- play_arrow Introduction
- play_arrow Router Data Extraction
- play_arrow Routing Protocols
- play_arrow Equal Cost Multiple Paths
- play_arrow Static Routes
- play_arrow Policy-Based Routes
- play_arrow Border Gateway Protocol
- NorthStar Planner Border Gateway Protocol Overview
- Border Gateway Protocol Recommended Instructions
- BGP Data Extraction
- BGP Reports
- BGP Options
- BGP Map
- BGP Live Status Check
- BGP Routing Table
- BGP Routes Analysis
- BGP Information at a Node
- BGP Neighbor
- Apply, Modify, or Add BGP Polices
- BGP Subnets
- Getipconf Usage Notes
- BGP Report
- play_arrow Virtual Private Networks
- NorthStar Planner Virtual Private Networks Overview
- Importing VPN Information from Router Configuration Files
- Viewing the Integrity Checks Reports
- Accessing VPN Summary Information
- Accessing Detailed Information for a Particular VPN
- VPN Topology View
- Route-Target Export/Import Relationships
- Additional Methods to Access VPN Information
- VPN Path Tracing
- VPN Design and Modeling Using the VPN Wizard
- L3 (Layer 3) VPN
- L3 Hub-and-Spoke VPN
- L2M (Layer2-Martini) VPN
- L2K (Layer2-Kompella) VPN
- VPLS-BGP VPN (for Juniper)
- VPLS-LDP VPN
- L2CCC (Circuit Cross-Connect) VPN
- Inter-AS VPN
- Forming VPN Customer Groups
- Deleting or Renaming VPNs
- VPN Configlet Generation
- Adding Traffic Demands in a VPN
- VPN Traffic Generation
- VPN-Related Reports
- VPN Monitoring and Diagnostics
- play_arrow GRE Tunnels
- play_arrow Multicast
- NorthStar Planner Multicast Overview
- NorthStar Planner Recommended Multicast Instructions
- Creating Multicast Groups
- Creating Multicast Demands
- Viewing Multicast Demands in the Network
- Comparing Multicast with Unicast
- Multicast SPT Threshold
- Multicast Reports
- Multicast Simulation
- Collecting Multicast Path Data from Live Network
- Importing Multicast Path Data
- Multicast Data Processing
- Viewing Multicast Trees
- play_arrow Class of Service
- NorthStar Planner Class of Service Overview
- NorthStar Planner Recommended CoS Instructions
- The QoS Manager
- Define Class Maps
- Create Policies for Classes
- Attach Policies to Interfaces
- Adding Traffic Inputs
- Using the Text Editor
- Reporting Module
- IP Flow Information
- Link information
- Traffic Load Analysis
- Traffic Load by Policy Class
- CoS Alias File
- Bblink File
- Policymap File
- Demand File
- Traffic Load File
- play_arrow Routing Instances
- play_arrow Traffic Matrix Solver
- play_arrow LSP Tunnels
- NorthStar Planner LSP Tunnels Overview
- Viewing Tunnel Info
- Viewing Primary and Backup Paths
- Viewing Tunnel Utilization Information from the Topology Map
- Viewing Tunnels Through a Link
- Viewing Demands Through a Tunnel
- Viewing Link Attributes/Admin-Group
- Viewing Tunnel-Related Reports
- Adding Primary Tunnels
- Adding Multiple Tunnels
- Mark MPLS-Enabled on Links Along Path
- Modifying Tunnels
- Path Configuration
- Specifying a Dynamic Path
- Specifying Alternate Routes, Secondary and Backup Tunnels
- Adding and Assigning Tunnel ID Groups
- Making Specifications for Fast Reroute
- Specifying Tunnel Constraints (Affinity/Mask or Include/Exclude)
- Adding One-Hop Tunnels
- Tunnel Layer and Layer 3 Routing Interaction
- play_arrow Optimizing Tunnel Paths
- play_arrow Tunnel Sizing and Demand Sizing
- play_arrow Tunnel Path Design
- Tunnel Path Design Overview
- Tunnel Path Design Instructions
- Designing Tunnel Paths Overview
- Backup Path Configuration Options
- Default Diversity Level
- Evaluate/Tune Options
- Advanced Options
- Viewing Design Results
- Tunnel Modifications
- Exporting and Importing Diverse Group Definitions
- Advanced Path Modification
- play_arrow Inter-Area MPLS-TE
- play_arrow Point-to-Multipoint (P2MP) Traffic Engineering
- NorthStar Planner P2MP Traffic Engineering Overview
- Point-to-Multipoint Traffic Engineering Instructions
- Import a Network That Already has Configured P2MP LSP Tunnels
- Examine the P2MP LSP Tunnels
- Create P2MP LSP Tunnels and Generate Corresponding LSP Configlets
- Examine P2MP LSP Tunnel Link Utilization
- Perform Failure Simulation and Assess the Impact
- play_arrow Diverse Multicast Tree Design
- Diverse Multicast Tree Design Overview
- Diverse Multicast Tree Instructions
- Open a Network That Already Has a Multicast Tree
- Set the Two P2MP Trees of Interest to be in the Same Diversity Group
- Using the Multicast Tree Design Feature to Design Diverse Multicast Trees
- Using the Multicast Tree Design Feature
- play_arrow Fast Reroute
- NorthStar Planner Fast Reroute Overview
- Fast Reroute Supported Vendors
- Import Config and Tunnel Path
- Viewing the FRR Configuration
- Viewing FRR Backup Tunnels
- Viewing Primary Tunnels Protected by a Bypass Tunnel
- Modifying Tunnels to Request FRR Protection
- Modifying Links to Configure Multiple Bypasses (Juniper only)
- Modifying Links to Trigger FRR Backup Tunnel Creation (Cisco)
- FRR Design
- FRR Auto Design
- FRR Tuning
- Viewing Created Backup Tunnels
- Generating LSP Configlets for FRR Backup Tunnels
- Failure Simulation—Testing the FRR Backup Tunnels
- Exhaustive Failure
- Link, Site and Facility Diverse Paths
- play_arrow Cisco Auto-Tunnels
- play_arrow Integrity Check Report
- play_arrow Compliance Assessment Tool
- Compliance Assessment Tool Overview
- Using The Compliance Assessment Tool
- CAT Testcase Design
- Creating a New Project
- Loading the Configuration Files
- Creating Conformance Templates
- Reviewing and Saving the Template
- Saving and Loading Projects
- Run Compliance Assessment Check
- Compliance Assessment Results
- Publishing Templates
- Running External Compliance Assessment Scripts
- Scheduling Configuration Checking in Task Manager
- Building Templates
- Special Built-In Functions
- Paragon Planner Keywords For Use Within a Rule
- More on Regular Expressions
- IP Manipulation
- play_arrow Virtual Local Area Networks
- play_arrow Overhead Calculation
- play_arrow Router Reference
NorthStar Planner Support for DS-TE LSP
NorthStar Planner supports both DiffServe-aware Single-Class LSPs and DiffServ-aware Multi-Class LSPs, according to the specifications in existing hardware. These LSPs can be parsed from existing router configuration files, or they can be manually created from scratch using NorthStar Planner for a paper network design.
Class Types
NorthStar Planner’s class type terminology corresponds with that used in JUNOS configurations. The four class type names are CT0, CT1, CT2, and CT3. These class type names appear in the JUNOS configuration statements:
Single-class LSP | Multi-class LSP |
---|---|
label-switched-path lsp-name { bandwidth { ctnumber bandwidth; } } | label-switched-path lsp-name { bandwidth { ct0 bandwidth; ct1 bandwidth; ct2 bandwidth; ct3 bandwidth; } } |
EXP Bits
The Experimental bits, or EXP bits, in the MPLS header are used to define the class to which a packet belongs. A unique EXP bit pattern is associated with each class type and forwarding class defined on a DiffServ-aware router. NorthStar Planner allows the user to define the mapping between EXP bits, class types, and forwarding classes.
CoS Classes
The CoS class defined in NorthStar Planner is equivalent to the forwarding class configured in JUNOS, as in the following configuration structure.
interfaces { interface-name { scheduler-map map-name; scheduler-map-chassis map-name; unit logical-unit-number { classifiers { type (classifier-name | default); } forwarding-class class-name; rewrite-rules { type (rewrite-name | default); } } } }
Cos Policies
NorthStar Planner’s CoS policy is equivalent to the scheduler map defined in JUNOS. A CoS policy contains information on how to treat each CoS class referenced by the CoS policy. The treatment given to each CoS class at a router is determined by the CoS policy assigned to that router. Applying a CoS policy to a router is similar to applying scheduler maps to the interfaces on that router, as in the configuration structure below.
interfaces { interface-name { scheduler-map map-name; scheduler-map-chassis map-name; unit logical-unit-number { classifiers { type (classifier-name | default); } forwarding-class class-name; rewrite-rules { type (rewrite-name | default); } } } }
NorthStar Planner allows the user to define a robust set of Cos policies and to easily assign them to any router in a network. The CoS Policy determines the amount of bandwidth reserved on a link for each traffic class contained in the policy. The bandwidth reservation scheme for each router affects how DiffServ-aware LSPs are routed in the network.
Bandwidth Model
NorthStar Planner supports both MAM and RDM bandwidth models. The MAM bandwidth model used when configuring DiffServ-aware LSPs in NorthStar Planner is equivalent to the extended-MAM bandwidth model used in JUNOS configuration, as shown below.
bandwidth-model { (extended-mam | mam | rdm); }
The choice of whether to use MAM or RDM in NorthStar Planner affects the way in which bandwidth is assigned to a multi-class LSP, and the manner in which bandwidth is reported for a link with bandwidth partitions for multiple classes. For example, in a situation where CT0, CT1, CT2 and CT3 are all reserved 10M, the link partition will be reported differently depending on whether the bandwidth model is MAM or RDM, as shown in the table below.
MAM | RDM |
---|---|
CT0: 10M CT1: 10M CT2: 10M CT3: 10M | CT0: 40M CT1: 30M CT2: 20M CT3: 10M |
In the above example, for MAM, each class gets 10M. For RDM, each class also gets 10M. However, in RDM, CT2 has access to the 10M belonging to CT3, and thus has 20M total available. CT1 has its own 10M plus the 20M available to CT2, and thus ends up with 30M total. Since CT0 is at the top of the stack, it receives its own 10M plus all the bandwidth available to the classes below it, for a total of 40M.
Similarly, if one were to configure a multi-class LSP with 90M reserved for CT0 and 10M reserved for CT3, the configuration would look differently depending on the bandwidth model used. This is shown in the table below.
MAM | RDM |
---|---|
CT0: 90M CT1: 0M CT2: 0M CT3: 10M | CT0: 100M CT1: 0M CT2: 0M CT3: 10M |