

Introduction to Congestion Control in
Juniper AI/ML Networks

Authors: Aninda Chatterjee, Vivek V

Documentation Feedback
We encourage you to provide feedback so that we can improve our documentation.
Send your comments to design-center-comments@juniper.net. Include the document or topic name, URL or page
number, and software version (if applicable).

Table of Contents
Introduction 2
High-Level Design for Backend/Compute Network 2
IP Services for Congestion Avoidance 4
Configuring a Lossless IP Fabric for RoCEv2 Traffic 4
Validating Congestion Parameters for Tuning 8
Running the DLRM Training Model with Optimized Class of Service 13

Introduction
This document provides an introductory look at how to build a lossless fabric for Artificial Intelligence (AI)/
Machine Learning (ML) workloads using Dynamic Load-Balancing (DLB) and DCQCN (ECN and PFC) congestion
control methods in Juniper AI/ML networks. This document uses the DLRM training model as a reference and
demonstrates how different congestion parameters such as ECN and PFC counters, input drops and tail drops
can be monitored to adjust configuration as needed to build a lossless fabric infrastructure for RoCEv2 traffic.

High-Level Design for Backend/Compute Network
In designing the network infrastructure for an AI/ML cluster, the key objectives are to provide maximum
throughput, minimal latency, minimal network interference for AI/ML traffic flows, and a lossless fabric. Today,
most AI clusters operate most efficiently over lossless networks for optimum training completion times. Packet
loss can significantly impact training completion times.

A rail-optimized stripe, proposed by Nvidia, is a design that extends from the compute nodes to the leafs, which
takes the network requirements that are necessary for AI/ML clusters into consideration, as shown in Figure 1.

mailto:design-center-comments@juniper.net

Figure 1 - Rail-Optimized Stripe

The GPUs are connected following a rail-optimized design. For example, for the Nvidia A100 severs (which have
8 GPUs and 8 NICs in the server), any-to-any GPU communication within the server is achieved via high
throughput NVLink channels attached to an NVSwitch. In addition, each NIC in the server connects to a unique
leaf (NIC1 to leaf1, NIC2 to leaf2, and so on), and the same methodology is followed on all servers, achieving a
‘rail’ design. With such a design, along with optimizations such as PXN (PCIe x NVLink), network interference is
minimized by moving data to a GPU on the same rail as the destination, and thus sending data to the destination
without crossing rails, which minimizes the number of network hops required. The spines are utilized when traffic
crosses stripes (inter-stripe traffic pattern).

Sample traffic paths are shown in Figure 2 for intra-stripe and inter-stripe traffic.

Figure 2 - Intra-Stripe and Inter-Stripe Traffic Pattern

IP Services for Congestion Avoidance
AI clusters pose unique demands on network infrastructure due to their high-density, low-entropy traffic
patterns, characterized by frequent elephant flows with minimal flow variation. Ensuring uninterrupted packet
flow, particularly for applications intolerant to packet loss or interruptions, presents significant challenges. The
forthcoming section explores how DCQCN employs various techniques to strike a balance between reducing
traffic rates and stopping traffic flow to alleviate congestion without resorting to packet drops.

Priority-Based Flow Control (PFC) is one technique to help relieve congestion by halting traffic flow in specific
queues or ports. However, the resumption of traffic post-congestion often triggers a surge, potentially
exacerbating or recreating the congestion scenario. While PFC mitigates data loss by halting flow, it does so at
the expense of data transmission, impacting applications using the assigned queues during the congestion period.

Explicit Congestion Notification (ECN), on the other hand, curtails transmit rates during congestion, enabling
traffic to persist albeit at reduced rates until congestion subsides. Combining PFC and ECN offers congestion
relief while safeguarding against packet loss for protocols incapable of retransmission.

Despite equitably distributed paths from leafs to spines, traffic characteristics may impede optimal link
utilization. For example, default hash algorithms often favor certain links due to limited flow variation.
Consequently, highly utilized links may impede the transmission of smaller, low-bandwidth flows, leading to
potential collisions.

To address this issue, Dynamic Load Balancing (DLB) should be implemented on leafs within the IP Fabric
supporting AI clusters. Additionally, congestion control mechanisms are vital given the lossless network
requirements for AI cluster-generated traffic. DCQCN (Data Center Quantized Congestion Notification) is
employed, particularly for RDMA over Converged Ethernet (RoCEv2) traffic.

In a lossless IP fabric where RoCEv2 is in use, the objective is to prioritize ECN over PFC for congestion
management. This entails marking packets with ECN bits at congestion points, prompting receivers to generate
Congestion Notification Packets (CNPs) and signal the source to throttle traffic rates accordingly.

Configuring a Lossless IP Fabric for RoCEv2 Traffic
A lossless IP fabric for RoCEv2 traffic is configured by leveraging the IP services described in the previous
section, which is a combination of DLB (dynamic load-balancing) and DCQCN (PFC+ECN). This ensures that
traffic is marked with ECN bits to indicate congestion to the recipient, enabling backoff mechanisms to kick in to
slow down traffic prior to drops.

In general, traffic loss in such fabrics may present itself as either input drops (receive errors) or tail drops on a
Juniper device. Input drops indicate that ingress buffers are being overwhelmed for the corresponding priority
group, while tail drops indicate that egress buffers are being overwhelmed for the corresponding queue.

The reason that the drop profile fill-level thresholds are configured to trigger ECN before PFC is because PFC
can cause excess ingress buffering, leading to input drops. These statistics act as markers to determine how to
slide the drop profile fill-level thresholds that control when ECN marking occurs as follows:

• If input drops (with PFC pause frames) or tail drops are seen, the fill-level minimum threshold should
be lowered so that ECN kicks in first and reduces the traffic rate from the source.

• If ECN marking is seen, the fill-level minimum threshold should be increased in small increments. The
ECN increase should not cross threshold levels where tail drops or PFC pause frames are seen. If
PFC is seen, decrease the value until the ECN marking occurs without PFC or tail drops.

The following section gives guidance on how to configure a Juniper QFX device for lossless traffic queueing. The
settings covered below should be considered a starting point utilizing the drop profile fill-level. The configuration
shown here is deployed across all leafs and spines in the fabric.

DLB configuration with the inactivity-interval set to a value of 16 micro-seconds is as follows:

admin@leaf1# show forwarding-options enhanced-hash-key
ecmp-dlb {
 flowlet {
 inactivity-interval 16;
 }
 ether-type {
 ipv4;
 }
}

The Class of Service (CoS) configuration for a lossless IP fabric for RoCEv2 traffic is explored below:

• Classify the RoCEv2 traffic based on the DSCP markings that the servers are using. This example
uses the decimal value 26, which is a binary value of 011010. This assumes the servers are sending
RoCEv2 traffic marked with a DSCP value of 26. By default, this feature is not enabled on the Nvidia
servers and must be configured separately. In addition, classify the Congestion Notification Packets
(CNP) using a DSCP value of 48 (110000), which Nvidia servers use as a standard for CNP packets.
classifiers {
 dscp mydscp {
 forwarding-class CNP {
 loss-priority low code-points 110000;
 }
 forwarding-class NO-LOSS {
 loss-priority low code-points 011010;
 }
 }
}

• Set the drop profile and fill-level threshold which controls the point at which the switch starts
marking packets with ECN to indicate congestion and avert tail-dropping. This will be discussed in
detail in the sections below. For now, the below configuration means that at 55% fill level, the switch
starts marking the traffic with ECN bit 11 using a probability number between 0 and 100. At 90% fill
level, it marks 100% of the packets with ECN bits set to 11, indicating congestion.
During congestion testing, the best balance between ECN marking and PFC was found to be a fill-
level of [55 90] and drop-probability of [0 100] in our test environment. Depending on customer
requirements, these values will likely differ, but the tuning method will be the same.
If during a congestion event, ECN marking is experienced, but PFC is not, you can increase the first
fill-level number by five until PFC is triggered, for example, “fill-level [60 90]”. Once PFC is seen,
reduce the first fill-level value by five and monitor the validation commands below to ensure PFC or

tail drops do not occur. This new value is the best balance during congestion to ensure network
packets can transmit at a reduced rate versus pausing network packets (see Validating Congestion
Parameters for Tuning in this document).

drop-profiles {
 dp1 {
 interpolate {
 fill-level [55 90];
 drop-probability [0 100];
 }
 }
}

• Allocate buffer partitions to the lossless, lossless-headroom, and lossy traffic types in the ingress and
egress direction. The only restriction is that the ingress lossless buffer has to be equal to the egress
lossless buffer.

shared-buffer {
 ingress {
 buffer-partition lossless {
 percent 80;
 }
 buffer-partition lossless-headroom {
 percent 10;
 }
 buffer-partition lossy {
 percent 10;
 }
 }
 egress {
 buffer-partition lossless {
 percent 80;
 }
 buffer-partition lossy {
 percent 10;
 }
 }
}

• Create forwarding classes for CNP and RoCEv2 traffic and assign the RoCEv2 traffic to a lossless
queue (CNP in queue 3 and RoCEv2 in queue 4, in this example). Lossless forwarding-classes
(queues) can use the lossless shared buffer that was partitioned previously.

• A PFC priority of 3 indicates that the priority of 3 is set/enabled in the PFC pause frame generated
by the device.

forwarding-classes {
 class CNP queue-num 3;
 class NO-LOSS queue-num 4 no-loss pfc-priority 3;
}

• Create input and output congestion notification profiles, which is responsible for PFC generation and
processing. Please note that both input and output profiles are needed, as shown in the output
below, because input deals with generating PFC pause frames when the switch is congested, and
output deals with receiving and processing PFC pause frames if a connected device is congested.

congestion-notification-profile {

 cnp {
 input {
 dscp {
 code-point 011010 {
 pfc;
 }
 }
 }
 output {
 ieee-802.1 {
 code-point 011 {
 flow-control-queue 4;
 }
 }
 }
 }
}

• Add the drop profiles and enable ECN for them within a scheduler. Connect the scheduler to a
forwarding class using scheduler maps. Assign the congestion notification profile (responsible for
PFC) and the scheduler maps(responsible for ECN/CNP) to the necessary interfaces.

interfaces {
 et-* {
 congestion-notification-profile cnp;
 scheduler-map sm1;
 unit * {
 classifiers {
 dscp mydscp;
 }
 }
 }
}
scheduler-maps {
 sm1 {
 forwarding-class CNP scheduler s2-cnp;
 forwarding-class NO-LOSS scheduler s1;
 }
}
schedulers {
 s1 {
 drop-profile-map loss-priority any protocol any drop-profile dp1;
 explicit-congestion-notification;
 }
 s2-cnp {
 transmit-rate percent 5;
 priority strict-high;
 }
}

Validating Congestion Parameters for Tuning
As highlighted in the above sections, when using Juniper infrastructure, the following congestion parameters can
be used to indicate the need for tuning ECN thresholds:

Table 1: Congestion Parameters and ECN Threshold Tuning

EVENT MONITOR CLI COMMAND INDICATOR ACTION EXPECTED
OUTCOME

ECN marked
packets

show interfaces <int> extensive

Review “Output Errors” and
“ECN Marked Packets”

This indicates that the buffer is
utilized to the fill level value,
and the switch requests
senders to reduce the transmit
rate. If this prematurely
impacts application
performance, tune as indicated
in the Action field.

Increase the drop
profile fill level value
until PFC occurs.
Then, reduce by
decrements of 5 until
PFC stops.

ECN marking occurs
later in the buffer
utilization, reducing
the frequency of
traffic throttling.

PFC Pause
Frames

show interfaces <int> extensive

Review “Priority Flow Control
Statistics”

Indicates traffic is coming in at
a rate greater than the shared
input buffer.

Reduce drop profile
fill level value until
PFC no longer occurs.

ECN occurs earlier in
buffer utilization to
mitigate the Pause
Frame and
interruption of traffic
transmission.

Tail Drops &
Egress queue
peak buffer
occupancy

show interfaces <int> extensive

show interfaces queue <int>

show interfaces queue buffer-
occupancy <int>

Review “Egress Queues” and
“Dropped Packets”

Indicates packets are being
dropped based on WRED
profile.

Reduce the drop
profile fill level values
until ECN occurs
before drops/PFC.

Traffic reduction
should happen
earlier, allowing
queues to clear
without drops.

Input drops &
Ingress
priority-group
buffer
occupancy

show interfaces <int> extensive

show interfaces priority-group
<int> buffer-occupancy

Review “Drops” and “Resource
Errors”

The ingress shared buffer is
being exceeded and unable to
store the incoming packets.
This event is common when
PFCs are generated.

Increase shared buffer
> ingress > buffer-
partition <%>

For "Resource Errors",
Increase the "ingress
buffer-partition
lossless-headroom"
percentage.

If the ingress shared
buffer partition is at
the expected value,
Reduce the fill level
values until ECN
occurs before
drops/PFC.

More memory is
allocated to the
specified buffer if
needed. No or
minimal input drops
were experienced.

This section describes how to validate these different parameters on the QFX Series. This specific example uses
a QFX5230. Buffer monitoring must be enabled to view buffer occupancy per priority-group or per egress
queue. This can be enabled as follows:

jnpr@gpu-backend-stripe-001-leaf4# show chassis
fpc 0 {
 traffic-manager {
 buffer-monitor-enable;
 }
}

The peak buffer utilization for an ingress port can be viewed using show interfaces priority-group buffer-
occupancy [interface-name], as follows:

jnpr@gpu-backend-stripe-001-leaf4> show interfaces priority-group et-0/0/1
 buffer-occupancy

Physical interface: et-0/0/1, Enabled, Physical link is Up
 Interface index: 1061, SNMP ifIndex: 615
 PG: 0
 PG-Utilization bytes :
 Peak : 7993380
 PG: 1
 PG-Utilization bytes :
 Peak : 0
 PG: 2
 PG-Utilization bytes :
 Peak : 0
 PG: 3
 PG-Utilization bytes :
 Peak : 0
 PG: 4
 PG-Utilization bytes :
 Peak : 0
 PG: 5
 PG-Utilization bytes :
 Peak : 0
 PG: 6
 PG-Utilization bytes :
 Peak : 0
 PG: 7
 PG-Utilization bytes :
 Peak : 0

The number of PFC pause frames generated for a specific priority group can be viewed using show interfaces
[interface-name] extensive. This also shows any input drops due to overflowing ingress buffer (these are also
counted as resource errors). Since the configuration generates PFC pause frames with a priority of 3 and
processes PFC pause frames with a priority of 3, this is the priority-level that should be analyzed. Following is an
example of this output using one ingress port et-0/0/1.

jnpr@gpu-backend-stripe-001-leaf4> show interfaces et-0/0/1 extensive

Physical interface: et-0/0/1, Enabled, Physical link is Up
 Interface index: 1061, SNMP ifIndex: 615, Generation: 652835030207
 Description: facing_spine1:et-0/0/7
 Link-level type: Ethernet, MTU: 9216, LAN-PHY mode, Speed: 400Gbps, BPDU

 Error: None, Loop Detect PDU

snip

 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3

 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors:
 0, Resource errors: 0

 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,

 FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0,
 ECN Marked packets: 0

snip

 MAC Priority Flow Control Statistics:
 Priority : 0 0 0
 Priority : 1 0 0
 Priority : 2 0 0
 Priority : 3 0 0
 Priority : 4 0 0
 Priority : 5 0 0
 Priority : 6 0 0
 Priority : 7 0 0

For egress queue buffer utilization, the peak buffer occupancy can be viewed using show interfaces queue
buffer-occupancy [interface-name], as follows:

jnpr@gpu-backend-stripe-001-leaf4> show interfaces queue buffer-occupancy
 et-0/0/28

Physical interface: et-0/0/28, Enabled, Physical link is Up
 Interface index: 1069, SNMP ifIndex: 543
Forwarding classes: 12 supported, 5 in use
Egress queues: 12 supported, 5 in use
 Queue: 0, Forwarding classes: best-effort
 Queue-depth bytes :
 Peak : 0
 Queue: 3, Forwarding classes: CNP
 Queue-depth bytes :
 Peak : 0
 Queue: 4, Forwarding classes: NO-LOSS
 Queue-depth bytes :
 Peak : 9086082
 Queue: 7, Forwarding classes: network-control
 Queue-depth bytes :
 Peak : 0
 Queue: 8, Forwarding classes: mcast

 Queue-depth bytes :
 Peak : 0

The number of ECN marked packets can be viewed using show interfaces [interface-name] extensive, where the
interface is the egress interface for the traffic. This also shows the traffic queuing statistics, along with any tail-
dropped packets for a specific queue. In this case, packets are hitting queue 4 (as expected) and there are no tail-
drops.

In addition to this, granular queuing statistics can be viewed using the show interfaces queue [interface-name]
command.

jnpr@gpu-backend-stripe-001-leaf4> show interfaces et-0/0/28 extensive
Physical interface: et-0/0/28, Enabled, Physical link is Up
 Interface index: 1069, SNMP ifIndex: 543, Generation: 652835030263
 Description: to.ixia-aresone
 Link-level type: Ethernet, MTU: 9216, LAN-PHY mode, Speed: 200Gbps, BPDU

 Error: None, Loop Detect PDU Error: None, MAC-REWRITE Error: None, Loopback:
 Disabled, Source filtering: Disabled, Flow control: Disabled,

 Auto-negotiation: Disabled, Media type: Fiber
 Device flags : Present Running
 Interface flags: SNMP-Traps
 CoS queues : 0 supported, 0 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Damping : half-life: 0 sec, max-suppress: 0 sec, reuse: 0, suppress:

 0, state: unsuppressed
 Current address: d0:81:c5:ec:cc:77, Hardware address: d0:81:c5:ec:cc:77
 Last flapped : 2024-03-11 11:11:33 PDT (1d 11:30 ago)
 Statistics last cleared: 2024-03-12 22:27:44 PDT (00:14:24 ago)
 Traffic statistics:
 Input bytes : 2012730642 18872496 bps
 Output bytes : 21322851537681 197378071848 bps
 Input packets: 28803217 33714 pps
 Output packets: 14230153733 16465436 pps
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3

 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors:
 0, Resource errors: 0

 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets:

 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors:
 0, ECN Marked packets: 0

 Egress queues: 12 supported, 5 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 0 0 0
 3 0 0 0
 4 14230148345 14230148345 0
 7 0 0 0
 8 7 7 0

snip

jnpr@gpu-backend-stripe-001-leaf4> show interfaces queue et-0/0/28
Physical interface: et-0/0/28, up, Physical link is Up
 Interface index: 1084, SNMP ifIndex: 543
Forwarding classes: 12 supported, 5 in use
Egress queues: 12 supported, 5 in use
Queue: 0, Forwarding classes: best-effort
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 Tail-dropped bytes : 0 0 bps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 3, Forwarding classes: CNP
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 Tail-dropped bytes : 0 0 bps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 4, Forwarding classes: NO-LOSS
 Queued:
 Packets : 1355306301 16468511 pps
 Bytes : 2030294255848 197363366344 bps
 Transmitted:
 Packets : 1355306301 16468511 pps
 Bytes : 2030294255848 197363366344 bps
 Tail-dropped packets : 0 0 pps
 Tail-dropped bytes : 0 0 bps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

snip

Running the DLRM Training Model with Optimized Class
of Service
Using the network infrastructure and the IP services defined and configured in the earlier sections, the DLRM
training model was run. The following output confirms the training time (in minutes) over three iterations of the
model with 64 Nvidia A100 GPUs.

+--+---------------+---------------------+------+

| File | time to train | Avg epoch time | epoch|

+--+---------------+---------------------+------+

| /mnt/nfsshare/logs/dlrm/A100-RAILS-ALL/03182024_22_59_10/240318225911319397655_1.log | 2.76225 | 0.15345740740740743 | 18 |

| /mnt/nfsshare/logs/dlrm/A100-RAILS-ALL/03182024_22_59_10/240318225911319397655_2.log | 3.08295 | 0.15414666666666668 | 20 |

| /mnt/nfsshare/logs/dlrm/A100-RAILS-ALL/03182024_22_59_10/240318225911319397655_3.log | 2.73265 | 0.1518138888888889 | 18 |

+--+---------------+---------------------+------+

These training times fall within the optimum MLPerf training benchmarks defined by MLCommons found here -
https://mlcommons.org/benchmarks/training/.

Send feedback to: design-center-comments@juniper.net V1.0/240514/congestion-control-ai-ml

https://mlcommons.org/benchmarks/training/

	Documentation Feedback
	Introduction
	High-Level Design for Backend/Compute Network
	Figure 1 - Rail-Optimized Stripe
	Figure 2 - Intra-Stripe and Inter-Stripe Traffic Pattern

	IP Services for Congestion Avoidance
	Configuring a Lossless IP Fabric for RoCEv2 Traffic
	Validating Congestion Parameters for Tuning
	Running the DLRM Training Model with Optimized Class of Service

