JUDLR@! | Engineering

Simplicity

Juniper Mist Automation Guide

Published
2026-01-20

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Mist Automation Guide
Copyright © 2026 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Overview

Introduction to Juniper Mist Automation | 2

2 REST API

RESTful API Overview | 4

API Endpoints and Global Regions | 13
Determine Your API Endpoint | 13
List of APl Endpoint URLs | 13
Create API Tokens | 15
Create an Organization Token in the Mist Portal | 16
Create a User Token in the Mist Portal | 18
Create a User or Organization Token Using the REST API Explorer | 20

REST API HTTP Response Codes | 22

Gather Data Using the RESTful API | 23

Use Mist SLEs and Insights with APIs | 24
Configure Assurance Services with APIs | 141

Get Started with the RESTful API | 150
Use Postman to Make Your First API Call | 150

Postman Setup | 151
Import the Mist API Collection | 151
Create Your Environment | 151

Test Your First API Call | 152
Additional RESTful APl Documentation | 154
Demo: A Non-Programmer Approach to APl | 155

APl Use Cases | 156

Automatic Site Creation (Use Case) | 157

Renaming APs (Use Case) | 157
BLE Import (Use Case) | 163

Use the REST API to Add ACL Tags to a Switch (Use Case) | 168

Webhooks

Webhooks Overview | 174

Webhook Message Flow | 176
Webhook Source Addresses | 177

Webhook Hierarchy | 179

Webhook Hierarchy Overview | 179
Organization Webhooks | 179
Site Webhooks | 180

Webhook Topics | 183
Webhooks and Alerts | 190

Webhook Messages | 201
Message Format | 201
Infrastructure Payload Examples | 202

Location Payload Examples | 208

Configure Webhooks from the Juniper Mist Portal | 213

Add a Webhook in the Juniper Mist Portal | 214
Update a Webhook in the Juniper Mist Portal | 217
Delete a Webhook in the Juniper Mist Portal | 220

Configure Webhooks from the API | 222

Create Webhooks from the API | 223
Update a Webhook from the API | 225
Delete Webhooks from the API | 227

Testing Webhooks | 228

View the Webhook Delivery Status | 233

Get Started with Webhooks | 235

Use the Mist API Reference to Get Started with Webhooks | 235

Webhooks Use Cases | 237

Configure Zone Entry and Exit Events (Use Case) | 237

Configure Device Events (Use Case) | 239

WebSocket

WebSocket APl Overview | 242

Get Started with WebSocket | 276

Use Postman to Connect to the WebSocket API | 276
Postman Setup | 276

Import the Mist API Collection | 277

Create Your Environment | 277

Connect to the WebSocket APl | 278

WebSocket Use Cases | 280
Stream Device Data with a WebSocket (Use Case) | 281

| Communicate with a MIST WebSocket Endpoint | 281

Stream Packet Captures with a WebSocket (Use Case) | 284
| Communicate with a MIST WebSocket Endpoint | 285

Third-Party Integrations
ServiceNow Integrations | 289
Integrate Splunk with Mist Webhooks | 291

| Configuring Mist Webhooks to Point to Your Splunk Instance | 294

Terraform Mist Provider Integration | 297

Reference

Automation Tools | 300
Automation Tools Overview | 300
Additional Automation Resources | 312

Use the Django Web Interface to Make API Changes | 312

RESTful API Pagination Example | 314

Use the Mist APl Reference for API Testing | 316

Use the Mist Browser Extension for Easy APl Access | 320

Vi

CHAPTER

Overview

IN THIS CHAPTER

Introduction to Juniper Mist Automation | 2

Introduction to Juniper Mist Automation

SUMMARY

Start getting familiar with the automation and integration features of Juniper Mist™.

You can automate many Juniper Mist processes by using the RESTful API, webhooks, and the
WebSocket API.

As a network administrator, you can use this guide to get familiar with essential concepts and available
tools. You'll also walk through several use cases that illustrate the impact of automation.

Get started with these overviews:

e "RESTful API Overview" on page 4

e "Webhooks Overview" on page 174

o "WebSocket APl Overview" on page 242

As shown below, you can interact with Mist using the APls in multiple ways.

APICALLS WEBHOOK WEBSOCKET

DAY 0/DAY 1 ALERTING: EVENT BASED TELEMETRY: STREAMING
DATA

» CONFIGURATION » DEVICE

+ ADD/MOVE/CHANGE + AUDIT EVENTS + DEVICESTATS

* INVESTIGATION + ALARMS + CLIENT STATS

T e«o0
J

m m ©O-H

CHAPTER

REST AP

IN THIS CHAPTER

RESTful API Overview | 4

API Endpoints and Global Regions | 13
Create API Tokens | 15

REST API HTTP Response Codes | 22
Gather Data Using the RESTful APl | 23
Get Started with the RESTful API | 150
API Use Cases | 156

RESTful APl Overview

SUMMARY IN THIS SECTION
Get familiar with Representational State Transfer Juniper Mist API Architecture | 4
(REST) and understand how you can use RESTful RESTful APl Requests | 5

APIs with Juniper Mist™.
API Endpoint URL Format | 5

API Call Structure | 6

JSON Payload | 9

API Rate Limiting | 10

API Authentication Options | 11

A Simple API Example | 12

The 100% API architecture of Juniper Mist backs every visible feature in the Juniper Mist portal.
Anything that you can do in the portal, you can automate at scale by using the API. Representational
State Transfer (REST) is a stateless client/server architecture with a uniform interface. Since machines
have no use for a user interface, APIs allow for a defined and faster way for machines to communicate
with each other.

REST APIs enable you to create your own way of interacting with systems and applications. You can
even create custom features. Other common use cases for REST APIs include communication and data
exchange between applications, data exchange between applications and servers, communication
between microservices within an application, and more. REST is stateless, which makes it ideal for cloud-
based services.

The Juniper Mist API is available to any customer with a Juniper Mist account.

Also see the Mist API Reference. This contains additional documentation for developers, as well as the
ability to test API calls.

Juniper Mist API Architecture

Juniper Mist uses REST APIs, which use HTTP methods (GET, POST, PUT, and DELETE) to transfer data
in JavaScript Object Notation (JSON) format.

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

® HTTP

REST AP Methods
client sends
arequest

©)

®

Mist cloud updates
the Mist AP (optional)

Mist cloud processes HTTP Web Request

g)
£
! |

DELETE <

URL + JSON payload
Q — (-~ ” 1
U Mist API returns HTTP Response .1

(JSON Payload)

API

| RESTful API Requests

®

Using RESTful APIs follows a similar practice to the CRUD (CREATE, READ, UPDATE, DELETE)
methodology used in development. These are the four basic actions or functions used when working

with data.

Table 1: Basic CRUD Actions
CRUD
Create
Read
Update

Delete

| API Endpoint URL Format

The API endpoint URL has two parts:

HTTP/REST

POST

GET

PUT

DELETE

e APl Host (or Endpoint)—The endpoint for the global region that your Juniper Mist organization is
associated with. These endpoints are listed in "API Endpoints and Global Regions" on page 13.

e Function—Everything after the APl endpoint represents the function that the API will call.

Example
https://{api-host}/api/v1/sites/{site_id}/stats/devices/{device_id}.

https://api.mist.com/api/v1/sites/13b0ee00-121a-456e-84e0-ead3008bc2f2/stats/devices/00000000-0000-0000-1000-
d420b08532eb

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such as
your API token, organization ID, site ID, AP name, and so on.

Everything after {api-host} is the function. The call goes to the global cloud and requests the statistics
for the specified device at the specified site.

The next section takes a deeper look at the structure that makes up an API call.

API Call Structure

The following image is an example of an API call and the different components that make it up.

GET https://api.mist.com/api/v1/sites/75d0450b-f5f0-4523-%aef-012345678%ab/devices
GET https://api.mist.com/api/v1/sites/75d0450b-f5f0-4523-9aef-012345678%ab/devices/00000000-0000-0000-1000-coffeecoffee
L N\ L J

HTTP MethodfProtocol] Version| Scope Scope ID Obiect D]

Table 2: API Call Components

API Call Component Description

HTTP Method e POST—Create an object.—POST overwrites any

existing values with those contained in the payload.
Values that are not specified in the POST payload
are reverted to their original values.

o GET—List objects.—GET returns the value of a
resource or a list of resources, depending on
whether an identifier is specified.

e GET /api/v1/orgs/:org_id

returns information about the organization
based on the specified rorg _id.

e GET /api/v1/orgs/:org_id/site

returns a list of sites belonging to the rorg id.

e GET /api/v1/sites/:site_id

returns information about the site specified by
the :site id.

e PUT—Update an object.—PUT modifies all specified
values in the payload. When updating with a PUT,
simple values (strings or numbers) not specified in
the payload keep their existing values. If the value
contains a data structure such as an array or an
object, the values included in the payload will
replace that structure in its entirety. Keep this in
mind to avoid unwanted changes to existing values.

o DELETE—Remove an object.—DELETE removes a
resource.

Host (or API Endpoint) Determines the Mist Cloud to use (Global 01, EMEA
01, etc). The endpoint for the global region that your
Juniper Mist organization is associated with. See "API
Endpoints and Global Regions" on page 13.

Version The API version to use (currently, all APIs use v1).

Table 2: API Call Components (Continued)

API Call Component

Scope

Scope ID

Object

Object ID

Description

Indicates the level that the request is being done at.
Examples include msp, org, site, self, register, installer,
const, and so on.

Identifies the scope to use.

The type of object to use (Device, WLAN, and so on).

Identifies the object to request.

To perform any of the above REST commands (POST, GET, PUT, DELETE) on the REST API, you need to

fulfill a few requirements in each request, such as:

e Authentication:

e You can use an API token, Juniper Mist login credentials (this authentication type to be
deprecated September 2026), or an external OAuth2 provider to indicate who you are and what
you have access to during the authentication process.

e For more detail on the various authentication methods, see Authentication.

@ NOTE: If you are already logged in on manage.mist.com, you can simply open a new
browser tab and go to https:/api.mist.com/api/v1/self/apitokens and click the POST
button. This will automatically create a new api user token.

See "Create API Tokens" on page 15 for more information about tokens.

e HTTP Header: This header specifies the content and the authorization type, as follows:

e For Juniper Mist, the content type is always application/json.

e The authorization can be a token or a cookie (including CSRF token and session ID).

e The endpoint for the global region that your Juniper Mist organization is associated with. See "API

Endpoints and Global Regions" on page 13.

e "JSON Payload" on page 9

The following table provides examples for the different parts that make up a RESTful API request.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/overview/authentication

Table 3: RESTful APl Request examples

CRUD Operation HTTP Header Endpoint URL Payload (JSON)
Authentication
GET API Token https:/

api.mist.com/api/v1/
sites/:site_id/wlans

DELETE CSRF Token, Session ID https:/
api.mist.com/api/v1/
sites/:site_id/
wlans/:wlan_id

POST CSRF Token, Session ID https:/ {["<claim_code>"]}
api.mist.com/api/v1/
orgs/:org_id/inventory

PUT API Token https:/ {"ssid" : "New Name"}
api.mist.com/api/v1/
sites/:site_id/
wlans/:wlan_id

JSON Payload

Different functions require different elements in the JSON payload. You can view the required details in
the APl documentation.

The following is a sample API call and the response (JSON payload).

API call:

POST
/api/v1/orgs/{org_id}/rftemplates

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

Response (JSON Payload):

"name": "new-rf-template",

"org_id": "a97c1b22-a4e9-411e-9bfd-d8695a0f9e61",

"band_5": {
"allow_rrm_disable": false,
"ant_gain": 0,
"channels": [1,
"disabled": false,
"power_max": 17,
"power_min": 8

B

"band_24": {
"allow_rrm_disable": false,
"ant_gain": 0,
"channels": [1,
"disabled": false,
"power_max": 17,
"power_min": 8

B

"country_code": "CA"

API Rate Limiting

Juniper Mist limits API calls to 5,000 per hour. If you need to make more than 5,000 calls per hour,
Create a Support Ticket.

For large deployments, it is recommended that you make API calls at the organization-level to avoid
reaching the API call limit quickly.

@ NOTE: To prevent brute-force attacks, the login API (/api/v1/login) is rate-limited after
three login failures.

I API Authentication Options

The Juniper Mist API allows three options for requesting authentication:

RESTful APl Request Authentication Options
Basic Authentication HTTP Login OAuth2
API Token Username Password External providers
Account-specific token OPTIONAL: 2 factor Example: Google
Org-specific token authentication
Token provided with each API call in CSRFToken and SessionID provided CSRFToken and SessionID provided
HTTP header with each API call in HTTP header with each API call in HTTP header

e Basic Authentication—Token

e Secure it like a password.

e For instructions about creating an API token, see "Create API Tokens" on page 15.

-

ATTENTION: To enhance security and align with industry best practices, Mist will
deprecate Basic Authentication for all use cases—including admin logins and scripts—
effective September 2026. Before September 2026, all integrations must transition to
token-based authentication to ensure uninterrupted access and support. See "Create API
Tokens" on page 15.

e HTTP Login— User name and Password
e Is like a dashboard login.
e Can be two-factor authentication.
e OAuth2
e Account must be linked to an OAuth provider.
e Requires browser access.

For more information about Authentication, see the Mist API Reference.

11

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/authentication/authentication

I A Simple API Example

The Django API interface is a web-based interface where you can perform CRUD operations within the
API. See "Use the Django Web Interface to Make API Changes " on page 312.

Using the Django API interface, you can make your first API call. After logging in to Mist, open a new
window using the same browser and enter the URL https://api.mist.com/api/v1/self. This is the URL for
the the Global 01 cloud. If you are using another cloud, this URL will be different.

This is equivalent to making this API call GET /api/v1/self.

@juniper.net

Get Update Delete Self

Get Update Delete Self

GET /api/vl/self

HTTP 200 OK

Allow: DELETE, GET, OPTIONS, PUT
Content-Type: application/vnd.api+json
Vary: Accept

The result, shown above, displays the privileges assigned to you for the organizations and sites you are
associated with.

RELATED DOCUMENTATION

Additional RESTful APl Documentation | 154

API Endpoints and Global Regions

SUMMARY IN THIS SECTION
API endpoints vary by global region. You need to use Determine Your API Endpoint | 13
the correct APl endpoint for the region that your List of API Endpoint URLs | 13

Juniper Mist organization is associated with.

Determine Your APl Endpoint

You can determine the correct APl endpoint URL for your organization by looking in the address bar of
the Juniper Mist portal.

1. Log in to the Juniper Mist portal.

2. In the address bar, notice the first part of the URL, starting with the word manage and ending with
com.

Example: https:/manage.ac2.mist.com/admin/?org_id=xxXXXXX-XXXX-XXX
Your APl endpoint is similar but starts with ap/instead of manage.

In the above example, the resulting APl endpoint URL is api.ac2.mist.com.

TIP: The portal URL also contains your organization ID. In the URL, the organization ID
section starts with these characters: org id=

List of APl Endpoint URLs

Table 4: Endpoints by Global Region

Region Admin Portal API

Global 01 manage.mist.com/signin.html api.mist.com

Table 4: Endpoints by Global Region (Continued)

Region

Global 02

Global 03

Global 04

Global 05

EMEA 01

EMEA 02

EMEA 03

EMEA 04

APAC 01

APAC 02

APAC 03

Admin Portal

manage.gcl.mist.com

manage.ac2.mist.com

manage.gc2.mist.com

manage.gc4.mist.com

manage.eu.mist.com

manage.gc3.mist.com

manage.acé.mist.com

manage.gcé.mist.com

manage.ac5.mist.com

manage.gc5.mist.com

manage.gc7.mist.com

API

api.gcl.mist.com

api.ac2.mist.com

api.gc2.mist.com

api.gc4.mist.com

api.eu.mist.com

api.gc3.mist.com

api.acé.mist.com

api.gcé.mist.com

api.ac5.mist.com

api.gc5.mist.com

api.gc7.mist.com

Create API Tokens

SUMMARY IN THIS SECTION
Create tokens to provide authentication for your Create an Organization Token in the Mist
APIs. Portal | 16

Create a User Token in the Mist Portal | 18

Create a User or Organization Token Using
the REST API Explorer | 20

API tokens contain authentication information and are bound to specific users or an entire organization.
API tokens send identification information about the user or organization to the API server to indicate
whether or not the user has access to the API, to ensure security.

Like many other API providers, Juniper Mist offers a way to generate API tokens for authentication (in
the HTTP header). When considering tokens, Juniper Mist uses the terms token and key
interchangeably.

ATTENTION: Before September 2026, all integrations must transition to token-based
authentication to ensure uninterrupted access and support. Basic Authentication will be
deprecated in September 2026 to enhance security and align with industry best practices.

In Juniper Mist, there are two types of API tokens:

¢ Organization Token

Organization tokens are useful when you are building an application that automates work for your
organization. Multiple users would need to access the application and thus would use the same
organization token for authentication.

e The token persists under the Mist organization.

e The token is not bound to any specific user, meaning the access does not depend upon any user’s
access to the organization.

e Supports Norg tokens, which can have different privileges.

e The token can only be used for that specific organization.

Rate limiting is done by the individual token. For example, if Orgloken1 consumes 5000 API calls
and reaches the rate limit, OrgToken2 is not impacted.

e User Token

User tokens are useful when you need to authenticate for yourself, like when running a script, for
example.

The API token assumes the same privileges as the assigned user’s account privileges.

The token is bound to the specific user, meaning the access directly correlates to the user’s access
to the organization.

The token can be used for any Managed Service Provider (MSP) or organization that the user has
access to.

Supports Ntokens, which all have the same privilege as the user account.

Rate limiting is done by the account that is tied to the user. For example, if UserToken1 consumes
5000 API calls and reaches the rate limit, UserToken2 AND account log in to the GUI are
impacted.

You can create API tokens through the Mist Portal or REST API Explorer.

Create an Organization Token in the Mist Portal

1. From the left menu of the Juniper Mist portal, select Organization > Admin > Settings.

2. Scroll down to the API Token section and click Create Token.

3. Select an Access Level to define the permissions for the token.

Create Token X

Name

test

Access Level
® Super User

O Network Admin
O Observer
O Helpdesk

Site Access

=1

Key

Generate Cancel

4. Click Generate.

5. Click the copy button next to the Key field and store it somewhere for safekeeping.

@ NOTE: The only time you will see the entire, untruncated key is upon creation. You will
not be able to see the full key ever again. If you misplace the key, you will have to create
a new key.

17

Create Token b 4

Please save your key to a safe place. You will see the key anly
once upon creation. You won't be able to retrieve it later

Name

Access Level

Super User

MNetwork Admin
Observer
Helpdesk

Site Access

I

Key
n|

6. Click Done at the bottom of the window.

7. Click Save near the top-right corner of the page.

Create a User Token in the Mist Portal

You can generate an API user token from the My Account page in the Mist portal.
To generate an API user token:

1. At the top-right corner of the Juniper Mist portal, click the Juniper Mist Account icon, and then click
My Account.

18

My Account
About

Sign Out

2. In the API Token section, click Create Token. If you have enabled single sign-on for your organization,
you will not be able to create API user tokens.

3. Enter a name for the token and click Generate. The generated key is the user API token.

Create Token X

Name
Token 1

Key

4. Click the copy button next to the Key field.
Create Token X

Please save your key to a safe place. You will see the key only
once upon creation. You won't be able to retrieve it later.

Name

Key
gapggwlHhSt5v5dmulebexK4mVhzUZCatNMJ3vNt | | I

Ensure to store the key somewhere for safekeeping as you will not be able to see the full key again. If
you misplace the key, you'll need to create a new key.

5. Click Done.

19

@ NOTE: If you need to delete a user token, click the token in the API Token section of
the My Profile page, and then click Delete in the Edit Token page.

Edit Token X
Name

Key

Create a User or Organization Token Using the REST API Explorer

1. Login to the Juniper Mist portal.

@ NOTE: You must be logged into the portal to use the REST API Explorer.

2. Open a new browser window and paste your URL: {api-host}/api/v1/self/apitokens.

@ NOTE: In place of {api-host}, you need to use the APl endpoint for your global region.
See "API Endpoints and Global Regions" on page 13.

The REST API Explorer is the API page for token control. Here you can create, read, update, and
delete tokens and token information. This page initially displays the tokens that you have already
created.

This page also enables you and other users to make an API call directly from the browser. With Media
type: applications/json already selected as the default, a GET request will be performed to show you
a list of your tokens. A truncated key will display for any previously created tokens.

3. Click POST.

Japifv1/selffapitokens

Django REST framework @juniper.net

Get Update Delete Self / Getall Create Apitoken

Getall Create Apitoken £ EE

GET /api/v1/self/apitokens

HTTP 208 0K

Allow: OPTIONS, POST, GET
Content-Type: application/json
Vary: Accept

"id": "Oac8eded-ff@2-4eff-ad44-1be5Sbed198bd"
“last_used": null

"key": "CaaE...5zvI"

"created_time": 1711476011

Media type: application/json v

Content:

The response will be similar to this example:

"id": "437de3bf-acd2-4bed-****-cbba973b91f8",
"last_used": null,

"key": "LOkN121kn4lkn**xnklnglkewnrsfFTJ",
"created_time": 1596821422

4. Copy the key (token) and store it for safekeeping.

@ NOTE: The Juniper Mist API will never again display the actual token (ke)) in full,
anywhere, after creating the key. After you navigate away from this page and come
back, the key will appear but in a truncated version. You should treat this key as a
password and store it in a safe place. If you lose this key, you will need to create a new
one.

@ NOTE: If you plan to share Python scripts with others, be sure not to store your API
token in the script itself and use an environment file (.mist_env) in its place. Environment
files store sensitive information in the script for you, so you don't have to share your
sensitive information directly in your script. For more information, see https:/
github.com/tmunzer/mist_library?tab=readme-ov-file#environment-file.

REST API HTTP Response Codes

SUMMARY

Refer to this table for the HTTP response codes that are used by Juniper Mist™.

Table 5: HTTP Response Codes

Status

200

400

401

403

Description

OK. The Mist APl understood the call and answered it
without errors.

Bad Request. The API endpoint exists but its syntax/
payload is incorrect, detail may be given. Validate the
data provided as part of the JSON payload and make
sure it matches the APl documentation.

Unauthorized. The authentication towards the Mist
API failed. You could receive this code when your
token is wrong or if your token was not sent to the API
with the proper format. Validate your authentication
information.

Permission Denied. You will receive this code if your
privileges do not allow you to access some features.

For instance, a user with read-only privileges will not
able able to send POST, PULL or DELETE API calls.

https://github.com/tmunzer/mist_library?tab=readme-ov-file#environment-file
https://github.com/tmunzer/mist_library?tab=readme-ov-file#environment-file

Table 5: HTTP Response Codes (Continued)

Status Description

404 Not found. The API endpoint doesn’t exist, or the
resource doesn't exist. Validate the full URL of your
API call and make sure it matches the API
documentation.

429 Too Many Requests. The API Token used for the
request reached the 5,000 API Calls per hour
threshold.

Gather Data Using the RESTful API

SUMMARY IN THIS SECTION
Read the topics in this chapter to learn how to gather Use Mist SLEs and Insights with APIs | 24
data using the RESTful API. Configure Assurance Services with

APIs | 141

Mist offers cloud-based services that assist in identifying the root cause of poor user experience on the
network. These services are known as assurances. They are automated Mist tools that provide insight
into users’ connection data and can proactively make configuration changes to the network. Examples of
such services are WAN Assurance, Wired Assurance, Wireless Assurance, and Access Assurance.

Service Level Expectations (SLEs) and Insights are two features that are included in each of these
licensed offerings. In addition to viewing SLEs and Insights from the Mist Ul, the information is also
available from the API.

For details on how to gather data using the RESTful API, continue to the next topics in this guide.

Use Mist SLEs and Insights with APls

SUMMARY IN THIS SECTION
Use the RESTful API to get insights about network SLEs | 25
performance. Insights | 25

Metrics and Classifiers | 26
Calculating SLE Percentages | 134

Monitoring SLEs | 141

When you use the Juniper Mist portal to monitor the operation of your network, you gain insight into
what'’s happening before it becomes an issue. You can see the network from multiple viewpoints:
wireless, wired, WAN, and others. Additionally, you can use the tools that Juniper Mist™ provides to
troubleshoot and correct potential issues.

The primary Mist dashboard at Monitor > Service Levels presents the results of the Predictive Analytics
and Correlation Engine (PACE), in the form of Service Level Expectation (SLE) metrics. SLEs leverage
machine learning and the Mist PACE in the Juniper Mist cloud. Using these resources, SLEs turn
streaming telemetry from the access points (APs) into visualizations representing end users' network
experience in near real time. For more information about SLEs, see the Juniper Mist Al-Native
Operations Guide.

https://www.juniper.net/documentation/us/en/software/mist/mist-aiops/index.html
https://www.juniper.net/documentation/us/en/software/mist/mist-aiops/index.html

Monitor | wireless WAN | Location | Insights Live-Demo = Today ~

Clients

System changes A =

Values = Settings

) Storm Control %
Throughput >99%)
Interface Anomalles 100%
DHCP o
Successful Connect 66% /&_‘_/W\V
Authentication 100%
sSwitch Unreachable -5
X 0 Capacity -5
Switch Health 1 OO %
Network -5
System "
o Bandwidth Headroom -5
Switch Bandwidth 100% Congestion %
Congestion Uplink -5

As with everything seen in the Mist GUI, SLEs and Insights information are also available from the API.

SLEs

It may be useful for you to gather information on specific SLEs to use for historical reporting purposes
or to trigger other automation. Like other API calls, you begin by determining which endpoint you want

to gather data from. The following is an example of the APl GET request for the getOrgsSitesSle endpoint:

GET
/api/v1/orgs/{org_id}/insights/sites-sle

@ NOTE: Replace {org_id} with your organization ID.
For more information, see SLEs Overview.

Insights

Insights provide an overview of network experience across the entire Site, Access Points, or wireless
Client. It's a great place to start when checking on a site.

You can find Insight information by making a GET request to one of the following Insights endpoints:

o GetSitelnsightMetrics

25

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/sles/overview

o GetSitelnsightMetricsForDevice
o GetSitelnsightMetricsForClient

For more information, see Insights Overview.

Metrics and Classifiers

Juniper Mist SLEs and Insights endpoints support metrics and classifiers. Metrics track whether the
service level meets the configured threshold value. If a metric does not meet the threshold, then this
failure may be attributed to one of the classifiers to further understand where the failure occurred.

The SLE and Insights endpoints often require the metric argument. This is because, in addition to raw
statistics or configuration, Mist exposes calculated values resulting from internal data analysis. Rather
than creating a unique API function every time a new data analytics feature is added, Mist exposes just a
handful of function, but uses the metric argument to specify which derived data values to retrieve.

To get a list of insight metrics, you can issue the following GET call:

GET
/api/v1/sites/{site_id}/insights/{metric}

The response would look like this:

"bytes": {
"description": "aggregated bytes over time",
"example": [

185,

197,

250

i[p
"intervals": {

"1om": {
"interval": 600,
"max_age": 86400

1,

"Th": {

"interval": 3600,
"max_age": 1209600

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/insights/overview

"report_durations": {
"1d": {
"duration": 86400,
"interval": 3600
1,
"w": {
"duration": 604800,
"interval": 3600
}
1,
"report_scopes": [
"site",
i[p
"scopes": [

org

"site",

"ap",

"client"
1
"type": "timeseries",
"unit": "byte"

3,

"num_clients": {
"description": "number of client over time",
"example": [

18,
null,
15
1
"intervals": {
"1om": {
"interval": 600,
"max_age": 86400
3,
"th": {
"interval": 3600,
"max_age": 1209600
}
Y
"report_durations": {
"1d": {
"duration": 86400,
"interval": 3600

1,
"w": {
"duration": 604800,
"interval": 3600
}
¥
"report_scopes": [
"site",
i[p
"scopes": [

org

"site" ,

ap-,
"device"

1,

"type": "timeseries",

"unit":

Another way to view examples of available Insight metrics is by logging into the Mist portal and opening
this link in a new tab from the same browser:

https://api.mist.com/api/v1/const/insight_metrics

Using the previous GET call example GET /api/v1/const/insight_metrics, you would add your desired metric
at the end of the call. See the example GET calls below for some of the currently supported metrics and
their classifiers.

AP Uptime: ap-availability

GET call:
GET /api/v1/sites/{site_id}/insights/ap-availability
@ NOTE: Replace {site_id} with your site ID.
Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/ap-availability/summary?start&end&duration

Sample Response:

"start": 1727696747,
"end": 1727783147,
"sle": {
"name": "ap-availability",
"x_label": "seconds",
"y_label": "seconds",
"interval": 3600,
"samples": {
"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
i
"degraded": [
null,
null,
null,
null,

null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
i
"value": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,

null,
null,
null

1,
"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 0,
"total_aps": 0
1,
"classifiers": [
{
"name": "ap-disconnected-ap-unreachable",
"x_label": "seconds",
"y_label": "minutes",
"interval": 3600,
"samples": {
"duration": [

S

S O O © O O O ©O O O O O O O OO O o o oo

i[p

"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null

i[p

"degraded": [
9,

S © O © O O O 0O 0O OO oo o

S © © © © O O 0O o o

]

1,

"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,
"total_aps": 0

}

"name": "ethernet-ethernet-errors",
"x_label": "seconds",
"y_label": "minutes",
"interval": 3600,
"samples": {
"duration": [

S

S O O © © O O O 0O O OO 0O &

S © O ©O O o o

i[p

"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null

i[p

"degraded": [
9,

’

S ©O O ©O O o o

S O O O © O © ©O 0O O O O O &

]

1,

"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,
"total_aps": 0

}

"name": "ethernet-speed-mismatch",
"x_label": "seconds",
"y_label": "minutes",
"interval": 3600,
"samples": {
"duration": [

S

S © O © O O O O &0 o

S © O © O O O 0O 0O o

i[p
"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
i[p
"degraded": [
9,
9,

S O O O O O © O ©O O ©O O 0O 0O 0O O OO O o oo

]

1,

"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,
"total_aps": 0

}

"name": "low-power",
"x_label": "seconds",
"y_label": "minutes",
"interval": 3600,
"samples": {

"duration": [

9,

9,
9,
9,
0

’

S © O © O © O ©O 0O O O O O O O oo o o

i[p
"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,

null,
null
i
"degraded": [
9,

S O O O © O © O ©O O O O ©O 0O 0O O O OO 0o

1,

"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,

"total_aps": 0

"name": "ap-disconnected-switch-down",
"x_label": "seconds",

"y_label": "minutes",

"interval": 3600,

"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O 0O 0O O OO OO o oo

i[p

"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,

null,
null,
null,
null,
null,
null,
null,
null

1

"degraded": [
9,

S O O© O O O © O O O O O O 0O 0O O O OO 0o

1,

"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,

"total_aps": 0

"name": "ap-disconnected-site-down",
"x_label": "seconds",

"y_label": "minutes",

"interval": 3600,

"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O OO OO OO o 0o

i[p

"total": [
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,

null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null

1

"degraded": [
9,

S O O O O O © O ©O O ©O O ©O 0O 0O O O 0O OO oo

}Y

"impact": {

"num_users": null,
"num_aps": @,
"total_users": 0,
"total_aps": 0

"name": "ap-disconnected-ap-reboot",
"x_label": "seconds",

"y_label": "minutes",

"interval": 3600,

"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O 0O 0O OO OO o oo

i[p

"total": [
null,
null,
null,
null,

null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null,
null
1
"degraded": [

9,

S O O © O © O O 0O O O O OO 0O oo oo

9,
0
]
Y
"impact": {
"num_users": null,
"num_aps": @,
"total_users": 0,
"total_aps": 0
}
}
1
"events": []

e AP Reboot: ap-reboot

e AP Unreachable: ap-unreachable
¢ Site Down: site-down

Capacity: capacity

GET Call:

GET /api/v1/sites/{site_id}/insights/capacity

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/capacity/summary?start&end&duration

Sample Response:

"start": 1727696707,
"end": 1727783107,
"gle": {

"name": "capacity",
"x_label": "seconds",
"y_label": "%",
"interval": 3600,
"samples": {
"total": [
1204.1,
1243.9333,
1184.7667,
1136.9667,
1133.6666,
1152.7167,
1137.8334,
1131.2167,
1119.2167,
1136.1,
1143.9667,
1167.2667,
1133.8667,
1182.5,
1274.6333,
1281.5333,
1232.7333,
1260.9833,
1258.3167,
1250.7167,
1215.25,
1236.0834,
1247.9667,
828.05
1
"degraded": [
228.71666,
301.41666,
110.13333,
88.183334,
82.416664,
128.93333,
139.23334,
295.08334,
170.0,
201.7,
151.41667,

14506667,
153.91667,
181.76666,
256.45,
239.83333,
214.08333,
215.9,
147.68333,
163.25,
120.36667,
120.2,
135.0,
184.68333

"value": [
0.58172977,
.5803318,
.5925928,
.6017501,
.61211795,
.611349,
.6141628,
.59855264,
.6093941,
.60869706,
.60907525,
.60685295,
.60197794,
.5995983,
.6004573,
.6096473,
.61228454,
6112147,
.60956645,
.6057745,
.6139534,
.6133245,
.5969889,
.5707334

S © O © O O O O O O O © O O 0O 0O O OO OO o 0

}Y

"impact": {

"num_users": 26,
"num_aps": 4,
"total_users": 30,
"total_aps": 4
Y
"classifiers": [
{
"name": "client-count",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O 0O 0O OO OO o oo

iR

"total": [
1204.1,
1243.9333,
1184.7667,
1136.9667,

1133.6666,
1152.7167,
1137.8334,
1131.2167,
1119.2167,
1136.1,
1143.9667,
1167.2667,
1133.8667,
1182.5,
1274.6333,
1281.5333,
1232.7333,
1260.9833,
1258.3167,
1250.7167,
1215.25,
1236.0834,
1247.9667,
828.05

1

"degraded": [
9,

S O O © O © O O 0O O O O OO 0O oo oo

9,
0
]
Y
"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 30,
"total_aps": 4
}

"name": "wifi-interference",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [
202.51666,
226.98334,
84.25,
82.63333,
79.28333,
106.566666,
105.23333,
295.08334,
162.65,
190.48334,
129.05,
140.58333,
146.63333,
163.33333,
245.2,
237.3,
214.08333,
213.75,
139.35,
160.76666,
115.45,
115.0,
115.2,
165.38333

1

"total": [
1204.1,
1243.9333,
1184.7667,
1136.9667,
1133.6666,
1152.7167,
1137.8334,
1131.2167,
1119.2167,
1136.1,
1143.9667,
1167.2667,
1133.8667,
1182.5,
1274.6333,
1281.5333,
1232.7333,
1260.9833,
1258.3167,
1250.7167,
1215.25,
1236.0834,
1247.9667,
828.05

1

"degraded": [
202.51666,
226.98334,
84.25,
82.63333,
79.28333,
106.566666,
105.23333,
295.08334,
162.65,
190.48334,
129.05,
140.58333,
146.63333,
163.33333,
245.2,

237.3,
214.08333,
213.75,
139.35,
160.76666,
115.45,
115.0,
115.2,
165.38333

Y

"impact": {
"num_users": 26,
"num_aps": 4,
"total_users": 30,
"total_aps": 4

"name": "client-usage",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [
26.2,
74.433334,
20.983334,
5.55,
3.1333334,
9,
27.2,
9,
7.35,
1.7333333,
4.616667,
4.483333,
7.2833333,
8.3,
11.25,
2.5333333,
9,
2.15,

8.333333,
2.4833333,
4.9166665,
5.2,
2.6666667,
17.183332

1

"total": [
1204.1,
1243.9333,
1184.7667,
1136.9667,
1133.6666,
1152.7167,
1137.8334,
1131.2167,
1119.2167,
1136.1,
1143.9667,
1167.2667,
1133.8667,
1182.5,
1274.6333,
1281.5333,
1232.7333,
1260.9833,
1258.3167,
1250.7167,
1215.25,
1236.0834,
1247.9667,
828.05

1

"degraded": [
26.2,
74.433334,
20.983334,
5.55,
3.1333334,
9,
27.2,
9,
7.35,

1.7333333,
4.616667,
4.483333,
7.2833333,
8.3,
11.25,
2.5333333,
0,

2.15,
8.333333,
2.4833333,
4.9166665,
5.2,
2.6666667,
17.183332

Y

"impact": {
"num_users": 16,
"num_aps": 2,
"total_users": 30,
"total_aps": 4

"name": "non-wifi-interference",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [

9,

9,

4.9,

9,

9,

22.366667,

6.8,

9,

9,

9.483334,

17.75,

9,

0,
10.133333,

17.133333,
22.966667

1

"total": [
1204.1,
1243.9333,
1184.7667,
1136.9667,
1133.6666,
1152.7167,
1137.8334,
1131.2167,
1119.2167,
1136.1,
1143.9667,
1167.2667,
1133.8667,
1182.5,
1274.6333,
1281.5333,
1232.7333,
1260.9833,
1258.3167,
1250.7167,
1215.25,
1236.0834,
1247.9667,
828.05

1

"degraded": [
9,
9,
4.9,

0,

0,
22.366667,
6.8,

0,

0,
9.483334,
17.75,

0,

0,
10.133333,

17.133333,
22.966667

Y

"impact": {
"num_users": 11,
"num_aps": 2,
"total_users": 30,
"total_aps": 4

1,

"events": []

e AP Load: AP-load
e Non WiFi Interference: non-wifi-interference
o WIiFi Interference: wifi-interference

Coverage: coverage

GET Call:

GET /api/v1/sites/{site_id}/insights/coverage

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/coverage/summary?start&end&duration

Sample Response:

"start": 1727696673,
"end": 1727783073,
"sle": {
"name": "coverage",
"x_label": "seconds",
"y_label": "dBm",
"interval": 3600,
"samples": {
"total": [
1166.2,
1229.7
1180.7
1127.1833,
1132.2,
1133.5834,
1129.7167,
1128.1333,
1113.1,
1122.7667,
1119.1333,
1155.6333,
1127.75,
1147.85,
1251.3833,
1279.7833,
1232.7333,

1263.7333,
1253.3,
1249.0333,
1215.25,
1235.1,
1242.0,
948.4667
i[p
"degraded": [
14.05,
10.433333,
9.583333,
4.516667,
0.0,
10.383333,
0.0,
0.0,
2.3166666,
4.1,
6.5333333,
6.3,
5.15,
10.15,
41.35,
76.03333,
32.666668,
42.25,
11.35,
3.2666667,
1.05,
2.0333333,
15.433333,
12.183333
i[p
"value": [
-57.629894,
-57.33048,
-57.447754,
-57.30583,
-56.43402,
-56.627388,
-55.95337,
-54.501797,

-54.907463,
-54.84789,
-55.376183,
-56.49305,
-56.228077,
-56.321236,
-57.631668,
-57.97819,
-57.058994,
-56.97246,
-56.41033,
-56.125,
-56.128677,
-56.17078,
-55.696415,
-55.79176

Y
"impact": {
"num_users": 8,
"num_aps": 3,
"total_users": 28,
"total_aps": 4
Y
"classifiers": [
{
"name": "asymmetry-uplink",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [
9.433333,
7.55,
3.3,
2.8666666,
9,
9,
9,
9,
9,
0

’

9,
0.8833333,
9,
1.9166666,
23.383333,
31.1,
1.25,
9,
8.433333,
1.2166667,
9,
9,
13.25,
2.15
1
"total": [
1166.2,
1229.7
1180.7,
1127.1833,
1132.2,
1133.5834,
1129.7167,
1128.1333,
1113.1,
1122.7667,
1119.1333,
1155.6333,
1127.75,
1147.85,
1251.3833,
1279.7833,
1232.7333,
1263.7333,
1253.3,
1249.0333,
1215.25,
1235.1,
1242.0,
948. 4667
1
"degraded": [
9.433333,

7.55,

3.3,
2.8666666,
0,

’

’

’
’

0
0
0,
0
0
0

’

0.8833333,
0,
1.9166666,
23.383333,
31.1,
1.25,

0,
8.433333,
1.2166667,

Y

"impact": {
"num_users": 5,
"num_aps": 3,
"total_users": 28,
"total_aps": 4

"name": "asymmetry-downlink",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,

"samples": {

"duration": [

S O O O O O © O O O O O OO o o oo

1
"total": [
1166.2,
1229.7
1180.7,
1127.1833,
1132.2,
1133.5834,
1129.7167,
1128.1333,
1113.1,
1122.7667,
1119.1333,
1155.6333,
1127.75,
1147.85,
1251.3833,
1279.7833,
1232.7333,
1263.7333,
1253.3,
1249.0333,
1215.25,

1235.1,
1242.0,
948.4667
i[p
"degraded": [
9,

S © O © O O O ©O O O O © O O OO O OO O o oo

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 28,
"total_aps": 4

"name": "weak-signal",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,

"samples": {
"duration": [
4.616667,
2.8833334,
6.2833333,
1.65,
9,
10.383333,
9,
9,
2.3166666,
4.1,
6.5333333,
5.4166665,
5.15,
8.233334,
17.966667,
44.933334,
31.416666,
42.25,
2.9166667,
2.05,
1.05,
2.0333333,
2.1833334,
5.0333333
1
"total": [
1166.2,
1229.7
1180.7,
1127.1833,
1132.2,
1133.5834,
1129.7167,
1128.1333,
1113.1,
1122.7667,
1119.1333,
1155.6333,
1127.75,
1147.85,
1251.3833,

1279.7833,
1232.7333,
1263.7333,
1253.3,
1249.0333,
1215.25,
1235.1,
1242.0,
948.4667

i[p

"degraded": [
4.616667,
2.8833334,
6.2833333,
1.65,
9,
10.383333,
9,
9,
2.3166666,
4.1,
6.5333333,
5.4166665,
5.15,
8.233334,
17.966667,
44.933334,
31.416666,
42.25,
2.9166667,
2.05,
1.05,
2.0333333,
2.1833334,
5.0333333

Y

"impact": {
"num_users": 6,
"num_aps": 3,
"total_users": 28,
"total_aps": 4

"events": []

e Asymmetry Downlink: asymmetry-downlink
e Asymmetry Uplink: asymmetry-uplink
o Weak Signal: weak-signal

Roaming: roaming

GET Call:

GET /api/v1/sites/{site_id}/insights/roaming

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/roaming/summary?start&end&duration

Sample Response:

"start": 1727696635,
"end": 1727783035,
"sle": {
"name": "roaming",
"x_label": "seconds",
"y_label": "roaming-score",
"interval": 3600,
"samples": {
"total": [
45.0,
30.9,
3.0,
12.0,
1.0,

37.
4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0

i[p

"degraded": [
1.0,

- o o o

- o O N O
S © © © © © © © O O O o o o

1

"value": [
1.0666667,
1.1333333,
1.0,

1.173913,
1.0,

1.0,
1.4615384,
1.0,

1.0,
1.2307693,
1.1034483,
1.0,
1.4324324,
1.0,

null,
null,

1.0,

null,
null,
null,

1.5,
1.1515151

Y
"impact": {
"num_users": 3,
"num_aps": 3,
"total_users": 9,
"total_aps": 4
Y
"classifiers": [
{
"name": "latency-slow-okc-roam",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,

"samples": {
"duration": [

S

S © O O O O © O ©O O O O O 00O 0O O O 0O 0o

1

"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.0,
2.0,
3.0,
13.
10.
46.
13.
29.
59.
37.

S © © ©O O o

4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0

i[p

"degraded": [
9,

S © O © O O O ©O O O O © O O OO OO OO o o

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 9,
"total_aps": 4

"name": "latency-slow-11r-roam",
"x_label": "seconds",

"y_label": "attempts",
"interval": 3600,

"samples": {

"duration": [

S

S O O O O O © O © O ©O O O O 0O OO 0O O o

1

"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.0,
2.0,
3.0,
13.0,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 9,

"total_aps": 4

"name": "stability-failed-to-fast-roam",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [

()

S O O O © O © O ©O O © ©O O 0O 0O O O 0O OO oo

1

"total": [
45.0,
30.0,
3.0,

23.9,
2.0,
3.0,
13.
10.
46.
13.
29.
59.
37.
4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0

S © ©O ©O O O o

’

]y
"degraded": [
0:

S © O © O O O O 0O O O O O O 0O oo o

o O ©

]

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 9,
"total_aps": 4

}

"name": "signal-quality-interband-roam",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [

S

- O © © © OO o o

S

- o o o
S S

S © O © O O O O w e

i[p

"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.9,
2.0,
3.0,
13.0,
10.0,
46.0,
13.0,
29.0,
59.9,
37.0,
4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0

i[p

"degraded": [
9,

’

0
0
0
0
0
0
0,
1
0
0
0
1
0

3.0,
9,
9,
9,
9,
9,
9,
9,
9,
1.0
]

1,

"impact": {
"num_users": 2,
"num_aps": 3,
"total_users": 9,
"total_aps": 4

}

"name": "signal-quality-suboptimal-roam",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [
1.0,

S

S

- o © - &0 &0 o =

S

S

- o &© = o o

S

[SEENS)

i[p
"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.9,
2.0,
3.0,
13.0,
10.0,
46.0,
13.0,
29.0,
59.0,
37.0,
4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0
i[p
"degraded": [
1.0,
1.0,

—_
S

S

- o &© = o o

S

- O © © © O o o

()

1,

"impact": {
"num_users": 3,
"num_aps": 2,
"total_users": 9,

"total_aps": 4

"name": "latency-slow-standard-roam",
"x_label": "seconds",

"y_label": "attempts",

"interval": 3600,

"samples": {

"duration": [

S

S © O © O O O O &0 o

S © O © O O O 0O 0O o

1,

"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.0,
2.0,
3.0,
13.0
10.0
46.0,

13.0,
0
0
0

’

’

29.
59.
37.
4.0,
null,
null,
1.0,
null,
null,
null,
6.0,
33.0

’
’

’

]y
"degraded": [
0!
9,

S O O O O O © O ©O O ©O O 0O 0O 0O O OO O o oo

]

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 9,
"total_aps": 4

}

"name": "signal-quality-sticky-client",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

9,

9,
9,
9,
0

’

S © O © O © O ©O 0O O O O O O O oo o o

i[p

"total": [
45.0,
30.0,
3.0,
12.0,
1.0,
23.0,
2.0,
3.0,
13.
10.
46.
13.
29.
59.
37.
4.0,
null,
null,
1.0,
null,
null,
null,

S © ©O ©O O O o

6.0,
33.0
1
"degraded": [
9,

S O O O © O © O ©O O O O ©O 0O 0O O O OO 0o

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 9,

"total_aps": 4

¢ Failed to Fast Roam: No-Fast-Roam

e Slow 11r Roams: Suboptimal-11r-roam
¢ Slow OKC Roams: Suboptimal-okc-roam
¢ Slow Standard Roams: Slow-Roam

Successful Connects: successful-connect

GET Call:

GET /api/v1/sites/{site_id}/insights/successful-connect

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/time-to-connect/summary?start&end&duration

Sample Response:

"start": 1727696454,
"end": 1727782854,
"sle": {
"name": "time-to-connect",
"x_label": "seconds",
"y_label": "seconds",
"interval": 3600,
"samples": {
"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0,
13.0,

49.0,
15.0,
29.9,
62.0,
38.0,
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
31.0
i
"degraded": [
4.0,

_- =2 O ©O O 0O 0 o N =

S © © © © © © © O O oo oo o

0
0
0.
0
0.0,

null,

0.0,

0.0,

0.0,

null,

null,

0.0,

0.0
i
"value": [

1.0913653,

.5267187,
.8511662,
.20886666,
.885,
.038458332,
.059428573,
039666668,
.044153847,
.27992308,
.09634693,
.0908,
.021689653,
.047080643,
.037736844,
.0205,
null,

0.223,
0.027,
0.344,

null,

null,
0.15811113,
0.04767742

S © O ©O © © O O 0O 0O 2, oo o

1,
"impact": {
"num_users": 4,
"num_aps": 4,
"total_users": 26,
"total_aps": 4
1,
"classifiers": [
{
"name": "IP-Services",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [

S © O © O O O ©O O ©O O OO O O OO o o o

i[p

"total":
52.0,
32.9,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.
13.
49.
15.
29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,

S © ©O ©O O O o

null,
null,
9.0,
31.0
1
"degraded": [
9,

S O O© O O O ©O O © O O O ©O 0O 0O O O OO 0o

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,

"total_aps": 4

"name": "authorization",
"x_label": "seconds",

"y_label": "attempts",

"interval": 3600,
"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O 0O 0O O 0O OO oo oo

iR

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0,
13.0,
49.0,
15.0,
29.0,
62.0,

38.0,
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
31.0

1

"degraded": [
9,

S O O O © O © O ©O O O O ©O 0O 0O OO OO 0

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,

"total_aps": 4

"name": "dhcp-nack",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

[}

S © O © O O O ©O O O O © O O 0O 0O O OO OO o oo

iR

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,
"total_aps": 4

"name": "association",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [

3.0,

1.0,

2.0,

9,

S © O © O © O ©O 0O O O O O OO o oo

iR

"total": [
52.0,
32.0,

6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0
13.0
49.0,
15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
31.0

’
’

’

i
"degraded": [
3.0,

1.0,
2.0,
9,

S © O © © © O O 0O 0O O oo o

o O O O

]

Y

"impact": {
"num_users": 1,
"num_aps": 3,
"total_users": 26,
"total_aps": 4

}

"name": "dhcp-stuck",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

[}

S © O © O O O ©O OO O O O O O OO o oo

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0
13.0
49.0,

15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
31.0

’
’

’

1.
"degraded": [
9,

S © O © © O O O 0O o <&

S © O © © O O 0O 0o

]

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,
"total_aps": 4

}

"name": "dhcp-unresponsive",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [
1.0,
9,

- O © © © O o o
S o

o ©O O O =

S © © © © O &

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0
13.0
49.0,

15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
31.0

’
’

’

1.
"degraded": [
1.0,

0:

’

o O O O o

- o o

0,
1.0,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
0
]
Y
"impact": {
"num_users": 3,
"num_aps": 3,
"total_users": 26,
"total_aps": 4
}
}
1
"events": []

e Association: association
e Authorization: authorization
e DHCP: DHCP

Throughput: throughput

GET Call:

GET /api/v1/sites/{site_id}/insights/throughput

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/throughput/summary?start&end&duration

Sample Response:

"start": 1727696554,
"end": 1727782954,
"sle": {
"name": "throughput",
"x_label": "seconds",
"y_label": "Mbps",
"interval": 3600,
"samples": {
"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,

1237.2333,
1239.7833,
758.88336

]y

"degraded": [

0.

]y

S © O © O O O O O O O © O O 0O 0O O OO o o0
S © © © © O © © © © O ©O © O O 9O OO 00 o oo

0;

"value": [

4416.
4364.
4225,
4254,
4319,
4330.
4346.
4395,
4414,
4376.
4303.
4317,

122,
1084,
373,
209,
275,
7563,
148,
728,
8213,
623,
742,
217,

4516.579,
4510.3657,
4462.7544,
4514.023,
4607.6772,
4556.474,
4582.5347,
4593.3706,
4579.6895,
4564.7954,
4442.6,
4417.6904

Y
"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4
Y
"classifiers": [
{
"name": "capacity-excessive-client-load",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {

"duration": [

[}

S © O © O O O 0O 0O OO oo o

S © © © © O O 0O o o

1

"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

1

"degraded": [
9,

’
’
’

0
0
0
0

’

S © O © O © O ©O 0O O O O O O O oo o o

]

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4

}

"name": "device-capability",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [
9,

’

S ©O O ©O O o o

S O O O © O © ©O 0O O O O O &

1
"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
12443833,
1217.2667,
1237.2333,
1239.7833,
758.88336

"degraded": [
0:

S © O © O O O ©O O O O © O O 0O 0O O OO OO o oo

]

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4

}

"name": "network-issues",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [
9,
9,

S O O O O O © O ©O O ©O O 0O 0O 0O O OO O o oo

1
"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,

1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

i[p

"degraded": [
9,

S © O © O O O ©O O O O © O O OO OO OO o 0o

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4

"name": "coverage",

"x_label": "seconds",

"y_label": "user-minutes",
"interval": 3600,
"samples": {

"duration": [

S

S O O O © O © O ©O O O O ©O 0O 0O O O OO 0o

1

"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,

1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

i[p

"degraded": [
9,

S © O © O O O ©O O O O © O O 0O 0O OO OO o oo

Y

"impact": {
"num_users": 0,
"num_aps": @,

"total_users": 29,

"total_aps": 4

"name": "capacity-high-bandwidth-utilization",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [

S

S O O© O O O © O O O O O O 0O 0O O O OO 0o

1

"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,

1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

i[p

"degraded": [
9,

S © O © O O O ©O O O O © O O 0O 0O OO O o oo

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4

}

"name": "capacity-wifi-interference",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {

"duration": [

()

S O O O O O © O ©O O ©O O ©O 0O 0O O O 0O OO oo

1,
"total": [
1167.6,

1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

i[p

"degraded": [
9,

S O O © O ©O O O 0O 0O O O OO oo

S ©O © O O o

]

1,

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4

}

"name": "capacity-non-wifi-interference",
"x_label": "seconds",
"y_label": "user-minutes",
"interval": 3600,
"samples": {
"duration": [

S

S O O © O © O O 0O O O O OO 0O oo oo

i[p

"total": [
1167.6,
1229.75,
1180.7333,
1123.25,
1135.45,
1134.7333,
1125.95,
1132.2833,
1109.35,
1128.3334,
1114.8167,
1162.75,
1122.4333,
1149.5,
1249.2667,
1276.7833,
1238.9667,
1254.6333,
1257.2,
1244 .3833,
1217.2667,
1237.2333,
1239.7833,
758.88336

i[p

"degraded": [
9,

S © O © ©O O O OO0 o

S © © © © O 0O O O oo o

]
1,
"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 29,
"total_aps": 4
}
}
i[p
"events": []

e Capacity: capacity

e Coverage: coverage

¢ Device Capability: device-capability
¢ Network Issues: network-issues

Time to Connect: time-to-connect

GET Call:

GET /api/v1/sites/{site_id}/insights/time-to-connect

@ NOTE: Replace {site_id} with your site ID.

Sample Request:

https://api.gc2.mist.com/api/v1/sites/aee83225-1773-4e55-af64-c8b5a86b1fa6/sle/site/
aee83225-1773-4e55-af64-c8b5a86b1fa6/metric/time-to-connect/summary?start&end&duration

Sample Response:

"start": 1727696603,
"end": 1727783003,
"sle": {
"name": "time-to-connect",
"x_label": "seconds",
"y_label": "seconds",
"interval": 3600,
"samples": {
"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0
13.0
49.0,
15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

’

’

’

"degraded": [
4.0,

—_

- O O © O O o N

S © © © © © © ©O O O o oo o

o ©O 0O O =

S

null,

0.0,

0.0,

0.0,

null,

null,

0.0,

0.0
i[p
"value": [

1.0913653,
.5267187,
.8511662,
.20886666,
.885,
.038458332,
.059428573,
039666668,
.044153847,
.27992308,
.09634693,
.0908,
.021689653,
.047080643,
.037736844,
.0205,

S © O ©O © © O O 00O 2 oo o

null,
0.223,
0.027,
0.344,
null,

null,
0.15811113,
0.07152778

Y
"impact": {
"num_users": 4,
"num_aps": 4,
"total_users": 26,
"total_aps": 4
Y
"classifiers": [
{
"name": "dhcp-unresponsive",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [
1.0,
9,

- O © © © OO o o
S o

S © ©O © © O =

S ©O © O O o

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0,
13.0,
49.0,
15.0,
29.0,
62.0,
38.0,
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

1

"degraded": [
1.0,
9,

’

’

S ©O O ©O O o o

—_
[SSEES)

1.0,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
0
]
Y
"impact": {
"num_users": 3,
"num_aps": 3,
"total_users": 26,
"total_aps": 4
}

"name": "dhcp-stuck",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

[}

S © O © ©O O O OO0 o

S © © © © O 0O O O oo o

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0
13.0
49.0,

15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

’
’

’

1.
"degraded": [

S © O © O O O ©O O ©O O OO O O OO o o o

]

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,
"total_aps": 4

}

"name": "dhcp-nack",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

9,

9,
9,
9,
9,
0

’

S O © O O O © O O O O O OO oo

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.
13.
49,
15.
29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,

S © © ©O O o

36.0
i[p
"degraded": [
9,

S © O © O O O ©O O O O © O O 0O 0O O 0O OO oo oo

Y

"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,
"total_aps": 4

"name": "association",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

S O © O © O © O O O ©O O O 0O o oo oo

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.
13.
49,
15.
29.
62.
38.
4.0,
null,

S © © ©O O o

1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

i[p

"degraded": [
3.0,
1.0,
2.0,
9,

S © O © O © O O 0O O O O O O 0O oo oo

Y

"impact": {
"num_users": 1,
"num_aps": 3,
"total_users": 26,
"total_aps": 4

"name": "authorization",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {

"duration": [

S

S O O© O O O ©O O © O O O ©O 0O 0O O O OO 0o

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,
24.0,
7.0,
3.0,
13.0,
13.0,
49.0,

15.0,
29.0,
62.0,
38.0,
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

i[p

"degraded": [
9,

S © O © O O O ©O O O O © O O 0O 0O O OO O o oo

W
"impact": {

"num_users": 0,

"num_aps": @,
"total_users": 26,

"total_aps": 4

"name": "IP-Services",
"x_label": "seconds",
"y_label": "attempts",
"interval": 3600,
"samples": {
"duration": [

S

S O O O © O © O ©O O O O ©O 0O 0O OO OO 0

1

"total": [
52.0,
32.0,
6.0,
15.0,
2.0,

24.0,
7.0,
3.0,
13.0
13.0
49.0,
15.0,
0
0
0

’

’

29.
62.
38.
4.0,
null,
1.0,
1.0,
2.0,
null,
null,
9.0,
36.0

’
’

’

]y
"degraded": [
0:

S © O © O O O ©O OO O O O O O OO o oo

0
]
1,
"impact": {
"num_users": 0,
"num_aps": @,
"total_users": 26,
"total_aps": 4
}
}
i[p
"events": []

Association: association

Authorization: authorization

DHCP: DHCP

Internet Services: IP-Services\uOOOC

Calculating SLE Percentages

The SLE metric success rate is calculated as a percentage of how often the threshold was met during the
selected timeframe. Classifiers are also calculated as percentages, but these values indicate their impact
towards the parent failure.

For example, the below screenshot shows Time to Connect succeeded 96% of the time; all clients who
successfully connected from 3:00-4:00pm completed the connection process within the four second
threshold.

time to connect(seconds)

Time to Connect o3 | o9 PO
Root Cause analysis selectametricto analyze B
Service Level Metrics Classifiers
Time to Connect 96% — DHCP 17%
Throughput 9% | |\~ Authorization 0%
Roaming 99% — Association 66%
Successful Conn... 97% — Internet Services 17%
Coverage 84%
Capacity 96%
AP Uptime 100%
Statistics Timeline Distribution Affected Items Location Anomalies
Success Rate Distribution
number of connections
96% 4 secs
Successful Goal
20
00
80 —
%
40
20 |
0.7 seconds avg. 0 e
0 2 4 6 8 10 12 14 16 18 20

This metric’s success rate (%) is derived from the “Metric Summary” APl endpoint.

@

NOTE: Replace site_id with the actual site ID.

/api/v1/sites/:site_id/sle/site/:site_id/metric/time-to-connect/summary?
start=15405912008&end=1540594800

“start”: 1540591200,
“end”: 1540594800,
“sle”: {
“x_label”: “seconds”,
“y_label”: “seconds”,

“interval”: 600,

135

The metric failure rate is calculated by dividing the failures (s/e.samples.degradead) by the total
(sle.samples.total). This is then translated to the success rate percentage. Using the above API response
payload, the calculation would look as follows:

ceil(1-[(0.0+0.0+3.0+0.0+3.0+0.0)/(19.0+14.0+34.0+8.0+20.0+43.0)]1)*100=

ceil(1-[6/138])*100=

ceil(1-0.04347826086)*100=

ceil(0.95652173914)*100=

0.96x100=

=96%

This screenshot shows classifiers that contributed to the metric failures (DHCP, Authorization,
Association, and Internet Services):

DHCP

Root Cause analysis Select a metric to analyze

Service Level Metrics

Time to Connect
Throughput
Roaming
Successful Conn...
Coverage
Capacity

AP Uptime

Statistics Timeline Distribution

Users
below service level goal

254

The classifier’s impact (%) is derived from the same “Metric Summary” APl endpoint.

Classifiers

96% DHCP
Authorization
Association

Internet Services

Affected Items Anomalies

Access Points
below service level goal

33%

17%

0%

66%

17%

HQ ~ 3:00 pm, Oct 26

@ NOTE: Replace site_id with the actual site ID.

/api/v1/sites/:site_id/sle/site/:site_id/metric/time-to-connect/summary?
start=15405912008end=1540594800

“start”: 1540591200,
“end”: 1540594800,

“classifiers”: [

“name”: “DHCP”,
“samples”: {
“degraded”: [

0,

1.0,

The classifier impact is calculated by dividing the classifier’s failures (classifiers/nj.samples.degradea) by
the sum of all failures (c/assifiers/].samples.degraded). This is then translated to a percentage. Using the
above API response payload, the calculation for DHCP would look as follows:

ceil([0+0+0+0+1.0+0]/[(0+0+0+0+1.0+0)+(0+0+0+0+0+0)+(0+0+3.0+0+1.0+0)+(0+0+0+0+1.0+0)1)*100=
ceil(1/[1.0+0+4.0+1.0])*100=

ceil(1/6)*100=

ceil(0.16666666666)*100=

0.17%100=

=17%

Monitoring SLEs
SLE data is updated every ten minutes. However, the SLEs are prone to fluctuations when monitoring at

this granularity. Thus, it is recommended to query for 1-hour intervals using the explicit start and end
time, and polling only once per hour.

Configure Assurance Services with APls

SUMMARY IN THIS SECTION

Get started with some of the API calls that you can Access Assurance | 142
use to configure various Juniper Mist™ assurance WAN Assurance | 143
services.

Wired Assurance | 145

Wireless Assurance | 148

Juniper Mist offers many cloud-based assurance services to help you identify the cause of poor user
experience on the network. The assurances are automated Mist tools that provide insight into users’
connection data and can even proactively make configuration adjustments to the network. Mist offers

services such as Access Assurance, WAN Assurance, Wired Assurance, and Wireless Assurance. SLEs
and Insights are two features that are included in each of these licensed offerings.

For example, the APIs associated with Access Assurance enable you to configure Authorization Policies
and more. APIs with Wired Assurance enable you to configure devices using Network Templates and
individual switch settings. Wireless Assurance enables you to configure wireless templates or individual
access points (APs). WAN Assurance allows you to configure Organization Hub Profiles and more.

This topic provides examples as well as links to more information on how you can use the different Mist
assurances with APIs.

@ NOTE: Replace placeholder values with actual values, such as your organization ID, site
ID, and so on.

Access Assurance

Org Nac Tags

e Create Org Nac Tag

POST
/api/v1/orgs/{org_id}/nactags

e Payload: JSON Formatted Payload
e Required: orgid
o Get List of Org Nac Tags

GET
/api/v1/orgs/{org_id}/nactags

e Payload: JSON Formatted Payload
e Required: org id
o Get Org Nac Tag

GET
/api/v1/orgs/{org_id}/nactags/{nactag_id}

e Payload: JSON Formatted Payload

e Required: org id, nac tag id

e Update Org Nac Tag

PUT
/api/v1/orgs/{org_id}/nactags/{nactag_id}

e Payload: JSON Formatted Payload
e Required: org id, nac tag id

e Delete Org Nac Tag

DELETE
/api/v1/orgs/{org_id}/nactags/{nactag_id}

e Payload: None

e Required: org id, nac tag id

For more information on Nac Tags, see Nac Tags Overview.
To see additional types of configuration you can do for Access Assurance using APls, see:
e Nac Rules Overview
o Site Nac Clients Overview

e Org Nac Clients Overview

WAN Assurance

Org Networks

o Create Org Network

POST
/api/v1/orgs/{org_id}/networks

e Payload: JSON Formatted Payload

e Required: org id

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/nac-tags/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/nac-rules/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/clients/nac/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/clients/nac/overview

o List Org Networks

GET
/api/v1/orgs/{org_id}/networks

e Payload: JSON Formatted Payload
e Required: orgid

¢ Get Org Network

GET
/api/v1/orgs/{org_id}/networks/{network_id}

e Payload: JSON Formatted Payload
e Required: org id, network id

e Update Org Network

PUT
/api/v1/orgs/{org_id}/networks/{network_id}

e Payload: JSON Formatted Payload
e Required: org id, network id

e Delete Org Network

DELETE
/api/v1/orgs/{org_id}/networks/{network_id}

e Payload: None
e Required: org id, network id

To see additional types of configuration you can do for WAN Assurance using APls, see:

e Org Device Profiles (Org Hub Profiles)
o Org Gateway Templates

e Org Idp Profiles

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/device-profiles/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/gateway-templates/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/idp-profiles/overview

e Org Services (Org Applications)

e Org Service Policies (Org Application Policies).
e Sites WAN Clients

¢ Org WAN Clients

e Org Devices and Org Stats Devices (WAN Edge Gateways)

Wired Assurance

Org Network Templates

e Create Org Network Template

POST
/api/v1/orgs/{org_id}/networktemplates

e Payload: JSON Formatted Payload
e Required: orgid

o Get List of Org Network Templates

GET
/api/v1/orgs/{org_id}/networktemplates

e Payload: JSON Formatted Payload
e Filters: orgid

¢ Get Org Network Template

GET
/api/v1/orgs/{org_id}/networktemplates/{networktemplate_id}

e Payload: JSON Formatted Payload

e Required: org id, network template id

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/services/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/service-policies/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/clients/wan/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/clients/wan/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/devices/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/stats/devices/overview

e Update Org Network Template

PUT
/api/v1/orgs/{org_id}/networktemplates/{networktemplate_id}

e Payload: JSON Formatted Payload (only changes/additions needed)
e Required: org id, network template id

o Delete Org Network Template

DELETE
/api/v1/orgs/{org_id}/networktemplates/{networktemplate_id}

e Payload: None
e Required: org id, network template id
For more information, see Network Templates Overview.
Site Settings
Documentation is located here: Sites Setting Overview.
o Get Site Settings
Includes both switching and non-switching related settings

. GET
/api/vl/sites/{site_id}/setting

e Payload: JSON Formatted Payload

e Required: site id

o Update Site Settings

PUT
/api/v1/sites/{site_id}/setting

e Payload: JSON Formatted Payload (only changes/additions needed)

e Required: site id

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/network-templates/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/setting/overview

¢ To link this site to a template, add the “networktemplate_id” key with the value of the ID for the
network template to apply.

@ NOTE: There is no POST or DELETE for site settings. The only way to create site
settings is to create a new site, and the only current way to delete them is to delete the
site.

o Get Site EVPN Topology

GET
/api/v1/sites/{site_id}/evpn_topologies/{evpn_topology_id}

e Payload: None
e Required: site id, evpn topology id
For more information, see EVPN Topologies Overview.

e Count Site Wired Clients

GET

/api/v1/sites/{site_id}/wired_clients/count

e Payload: JSON Formatted Payload
e Required: site id

e Search Site Wired Clients

GET

/api/vi/sites/{site_id}/wired_clients/search

e Payload: JSON Formatted Payload
e Required: site id
Switch Settings

Documentation is located here: Site Devices Overview.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/evpn-topologies/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/devices/overview

o Get Switch Settings

GET
/api/vi/sites/{site_id}/devices/{device_id}

e Payload: JSON formatted payload
e Required: site id, device id

o Update Switch Settings

PUT
/api/v1/sites/{site_id}/devices/{device_id}

e Payload: JSON Formatted Payload (only changes/additions needed)
e Required: site id, device id

To see additional types of configuration you can do for Wired Assurance using APIs, see API Devices
Overview.

Wireless Assurance

Org WLANs

e Create Org WLAN

POST
/api/v1/orgs/{org_id}/wlans

e Payload: JSON Formatted Payload
e Required: org id

e List Org WLANSs

GET
/api/v1/orgs/{org_id}/wlans

e Payload: JSON Formatted Payload

e Required: orgid

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/devices/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/devices/overview

o Get Org WLAN

GET
/api/v1/orgs/{org_id}/wlans/{wlan_id}

e Payload: JSON Formatted Payload
e Required: org id, wlan id

e Update Org WLAN

PUT
/api/v1/orgs/{org_id}/wlans/{wlan_id}

e Payload: JSON Formatted Payload
e Required: org id, wlan id

e Delete Org WLAN

DELETE
/api/v1/orgs/{org_id}/wlans/{wlan_id}

e Payload: None

e Required: org id, wlan id

For more information on what you can do with WLANSs using APIs, see Org WLANs Overview.
To see additional types of configuration you can do for Wireless Assurance using APls, see:
Organization

e Org Device Profiles

Org RF Templates

e Org Labels

e Org Policies

e Org Wireless Clients

e Org Access Points Stats

e Org PSKs

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/wlans/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/device-profiles/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/rf-templates/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/wxtags/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/wxrules/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/clients/wireless/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/stats/devices/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/psks/overview

Site

e Site WLANs

e Site PSKs

o Site Labels

o Site Policies

e Site Wireless Clients
Device

e Access Points

Get Started with the RESTful API

IN THIS SECTION

Use Postman to Make Your First API Call | 150
Additional RESTful APl Documentation | 154

Demo: A Non-Programmer Approach to API | 155

Use Postman to Make Your First API Call

SUMMARY IN THIS SECTION
Postman is a platform that is designed to make it Postman Setup | 151
easy to work with APIs. This topic walks you through Import the Mist API Collection | 151

how to use Postman to make your first API call.
Create Your Environment | 151

Test Your First API Call | 152

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/wlans/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/psks/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/wxtags/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/wxrules/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/clients/wireless/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/devices/overview

Postman is an API platform that makes it easy for you to make and test API calls. You can use Postman
for most everything API related, such as testing webhooks, sending and receiving data from a
WebSocket server, and more. This topic covers the steps you need to complete in Postman prior to
making your first API call and how to use Postman to make your first API call to the Juniper Mist RESTful
API.

See

Postman Setup

To use Postman, you can use the Postman website or download the Postman application as described in
Download Postman.

1. Sign in to Postman (or create an account) from the Postman website or application. This allows you to
save your environment. See the Create Your Environment section further down in this topic.

2. Once your account is created, you get access to your workspace. This is where you can save your API
calls and configure your environment to interact with the Mist API.

Import the Mist API Collection

Next, import the Mist API Collection. Juniper Mist has built a list of Postman API calls that you can
import directly into your Postman workspace. This list is maintained and matches what the API
documentation lists.

1. Navigate to the Juniper Mist Postman collections page and select the Mist Cloud APIs collection.

2. Once the collection is opened, click on Fork as described in Fork collections and environments in
Postman. This enables you to create a copy of the collection in your own workspace and still receive
updates when the main collection is updated.

3. In the top left corner of Postman, you should see that the collection has now been forked into your
workspace. Expand the collection and its subsections to see how the RESTful API calls are organized.

Create Your Environment

A postman environment allows you to store variables in a profile that you can reuse across multiple API
calls and collections. You must create an environment and define variables before you begin making API
calls in Postman.

1. Create and name your environment as described in Create an Environment.

2. Define variables in your Postman environment by entering them into the table as described in Add
Environment Variables.

¢ In order to interact with the Mist RESTful API, you must set the following variables:

https://www.postman.com/
https://www.postman.com/downloads/
https://learning.postman.com/docs/getting-started/first-steps/sign-in-to-postman/
https://www.postman.com/juniper-mist?tab=collections
https://learning.postman.com/docs/collaborating-in-postman/using-version-control/forking-elements/
https://learning.postman.com/docs/collaborating-in-postman/using-version-control/forking-elements/
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#create-an-environment
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#add-environment-variables
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#add-environment-variables

Table 6: Environment Variables

Variable Description

host This is the URL of the Mist APl endpoint. For exarr
See API Endpoints and Global Regions for the full |

apitoken This is the Mist API token required to authenticate
create a Mist API token for REST API, see Create /

org_id This is the UUID of your Mist organization. For mo
Find Your Organization ID and Get Org.

site_id This is the UUID of a specific Mist site. For more ir
Info.

3. Once you have entered all your variables, select Save.

4. Apply the environment to your Postman workspace by navigating to the Environment drop-down
menu in the top right corner of the page, then select your newly created environment.

Test Your First API Call

Now that you have set up Postman with your collections and environments, it's time to make your first
API call. In this example, you make an API call to test the connection to the API. This is done using the
GET /api/v1/self call.

In order to test your first API call to the Juniper Mist API, follow these steps:

1. In Postman, select Collections from the left menu, then navigate to Authentication > Self. Finally,
select the GET getSelf request.

2. Select the Send button.

@ NOTE: The GET /api/v1/self request uses the {{apitoken}} and {{host}} variables from your
environment.

You should receive a 200 response code from the Mist APl indicating that the request was successful.
In response to the GET /api/v1/self request, you receive information about your account and privileges
in a JSON payload.

https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/topic-map/api-endpoint-url-global-regions.html
https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/task/create-token-for-rest-api.html
https://www.juniper.net/documentation/us/en/software/mist/mist-management/topics/task/find-org-id.html
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/get-org
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/get-site-info
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/get-site-info

Workspaces v APl Network

If you did not receive a response, select the Console button in the bottom left corner of Postman to
gather more information about the sent request and received response. Study the HTML response
code to understand why you received the response. Below are some example error codes:

e Error 404—This means that the endpoint URL does not exist. Validate that your {{host}} variable is

configured properly. For example, an additional / in the URL would result in an Error 404 response
code.

e Error 401—This means that you are not authorized to send the API call. Review the response of the
Mist API to understand what is not setup properly. Validate that your {{apitoken}} variable is
configured properly.

For more information about HTML response codes, see REST APl HTTP Response Codes.

You have just sent your first API call to the Mist API. Now you are ready to explore and test other
calls. Here are a few suggestions that you can test next:

e Orgs / Sites / getOrgSites
e Orgs / Devices Stats / getOrgDevicesStats
e Orgs / Templates / getOrgsTemplates

e 0rgs / Inventory / getOrgInventory

https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/concept/rest-api-http-response-codes.html

Additional RESTful APl Documentation

SUMMARY

Know where to go for complete API reference information for Juniper Mist™.

To access extensive API reference information, including parameter descriptions and the ability to test
and make API requests, go to the Juniper Mist API Reference.

You can both test and make API calls directly from this website. For any endpoints that require
authentication, you will see an Authentication section in the center of the screen which you will need to
fill in with your credentials.

For example, to see which sites and organizations you have access to, navigate to API > Self > Account >
Get Self and then expand the Authentication section in the center of the screen to enter your API token.
Then select Configure at the lower-right to select the cloud for your global region. Finally, click TRY IT
OUT to issue your API call. Then you can view the response.

@ NOTE: When entering your API token into the APl Reference website, you must add the
"token" key word in front of your token in order to perform authentication. You can also
perform authentication using the basicAuth or basicAuth and csrfToken options. If you
do not have an API token yet, you can use the basicAuth option and enter the same
username and password that you use for the Mist Ul.

ATTENTION: To enhance security and align with industry best practices, Mist will deprecate
Basic Authentication for all use cases—including admin logins and scripts—effective September
2026. Before September 2026, all integrations must transition to token-based authentication
to ensure uninterrupted access and support. See "Create API Tokens" on page 15.

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

Home > Documentation > MistAl > For Developers
JUNIPEr

Mist API Reference

& APISpec

GETTING STARTED

How to Get Started

UIDES
Overview

Authentication

Marvis

Pl
Self
Account
Overview
EEEE Delete seif
IS GetSelf
Il Urdate Self
Update Self Email
Verify Self Email
Alarms
AP| Token
Audit Logs
MFA

OAuth2

Addmine

GET /api/vi/self

Request Response

(@) | Authentication /

“This endpoint requires apiToken OR basicAuth OR (basicAuth AND csrfToken)

Select Authentication &

~ apiToken RiGuiR

Set autherization parameters for apiToken

“password_nodified_time" :

~ "privileges" : [
Authorization sral Y

string

Like many other API providers, it's alse possible to generate AP| Tokens to be used (in HTTP Header)
for authentication. An AP| token ties to a Admin with equal or less privileges.

Format: API Token value formatis Token (apitoken}

Notes:
~ anAP| token generated for a specific admin has the same privilege as the user
« an API token will be automatically removed if not used for > 90 days

+ 550 admins cannot generate these AP| tokens. Refer Org level API tokens which can have

privileges of a specific Org/Site for more information.

token GmJari9! W

® 200 0K &

Demo: A Non-Programmer Approach to API

SUMMARY

Watch this video to see how a non-programmer uses Postman to work with APlIs.

This video shows the non-programmer way to approach the Juniper Mist™ API. Even though this

example involves switching, you can use the same approach with everything covered in the Juniper Mist
API, both wired and wireless.

In this example, Andy shows you how to use the Chrome developer tools to figure out exactly which API
endpoint is being called and how to take advantage of that in Postman.

https://mist.wistia.com/embed/iframe/y4z42v9hgy

API Use Cases

SUMMARY IN THIS SECTION

There are a number of reasons why you would want Automatic Site Creation (Use Case) | 157
to use APIs for automation and integration with Renaming APs (Use Case) | 157

Juniper Mist™. The following are just a couple of

common examples. BLE Import (Use Case) | 163

Use the REST API to Add ACL Tags to a
Switch (Use Case) | 168

APl Use Case Examples

Source of Truth

As network operations continue to evolve, the Source of Truth (SoT) is becoming a more important
concept. This SoT allows you to describe to an external software application how the network should be
configured and have it directly interact with Mist for device configuration.

The source of truth can be something as simple as a set of YAML or JSON data files or as sophisticated
as a dedicated application or a suite of applications that manage and automate your entire network.
Configuring sites and devices via the API, based on data in the SoT, provides a level of control and can
keep configurations consistent across sites and devices.

Service Oriented Configuration

Change management is a large part of network operations. Manual changes are both error prone and
time consuming. Integration of change management into a platform like ServiceNow helps simplify
common change management requests by letting changes flow through proper change management
processes as well as reduce the human error of making the changes. The API for Wired Assurance
enables these integrations between service platforms and the wired network configuration.

Continuing Efforts

While the API gives us some immediate opportunities to programmatically configure EX Switching, work
is already progressing for additional functionality. For example, automating the migration Cisco 10S
configurations as well as the automated migration of existing Juniper EX configurations to the Mist
platform using existing software libraries and opensource tools.

Automatic Site Creation (Use Case)

SUMMARY

Watch a video demo to see how easily you can oboard dozens or hundreds of sites in minutes by
using Python scripts and APlIs.

Automation in a Juniper Mist network enables you and other administrators to make system changes
automatically, while minimizing human error. It also enables you to make massively scalable changes that
simply cannot be made from a GUI.

The video below shows an example of a script that creates five hundred sites in less than 5 minutes
using a CSV file for input, a Juniper Mist device template, the Juniper Mist API, and Python:

Renaming APs (Use Case)

SUMMARY

Read and follow this example to quickly rename your access points (APs) by using a Python script
and APls.

At times, you and other wireless administrators need to rename Juniper Mist network access points
(APs) at a specific site. Consistent naming helps provide order and consistency in network inventory

documentation. For example, a site may physically move to a new location and take on a new naming
convention.

To perform this renaming task, in the Juniper Mist portal you can perform a bulk renaming action using a
regular expression. This option is easy and readily available, but it can become complex if you have many
devices to rename.

Another option is to create a Python script to rename the APs. This option simplifies the task of
renaming many devices. The example script below illustrates the Python script renaming sequence. The

https://mist.wistia.com/embed/iframe/ov2izjj1tb

script renames specific APs that have already been claimed to a site. The script uses three files, as
follows:

e The first file (config.json) contains the configuration variables.

e The second file (ap-names.csv) is a CSV file that contains the MAC address of the AP to be renamed
as well as the AP’s new name.

e The third file (main-rename-ap.py) is the Python script itself, which takes information from the other
two files.

To use the script, you place all three files in the same working directory.

The first file, which contains the JavaScript Object Notation (JSON) formatted configuration, includes
variables needed to connect to the API to make the required calls to find and rename the specified APs.

@ NoTE:

¢ When making any configuration changes using the API, make sure you understand
the data that you are modifying. Also be sure to perform validation to ensure that
things are still working properly.

e Replace placeholder values with actual values, such as your organization ID, site ID,
AP name, and so on.

{
"api": {
"org_id": "XXXXXXXX=XXXX=XXXX=XXXX=XXXXXXXXXXXX"
"token": "ApUYc...hsQ0",
"mist_url": "https://{api-endpoint}.mist.com/api/v1/"
Vs
"site": {
"id": "{site-id}"
}
}

@ NOTE: In place of {api-endpoint}, use the API endpoint for your global region. See "API
Endpoints and Global Regions" on page 13.

The Python script uses the contents of the CSV file to identify the AP (by the MAC address) and then
rename it to the new name ap-names.csv.

name,mac
{ap-name1},aabbcc001122
{ap-name2}, aabbcc001123
{ap-name3},aabbcc001124

By default, when you initially claim an AP, the AP takes the name of its own MAC address. The main
Python script does the actual work of finding and renaming of the AP, which consists of the following
functions:

1. (def)—Get the MAC address of the AP to rename.

2. Find the AP on the site.

3. Rename the AP.

The main function (def) uses the other functions to complete the task and loops, as necessary.

This is what the main-rename-ap.py script looks like:

#!/usr/bin/env python3

The format of the MAC address part of this CSV file must be the following:
aabbccddeeff

import argparse

import time

import json

import requests

import csv

from pprint import pprint

def is_ap_in_site(configs: dict, ap_mac: str):

This function checks for an AP assigned to a site.

Parameters:
- configs: dictionary containing all configuration information

- site_id: ID of the site we will to assign the AP to

Returns:
- the ID of the AP if the AP is assigned to the site
- the current name of the AP
api_url = f"{configs['api']['mist_url']}sites/{configs['site']["'id']}/devices"
headers = {'Content-Type': 'application/json',
'"Authorization': 'Token {}'.format(configs['api']['token'1)}

response = requests.get(api_url, headers=headers)

if response.status_code == 200:

devices = json.loads(response.content.decode('utf-8'))

for device in devices:

if device['mac'] == ap_mac:
return (device['id'], device['name'])

else:

print('Something went wrong: {}'.format(response.status_code))
return (None, None)

def rename_ap(configs: dict, ap_id: str, new_ap_name: str, ap_old_name: str):

This function renames an AP.

Parameters:

- configs: dictionary containing all configuration information

- ap_id: ID of the AP device object

- new_ap_name: name to apply to the AP

- ap_old_name: current name of the AP
api_url = f"{configs['api']['mist_url']}sites/{configs['site']['id']}/devices/{ap_id}"
headers = {'Content-Type': 'application/json',

'Authorization': 'Token {}'.format(configs['api']['token'])}

body = {}
body['name'] = new_ap_name

response = requests.put(api_url, headers=headers, data=json.dumps(body))

if response.status_code == 200:

device = json.loads(response.content.decode('utf-8'))

print(f"{device['mac']} renamed from {ap_old_name} to {device['name']}")
else:

print(f"AP ID: {ap_id}\tSomething went wrong: {response.status_code}")

def retreive_ap_mac_list(csv_filename: str):

This function converts the content of the CSV file to a Python dictionary.

Parameters:

- csv_filename: the name of the comma separated value file.

Returns:
- A dictionary containing the content of the CSV file
ap_csv = csv.DictReader(csv_filename)
ap_list = []
for line in ap_csv:
ap_list.append(line)
return ap_list

def main():

This script batch renames the APs listed in a CSV file.
parser = argparse.ArgumentParser(description='Configures a Mist AP for an APoS site survey')
parser.add_argument('config', metavar='config_file', type=argparse.FileType(

'r'), help="'file containing all the configuration information')
parser.add_argument('ap_list', metavar='aps_names', type=argparse.FileType(

'r'), help='csv file containing new AP names')
args = parser.parse_args()
configs = json.load(args.config)

ap_mac_list = retreive_ap_mac_list(args.ap_list)

for ap in ap_mac_list:
ap_id, ap_old_name = is_ap_in_site(configs, ap['mac'])
if ap_id:
rename_ap(configs, ap_id, ap['name'], ap_old_name)
else:
print(f"AP {ap['name']} is not part of site {configs['site']['id']}")

if __name__ == '__main_
start_time = time.time()
print('*x Start the batch renaming of APs...\n')

main()
run_time = time.time() - start_time

print("\nxx Time to run: %s sec" % round(run_time, 2))

To run the script, call the main-rename-ap.py script and provide the config.json filename and the ap-
names.csv filename as arguments. For example:

user@linux-host} python main-rename-ap.py config.json ap-names.csv

After you run the script, the output should look something like this:

*% Start the batch renaming of APs...

aabbcc001121 renamed from OLD-AP-01 to NEW-AP-01
aabbcc001122 renamed from OLD-AP-02 to NEW-AP-02
aabbcc001122 renamed from OLD-AP-03 to NEW-AP-03

*% Time to run: 3.24 sec

You can also check the Juniper Mist portal and verify the changes by checking the device's inventory.
Automation is not limited to RESTful APIs and Python. You can find other automation options such as
WebSocket and webhook API usage and tools to help in the development process.

RESTful API Overview | 4
Create API Tokens | 15

REST API HTTP Response Codes | 22

https:/www.rfc-editor.org/rfc/rfc9110.html

https://www.rfc-editor.org/rfc/rfc9110.html

BLE Import (Use Case)

SUMMARY IN THIS SECTION

Read and follow this example to import Bluetooth Main.py Script | 163
Low Energy (BLE) assets and give them useful,
descriptive names by using Python scripts and APIs.

Mist_client.py Script | 166
Assets.csv | 168

When you set up and activate location-based services with Juniper Mist Asset Visibility, admins like you
can see all BLE clients and assets. You can also see their precise locations, right on an indoor floor plan
or map.

For sites that use BLE asset tags, it's handy to track these devices by giving them easily readable names
that provide some context. You can add and display these names individually within the Juniper Mist
portal, but if you have a lot of assets to manage, doing it one by one can be quite time consuming. An
easier way to do this is to run a script to import BLE assets and assign them a name in bulk.

For this use case, you need to:

e Enable Asset Visibility in the Site Settings for each site.

e Make sure that you have an active license for Asset Visibility.

e Make sure that you have placed compatible APs on the floor plan.

This use case involves two scripts: main.py and mist-client.py. A third file, a CSV file called assets.csv,
contains the BLE assets and their corresponding names.

Here's the order of steps you follow when you need to import BLE assets:

1. Start by updating the main.py script with your Mist API token, Mist site universally unique identifier
(UUID), and the region (or cloud) in which your organization is hosted.

2. Next, you add, remove, or inspect the BLE devices and their names within the assets.csv file.

3. Run the main.py script, which will use the CSV content to create the assets in Juniper Mist.

Main.py Script

A lot happens behind the scenes in the main.py script. The script imports the data from the CSV file and
converts the data into JSON format. Then, for each device, the script creates a BLE asset and triggers

the mist-client.py script. This mist-client.py script does the work of making all the necessary calls to the
Juniper Mist API.

@ NOTE: Replace placeholder values with actual values, such as your API token, site ID,
and so on.

#!/usr/bin/python

#

main.py

#

Update main.py with your Mist API Token and Juniper Mist site UUID.

#

Inspect the "assets.csv" file to update the assets being created, then run this exercise to
automatically create BLE assets from CSV.

import sys, csv, json, re

from mist_client import Admin # Import the Juniper Mist client

mist_api_token = '' # Your Juniper Mist API token goes here. Documentation: https://
api.mist.com/api/v1/docs/Auth#api-token

site_id = ''" # Your Site ID goes here

csv_file = 'assets.csv'

Convert CSV file to JSON object.
def csv_to_json(file):
csv_rows = []
with open(file) as csvfile:
reader = csv.DictReader(csvfile)
title = reader.fieldnames

for row in reader:
csv_rows.extend([{title[i]: row[title[i]] for i in range(len(title))} 1)

return csv_rows

Creates BLE assets using the given CSV file and the Juniper Mist API
def create_assets(admin, data):

for d in data:
try:
mac = re.sub(r'[*0-9a-fA-F]', '', d.get('MAC', '')).lower()

assert len(mac) == 12
assert mac.isalnum()
except:
print('Invalid MAC {3}, skipping this Asset.'.format(d.get('MAC', '(none)')))

continue

Build the asset payload

payload = {'name': d['Name'].strip(), 'mac': mac}

Create the BLE Asset and note the targeted region (or cloud)

api_url = 'https://api.mist.com/api/v1/sites/{}/assets'.format(site_id)

(success, result) = admin.post(api_url, payload)

Add the new BLE Asset to the return list
if result == None:
print('Failed to create BLE Asset {}'.format(mac))
else:
if success:
print('Created BLE Asset \"{}\" ({})'.format(result.get('name', '(unnamed)'),
result['mac']))
else:
print('BLE Asset \"{}\" already exists with MAC Address {}'.format(d.get('Name',

"(unnamed)'), mac))

Main function

if __name__ == '__main_
Check for required variables
if mist_api_token == "':
print('Please provide your Mist API token as mist_api_token')
sys.exit(1)

elif site_id == '":

print('Please provide your Mist Site UUID as site_id')

sys.exit(1)

Create Mist client

admin = Admin(mist_api_token)

print()

print('Converting file {} to JSON...\n'.format(csv_file))

Convert CSV to valid JSON

data = csv_to_json(csv_file)

if data == None or data == []:
print('Failed to convert CSV file to JSON. Exiting script.')
sys.exit(2)

print(json.dumps(data, indent=4, sort_keys=True))
print('\n=====\n")

Create the BLE Assets from CSV file
print('Creating BLE Assets...\n')

create_assets(admin, data)

print()

Mist_client.py Script

The mist_client.py script functions like a regular RESTful client for interacting with the Juniper Mist API.
The script makes API calls based on the input from the CSV file and the output of the main.py script.
The mist-client.py script also error-checks the HTTP response from the API and displays the output, as
follows:

#!/usr/bin/python

#

mist_client.py

#

Mist API client session.

import json, requests

Mist CRUD operations
class Admin(object):
def __init__(self, token=''):

self.session = requests.Session()

self.headers = {

'Content-Type': 'application/json',
'"Authorization': 'Token ' + token

def get(self, url):
session = self.session

headers = self.headers

print('GET {}'.format(url))
response = session.get(url, headers=headers)

if response.status_code != 200:
print('Failed to GET')
print('\tURL: {}'.format(url))

print('\tResponse: {} ({})'.format(response.text, response.status_code))

return False

return json.loads(response.text)

def post(self, url, payload, timeout=60):
session = self.session

headers = self.headers

#print('POST {}"'.format(url))
response = session.post(url, headers=headers, json=payload)

if response.status_code == 400:
return (False, response.text)

elif response.status_code != 200:
print('Failed to POST')
print('\tURL: {}'.format(url))
print('\tPayload: {}'.format(payload))

print('\tResponse: {} ({})'.format(response.text, response.status_code))

return (False, None)

return (True, json.loads(response.text))

Assets.csv

In this example, the assets.csv file resides in the same directory as the mist_client.py and main.py files.
The following example shows how to format the CSV file with the name of the BLE asset and its
associated MAC address:

Name ,MAC

Amber Badge,aa:bb:cc:dd:ee:ff
Mark Badge,11-22-33-44-55-66

Invalid MAC,xx.yy.zz.xx.yy.zz

Automation goes beyond just using RESTful APIs and Python. Other options like WebSocket and
webhook APIs are available. You can explore these other options for automation purposes.

Use the REST API to Add ACL Tags to a Switch (Use Case)

SUMMARY IN THIS SECTION

Read this topic to understand the role Access Add ACL Tags to a Switch | 168
Control Lists (ACLs) play in API access control.

You can use Access Control Lists (ACLs) in the API to allow or deny traffic between clients on a
connected switch. You must configure separate rules for both inbound and outbound traffic. ACLs are
mainly used to control intra-VLAN traffic, whereas any inter-VLAN traffic is filtered by the stateful rules
of the router or firewall.

@ NOTE: You can only configure and manage ACLs in the API at this time. This
functionality is not fully available in the Mist portal, as configuring from the portal
requires you to configure filters on the RADIUS server first, and then create the switch
policies in the Mist portal. See Firewall Filters.

Add ACL Tags to a Switch

In the Mist API, you can apply ACLs to all switches in a site, rather than having to manage ACLs at the
device level. You can assign permissions to switches using ACL policies and ACL tags. ACL tags enable

you to define permissions within them, then you assign the tags where access control is needed in the
policy. In other words, ACL tags are reusable network objects that can be referenced in ACL policies.

@ NOTE: ACL configuration in the Mist APl is only available for switches at this time.

Let's say you want to control the traffic that will be forwarded by a switch, for example, if you want to
allow or deny certain traffic from a wired client to the rest of the network. To do this, you can add ACL
tags in the ACL policy to control the allowed or denied traffic sources and destinations from which the
switch is allowed to forward traffic.

You can set these rules in the APl by adding the source and destination tags within the acl_tags object
referenced within the acl_policies and specify the action you want the switch to take (allow or deny)
when the traffic matches the ACL tags. Remember, you must configure separate rules for both inbound
and outbound traffic due to the stateless nature of ACLs.

You can configure this from the Mist AP| Reference by navigating to Update Site Device > Body >
Device Switch.

Below is a sample payload of the ACL policy configuration and the definitions for each of the ACL tags
are featured therein:

{
// Defines the ACL Tags - these are reusable network objects that can be referenced in
policies
"acl_tags": {
"iot_device": { // Defines the Source ACL Tag - represents IoT devices
"type": "port_usage", // Type indicates this tag is based on port profile usage
"port_usage": "iot", // On which Port Profiles the ACL must be applied
"subnets": [// Source IP addresses/ranges that match this tag
"192.168.1.30/32"
1
"specs": [// Additional specifications for traffic matching
{
]
B
"iot_network": { // Defines the Destination ACL Tag - represents allowed IoT
services
"type": "resource", // Type indicates this tag represents a network resource/
destination
"subnets": [// Destination IP addresses/ranges for this tag

"192.168.1.0/24"
1,

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

"specs": [// Specifies the traffic characteristics - what protocols/

ports are allowed

{
"protocol": "tcp",
"port_range": "1883"
}
1
"ether_types": [] // Ethernet frame types (empty means all types allowed)

I
// Defines the ACL Policies - rules that govern traffic flow

"acl_policies": [

{
"name": "iot_policy",
"src_tags": [// Source tags that this policy applies to
"iot_device" // References the iot_device tag defined above
1
"actions": [// What actions to take when traffic matches the source tags
{
"dst_tag": "iot_network", // Destination tag for this action
"action": "allow" // Action to take (allow/deny) for matching
traffic
"dst_tag": "any", // any is implicitly defined as all destinations
"action": "deny" // Action to take (allow/deny) for matching
traffic
}
]
}

For more information on the available ACL tags you can add, see Acl Tag.

Create API Tokens | 15

No Link Title

https://www.juniper.net/documentation/us/en/software/mist/api/http/models/structures/acl-tag

171

RELATED DOCUMENTATION
Automatic Site Creation (Use Case) | 157
Renaming APs (Use Case) | 157

BLE Import (Use Case) | 163

CHAPTER

Webhooks

SUMMARY

Use the information in this chapter to
get started with webhooks.

IN THIS CHAPTER

Webhooks Overview | 174

Configure Webhooks from the
Juniper Mist Portal | 213

Configure Webhooks from the
API | 222

Testing Webhooks | 228

Get Started with Webhooks |
235

Webhooks Use Cases | 237

Video Overview

What Do You Want to Do?

Table 7: Top Tasks
If you want to... Use these resources:
Learn about webhooks "Webhooks Overview" on page 174

What are webhooks? Learn about the message flow,
source addresses, webhook hierarchy, webhooks
topics, alerts, and messages.

Configure Webhooks for the alerts that you want to "Configure Webhooks from the API" on page 222
receive
"Configure Webhooks from the Juniper Mist Portal" on
Use the API or the UI. page 213
See webhooks in action "Configure Zone Entry and Exit Events (Use Case)" on
page 237

Learn more by studying a use case involving Juniper
Mist location services.

https://mist.wistia.com/embed/iframe/eu7bvvc6d3

Webhooks Overview

SUMMARY IN THIS SECTION
Start getting familiar with webhooks and how they Webhook Message Flow | 176
compare to APIs. Webhook Source Addresses | 177

Webhook Hierarchy | 179
Webhook Topics | 183
Webhooks and Alerts | 190
Webhook Messages | 201

You can configure webhooks to get real-time notifications as events happen across your Juniper Mist
organization or within a particular Juniper Mist site.

You may know webhooks as user-defined HTTP callbacks, HTTP posts, or HTTP notifications. These
notifications include event details that you can use in your own applications or third-party software.

As you begin working with webhooks, it can be helpful to compare them with APIs. APIs work on a pull
or polling model. You create an API call, and Juniper Mist responds with the requested data. In contrast,
webhooks work on a push model. After you configure a webhook, you receive data as events occur.

Org Webhooks enable real-time data from the organization to be pushed to a provided URL. To learn
more, see Org Webhooks.

Site Webhooks enable real-time data from a specific site to be pushed to a provided URL. To learn more,
see Site Webhooks.

APIls Webhooks

"Any new data?"
"New datal"

"Here you go!"

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/overview

Table 8: REST APIs and Webhooks Comparison

REST APIs Webhooks
Model Pull or polling model Push model
Limit 5000 per organization per hour No limit
Operations Pull statistics, create configuration, Push alerts and key statistics

update configuration
Coverage 100 percent Alerts, key events, or location

Recommended use cases Automation, configuration Integration with third-party
monitoring tools or business
applications

@ NOTE: The concepts of alerts and alarms are considered interchangeable. However,
when configuring an alert, you should make note of the alert or alarm syntax and use
what is displayed.

API Call Structure for Webhooks

You can configure webhooks to obtain real-time data and notification of events as they occur within
your Mist organization or within a particular site. After you configure a webhook, you can issue an API
call where you specify a particular webhook to obtain data. The following image is an example of such
an API call. The call specifies the APl endpoint (prefix), the organization ID, the resource (webhooks), and
webhook ID (a7c61a9¢c-a25b-4c27-XXXX~XXXXXXXXXXXX).

Organization ID Specific Webhook ID
[! [1
api.mist.com/api/vl/orgs/3£12cb79-fb5e-4d4b-XXXX-XXXXXXXXXXXXX/Webhooks/a7c61ladc-a25b-4c27 -XXXX - XXXXXXXXKKKX
|
Prefix/Version/Scope Resource

jn-000709

Webhook Message Flow

SUMMARY

Learn how Juniper Mist sends event information with webhooks.

As opposed to clients polling and pulling information from the API, Juniper Mist pushes webhooks to a
target webhook URL. There, underlying services can collect, store, or parse the message for specific data

and then perform actions on the infrastructure automatically.

Not all events are aggregated. Some messages are directly sent. For the aggregated webhooks, it takes

less than five seconds between when the event occurs on the network device and when the event is

aggregated and sent to the destination URL.

This image shows the stages of data flow for webhooks.

Network Device

Managed by Mist Mist Cloud

Webhook Endpoint

®

Mist processes
Event occurs p

event

Consult webhook
configuration

@ Aggregate and
send webhooks
to destination URL

HTTP
Post

Customer webhook
receiver

in-000708

1. An event occurs on a network device that Juniper Mist manages.

2. Juniper Mist processes the event and checks the current webhook configuration for a match.

3. If Juniper Mist finds a match, it sends the webhook to the endpoint URL as configured.

4. If multiple events for a specific topic occur within a certain timeframe, Juniper Mist aggregates the

events and sends them in a single message.

Webhook Source Addresses

SUMMARY IN THIS SECTION

Configure your firewall to allow traffic from the IP Source Addresses for Juniper Mist Cloud
Webhooks Source IP addresses for your cloud Instances | 177

instance in order to receive event information via

webhooks.

IP Source Addresses for Juniper Mist Cloud Instances

When you configure webhooks to use in your Juniper Mist network, you need to specify the URL of a

public-facing webhook receiver where Mist can send messages. In other words, enable these source IP
addresses on your firewall which are used to send out the API stream from the Mist cloud. The source

IPs for Webhooks are Static IP Addresses.

To ensure that your server receives the HTTP messages from the Juniper Mist cloud, configure your
firewall to allow traffic from the Webhooks Source IP addresses for your cloud instance.

@ NOTE: These are static IP addresses.

Table 9: Webhooks Source IP Address by Region

Region Source IPs
Global 01 54.193.71.17 54.215.237.20
Global 02 34.94.226.48/2
8(34.94.226.48
- 34.94.226.63)
Global 03 34.231.34.177 54.235.187.11 18.233.33.230

Global 04 34.152.4.85 35.203.21.42 34.152.7.156

Table 9: Webhooks Source IP Address by Region (Continued)

Region Source IPs
Global 05 35.192.224.0/2
9

(35.192.224.0 -

35.192.224.7)
EMEA 01 3.122.172.223 3.121.19.146 3.120.167.1
EMEA 02 35.234.156.66
EMEA 03 51.112.15.151 51.112.76.109 51.112.86.222
EMEA 04 34.166.152.112

/29

(34.166.152.11
2-
34.166.152.119
)

APAC 01 54.206.226.168 @ 13.238.77.6 54.79.134.226
APAC 02 34.47.180.168/
29

(34.47.180.168

34.47.180.175)

APAC 03 34.104.128.8/2
9

(34.104.128.8 -
34.104.128.15)

You can use the Juniper Mist webhook ping to test connectivity from your Mist cloud through your
network infrastructure. For more information, see "Testing Webhooks" on page 228, Ping Site Webhook,
and Ping Org Webhook.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/ping-site-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/ping-org-webhook

Webhook Hierarchy

SUMMARY IN THIS SECTION
Understand the relationship between organization- Webhook Hierarchy Overview | 179
and site-level webhooks. Get familiar with the Organization Webhooks | 179

webhook topics that you can configure at each
level. Site Webhooks | 180

Webhook Hierarchy Overview

Juniper Mist has two configuration hierarchies for webhooks: the organization level and site level. The
configuration method is the same for both; however, not all webhooks are available at both levels.

o All webhooks that are available at the organization level are also available for specific site-level
webhooks.

e The available site-level webhooks are not available at the organization level.
Be aware of the hierarchy when configuring webhooks.

As an example, if you have two sites and you configure the Alerts webhook at the organization level,
you will receive all organization-level alerts for both sites.

Conversely, if you do not configure the Alerts webhook at the organization level and only configure the
Alerts webhook on one of the two sites, you will receive alerts only for that single site.

Finally, if you configure the Alerts webhook at the organization level and a single site, the webhook
receiver will receive duplicate messages (assuming they are sent to the same receiver URL).

You can configure multiple webhook receivers for a single webhook (and its topics) from the API. It is
recommended to have a single webhook that includes all the available topics and then parse the
information that you want from messages received by the webhook receiver.

Organization Webhooks

An Org Webhook is a configuration that enables organization data to be pushed to a specified URL. You
can customize org webhooks using the Mist RESTful API, which enables you to obtain data from a
specific organization.

You can configure these topics at the organization level:

Table 10: Organization Webhooks

Topic Description

Alerts Juniper Mist-defined alarm events configurable on a
per-site basis in the alert framework.

Audits A topic that tracks configuration changes made from
the Juniper Mist dashboard.

Client Join The webhook that Juniper Mist triggers whenever a
client joins a wireless network.

Client Information A topic that includes information about each client.

Client Sessions The topic that includes information about the client
sessions.

Device Events A topic that is specific to events that occur on devices

(currently AP, switch, and gateway)

Device Up/Downs The topic that generates a message when a device
starts up or goes down.

Juniper Mist Edge Events The topic that generates messages for a Juniper Mist
Edge port and link status changes and link aggregation
control protocol (LACP) port and link changes.

Site Webhooks

IN THIS SECTION

Location Webhooks | 181
Network Service Webhooks | 182
Infrastructure Webhooks | 182

BLE Asset RSSI | 183

A Site Webhook is a configuration that enables site data and events to be pushed to a specified URL.
You can customize site webhooks using the Mist API so that you can obtain data from a particular site.

You can configure these topics at the site level. The topics are classified under two categories—Standard
and Advanced. You can select either one topic under the Advanced category or multiple topics under
the Standard category for a webhook. You cannot select topics from both categories.

Location Webhooks

To use location webhooks, you must upload a floorplan with accurate AP placement through the Juniper
Mist portal to correlate the client data. For more information, see the Floorplan Setup Overviewin the
Juniper Mist Location Services Guide.

Note that when you select the Location Coordinates topic, a new WiFi Client topic appears, which
includes subtopics for Connected, Unconnected, and Centrak webhooks. For Centrak users, this means
you can decouple unconnected Wi-Fi from your Centrak Wi-Fi location tags (OUI: 00:12:b8), that is,
only send Centrak data instead of every unconnected Wi-Fi client.

Table 11: Location Webhooks

Topic Description

Entry/Exit Events Data pushed any time a client enters or exits one of

. these areas.
e |ocation Zone

e Proximity Zone

e Virtual Beacon

Occupancy Alerts Alerts on a configured zone occupancy threshold being
exceeded.

SDK Client Scan Data Specific data about a client that isn't available without
installing an application (using the SDK) on the client
itself.

X/Y Coordinates Data sent at regular intervals of:

e Named Assets e Approximately 2 seconds for Named Assets.

e SDK Clients e Approximately 1 second for SDK Clients.

Table 11: Location Webhooks (Continued)

Topic

Asset Raw

Network Service Webhooks

Table 12: Network Service Webhooks

Topic

Latency

Description

This topic will be deprecated. Use the "BLE Asset RSSI"
on page 183 topic.

Description

A webhook that provides DHCP, DNS, and
authentication latency information aggregated across
all the client devices at the site level.

@ NOTE: You'll need a Marvis subscription to subscribe to this webhook.

Infrastructure Webhooks

Table 13: Infrastructure Webhooks

Topic

Alerts

Audits

Client Information

Description

Juniper Mist-defined alarm events configurable on a
per-site basis in the alert framework.

A topic that tracks configuration changes made from
the Juniper Mist dashboard.

The webhook that includes information about each
client.

Table 13: Infrastructure Webhooks (Continued)

Topic

Client Join

Client Sessions

Device Events

Device Up/Downs

Mist Edge Events

BLE Asset RSSI

Description

The webhook that Juniper Mist triggers whenever a
client joins a wireless network.

The webhook that includes information about the
client sessions.

A topic that is specific to events that occur on devices
(currently AP, switch, and gateway)

The topic that generates a message when a device
starts up or goes down.

The topic that generates messages for a Juniper Mist
Edge port and link status changes and link aggregation
control protocol (LACP) port and link changes.

The BLE Asset RSSI topic sends telemetry BLE data based on the named asset.

Webhook Topics

SUMMARY

Examine the various webhook topics that are

available for Juniper Mist™ organizations and sites.

IN THIS SECTION

After you enable webhooks at the organization, site, or both levels, select the topics that you want to

receive messages for.
Use the following tables to learn more.

Table 14: Both Organization and Site Topics

Topic

alerts (alarms)

audits

client-info

Purpose and Payload Details

User-selected alarms for devices and infrastructure,
Marvis actions, and security. To find alerts in the
Juniper Mist portal, select Monitor > Alerts > Alerts
Configuration from the left menu.

Examples

e Devices and infrastructure: Device down, device
restarted, VPN peer down, ARP failure, DNS
failure.

e Marvis: Faulty cable, failed AP health check, poor
Wi-Fi coverage, port flapping, bad WAN uplink.

e Security: KRACK attack, TKIP ICV attack, rogue
client, rogue AP, honeypot.

Depending on the type of alarm, the payload may
include details such as the IDs of the organization and
site, the event type, the severity, and the count of each
event type during the aggregation interval.

To see which alarms are available and get examples of
their payloads, from a REST API client, issue the
following API call: GET /api/v1/const/alarm_defs

A topic that all Mist configuration changes trigger this
topic.

The payload includes details such as the
administrator’s name and username, the device ID, the
type of change, and the timestamp for the change.

Use this webhook to get wireless client information
events.

The payload includes details about the client such as
the hostname, IP address, MAC address, org and site
ID, and timestamp of the IP assignment.

Table 14: Both Organization and Site Topics (Continued)

Topic

client-join

client-sessions

device-events

device-updowns

Purpose and Payload Details

Client connections only.

The payload includes details such as the IDs of the
organization and site; the MAC address and name of
the AP that the client connected to; and the WLAN ID,
band, SSID, RSSI, and timestamp for the connection.

Client session information.

The payload includes details such as the MAC address
and name of the AP that the client roamed to or
disconnected from, the WLAN ID, the band, the device
family (“Mac,” “iPhone,” “Apple watch”), the client
manufacturer and model, the timestamps for the
connection and disconnection, the float duration, the
RSSI, and the termination reason.

Use this webhook to get a list of possible events
affecting access points, switches, and gateways. This
topic includes events such as port up or down, AP
power changes, and channel changes.

The payload for this webhook may include details such
as the IDs of the organization and site, the MAC
address and name of the device, and the timestamp of
the event, but can vary depending on the exact type of
device event.

To see which alarms are available and get examples of
their payloads, issue the following API call from a REST
API client: GET /api/v1/const/device_events

Device disconnects, reconnects, and restarts.

The payload includes details such as the IDs of the
organization and site, the type of event, and the
device’s MAC address and name.

To configure device-updowns in the Juniper Mist portal,
select Monitor > Alerts > Alerts Configuration from the
left menu. Here you can configure more granular
control of the types of devices and alert thresholds.

Table 14: Both Organization and Site Topics (Continued)

Topic

mxedge-events

nac-accounting

nac-events

ping

Table 15: Site-Only Topics

Topic

asset-raw-rssi

Purpose and Payload Details

Use this webhook to get a list of possible Mist Edge
events, including details such as Juniper Mist Edge
physical and LACP link status.

Use this webhook to get a list of any possible Juniper
Mist network access control (NAC) account events
(ACCOUNTING_START, ACCOUNTING_STOP,
ACCOUNTING_UPDATE).

The payload includes details such as timestamp, AP,
client_ip, SSID, username, client_type, client_mac,
nas_vendor, site_id, rx_pkts, and tx_pkts.

This webhook triggers with any Juniper Mist network
access control (NAC) events.

The payload may include details such as auth_type,
bssid, idp_role, random_mac, resp_attrs, but can vary
depending on the type of nac event.

A ping event that goes to the webhook URL.

The payload includes the site ID, the webhook ID and
name, and the timestamp.

Purpose and Payload Details

Replaces deprecated topic named asset-raw.

Raw data from packets emitted by named and filtered
assets.

The payload includes details such as the IDs of the
organization, site, map, AP, antenna, and asset; the AP
location; the RSSI; the beacon UUID and
manufacturer; the service packets; and data.

Table 15: Site-Only Topics (Continued))
Topic

client-latency

discovered-raw-rssi

guest-authorizations

location

location-asset

Purpose and Payload Details

DHCP, DNS, and authentication latency information
aggregated across all the client devices at the site level.
Latency data is provided for a 10-minute window at
10-minute intervals. We recommend that you use this
webhook to receive network latency data instead of
polling through the API.

NOTE: You'll need a Marvis subscription to
subscribe to this webhook.

Raw data from packets emitted by passive BLE.

The payload includes details such as the IDs of the
organization, site, map, reporting AP, and antenna; the
MAC address; the asset ID, manufacturer, and UUID of
the asset/beacon; and the RSSI.

Data for guest clients when they authorize at a WLAN.

The payload includes details such as AP, auth_method,
authorized_expiring_time, carrier, client, company,
email, mobile, name, org_id, site_id, sms gateway,
sponsor_email, ssid, and wlan_id.

Location data for Juniper Mist SDK clients, wireless
clients, and assets.

Data includes details such as the site and map IDs, X
and Y coordinates, timestamp, the type of client, and
the client ID or MAC address.

Location data for Juniper Mist assets (BLE client
devices).

Data includes details such as the site and map IDs, X
and Y coordinates, timestamp, the type of asset, and
the asset's MAC address.

Table 15: Site-Only Topics (Continued))
Topic

location-centrak

location-client

location-sdk

location-unclient

occupancy-alerts

Purpose and Payload Details

CenTrak data sent by Mist APs to centrak servers via
webhooks.

The data includes X,Y coordinates, timestamp, site ID,
and Wi-Fi beacon extended info. Different fields will
be present depending on the alarm event type.

Location data for Juniper Mist SDK clients, and
wireless clients.

Data includes details such as the site and map ID, X
and Y coordinates, timestamp, the type of client, and
the client MAC address.

Location data for Juniper Mist SDK clients.

Data includes details such as map ID, the type of client,
and X and Y coordinates.

Location data for Juniper Mist SDK clients or wireless
clients when the client device disconnects from the
network or is no longer detected in a specified
location.

The payload data includes details such as map ID, X
and Y coordinates, Wi-Fi beacon extended info, and
the client MAC address.

Occupancy status based on the configured occupancy
limits.

The payload includes details such as the IDs of the
organization, site, map, and zone; the event
(“COMPLIANCE-VIOLATION" or “COMPLIANCE-
OK"); the timestamp; the occupancy limit; and the
current occupancy.

Table 15: Site-Only Topics (Continued))
Topic

rssi-zone

sdkclient-scan-data

vbeacon

wifi-conn-raw

wifi-unconn-raw

zone

Purpose and Payload Details

Devices near an access point.

This topic provides information about devices entering
or exiting a zone around an AP where the RSSI
received by the AP is above a configurable threshold.
You can create a new RSSI zone for each AP and
include the RSSI Zone name and an RSSI Zone
threshold.

Location data for Juniper Mist SDK clients. The data
includes details such as the band, channel, SSID,
BSSID, and RSSI for the connection; the AP's MAC
address; list of neighboring APs; the timestamp when
the client was last seen; and the timestamp for the
scan.

Devices near a virtual beacon.

This topic provides information about devices in
proximity to a configured vbeacon. Use this webhook
with the Juniper Mist SDK.

Raw data from packets emitted by connected and
unconnected devices.

The payload includes details such as the IDs of the
organization, site, map, and reporting AP; the location
coordinates of the AP; the RSSI and band; and the
payload from the Wi-Fi beacon. It does not include the
client’s location data.

Location data for virtual beacons on your floorplan,
pushed when a client enters or exits a zone.

The data includes details such as the site, map, and
zone IDs, the timestamp, the trigger (enter or exit), the
client type (SDK client, wireless client, or asset), and
the ID or MAC address of the client.

Webhooks and Alerts

SUMMARY IN THIS SECTION

Learn about the various alerts and alarms that you Configuring Alerts | 190
can enable in Juniper Mist™. Webhook Alert Types | 191
Viewing Alert Details | 199

Event Aggregation | 200

Configuring Alerts

You can configure alerts for an entire organization, single sites, or multiple sites from the Alerts
Configuration page in the portal.

Applies to Scope

Default

Email Recipients Settings

Alert Types
Aterts

@ NOTE: To find this page, select Monitor > Alerts > Alerts Configuration from the left
menu of the Juniper Mist portal.

All the alerts visible here are available to send an alert webhook by simply enabling the alert.
The alerts are broken down by color based upon severity, as follows:

o Red—Critical

e Orange—Warning

e Blue—Informational

The alarms are also categorized into these groups:

e Infrastructure—Infrastructure alarms don't keep state. They are based directly off device events.
When you monitor devices from infrastructure alarms, you typically either treat each event as a
standalone event, or you match stateful device changes.

e Marvis—Marvis events are events identified under Marvis Actions. These events are generally
stateful. Inside their payload is a key called details. Under details you can see state and the values:
open Or validated.

e open means this issue is currently happening.

e validated means that Marvis has validated that the issue is resolved. After the issue is deemed to
be validated, the same webhook type will be set with the updated state.

Because of the Al nature of Marvis actions, Marvis requires sufficient data to ensure that these
alarms are accurate and actionable. Marvis needs to accumulate enough data to eliminate false
positives. This requirement results in a varying number of times for the events to arrive.

e Security—Most of the events in security are single-time events. These alerts will detect only specific
attacks and don’t determine if the attack is active. Rogue APs are rate-limited to reporting once every
10 hours. Rogue clients and Honeypot AP events are sent once every 10 minutes.

The following alerts also have configurable failure thresholds:
e ARP Failure

e DHCP Failure

o DNS Failure

e Device Offline

For information about configuring alerts, see the Alert Configuration information in the Juniper Mist
Network Monitoring Guide.

Webhook Alert Types

Table 16: Webhook Alert Table

Alert/Webhook Name Group Category Description Triggering Mechanism
adhoc_network Security AP Adhoc network One or more APs detected
detected an unauthorized adhoc

network.

Comments

https://www.juniper.net/documentation/us/en/software/mist/net-monitor/topics/topic-map/mist-alert-configuration.html

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

air_magnet_scan

ap_bad_cable

ap_offline

arp_failure

authentication_failure

bad_cable

Group

Security

Marvis

Marvis

Marvis

Marvis

Marvis

Category

AP

AP

AP

connectivity

Connectivity

Switch

Description

Air Magnet Scan
detected

Bad Ethernet
cable connected
to a Juniper AP

Offline (Marvis)

Site-wide wireless
connection
failures

Site-wide wireless
and wired
connection
failures

Faulty cable
connected to a
Juniper
switchport

Triggering Mechanism

Someone is running Air
Magnet scan for RF analysis.

Frequent ethernet
disconnects, restarts,
increasing ethernet errors,
connecting at 100Mbps

e Site down—All APs lose
connection around the
same time.

e Switch down/issue—All
APs on the same switch
lose connection around
the same time.

e Locally online—AP is
heard locally but lost
cloud connection.

e Locally offline—AP is not
heard locally and lost
cloud connection.

Sudden increase in failures
across the site OR 100%
failures on a server/
WLAN/AP

Sudden increase in failures
across the site OR 100%
failures on a server/switch/
WLAN/VLAN/AP

Port errors, power draw
without ethernet link,
increase in bytes out and O
in (and vice versa)

Comments

Req SUB-
VNA

Req SUB-
VNA

Req SUB-
VNA

Req SUB-
VNAOR
SUB-
SVNA

Req SUB-
VNA

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

bad_wan_uplink

beacon_flood

bssid_spoofing

device_down

device_restarted

dhcp_failure

disassociation_flood

dns_failure

Group Category
Marvis Router
Security

Security AP

Infrastructure AP

Infrastructure AP

Marvis Connectivity
Security AP
Marvis Connectivity

Description

Underperforming/
problematic
interface (SRX,
SSR)

Fake AP Flooding
detected - a flood
of new BSSIDs

BSSID Spoofing
detected

Device offline

Device restarted

Site-wide wireless
and wired
connection
failures

Disassociation
Attack detected

Site-wide wireless
connection
failures

Triggering Mechanism Comments

Latency, jitter, packet loss, Req SUB-
output drops & drop in WNA
transmit packets

The number of new SSIDs
scanned by an AP exceeds
the defined threshold during
a defined time frame.

A device with signal strength
of -30dBm or worse is
broadcasting the same
BSSID as an AP with a good
signal strength.

An AP disconnects from the
cloud for longer than the
configured threshold.

An AP restarts.

Sudden increase in failures Req SUB-
across the site OR 100% VNAOR
failures on a server/WLAN/ SUB-
VLAN/AP. SVNA

Juniper Mist detects a DoS
attack in which the attacker
disassociates a victim device
from an AP by using a
specific disassociation frame
as specified under IEEE
802.11.

Sudden increase in failures Req SUB-
across the site OR 100% VNA
failures on a server/

WLAN/AP.

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

eap_dictionary_attack

eap_failure_injection

eap_handshake_flood

eap_spoofed_success

eapol_logoff_attack

essid_jack

excessive_client

excessive_eapol_start

gateway_down

gw_bad_cable

Group

Security

Security

Security

Security

Security

Security

Security

Security

Infrastructure

Marvis

Category

AP

AP

AP

AP

AP

AP

AP

AP

SRX

Router

Description

EAP Dictionary
Attack detected

EAP Failure
Injection detected

EAP Handshake
Flood detected

EAP Spoofed
Success detected

EAPOL-Logoff
Attack detected

ESSID Jack
detected

Excessive Clients
detected

Excessive EAPOL-
Start detected

WAN Edge offline

Faulty cable
connected to a
Juniper gateway
(SRX only) port

Triggering Mechanism Comments

Multiple password failures in
which someone attempts to
guess a password by trying
different dictionary words.

Someone sends fake EAP
failures.

Some client or simulator
generates a floods of EAPOL
messages requesting 802.1x
authentication.

Someone sniff EAP packets
and tries to send fake EAP
success.

Some client or simulator is
sending excessive EAP logoff
messages.

Some client or simulator
tries to send a broadcast
probe request.

The number of clients
associated with an AP
exceeds the configured
threshold.

Some client or simulator is
sending excessive EAP
START messages.

An SRX is offlin.

Interface stat errors, input/ Req SUB-
output bytes being O WNA

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

gw_dhcp_pool_exhausted

gw_negotiation_mismatch

health_check_failed

honeypot_ssid

idp_attack_detected

infra_arp_failure

infra_dhcp_failure

infra_dns_failure

Group

Infrastructure

Marvis

Marvis

Security

Security

Infrastructure

Infrastructure

Infrastructure

Category

SRX

Router

AP

AP

SRX/SSR

AP

AP

Description

WAN Edge DHCP
Pool Exhausted

Difference in
MTU packet size
seen in the
network (SRX
only)

Unhealthy APs to
be replaced

Honeypot SSID

IDP attack
detected

Gateway Arp

failure

DHCP Failure

DNS Failure

Triggering Mechanism Comments
WAN Edge DHCP pool has

been exhausted,

Packets being fragmented, Req SUB-
MTU errors. WNA
Failure of auto-remediation/ Req SUB-
self-healing on an AP. VNA

Unauthorized APs
advertising your SSID.

SRX or Session SMart
Router reports
IDP_ATTACK_LOG_EVENT
type events.

The ARP request for the
default gateway is not
receiving any response.

More than 10 clients are
impacted by a failing/
unresponsive DHCP server
within a window of 10
minutes.

More than 10 clients are
impacted by a failing/
unresponsive DNS server
within a window of 10
minutes, an email will be
triggered for this event.

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

insufficient_capacity

insufficient_coverage

krack_attack

loop_detected_by_ap

missing_vlan

monkey_jack

negotiation_mismatch

non_compliant

out_of_sequence

Group

Marvis

Marvis

Security

Infrastructure

Marvis

Security

Marvis

Marvis

Security

Category

AP

AP

AP

Wireless

Switch

AP

Switch

AP

AP

Description

AP(s) with low
Wi-Fi capacity

Areas around
AP(s) with
consistent poor
Wi-Fi coverage

Replay Injection
detected -
KRACK Attack

AP has detected
loop via reflection

VLAN configured
on AP missing on
switch port or
upstream

Monkey Jack
detected

Difference in
settings between
a wired client &
connected port

APs with
mismatched
firmware

Out of Sequence
detected

Triggering Mechanism

After RRM changes, one or
more clients have heavy

consumption that results in
high AP channel utilization.

After RRM changes, clients
still have consitently low
RSSI.

One or more APs detect
KRACK attack attempts.

An AP recieves a frame that
it sent out.

An AP observes traffic on
each VLAN and compares
between APs on the same
switch and other APs in the
site.

An AP detects a Man In the
Middle attack attempt.

Duplex mismatch and/or
auto-negotiation failing

APs have a different
firmware version than most
other APs of that model
model at that site.

Excessive out of sequence
packets.

Comments

Req SUB-
VNA

Req SUB-
VNA

Req SUB-
VNAOR
SUB-
SVNA

Req SUB-
VNA

Req SUB-
VNA

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

port_flap

repeated_auth_failures

rogue_ap

rogue_client

ssid_injection

sw_alarm_chassis_partition

sw_alarm_chassis_pem

sw_alarm_chassis_poe

sw_alarm_chassis_psu

Group

Marvis

Security

Security

Security

Security

Infrastructure

infrastructue

Infrastructure

Infrastructure

Category

Switch

AP

AP

AP

AP

Switch

Switch

Switch

Switch

Description

Port constantly
going up & down

Clients with
Repeated Client
Authentication
Failures

Rogue AP
detected

Client Connection
to rogue AP
detected

SSID Injection
detected: Detects
malicious looking
SSID names with
possible code
injection in name

Switch Storage
Partition Alarm

Switch PEM
Alarm

Junos POE
Controller Alarm

Junos Power
Supply Alarm

Triggering Mechanism

Port flapping with high
frequency and continuously.

A client faces continues
client authentication failures
due to an unreachable
RADIUS server, wrong
shared secret etc.

Juniper Mist detects an AP
not claimed into your
organization but connected
on the same wired network.

A Client associates to a
Rogue AP (an AP not
claimed into your
organization but connected
to the same wired network).

Juniper Mist detects
potential code injection
language in an SSID name.

Partition usage is high.

PEM issues, fault slot,high
CPU, issues with CB, and so
on.

Hardware issues.

Missing power supply.

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

sw_bad_optics

sw_bgp_neighbor_state_changed

sw_bpdu_error

sw_dhcp_pool_exhausted

switch_down

switch_restarted

switch_stp_loop

tkip_icv_attack

url_blocked

vc_backup_failed

vc_master_changed

vc_member_added"

Group

Infrastructure

Infrastructure

Infrastructure

Infrastructure

infrastructue

Infrastructure

Marvis

Security

Security

Infrastructure

Infrastructure

Infrastructure

Category

Switch

Switch

Switch

Switch

Switch

Switch

Switch

AP

SRX/SSR

Switch

Switch

Switch

Description

Switch Bad
Optics

BGP Neighbor
State Changed

Switch BPDU
Error

Switch DHCP
pool has been
exhausted,

Switch offline

Switch restarted

Same frame is
seen by a switch
multiple times

TKIP ICV Attack

URL blocked

Virtual Chassis -
Backup Member
Elected

Virtual Chassis -
New device
elected for Active
Role

Adding a new VC
member

Triggering Mechanism Comments

Bad transceiver.

BGP peering goes up or

down.

Possible bridging loop.

The switch's DHCP pool has

been exhausted.

A switch is offline.

A switch restarted.

Frequent STP topology Req SUB-

changes along with sudden VNA
increase in TX/RX.

An AP detects TKIP MIC
failures in excess of the
configured threshold.

SRX or SSR reports
WEBFILTER_URL_BLOCKED
type events.

A new VC member was
added.

Table 16: Webhook Alert Table (Continued)

Alert/Webhook Name

vc_member_deleted

vendor_ie_missing

vpn_path_down

vpn_peer_down

WAN Edge Offline

watched_station

zero_ssid_association

Viewing Alert Details

Group

Infrastructure

Security

Marvis

Infrastructure

Infrastructure

Security

Security

Category

Switch

AP

Router

SRX

SSR

AP

AP

Description

Virtual Chassis
Member Deleted

Mist vendor |IE
missing in beacon
or probe response

VPN peer path
down (SSR only)

VPN Peer Down

WAN Edge offline

Active Watched
Station detected

Zero SSID
Association
Request detected

Triggering Mechanism

A VC member was deleted.

Impersonation of sanctioned
Mist APs.

100% failure of a peer path.

An IPSec tunnel goes down
for WAN interfaces between
hub and spoke.

A WAN Edge device is
offline.

Juniper Mist detects a client
or station that is listed in the
Watched Station list.

An AP scans a beacon that
contains a zero length SSID.

To see the full list of alarm types and their definitions, you can issue the following request:

GET /api/v1/const/alarm_defs

The following animation demonstrates issuing a GET call from the Mist API Reference in order to get a
list of the definitions for all of the supported alarm types. The Response displays useful information such
as the key, group, severity, and example, which shows examples of the messages you receive from that

Comments

Req SUB-
WNA

particular webhook.

% juniper.net entation/us/e /api/http/api/cons alarm-definitions

Home > Documentation > MistAl > For Developers

JUNEEL Mist API Reference

API / Constant:

List Alarm Definitions

GETTING STARTED Get List of brief definitions of all the supported alarm types.

& APISpec

How to Get Started
The example field contains an example payload as you would recieve in the alarm webhook output.

HA cluster node names will be specified in the node field, if applicable!

Overview v

Authentication v
GET /api/vi/const/alarm_defs

WALKTHROUGH

Marvis N

®)] Authentication v
- This endpaintrequires apiToken OR basicAuth OR (basicAuth AND csToken)

Self v
e X I API Code Playground

Sites v

Orgs v
l @ This endpoint does not take any parameters.

Msps 2 7*

Installer v

Utilities v

] Responses
Constants ~
o200
Defnitions v

Events ~ List of Alarm Definitions
5 Overview
Content Type: application/json
List Alarm Definitions

List Client Events Type
Definitions

[It

vice Events © Configure TRYITOUT

To try this out, see List Alarm Definitions.

The table presents detailed information for just some of the alerts.

@ NOTE: In the following table, you can see the subscription requirements for the given
webhook. Common webhooks alerts related to audit logs, alarms, or device events, for
example, will require you to have a subscription to one of the following: Wireless, Wired,
or WAN Assurance.

Within each alarm is contextual data that you can extrapolate for event correlation comparing multiple
devices. You can find examples of all the existing alert (alarm) definitions with the function /api/v1/const/
alarm_defs (link requires you to be logged in to Juniper Mist).

Event Aggregation

Juniper Mist aggregates events based on topics that you've set up. However, not all events are
aggregated. Events are aggregated for any topics related to location services, for example, the location,
asset-raw-rssi, sdkclient-scan-data, and rssi-zone topics.

If multiple events occur for the same topic during the specified aggregation window, Juniper Mist groups
them into a single message. Because of message aggregation, you will need to parse the events from
each message when they are received.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/constants/events/list-alarm-definitions

Webhook Messages

SUMMARY IN THIS SECTION

Get familiar with the message format and the Message Format | 201

payloads for various webhook topics. Infrastructure Payload Examples | 202

Location Payload Examples | 208

Message Format

IN THIS SECTION

Payload Structure | 201

Each webhook topic can have a slightly different format.

Most webhooks have the following structure where the event_details are the payload of events, as

follows:
{
"topic": "webhook-topic",
"events": [
{"EVENT DETAILS": "...."},

{"EVENT DETAILS": "....",

Payload Structure

All webhook messages are in JavaScript object notation (JSON) format and include the following
information in the header, which describes the configuration of the message itself. The header

information appears before the payload in the message. If you configure a custom header in the
webhook configuration, it also appears here.

POST /uri/... HTTP/1.1

Host: hooks.abc.com: 443

User-Agent: Mist-webhook

Content-Type: application/json

Content-Length: 382

X-Mist-Signature: ce3af7760f1289d02bf6a7ad19f3xXxXXXXXXXX

Infrastructure Payload Examples

IN THIS SECTION

Alert | 202

Audit | 204

Client Join | 204

Client Sessions | 205
Device Events | 206
Device Updowns | 206
Guest Authorization | 207

Juniper Mist Edge Events | 208

For the full list of Webhooks samples, see APl Sample Webhooks. This will show you sample webhook
messages that the Mist Cloud sends for each of the given webhooks topics.

The following are just some of the webhook samples, starting with the infrastructure webhooks.

Alert

This alert (alarm) example displays a detected rogue AP, the count (number of times Juniper Mist
detected it), and the AP and the basic service set identifier (BSSIDs) that detected it.

"topic": "alarms",

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/samples/webhooks/overview

"events": [
{
"aps": [
"5c5b35xxxxxx"
1
"bssids": [
"00024axxxxxx",
"5¢5b3xxxxxx",
"000f 2xxxxxx",
"c03f0exxxxxx",
"e091f5xxxxxx",
"e894f6xxxxxx",
"40169f xxxxxx",
"40169f xxxxxx",
"c03flexxxxxx",
"5c5b35xxxxxx"
1
"count": 16,
"id": "95193bda-1fef-4ea6-XXXX - XXXXXXXXXXXX",
"last_seen": 1549068720,
"ssids": [
"gqwerty",
"A-Dot",
"xfinity",
"alpha"
i[p
"timestamp": 1549068202,
"type": "rogue-ap-detected",
"update": true,
"org_id": "2818e386-8dec-2562-XXXX~XXXXXXXXXXXX",

"site_id": "4acldcf4-9d8b-7211-XXXX~XXXXXXXXXXXX"

Audit

This example is an audits alert indicating that John Doe updated a device. It shows the organization
(org_id) and site (site_id) the device belongs to.

{
"topic": "audits",
"events": [
{
"admin_name": "john doe john.doe@juniper.net",
"device_id": "00000000-0000-0000-1000-5c5b35xxxxxx",
"id": "8e00dd48-b918-4d9b-XXXX-XXXXXXXXXXXX" ,
"message": "Update Device \"Reception\"",
"org_id": "2818e386-8dec-2562-XXXX~XXXXXXXXXXX",
"site_id": "4ac1dcf4-9d8b-7211-XXXX~XXXXXXXXXXXX",
"src_ip": "xx.xx.xx.xx",
"timestamp": 1549047906.201053
}
]
}
Client Join

This client-join message displays the MAC address of the client that joined. It also displays the
associated connection details the instant a client joins a wireless network.

{
"topic": "client-join",
"events": [
{
"ap": “5c5b35dOxxxx",
"ap_name": “AP43 Test",
"band": "5",

"bssid": "5c5b35dfxxxx",
"connect": 1592333828,
"connect_float": 1592333828.324,
"mac": "70ef0071xxxx",

"org_id": "6748cfab-4e12-11e6-XXXX=XXXXXXXXXXX",
"rssi": -54,

"site_id": "d761985e-49b1-4506-XXXX-XXXXXXXXXXX",
"site_name": "Test",

"ssid": "Mist",
"timestamp": 1592333828,
"version": 2

"wlan_id": "6c0cOb07-0d77-44d1-XXXX~XXXXXXXXXXXX",

Client Sessions

The client-sessions payload displays detailed information regarding the entire session from a client to a
single AP.

{
"topic": "client-sessions",
"events": [
{

"ap": “5c5b352fxxxx",

"ap_name": “AP43 Test",

"band": "5",

"bssid": "5c5b352bxxxx",
"client_family": "iPhone",
"client_manufacture": "Apple",
"client_model": "8+",

"client_os": "13.4.1",

"connect": 1592333548,
"connect_float": 1592333548.117,
"disconnect": 1592333828,
"disconnect_float": 1592333828.589,
"duration": 279.835049793,

"mac": "70ef@0xxxxxx",

"next_ap": "5c5b35dOxxxx",

"org_id": "6748cfab-4e12-11e6-XXXX=XXXXXXXXXXXX",
"rssi": -87,

"site_id": "d761985e-49b1-4506-XXXX-XXXXXXXXXXX",
"site_name": "Test",

"ssid": "Mist",

"termination_reason": 3,

"timestamp": 1592333828,

"version": 2

"wlan_id": "6c0cOb07-0d77-44d1-XXXX~XXXXXXXXXXXX",

Device Events

The device-events payload displays details about the device experiencing the event with the reason.

"topic": "device-events",
"events": [
{
"audit_id": "a8ec4d8a-4dab-4ead-xxXX-XXXXXXXXXXX",
"ap": "5c5b35xxxxxx",
"ap_name": "AP41 Near Lab",
"device_name": "AP41 Near Lab",
"device_type": "ap/switch/gateway",
"ev_type": "NOTICE",
"mac": "5c5b35xxxxxx",
"org_id": "2818e386-8dec-2562-XXXX~XXXXXXXXXXXX",
"reason": "power_cycle",
"site_id": "4acldcf4-9d8b-72117-XxXX=XXXXXXXXXXXX"
"site_name": "Site 1",
"text": "event details",
"timestamp": 1461220784,
"type": "AP_RESTARTED"

Device Updowns

The device-updowns webhook is a subset of the device-events webhook. It sends only the basic
information of the device and reason (type) it went down.

{
"topic": "device-updowns",
"events": [
{

"org_id": "2818e386-8dec-2562-XXXX~XXXXXXXXXXXX",

"site_id": "4acldcf4-9d8b-72117-XxXX=XXXXXXXXXXXX"
"type": "AP_RESTARTED",

"ap": "5c5b35xxxxxx",

"ap_name": "APQ1",

"site_name": "Sitel"

"timestamp": 1461220784

Guest Authorization

The guest-authorization webhook provides customers with data on guest clients when those clients
authorize to a WLAN.

{
"topic": "guest-authorizations",
"events": [
{

"ap":"5c5b350e55¢8",

"auth_method": "passphrase",
"authorized_expiring_time":1677076639,
"authorized_time":1677076519,

"carrier": "docomo",

"client": "ac2316eca70a",

"company": "MIST",

"email": ""abcd@abcd.com",

"field1": "fieldl value",

"field2": "field2 value",

"field3": "field3 value",

"field4": "field4 value",

"mobile": "+0123456789",

"name": "Dr Strange",
"org_id":"1688605f-916a-47a1-8c68-f19618300a08",
"site_id":"ec3b5624-73f1-4ed3-b3fd-5ba3ee40368a",
"sms_gateway": "Telstra",

"sponsor_email": "sponsor@gmail.com",
"ssid":"Portal Auth",
"wlan_id":"7681be9a-044a-4622-90cf-3accde5ad853",

Juniper Mist Edge Events

The mxedge-events webhook payload can contain basic information about an event occurring on an
individual Juniper Mist Edge device similar to device-events.

{
"topic": "mxedge-events",
"events": [
{
"audit_id": "03a65fa8-f74b-4c82-XXXX-XXXXXXXXXXXX" ,
"mxcluster_id": "27558fe2-a0e5-4236-XXXX - XXXXXXXXXXXX" ,
"mxedge_id": "00000000-0000-0000-1000-XXXXXXXXXXXX" ,
"mxedge_name": "ME1",
"org_id": "dfb3a656-2a21-4ea5-XxXXX~XXXXXXXXXXXX"
"timestamp": "1692974834.308884",
"type": "ME_CONFIG_CHANGED_BY_USER"
}
]
}

Location Payload Examples

IN THIS SECTION

Location Coordinates | 209

Occupancy Alerts | 210

RSSI Zone | 211

SDK Client Scan Data | 211

Virtual Beacon Entry and Exit Event | 212

Zone Entry and Exit Events | 213

The next group is the Location webhooks, which are available only for sites (not organizations).

Location Coordinates

The location webhook payload correlates client information to a location on a map (floorplan) uploaded
to Juniper Mist. An accurately scaled map and use of the SDK client are requirements for this webhook.

{
"topic": "location",
"events": [
{

"site_id": "4acldcf4-9d8b-72117-XxXX=XXXXXXXXXXXX"
"map_id": "845a23bf-bed9-e43c-XXXX=XXXXXXXXXXXX",
"x": 13.5,

"y": 3.2,

"timestamp": 1461220784,

// for SDK client
lltypell: "Sdk",
"id": "de87bf9d-183f-e383-XXXX-XXXXXXXXXXXX",

"name": "optional",

// for WIFI
"type": "wifi",
"mac": "5684daxxxxxx",

// Optional for wifi
"wifi_beacon_extended_info": [

{"frame_ctrl": 776, "seq_ctrl": 772, "payload": "............ "},

// for ASSET
"type": "asset",
"mac": "7fc293xxxxxx",

"ibeacon_uuid": "f3f17139-704a-f03a-XXXX~XXXXXXXXXXXX" ,
"ibeacon_major": 13,

"ibeacon_minor": 138,

"eddystone_uid_namespace": "2818e3868decxxxxxxxx",
"eddystone_uid_instance": "5c5b35xxxxxx",
"eddystone_url_url": "https://www.abc.com",
"mfg_company_id": 935,

"mfg_data": "648520a1020000",

"battery_voltage": 3370

Occupancy Alerts

The occupancy-alerts webhook displays information about specific zones if they exceed the configured
occupancy_limit.

{
"topic": "occupancy-alerts",
"events": [
{

"alert_events": [
{

"current_occupancy": 10,
"map_id": "f5d26c7f-1670-4921-XXXX~=XXXXXXXXXXXX"
"occupancy_limit": 5,
"org_id": "6748cfab-4e12-11e6-XXXX=XXXXXXXXXXXX"
"timestamp": 1594861457,
"type": "COMPLIANCE-VIOLATION",
"zone_id": "b83312a7-7269-4ae1-XXXX~XXXXXXXXXXXX",

"zone_name": "PLM and Leadership"

"current_occupancy": 20,

"map_id": "f5d26c7f-1670-4921-XXXX~XXXXXXXXXXXX"
"occupancy_limit": 10,

"org_id": "6748cfab-4e12-11e6-XXXX=XXXXXXXXXXXX"
"timestamp": 1594861457,

"type": "COMPLIANCE-VIOLATION",

"zone_id": "80acf542-e863-43cf-XXXX-XXXXXXXXXXXX",

"zone_name": "CSQA"

"current_occupancy": 9,

"map_id": "f5d26c7f-1670-4921-XXXX~XXXXXXXXXXXX"
"occupancy_limit": 4,

"org_id": "6748cfab-4e12-11e6-XXXXXXXXXXXXXXXX"
"timestamp": 1594861457,

"type": "COMPLIANCE-VIOLATION",

"zone_id": "a4c7a7c2-880e-4a0e-XXXX~XXXXXXXXXXXX" ,

"zone_name": "Marketing & Sales Ops"

J;
"site_id": "67970e46-4e12-11€6-XXXX~XXXXXXXXXXXX",
"site_name": "MIST OFFICE"

RSSI Zone

The rssizone webhook payload displays devices that have exceeded a configured minimum RSSI
threshold across a site.

"topic":"rssizone",
"events": [
{

"mac":"500291xxxxxx",
"map_id":"f5d26Cc7f-1670-4921-XXXX~XXXXXXXXXXXX",
"rssizone_id":"e38f8e76-40db-4144-XXXX~XXXXXXXXXXXX" ,
"site_id":"f5fcbee5-fbca-45b3-xxxx-XXXXXXXXXXXX"
"timestamp":1694158990.986472,

"trigger":"enter",

lltypell . llwif:i n

SDK Client Scan Data

The SDK Client Scan Data webhook payload displays specific data about a client that isn’t available
without installing an application (using the SDK) on the client itself.

"events": [
{
"connection_ap": "5c5b35xxxxxx",
"connection_band": "2.4",
"connection_bssid": "5c5b35xxxxxx",

"connection_channel": 11,
"connection_rssi": -87,
"last_seen": 1592333828,
"mac": "70ef@0xxxxxx",
"scan_data": [
{
"ap": "5c5b35xxxxxx",
"band": "2.4",
"bssid": "5c5b35xxxxxx",
"channel": 11,
"rssi": -87,
"ssid": "mist-wifi",
"timestamp": 1592333828

"ap": "5c5b35xxxxxx",

"band": "5",

"bssid": "5c5b35xxxxxx",
"channel": 36,

"rssi": -75,

"ssid": "mist-wifi",
"timestamp": 1592333828
}
1
"site_id": "d761985e-49b1-4506-XXXX~XXXXXXXXXXXX"
}
1

"topic": "sdkclient-scan-data"

Virtual Beacon Entry and Exit Event

The vbeacon webhook is triggered when a mobile device running the Juniper Mist SDK is entering or
exiting the area defined by a virtual beacon.

{
"topic":"vbeacon",
"events": [
{

"mac":"10521cxxxxxx",

"map_id": "5a8b84e6-CcTh-XXXX - XXXXXXXXXXXX",

"site_id":"f5fcbee5-fbca-45b3-xXXX-XXXXXXXXXXXX" ,
"timestamp":1694166602.662786,

"trigger":"enter",

"type":"wifi",

"vbeacon_id":"ca301fd7-07af-4d42-xxXX-XXXXXXXXXXXX"

Zone Entry and Exit Events

The zone webhook is triggered when a device enters or exits a defined zone.

{
"topic":"zone",
"events": [
{
"mac":"10521cxxxxxx",
"map_id": "5a8b84e6-CcTh-XXXX - XXXXXXXXXXXX",
"site_id":"f5fcbee5-fbca-45b3-xxxx-XXXXXXXXXXXX"
"timestamp":1694166602.662786,
"trigger":"exit",
"type":"wifi",
"zone_id":"b83312a7-7269-4ae1-XXXX~XXXXXXXXXXXX "
}
]
}

Configure Webhooks from the Juniper Mist Portal

IN THIS SECTION

Add a Webhook in the Juniper Mist Portal | 214
Update a Webhook in the Juniper Mist Portal | 217

Delete a Webhook in the Juniper Mist Portal | 220

You can configure webhooks in the Juniper Mist portal, rather than using the API.

Keep in mind, everything that you can configure in the portal is a result of an API. And all changes that
you make in the portal actually are calls to the RESTful API. In fact, clicking save is simply a call to the
appropriate APl to make an update.

Although there are more APlIs available than are implemented in the portal, you might find it convenient
to use the portal for certain configuration tasks.

When using the portal to configure webhooks, be aware of the configuration hierarchy. Go to the
appropriate page for the webhooks that you want to configure.

o Organization-level webhooks—From the left menu of the Juniper Mist portal, select Organization >
Settings.

¢ Site-level webhooks—From the left menu of the Juniper Mist portal, select Organization > Site
Configuration.

Add a Webhook in the Juniper Mist Portal

SUMMARY

Follow these instructions to set up a new webhook by using the Juniper Mist™ portal.

1. In the Juniper Mist™ portal, navigate to the organization or site settings:

e For organization-level webhooks, select Organization > Settings.

o For site-level webhooks, select Organization > Site Configuration, and then select the site.

@ NOTE: The following example demonstrates configuring site-level webhooks. When
configuring organization-level webhooks, the options that display will be different,
such as the list of available webhook topics to choose from.

2. Scroll down to the Webhooks section, and click Add Webhook.

Webhooks Add Webhook

MName Status No. Toples Deliveries

. Enter the information:

Name—Enter a name to identify this Webhook.

Webhook Type—Select HTTP Post, OAuth2, or Splunk. For OAuth2, the Mist cloud will act as the
client for the selected type and authenticate against an authorization server to get a token, which
it then appends to the Webhook Authorization Headers.

URL—Enter the URL of destination you want Mist to send the Webhooks to.

Grant Types—(OAuth2 only) There are two ways of requesting access tokens from the customer
system:

e Password-based, which requires the user name and password of the resource owner.

¢ Client Credentials-based, which requires the Client ID and Client Secret provided by the
OAuth IDP.

Topics—Select the topics you want to receive Webhooks for. You must select at least one.

216

Add Webhook b 4
Mame, URL are required
Status
Enabled Disabled
Webhook Type
HTTP POST -
Name
URL
Topics
Standard
Location
Entry/EXit Events X/Y Coordinates
Location Zone Named Assets
Proximity Zone SDK Clients
Virtual Beacon WiFi Clients v
Occupancy Alerts Asset Raw

SDK Client Scan Data

Network Service
Latency

Infrastructure

Alerts Audits

Client Information Client Join

Client Sessions Device Events

Device Up/Downs Mist Edge Events
Advanced

Settings

Cancel

4. (Optional) Click Advanced Settings for additional options.

o Verify Certificate—This option is enabled by default. If you do not want Mist to verify that the
certificate of the webhook receiver is valid, click No. Although this method is not secure, it does
provide some flexibility if your webhook receiver does not have a valid signed certificate. We do
not recommend this method, for security reasons.

e Secret (HTTP-POST only)—Using a secret allows you to specify a secret (like a password) used to
calculate a pair of HTTP headers. A secret enables you to verify that the message is coming from
Juniper Mist and has not been modified.

e Custom Headers—The Custom Headers configuration enables you to specify any custom headers
needed for your webhook receiver. Some receivers (or their proxies) require a token-based
authentication method, user-based authentication, or a method to present custom headers to
indicate the type of data being sent.

@ NOTE: Keep these cautions in mind when considering whether to use a secret or
custom headers:

e When a secret is provided, two HTTP headers will be added:
o X-Mist-Signature: HMAC_SHA1 (secret, body)

o X-Mist-Signature-v2: HMAC_SHA256 (secret, body)
e |f the headers format is invalid, “X-Mist-Error”: “headers format invalid” will be sent.

o |If the total bytes of the headers exceed 1000, “X-Mist-Error”: “headers too big” will
be sent.

e |If any header value is not a string, “X-Mist-Error”: “header[%s] not a string” will be
sent.

5. Click Add.

Update a Webhook in the Juniper Mist Portal

SUMMARY

Follow these instructions to modify an existing webhook by using the Juniper Mist™ portal.

Updating a webhook in the portal is nearly the same as adding a webhook.

1. From the left menu of the Juniper Mist portal, navigate to the organization or site settings:

o For organization-level webhooks, select Organization > Settings.

e For site-level webhooks, select Organization > Site Configuration, and then select the site.

2. Scroll down to the Webhooks section, and click the webhook that you want to update.

Webhooks Add Webhook
1-1 of1
MName A Status No. Toples Deliveries
Webhook1 ® 5 A @

3. Make the configuration changes, and then click Save.

219

Name

Webhook1

URL

https:/fwww.hello.com

Topics
®) Standard
Location

Entry/Exit Events

[+ Location Zone | Occupancy Alerts

[] Proximity Zone | SDK Client Scan Data

[virtual Beacon

XY Coordinates

[+/] Named Assets
|| SDK Clients
WiIFI Clients

[+#] connected
[] Unconnected

|| centrak

Network Service

[Latency

Infrastructure

[] Alerts [Audits

[w| Client Information [w] Client Join
[+#] Client Sessions [Device Events

[] Device Up/Downs | Guest Authorizations

[] Mist Edge Events | NAC Accounting

[] NAC Events

) Advanced

BLE Asset R55I

Filtered Assets

Delete | Cancel |

For more information about the options, see the information in "Add a Webhook in the Juniper Mist
Portal" on page 214.

Delete a Webhook in the Juniper Mist Portal

SUMMARY

Follow these instructions to remove a webhook by using the Juniper Mist™ portal.

If you no longer need a webhook, delete it.
To delete a webhook:

1. From the left menu of the Juniper Mist portal, navigate to the organization or site settings:

o For organization-level webhooks, select Organization > Settings.

o For site-level webhooks, select Organization > Site Configuration, and then select the site.

2. Scroll down to the Webhooks section, and click the webhook that you want to delete.

Webhooks Add Webhook

1-10f1

MName A status No. Toples Deliveries

Webhook1 ® 5 A @

3. Click Delete.

Name

' Webhooki

URL

| https:/fwww.hello.com

Topics

(®) Standard
Location
Entry/Exit Events
Location Zone
[] Proximity Zone
[virtual Beacon

K/Y Coordinates
Named Assets

[| SDK Clients

WIFI Clients
Connected

[] Unconnected

[] centrak
Network Service

[] Latency
Infrastructure

[] Alerts

Client Information
Client Sessions

[| Device Up/Downs
[] Mist Edge Events
[] MAC Events

-

() Advanced

BLE Asset RS5I
Filtered Assets

[] Occupancy Alerts
[] SDK Client Scan Data

[Audits

[] Client Join

[Device Events

[] Guest Authorizations

[] NAC Accounting

221

Configure Webhooks from the API

SUMMARY IN THIS SECTION
Start getting familiar with configuring webhooks Create Webhooks from the API | 223
with the API.

Update a Webhook from the API | 225
Delete Webhooks from the API | 227

You can configure webhooks from the API, rather than using the Juniper Mist portal.

@ NOTE: For more information about the API, go to these resources:
e "RESTful APl Overview" on page 4 (in this guide)

e "Additional RESTful APl Documentation" on page 154

When configuring webhooks, always be aware of the configuration hierarchy.

¢ In an organization-level webhook, specify the organization ID: /api/v1/orgs/{org-id}/webhooks

@ NOTE: To find the {org-id}, select Organization > Settings from the left menu of the
Juniper Mist portal. The organization ID appears near the top of the Organization
Settings page.

¢ In a site-level webhook, specify the site ID: /api/v1/sites/{site-id}/webhooks

@ NOTE: To find the {site-id}, select Organization > Site Configuration from the left menu
of the Juniper Mist portal. Then select the site. The site ID appears near the top of the
site Configuration page.

Example: Site Configuration
The following function displays all the webhooks configured for a specific site:

/api/v1/sites/4acldcf4-9d8b-7211-xxxx-xxxxxxxxxxxx/webhooks

The following output is the result of the previous API call:

HTTP 200 OK
Allow: POST, OPTIONS, GET
Content-Type: application/vnd.apit+json

Vary: Accept

"name": "Lobby-Zone-Events",

"url": "https://webhook.site/02747ddc-2b1f-4134-aleb-xxXXXXxxxxxx",
"secret": "",

"enabled": true,

"topics": "zone",

"verify_cert": true,

"id": "20538707-b873-4a60-XXXXXXXXXXXXXXXX",
"for_site": true,

"site_id": "4acldcf4-9d8b-7211-XXXX~XXXXXXXXXXXX"
"org_id": "3f12ch79-fb5e-4d4b-xXxX-XXXXXXXXXXXX" ,
"created_time": 1686252096,

"modified_time": 1686252096

Create Webhooks from the API

SUMMARY

Follow these instructions to use a POST command to set up a new webhook.

Use a POST to configure a webhook and to enable topics.

In your API call, be aware of the configuration hierarchy and the different topics that are available for
organizations and sites.

¢ In the API function, be sure to specify the organization ID or site ID. See "Configure Webhooks from
the API" on page 222.

¢ In the topics line, be sure to specify only the topics that are appropriate for the organization or site
level. See "Webhook Topics" on page 183.

Here is an example of a POST to configure a site webhook to enable site-level topics:

See Create Site Webhook for the example POST structure. Also see Create Org Webhook if applicable. A
sample response is provided below.

"name": "analytic",
"type": "http-post",
"url": "https://username:password@hooks.abc.com/uri/...",
"secret": "secret",
"headers":{
"x-custom-1": "your_custom_header_valuel",
"x-custom-2": "your_custom_header_value2"
¥
"verify_cert": false,
"enabled": true,
"topics": ["location", "zone", "vbeacon", "rssizone", "asset-raw-rssi", "device-events",
"alarms", "audits", "client-join", "client-sessions", "device-updowns", "occupancy-alerts",
"mxedge-events", "nac-accounting", "sdkclient-scan-data",]

}

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such as
your API token, organization ID, site ID, AP name, and so on.

Table 17: Webhook Parameter Descriptions

Parameter Description
name The name of the configured webhook.
type The type of webhook (http-post, splunk, etc).

url The destination to receive the webhook.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/create-site-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/create-org-webhook

Table 17: Webhook Parameter Descriptions (Continued)

Parameter

secret

headers

verify_cert

enabled

topics

Also see Securing Webhooks with splunk type.

Update a Webhook from the API

Description

When using the http-post webhooks type, the secret is
used by the Mist Cloud to sign the webhook message.
Also see The secret parameter.

Custom headers can be added under the
headersproperty. These custom headers will be added
in the HTTP headers sent by the Mist Cloud for
authentication. See apiToken (Custom Header
Signature) and csrfToken (Custom Header Signature) if
applicable.

Whether or not certificate verification is turned on.
True or False.

Whether or not the webhook is enabled. True or False.

The selected items you want receive messages or
alerts for. To learn more, see "Webhook Topics" on
page 183. Also see the Mist API Reference's Webhook
Topics.

To update a webhook from the API, you send a PUT command to the webhook’s APl endpoint with the

parameter that you want to update.

See Update Org Webhook or Update Site Webhook for the sample POST structure. A sample response is

provided below.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/security#the-secret-parameter
https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started#apitoken-custom-header-signature
https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started#apitoken-custom-header-signature
https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started#csrftoken-custom-header-signature
https://www.juniper.net/documentation/us/en/software/mist/api/http/models/enumerations/webhook-topic
https://www.juniper.net/documentation/us/en/software/mist/api/http/models/enumerations/webhook-topic
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/security#securing-webhooks-with-splunk-type
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/update-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/update-site-webhook

The following is an example configuration of an existing, organization-level mxedge-events webhook
viewed from the API.

"enabled": true,
"name": "mist-edge",
"url": "https://webhook.site/4ec10796-16ec-4225-abad-xXXXXXXXXXXX",
"secret": "",
"topics": [

"mxedge-events"
i[p
"verify_cert": true,
"id": "a7c61a9c-a25b-4c27-X XXX~ XXXXXXXXXXXX" ,
"for_site": false,
"site_id": "00000000-0000-0000-0000-000000000000" ,
"org_id": "3f12cb79-fb5e-4d4b-xxxX-XXXXXXXXXXXX"
"created_time": 1575305516,
"modified_time": 1692974137

If you want to make a change to this webhook, you need to make a (PuT) API call from your API client to
the webhook API URL /api/v1/orgs/{org_id}/webhooks/{webhook_id} with the updated configuration in the
request body.

In the following example, the URL to display (GET), update (PUT), or delete (DELETE) the configuration of the
webhook having the id 4ec10796-16ec-4225-abad-xxXXXXXXXXXX iS:

https://{api-host}/api/v1/orgs/3f12cb79-fb5e-4d4b-xxxx-xxxxxxxXXXXXX/webhooks/4ec10796-16ec-4225-

abad- XXX XXXXXXXXX

@ NOTE: In place of {api-host}, use the API Host (or Endpoint) for your global region. See
API Endpoints and Global Regions.

https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/topic-map/api-endpoint-url-global-regions.html

So, let's say you want to change the URL for the webhook receiver to https:/
enicxxxx72vx.x.pipedream.net. To do that, you need to update (PUT) the webhook API endpoint
described above with the following request body:

"url":"https://enicxxxx72vx.x.pipedream.net"

Delete Webhooks from the API

SUMMARY

Follow these instructions to use a DELETE command to remove a webhook.

To delete a webhook using the API, you first need to find the webhook ID.

You can find the webhook ID in the webhook response. In the following example, the id is a7c61a9c-

a25b-4¢27-XXXX~XXXXXXXXXXXX

"enabled": true,
"name": "mist-edge",
"url": "https://webhook.site/4ec10796-16ec-4225-XXXX~XXXXXXXXXXXX"
"secret": ""
"topics": [

"mxedge-events"
il
"verify_cert": true,
"id": "a7c61a9c-a25b-4c27-XXXX=XXXXXXXXXXXX" ,
"for_site": false,
"site_id": "00000000-0000-0000-0000-000000000000",
"org_id": "3f12ch79-fb5e-4d4b-xxxXx-XXXXXXXXXXXX" ,
"created_time": 1575305516,
"modified_time": 1692974137

To delete this webhook, make an API call (DELETE) from your API client.

DELETE https://api.mist.com/api/v1/orgs/3f12ch79-fb5e-4d4b-xxxx-xxxxxxxxxxxxx/webhooks/a7c61adc-

a25b-4c27-al4e-XXXXXXXXXXXX

As detailed below, this call specifies the APl endpoint, the organization ID, the resource (webhooks), and

webhook ID (a7c61a9c-a25b-4c27-XXXX~XXXXXXXXXXXX).

Also see Delete Org Webhook and Delete Site Webhook.

Organization ID Specific Webhook ID
[1 [[P
api.mist.com/api/vl/orgs/3£12cb79-£fb5e-4d4b-XXXX-XXXXXXXXXXxxx/webhooks/a7c6la9c-a25b-4c27-XXXX~XXXXXXXXXXXX <
L L g
<
Prefix/Version/Scope Resource i

After you delete the webhook, the Juniper Mist API will return an HTTP 200 OK response.

Testing Webhooks

SUMMARY IN THIS SECTION

Use public webhook receivers to test your View the Webhook Delivery Status | 233

webhooks and ensure that you're getting the data
that you need.

By testing webhooks, you can verify the configuration process as well as inspect and parse the event
messages you receive from Mist. If you do not have a webhook receiver available to you, you can use a
public, free service. Many such services enable you to receive and inspect the incoming webhook POST
messages from Juniper Mist.

These public sites create a random URL that you can use on a temporary basis. The data that you
receive is ephemeral and is deleted as soon as you close your browser. Using one of these sites from
your browser, you can identify parameter data from the message payloads to help create your workflow.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/delete-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/delete-site-webhook

After you configure your webhook, you can trigger it and view those messages as they are received on
the public webhook receiver.

Two of these free testing webhook receivers are:
e https:/webhook.site/
e https:/public.requestbin.com/

These sites are not Juniper maintained and are to be used at your own risk.

@ NOTE: Be sure to delete any test webhooks from Mist when they are no longer in use.
Otherwise, Mist will continue to push webhooks to the target webhook URL, and the
webhook testing receivers can blacklist Mist IP addresses as a result.

Webhook Tester

There is a webhook tester tool that you can use to easily test and monitor the webhooks for your Mist
organization. The webhook tester is available here Mist Webhook Tester. This is an application that
automatically creates and deletes the Webhook configuration in the Mist org to receive them, and
displays the received webhook messages in a table.

@ NoTE:

e Only local Mist accounts can use this application (SSO users are not supported).

e Only administrators with a role of Super User are supported (Org level webhooks can
be configured by Super Users).

Below is a diagram explaining how the application works.

https://webhook.site/
https://public.requestbin.com/
https://webhook.mist-lab.fr/monitor

2 The app uses the Mist User session to check if the selected Orgs are already

configured with the required webhook configuration. 5 When the user logs out or closes the Web browser, the App is checking
« If a Webhook is already configured for this app, adds the missing topics (if any) each configured Webhook to see if any other users is using it:
« If no Webhook is configured: « if any, updates the topics based on the remaining users configuration

a. Create a User API Token (used to automatically delete the webhook configuration)

.if I h h figuration an Pl n
b. Configure the Orgs Webhooks based on the App Configuration. if none, deletes the webhook configuration and the user API Toke

User configures the Mist Orgs
1 and Topics to receive on the App.

HTTPS
Server {HTTPS)

-
Websocket | JUl '” er 1
s Webhook le(iiTTPS sewensyMist AT 1
Connector | Collector N
Web Browser webhook.mist-lab app Mist Cloud
4 The App uses the Websocket established by the Web 3 Mist Cloud starts to send Webhook
Browser to forward, in real time, any Webhook messages messages to the App server.
corresponding to the user configuration (based on the org_id
and the topic).

To use the webhook tester, simply:
1. Navigate to the Mist Webhook Tester.
2. On the configuration pop-up window, choose the:

a. Max Events in Memory—This is the maximum number of events to be stored in the application's
memory.

b. Topics—These are the webhook topics to receive. Only a limited subset of Webhook Topics are
supported, and all the other messages will be discarded.

c. Orgs—One or multiple Mist Orgs. The application will automatically create a new Webhook
configuration on the selected orgs to send the enabled topics to the application.

d. Click Save.

3. As events occur, those webhooks are sent to the table for you to monitor and review. Information
such as the date, topics, event type, org, site, device name, device MAC, and event details are
displayed in the table for you.

@ NOTE: The Application may occasionally not be able to delete the webhook
configuration at the end of the session. Therefore, it is recommended that you confirm
the webhook configuration has been deleted.

For more details, see https:/github.com/Mist-Automation-Programmability/mist_webhook_monitor?
tab=readme-ov-file.

230

https://webhook.mist-lab.fr/monitor
https://github.com/Mist-Automation-Programmability/mist_webhook_monitor?tab=readme-ov-file
https://github.com/Mist-Automation-Programmability/mist_webhook_monitor?tab=readme-ov-file

Test End-to-End Connectivity

With webhooks, you can test end-to-end connectivity from your Mist Cloud instance to your defined
webhook receiver to confirm that you are receiving the webhook and are able to process it. This is a
webhook for testing that webhooks are working. It serves the same function as a ping would for testing
network connectivity, but you're testing your webhook functionality. This validates that no devices (a
firewall or router) are blocking communications between the two endpoints.

This can be done from the API by issuing a POST (from your REST client) to, in this case, your org, the
configured webhook (id) as seen in this example:

POST
/api/v1/orgs/203d3d02-dbcO-4cTb-xxxXx-XXXXXXXXXXxxx/webhooks/032b9cb1-80af-4edc-xxxx-

XXXXXXXXXXXX/ping

A successful result looks like this:

{
"topic": "ping",
"events": [
{
"id": "032b9cb1-80af-4edc-XXXX-XXXXXXXXXXXX",
"name": "my webhook",
"org_id": "203d3d02-dbcO-4cTh-xXXXX~XXXXXXXXXXXX",
"timestamp": 1725375149.0829651
}
]
}

This can also be done from the Juniper Mist Portal:
1. Navigate to Organization > Admin > Settings.
2. Find the Webhooks section and click the Add Webhook button.

3. Select the appropriate Webhook Type, give your test webhook a name, then paste the test URL you
obtained from the free webhook test receiver website (see links provided above) into the URL field.

4. Choose the webhook topics that you want to receive messages for and set any other necessary
settings.

5. Finally, select Add.

232

Add Webhook b 4

Status
® Enabled Disabled

Webhook Type
HTTP POST -
Name

Test Webhook

URL

https://webhook.site/ef31534c-a1be-4d84-b76c-6d59e5:

Topics
| Alerts Audits
Client Information Client Join
Client Sessions +| Device Events
Device Up/Downs Mist Edge Events
NAC Accounting NAC Events
Settings

m cance'

6. Find your test webhook listed in the Webhooks section of the Organization Settings page and click
View to see the delivery events. You can check these events to see the delivery status of webhooks
to confirm that you are receiving the webhook and are able to process it.

Webhooks Add Webhook
MName # Status No. Topics Deliveries
my-new-webhook ©) 3 View

Test Webhook ® 2 View

Additional Testing Information

To review additional webhook testing information, such as how test that your webserver is able to
receive and process Mist Webhooks, see the information in Validate Deliveries.

To see how to send a ping event to a site webhook, see Ping Site Webhook.

To see how to send a ping event to an organization webhook, see Ping Org Webhook.

View the Webhook Delivery Status

SUMMARY

Check the delivery status for your webhook events.

You can view the delivery status of webhook events reported during the last 61 days.
You can view status for the following webhook topics:

o Alerts

e Audits

e Device Up/Down

e Ping

To view the webhook delivery status:

1. Go to the appropriate page:

¢ Organization-level webhooks—Go to Organization > Admin > Settings.

o Site-level webhooks—Go to Organization > Site Configuration.
2. Under Webhook, click View.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/validate-deliveries#test-the-webhook-configuration-and-the-webhook-collector
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/ping-site-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/ping-org-webhook

Webhooks Add Webhook
Name R Status No. Topics Deliveries
my-new-webhook @ 3 /iew

3. View the webhook event information in the Webhook Deliveries window.

Webhook Deliveries

Delivery status of recent webhooks for my-new-webhook

Today ~ Q

Delivery Events 3Total 1Good 2Bad

Date Topic Status

11:46:30.735 AM Jan 15, 2025 Ping Success (200)

11:46:30.829 AM Jan 15, 2025 Ping Failure (N/A)

11:46:30.370 AM Jan 15, 2025 Ping Failure (502)

Tips:

e To find a particular event—Adjust the timeframe and enter search terms.

Error Message

throttled due to intern

URL: https://api.webhc
Error: 502 Bad Gatewa

Timestamp
Topic

status Code
Request URL

Request Headers

11:46:30.735 AM Jan 15, 2025
Ping

200
https://api.webhookinbox.com/i/

Content Type: application/json
User Agent: Mist-webhook

130f3 © &

To filter the list based on status types—Click Good or Bad, or click Total to see all events.

4. Click any item to view more details on the right side of the window.

Information includes:

Topic

Request URL

Request Headers

Request Body

Response Status Code (if any)
Response Headers (if any)
Response Body (if any)

Error Message (if any)

5. Click X to close the window.

Get Started with Webhooks

IN THIS SECTION

Use the Mist API Reference to Get Started with Webhooks | 235

Use the Mist APl Reference to Get Started with Webhooks

SUMMARY

You can use the Mist API Reference to get started with various webhooks tasks.

The Mist API Reference is a useful tool for testing out any webhooks related tasks, as well as reviewing
webhooks documentation. The API Reference connects to the Mist cloud, which allows you to submit a
sample API request for your intended task. When you issue the request, you are returned a sample
response.

See Create Webhook Configuration for general information you can use to get started with webhooks.

Learn how to perform various webhooks tasks by following the links in the Configure the Org Webhook
from the API section:

e Create Org Webhook (API Call)

e Update Org Webhook (API Call)

e Delete Org Webhook (API Call)

e List Org Web hooks (API Call)

e Get Org Webhook (API Call)

If you need to learn how to perform various tasks regarding site webhooks, follow these links:
e Create Site Webhook (API Call)

e Update Site Webhook (API Call)

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/create-webhook-configuration
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/create-webhook-configuration#configure-the-org-webhook-from-the-api
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/create-webhook-configuration#configure-the-org-webhook-from-the-api
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/create-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/update-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/delete-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/list-org-webhooks
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/get-org-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/create-site-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/update-site-webhook

e Delete Site Webhook (API Call)
e List Site Web hooks (API Call)
e Get Site Webhook (API Call)

After navigating to the appropriate page, follow the prompts in the center of the screen. Fill in any
required fields, as well as any other necessary fields for what you are trying to accomplish.

For any endpoints that require authentication, you will see an Authentication section in the center of
the screen. Expand the Authentication section and enter your credentials.

@ NOTE: When entering your API token, you must add the "Token" key word followed by a
space in front of your token in order to perform authentication. You can also perform
authentication using the basicAuth or basicAuth and csrfToken options. If you do not
have an API token yet, you can use the basicAuth option and enter the same username
and password that you use for the Mist UI.

ATTENTION: To enhance security and align with industry best practices, Mist will deprecate
Basic Authentication for all use cases—including admin logins and scripts—effective September
2026. Before September 2026, all integrations must transition to token-based authentication
to ensure uninterrupted access and support. See "Create API Tokens" on page 15.

Home > Documentation > MistAl > For Developers

Mist API Reference

Juniper

You will see request body fills out on the right as you fill in the fields in the center of the page.

Select the TRY IT OUT button to be returned a response.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/delete-site-webhook
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/list-site-webhooks
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/webhooks/get-site-webhook

Webhooks Use Cases

IN THIS SECTION

Configure Zone Entry and Exit Events (Use Case) | 237

Configure Device Events (Use Case) | 239

Configure Zone Entry and Exit Events (Use Case)

SUMMARY

Use this example as a model to create webhooks that alert you about entry and exit events for the
zones on your floorplans.

Webhooks are one-way messages from a source server or application to a destination server or
application. The webhooks methodology is “fire and forget,” meaning that you use webhooks primarily
to schedule event-driven messages for alerting and monitoring. In a Juniper Mist network, you can use
webhooks to send messages based on Organization or Site topics. This means that you use webhooks
primarily to schedule event-driven messages for alerting and monitoring.

For this use case, from the Juniper Mist API, you set up a webhook notification whenever a device
enters or exits a zone. This notification is useful for a site with building automation. A user who enters
or leaves a defined zone in Juniper Mist (such as a room) and has a tracked device in hand can trigger an
event that is sent from Juniper Mist to the building automation system to turn the lights on or off. To
learn more about location zones, see Add Location Zones to a Floorplan.

To set up webhooks in the Juniper Mist portal, you need the following configuration items (and may
want to use the listed optional item as well):

e Name for the webhook instance (required)
e URL (destination to receive the Juniper Mist webhooks (required)

e Streaming APl in the Site Webhooks section (select the “Zone Entry/Exit Events” topic to stream to
the destination) (required)

e Secret, like a password, to authenticate communication from Juniper Mist to the webhook
destination (optional)

After you have this information, you can configure the webhook in the Site Settings.
To configure zone entry and exit events:

1. From the left menu of the Juniper Mist portal, select Organization > Admin > Site Configuration.

2. Click Add Webhook, enter the information, and click Add.
For more information about the fields to complete, see "Add a Webhook in the Juniper Mist Portal"
on page 214.

Anytime a device enters or exits a zone, Juniper Mist will create a webhook POST to the specified
URL. The incoming request payload, as formatted in JavaScript Object Notation (JSON), looks like
this:

{
“topic”: “zone”,
“events”: [
{
“mac”: “807d3axxxxx”,
“map_id”: “2d0d2bd7-78b8-4f4b-9454-xXXXXXXXXXXXX"",
“site_id”: “010412fe-xxxx-xxxx-xxxx-99ff83111031d”
“timestamp”: 1633109338.539088,
“trigger”: “exit”,
“type”: “wifi”,
“zone_id”: “33294994-6a5f -4804-XXXX - XXXXXXXXXXXX”
}
]
}

Using this information, you can activate other automations in a third-party system, such as turning
off the lights in zone 33294994-6a5f-4804-x0x-x000000000xX based on the trigger of exit.

Webhooks for Location Services
Add Location Zones to a Floorplan

Add Proximity Zones to a Floorplan

Configure Device Events (Use Case)

SUMMARY

Use this example as a model to create webhooks that alert you of device events as they occur for the
devices in your deployment.

For this use case, let's say you want to receive a webhook notification anytime a device, such as an
access point (AP), disconnects from the cloud for longer than the configured threshold. To configure this
notification, you must configure the Device Events webhook. See "Create Webhooks from the API" on
page 223 or "Add a Webhook in the Juniper Mist Portal" on page 214 for steps on how to create
webhooks.

It is useful to receive notifications for Device Events because it brings the exact device and its respective
issue to your attention. When a device goes offline, for example, every time that event triggers, the
cloud sends a webhook notification directly to a hosted system. The system can parse events and use
this event as a trigger to run automations.

@ NOTE: When you configure the Device Events webhook topic, you will be notified of any
events that affect APs, gateways, and switches. This topic includes events such as

ap_offline, device_down, switch_down, device_restarted, gateway_down, and switch_restarted.

Continuing with the example, anytime a device goes offline, Juniper Mist will create a webhook POST to
the specified URL. The incoming request payload contains details such as the org_id, site_id, mac,
device_name, and timestamp of the event. The JSON payload looks like this:

curl -X POST \

--url 'https://api.mist.com/webhook_example/_device_events_' \

-H 'Content-Type: application/json' \

--data-raw '{

"events": [

{

"ap": "5c5b350e55¢c8",
"ap_name": "ap_name6",
"audit_id": "78c0@4fa6-cfb4-46a0-9aa5-3681badf3897",
"device_name": "device_name4",

"device_type": "ap",

"ev_type": "notice",

"mac": "mac2",
"reason": "device offline",
"site_name": "office",
"text": "offline",
"type": "ap_offline"

}
1

"topic": "device_events"

} 1

CHAPTER

VWebSocket

IN THIS CHAPTER

WebSocket API Overview | 242
Get Started with WebSocket | 276
WebSocket Use Cases | 280

WebSocket API Overview

SUMMARY IN THIS SECTION

Get starting learning about WebSockets and how WebSocket API Endpoint | 242

you can use them with Juniper Mist™. Authentication Options | 243

WebSocket Streaming Channels | 243

WebSocket Samples and
Documentation | 244

You can use WebSockets in your Juniper Mist network. The WebSocket protocol can open a
bidirectional communication session between a client and a server. You can send messages to the server
and receive real-time, event-driven responses without having to poll the server for a reply. For example,
Websockets are very useful in circumstances where you want to avoid browser refreshes.

The initial client request and server response use the HTTP protocol to establish the WebSocket
communication. From then on, the client can subscribe to one or more topics (streaming channels) to
stream data.

You and other administrators can use WebSockets in very specific use cases, such as data visualization
dashboards or maps that must reflect real-time data values.

Examples

e Populate a custom dashboard with the live status of Juniper Mist access points (APs) and real-time
location data of Bluetooth Low Energy (BLE) assets.

e Stream device data and statistics (such as transmit and receive packets) on an hourly basis to an
external, operational dashboards like Grafana. Although the device statistics are robust, you can
easily parse them to abstract the desired data for display.

e Display packet captures (PCAPs) as they occur without needing to refresh the page.

WebSocket APl Endpoint

The API endpoint depends on the global region that your organization is associated with.

Table 18: Endpoints by Global Region

Servic Globa Globa Globa Globa Globa EME EME @ EME EME APAC APAC APAC

e 101 102 103 104 105 AO1 A02 AO03 A04 01 02 03

Type

Admi = api- api- api- api- api- api- api- api- api- api- api- api-

n ws.mi | ws.gC | ws.ac | WS.gC | WS.gC = WS.eu & WS.gC = Wws.ac & WS.gC = WsS.ac = WS.gC = WS.gC

Portal = st.co 1.mist = 2.mist | 2.mist = 4.mist .mist. = 3.mist 6.mist 6.mist = 5.mist = 5.mist = 7.mist
m .com .com .com .com com .com .com .com .com .com .com

Webs = api.mi @ api.gc @ api.ac | api.gc | api.gc | api.eu | api.gc | api.ac | api.gc @ api.ac | api.gc = api.gc
ocket | st.co 1.mist = 2.mist 2.mist = 4.mist .mist. = 3.mist = 6.mist = 6.mist | 5.mist = 5.mist 7.mist
API m .com .com .com .com com .com .com .com .com .com .com

Authentication Options

Juniper Mist requires authentication to establish a connection to the WebSocket API. You can use these
methods:

e "Create API Tokens" on page 15
e HTTP login with Juniper Mist login credentials

e API call to an external OAuth2 provider

WebSocket Streaming Channels

After Juniper Mist establishes a streaming connection with a client, the client needs to subscribe to at
least one channel to send and receive messages. Messages go back and forth through the bidirectional
WebSocket protocol. To stop sending and receiving messages from a channel, you can unsubscribe from
it.

@ NOTE: All channels require that you specify the site ID. To find a site ID in the Juniper
Mist portal, select Organization > Site Configuration from the left menu, and then click
the site.

Once you are logged in, you can view further information about each WebSocket. Begin by navigating to
the web links for WebSocket documentation provided in the next section.

WebSocket Samples and Documentation

As mentioned previously, the WebSocket protocol is used for communication between client and server.
You can send messages to the server and receive event-driven responses. The following table contains
sample requests and responses as well as links to WebSocket Documentation.

@ NOTE: Your documentation link will depend on the region (cloud) you have logged in to.
The table below contains links for the Global 01 cloud.

Table 19: WebSocket Documentation

Names Streaming Channels Sample Requests/Responses and
Documentation
Discovery of BLE Assets by Map /sites/:site_id/stats/maps/:map_id/ = To discover BLE assets on the map,
discovered_assets issue the following request:
Request:

GET /api/v1/sites/:site_id/stats/
maps/:map_id/discovered_assets

Response:

mac": "6fa474be7xxx",

"device_name": "[TV]

UN65JU6xxX",
"x": 60,
Ily|l: 8@’

"manufacture": "Apple",
"last_seen": 1428939600,

// optionally populated

"ibeacon_uuid":
"f3f17139-704a-
f03a-2786-0400279¢37c3",

"ibeacon_major": 13,

"ibeacon_minor": 138,

"eddystone_uid_namespace":
"2818e3868dec2562%ede",
"eddystone_uid_instance":
"5¢c5b35000001",
"eddystone_url_url":
"https://www.abc.com",
"mfg_company_id": 935,
"mfg_data":
"648520a1020000",
"duration": 120

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

For more information, see Get Site
Discovered Assets by Map.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/assets/get-site-discovered-asset-by-map
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/assets/get-site-discovered-asset-by-map

Table 19: WebSocket Documentation (Continued)

Names

BLE Asset RF Glass Info

Streaming Channels

/sites/:site_id/assets/:asset_id/diag

Sample Requests/Responses and
Documentation

To get RF Glass information for BLE
Assets, issue the following request:

Request:

"subscribe": "/sites/:site_id/
assets/:asset_id/diag"

3

Response:

"event": "data",

"channel": "/sites/
4ac1dcf4-9d8b-7211-65c4-057819f086
2b/assets/115825352113/diag",

"data": {

"map_id": "845a23bf-bed9-
e43c-4c86-6fad74be7aes",
"grid": {

"topleft_x_m": -0.86,

"topleft_y_m": 9.2486,

"size_m": 0.5,

"width": 40,

"height": 40,

"data": "<base-64
encoded data intended to be
interpreted by atob() in JS>",

3,

"motion": false,

"vbles": [
{

"type": "device",

"id":
"00000000-0000-0000-1000-5c5b350e0
060",

"orientation": 90,

"xyz_m": [5.79,
4.33, 3.04 1,

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"rssis":
[-52.32, -53, -55, -57, -60.25,
null, null, -62, null]
I8
{
"type": "beacon",
"id":
"00000000-0000-0000-1000-
€74489000052",
"xyz_m": [8.79,
10.33, 3.04 1,

"rssi": -59.5

1,
"peak": {

"vble_id":
"00000000-0000-0000-1000-
€74489000052"

"max_rssi": -53.428,

"plf": -73,

"ple": -21,

"intercept": -52

e

// estimates based on
probability surface, we'll always
have this

"raw_xyz_m": [18.7486,
10.13269, 0 1,

"smoothed_xyz_m":

[18.7486, 10.13269, 0 1,

"model": "asset",
"speed": null,
"direction": null,
"timestamp":
1501113197.768402,

// the loudest mote
estimate

"closest_mote_xyz_m":

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

[8.79, 10.33, 3.04 1,
// 3 past consecutive
mote estimates
"adjusted_mote_xyz_m":
[8.79, 10.33, 3.04 1,
// another algorithm,
more sophisticated
"vector_mote_xyz_m":
[8.79, 10.33, 3.04]

//particle reset flags
"pf_reset": false,
"pf_hard_reset": false

For more information, see Location
- BLE Assets.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/websockets/stream-samples/location-ble-assets
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/websockets/stream-samples/location-ble-assets

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels

SDK Client RF Glass Info (including | /sites/:site_id/
SDK Client Location) sdkclients/:sdkclient_id/diag

Sample Requests/Responses and
Documentation

To see RF Glass data for SDK
Clients, issue the following request:

Request:

"subscribe": "/sites/:site_id/
sdkclients/:sdkclient_id/diag"
}

Response:

"event": "data",

"channel": "/sites/
4ac1dcf4-9d8b-7211-65c4-057819f086
2b/sdkclients/de87bf9d-183f-e383-
cc68-6ba43947d403/diag",

"data": {

"map_id": "845a23bf-bed9-
e43c-4c86-6fad74be7aes",
"grid": {

"topleft_x_m": -0.86,

"topleft_y_m": 9.2486,

"size_m": 0.5,

"width": 40,

"height": 40,

"data": "<base-64
encoded data intended to be
interpreted by atob() in JS>",

1,

"motion": true,

"avg_duration": 3,
"vbles": [
{
"type": "device",
"id":
"00000000-0000-0000-1000-5c5b350e0
060",

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"orientation": 90,
"xyz_m": [5.79,
4.33, 3.04 1],
"rssis":
[-52.32, -53, -55, -57, -60.25,
null, null, -62, null]
3,
{
"type": "beacon",
"id":
"00000000-0000-0000-1000-
€74489000052",
"xyz_m": [8.79,
10.33, 3.04 1,

"rssi": -59.5

1,
"peak": {

"vble_id":
"00000000-0000-0000-1000-
€74489000052" ,

"max_rssi": -53.428,

"plf": -73,

"ple": -21,

"intercept": -52

1,

// estimates based on
probability surface, we'll always
have this

"raw_xyz_m": [18.7486,
10.13269, 0 1,

"smoothed_xyz_m":

[18.7486, 10.13269, 0],

// available only if
present

"app_xyz_m": [18.714,
10.1102, o],

"dead_reckoning_xyz_m":
[18.791, 10.1613, 0],

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"dead_reckoning_raw_xyz_m":
[18.157, 10.110, 0],

"model": "iPod7",

"os": "",
"version": "10.2.1",
"beams_count": 12,
"beams_mean": 4,
"missing_beams": 16,
"speed": 1,
"direction": 235,
"timestamp":

1501113999.758902,

// the loudest mote
estimate

"closest_mote_xyz_m":
[8.79, 10.33, 3.04 1,

// 3 past consecutive
mote estimates

"adjusted_mote_xyz_m":
[8.79, 10.33, 3.04 1,

// another algorithm,
more sophisticated

"vector_mote_xyz_m":
[8.79, 10.33, 3.04]

//particle reset flags
"pf_reset": false,

"pf_hard_reset": false

"latency": 123

For more information, see Get Site
SDK Stats by Map and Get Site
SDK Stats.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-sdk/get-site-sdk-stats-by-map
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-sdk/get-site-sdk-stats-by-map
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-sdk/get-site-sdk-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-sdk/get-site-sdk-stats

Table 19: WebSocket Documentation (Continued)

Names

Wi-Fi (Client Location)

Streaming Channels

/sites/:site_id/stats/maps/:map_id/
clients

Sample Requests/Responses and
Documentation

To see wireless client locations,
issue the following request:

Request:

GET /api/v1/sites/:site_id/stats/
maps/:map_id/clients

Response:

mac": "5684dae%ac8b",
"last_seen": 1470417522,

"username":
"david@mist.com",

"hostname": "David-
Macbook",

"os": "0OS X 10.10.2",

"manufacture": "Apple",

"family": "iPhone",

"model": "6S",

"ip": "192.168.1.8",

"ip6":
"2001:db8:3333:4444:5555:6666:7777
:8888",

"ap_mac": "5c5b35000010",

"ap_id":
"0000000-0000-0000-1000-5c5b350000
10",

"ssid": "corporate",

"wlan_id": "be22bba7-8e22-
elcf-5185-b880816fe2cf",

"psk_id": "732daf4e-
f51e-8bba-06f9-b25cd0e779%ea",

"uptime": 3568,
"idle_time": 3,

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"power_saving": true,
"band": "24",
"proto": "a",

"key_mgmt": "WPA2-PSK/
CCMP",

"dual_band": false,

"channel": 7,
"vlan_id": "",
"airespace_ifname": ""
"rssi": -65,

"snr": 31,
"tx_rate": 65,

"rx_rate": 65,

"tx_bytes": 175132,
"tx_bps": 6,

"tx_packets": 1566,
"tx_retries": 500,
"rx_bytes": 217416,
"rx_bps": 12,

"rx_packets": 2337,

"rx_retries": 5,

"map_id": "63eda950-
c6da-11e4-a628-60f81dd250cc",

"x": 53.5,
"' 173.1,
"x_m": 5.35
"y 17.31

"num_locating_aps": 3,

"is_guest": true,
"guest": {
"authorized": True,
"authorized_time":
1428939300,

"authorized_expiring_time":
1429109300

"name": "John",

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"email":
"john@abc.com",

"company": "ABC",
"field1": "whatever",
"cross_site": True

3,

"airwatch": {
"authorized": True

3,

"_ttl": 250

For more information, see Get Site
Wireless Client Stats and Get Site
Wireless Client Stats by Map.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-client-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-client-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-clients-stats-by-map
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-clients-stats-by-map

Table 19: WebSocket Documentation (Continued)

Names

Wi-Fi Client Stats

Streaming Channels

/sites/:site_id/stats/clients

Sample Requests/Responses and
Documentation

To get wireless client statistics,
issue the following request:

Request:

GET /api/v1/sites/:site_id/stats/
clients

Response:

mac": "5684dae%ac8b",
"last_seen": 1470417522,

"username":
"david@mist.com",

"hostname": "David-
Macbook",

"os": "0OS X 10.10.2",

"manufacture": "Apple",

"family": "iPhone",

"model": "6S",

"ip": "192.168.1.8",

"ip6":
"2001:db8:3333:4444:5555:6666:7777
:8888",

"ap_mac": "5c5b35000010",

"ap_id":
"0000000-0000-0000-1000-5c5b350000
10",

"ssid": "corporate",

"wlan_id": "be22bba7-8e22-
elcf-5185-b880816fe2cf",

"psk_id": "732daf4e-
f51e-8bba-06f9-b25cd0e779%ea",

"uptime": 3568,
"idle_time": 3,

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"power_saving": true,
"band": "24",
"proto": "a",

"key_mgmt": "WPA2-PSK/
CCMP",

"dual_band": false,

"channel": 7,
"vlan_id": "",
"airespace_ifname": ""
"rssi": -65,

"snr": 31,
"tx_rate": 65,

"rx_rate": 65,

"tx_bytes": 175132,
"tx_bps": 6,

"tx_packets": 1566,
"tx_retries": 500,
"rx_bytes": 217416,
"rx_bps": 12,

"rx_packets": 2337,

"rx_retries": 5,

"map_id": "63eda950-
c6da-11e4-a628-60f81dd250cc",

"x": 53.5,
"' 173.1,
"x_m": 5.35
"y 17.31

"num_locating_aps": 3,

"is_guest": true,
"guest": {
"authorized": True,
"authorized_time":
1428939300,

"authorized_expiring_time":
1429109300

"name": "John",

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"email":
"john@abc.com",

"company": "ABC",
"field1": "whatever",
"cross_site": True

3,

"airwatch": {
"authorized": True

3,

"_ttl": 250

For more information, see Get Site
Wireless Client Stats.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-client-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/get-site-wireless-client-stats

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation
Unconnected Clients /sites/:site_id/stats/maps/:map_id/ | To get the location of unconnected
unconnected_clients clients, issue the following request:
Request:

GET /api/v1/sites/:site_id/stats/

maps/:map_id/unconnected_clients

Response:

mac": "5684dae%ac8b",
"ap_mac": "5c5b350e0410",
"map_id": "ea77be98-

ab51-4ff8-a863-ac3c8elblc3a",

"x": 60,
Ily||: 80’
"rssi": -75.0,

"manufacture": "Apple",
"last_seen": 1428939600

For more information, see List Site
Unconnected Client Stats.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/list-site-unconnected-client-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/clients-wireless/list-site-unconnected-client-stats

Table 19: WebSocket Documentation (Continued)

Names

Devices

Streaming Channels

/sites/:site_id/devices

Sample Requests/Responses and
Documentation

To get a list of devices for a
particular site, issue the following:

Request:

GET /api/v1/sites/:site_id/devices

Response:
[
{
"model": "AP41",
"hw_rev": "0",
"map_id":

"01b04bbe-9687-11e8-
aba9-346895ed1b7d",

"orientation": 0,

"org_id": "476057fe-
cebb-4be9-9c15-caf1f09d95e0",

"site_id":
"eaabb2b7-88cd-41ea-8150-9b46b6779
235",

"mac": "5c5b350€0001",

"modified_time":
1533206823,

"created_time":
1533196761,

"tag_id": 107,

"tag_uuid":
"9c557d6a-8abe-11e6-
b1db-0242ac110004",

"serial": "1002710010001",

"type": "ap",

Ilid“:
"00000000-0000-0000-1000-5c5b350€0
001",

"name": "ap-001"

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

For more information, see List Site
Devices.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/devices/list-site-devices
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/devices/list-site-devices

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

Device Stats /sites/:site_id/stats/devices To view the current statistics for a
particular device, issue the
following:

Request:

GET /api/v1/sites/:site_id/stats/

devices

Response:

information from
manufacturing, immutable

"mac": "5c5b35000010",

"model": "AP200",

“"type": "ap",

"serial":
"FXLH2015170017",

"last_seen": 1470417522,

configurations

"name": "conference room",

"map_id": "63eda950-
c6da-11e4-a628-60f81dd250cc",

"x": 53.5,
"yt 1731,
"radio_config": {
"pband_24": {
"channel": 0,
"bandwidth": 20,
"power": 0,

"dynamic_chaining_enabled": false,
"tx_chain": 4,
"rx_chain": 4
3,
"band_5": {
"channel": 0,
"bandwidth": 40,

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"power": @,

"dynamic_chaining_enabled": false,
"tx_chain": 1,
"rx_chain": 4
3,
"band_6": {
"channel": 0,
"bandwidth": 40,
"power": @,
"tx_chain": 1,
"rx_chain": 4
3,
"scanning_enabled":
true
1,
"ip_config": {
"type": "static",
"ip": "10.2.1.1",
"netmask":
"255.255.255.0",
"gateway":
"10.2.1.254",
"dns": ["8.8.8.8",
"4.4.4.4" 7,
"dns_suffix":
[".mist.local", ".mist.com"]
1,
"ble_config": {
"power_mode":
"custom",
"power": 10,
"beacon_rate_model":
"custom",
"beacon_rate": 3,
"beam_disabled": [1,

3,
"led": {
"enabled": true,
"brightness": 255
3,

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

current stat
"status": "connected",
"version": "1.0.0",
"ip": "10.2.9.159", //
first IP
"ext_ip": "73.92.124.103",
"num_clients": 10,
"uptime": 13500,
"tx_bps": 634301,
"rx_bps": 60003,
"tx_bytes": 211217389682,
"tx_pkts": 812204062,
"rx_bytes": 8515104416,
"rx_pkts": 57770567,

"locating": false,

"radio_stat": {
"band_24": {

mac":
"5c5b35000420"
"channel": 6,
"bandwidth": 20,
"power": 19,
"num_clients": 6,
"tx_bytes":
211166512114,
"tx_pkts":
812058566,
"rx_bytes":
8504737800,
"rx_pkts":
57731964
3,
"band_5": {

mac":
"5c5b3500040b0"
"channel": 44,
"bandwidth": 80,
"power": 15,

"num_clients": 4,

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation
"tx_bytes":
50877568,
"tx_pkts": 145496,
"rx_bytes":
10366616,
"rx_pkts": 38603
}
1,
"port_stat": {
"ethe": {
"up": true,
"speed": 1000,
"full_duplex":
true,
"tx_bytes": 2056,
"tx_pkts": 670,
"rx_bytes": 2056,
"rx_pkts": 670,
"rx_errors": 0,
1,
"eth1": {
"up": false
3,
"module": {
"up": false
}
1,

‘ports’ is like
‘port_stat® but is an array.

This array can be
converted to a dict using
(port_id, node) as key.

"ports": [

// Each port object
is same as 'GET /api/v1/
sites/:site_id/stats/ports/
search’ result object,

// except that
org_id, site_id, mac, timestamp
are removed

"port_id":

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"ge-0/0/1",

"node":
"node0", // Absent if this
device is standalone

}
]
"ip_stat": {
"ip": "10.2.1.1",
"netmask":
"255.255.255.0",
"gateway":
"10.2.1.254",
"ip6":

"2607:18b0:4005:808::2004",
"netmask6": "/32",
"gateway6":
"2607:1f8b0:4005:808::1",
"dns": ["8.8.8.8",
"4.4.4.4" 7,
"dns_suffix":

[".mist.local", ".mist.com"],

"ips": {

"vlan1":
"10.2.1.1/24,2607:f8b0:4005:808: : 1
/32",

"vlan193":
"10.73.1.31/16",

"vlan3157":
"10.72.11.14/24"

3

3,

"ble_stat": {
"power": 10,
"beacon_rate": 3,
"uuid":

"ada72f8f-1643-e5c6-94db-
f2a5636f1a64",

"major": 12345,
"minors": [201, 202,

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

203, 204, 205, 206, 207, 208 1,
"tx_pkts": 135135135,

"tx_bytes":
5231513353,

"tx_resets": 0,

"rx_pkts": 135,

"rx_bytes": 135,

"ibeacon_enabled":
true,

"ibeacon_uuid":
"f3f17139-704a-
f03a-2786-0400279e37c3",

"ibeacon_major": 13,

"ibeacon_minor": 138,

"eddystone_uid_enabled": false,

"eddystone_uid_namespace":
"2818e3868dec25629ede",

"eddystone_uid_instance":
"5c5b35000001",

"eddystone_uid_freqg_msec": 200,

"eddystone_url_enabled": true,
"eddystone_url_url":
"https://www.abc.com",

"eddystone_url_freq_msec": 100
3,
"12tp_stat": {
"7dae216d-7c98-a51b-
€068-dd7d477b7216": {
"wxtunnel_id":
"7dae216d-7c98-a51b-e068-
dd7d477b7216",
"state":
"established_with_sessions",

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"uptime": 135,
"sessions: [
{
"remote_id": "vpnl",
"state":
"established",
"remote_sid": 13,
"local_sid": 31
}
]
}
1,
"lldp_stat": {

"system_name": "TC2-
OWL-Stack-01",

"system_desc": "HP
J9729A 2920-48G-POE+ Switch",

"mgmt_addr":
"10.1.5.2",

"port_desc": "2/26",

"chassis_id":
"63:68:61:73:73:69",

"11dp_med_supported":
false,

"power_request_count": 3,

"power_allocated":

15500,
"power_requested":
25500,
"power_draw": 15000
1,
"power_src": "PoE
802.3af",

"power_budget": -12000,

"power_constrained": true,

"power_opmode": "[20]
6GHz(2x2) 5GHz(4x4) 2.4GHz(2x2).",

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"switch_redundancy": {

"num_redundant_aps":

}7

// IoT stats

"iot_stat": {

"DI2": {
"value": 0

e

// Environment stats

"env_stat": {
"cpu_temp": 51,
"ambient_temp": 39,
"humidity": 11,
"attitude": 0,
"pressure": 1015
"accel_x": -0.012,
"accel_y": 0.004,
"accel_z": -1.012,
"magne_x": 0.0,
"magne_y": 1.3,
"magne_z": 0.0,
"vcore_voltage": 0

1

"mount": 'faceup',

// ESL Stats

"esl_stat": {
"up": true,
n type" :

"imagotag", // if up

// following are type-
dependent

"connected": true,

"channel": 3,

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and

Documentation

// for a base AP

"mesh_downlinks": {

"00000000-0000-0000-1000-5c5b356be

59f": {

"site_id":

"0e525da3-6033-428c-9a51-9f652f643

baf",

1470417522,

175132,

1566,

217416,

2337,

e

"band": "24" ,

"proto": "a",
"channel": 7,

"last_seen":
"idle_time": 3,
"rssi": -65,
"snr": 31,
"tx_rate": 65,
"rx_rate": 65,

"tx_bytes":

"tx_bps": 6,
"tx_packets":

"tx_retries": 500,

"rx_bytes":

"rx_bps": 12,

"rx_packets":

"rx_retries": 5

// for a remote/relay AP

"mesh_uplink": {

"uplink_ap_id":

"00000000-0000-0000-1000-5c5b35000

010",

"uplink_site_id":

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

"1916d52a-4a90-11e5-8b45-1258369¢c3
8a9",
llband": ll24ll’

"proto": "a",
"channel": 7,

"last_seen":
1470417522,

"idle_time": 3,

"rssi": -65,
"snr": 31,
"tx_rate": 65,

"rx_rate": 65,

"tx_bytes": 175132,
"tx_bps": 6,
"tx_packets": 1566,
"tx_retries": 500,
"rx_bytes": 217416,
"rx_bps": 12,
"rx_packets": 2337,
"rx_retries": 5
1,
"fwupdate": {
"timestamp":
1428949501,
"status":
"inprogress",
"status_id": 5,
"progress": 10

}7

"last_trouble": {
"code": "03",
"timestamp":
1428949501
3,

// if RADSec is enabled,
device certs will be

automatically generated and

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

managed
// with the expiration
time exposed
"cert_expiry": 1534534392
"locked": false,
"auto_placement": {
"x": 53.5,
"y 173.1,
"x_m": 5.35,
"y_m": 17.31,
"status": "localized",
"status_detail":

"localized",

"use_auto_placement":
false,

"recommended_anchor":
false,

"info": {

"cluster_number":

0,

"orientation_state": 0,

"probability_surface": {
"radius": 2.1,
"x": 5.65,
"y 17.10

}'
"_id": "5c5b35000010"

For more information, see Get Site
Device Stats.

https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/devices/get-site-device-stats
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/stats/devices/get-site-device-stats

Table 19: WebSocket Documentation (Continued)

Names

Commands from Devices

Streaming Channels

/sites/:site_id/
devices/:device_id/cmd

Sample Requests/Responses and
Documentation

To subscribe to device command
outputs, issue the following
request:

Request:

"subscribe": "/sites/:site_id/
devices/:device_id/cmd"

3

Response:

"event": "data",

"channel": "/sites/
4ac1dcf4-9d8b-7211-65c4-057819f086
2b/devices/
00000000-0000-0000-1000-5c5b350€00
60/cmd",

"data": {

"session": "session_id",

"raw": "64 bytes from
23.211.0.110: seg=8 ttl=58
time=12.323 ms\n"

3

For more information, see Device -
Command Output.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/websockets/stream-samples/device-command-output
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/websockets/stream-samples/device-command-output

Table 19: WebSocket Documentation (Continued)

Names Streaming Channels Sample Requests/Responses and
Documentation

Streaming PCAP /sites/:site_id/pcaps To subscribe to streaming Packet
Capture (PCAP), issue the following
request:

Request:

subscribe: "/sites/:site_id/
pcaps"

3

Response:

"event": "data"
"channel": "/sites/:site_id/
pcaps"
"data": {
"capture_id": "6blbe4fb-
b239-44d9-9d3b-cb1ff3af1721"

"pcap_dict": {

"channel_frequency":
2412,

"channel": "1",

"datarate": "1.0
Mbps",

"rssi": -75,

"dst":
"78:bd:bc:ca:0b:0a",

"src":
"18:b8:1f:4c:91:¢c0",

"bssid":
"18:b8:1f:4c:91:¢c0",

"frame_type":
"Management",

"frame_subtype":
"Probe Response",

"proto": "802.11",

"ap_mac":
"d4:20:b0:81:99:2e",

"direction": "tx",

Table 19: WebSocket Documentation (Continued)

Names

Streaming Channels

Sample Requests/Responses and
Documentation

"timestamp":
1652246543,

"length": 416.0,

"interface":
"radiotap",

"info":

"1652246544.467733 1683216786us

tsft 1.0 Mb/s 2412 MHz 11g -75dBm

signal -82dBm noise antenna @

Probe Response (ATTKmsWiVS) [1.0x
2.0% 5.5%

11.0% 18.0 24.0 36.0 54.0 Mbit]

CH: 2, PRIVACY\\n",

3,

"pcap_raw":
"1MOyoQIABAAAAAAAAAAAAP//
AAABAAAAEEhT7Yh5VBWCEAQAACOAEAAAAAKW
BVCADAAQAAATIW7reCS2VNKAAAAABACHAmMA
BLWUAAEAEBgAAWACAABQADOBeL 28ygsKGL
gfTIJHAGLgfTIHACIZ2WD1BJQAAAGQAERUA
CkFUVEttc1dpVIMBCIKEi5YKMEhSAWECBw
ZVUyABCx4gAQA jAhkAKgEEMgQMEhhgMBQB
AAAPTrAQBAAAPrAQBAAAPIrAIMAASFAQAbAA
BGBTIIAQAALRqtCR////
8AAAAAAAAAAAAAAAAAAAAAAAAAADOWAZEV
AAAAAAAAAAAAAAAAAAAAAAAAAHBTBAATAA
AAAEDdkwBQ8gQQSgABEBBEAAECEDSAAQMQ
RwAQNn2481frn3KT+uGod2ERX
+RAhAAtBcnIpcywgSW5jLhAJAAPCR1cyMT
AtNzAWECQACk JHVZIXMCO3MDAQQgAKQkdX
M3jEwLTcwMBBUAAZABZBQ8gQAARARAASBCN
JpcyBXaXJ1bGVzcxATAAIgCBASAAEBEEKA
BgA3KgABINOJABAYAgEQHAAA3RgAUPICAQ
GEAAOKAAANPAAAQKNeAGIyLwAZzjakr\"

For more information, see PCAP.

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/websockets/stream-samples/pcap

‘ https://datatracker.ietf.org/doc/html/rfc6455

Get Started with WebSocket

IN THIS SECTION

Use Postman to Connect to the WebSocket API | 276

Use Postman to Connect to the WebSocket API

SUMMARY IN THIS SECTION

Postman is a platform that is designed to make it Postman Setup | 276

easy to work with APIs. This topic walks you through Import the Mist API Collection | 277
how to use Postman to connect to the Mist

WebSocket APl and stream data. Create Your Environment | 277

Connect to the WebSocket API | 278

Postman is an API platform that makes it easy for you to complete API related tasks, including sending
and receiving data from a WebSocket server. This topic covers how to get set up in Postman and how to
leverage it so that you can use the Mist WebSocket API to stream data.

See

Postman Setup

To use Postman, you can use the Postman website or download the Postman application as described in
Download Postman.

1. Sign in to Postman (or create an account) from the Postman website or application. This allows you to
save your environment. See the Create Your Environment section further down in this topic.

https://datatracker.ietf.org/doc/html/rfc6455
https://www.postman.com/
https://www.postman.com/downloads/
https://learning.postman.com/docs/getting-started/first-steps/sign-in-to-postman/

2. Once your account is created, you get access to your workspace. This is where you can save your API
calls and configure your environment to interact with the Mist API.

Import the Mist API Collection

Next, import the Mist API Collection. Juniper Mist has built a list of Postman API calls that you can
import directly into your Postman workspace. This list is maintained and matches what the API
documentation lists.

1. Navigate to the Juniper Mist Postman collections page and select the Mist Cloud Websockets
collection.

2. Once the collection is opened, click on Fork as described in Fork collections and environments in
Postman. This enables you to create a copy of the collection in your own workspace and still receive
updates when the main collection is updated.

3. In the top left corner of Postman, you should see that the collection has now been forked into your
workspace. Expand the collection and its subsections to see how all the WebSocket APi requests are
organized.

Create Your Environment

A postman environment allows you to store variables in a profile that you can reuse across multiple API
calls and collections. You must create an environment and define variables before you begin in Postman.

1. Create and name your environment as described in Create an Environment.

2. Define variables in your Postman environment by entering them into the table as described in Add
Environment Variables.

e In order to interact with the Mist WebSocket API, you must set the following variables:
Table 20: Environment Variables

Variable Description

host This is the URL of the Mist API endpoint. For exarn
See API Endpoints and Global Regions for the full |

host-ws This is the URL of the Mist websocket APl endpoir
access to the GLOBAL 01 region. The full list of M
Endpoints list" on page 242.

apitoken This is the Mist API token required to authenticate
create a Mist API token for REST API, see Create £

https://www.postman.com/juniper-mist?tab=collections
https://learning.postman.com/docs/collaborating-in-postman/using-version-control/forking-elements/
https://learning.postman.com/docs/collaborating-in-postman/using-version-control/forking-elements/
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#create-an-environment
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#add-environment-variables
https://learning.postman.com/docs/sending-requests/variables/managing-environments/#add-environment-variables
https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/topic-map/api-endpoint-url-global-regions.html
https://www.juniper.net/documentation/us/en/software/mist/automation-integration/topics/task/create-token-for-rest-api.html

org_id This is the UUID of your Mist organization. For mc
Find Your Organization ID and Get Org.

site_id This is the UUID of a specific Mist site. For more ir
Info.

3. Once you have entered all your variables, select Save.

4, Apply the environment to your Postman workspace by navigating to the Environment drop-down
menu in the top right corner of the page, then select your newly created environment.

Connect to the WebSocket API

Now that you have set up Postman with all of the necessary information, it's time to test the connection
to the WebSocket API. You can do this using the GET /api/v1/self call to be returned with information
about your privileges and accounts. You can view steps on how to this in "Test Your First APl Call" on
page 152, or see full documentation on this here.

Let's say the first set of data you want to stream is related to Wi-Fi client statistics. To stream this data,
you must connect to the WebSocket API and then subscribe to the /sites/<i>{{site_id}}</i>/stats/clients
channel.

In order to test your connection to the Juniper Mist WebSocket API, follow these steps:

1. In Postman, select Collections on the left menu. Then, open the Mist Cloud Websockets section.
Finally, click on the siteClientStatsStream request.

2. Next, click the Connect button to establish a connection with the Mist WebSocket API. This request
will use the {{apitoken}}, the {{ws-host}}, and the {{site_id}} variables from your environment.

https://www.juniper.net/documentation/us/en/software/mist/mist-management/topics/task/find-org-id.html
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/get-org
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/get-site-info
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/sites/get-site-info
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/self/account/get-self

3. If you were able to successfully connect to the websocket API, you should see a message detailing
your connection as well as a green check mark.

A My Workspace New Import Overview My Mist Environment R siteClientstatsstream + v My Mist Environn

g + = =R siteClientStatsStream v | share
Collctions
~ Mist Cloud Websockets 23071.0 %/ my fork

fHthost-ws)}/api-ws/v1/stream Disconnect 8

E]) orgMxEdgeCaptureStream
Environments
Q) siteDeviceCommandOutputs ®
Message Params Headers® Settings ®
D B
D R siteBouncePort
History
Q) siteCableTest i
"subscribe®: "/sites/{/site_id}/stats/clients"
. 2 siteClientsLocationOnMap 3
Q) siteBleAssetsStream
R siteDiscoveredBleAssetsStream
) siteDevicesStream
Q) siteDevicestatsstream
) siteClientStatsStream
@) siteSakClientstream
) siteUnconnectedClientsStream
Q siteRfGlass
) siteSsDnsResolutions

R siteStreamingPoap JSON v =

Saved messages

Response Connected | 5 S

All Messages v [Clear Mes:

© Connected to wss://api-ws.mist.com/api-ws/v1/stream 10:33:53 v

4. Next, you must subscribe to the channel so that you can start to receive data. To do this, click the
Send button.

5. Mist will then send you a message confirming that you have subscribed to the channel.

2 My Workspace New import Overview iy

R siteCiientStatsStream + v Mymist

=} +[=) siteClientstatsStream v share
Calactions

®

~ Mist Cloud Websockets 2307.1.0 % my fork

@

Disconnect

= R) orgMxEdgeCaptureStream
Ervironments
1 siteDeviceCommandOutputs

Message Params Headerse Setings Q

teBouncePort

) siteCableTest i

"subscribe: */sites/{{site_idf}/stats/clients’

]

) siteClientsLocationOnMap 3

&

siteBleAssetsStream

siteDiscoveredBleAssetsStream

& (8

siteDevicesStream

siteDeviceStatsStream

o ©

[c

) siteClientStatsStream

) siteSakClientStream

5

) siteUnconnectedClientsStream

[c

| siteRfGlass

)

&

5

) siteSsrDnsResolutions.

&

5

\ siteStreamingPeap JSON v g

Response Connected

AlM

v [Ciea

J ivevent": "channel_subscribed”, "channel: "/sites/3a3bf6c9-734e-47d7-al2b-b831adb16927/stats/clients" | 10:36:17 v
I "subscribe': "/sites/3a3bf6c9-734e-47d7-af2b-bB3£adbl6927/stats/clients" } 03617 v

© Comnected to wssi//api-ws.mist.comiapi-ws/vi/stream 103353~

279

6. Now that you are subscribed to the channel, you should see messages containing client statistics
stream in from Mist. You can view these in the Response section of Postman.

Response
All Messages
v f'event":

“data", "channel":

JSON v

" "{\"mac
\"model\":
168.2.185\",

: \"668£c0322832\", \
13 Pro\", \"os\":
\"ap_mac\":

\"key_mgmt\" :

2 {"event": "data", "channel":

"/sites/3a3bf6c9-734e-47d7-af2b-b83fadb16927/stats/clients",

"site_id\":
\"18.1\",
\"d420b08532eb\
\"ssid\": \"The Irie Market\", \"wlan_id
\"WPA2-PSK/CCMP\", \"group\": \"\", \"band\": \"5\",
\"snr\": 50, \"idle_time\": 32.0, \"tx_rate\": 270.8, \"rx_rate\": 24.0, \"tx_pkts\": 7023, \"rx_pkts\": 5894, \"tx_bytes\": 7756994,
\"rx_bytes\": 4858011, \"tx_retries\": 1276, \"rx_retries\": 121, \"tx_bps\": 0, \"rx_bps\": 0, \"

"/sites/3a3bf6c9-734e-47d7-af2b-b83fadb16927/stats/clients",

{l Clear Messages

“data":

/sites/3a3bf6c9-734e-47d7-af2b-h83fadb16927/stats/clients",
\"3a3b£6c9-734e-47d7-a£2b-b83£adb16927\", \"assoc_time\": 1727705786, \"family\":
\"d420bebef3b3\",

\"manufacture\": \"Apple\", \"bssid\":
ap_id\": \"* 1000-d420b085

Connected Save Response

"f\"mac\": \"668£c0322832\", \"si.. 10:37:04 ~

Show Hexdump Q

\"iPhone\",

\"hostname\": \"iPhone\", \"ip\": \"192.

"1a0£15b8-2¢65-4112-9ed7-8d60bac64935\", \"dual_band\": false, \"is_guest\":
\"channel\": 144, \"vlan_id\":

“data’ ¢

b\", \"last_seen\": 1727707024, \"uptime\": 1238,
false,
\"1\", \"proto\": \"ax\", \"rssi\": -49,

_ttl\": 300%"

Postbot

V' ': \"a8934a07b214\", \"si.. 10:37:04 v

7. When you are ready to disconnect from the WebSocket API, click the Disconnect button. You will
then receive a message in the Response section indicating that you are now disconnected.

Now you are ready to explore other streaming channels. Below are some suggestions:

managed by Mist.

WebSocket Use Cases

IN THIS SECTION

Stream Device Data with a WebSocket (Use Case) | 281

Stream Packet Captures with a WebSocket (Use Case) | 284

siteDeviceStatsStream—Use this stream to get statistics about your network devices that are

siteStreamingPcap—Use this to perform packet captures (PCAPs).

siteBleAssetsStream—Use this stream to retrieve location data about your BLE asset tag.

Stream Device Data with a WebSocket (Use Case)

SUMMARY IN THIS SECTION
In this example, we will discuss the Juniper Mist use Communicate with a MIST WebSocket
case of streaming device data with a WebSocket. Endpoint | 281

A WebSocket is a protocol that provides full-duplex communication over a TCP connection. A
WebSocket API provides a way for a client to communicate with an endpoint. Juniper Mist uses this
protocol to stream near-real-time data to a client. A client will make a request for the data it wants to
receive by subscribing to a channel. The client makes the request only once, and the server will stream
the channel data to the client as updates are made.

This method of communication is good for receiving event-driven data in near-real time. Its primary use
is for collecting device data. You and other network administrators can then feed this data into a custom
event display, a notification system, an external logging facility, and much more.

Using WebSocket is especially helpful if the information that your organization needs isn't available
natively within the Juniper Mist portal.

In this use case, we show how to configure a client to request and subscribe to a site’s device statistics.
Using a WebSocket requires the following elements:

e Authentication

e HTTP header configuration

e WebSocket Connection URL (wss:/api-ws.mist.com/api-ws/v1/stream). Please verify your URL
based on your geographical location.

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such as
your API token, organization ID, site ID, AP name, and so on.

Communicate with a MIST WebSocket Endpoint

To communicate with the Juniper Mist WebSocket endpoint, you use an application called Postman.
Postman is a GUI API platform for building and using APIs. You can build scripts that make multiple API
calls. This API also enables you to make WebSocket calls.

The following steps describe how you can connect to the Juniper Mist WebSocket, starting with adding
the URL to the input box next to the Connect button:

1. Click Connect.
The Messages pane shows that the client tried to connect and was immediately disconnected. This is
because the Juniper Mist WebSocket requires authentication.

2. To fix the authentication problem, add a custom HTTP header to the request.

a. Under the KEY heading, create a new “Authorization” key.

b. In the VALUE input box, enter the word token followed by a space and then the Juniper Mist
authorization token.

c. Select the check box on the left of the KEY column to make it active.

d. Click Connect to establish the WebSocket session with Mist.
3. Once connected, switch to the Message heading in Postman.

This is where you tell Mist which data you want, by subscribing to the device statistics stream.

The following example requests device statistic data for the specified site.

"subscribe": "/sites/c1947558-268d-4d31-XxXX-XXXXXXXXXXXXXX/stats/devices"

4. With this information entered in the Messages input box, click Send.

Postman presents your request with an Up Arrow and the Juniper Mist response with a Down Arrow.

The following example shows what you can expect to see in a response from Juniper Mist.

"event": "channel_subscribed",
"channel": "/sites/c1947558-268d-4d31-xxxx-Xxxxxxxxxxxx/stats/devices"

Within a few seconds of subscribing, you should start to see events streaming into the Messages
pane in JSON format (default):

1. {

2. "event": "data",

3. "channel": "/sites/c1947558-268d-4d31- xxxXx - XXXXXXXXXXXxX /stats/devices",

4. "data": "{\"mac\": \"5c5b35f15ed8\", \"last_seen\": 1686592607, \"uptime\": 6259614,

\"version\": \"0.9.22801\", \"_partition\": 48, \"_offset_apbasic\": 4639768722, \"ip_stat\":
{\"dns\": [\"10.10.12.11\", \"10.10.12.12\"], \"ips\": {\"vlan12\":
\"10.10.12.25/25,fe80:0:0:0:5e5b:35ff: fef1:5ed8/64\"}, \"gateway\": \"10.10.12.1\", \"ip6\":

\"fe80:0:0:0:5e5b:35ff:fef1:5ed8\", \"netmask6\": \"/64\", \"ip\": \"10.10.12.25\", \"netmask
\": \"255.255.255.128\", \"dhcp_server\": \"10.10.12.1\"}, \"ip\": \"10.10.12.25\", \"ble_stat
\": {\"tx_pkts\": 9073, \"tx_bytes\": 105431, \"rx_pkts\": 393432193, \"rx_bytes\":
2772782221, \"tx_resets\": @}, \"_time\": 1686592607.62131}"

5.}

You can see the same output in the following formats:
o Text

1. {"event": "data", "channel": "/sites/c1947558-268d-4d31-XxxX-XXXXXXXXXXXX/stats/devices",
"data": "{\"mac\": \"5c5b35fxxxxx\", \"last_seen\": 1686592607, \"uptime\": 6259614, \"version\":
\"0.9.22801\", \"_partition\": 48, \"_offset_apbasic\": 4639768722, \"ip_stat\": {\"dns\":
[\"10.10.12.11\",\"10.10.12.12\"], \"ips\": {\"vlan12\":
\"10.10.12.25/25,fe80:0:0:0:5e5b:35ff:fef1:5ed8/64\"}, \"gateway\": \"10.10.12.1\", \"ip6\":
\"fe80:0:0:0:5e5b:35ff:fef1:5ed8\", \"netmaské\": \"/64\", \"ip\": \"10.10.12.25\", \"netmask\":
\"255.255.255.128\", \"dhcp_server\": \"10.10.12.1\"}, \"ip\": \"10.10.12.25\", \"ble_stat\":
f\"tx_pkts\": 9073, \"tx_bytes\": 105431, \"rx_pkts\": 393432193, \"rx_bytes\": 2772782221,
\"tx_resets\": 0}, \"_time\": 1686592607.62131}"}

e HTML

1. {"event": "data", "channel": "/sites/c1947558-268d-4d31-xxxX-XXXXXXXXXXxX/stats/devices",
"data": "{\"mac\":

2.\"5¢c5b35fxxxxx\", \"last_seen\": 1686592607, \"uptime\": 6259614, \"version\": \"0.9.22801\",
\"_partition\": 48,

3. \"_offset_apbasic\": 4639768722, \"ip_stat\": {\"dns\": [\"10.10.12.11\",\"10.10.12.12\"], \"ips
\": {\"vlan12\":

4.\"10.10.12.25/25,fe80:0:0:0:5e5b:35ff:fef1:5ed8/64\"}, \"gateway\": \"10.10.12.1\", \"ip6\":

5.\"fe80:0:0:0:5e5b:35ff:fef1:5ed8\", \"netmask6é6\": \"/64\", \"ip\": \"10.10.12.25\", \"netmask\":
\"255.255.255.128\",

6.\"dhcp_server\":\"10.10.12.1\"}, \"ip\": \"10.10.12.25\", \"ble_stat\": {\"tx_pkts\": 9073,
\"tx_bytes\": 105431,

7.\"rx_pkts\": 393432193, \"rx_bytes\": 2772782221, \"tx_resets\": 0}, \"_time\":
1686592607.62131}"}

o XML

1. {"event": "data", "channel": "/sites/c1947558-268d-4d31-xxxX-XXXXXXXXXXXX/stats/devices",
"data": "{\"mac\": \"5c5b35fxxxxx\", \"last_seen\": 1686592607, \"uptime\": 6259614, \"version\":
\"0.9.22801\", \"_partition\": 48, \"_offset_apbasic\": 4639768722, \"ip_stat\": {\"dns\":

[\"10.10.12.11\",\"10.10.12.12\"], \"ips\": {\"vlan12\":
\"10.10.12.25/25,fe80:0:0:0:5e5b:35ff:fef1:5ed8/64\"}, \"gateway\": \"10.10.12.1\", \"ip6\":
\"fe80:0:0:0:5e5b:35ff:fef1:5ed8\", \"netmask6é6\": \"/64\", \"ip\": \"10.10.12.25\", \"netmask\":
\"255.255.255.128\", \"dhcp_server\": \"10.10.12.1\"}, \"ip\": \"10.10.12.25\", \"ble_stat\":
{\"tx_pkts\": 9073, \"tx_bytes\": 105431, \"rx_pkts\": 393432193, \"rx_bytes\": 2772782221,
\"tx_resets\": O}, \"_time\": 1686592607.62131}"}

You will continue to receive messages until you either disconnect or unsubscribe from the channel by
sending a message.

"unsubscribe": "/sites/c1947558-268d-4d31-xXXX-XXXXXXXXXXXXxX/stats/devices"

Once you receive the data, you can do any number of things with it, such as:

Create a custom display or dashboard of events.

Archive the data long term.

Create custom monitoring and alerts.

Create more automations based on results.

For examples using other automation tools to communicate with a MIST WebSocket endpoint, such
as Python, see "Automation Tools" on page 300.

Stream Packet Captures with a WebSocket (Use Case)

SUMMARY IN THIS SECTION

In this example, we discuss the Juniper Mist use case Communicate with a MIST WebSocket
of streaming device packet captures with a Endpoint | 285

WebSocket.

As described in "Stream Device Data with a WebSocket (Use Case)" on page 281, the WebSocket API
enables client communication with an endpoint. You can use this method of communication for
situations where you want to receive near-real time, event-driven data without having to refresh the
web browser.

This use case outlines how you can use a WebSocket to stream packet captures (PCAPs). PCAPs capture
data packets as they traverse the network, and serve as a powerful troubleshooting tool to help debug
traffic issues, as well as broader networking issues.

While you have the ability to download PCAPs from the Mist portal, PCAPs that occurred in the past
might only be beneficial in some troubleshooting scenarios. Streaming PCAPs with a WebSocket, on the
other hand, enables you to monitor and analyze packets as they traverse the network, in near-real time.
With Juniper Mist, you can analyze PCAPs for wired, wireless, and WAN connections.

To establish client communication with an endpoint, two things must occur:

e A client must subscribe to a channel in order to request the data it wants to receive.
e Then, the server streams the channel data to the client as events occur.

Using a WebSocket requires the following elements:

e Authentication

e HTTP header configuration

e WebSocket Connection URL (wss://api-ws.mist.com/api-ws/v1/stream). Please verify your URL based on
your geographical location. See "WebSocket APl Endpoint" on page 242.

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such as
your API token, organization ID, site ID, AP name, and so on.

Communicate with a MIST WebSocket Endpoint

To communicate with the Juniper Mist WebSocket endpoint, you use an application called Postman.
Postman is a GUI API platform for building and using APIs. You can use Postman to carry out any API
related tasks, including making WebSocket calls and streaming data.

For general information about getting started with Postman, see "Use Postman to Make Your First API
Call" on page 150 and Get Started in Postman.

To learn how to create a WebSocket request in Postman, see Create a WebSocket Request.
The following steps describe how you can connect to the Juniper Mist WebSocket:

1. In Postman, Select New > WebSocket.
2. Enter the WebSocket server URL wss://api-ws.mist.com/api-ws/v1/stream, then select Connect.

3. Follow the instructions outlined in "Communicate with a MIST WebSocket Endpoint" on page 281 for
information on how to connect and authenticate.

4. Once connected, select the Message heading in Postman.

https://learning.postman.com/docs/getting-started/overview/
https://learning.postman.com/docs/sending-requests/websocket/create-a-websocket-request/

This is where you tell Mist that you want to stream PCAPs. You must subscribe to the PCAPs stream
to accomplish this. The following subscribe command requests PCAP data for the specified site:

"subscribe": "/sites/c1947558-268d-4d31-XXXX~XXXXXXXXXXXXXX/pcaps"

. Once this information is entered in the Messages field, select Send.

Postman presents your request with an Up Arrow and the Juniper Mist response with a Down Arrow.

The following example shows what you can expect to see in a response from Juniper Mist. Within a
few seconds after you subscribe, you should start to see events streaming into the Messages pane in
JSON format (default):

"event": "data",
"channel": "/sites/67970e46-4e12-11e6-9188-0242ac110007/pcaps",
"data": {

"capture_id": "f@39b1b4-a23e-48b2-906a-0da40524de73",

"pcap_dict": {

"dst_mac": "68:ec:c5:09:2e:87",

"src_mac": "8c:3b:ad:e0:47:40",

"vlan": 1,

"src_ip": "34.224.147.117",

"dst_ip": "192.168.1.55",

"dst_port": 51635,

"src_port": 443,

"proto": "TCP",

"ap_mac": "d4:20:b0:81:99:2e",

"direction": "tx",

"timestamp": 1652247615,

"length": 159.0,

"interface": "wired",

"info": "1652247616.007409 IP ec2-34-224-147-117.compute-1.amazonaws.com.https >
ip-192-168-1-55.ec2.internal.51635: Flags [P.], seq 2192123968:2192124057, ack 4035166782,
win 12, options [nop,nop,TS val 597467050 ecr 7405806601, length 89\\n",

3,

"pcap_raw": "1MOyoQIABAAAAAAAAAAAAP//
AAABAAAAQEX7YhMzAACTAAAANWAAAG j sxQkuh4w7 reBHQIEAAAEIAEUAAT 1bLEAAKAZ/
CilLgk3XAgAE3AbvJs4KpKEDwg8I+gBgADFf9AAABAQEK ISy fqiwkXTQXAWMAVKY5JopoKQrVEn®/31d4YntctGEH/
rTZuwtCvzSncFw71QJveJi9uxHs57KC8wIApph3YvXIrmWg7M37+0+YVOKH/xmr626s5Bkhb3QhKOu+NoNEmA=="

You can see the same output in the following formats by changing your selection from the drop-
down menu above the Response pane in Postman:

o Text
e HTML
e XML
e Binary

You will continue to receive messages until you either disconnect or unsubscribe from the channel by
sending a message.

"unsubscribe": "/sites/c1947558-268d-4d31-xxXX-XXXXXXXXXXXXXX/pcaps"

Once you receive the data, you can do any number of things with it, such as:
e Create a custom display or dashboard of events.

e Archive the data long term.

e Create custom monitoring and alerts.

e Create more automation based on results.

For examples using other automation tools to communicate with a MIST WebSocket endpoint, such
as Python, see "Automation Tools" on page 300.

CHAPTER

Third-Party Integrations

IN THIS CHAPTER

ServiceNow Integrations | 289
Integrate Splunk with Mist Webhooks | 291

Terraform Mist Provider Integration | 297

ServiceNow Integrations

SUMMARY IN THIS SECTION
You can integrate your Juniper Mist organizations Video Overview | 289
with ServiceNow to view device information and Integrations | 289

Marvis Actions in ServiceNow. You can also set up
ServiceNow to automate workflows for common
Mist tasks.

Video Overview

Integrations

You can integrate Juniper Mist data into ServiceNow by using the following applications from the
ServiceNow website.

e Service Graph Connector (SGC) for Juniper Mist—This integration provides the ability to import your
Juniper Mist device inventory into ServiceNow so that you can monitor and manage devices in
ServiceNow. Likewise, SGC can also be used for compliance. Most customers start with SGC.

e Use this integration with individual organizations, MSPs, and large enterprises.

e Provides visibility for all Mist-connected network inventory including Access Points (APs), EX
Series Switches, SRX Series Firewalls, Session Smart Routers (SSRs), and Mist Edges.

e If you have a Marvis Virtual Network Assistant subscription for Juniper Mist, you also can set up
auto-ticketing to automatically create/update/close incidents based on Marvis detections, and
link them to the related CI.

e For more details, including the SGC installation instructions and admin guide, go to Service Now's
SGC page.

e Juniper Mist Automated Provisioning (JMAP)—This integration provides tools to automate Mist Day
0 and Day1+ tasks directly from ServiceNow.

https://youtu.be/FExWHuvePpE
https://www.juniper.net/us/en/products/cloud-services/marvis-virtual-network-assistant.html
https://store.servicenow.com/sn_appstore_store.do#!/store/application/71710fa4dbc721505470633fd3961913
https://store.servicenow.com/sn_appstore_store.do#!/store/application/71710fa4dbc721505470633fd3961913

Can be used for a single organization, with your managed service provider (MSP) account, or with
large enterprises.

Can be used to automate network infrastructure and services deployments from ServiceNow:
create and configure organizations and sites, manage licenses, claim devices, and more.

e Can customize Mist templates and map the templates to the site(s).

Available for Mist wired, wireless, SD-WAN, security services.

Provides “actions” to easily create automation work flows with ServiceNow's no-code Ul.
Request firmware upgrades for Mist-managed devices from ServiceNow.

For more details, including the JMAP installation instructions and admin guide, go to Service
Now's JMAP page.

Event Management for Juniper Mist—The Juniper Mist Push Connector pushes events and alerts
from Mist into ServiceNow so that you can leverage automated network management for Day 2+

tasks from within the ServiceNow platform.

Use this integration with individual organizations, MSPs, or large enterprises.

Get real-time visibility for all Mist device events and alerts in ServiceNow via the Push Connector
for Mist wired, wireless, SD-WAN, and security devices.

Automatically generate incidents in ServiceNow based on predefined or custom alert rules (this
must be configured separately)—without needing to access the Mist dashboard.

Use the ServiceNow Event Management table to leverage AlOps (analyze, consolidate, streamline,
and take action on events).

For more details, including the Event Management installation instructions and admin guide, go to
Service Now's Event Management page.

@ NOTE: The above applications are free of charge, but it is important to know that
additional licenses on the ServiceNow side may be required. See the Requirements and
Dependencies sections on the ServiceNow website to learn more.

https://store.servicenow.com/sn_appstore_store.do#!/store/application/1cb3e729dbd6ed105470633fd396195d
https://store.servicenow.com/sn_appstore_store.do#!/store/application/1cb3e729dbd6ed105470633fd396195d
https://store.servicenow.com/store/app/d35e2b6a1b646a50a85b16db234bcb9d

Integrate Splunk with Mist Webhooks

SUMMARY IN THIS SECTION

Follow these instructions to configure Splunk and to Configuring Mist Webhooks to Point to Your
set up webhooks from Juniper Mist™ to your Splunk Splunk Instance | 294

instance.

Splunk uses HTTP Event Collection (HEC) to receive HTTP POST requests that include a payload of
data. This enables cloud services like Mist to send data to Splunk using webhooks.

How you implement HEC depends on your Splunk service:

e If you're running a managed Splunk Cloud, you'll need to raise a ticket with your Splunk support to
have HEC configured.

e If you have self-service Splunk or Splunk Enterprise (on-premise), you can use the following
instructions to configure HEC to receive webhooks from Mist.

Configuring HEC in Splunk

Before you begin: Webhooks requires IP reachability from the Mist Cloud to your Splunk instance. In
other words, you need a publicly accessible URL for your Splunk server with the HTTP port open.

1. In your Splunk GUI, go to Settings > Data Inputs.

splunkse se Administiator v @ Messages v |Settings v | Activity Helpv | Find ®

Apps L
Explore Splunk Enterprise () KNOWLELGE DATA

Event types Ind

Add Data Tags Report acceleration summaries

+Find More Apps Flelds Virtual indexes
Product Tours Add Data
e Lookups Source types,
New to Splunk? Take a tour to help Add or forward data to Sf T User interface
Yyou on your way. Enterprise. Afterwards, yo __‘< Alert actions DISTRIBUTED ENVIRONMENT
extract fields.
Advanced search Indexer clustering
Explore Data Al configurations Forwarder management
Data Fabric
SYSTEM Distributed search
ik
I Server settings
Server controls USERS AND AUTHENTICATION
Monitoring

: y Health report manager Roles

Console
Instrumentation Users
Licensing Tokens
Workioad management Password Management

Authentication Methods

Go to HTTP Event Collector > Add New.

Provide a Name and Source Name Override.

If your organization uses Splunk Output Groups, select the appropriate output group. Otherwise,

ignore the Output Group selection.

Add Data

Select Source

Files & Directories

Upload a file, index a local file, or monitor an entire directory.

HTTP Event Collector
Configure tokens that clients can use to send data over HTTP or
HTTPS.

TCP/UDP

Configure the Splunk platform to listen on a network port.

Scripts

Get data from any API, service, or database with a script

4. Click Next.

5.

Configure the following fields:

a. For the Source type, click the Select button, hover over Structured, and select _json from the list.

b. Create a new Index and name it network. For the Index Data Type, choose Metrics, and for the

Input Settings Review

Done

Configure a new token for receiving data over HTTP. Learn More [2

Name | Mist-Webhooks

Source name override 7 mist_webhook

Description ? | optional

App, choose Search & Reporting.

Add Data

Output Group (optional)

None »

Enable indexer]

acknowledgement

*—0

Select Source

Input Settings

Optionally set additional input parameters for this data input

Source type

The source type is one of the default fields that the Splunk

platform assigns to all incoming data. It tells the Splunk platform
what kind of data you've got, so that the Splunk platform can
format the data intelligently during indexing. And it's a way to

categorize your data, so that you can search it easily.

Index

The Splunk platform stores incoming data as events in the
selected index. Consider using a "sandbox” index as a

destination if you have problems determining a source type for

your data. A sandbox index lets you troubleshoot your

configuration without impacting production indexes. You can

always change this setting later. Learn More [2

Select Allowed ~Avallable
Indexes Itemi(s)
Bhistory
Emain
£network

B summary

Default Index € network =

Once you Save the new index, click it from the Available item(s) list and it will appear in the

Selected item(s) list.

add all» |Selected item(s)« remove all
@network

Input Settings Review Done
as follows:
Automatic Select New
New Index
General Settings

BEwe

Sowch & Ropading

292

6. Click Review.

7. \Verify the settings and click Submit.

Review

Input Type ..
Name ...

Description ...

Add Data

Select Source Input Settings Review Done

Token

i MiSt-Webhooks
Source name override

mist_webhook

. N/A

Enable indexer acknowledg No

Output Group

Allowed indexesc....

Default index

Source Type
App Contextccoviinins

8. Record the Token Value. You will need this for the Mist Webhook configuration.

N/A

e NEtWOTK
... _json
search

Add Data

v/ Token has been created successfully.

Configure your inputs by going to Settings > Data Inputs

Token Value

Extract Fields

Add More Data

Download Apps

Build Dashboards

9. Navigate back to Settings } Data Inputs } HTTP Event Collector.

Search your data now or see examples and tutorials. 12

Create search-time field extractions. Learn more about fields. (2

Add more data inputs now or see examples and tutorials. [2

Apps help you do more with your data. Learn more. 2

Visualize your searches. Learn more. 2

10. Click Global Settings in the upper right corner.

HTTP Event Collector

Oata Inputs » HTTP Event Callectos

2 Tokens App: All +

11. Specify the default Source type as _json.

Port 8088 is the default. You can specify a default index if needed.

Select Source Input Settings Review Done

< Back

< Back

293

Edit Global Settings X

All Tokens Enabled Disabled
Default Source Type _jsonw
Default Index network v
Default Output Group None »

Use Deployment Server D

Enable SSL [v]

HTTP Port Number ? 8088

Cancel

This completes the HEC setup in Splunk.

12. Test the Splunk HEC configuration by executing the following command in a Linux CLI. The Linux
machine must be able to reach the Splunk instance over the network.

curl -k 'https://{FQDN OF SPLUNK}:{HEC PORT}/services/collector' \ --header "Authorization:
Splunk {HEC TOKEN}" \

--data '{"event": "hello world"}'

The result of the previous step should look similar to: {“text”:"Success”'code”:0}. If you do not see a
success message, confirm that there are no firewalls blocking the HEC port on the Splunk instance.

Configuring Mist Webhooks to Point to Your Splunk Instance

IN THIS SECTION

Before you Begin | 295

Before you Begin

You must have the following information ready so that you can complete the Mist configuration:
e The FQDN of your Splunk HEC instance

e The port number HEC is listening on (Default is 8088)

e Your Splunk HEC Token

You can configure webhooks in Mist at either the Org level, or the Site level. For this example, we

»n o«

configure an Org level webhook and the topics we will be subscribing to will be “audits”, “alarms”, and
“device-events”.

1. Log in to the Mist portal for your organization.

2. Navigate to Organization } Settings and copy your Organization ID.

Organization Settings

Organization Name
Example Crg

Organization ID

fS AU EVIHB G A MB AR REL 2 - | D

Managed Service Provider

Assign to an MSP

3. Navigate to https:/api.mist.com/api/v1/orgs/:org_id/webhooks.

@ NOTE: You must substitute your real Organization ID for "org_id" in the URL above.

4. In the following JSON code block, make the following substitutions:

e Substitute the fully qualified domain name (FQDN) of your Splunk instance for {FQDN of
SPLUNK}

e Substitute the port on which your Splunk instance is listening for {PORT}

e Substitute your actual Splunk token for {SPLUNK TOKEN}

296

@ NOTE: Replace placeholder values with actual values, such as your FQDN, port, and

token.

{
"name": "Splunk Webhook",
"type": "splunk",

"url": "https://{FQDN of SPLUNK}:{PORT}/services/collector", "splunk_token": "{SPLUNK TOKEN}",

"enabled": true,
"topics": [
"audits",
"alarms",
"device-events"
A

"verify_cert": true}

5. After substitution, copy the entire block of JSON and paste it into the Content box at the bottom of

the page.
6. Click the POST button when you're ready.

Django REST framework

Create Org ' Get Update Delete Org = Getall Create Org Webhook

Getall Create Org Webhook

GET /api/vl/orgs/73e

i@juniper.net

1/webhooks

HTTP 280 OK

Allow: POST, OPTIONS, GET

Content-Type: application/json

Vary: Accept

Media type: application/json <
Content: {

“name": *Splunk Webhook",
“type™: "splunk"
“url": "https://{FQDN of SPLUNK]}.{PORT}/services/collector”, “splunk_token": “{SPLUNK TOKEN}",
"enabled": true,
“topics™: [
“audits",

"alarms",

"device-events"
L
“verify_cert™: |rue)|

4

You can now verify the configuration is in the top field of the window and that the id field contains data.

297

Django REST framework @juniper.net

Create Org ' Get Update Delete Org ' Getall Create Org Webhook

Getall Create Org Webhook Lo [[
GET /api/vl/orgs/73e ‘webhooks

HTTP 200 OK

Allow: GET, POST, OPTIONS

Content-Type: application/json

Vary: Accept

"name": "SplunkWebhook"
"type": “splunk"
"url": “https://fqdnofsplunk. com”
“splunk_token": "2908
“verify_cert": true
“enabled": true
"topics"
"alarms"
"audits"
"client-info"

“assetfilter_ids"
“ig": '18d99562-530c-4cfb-8b32-2@bf3eaf4151"
site": false

“site_id": " 000000000000
"org_id": "73e

"created_time": 1767904581
"modified_time": 1767904581

This confirms that Mist and Splunk can communicate.

RELATED DOCUMENTATION

https:/docs.splunk.com/Documentation/Splunk/8.1.3/Data/UsetheHTTPEventCollector
https:/www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/overview

https:/www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/
security#securing-webhooks-with-splunk-type

Terraform Mist Provider Integration

SUMMARY IN THIS SECTION
Use the Terraform Mist Provider to deploy Day O and ® Benefits | 298
Day 1 Mist configurations with ease. © WHAT's NEXT | 298

You can use the Terraform Mist Provider to automate the configuration and deployment of Mist-
managed network resources including your Mist organizations, sites, devices, and more. It is a useful
infrastructure management tool that you can use to deploy Mist with ease.

https://docs.splunk.com/Documentation/Splunk/8.1.3/Data/UsetheHTTPEventCollector
https://www.juniper.net/documentation/us/en/software/mist/api/http/api/orgs/webhooks/overview
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/security#securing-webhooks-with-splunk-type
https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/webhooks/security#securing-webhooks-with-splunk-type
https://registry.terraform.io/providers/Juniper/mist/latest/docs

Benefits
¢ Provisioning of Mist Resources—Automatically create, configure and manage organizations, sites,
devices, NAC tags, VPNs, and SSO settings.

e Authentication Support—API Token or Username/Password (without two-factor authentication) are
supported.

¢ Proxy Configuration—Supports HTTP, HTTPS, and SOCKS5 proxies via the MIST_PROXY environment
variables or the proxy provider configuration attribute.

e Environment Variable Support—Credentials and configuration can be passed via environment
variables for secure automation.

WHAT's NEXT

1. See the Mist Provider documentation page for all information on how to get started.

2. See the Getting Started guide to learn how to configure a provider and how to deploy your Mist
networks using Terraform.

3. Follow the lefthand menu of Terraform's Mist Documentation page for additional documentation on
how to complete specific types of configurations.

https:/registry.terraform.io/providers/juniper/mist/latest

https://registry.terraform.io/providers/Juniper/mist/latest/docs
https://registry.terraform.io/providers/Juniper/mist/latest/docs/guides/getting_started
https://registry.terraform.io/providers/juniper/mist/latest

CHAPTER

Reference

IN THIS CHAPTER

Automation Tools | 300

Use the Django Web Interface to Make APl Changes | 312
Use the Mist API Reference for API Testing | 316

Use the Mist Browser Extension for Easy APl Access | 320

Automation Tools

SUMMARY IN THIS SECTION
This topic talks about a few automation tools that Automation Tools Overview | 300
you can use with Juniper Mist™. We make no Akttt Autreen ez || 512

reccommendation regarding any of the tools
discussed below. We provide the information and
examples for informational purposes only.

Automation Tools Overview

The entire Juniper Mist GUI is built on top of the robust Mist API. This architecture makes Mist
administration highly customizable, flexible, and scalable. Using automation tools, you can perform tasks
or groups of tasks not available in the GUI.

Automation begins by identifying and understanding the tasks to be performed. Most automation tools
are designed for machine-to-machine transactions. Because of this design, automation tools are not
always intuitive for humans to understand and configure. Thankfully, many tools exist that help you
interact with machine-based interfaces and even create your own automation scripts. The Juniper Mist
API is just such a tool.

Postman

Postman is a tool to help you automate Juniper Mist management tasks. Postman can do many
things, but you will use it as an API client. According to the Postman web site (www.postman.com),
the Postman API client is the foundational tool of Postman. This client enables you to easily
explore, debug, and test your APIs while also enabling you to define complex API requests for
HTTP, REST, SOAP, GraphQL, and WebSockets.

Postman provides its own API GUI client to interact with a REST API interface, and many others.
Postman allows users to set up reusable environments and use variables for consistency and
efficiency when testing. You can visually organize each individual request into an order, inspect
and store responses for reuse, and even have Postman help generate programmatic code such as
Python.

Here is a short video on using variables in Postman to interact with the Juniper Mist API.

https://mist.wistia.com/embed/iframe/rxex9n7d0r

Postman is an excellent development tool. You can use it to test individual configuration changes
and then put them together into collections. This video is an excellent example of using Postman
and a web browser to put together API requests to configure 802.1x in a switching template.

With the popularity of Postman, Juniper developers have published collections in the public
Postman workspaces. Collections are a method of organizing API requests and documentation into
groups. You can import, export, and share collections.

Here is a short video demonstrating the use of Postman collections and the Juniper Mist API.

The Postman collections incorporate many Juniper Mist capabilities. They also include collections
for gathering client information, Mist Edge devices, switching, software-defined WAN (SD-WAN),
and many other objects. You can find these collections, which include the Juniper Mist cloud APIs,
Mist cloud WebSocket, and Mist Runner Collections, from this link: https:/www.postman.com/
juniper-mist/workspace/mist-systems-s-public-workspace.

For more information on how to get started with Postman, see "Use Postman to Make Your First
API Call" on page 150.

Python

Python is an object-oriented programming language. It's a popular language for many reasons. One
reason is that Python is highly flexible and extensible. Compared to other programming languages,
it is easy to learn and work with. Python is used for web development, data sciences, networking,
and the Internet of Things (IoT), to name a few uses. It is open source and works on multiple
platforms.

For more information about getting started with Python, check out the Python Software
Foundation at: https:/www.python.org/about/gettingstarted/

Juniper Networks supports Python use in many forms, such as direct script execution and toolkit
scripts: https:/www.juniper.net/documentation/us/en/software/junos/automation-scripting/
topics/concept/junos-script-automation-python-scripts-overview.html

@ NOTE: If you plan to share Python scripts with others, be sure to use an
environment file (.mist_env) in place of the API token so that you do not share your
token while sharing your script. For more information, see https:/github.com/
tmunzer/mist_library?tab=readme-ov-file#environment-file.

Python Script Examples

Leveraging the robust API library in Juniper Mist, you can automate tasks using Python. In this
section, you will see some simple Python scripts that make a series of calls to the Mist API to
gather information or make changes to Mist.

https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace
https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace
https://www.python.org/about/gettingstarted/
https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/topics/concept/junos-script-automation-python-scripts-overview.html
https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/topics/concept/junos-script-automation-python-scripts-overview.html
https://github.com/tmunzer/mist_library?tab=readme-ov-file#environment-file
https://github.com/tmunzer/mist_library?tab=readme-ov-file#environment-file

These scripts are meant to serve only as examples and may or may not work in your environment
due to possible variances in your environment.

Display WLANSs on a Specific Site

This is a simple example script that connects to the Mist API and displays all the wireless LANs
(WLAN:Ss) for a specific site:

import requests
import json
url = 'https://api.mist.com/api/v1/sites/00000000-0000-0000-0000-000000000000/wlans'

##Set the API request headers
headers = {

'Content-Type': 'application/json',

'"Authorization': 'Token
alc61a9ca25b4c27al4ealcb61a9ca7cb1a9ca25b4c27a14e653b5af5db@2a25ba7c61a9ca25b4c27a14e653b5af
5db024c27a14e653b5af5db026 X XXXXXXXXXX '

3

results = requests.get{url, headers=headers}

wlans = json.loads{results.text}

##Print each wlan and wlan_id
for wlan in wlans:
print{wlan["ssid"], ">", wlan ["id"]1}

user:$ python3 simple-script.py
mist-prod > a7c61a9c-a25a-274c-a7c61a9c-a25b
mist-test > a7c61a9c-a25b-4c27-a7c61a9c-a25b

Comparing RSSI (Windows)

You execute this Python script on a Windows laptop. The script gathers the current signal quality
percentage, not received signal strength indicator (RSSI), from a Windows laptop. The script then
gets the RSSI from the access point (AP) to which the laptop is connected by parsing for the
wireless adapter’'s MAC. The script makes these requests simultaneously and displays the client’s
signal quality on the same line as the AP’s RSSI. The script runs until you send a Ctrl+c command
from your keyboard to break out of the script execution.

The script makes use of the netsh wlan show interface Windows command. This is the command’s
output:

C:\Users\user>netsh wlan show interface

There is 1 interface on the system:

Name : Wi-Fi
Description : Intel(R) Wi-Fi 6E AX210 160MHz
GUID . aala439e-fe66-494C-XXXX~XXXXXXXXXXXX

Physical address

: 70:cd:xX:XX:XX:XX

State : connected

SSID : wi-fi

BSSID : d4:20: XX XX XX XX
Network type : Infrastructure
Radio type : 802.11ax
Authentication : WPA2-Personal
Cipher : CCMP
Connection mode : Auto Connect
Channel : 149

Receive rate (Mbps) : 516

Transmit rate (Mbps) : 574

Signal . 83%

Profile : hoth

Hosted network status : Not available

This is the script itself:

import requests
import json
import os
import time
import random
import string

import subprocess

##Set the API request headers

headers = {
'Content-Type': 'application/json',
'Authorization': 'Token <YOUR_API_TOKEN>'

##Function to get (strip) the "Signal" quality percentage from Windows from the "netsh
wlan show interface" command
def get_clientsignal{}:

results = subprocess.check_output(["netsh", "wlan", "show", "interface"]).decode()

lines = results.split('\r\n')

d={}
for line in lines:
if ':' in line:
vals = line.split(':")
if vals[@].strip() != ''and vals[1].strip() != '':
dlvals[@].strip()] = vals[1].strip()

for key in d.keys():
if key == "Signal":

return (d[keyl)

##Function to get (strip) the "Physical address" MAC from Windows from the "netsh wlan
show interface" command

def get_windowsmac():

results = subprocess.check_output(["netsh", "wlan", "show", "interface",]).decode()

lines = results.split('\r\m')

d={

for line in lines:
inf ': ' in line:

vals = line.split(':")

print(vals)

if vals[@].strip() !'= "' and vals[1].strip() != '':

dlvals[0].strip()] = vals[1].strip()
for key in d.keys():
if key == "Physical address":

client_mac = (d[keyl)

return (client_mac)

##Main Section

###Define variables

client_mac = get_windowsmac()

client_mac = client_mac.replace(":", "")
#HHtinput your site_id in the API URL

url = ('https://api.mist.com/api/v1/sites/<YOUR_SITE_ID>/{}'.format(client_mac))

client_rssi = 0

my_rssi = @

###Loop through every 3 seconds and print the results to the terminal
while True:

results = requests.get(url, headers=headers)

client = json.loads(results.text)

client_rssi = get_clientsignal()

my_rssi = client['rssi']

print('Windows Signal', '=', client_rssi, '
time.sleep(3)

When you run the python script, the resulting output should look like this:

C:\Users\user>python client-signal.py
Windows Signal = 83% -59 = AP rssi
Windows Signal = 83% -59 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi
Windows Signal = 83% -62 = AP rssi

', my_rssi, '=', 'AP rssi')

83% -62 = AP rssi
83% -62 = AP rssi
83% -58 = AP rssi

Traceback (most recent call last):

Windows Signal

Windows Signal

Windows Signal

File “client-signal.py, line 71, in <module> time.sleep(3)
KeyboardInterrupt
C:\Users\user>

The Juniper Mist AP reports its statistics approximately every 60 seconds. This is the reason the
AP RSSI only changed twice during the time the script was running.

Comparing RSSI (MacOS)

This Python script is executed on a MacBook laptop. It is nearly identical to the previous Windows
script. The script simultaneously gathers the RSSI from the MacBook and gets the RSSI from the
AP to which the laptop is connected by parsing for the wireless adapter's MAC address. It makes
these requests simultaneously and displays the client’s signal quality on the same line as the AP’s
RSSI. The script runs until you send a Ctrl+c command to break out of the script execution. To
access the command on the Mac OS, you must include the absolute path to the command: /

SystemLibrary/PrivateFrameworks/Apple802111.framework/Versions/A/Resources/airport -I

This is what the airport -I command displays:

Mac:Desktop user$ /SystemLibrary/PrivateFrameworks/Apple802111.framework/Versions/A/
Resources/airport -I
agrCt1RSSI: -60
agrExtRSSI: 0
agrCtlNoise: -93
agrExtNoise: 0
state: running
op mode: station
lastTxRate: 486
maxRate: 450
lastAssocStatus: @
802.11 auth: open
link auth: wpa2-psk
BSSID: 5c:5b:xx:xx:xx:xx
SSID: SSID-1
MCS: 8
channel: 120, -1

This is the script itself:

import requests
import json
import os
import time
import random

import string

##Set the API request headers

headers = {
'Content-Type': 'application/json',
'Authorization': 'Token <YOUR_API_TOKEN>'

##Function to get (strip) the "RSSI" quality percentage from MacOS from the "airport -I"
command

def get_clientsignal{}:

input = os.popen('/SystemLibrary/PrivateFrameworks/Apple802111.framework/
Versions/A/Resources/airport -I)
return int(xx.join([x.split()[1] for x in input if 'agrCtlRSSI' in x1))

##Function to get (strip) the MAC from MacOS from the "ifconfig" command
def get_machookmac():
input = os.popen('ifconfig end")

return ''.join([xsplit()[11for x in input if 'ether' in x1)

##Main Section

#H#Define variables

client_mac = get_machookmac()

client_mac = client_mac.replace(":", "")

###tinput your site_id in the API URL

url = ('https://api.mist.com/api/v1/sites/<YOUR_SITE_ID>/{}'.format(client_mac))

client_rssi = 0

my_rssi = @

###Loop through every 3 seconds and print the results to the terminal
while True:

results = requests.get(url, headers=headers)

client = json.loads(results.text)

client_rssi = get_clientsignal()

my_rssi = client['rssi']

print('Macbook rssi', '=', client_rssi,

, my_rssi, '=', 'AP rssi')

time.sleep(3)

@ NOTE: Replace placeholder values with actual values, such as your API token.

When the script runs, it gathers the RSSI information from the MacBook and the connected AP
(through a Mist API call) and prints its output on a single line. The script runs until you cancel it by
issuing the Ctrl+c command.

Mac:Desktop user$ python3 client-signal.py

Macbook rssi = -61 -57 = AP rssi
Macbook rssi = -61 -57 = AP rssi
Macbook rssi = -61 -57 = AP rssi
Macbook rssi = -61 -57 = AP rssi
Macbook rssi = -61 -57 = AP rssi
Macbook rssi = -61 -59 = AP rssi
Macbook rssi = -61 -59 = AP rssi
Macbook rssi = -63 -59 = AP rssi
Macbook rssi = -64 -59 = AP rssi
Macbook rssi = -65 -59 = AP rssi
Macbook rssi = -63 -59 = AP rssi

The Juniper Mist AP reports its statistics approximately every 60 seconds. This is why the AP RSSI
changes only once in the example output.

Random Password Creation for a Guest Portal

When you configure a WLAN for a guest portal, use the Guest Portalconfiguration to define the

landing page. This is the page for guests to log on to their wireless network. This configuration

page enables you to gather information about guests such as their full names, e-mail addresses,
and company details. You can add custom fields if you need users to gather additional types of

information.

You can configure the guest portal to use an alphanumeric passphrase for authorization. This is a
manual process, but you can automate it to run regularly, such as daily, to create a new random
password that you distribute to guests each day.

This image shows the current configured passphrase for the guest portal:

Guest Portal Options X

Authorization Options
______ e e Hide
L Aut mail
(] ext Me! &
[J sponsore
O f= 6

7
0 I'i Face
(] a

S
O 8" m
SV
Authorization Settings
De (=] a o -
(] o URL

Preview Guest Porta m Cancel

Below is a Python script to create a new, random password for a guest portal. This script will send
a PUT command to the API to change the passphrase.

NOTE: Replace placeholder values with actual values, such as your site ID and your
API token.

import requests
import json
import random
import string

url = "https://api.mist.com/api/v1/sites/<YOUR_SITE_ID>/wlans'

##Set the API request headers
headers = {

'Content-Type': 'application/json',
'"Authorization': 'Token <YOUR_API_TOKEN>'

results = requests.get(url, headers=headers)
wlans = json.loads(results.text)
wlanid = None
portal = None
##Search for the guest SSID, mist_guest
for wlan in wlans:
print(wlan["ssid"], ">", wlan["id"])
if wlan ["ssid"] == "mist_guest":
wlanid = wlan["id"]
portal = wlan["portal"]
if wlanid:
##This function generates a 6 alphanumeric random string

thisisnew = ''.join(random.choice(string.ascii_letters) for _ in range(6))

print("New Password is:", thisisnew)

portal["password"] = thisisnew
##This takes the results and issues a PUT for the new password in the guest portal
configuration

results = requests.put(url+"/{}".format(wlanid), headers=headers, data='{"portal":

+ json.dumps(portal) +'}')

This is the output from the script. It lists the wlan name and the wlan_id until it finds the mist_guest
WLAN (defined in the script) and resets the passphrase with the newly generated, random
passphrase:

Mac:Desktop user$ python3 client_guest_password.py
Mist-1 > 38fn03d@f9d-nfd3-xxXX=XXXX~XXXXXXXXXXXX
Mist-2 > p3jIn301msl-nfd3-xxXX=XXXX=XXXXXXXXXXXX
Mist-3 > 3knlso2k41ls-dfIn-xxxx-XXXX~XXXXXXXXXXXX
mist_guest > 9djn3axc93nn-89sh-xxxX=XXXX=XXXXXXXXXXXX
New Password is: UiCnPW

Mac:Desktop user$

You can verify the passphrase change by going back to the WLAN configuration, or WLAN
template page, and checking the guest portal configuration. When you click Reveal, you will see
the new passphrase.

Guest Portal Options

Form Feids Customize Label | Customize Layout

Authorization Options

Users will be able to sign in with any of the selected authorization
are seiecied users may Sign in without authorization.
Passphrase | ISLaL Hide

OJ Authentication code via Email
[Authentication code via Text Message

(] sponsored Guest Access
CJ G Google Sign In

OJ n Facebook Sign In

) a Amazon Sign In
—

By 1 ;

O] |y Microsoft Sign In

I IA Azure Sign In

Authorization Settings

Devices remain authorized for | 8 | | Hours ~ |

(] After authorization redirect to URL |

methods. If none

Preview Guest Portal “| L ancel |

311

Additional Automation Resources

For detailed information and examples, use these resources:

Table 21: Juniper Mist Automation Resources

Resource

Python scripts demonstrating
possibilities of Mist APlIs.

https:/github.com/tmunzer/
mist_library
MISTAPI - Python Package to use

Mist APlIs

Mist API Labs

Mist Postman Webhook Samples

Description

Examples of Python scripts using
the Mist APIs. These scripts are
using the mistapi Python package
to simplify the authentication
process.

This package is built from the Mist
OpenAPI specifications and is
designed to simplify the use of the
Mist APIs with Python scripts.

Proof-of-Concept and prototype
applications and scripts created to
demonstrate the possibilities of
Juniper-Mist APIs and some of the
use cases.

Provides preconfigured examples of
POST webhook syntax.

Where to Find It

To view script examples, go to:
https:/github.com/tmunzer/
mist_library and browse the scripts
directory.

To learn more about the package,
go to: https://pypi.org/project/
mistapi/

Go to: Mist-Lab Demo Apps and in
the Search box, enter webhooks.

Browse: https:/
www.postman.com/juniper-mist/
workspace/mist-systems-s-public-
workspace

Use the Django Web Interface to Make APl Changes

SUMMARY

Get familiar with the Django web interface.

IN THIS SECTION

RESTful API Pagination Example | 314

https://github.com/tmunzer/mist_library
https://github.com/tmunzer/mist_library
https://github.com/tmunzer/mist_library
https://github.com/tmunzer/mist_library
https://doc.mist-lab.fr/
https://doc.mist-lab.fr/
https://pypi.org/project/mistapi/
https://pypi.org/project/mistapi/
https://apps.mist-lab.fr/
https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace
https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace
https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace
https://www.postman.com/juniper-mist/workspace/mist-systems-s-public-workspace

The Juniper Mist APl is built on a Django Representational State Transfer (REST) framework. This
architecture allows for a browsable API, meaning that you can interact with APlIs directly from a web
browser. This API allows for increased usability and flexibility by enabling you and other users to
perform CRUD operations within the API. In a sense, the Django interface acts like a RESTful client. This
function is handy for executing CRUD operations on a single API object.

To make a change to a configuration object, you must be logged in to the Juniper Mist portal and know
the URL API path of the object. Consult the APl documentation for details and parameters for changing
objects. You will find the URL API paths for all objects available.

This task walks you through how to get device information from an access point (AP) and rename the AP
directly from the Django interface.

To use the Django web interface to make APl changes:

1. Login to the Juniper Mist portal.

2. Open the API URL for a specific device: https://<api-endpoint>/api/v1/sites/<site_id>/devices?
name=<device name>. The device name is case-sensitive.

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such
as your API token, organization ID, site ID, AP name, and so on.

In this case, the URL will look like this (portions of the site_id are omitted):
https://{api-host}/api/v1/sites/c1947558-268d-4d31-xxxx-xxxxxxxxxxxx/devices?name=TEST-rename

The browser issues the following command through the Django interface:

GET /api/v1/sites/c1947558-268d-4d31-xXXX-XXXXXXXXXXxx/devices?name=TEST-rename

Juniper Mist assigns every device a unique identifier, which is typically based on the MAC address
(0O0000000-0000-0000-1000-<device_mac>). In the context of the device API, it is called id. You
need to reference the AP using id so the APl knows which specific device to rename.

3. To make the change, insert the device ID (id) into the API call and display it in the browser.
The new call will look like this:

https://api.mist.com/api/v1/sites/c1947558-268d-4d31-xxxx-xxxxxxxxxxxx/devices/
00000000-0000-0000-1000-5c5b3xxxXXXX

The output is the same as the previous request; however, the API context now enables you to make a
change to the specific device based on the id and not the name. Notice the lack of enclosing “[]"
brackets.

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

4. Enter the JavaScript Object Notation (JSON)-formatted text in the Content input box for the
intended AP rename call. You do not need to include the unique device ID (id) because the id context
exists in the URL.

"name": "RENAMED"

5. Once complete, press PUT to push the request to Juniper Mist. The results should look like this,
indicating that the AP has been renamed:

{
"id": "00000000-0000-0000-1000-5c5b3xxxXXX",
"name": "RENAMED",
"site_id": "c1947558-268d-4d37-XXXX-XXXXXXXXXXXX",
"org_id": "3f12cb79-fb5e-4d4b-XXXX~XXXXXXXXXXXX"
"created_time": 1685989351,
"modified_time": 1686321430,
"map_id": null,
"mac": "5c5b3xxxxxxxx",
"serial": "AQ7451xxxxxxx",
"model": "AP43",
"hw_rev": "C02",
"type": "ap",
"tag_uuid": "3f12cb79-fb5e-4d4bh-XxXX-XXXXXXXXXXXXXX" ,
"tag_id": 3056xxx,
"evpntopo_id": null,
"deviceprofile_id": null
}

For more information, see the Site section of the API Documentation site.

RESTful API Pagination Example

Some organizations have inventories with thousands of APs. This can be challenging when you want to
view them all with an API GET request, because by default, the response will be returned without
pagination on a single page. You can enable pagination to the returned data by adding HTTP header
parameters for X-Page-Limit, X-Page-Page and X-Page-Total to the APl GET request. These help you to know if
you are getting all of the available entries or if you need to query the next pages.

The X-Page-Limit defines the maximum number of results per page. The limit is 100 by default, and the
maximum value is 1000. However, there are some exceptions to this.

The X-Page-Page defines the maximum number of page results.

The X-Page-Total defines the total number of entries in the list. The total will depend on what you are
looking at and how many entries are in the list.

To adjust any of this information, the query parameters can be added to the end of the web URL for the
API interface you are using. Depending on the API call, you may need to instead add the parameters to
the end of the "next" URL that is generated and sent in the response body (should a "next" exist).

@ NOTE: When reusing code blocks, replace placeholder values with actual values, such as
your API token, organization ID, site ID, AP name, and so on.

In the following example, adding limit=2&page=47 would adjust the X-Page-Limit and X-Page-Page
parameters.

https://api.mist.com/api/v1/orgs/:org_id/inventory?limit=28&page=47

The example below shows the format of a GET request that includes pagination:

Request URL: https://api.mist.com/api/v1/orgs/:org_id/inventory
Request Method: GET

Status Code: 200 OK

Date: Thu, 16 May 2019 04:22:05 GMT

Request Headers:

X-Page-Limit: 100

X-Page-Page: 1

X-Page-Total: 193

The response you receive from Mist when making the request in the Django web interface, will look like
this:

316

GET /api/vl/orgs inventory?vec=true

HTTP 208 0K

Allow: GET, PUT, OPTIONS, POST
Content-Type: applicatien/vnd.api+json
Vary: Accept

X-Page-Limit: 100

X-Page-Page: 1

X-Page-Total: 16

"hw_rev"

"type": "gateway",
“magic”: "",

"name": "vsrx-eve",
"jsi": false,

"org_id": "bc75dBad-15b8

"site id": "bed81@fa-9538-

“created time": 1689184262

"modified time": 1689184356,

"id": "000odop0-2000 g
"adopted": true

"hostname": “vsrx-eve",

“deviceprofile_id": null,

"connected"”: false

: "EX23ee-C-12P",
'EX2388-C-12P"

b Tl
": "switch”,

“jsi": false,

“org_id": "bc75d8ad-15b8-
“site_id": "cd6338fa—d845
"created_time": 1692899336,
"modified time": 1692899336,
"id": "00000000-0000-2000
“hostname": *
“deviceprofile_id": null,
"connected": true

by

Refer to the Mist APl Reference for more information on usage: Pagination

RELATED DOCUMENTATION
Additional RESTful APl Documentation | 154

API Endpoints and Global Regions | 13

Use the Mist API Reference for API Testing

SUMMARY

https://www.juniper.net/documentation/us/en/software/mist/api/http/guides/api-requests/pagination

You can use the Juniper Mist™ API Reference to make API calls and see the responses that are
returned from those calls. This is useful for when you're working on a script and you want to better
understand what is returned to you from the API.

To make API calls on the Mist APl Reference website, you must first do the following:

1. Use the lefthand menu to find the API call you want to make, or use the Search field at the top to
search for it. For example, you can navigate to API > Self > Get Self to get "whoami" and privileges,
such as which organization and sites you have access to.

2. Scroll down to the Authentication section and expand it, then enter your API token in the required
field, or provide another form of authentication. Otherwise, a response will not be returned. See
"Create API Tokens" on page 15.

@ NOTE: In the token field, you must enter the word Token followed by a space, then
paste your token after the space. Follow this format: Token <token>.

MMMMM

<<<<<

nnnnnnnnnnn

ﬂ API Code Playground

3. Navigate to the Request/Response panel on the right side of the screen and select the Configure
button at the bottom left corner. Select the region of your API environment (APl Endpoint). See "API
Endpoints and Global Regions" on page 13.

https://www.juniper.net/documentation/us/en/software/mist/api/http/getting-started/how-to-get-started

318

Request Response

curl -X GET \

B Feedback

Show Complete File requiren
boclean
Show complete file for code, with bootstrap and error handling

included.

Show Complete File

Environment Rrequiren
string

Select an APl environment

Mist Global 01

. Select Try it Out from the bottom right corner of the Request panel. This returns you with a
Response. Review the results to help you better understand the response that will be returned from

the API.

Request Response ® 200 OK

~
Headers |
J

"email" = "jr gjuniper.net"
"first_name"
"last_name" :

"no_tracking"

¥ “tags"

“password_medified_time" :

"Juniper

b "orggroup_ids" :

P N e e
B T o

@ NOTE: If you do not want to authenticate, you can scroll down to the Responses section
in the center of the page to see sample responses. This section simply provides you with
a sample response for the specified API call and does not require authentication from
you.

You are now set up to test API calls. Use the lefthand menu to find the API call you want to make, or use
the Search field at the top to search for it, then select Try It Out from the bottom of the Request panel
to be returned with a response that you can review.

319

Use the Mist Browser Extension for Easy APl Access

SUMMARY

Juniper Mist™ now has a web browser extension that simplifies access to Mist APIs and API tokens. It
is currently supported on Mozilla Firefox and Google Chrome web browsers and it is recommended
that you download the extensions directly from those web stores.

The Mist APl web browser extension is a handy tool you can use to quickly access APl information from
any page on the Juniper Mist™ portal or Django web interface. All you have to do is click on the
extension when you are on the desired Django or Mist portal page, and the extension will display the
APl information related to that page. Shortcuts that provide you with quick APl access are displayed as
well.

The following table lists the various types of information that are available to you within the tabs of the
extension. There is a slight difference in what is displayed when you use the extension from the Django
web interface versus the Mist portal. These differences are noted just below the table.

@ NOTE: The information and options that display in the extension are dependent on the
specific Mist portal page or Django page that you are on at that time.

Information Provided in the Mist Browser Extension

Tab Uses

(Continued)

API

Information Provided in the Mist Browser Extension

e Get easy access to Mist IDs such as the org ID, site
ID, and object ID.

o Get Quick API Access related to the current Mist
portal page you are on. For example, from the
Switch Details page, open the extension and select
the buttons provided in the Quick APl Access
section to bring you to the Django web interface
for the corresponding API call.

ORG ID

T3e2ffd2-2f98-4c7 3-BcB7-dde

SITE ID
34cfbBb3-6e3%-467B-aed 1-27

SWITCH ID
D0000000-00 -1000-e4

Quick APl Acc

SWITCH

SWITCH CMDS

SWITCH STATS

=
ACCOUNTS ABOUT

(Continued)

Accounts

Information Provided in the Mist Browser Extension

e Get information about all current valid Mist
sessions in the web browser for various Mist
clouds.

e Manage User and Org API tokens.

e View current API Usage (the API request usage
percentage, and the API request limit).

manage.mist.com [AP| Usage
124 f 5000

@juniper.net 39
expires at 2025-04-29 13:33:15

‘g' User APl Tokens &j Org APl Tokens

(Continued)

Tools

Information Provided in the Mist Browser Extension

e Under Settings, you can enable ID Links generation
to generate hyperlinks on the Django Ul pages for

known IDs.

e Under API Token Tools, you can view APl Token

information and API Token Usage.

Junip

Settings

Enable ID Links generation
enerate hyperlinks on
own |Ds

AP| Token Tools

| API Token Info

| API Token Usage

oo 2

ACCOUNTS TOOLS

®

ABOUT

(Continued)

Information Provided in the Mist Browser Extension

About e Under Extension Information, you can see
information about the current version your Mist
Browser Extension is on and whether or not you
are on the latest version.

e Under Mist APl Documentation, you can get quick
access to Mist APl documentation (official Mist
Documentation and the Postman Collection).

e Under Mist Integrations, get fast access to
integrations such as ServiceNow, Terraform, and
Splunk.

Juniperi

Extension information

Current Version: 5.1.0

Latest Version: You have the latest Version

|. Github Page

Mist AP| Documentation
| API Documentation

| Postman Collection

Mist Integrations

|. Servicenow

ode 2,

ACCOUNTS ABOUT

The same information is available to you when you use the extension while on the Django web
interface. However, the only difference is that in the API tab of the extension you will have:

e All available query parameters listed.
e Easy customization of query parameters available.
e Direct access to the online APl documentation for the current API call (GET/POST/PUT/DELETE).

For more details, see https:/github.com/Mist-Automation-Programmability/mist_browser_extension?
tab=readme-ov-file.

https://github.com/Mist-Automation-Programmability/mist_browser_extension?tab=readme-ov-file
https://github.com/Mist-Automation-Programmability/mist_browser_extension?tab=readme-ov-file

	Table of Contents
	Overview
	Introduction to Juniper Mist Automation

	REST API
	RESTful API Overview
	API Endpoints and Global Regions
	Determine Your API Endpoint
	List of API Endpoint URLs

	Create API Tokens
	Create an Organization Token in the Mist Portal
	Create a User Token in the Mist Portal
	Create a User or Organization Token Using the REST API Explorer

	REST API HTTP Response Codes
	Gather Data Using the RESTful API
	Use Mist SLEs and Insights with APIs
	Configure Assurance Services with APIs

	Get Started with the RESTful API
	Use Postman to Make Your First API Call
	Postman Setup
	Import the Mist API Collection
	Create Your Environment
	Test Your First API Call

	Additional RESTful API Documentation
	Demo: A Non-Programmer Approach to API

	API Use Cases
	Automatic Site Creation (Use Case)
	Renaming APs (Use Case)
	BLE Import (Use Case)
	Use the REST API to Add ACL Tags to a Switch (Use Case)

	Webhooks
	Webhooks Overview
	Webhook Message Flow
	Webhook Source Addresses
	Webhook Hierarchy
	Webhook Hierarchy Overview
	Organization Webhooks
	Site Webhooks

	Webhook Topics
	Webhooks and Alerts
	Webhook Messages
	Message Format
	Infrastructure Payload Examples
	Location Payload Examples

	Configure Webhooks from the Juniper Mist Portal
	Add a Webhook in the Juniper Mist Portal
	Update a Webhook in the Juniper Mist Portal
	Delete a Webhook in the Juniper Mist Portal

	Configure Webhooks from the API
	Create Webhooks from the API
	Update a Webhook from the API
	Delete Webhooks from the API

	Testing Webhooks
	View the Webhook Delivery Status

	Get Started with Webhooks
	Use the Mist API Reference to Get Started with Webhooks

	Webhooks Use Cases
	Configure Zone Entry and Exit Events (Use Case)
	Configure Device Events (Use Case)

	WebSocket
	WebSocket API Overview
	Get Started with WebSocket
	Use Postman to Connect to the WebSocket API
	Postman Setup
	Import the Mist API Collection
	Create Your Environment
	Connect to the WebSocket API

	WebSocket Use Cases
	Stream Device Data with a WebSocket (Use Case)
	Communicate with a MIST WebSocket Endpoint

	Stream Packet Captures with a WebSocket (Use Case)
	Communicate with a MIST WebSocket Endpoint

	Third-Party Integrations
	ServiceNow Integrations
	Integrate Splunk with Mist Webhooks
	Configuring Mist Webhooks to Point to Your Splunk Instance

	Terraform Mist Provider Integration

	Reference
	Automation Tools
	Automation Tools Overview
	Additional Automation Resources

	Use the Django Web Interface to Make API Changes
	RESTful API Pagination Example

	Use the Mist API Reference for API Testing
	Use the Mist Browser Extension for Easy API Access

