to GPU Servers Connectivity

frontend-
ai-leaf-
001-leafl

inet.0
100.0 10.0.4.0/32

et-0/0/4

et-0/0/7 et-0/0/20

10.10.1.17/31 10.10.1.23/31 10.10.1.1/31

E5E- - EaE- BEs- - [EeE]

H100 GPU
Server 1

H100 GPU A100 GPU
Server 4 Server 1

A100 GPU

Table 28: Frontend Leaf Nodes to GPU Servers Interfaces Addresses

GPU Server

H100 GPU Server 1

H100 GPU Server 2

H100 GPU Server 3

H100 GPU Server 4

A100 GPU Server 1

A100 GPU Server 2

A100 GPU Server 3

A100 GPU Server 4

Leaf node

frontend-ai-leaf1

GPU Server IP address

10.10.1.17/31

10.10.1.19/31

10.10.1.21/31

10.10.1.23/31

10.10.1.1/31

10.10.1.3/31

10.10.1.5/31

10.10.1.7/31

Leaf IP address

10.100.1.9/31

10.100.1.11/31

10.100.1.1/31

10.100.1.3/31

10.100.1.5/31

10.100.1.7/31

10.100.2.9/31

10.100.2.11/31

(Continued)

GPU Server Leaf node GPU Server IP address Leaf IP address
A100 GPU Server 5 10.10.1.9/31 10.100.2.1/31
A100 GPU Server 6 10.10.1.11/31 10.100.2.3/31
A100 GPU Server 7 10.10.1.13/31 10.100.2.5/31
A100 GPU Server 8 10.10.1.15/31 10.100.2.7/31

The WEKA storage servers are all connected to the frontend-weka-leaf 1 node.

The links to these servers do not have IP addresses assigned on the leaf node. Layer 3 connectivity is
provided via an irb interface with an address out of subnet 10.10.2.1/24. The WEKA servers are
assigned addresses out of 10.10.2.0/24, as shown Figure 73 and Table 29.

Figure 73: Frontend Leaf Nodes to WEKA Storage Connectivity

T frontend-
- weka-leaf-

100.0 10.0.4.1/32 001-leafl
irb..

2
101021/24 | VLANZ
10.10.2.0/24

7 T
et0/0/a et-0/0/5 e-0/0/11

10.1022 / 101023 B 10,1029
B == Gh LN =TT [(Gr]

Weka Weka Weka
storage 1 storage 2 storage 8

Table 29: Frontend Leaf Nodes to WEKA Storage Interface Addresses

GPU Server Leaf node WEKA Server IP Address Leaf IP Address

WEKA Storage Server 1 frontend-weka-leaf1 10.10.2.2/24 10.10.2.1/24 (irb.2)

WEKA Storage Server 2 10.10.2.3/24

(Continued)

GPU Server

WEKA Storage Server 3

WEKA Storage Server 4

WEKA Storage Server 5

WEKA Storage Server 6

WEKA Storage Server 7

WEKA Storage Server 8

Leaf node

WEKA Server IP Address Leaf IP Address

10.10.2.4/24

10.10.2.5/24

10.10.2.6/24

10.10.2.7/24

10.10.2.8/24

10.10.2.9/24

The Headend servers executing the workload manager are all connected to the frontend-ai-leaf1 node.

The links to these servers do not have IP addresses assigned on the leaf node. Layer 3 connectivity is
provided via an irb interface with the address 10.10.3.1/24. The headend servers assigned addresses
out of 10.10.3.0/24, as shown in Figure 74 and table below.

Figure 74: Frontend Leaf Nodes to Headend Servers Connectivity

frontend- -
ai-leaf- inet.0
001.leafl 100.0 10.0.4.0/32
irb.3
VLAN 3 {10 10.3.1/24
10.10.3.0/24
, !
£t-0/0/8:0 et 0/0/8:1 et-0/0/8:2

10.10.38

headend-svr-01 headend-svr-02 headend-svr-03

EBGP is configured between the IP addresses assigned to the spine-leaf nodes links. There will be 2
EBGP sessions between the frontend-ai-leaf# node and each spine node, and 2 EBGP sessions between
each frontend-weka-leaf # node and each of the spine nodes, as shown in Figure 75.

Figure 75: Frontend EBGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.0/31 10.0.5.4/31 10.0.5.8/31 10.0.5.12/31
10.0.5.2/31 10.0.5.6/31 10.0.5.10/31 10.0.5.14/31
A A
i :
|
EBGP x 2 ! '
' v
et-0/0/0 - 1 et-0/0/2-3 et-0/0/0 - 1 et-0/0/2-3
10.0.5.1/31 10.0.5.9/31 10.0.5.5/31 10.0.5.13/31
10.0.5.3/31 10.0.5.11/31 10.0.5.7/31 10.0.5.15/31
Fontend o | fntend
001-leafl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 001-leafl

Table 30: Frontend Sessions

Spine node Leaf node Spine Leaf ASN Spine IP Leaf IP

address address
frontend-spinel frontend-ai- 4201032300 4201032400 10.0.5.0/31 10.0.5.1/31
leaf1
10.0.5.2/31 10.0.5.3/31
frontend-spinel frontend-weka- 4201032401 10.0.5.4/31 10.0.5.4/31
leaf 1
10.0.5.6/31 10.0.5.7/31
frontend-spine2 frontend-ai- 4201032301 4201032400 10.0.5.8/31 10.0.5.9/31
leaf1
10.0.5.10/31 10.0.5.11/31
frontend-spine2 frontend-weka- 4201032401 10.0.5.12/31 10.0.5.13/31
leaf1

10.0.5.14/31 10.0.5.15/31

On the frontend-ai-leaf1 nodes BGP policies are configured by Apstra to advertise the following routes
to the spine nodes:

NOTE: all the Autonomous System and community values are assigned by Apstra (from predefined pools
of resources) based on the intent.

e frontend-ai-leafl node own loopback interface address,
e frontend-ai-leafl node to spines interfaces subnets and
e GPU servers to frontend-ai-leaf1 node link subnets.

o WEKA server's management subnet

Figure 76: Frontend Leaf to GPU Servers BGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
i
1 I
1 |
1 |
1 |
A

10.0.4.0/32 A

10.0.5.0/31 y /,’

10.0.5.2/31 ... i

10.10.1.16/31 ...
10.10.1.22/31

frontend-
ai-leaf-
001-leafl

inet.0
100.0 10.0.1.0/32

..... / \

et-0/0/4

10.10.1.16/31

+ -
et0/0/7 et0/0/20 et-0/0/27

10.10.1.17/31 10.10.1.23/31 10.10.1.1/31 10.10.1.15/31

10.10.1.22/31 10.10.1.0/31 10.10.1.16/31

WEEE =

5o Baaa - Eaa

wmEEE —
Iﬂ@@ vee| mEm
H100 GPU H100 GPU A100 GPU A100 GPU
Server 1 Server 4 Server 1 Server 8

Figure 77: Frontend Leaf

to Headend Server BGP

Frontend-Spine-1

inet.0
100.0 10.0.3.0/32

Frontend-Spine-2

inet.0
100.0 10.0.3.1/32

—————
————
N

’/' /I
g
10.10.3.0/24 ’
H '
e
001.leafl 100.0 10.0.4.0/32
itb.3
VLAN 3 {40 10.3.1/24
10.10.3.0/24
, !
t-0/0/8:0 et-0/0/8:1 et-0/0/8:2
10.10.3.3 10.10.39

headend-svr-01

headend-svr-02 headend-svr-03

128

Table 31: Frontend Leaf to GPU/Headend Servers Advertised Routes

Leaf Node Peer(s) Advertised Routes BGP Communities
frontend-ai-leaf1 frontend-spinel & Loopback: GPU servers <=> 3:20007
frontend-spine2 frontend spine links:
10.0.4.0/32 21001:26000

10.10.1.16/31
Leaf-spines links:

10.10.1.18/31

10.0.5.0/31

10.10.1.20/31
10.0.5.2/31

10.10.1.22/31
10.0.5.8/31

10.10.1.0/31
10.0.5.10/31

10.10.1.2/31

10.10.1.4/31

10.10.1.6/31

10.10.1.8/31

10.10.1.10/31
10.10.1.12/31
10.10.1.14/31

WEKA
Management
server's subnet:

10.10.3.0/24

On the frontend-weka-leaf 1 node BGP policies are configured by Apstra to advertise the following
routes to the spine nodes:

e frontend-weka-leaf 1 node own loopback interface address,
o frontend-weka-leaf 1 node to spines interfaces subnets and
e WEKA storage server’s subnet

Figure 78: Frontend Leaf to WEKA Storage BGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
IR
I I
| |
\J o
2N\ | 10.0.4.1/32
N\ 10.0.5.4/31
10.0.5.6/31...
10.10.2.0/24
i
o | et
100.0 10.0.4.1/32 001-leafl
irb.2
10.10.2.1/24 | VLAN2Z
10.10.2.0/24
I/ ! AY
et-0/0/4 et-0/0/5 t-0/0/11
10.10.2.2 10.10.23 10.10.2.9
Weka Weka Weka
storage 1 storage 2 storage 8

Table 32: Frontend Leaf to Weka Storage Advertised Routes

Leaf Node Peer(s) Advertised Routes BGP Communities

GPU servers <=> 4:20007

1 frontend spine links:
frontend-spine2 10.0.4.1/32

frontend-weka-leaf = frontend-spinel & Loopback:
21001:26000

10.10.2.0/24

Leaf-spines links:

10.0.5.4/31

10.0.5.6/31

10.0.5.12/31

10.0.5.14/31

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the
frontend-ai-leaf node:

e frontend-spine node own loopback interface address

o frontend-weka-leaf 1 loopback interface address

e frontend-spine to frontend-weka-leaf 1 nodes interfaces subnets
o WEKA storage server’s subnet (learned from frontend-weka-leaf1)

Figure 79: Frontend Spine to Frontend Leaf for GPU/Headed Servers BGP

Frontend-Spine-1 Frontend-Spine-2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
T1
i
10.0.3.0/32 10.0.3.1/32
10.0.4.1/32 10.0.4.1/32
10.0.5.0/31 10.0.5.4/31
10.0.5.2/31.. 10.0.5.6/31...
10.10.2.0/24 10.10.2.0/24
:
H .
1 ’,
rontend o | fontend
001-leafl 100.0 10.0.4.0/32 100.0 10.0.4.1/32 001-leafl
irb.2
10.10.2.1/24 VLAN 2
10.10.2.0/24
I/ ! AY
et-0/0/4 et-0/0/5 £t-0/0/11
10.10.22 10.10.23
Weka Weka Weka
storage 1 storage 2 storage 8

Table 33: Frontend Spine to Frontend Leaf for GPU/Headed Servers Advertised Routes

Leaf Node

frontend-spinel

frontend-spine2

Peer(s)

frontend-ai-leaf

frontend-ai-leaf

Advertised Routes

Loopback:
10.0.3.0/32
10.0.4.0/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.4/31
10.0.5.6/31
10.0.5.12/31

10.0.5.14/31

Loopbacks:
10.0.3.1/32
10.0.4.0/32
Leaf-spines links:
10.0.5.4/31
10.0.5.6/31
10.0.5.8/31
10.0.5.10/31
10.0.5.12/31

10.0.5.14/31

WEKA Servers
subnet:

10.10.2.0/24

WEKA Servers
subnet:

10.10.2.0/24

BGP Communities

0:15
1:20007
21001:26000

Except for
10.0.4.0/32

(0:15 3:20007
21001:26000)

0:15
2:20007
21001:26000

Except for
10.0.4.0/32

(0:15 3:20007
21001:26000)

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the
frontend-weka-leaf 1 leaf node:

e spine node own loopback interface address

e frontend-ai-leafl loopback interface address

e spine to frontend-ai-leafl nodes interfaces subnets

e GPU servers to frontend-ai-leaf1 node link subnets

Figure 80: Frontend Spine to Frontend Leaf for WEKA Storage Headend Server BGP

frontend-spinel frontend-spine2
inet.0 inet.0
100.0 10.0.3.0/32 100.0 10.0.3.1/32
T

N\ i
10.0.3.0/32 10.0.3.1/32
10.0.4.0/32 10.0.4.0/32
10.0.5.0/31 10.0.5.4/31
10.0.5.2/31 ... 10.0.5.6/31 ...
10.10.3.0/24 10.10.3.0/24

f||f

frontend- inet.0 inet.0 frontend-
-leaf net. net. weka-leaf
gpu 100.0 10.0.4.0/32 100.0 10.0.4.1/32
irb.3
VLAN3 | 10 10.3.1/24
10.10.3.0/24
, !
et-0/0/8:0 et-0/0/8:1 et-0/0/8:2

10.10.3.3 10.10.3.9

headend-svr-01 headend-svr-02 headend-svr-03

Figure 81: Frontend Spine to Frontend Leaf for WEKA Storage GPU Server BGP

Frontend-Spine-1

inet.0
100.0 10.0.3.0/32

N\

Frontend-Spine-2

inet.0
100.0 10.0.3.1/32

10.10.1.16/24 ...
10.10.1.22/24
10.10.1.0/31...
10.10.1.14/31

10.10.1.16/24 ...
10.10.1.22/24
10.10.1.0/31...
10.10.1.14/31

frontend- -
ai-leaf- inet.0
001-leafl 100.0 10.0.4.0/32

et-0/0/4 eth/OT/T et‘fO/O/ZO et-0/0/27

10.10.1.17/31 10.10.1.23/31 10.10.1.1/31 10.10.1.15/31

10.10.1.16/31 10.10.1.22/31 10.10.1.0/31

\\ '

- frontend-
inet.0 weka-leaf-
100.0 10.0.4.1/32 001-leafl

10.10.1.14/31

| N=T=T=pw"

et el | E e e e

A100 GPU
Server 1

H100 GPU
Server 1

H100 GPU
Server 4

A100 GPU
Server 8

Table 34 Frontend Spine to Frontend Leaf for WEKA Storage Advertised Routes

Leaf Node

frontend-spinel

Peer(s)

frontend-ai-leaf

Advertised Routes

Loopback:
10.0.3.0/32
10.0.4.1/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.4/31
10.0.5.6/31
10.0.5.8/31

10.0.5.10/31

GPU server <=>
frontend spine links:

10.10.1.16/31
10.10.1.18/31
10.10.1.20/31
10.10.1.22/31
10.10.1.0/31
10.10.1.2/31
10.10.1.4/31
10.10.1.6/31
10.10.1.8/31
10.10.1.10/31
10.10.1.12/31
10.10.1.14/31

WEKA Server'’s
Management
subnet:

10.10.3.0/24

BGP Communities

0:15
1:20007
21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)

(Continued)

Leaf Node

frontend-spine2

Peer(s)

frontend-ai-leaf

Advertised Routes

Loopbacks:
10.0.3.1/32
10.0.4.1/32
Leaf-spines links:
10.0.5.0/31
10.0.5.2/31
10.0.5.8/31
10.0.5.10/31
10.0.5.12/31

10.0.5.14/31

GPU servers <=>
frontend spine links:

10.10.1.16/31
10.10.1.18/31
10.10.1.20/31
10.10.1.22/31
10.10.1.0/31
10.10.1.2/31
10.10.1.4/31
10.10.1.6/31
10.10.1.8/31
10.10.1.10/31
10.10.1.12/31
10.10.1.14/31

WEKA
Management
server’s subnet:

10.10.3.0/24

BGP Communities

0:15

2:20007
21001:26000

Except for
10.0.4.1/32

(0:15 4:20007
21001:26000)

By advertising the subnet assigned to the links between the leaf nodes and the GPU/storage servers,

communication between GPUs and the WEKA storage and WEKA management servers is possible

across the fabric.

Figure 82: GPU Server to WEKA storage and WEKA Management Servers

Storage- Storage-
backend-spinel backend-spine2
BGP
10.10.3.X/31 BGP
Storage- Storage-

backend-
leafl

backend-
leaf2

' \ -
! | | I O B O i
INN WEKA NN WEKA NN WEKAG! L 1
e e s o 5 GPUE | | 5
S T e
10.10.3.X/31 10.10.1.X/31 10.10.2.X/31

All the devices are configured to perform ECMP load balancing, as explained later in the document.

GPU Backend Network Connectivity

The GPU Backend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and spine
nodes are configured with /31 IP addresses and are running EBGP. The fabric consists of 2 spine nodes,
and 8 spine nodes (per stripe).

There is a single 400GE link between each leaf node and the spine nodes.

137

Figure 83: GPU Backend Spine to GPU Backend Leaf Nodes Connectivity

gpu-backend-spinel

gpu-backend-spine2

inet.0 inet.0
100.0 10.0.0.0/32 100.0 10.0.0.0/32
1\ i
77 AL} 7 o
et-0/0/0-1 et-0/0/2-3 et-0/0/4-5 et-0/0/0-1 et-0/0/2-3 et-0/0/4-5
10.0.2.0/31 10.0.2.4/31 10.0.2.8/31 10.0264/31 1002.68/31 10.0.2.1/72
10.0.2.2/31 10.02.6/31 10.0.2.10/21 10.0.2.66/31 10.02.70/31 10.0.2.3/74

et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3
10.0.2.1/31 10.0.2.65/31 10.0.2.5/31 10.0.2.69/31 10.0.2.9/31 10.0.2.73/31
10.0.2.3/31 10.0.2.67/31 10.0.2.7/31 10.0.2.71/31 10.0.2.11/31 10.0.2.75/31
gpu- inet.0 gpu- = inet.0 = gpu- inet.0
:’“ke"d' 100.0 I1?)9_0_1.0/32 backend- 100.0 I1noe.0_1_1/32 backend- 100.0 I1';;.0.1.2/32 mes
eafl leaf2 leaf3
Table 35: GPU Backend Interface Addresses
Stripe # Spine node Leaf node Spine IP address Leaf IP address
1 gpu-backend-spine = gpu-backend-leafl 10.0.2.0/31 10.0.2.1/31
1
10.0.2.2/31 10.0.2.3/31
1 gpu-backend-spine = gpu-backend-leaf2 10.0.2.4/31 10.0.2.5/31
1
10.0.2.6/31 10.0.2.7/31
1 gpu-backend-spine = gpu-backend-leaf3 10.0.2.8/31 10.0.2.9/31
1
10.0.2.10/31 10.0.2.11/31

(Continued)

Stripe # Spine node Leaf node Spine IP address Leaf IP address

1 gpu-backend-spine = gpu-backend-leaf1 10.0.2.64/31 10.0.2.65/31
2

10.0.2.66/31 10.0.2.67/31

1 gpu-backend-spine | gpu-backend-leaf2 10.0.2.68/31 10.0.2.69/31
2

10.0.2.70/31 10.0.2.71/31

1 gpu-backend-spine = gpu-backend-leaf3 10.0.2.72/31 10.0.2.73/31
2

10.0.2.74/31 10.0.2.75/31

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.
NOTE: all IP addresses are assigned by Apstra (from predefined pools of resources) based on the intent.

Table 36: GPU Backend Loopback Addresses

Stripe # Device Loopback Interface Address
1 gpu-backend-spinel 10.0.0.0/32
1 gpu-backend-spine2 10.0.0.1/32
1 gpu-backend-leaf1 10.0.1.0/32
1 gpu-backend-leaf2 10.0.1.1/32
1 gpu-backend-leaf3 10.0.1.2/32

Each leaf node is assigned a /24 subnet out of 10.200/16 and a unique VLAN ID to provide connectivity
to the GPU servers. Layer 3 connectivity is provided via an irb interface with an address out of the
specific IP subnet, as shown in the table below.

Because each leaf node represents a rail, where all the GPUs with a given number connect, each rail in
the cluster is mapped to a different /24 IP subnet.

Figure 84: GPU Backend Servers to Leaf Nodes Connectivity

gpu-backend- inet.0 gpu-backend- inet.0 gpu-backend- inet.0
leaf1 100.0 10.0.1.0/32 leaf2 100.0 10.0.1.1/32 leaf3 oo1001232 || """
irb.2 irb.3 irb.4
10.200.0.254/24 | VLAN 2 10.200.1.254/24 | VLAN 3 10.200.2.254/24 | VLAN 4
et-0/0/4 | & et-0/0/5 et-0/0/4 § et-0/0/5 et-0/0/4 et-0/0/5
10.200.0.2/24 § 10.200.2.2/24 10.200.0.4/24 g [710-200.2.4/24
800000 00000000 ...
e e e EOBDEE0D
Table 37: GPU Backend Servers to Leaf Nodes Connectivity
Stripe # Device Rail # VLAN # Subnet IRBonleaf = Connected
device(s)
1 gpu-backend- 1 2 10.200.0.0/ | 10.200.0.25 @ GPU 1 from
lear1 24 4 all 8 GPU
servers
1 gpu-backend- 2 3 10.200.1.0/ ' 10.200.1.25 ' GPU 2 from
leaf2 24 4 all 8 GPU
servers
1 gpu-backend- 3 4 10.200.2.0/ | 10.200.2.25 @ GPU 3 from
leaf3 24 4 all 8 GPU

servers

140

(Continued)

Stripe # Device Rail # VLAN # Subnet IRB on leaf = Connected
device(s)

EBGP is configured between the IP addresses assigned to the spine-leaf nodes links, as shown in Figure
81. There will be 2 EBGP sessions between each gpu-backend-leaf # node and each gpu-backend-spine
#

Figure 85: GPU Backend BGP Sessions

gpu-backend-spinel gpu-backend-spine2
inet.0 inet.0
100.0 10.0.0.0/32 100.0 10.0.0.0/32
1\ I
77 L} T o
et-0/0/0-1 et-0/0/2-3 et-0/0/4-5 et-0/0/0-1 et-0/0/2-3 et-0/0/4-5
100.2.0/31 10.02.4/31 10.0.2.8/31 10.0.2.64/31 10,02.68/31 10.0.2.1/72
10.0.2.2/31 10.02.6/31 10.0.2.10/31 10.0266/31 10.0.2.70/31 10.0.2.3/74

et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3

10.0.2.1/31 10.0.2.65/31 10.0.2.5/31 10.0.2.69/31 10.0.2.9/31 10.0.2.73/31
10.0.2.3/31 10.0.2.67/31 10.0.2.7/31 10.0.2.71/31 10.0.2.11/31 10.0.2.75/31
AN 11
gpu- inet.0 gpu- inet.0 gpu- inet.0
F“ke“d' 100.0 10.0.1.0/32 backend- 100.0 10.0.1.1/32 backend- 100.0 10.0.1.2/32 mes
eafl leaf2 leaf3
Table 38: GPU Backend Sessions
Stripe # Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP
Address Address
1 gpu-backend- gpu-backend- 420103210 # 420103220 @ 10.0.2.0/31 @ 10.0.2.1/31

spinel leaf1 0 0
10.0.2.2/31 | 10.0.2.3/31

(Continued)

Stripe #

Spine Node

gpu-backend-
spinel

gpu-backend-
spinel

gpu-backend-
spine2

gpu-backend-
spine2

gpu-backend-
spine2

Leaf Node Spine ASN

gpu-backend-
leaf2

gpu-backend-
leaf3

gpu-backend- 420103210
leaf1 1

gpu-backend-
leaf2

gpu-backend-
leaf3

Leaf ASN

420103220
1

420103220
2

420103220
0

420103220
1

420103220
2

Spine IP
Address
10.0.2.4/31

10.0.2.6/31

10.0.2.8/31

10.0.2.10/3
1

10.0.2.64/3
1

10.0.2.66/3
1

10.0.2.68/3
1

10.0.2.70/3
1

10.0.2.72/3
1

10.0.2.74/3
1

Leaf IP

Address

10.0.2.5/31

10.0.2.7/31

10.0.2.9/31

10.0.2.11/3
1

10.0.2.65/3
1

10.0.2.67/3
1

10.0.2.69/3
1

10.0.2.71/3
1

10.0.2.73/3
1

10.0.2.75/3
1

All the Autonomous System and community values are assigned by Apstra (from predefined pools of

resources) based on the intent.

On the Leaf nodes, BGP policies are configured by Apstra to advertise the following routes to the spine

nodes:

e Leaf node own loopback interface address

o |eaf to spine interfaces subnets and

e irb interface subnet

Figure 86: GPU Backend Leaf Node BGP

gpu-backend-spinel

inet.0
100.0 10.0.0.0/32

gpu-backend-spine2

inet.0

100.0 10.0.0.0/32

77

et-0/0/0-1
10.0.2.0/31

10.0.2.2/31

A

7

eBgp /4

10.0.1.0/32
10.0.2.0/31 ...
10.0.2.64/31 ...
10.200.0.0/24

et-0/0/0-1
10.0.2.1/31
10.0.2.3/31

et-0/0/2-3
10.0.2.65/31
10.0.2.67/31

gpu-backend-
leafl

inet.0
100.0 10.0.1.0/32

10.200.0.254/24 | VLAN 2

irb.2

et-0/0/0-1
10.0.2.64/31

/ 7 10.0.2.66/31

Table 39: GPU Backend Leaf Node Advertised Routes

Stripe #

Device

gpu-backend-leaf 1

Advertised routes

10.0.1.0/32

10.0.2.0/31

10.0.2.64/31

10.200.0.0/24

BGP community

3:20007

21001:26000

(Continued)

Stripe # Device Advertised routes

1 gpu-backend-leaf 2 10.0.1.1/32
10.0.2.4/31
10.0.2.68/31

10.200.1.0/24

1 gpu-backend-leaf 3 10.0.1.2/32
10.0.2.8/31
10.0.2.72/31

10.200.2.0/24

BGP community

4:20007

21001:26000

5:20007

21001:26000

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the leaf

nodes:

e spine node own loopback interface address
e |eaf nodes’ loopback interface address

e spine to leaf interfaces subnets

e irb interface subnet, as shown below:

Figure 87: GPU Backend Spine Node BGP

gpu-backend-spinel

inet.0
100.0 10.0.0.0/32

1\

gpu-backend-spine2

inet.0
100.0 10.0.0.0/32

EBGP

\

10.0.1.0/32
10.0.1.0/32
10.0.2.0/31
10.0.4.0/31
10.0.8.0/31

10.200.0.0/24 Q

€t-0/0/0-1
10.0.2.8/31
10.0.2.11/31

gpu-backend- inet.0 gpu-backend- = inet.0 gpu-backend- inet.0
leaf1 100.0 I1r:)e.().1.c)/32 leaf2 100.0 I1n(;£.0.1.1/32 leaf3 100.0 I1r:)e.t).1.2/32 mes
irb.2 irb.3 irb.4
10.200.0.254/24 | VLAN 2 10.200.1.254/24 | VLAN 3 10.200.2.254/24 | VLAN 4
/5
Table 40: GPU Backend Spine Node Advertised Routes
Stripe # Spine Node Advertised Routes BGP Community
1 gpu-backend-spine 1 10.0.0.0/32 0:15 X:20007
10.0.2.0/31 21001:26000
10.0.2.4/31 ...
10.200.1.0/24 ...
1 gpu-backend-spine 2 10.0.0.1/32 0:15 X:20007
10.0.2.64/31 21001:26000
10.0.2.68/31 ...

10.200.1.0/24 ...

By advertising the irb interfaces subnet, communication between GPUs in different rails is possible
across the fabric.

Figure 88: Communication Across Rails

compute-backend- compute-backend-
spinel spine2
BGP BGP BGP
B 1 R | P
compute- compute- compute-
backend- backend- backend- mmm
leafl 1 leaf2 leaf3
10.200.0.254/24 10.200.1.254/24 10.200.2.254/24
RAIL1 RAIL1 RAIL3
10.200.0/24 10.200.1/24 10.200.2/24
1] 1] I]
I e

All the devices are configured to perform ECMP load balancing, as explained later in the document.

Storage Backend Network Connectivity

The Storage Backend fabric is designed as a Layer 3 IP Fabric, where the links between the leaf and
spine nodes are configured with /31 IP addresses as shown in the table below. The fabric consists of 2
spine nodes and 4 leaf nodes, where 2 leaf nodes are used to connect the storage servers (named
storage-backend-weka-leaf #) and 2 are used to connect to the GPU servers (named storage-backend-
gpu-leaf #).

There are three 400GE links between each storage-backend-weka-leaf # node and the spine nodes and
two 400GE links between each storage-backend-gpu-leaf # node and the spine nodes as shown in
Figure 89.

Figure 89: Storage Backend Spine to Storage Backend GPU Leaf Nodes Connectivity

146

storage-backend-spinel

storage-backend-spine2

inet.0 inet.0
100.0 10.0.6.0/32 100.0 10.0.6.1/32

777 AR T7]

7 AR L
et-0/0/0-2 et-0/0/3-5 et0/0/3-5 t-0/0/3-5
10.0.8.0/31 10.0.8.6/31 10.0.820/31 10.0.8.26/31
10.0.8.2/31 10.0.8.8/31 10.0.8.22/31 10.0.8.28/31
10.0.8.4/31 10.0.8.10/31 10.0.8.24/31 10.0.8.30/31

et-0/0/0-2 et-0/0/3-5 et-0/0/0-2 et-0/0/3-5
10.0.8.1/31 10.0.8.21/31 10.0.8.7/31 10.0.8.27/31
10.0.8.3/31 10.0.8.23/31 10.0.8.9/31 10.0.8.29/31
10.0.8.5/31 10.0.8.25/31 10.0.8.11/31 10.0.8.31/31
A o H
storage- inet.0 storage- inet.0
backend- ' backend- '
100.0 10.0.7.0/32 100.0 10.0.7.1/32
gpu-leafl gpu-leaf2

Figure 90: Storage Backend Spine to Storage Backend WEKA Storage Leaf Nodes Connectivity

storage-backend-spinel

storage-backend-spine2

inet.0 inet.0
100.0 10.0.6.0/32 100.0 10.0.6.1/32
1 7
v 1T N
et-0/0/3-5 et-0/0/3-5 et-0/0/3-5 et-0/0/3-5
10.0.8.12/31 10.0.8.26/21 10.0.8.32/31 10.0.8.32/31
10.0.8.14/31 10.0.8.28/31 10.0.8.34/31 10.0.8.34/31
et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3
10.0.8.13/31 10.0.8.33/31 10.0.8.17/31 10.0.8.37/31
10.0.8.15/31 10.0.8.35/31 10.0.8.19/31 10.0.8.39/31
t 1\ 1] t AN
backend. net.0 backend- net.0
100.0 10.0.7.2/32 100.0 10.0.7.3/32
"EE weka-leafl weka-leaf2

Table 41: Storage Backend Interface Addresses

Spine node

storage-backend-spine 1

storage-backend-spinel

storage-backend-spinel

storage-backend-spinel

storage-backend-spine2

storage-backend-spine2

storage-backend-spine2

storage-backend-spine2

NOTE: all IP addresses are assigned by Apstra (from predefined pools of resources) based on the intent.

The loopback interfaces also have addresses automatically assigned by Apstra from a predefined pool.

Leaf node

storage-backend-gpu-leaf
1

storage-backend-gpu-
leaf2

storage-backend-weka-
leaf1

storage-backend-weka-
leaf2

storage-backend-gpu-
leaf1

storage-backend-gpu-
leaf2

storage-backend-weka-
leafl

storage-backend-weka-
leaf2

Spine IP Address

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.12/31

10.0.8.14/31

10.0.8.16/31

10.0.8.18/31

10.0.8.20/31

10.0.8.22/31

10.0.8.24/31

10.0.8.26/31

10.0.8.28/31

10.0.8.30/31

10.0.8.32/31

10.0.8.34/31

10.0.8.36/31

10.0.8.38/31

Leaf IP Address

10.0.8.1/31

10.0.8.3/31

10.0.8.5/31

10.0.8.7/31

10.0.8.9/31

10.0.8.11/31

10.0.8.13/31

10.0.8.15/31

10.0.8.17/31

10.0.8.19/31

10.0.8.21/31

10.0.8.23/31

10.0.8.25/31

10.0.8.27/31

10.0.8.29/31

10.0.8.31/31

10.0.8.33/31

10.0.8.35/31

10.0.8.37/31

10.0.8.39/31

Table 42: Storage Backend Loopback Interfaces

Device

storage-backend-spinel

storage-backend-spine2

storage-backend-gpu-leafl

storage-backend-gpu-leaf2

storage-backend-weka-leaf1

storage-backend-weka-leaf2

Loopback Interface Address

10.0.6.0/32

10.0.6.1/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

The H100 GPU Servers and A100 GPU Servers are connected to the storage backend leaf switches as

summarized in the following table.

Table 43: Storage GPU Backend Servers to Leaf Nodes Connectivity

GPU servers

H100-1

H100-2

A100-1

A100-2

A100-3

A100-4

H100-3

H100-4

A100-5

Leaf Node

storage-backend-gpu-leafl

storage-backend-gpu-leaf2

(Continued)

GPU servers Leaf Node

A100-6
A100-7

A100-8

The links between the GPU servers and storage-backend-gpu-leaf1 are assigned /31 subnets out of

10.100.1/24, while the links between the GPU servers and storage-backend-gpu-leaf2 are assigned /31
subnets out of 10.100.2/24, as shown in Figure 91.

Figure 91: GPU Servers to Storage Backend GPU Leaf nodes Connectivity

/

\

storage- - storage- -
inet.0 inet.0
:;ﬁ'ff:::i 100.0 10.0.7.0/32 ::;‘_‘;’;‘:é 100.0 10.0.7.1/32

[N

&t-0/0/6

/

T
t-0/0/7

T
et-0/0/30:0

10.100.1.9/31 10.100.1.11/31 10.100.1.1/31 10.100.1.7/31

et-0/0/31:1

10.100.2.9/31 10.100.2.11/31 10.100.2.1/31

et-0/0/6 et-0/0/7 et-0/0/30:0 et-0/0/31:1

10.100.2.7/31

EEE - B - R - B [Fee - P - e - [

H100 GPU
Server 1

H100 GPU A100 GPU
Server 2

Server 1

A100 GPU
Server 4

H100 GPU
Server 3

H100 GPU
Server 4

A100 GPU
Server 5

A100-01
GPU Server 8

Table 44: GPU Servers to Storage GPU Backend Interface Addresses

GPU Server Leaf Node GPU Server IP Address Leaf IP Address

H100 GPU Server 1 storage-backend-gpu-feaf 10.100.1.8/31 10.100.1.9/31
1

H100 GPU Server 2 storage-backend-gpu-leaf | 10.100.1.10/31 10.100.1.11/31
1

A100 GPU Server 1 storage-backend-gpu-feaf 10.100.1.0/31 10.100.1.1/31
1

A100 GPU Server 2 storage-backend-gpu-feaf 10.100.1.2/31 10.100.1.3/31
1

A100 GPU Server 3 storage-backend-gpu-leaf | 10.100.1.4/31 10.100.1.5/31
1

A100 GPU Server 4 storage-backend-gpu-feaf 10.100.1.6/31 10.100.1.7/31
1

H100 GPU Server 3 storage-backend-gpu-feaf 10.100.2.8/31 10.100.2.9/31
2

H100 GPU Server 4 storage-backend-gpu-leaf | 10.100.2.10/31 10.100.2.11/31
2

A100 GPU Server 5 storage-backend-gpu-feaf 10.100.2.0/31 10.100.2.1/31
2

A100 GPU Server 6 storage-backend-gpu-feaf 10.100.2.2/31 10.100.2.3/31
2

A100 GPU Server 7 storage-backend-gpu-leaf | 10.100.2.4/31 10.100.2.5/31
2

A100 GPU Server 8 storage-backend-gpu-feaf 10.100.2.6/31 10.100.2.7/31

2

Like the GPU servers, the WEKA storage servers are connected to the two sforage-backend-weka-leaf #
nodes as shown Figure 92.

Figure 92: WEKA Storage servers to Leaf Nodes Connectivity

storage-) storage- .
inet.0 inet.0
backend- 100.0 10.0.7.2/32 backend- 100.0 10.0.7.3/32
weka-leafl / \ weka-leaf2
7 T /
et-0/0/4:0 et-0/0/4:1 et-0/0/31:1 . et-0/0/4:0 et-0/0/4:1 et-0/0/31:1

10.100.0.1/31 10.100.0.3/31 10.100.0.15/31 10.100.0.17/31

10.100.0.19/31 ,10.100.1.31/31

Weka
storage 1

Weka

storage 2

Weka
storage 8

Each GPU server to leaf node connection is assigned a /31 subnet out of 10.100.0.0/24, as shown in

the following table.

Table 45: WEKA Storage Servers to Leaf Nodes Interface Addresses

WEKA Server

WEKA storage Server 1

WEKA storage Server 2

WEKA storage Server 3

WEKA storage Server 4

Leaf Node

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

WEKA Server IP Address

10.100.0.0/31

10.100.0.2/31

10.100.0.4/31

10.100.0.5/31

Leaf IP Address

10.100.0.1/31

10.100.0.3/31

10.100.0.5/31

10.100.0.7/31

(Continued)

WEKA Server

WEKA storage Server 5

WEKA storage Server 6

WEKA storage Server 7

WEKA storage Server 8

WEKA storage Server 1

WEKA storage Server 2

WEKA storage Server 3

WEKA storage Server 4

WEKA storage Server 5

WEKA storage Server 6

WEKA storage Server 7

WEKA storage Server 8

Notice that the leaf nodes in this case are using physical interfaces to connect to the storage servers.

Leaf Node

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-

leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf1

storage-backend-weka-
leaf 1

storage-backend-weka-
leaf1

WEKA Server IP Address

10.100.0.8/31

10.100.0.10/31

10.100.0.12/31

10.100.0.14/31

10.100.0.16/31

10.100.0.18/31

10.100.0.20/31

10.100.0.22/31

10.100.0.24/31

10.100.0.26/31

10.100.0.28/31

10.100.0.30/31

Thus, no irb interface or vlan id are used for this connectivity.

Leaf IP Address

10.100.0.9/31

10.100.0.11/31

10.100.0.13/31

10.100.0.15/31

10.100.0.17/31

10.100.0.19/31

10.100.0.21/31

10.100.0.23/31

10.100.0.25/31

10.100.0.27/31

10.100.0.29/31

10.100.0.31/31

EBGP is configured between the IP addresses assigned to the links between the spine and the leaf

nodes as shown in Figure 93.

There will be 3 EBGP sessions between each storage-backend-weka-leaf # node and the spine nodes.

Similarly, there will be 2 EBGP sessions between each storage-backend-gpu-leaf # node.

Figure 93: Storage Backend Spine to Storage Backend Leave for GPU Servers EBGP

storage-backend-spinel

inet.0
100.0 10.0.6.0/32

777 AR

7 AR
et-0/0/0-2 et-0/0/3-5
10.0.8.0/31 10.0.8.6/31
10.0.8.2/31 10.0.8.8/31
10.0.8.4/31 10.0.8.10/31

et
10.0.8.20/31 10.0.8.26/31
10.0.8.22/31 10.0.8.28/31
10.0.8.24/31 10.0.8.30/31

storage-backend-spine2

inet.0
100.0 10.0.6.1/32

AN
L

0/0/3-5 et-0/0/3-5

et-0/0/0-2 et-0/0/3-5 et-0/0/0-2 et-0/0/3-5

10.0.8.1/31 10.0.8.21/31 10.0.8.7/31 10.0.8.27/31

10.0.8.3/31 10.0.8.23/31 10.0.8.9/31 10.0.8.29/31

10,0.85/31 10.0.8.25/31 10.08.11/31 10.0.831/31

AW WY 11T
storage- inet.0 storage- inet.0
backend- . backend- .
100.0 10.0.7.0/32 100.0 10.0.7.1/32

gpu-leafl gpu-leaf2

Figure 94: Storage Backend Spine to Storage Backend Leave for WEKA Servers EBGP

storage-backend-spinel

inet.0

100.0 10.0.6.0/32

storage-backend-spine2

et-0/0/3-5
10.0.8.12/31
10.0.8.14/31

inet.0
100.0 10.0.6.1/32
I N

1T
et-0/0/3-5 et-0/0/3-5
10.0.8.26/31 10.0.8.32/31
10.0.8.28/31 10.0.8.34/31
.0.8.30/31

\ \

\

N
et-0/0/3-5
10.0.8.32/31
10.0.8.34/31

et-0/0/0-1 et-0/0/2-3 et-0/0/0-1 et-0/0/2-3
10.0.8.13/31 10.0.8.33/31 10.0.8.17/31 10.0.8.37/31
10.0.8.15/31 10.0.8.35/31 10.0.8.19/31 10.0.8.39/31
storage- = inet.0 H storage- inet.0 :
backend- backend-
i weako el 100.0 10.0.7.2/32 BN 100.0 10.0.7.3/32
Table 46: Storage Backend Sessions
Spine Node Leaf Node Spine ASN Leaf ASN Spine IP Leaf IP
Address Address
storage-backend- | storage-backend-gpu- @ 420103250 @ 4201032600 10.0.8.0/31 10.0.8.1/31
spinel leaf1 0
10.0.8.2/31 10.0.8.3/31
10.0.8.4/31 10.0.8.5/31
storage-backend- | storage-backend-gpu- 4201032601 10.0.8.6/31 10.0.8.7/31
spinel leaf2
10.0.8.8/31 10.0.8.9/31
10.0.8.10/31 10.0.8.11/31
storage-backend- | storage-backend- 4201032602 10.0.8.12/31 10.0.8.13/31
spinel weka-leafl
10.0.8.14/31 10.0.8.15/31

(Continued)

Spine Node Leaf Node Leaf ASN Spine IP Leaf IP

Address Address
storage-backend- | storage-backend- 4201032603 10.0.8.16/31 10.0.8.17/31
spinel weka-leaf2

10.0.8.18/31 10.0.8.19/31
storage-backend- = storage-backend-gpu- 4201032600 10.0.8.20/31 10.0.8.21/31
spine2 leaf1

10.0.8.22/31 10.0.8.23/31

10.0.8.24/31 10.0.8.25/31
storage-backend- | storage-backend-gpu- 4201032601 10.0.8.26/31 10.0.8.27/31
spine2 leaf2

10.0.8.28/31 10.0.8.29/31

10.0.8.30/31 10.0.8.31/31
storage-backend- | storage-backend- 4201032602 10.0.8.32/31 10.0.8.33/31
spine2 weka-leafl

10.0.8.34/31 10.0.8.35/31
storage-backend- | storage-backend- 4201032603 10.0.8.36/31 10.0.8.37/31
spine2 weka-lealf2

10.0.8.38/31 10.0.8.39/31

On the Leaf nodes BGP policies are configured by Apstra to advertise the following routes to the spine
nodes:

NOTE: all the Autonomous System and community values are assigned by Apstra (from predefined pools
of resources) based on the intent.

e Leaf node own loopback interface address,
o |eaf to spine interfaces subnets and
o GPU/WEKA storage server to leaf node link subnets.

Figure 95: Storage Backend Leaf BGP

storage-backend-spinel

100.0 10.0.6.0/32

inet.0

,//

f//

10.0.7.0/32
10.0.8.2/31
10.0.8.4/31
10.0.8.6/31 ...
10.100.1.9/31
10.100.1.11/31...

77

|

A

storage-backend-spine2

inet.0
100.0 10.0.6.1/32

I/

storage- inet.0 storage- inet.0
- ' - EEn
backend 100.0 10.0.7.0/32 backend 100.0 10.0.7.1/32
gpu-leafl gpu-leaf2 / \ \
et-0/0/6 el—O/D’/? etI—O/O/EO:O et-0/0/31:1 et-0/0/6 ' 9170/0)7 et-0/0/30:0 et-0/0/31:1
10.100.1.9/31 10.100.1.11/31 10.100.1.1/31 10.100.1.7/31 10.100.2.9/31 10.100.2.11/31 10.100.2.1/31 10.100.2.7/31
"o — o — "o m— " — "o — "o — o — WEEE =
EEE- EaE - FaE-] - EEa- EEa- EEe - [EaE- - [HEa-]
Table 47: Storage Backend Leaf Node Advertised Routes
Leaf Node Peer Advertised Routes BGP Communities

storage-backend-
gpu-leafl

storage-backend-
gpu-leaf2

storage-backend-
spinel &

storage-backend-
spine2

storage-backend-
spinel &

storage-backend-
spine2

10.0.7.0/32

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.20/31 ...

10.0.7.1/32

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.26/31 ...

10.100.1.0/31

10.100.1.2/31 ...

10.100.2.0/31

10.100.2.2/31 ...

3:20007

21001:26000

4:20007

21001:26000

(Continued)

Leaf Node

storage-backend-
weka-leaf1

storage-backend-
weka-leaf2

Peer
storage-backend-
spinel &

storage-backend-
spine2

storage-backend-
spinel &

storage-backend-
spine2

Advertised Routes

10.0.7.2/32

10.0.8.12/31

10.0.8.14/31

10.0.8.32/31 ...

10.0.7.3/32

10.0.8.16/31

10.0.8.17/31

10.0.8.36/31 ...

10.100.0.16/31

10.100.0.18/31 ...

10.100.0.16/31

10.100.0.18/31 ...

BGP Communities

5:20007

21001:26000

6:20007

21001:26000

On the Spine nodes, BGP policies are configured by Apstra to advertise the following routes to the leaf

nodes:

e spine node own loopback interface address

e |eaf nodes’ loopback interface address

e spine to leaf interfaces subnets

o GPU/WEKA storage server to leaf node link subnets.

Figure 96: Storage Backend Spine BGP

storage-backend-spinel storage-backend-spine2

inet.0 inet.0
100.0 10.0.6.0/32 100.0 10.0.6.1/32

ARY 1N \\\
LN
\ 10.0.7.3/32
~_ | 10.0.8.16/31
~ | 10.0.8.18/31..
~+| 10.100.0.1/31
WY TT ~

10.100.0.3/31

AN

storage- . storage- .
inet.0 inet.0
backend- 100.0 10.0.7.2132 backend- 100.0 10.0.7.3/32
weka-leafl weka-leaf2
! \ /
et-0/0/4:0 et-0/0/4:1 et-0/0/31:1 et-0/0/4:0 et-0/0/4:1 et-0/0/31:1

10.100.0.1/31 10.100.0.3/31 10.100.0.15/31 10.100.0.17/31 . 10.100.0.19/31

10.100.1.31/31

===—=|0/)|
Weka storage 1 Weka storage 2 Weka storage 8
Table 48: Storage Backend Spine Node Advertised Routes
Spine Node Peer Advertised Routes BGP
Communities
storage-backend- | storage-backend-gpu- 10.0.6.0/32 @ 10.0.8.6/31 10.100.0.0/3 = 3:20007
spinel leafl 1
10.0.7.1/32 | 10.0.8.8/31 21001:26000
10.100.0.2/3
10.0.7.2/32 = 10.0.8.10/31 1
10.0.7.3/32 = 10.0.8.12/31 10.100.2.0/3
100.8.14/31 1
10.100.2.2/3

1.

(Continued)

Spine Node Peer

storage-backend-gpu-
leaf2

storage-backend-weka-
leaf 1

Advertised Routes

10.0.6.0/32

10.0.7.0/32

10.0.7.2/32

10.0.7.3/32

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.3/32

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.12/31

10.0.8.14/31

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31 ...

10.100.0.0/3
1

10.100.0.2/3
1..

10.100.1.0/3
1

10.100.1.2/3
1..

10.100.0.0/3
1

10.100.0.2/3
1..

10.100.1.0/3
1

10.100.1.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

BGP
Communities

(Continued)

Spine Node

storage-backend-

spine2

Peer

storage-backend-weka-
leaf 2

storage-backend-gpu-
leaf1

storage-backend-gpu-
leaf2

Advertised Routes

10.0.6.0/32

10.0.7.0/32

10.0.7.1/32

10.0.7.2/32

10.0.6.1/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

10.0.6.1/32

10.0.7.0/32

10.0.7.2/32

10.0.7.3/32

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.20/31

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.12/31

10.0.8.14/31

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31

10.0.8.12/31

10.0.8.14/31

10.100.0.0/3
1

10.100.0.2/3
1..

10.100.1.0/3
1

10.100.1.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

10.100.0.0/3
1

10.100.0.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

10.100.0.0/3
1
10.100.0.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

BGP
Communities

4:20007

21001:26000

(Continued)

Spine Node

storage-backend-weka-

storage-backend-weka-

Advertised Routes

10.0.6.1/32

10.0.7.0/32

10.0.7.1/32

10.0.7.3/32

10.0.6.0/32

10.0.7.1/32

10.0.7.2/32

10.0.7.3/32

10.0.8.0/31

10.0.8.2/31

10.0.8.4/31 ...

10.0.8.6/31

10.0.8.8/31

10.0.8.10/31

10.0.8.12/31

10.0.8.14/31

10.100.0.0/3
1

10.100.0.2/3
1..

10.100.1.0/3
1

10.100.1.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

10.100.0.0/3
1
10.100.0.2/3
1..

10.100.2.0/3
1

10.100.2.2/3
1..

BGP
Communities

By advertising the subnet assigned to the links between the leaf nodes and the GPU/storage servers,
communication between GPUs and the storage servers is possible across the fabric.

Figure 97: Storage Subnet Advertisement

Storage- Storage-

backend-spinel backend-spine2
BGP
10.100.1.X/31 BGP
10.100.1.%/31 10.100.0.X/31
Storage- Storage-
backend- backend-
leaf1 leaf2

10.100.1.X/31 10.100.0.X/31
10.100.2.X/31

NOTE: All the devices are configured to perform ECMP load balancing, as explained later in the
document.

WEKA Storage Solution

IN THIS SECTION

Weka storage cluster in the Al JVD lab | 164

Common Setting Changes Required | 165

Network Configuration for the Juniper WEKA Cluster | 166

OFED Drivers: | 166

Driver Release Should be 5.8 or Later | 167

Best Practices for WEKA Data Platform with Juniper Switches | 167
Test Objectives | 170

Test Goals | 170

The WEKA Data Platform is a software-based solution built to modernize enterprise data stacks. Its
advanced Al-native, data pipeline-oriented architecture delivers high performance at scale, so Al
workloads run faster and work more efficiently.

We selected the WEKA Data Platform as part of the Al JVD design due to the following benefits:

High Performance: Weka's architecture is designed for extreme performance, making it suitable for
Al/ML workloads, big data analytics, and high-performance computing (HPC) environments.

Scalability: Weka can scale from a few terabytes to exabytes of data, allowing customers to grow
their storage capacity without compromising performance. WEKA's distributed architecture differs
from typical scale-up style storage systems, appliances, and hypervisor-based, software-defined
storage solutions. It overcomes traditional storage scaling and file-sharing limitations that can be a
bottleneck to large-scale Al deployments making one of the preferred choices for customers.

Unified Storage: Weka provides a single storage solution that can support multiple protocols (e.g.,
NFS, SMB, POSIX, S3), providing flexibility to access and manage the data and allowing Nvidia’s
GPUDirect Storage access.

Data Resilience: Weka offers advanced data protection features, including erasure coding, which
ensures data resilience and protection against hardware failures. With a minimum configuration of six
storage servers the cluster can survive two-server failure.

Ease of Management: Weka's software-defined storage solution is easy to deploy and manage, with a
user-friendly interface and automated management features. It can be installed on any standard
AMD EPYC™ or Intel Xeon™ Scalable Processor-based hardware with the appropriate memory, CPU
processor, networking, and NVMe solid-state drives.

Support for GPUs: Weka is optimized for GPU acceleration, making it an ideal storage solution for
environments that heavily rely on GPU computing, such as Al and machine learning applications.

Low Latency: The architecture of Weka allows for very low-latency access to data, which is crucial
for applications that require real-time data processing.

Weka storage cluster in the Al JVD lab

We built the WEKA storage cluster with eight SuperMicro-based servers connected to the Storage
Backend fabric providing 242TB of usable storage. WEKA recommends eight cluster nodes and requires

a minimum of six nodes for production deployment.

Each WEKA Server has the following specifications

AMD EPYC 9454P processors

384GB System Memory

OS drives: 2x 1.92TB M.2 NVMe Data Center SSD (PCle 4.0)
Data drives: 7x 7.68TB U.2 NVMe Data Center SSD (PCle 4.0)

Onboard OOB network connection (RJ45) and the following additional interface cards:

e 1 x NVIDIA Mellanox ConnectX-6 DX Adapter Card, 100GE, dual-port QSFP28, PCle 4.0 x16

e 2 x NVIDIA Mellanox ConnectX-6 VPl Adapter Card, HDR IB & 200GE, dual-port QSFP56, OCP
3.0

e Software:

e The operating system installed is Ubuntu 22.04 LTS.
o WEKA release version tested in this design is 4.2.5.
e WEKA Flash Tier license w/SnapShot and high-performance protocol services

e (POSIX, NFS-W, S3 and SMB-W)

Common Setting Changes Required

WEKA strongly recommends certain BIOS settings, and that Mellanox drivers are matched across all
nodes. For convenience, these changes are documented here.

NOTE: WEKA makes available a Weka Management Service (WMS) tool that can be used to automate
the BIOS settings changes, verify your configuration, including driver revisions, and deploy the WEKA
version you have. This can be downloaded from the WEKA website, located here: https:/
get.weka.io/ui/wms/download. Juniper highly recommends utilizing the WMS for configuring the WEKA
cluster. All the devices are configured to perform ECMP load balancing, as explained later in the
document.

BIOS settings:

The BIOS settings can be changed by applying the bios_settings.yml:

° Supermicro:
AMD:
ACPISRATL3CacheAsNUMADomain#0099: Disabled
TOMMU#@QEA: Disabled
NUMANodesPerSocket#703F: Auto
SMTControl#0QCB: Disabled

SR-I0VSupport#0067: Enabled

https://get.weka.io/ui/wms/download
https://get.weka.io/ui/wms/download

166

DFCstates#7104: Disabled

GlobalC-stateControl#00CD: Disabled

This is an AMD CPU-powered cluster; the settings may be different for Intel based CPUs.

For more details on how to apply these changes refer to: GitHub - weka/bios_tool: A tool for viewing/
setting bios_settings for Weka servers

Network Configuration for the Juniper WEKA Cluster

As described in the Storage Backend sections, the WEKA servers are dual-homed, and are connected to
separate storage backend switches (storage-backend-weka-leaf 1 and storage-backend-weka-leaf2)
using 200GE ports in the NVIDIA Mellanox ConnectX-6 VPI Adapter Card. The additional QSFP28

100Gbe ports are not used in this JVD but can be used for front-end ingress/egress traffic, staging and
management.

Figure 98: Storage Interface Connectivity

EEERC]

GPU Server 1 '... .___GPU Server2 f':’“l@ .

- GPU Server 3 |{nj{en]{] --of 22 GPU Servern

/

EEEE

100GE/200G

storage- storage-
backend- backend-
gpu-Leafl gpu-Leaf2
— .

storage- storage-—=2sa
backend- backend-
weka-Leafl weka-Leaf2

—

[
weka1 [E=E=EF

Weka2 [EEEE IE
Weka-3 (= T
Wekad (S

aaaaaa ~=) Nvidia H100x 4 and Lambda |
- °**| A100 x 8 GPU Servers

/ S HGOGE (EEEEsTT Storage Servers

BACKEND STORAGE !

e iai . -
storage-backend-spinel storage-backend-spine2 FABRIC |

Weka-8

The ports on the switch side must be configured with no auto negotiation and set to 200G speed.

OFED Drivers:

WEKA recommends following Nvidia's recommendation for OFED (Mellanox) drivers when using
Connect-X cards. NVIDIA Documentation - Installing Mellanox OFED.

https://github.com/weka/bios_tool
https://github.com/weka/bios_tool
https://docs.nvidia.com/networking/display/mlnxofedv461000/installing+mellanox+ofed

Driver Release Should be 5.8 or Later

Ensure that all versions for OFED drivers are aligned across all nodes in the WEKA cluster (i.e. ensure
weka01 has the appropriate OFED installed).

For Ubuntu, the following command is recommended:
./mlnxofedinstall --force --dkms --all.

The following script can also be run (as root) on all machines to set the appropriate Mellanox firmware
settings.

° #!/bin/bash

mst start

for MLXDEV in /dev/mst/* ; do
mlxconfig -d ${MLXDEV} -y s ADVANCED_PCI_SETTINGS=1 PCI_WR_ORDERING=1
mlxfwreset -y -d ${MLXDEV} reset

done

netplan apply

mst stop

Best Practices for WEKA Data Platform with Juniper Switches

Our cluster is configured using the WEKA distributed POSIX client, which requires some tuning to be
integrated to the rest of the design.

We recommend the following:

e Set the MTU to 9000

o If the back-end storage fabric is shared with another resource, set up appropriate CoS prioritization
to ensure the Al ingest and checkpoint traffic is not interrupted by other applications network 1/0
requests.

If GPU Direct Storage is being used instead of the WEKA distributed POSIX client, congestion
management and mitigation capability on the network utilizing Explicit Congestion Notification
(ECN) and Priority Flow Control (PFC) must be set up.

WEKA also provides tools that can be used to test and measure network activity from a WEKA system
perspective.

The command line tool ‘weka stats’ reports a percentage output of ‘good’ network performance.

weka stats --start-time -24h --end-time -1m --show-internal --stat
GOODPUT_TX_RATIO, GOODPUT_RX_RATIO

When the output is shown as a percentage, anything below 85% indicates potential issues that require
further examination.

Examples:

[NODE CATEGORY TIMESTAMP STAT VALUE

all network 2024-06-14T12:58:00 GOODPUT_RX_RATIO 99.7636 %

all network 2024-06-14T12:58:00 GOODPUT_TX_RATIO 99.7636 %

all network 2024-06-14T12:57:00 GOODPUT_RX_RATIO 99.7663 %

all network 2024-06-14T12:57:00 GOODPUT_TX_RATIO 99.7663 %

all network 2024-06-14T12:56:00 GOODPUT_RX_RATIO 99.752 %

all network 2024-06-14T12:56:00 GOODPUT_TX_RATIO 99.752 %

all network 2024-06-14T12:55:00 GOODPUT_RX_RATIO 99.7578 %

all network 2024-06-14T12:55:00 GOODPUT_TX_RATIO 99.7578 %

all network 2024-06-14T12:54:00 GOODPUT_RX_RATIO 99.7795 %

all network 2024-06-14T12:54:00 GOODPUT_TX_RATIO 99.7795 %

all network 2024-06-14T12:53:00 GOODPUT_RX_RATIO 99.7685 %

all network
all network
all network

weka stats --category=network --show-internal --stat DROPPED_PACKETS --start-time -24h --end-

time -1m -Z

2024-06-14T12:53:00 GOODPUT_TX_RATIO 99.7685 %

2024-06-14T12:52:00 GOODPUT_RX_RATIO 99.775 %

2024-06-14T12:52:00 GOODPUT_TX_RATIO 99.775 %

[NODE CATEGORY TIMESTAMP

all network
all network
all network
all network
all network
all network
all network
all network
all network
all network
all network
all network
all network
all network

If the weka stats command reports dropped packets as shown, further investigation is warranted.

2024-06-14T13:

2024-06-14T13:

2024-06-14T13:

2024-06-14T13:

2024-06-14T13:

2024-06-14T13:

2024-06-14T13:

2024-06-14T12:

2024-06-14T12:

2024-06-14T12:

2024-06-14T12:

2024-06-14T12:

2024-06-14T12:

2024-06-14T12:

06:

05:

04:

03:

02:

01

00:

59:

58:

57:

56:

55:

54:

53:

00

00

00

00

00

100

00

00

00

00

00

00

00

00

STAT

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

DROPPED_PACKETS

VALUE

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

Packets/Sec

More details and additional tools can be found on the WEKA website Manually prepare the system for
WEKA configuration | W E K A.

Test Objectives

The primary objectives of the JVD testing can be summarized as:

e Qualification of the complete Al fabric design functionality including the Frontend, GPU Backend,
and Storage Backend fabrics, and connectivity between NVIDIA GPUs and WEKA Storage.

e Qualification of the deployment steps based on Juniper Apstra.

e Ensure the design is well-documented and will produce a reliable, predictable deployment for the
customer.

The qualification objectives included validating:

¢ validation of blueprint deployment, device upgrade, incremental configuration pushes/provisioning,
Telemetry/Analytics checking, failure mode analysis, congestion avoidance and mitigation, and
verification of host, storage, and GPU traffic.

Test Goals

The Al JVD testing for the described network included the following:

e Design and blueprint deployment through Apstra of three distinct fabrics

Fabric operation and monitoring through Apstra analytics and telemetry dashboard

e Congestion management with PFC and ECN, including failure scenarios

¢ End-to-end traffic flow, with Dynamic Load Balancing

e System health, ARP, ND, MAC, BGP (route, next hop), interface traffic counters, and so on
e Software operation verification (no anomalies, or issues found)

e Al fabric with Juniper Apstra successfully performing under the following required scenarios (must):

e Node failure (reboot)
e Interface failures (interface down/up, Laser on/off):

Under these scenarios the following were evaluated/validated:

https://docs.weka.io/planning-and-installation/bare-metal/setting-up-the-hosts
https://docs.weka.io/planning-and-installation/bare-metal/setting-up-the-hosts

e Completion of Al Job models within MLCommons Training benchmarks
o Traffic recovery was validated after all failure scenarios.

e impact to the fabric and check anomalies reporting in Apstra.

Other features tested:

e Mellanox Connect-X NIC card default settings.

e DSCP and CNP configuration on the NICs

e Connectivity between fabric-connected hosts created by Apstra towards NSX-managed hosts.

o BERT/DLRM test completion times
o Llama2 Inference against existing infrastructure.

Refer to the test report for more information.

Tested Optics

Table 49: Frontend Fabric Optics

Frontend Fabric

Part number Optics Name Devi | Device Model
ce
Role
740-085351 QSFP56-DD-400GBASE-DR4 SPIN = QFX5130-32CD
E
740-085351 QSFP56-DD-400GBASE-DR4 LEAF = QFX5130-32CD
740-061405 QSFP-100GBASE-SR4-T2 LEAF = QFX5130-32CD
740-046565 QSFP+-40G-SR4 LEAF = QFX5130-32CD

w/ 4x10G breakout cable.

Interface/NIC
type

QSFP-DD

QSFP-DD

QSFP28

QSFP+

AFBR-7095MZ AVAGO 10GBASE-SR SFP+
300m

AFBR-89CDDZ = AVAGO 100GbE QSFP28 300m

AFBR-89CDDZ = AVAGO 100GbE QSFP28 300m

AFBR-89CDDZ = AVAGO 100GbE QSFP28 300m

Table 50: Storage Fabric Optics

Storage Fabric

Part Optics Name
number

740-0853 ' QSFP56-DD-400GBASE-DR4
51

740-0853 = QSFP56-DD-400GBASE-DR4
51

740-0587 = QSFP-100GBASE-SR4
34

720-1287 = QSFP56-DD-2x200GBASE-CR4-CU-2.5M

30
w/ 400G DAC Breakout into 2X200G

740-0614 = QSFP-100GBASE-SR4
05

720-1287 = QSFP56-DD-2x200GBASE-CR4-CU-2.5M
30

Serv
er

Serv
er

Serv
er

Serv
er

SuperMicro Headend
Server

Weka Storage Server

SuperMicro A100 HGX
Server

NVIDIA H100 DGX Server

Device Device Model

Role

SPINE QFX5220-32CD

LEAF

LEAF

LEAF

LEAF

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

Server Weka Storage Server

Intel Corporation
Ethernet
Controller X710
for 10GbE SFP+
(rev 01)
ConnectX-6 Dx

ConnectX-6 Dx

ConnectX-7

Interface/NI

C type

QSFP-DD

QSFP-DD

QSFP28

QSFP-DD

QSFP28

ConnectX-6

720-1287 = QSFP56-DD-2x200GBASE-CR4-CU-2.5M | Server SuperMicro A100 HGX ConnectX-6

30 Server
740-1590 @ QSFP56-DD-2x200G-AOCBO-7M Server NVIDIA H100 DGX Server = ConnectX-7
03

Table 51: Backend GPU Fabric - Cluster 1

Backend GPU Fabric - Cluster 1 (HGX-A100)

Part Optics Name Device Device Model Interface/NIC
number Role type
740-0853 | QSFP56-DD-400GBASE-DR4 SPINE QFX5230-64CD QSFP-DD

51

740-0853 | QSFP56-DD-400GBASE-DR4 SPINE PTX10008 QSFP-DD

51

740-0853 |« QSFP56-DD-400GBASE-DR4 LEAF QFX5230-64CD QSFP-DD

51

740-0465 | QSFP+-40G-SR4 LEAF QFX5230-64CD QSFP+

65

w/ 4x10G breakout cable.

740-1590 @ QSFP56-DD-2x200G-BOAOC-5M LEAF QFX5230-64CD QSFP-DD
02
720-1287 QSFP56-DD-2x200GBASE-CR4- LEAF QFX5230-64CD QSFP-DD
30 CU-2.5M w/ 400G DAC Breakout into

2X200G.
740-0853 | QSFP56-DD-400GBASE-DR4 LEAF QFX5220-32CD QSFP-DD
51
720-1287 | QSFP56-DD-2x200GBASE-CR4- LEAF QFX5220-32CD QSFP-DD
30 CU-25

w/ 400G DAC Breakout into 2X200G

720-1287 QSFP56-DD-2x200GBASE-CR4- Server SuperMicro A100 HGX ConnectX-7
30 CU-2.5M Server

Table 52: Backend GPU Fabric - Cluster 2

Backend GPU Fabric - Cluster 2 (DGX-H100)

Part number Optics Name Device Role Device Model

740-174933 OSFP-800G-DR8 SPINE QFX5240-640D OSPF800

QFX5241-640D

740-174933 OSFP-800G-DR8 LEAF QFX5240-640D OSPF800

QFX5241-640D

MMS4X00-NS- | NVIDIA 800Gbps Twin-port Server NVIDIA H100 DGX ConnectX-7
FLT OSFP 2x400Gb_s Single Mode Server
2xDR4 100m

Results Summary and Analysis

For a detailed test results report, contact your Juniper representative.

Recommendations

The Al Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage JVD follows an
industry-standard dedicated IP Fabric design. Three distinct fabrics provide maximum efficiency while
maintaining focus on Al model scale, expedited completion times, and rapid evolution with the advent of
Al technologies.

To follow best practice recommendations:

e A minimum of 4 spines in each fabric is suggested.

Though the design for cluster 1 in this document only includes only 2 spines, we found that under
certain dual failure scenarios, combined with congestion, the fabric becomes susceptible to PFC storms
(not vendor-unique). We recommend deploying the solution with 4 spines as described for the
QFX5240/QFX5241 fabric (cluster 2) even when using different switch models.

e Follow a rail-optimized fabric and maintain a 1:1 relation with bandwidth subscription and Leaf to
GPU symmetry.

¢ Implement Dynamic Load Balancing instead of traditional ECMP for optimal load distribution.

e Implement DCQCN (PFC and ECN) to ensure a lossless fabric in the GPU Backend Fabric, and
possibly in the Storage Backend Fabric as required per vendor recommendation.

e The minimum recommended Junos OS releases for this JVD are:

e Junos OS Release 23.4R2-S3 is for the Juniper QFX5130-32CD

e Junos OS Release 23.4X100-D20 for the Juniper QFX5220-32CD
e Junos OS Release 23.4X100-D20 for the Juniper QFX5230-64CD
e Junos OS Release 23.4X100-D20 for the Juniper QFX5240-64CD
e Junos OS Release 23.4X100-D42 for the Juniper QFX5241-64CD
e Junos OS Release 23.4R2-S3 for the Juniper PTX10008

e Configure DCQCN (PFC and ECN) parameters on the Nvidia servers and change the NCCL_SOCKET
interface to be the management (frontend) interface.

The Juniper hardware listed in the Juniper Hardware and Software Components section are the best-
suited switch platforms regarding features, performance, and the roles specified in this JVD.

Revision History

Table 53: Revision History

Date Version Description
Dec 2025 JVD-AICLUSTERDC- Added QFX5241 and GLB configuration.
AIML-02-09

Update Rail Optimized Section.

December 2024 = JVD-AICLUSTERDC- Added PTX as spine.

AIML-02-08
November 2024 = JVD-AICLUSTERDC- Utilized Junos OS Evolved Release 23.4X100-D20 for the
AIML-02-05 leaf and spine switches.

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,

modify, transfer, or otherwise revise this publication without notice. Copyright © 2025 Juniper Networks,
Inc. All rights reserved.

	Table of Contents
	About this Document
	Solution Benefits
	Juniper Validated Design Benefits
	Juniper Apstra Benefits

	AI Use Case and Reference Design
	Frontend Overview
	GPU Backend Overview
	Storage Backend Overview

	Solution Architecture
	Frontend Fabric
	GPU Backend Fabric
	Rail Optimized Fabric
	Backend GPU Rail Optimized Stripe Architecture
	Calculating the number of leaf and spine nodes, Servers, and GPUs in a rail optimized architecture
	Storage Backend Fabric
	Scaling
	Juniper Hardware and Software Components
	IP Services for AI Networks

	Configuration Walkthrough
	NVIDIA Configuration
	Terraform Automation of Apstra for the AI Fabric
	Validation Framework
	Network Connectivity: Reference Examples
	WEKA Storage Solution
	Tested Optics
	Results Summary and Analysis
	Recommendations
	Revision History

