
Installation Guide: Paragon Automation
(Pathfinder, Planner, Insights) Release
23.2

Published

2026-01-20

RELEASE

23.2

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Installation Guide: Paragon Automation (Pathfinder, Planner, Insights) Release 23.2
23.2
Copyright © 2026 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Introduction

Paragon Automation (Pathfinder, Planner, Insights) Installation Overview | 2

2 System Requirements

Paragon Automation System Requirements | 10

3 Install Paragon Automation On Ubuntu

Installation Prerequisites on Ubuntu | 21

Prepare the Control Host | 22

Prepare Cluster Nodes | 24

Virtual IP Address Considerations | 30

Configure DNS Server (Optional) | 38

Install Multinode Cluster on Ubuntu | 39

Download the Paragon Automation Software | 40

Install Paragon Automation on a Multinode Cluster | 41

Log in to the Paragon Automation UI | 59

Air-Gap Install Paragon Automation on Ubuntu | 60

Modify cRPD Configuration | 62

4 Install Paragon Automation on RHEL

Installation Prerequisites on Red Hat Enterprise Linux | 67

Prepare the Control Host | 68

Prepare Cluster Nodes | 70

Virtual IP Address Considerations | 75

Configure DNS Server (Optional) | 83

iii

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Download the Paragon Automation Software | 85

Install Paragon Automation on a Multinode Cluster | 86

Log in to the Paragon Automation UI | 105

Air-Gap Install Paragon Automation on RHEL | 106

Prerequisites | 106

Download and Install Paragon Automation | 107

5 Configure Disaster Recovery

Configure Disaster Recovery for Paragon Pathfinder | 110

6 Upgrade and Update Paragon Automation

Upgrade to Paragon Automation Release 23.2 | 115

Reinstall Paragon Automation | 122

Edit Cluster Nodes | 123

Edit Primary Nodes in Multi-Primary Node Clusters and Worker Nodes in All Clusters | 123

Edit Primary Nodes in Single-Primary Node Clusters | 125

Uninstall Paragon Automation | 126

7 Backup and Restore

Backup and Restore | 129

Back Up the Configuration | 132

Restore the Configuration | 134

Backup and Restore Scripts | 137

8 Troubleshooting

Troubleshoot Paragon Automation Installation | 144

Resolve Merge Conflicts of the Configuration File | 144

Resolve Common Backup and Restore Issues | 145

View Installation Log Files | 145

iv

View Log Files in Grafana | 146

Troubleshooting Using the kubectl Interface | 146

View Node Status | 149

View Pod Status | 150

View Detailed Information About a Pod | 150

View the Logs for a Container in a Pod | 150

Run a Command on a Container in a Pod | 151

View Services | 152

Frequently Used kubectl Commands | 152

Troubleshoot Using the paragon CLI Utility | 153

Troubleshoot Ceph and Rook | 171

Troubleshoot Air-Gap Installation Failure | 174

Recover from a RabbitMQ Cluster Failure | 175

Disable udevd Daemon During OSD Creation | 176

Wrapper Scripts for Common Utility Commands | 177

Back Up the Control Host | 177

User Service Accounts for Debugging | 178

9 Migrate Data

Migrate Data from NorthStar to Paragon Automation | 180

Prerequisites | 180

Create the nsmigration Task Pod | 182

Export Cassandra DB Data to CSV Files | 182

Migrate DeviceProfile and Cassandra DB | 185

(Optional) Migrate Analytics Data | 188

(Optional) Migrate NorthStar Planner Data | 191

v

About This Guide

Use this guide to install Paragon Automation (Pathfinder, Planner, Insights) on a Linux server.

RELATED DOCUMENTATION

Paragon Automation (Pathfinder, Planner, Insights) User Guide

Paragon Automation (Pathfinder, Planner, Insights) Release Notes, Release 23.2

vi

https://www.juniper.net/documentation/us/en/software/paragon-automation23.2/paragon-automation-user-guide/index.html
https://www.juniper.net/documentation/us/en/software/paragon-automation23.2/release-notes/pa-release-notes-23.2/index.html

1
CHAPTER

Introduction

IN THIS CHAPTER

Paragon Automation (Pathfinder, Planner, Insights) Installation Overview |
 2

Paragon Automation (Pathfinder, Planner, Insights)
Installation Overview

Paragon™ Automation (Pathfinder, Planner, Insights) is a cloud-ready solution for network planning,
configuration, provisioning, traffic engineering, monitoring, and life-cycle management. This solution
brings advanced visualization capabilities and analytics to network management and monitoring.
Paragon Automation offers base platform support for Juniper Networks devices and some third-party
devices.

This guide describes how to install Paragon Automation and is intended for network operators and
administrators who install, configure, and manage the network infrastructure. You deploy Paragon
Automation as the following set of on-premises (customer managed) microservices-based applications:

• Paragon Insights (previously known as HealthBot)

• Paragon Planner (previously known as NorthStar Planner)

• Paragon Pathfinder (previously known as NorthStar Controller)

Figure 1: Paragon Automation (Pathfinder, Planner, Insights)

When you install Paragon Automation, you can install these three applications at the same time. After
installation is complete, you can use these applications only if you have the software licenses installed.

2

Figure 2: Typical Paragon Automation Deployment

The Paragon Automation control plane includes communication between the Kubernetes nodes (K8s
control plane), as well as between Paragon Automation and the devices to be managed.

This cluster internode communication is implemented using APIs, and SSH, while the communication
between Paragon Automation and the managed devices includes protocols and services such as Path
Computation Element Protocol (PCEP), BGP Link State (BGP-LS), HTTPS (Web UI), system logging
(syslog), SNMP, and NETCONF, Openconfig, and iAgent (NETCONF over SSH).

The control plane can be implemented in different ways:

• Use the existing management network to provide access to the Web UI, Node to Node
communication, and supported Paragon Automation to managed devices communication.

The management network is shown on the left side of Figure 3 on page 4.

Usually, any device running Junos OS is connected to the management network over the
management interface (such as fxp0 or em0). One limitation of this option is that Openconfig, and
iAgent (NETCONF over SSH) are not supported over the management interface. Thus, if you need to
use these sensors, a separate connection needs to be provided using a non-management interface
(such as ge-0/0/0).

3

Figure 3: Deployment Architecture

• Use the existing management network to provide access to the Web UI, Node to Node
communication, and supported Paragon Automation to managed devices communication, and a
separate network to support Openconfig, and iAgent (NETCONF over SSH).

This option is depicted on the right side of Figure 3 on page 4.

Here, you can see that the management network is still used to provide access to the Web UI,
communication between the Paragon Automation nodes, as well as a path for Path Computation
Element Protocol (PCEP), BGP Link State (BGP-LS), system logging (syslog), SNMP, and NETCONF,
between the managed devices and Paragon Automation. The interface used is fxp0.0.

IP Network 1 provides a path for Openconfig, and iAgent (NETCONF over SSH), between the
managed devices and Paragon Automation, which are otherwise not supported. The interface used is
ge-0/0/0.0.

• Use the existing management network only to provide access to the WEB UI, and Node to Node
communication, and a separate network to provide all communication between Paragon Automation
and the managed devices.

The communication with managed devices is shown in Figure 4 on page 5.

4

Figure 4: Communication with Managed Devices

Here you can see that the management network is still used to provide access to the Web UI, and
communication between the Paragon nodes, but IP Network 1 provides a path for Path Computation
Element Protocol (PCEP), BGP Link State (BGP-LS), system logging (syslog), SNMP, NETCONF, and also
Openconfig, and iAgent (NETCONF over SSH), between the managed devices and Paragon Automation.
Notice that the interface used for all the protocols and services is ge-0/0/0.0

Also, the managed devices are still connected to the management network using fxp0, for any other
user management tasks not related to Paragon Automation.

NOTE: iAgent (NETCONF over SSH) and openconfig do not work over the fxp0
interface. Hence, you need to use a different interface on your devices if you use these
to communicate with Paragon Insights.

5

Figure 5: Communication Paths

Paragon Automation Deployment Architecture

Figure 3 on page 4 illustrates typical Paragon Automation Deployment architectures and their
communication protocols.

The Paragon Automation Kubernetes cluster is a collection of microservices that interact with one
another through APIs. The Kubernetes cluster comprises multiple nodes that are configured with
different roles. For more information about roles, see "Cluster Node Roles" on page 10.

Figure 6: Kubernetes Cluster

Paragon Automation Installation

6

You use Ansible playbooks to automate the installation of Paragon Automation software. The playbooks
install the required software on all the cluster nodes. These Ansible playbooks are packaged in a Docker
image, and executed on a separate dedicated host (control host). The control host must have Docker
installed and must be able to mount local directories into a Docker container. You must have a dedicated
machine functioning as the control host.

Figure 7: Installation Overview

To install Paragon Automation, you:

• Download an installation bundle to the control host.

• Create and customize the required installation and configuration files.

• Run the installer on the control host.

The installation is controlled through several variables that are defined in the installation and
configuration files created during the installation process. Based on these files, the Ansible playbooks
deploy the Kubernetes cluster.

This guide explains how to:

• Install and upgrade Paragon Automation.

• Uninstall Paragon Automation.

• Add and remove nodes.

• Back up and restore a configuration.

• Migrate data from your existing setup to Paragon Automation.

• Perform common installation troubleshooting tasks.

7

RELATED DOCUMENTATION

Paragon Automation System Requirements | 10

Paragon Automation Overview

8

2
CHAPTER

System Requirements

IN THIS CHAPTER

Paragon Automation System Requirements | 10

Paragon Automation System Requirements

IN THIS SECTION

Hardware Requirements | 13

Software Requirements | 14

Disk Requirements | 15

Network Requirements | 16

Web Browser Requirements | 19

Installation on VMs | 19

Before you install the Paragon Automation software, ensure that your system meets the requirements
that we describe in these sections.

To determine the resources required to implement Paragon Automation, you must understand the
fundamentals of the Paragon Automation underlying infrastructure.

Paragon Automation is a collection of microservices that interact with one another through APIs and run
within containers in a Kubernetes cluster. A Kubernetes cluster is a set of nodes or machines running
containerized applications. Each node is a single machine, either physical (bare-metal server) or virtual
(virtual machine).

The nodes within a cluster implement different roles or functions depending on which Kubernetes
components are installed. During installation you specify which role each node will have and the
installation playbooks will install the corresponding components on each node accordingly.

• Control plane (primary) node—Monitors the state of the cluster, manages the worker nodes,
schedules application workloads, and manages the life cycle of the workloads.

• Compute (worker) node—Performs tasks that the control plane node assigns, and hosts the pods and
containers that execute the application workloads. Each worker node hosts one or more pods which
are collections of containers.

• Storage node—Provides storage for objects, blocks, and files within the cluster. In Paragon
Automation, Ceph provides storage services in the cluster. A storage node must be in a worker node,
although not every worker node needs to provide storage.

For detailed information on minimum configuration for primary, worker, and storage nodes, see "Paragon
Automation Implementation" on page 12 and "Hardware Requirements" on page 13.

10

Figure 8: Kubernetes Cluster Nodes and Roles

A Kubernetes cluster comprises several primary nodes and worker nodes. A single node can function as
both primary and worker if the components required for both roles are installed in the same node.

You need to consider the intended system's capacity (number of devices, LSPs, etc), the level of
availability required, and the expected system's performance, to determine the following cluster
parameters:

• Total number of nodes (virtual or physical) in the cluster

• Amount of resources on each node (CPU, memory, and disk space)

• Number of nodes acting as primary, worker, and storage nodes

Figure 9: Kubernetes Cluster

11

Paragon Automation Implementation

Paragon Automation is implemented on top of a Kubernetes cluster, which consists of one or more
primary nodes and one or more worker nodes. At minimum, one primary node and one worker node are
required for a functional cluster. Paragon Automation is implemented as a multinode cluster.

A multinode implementation comprises multiple nodes, either VMs or BMSs, where at least one node
acts as primary and at least three nodes as workers and provide storage. This implementation not only
improves performance but allows for high availability within the cluster:

• Control plane high availability—For control plane redundancy, you must have a minimum of three
primary nodes. The total number of primary nodes must be an odd number and we do not
recommend more than three primary nodes.

• Workload high availability—For workload high availability and workload performance, you must have
more than one worker. You can add more workers to the cluster as needed.

• Storage high availability—For storage high availability, you must have at least three nodes for Ceph
storage. You must enable Master Scheduling during installation if you want any of the primary nodes to
provide Ceph storage. Enabling master scheduling allows the primary to act as a worker as well.

You could implement a setup that provides redundancy in different ways, as shown in the examples
in Figure 10 on page 12.

Figure 10: Multinode Redundant Setups

NOTE: For Paragon Automation production deployments, we recommend that you have
a fully redundant setup with a minimum of three primary nodes (multi-primary node
setup) with atleast one worker node if Master Scheduling is enabled, or a minimum of
three primary nodes and three worker nodes providing Ceph storage if Master Scheduling
is disabled. You must enable Master Scheduling during the installation process.

12

Hardware Requirements

This section lists the minimum hardware resources required for the Ansible control host node and the
primary and worker nodes of a Paragon Automation cluster.

The compute, memory, and disk requirements of the Ansible control host node are not dependent on
the intended capacity of the system. The following table shows the requirements for the Ansible control
host node:

Table 1: Minimum Hardware Requirement for the Ansible Control Host Node

Node Minimum Hardware
Requirement

Storage Requirement Role

Ansible control host 2–4-core CPU, 12-GB
RAM, 100-GB HDD

No disk partitions or extra
disk space required

Carry out Ansible
operations to install the
cluster.

In contrast, the compute, memory, and disk requirements of the cluster nodes vary widely based on the
intended capacity of the system. The intended capacity depends on the number of devices to be
monitored, type of sensors, frequency of telemetry messages, and number of playbooks and rules. If you
increase the number of device groups, devices, or playbooks, you'll need higher CPU and memory
capacities.

The following table summarizes the minimum hardware resources required per node for a successful
installation of a multinode cluster.

13

Table 2: Minimum Hardware Requirements Per Node for Multinode Deployments

Node Minimum Hardware
Requirement

Storage Requirement Role

Primary or worker node 32-core CPU, 32-GB
RAM, 200 GB SSD
storage (including Ceph
storage)

Minimum 1000 IOPS for
the disks

The cluster must include a
minimum of three storage
nodes. Each node must
have an unformatted disk
partition or a separate
unformatted disk, with at
least 30-GB space, for
Ceph storage.

See "Disk Requirements"
on page 15.

Kubernetes primary or
worker node

NOTE: SSDs are mandatory on bare-metal servers.

Paragon Automation, by default, generates a Docker registry and stores it internally in the /var/lib/
registry directory in each primary node.

Here, we've listed only minimum requirements for small deployments supporting up to two device
groups. In such deployments, each device group may comprise two devices and two to three playbooks
across all Paragon Automation components. See Paragon Automation User Guide, for information about
devices and device groups.

NOTE: To get a scale and size estimate of a production deployment and to discuss
detailed dimensioning requirements, contact your Juniper Partner or Juniper Sales
Representative.

Software Requirements

• You must install a base OS of Ubuntu version 20.04.4 LTS (Focal Fossa) or Ubuntu 22.04.2 LTS
(Jammy Jellyfish), or RHEL version 8.4 or RHEL version 8.10 on all nodes. Paragon Automation also
has experimental support on RHEL 8.8. All the nodes must run the same OS (Ubuntu or RHEL)
version of Linux.

14

https://www.juniper.net/documentation/us/en/software/paragon-automation23.2/paragon-automation-user-guide/index.html

NOTE: If you are using RHEL version 8.10, you must remove the following RPM bundle:

rpm -e buildah cockpit-podman podman-catatonit podman

• You must install Docker on the Ansible control host. The control host is where the installation
packages are downloaded and the Ansible installation playbooks are executed. For more information,
see "Installation Prerequisites on Ubuntu" on page 21 or "Installation Prerequisites on Red Hat
Enterprise Linux" on page 67.

If you are using Docker CE, we recommend version 18.09 or later.

If you are using Docker EE, we recommend version 18.03.1-ee-1 or later. Also, to use Docker EE, you
must install Docker EE on all the cluster nodes acting as primary and worker nodes in addition to the
control host.

Docker enables you to run the Paragon Automation installer file, which is packaged with Ansible
(version 2.9.5) as well as the roles and playbooks that are required to install the cluster.

NOTE: Installation will fail if you don't have the correct versions. We've described the
commands to verify these versions in subsequent sections in this guide.

Disk Requirements

The following disk requirements apply to the primary and worker nodes, in both single-node and
multinode deployments:

• Disk must be SSD.

• Required partitions:

• Root partition:

You must mount the root partition at /.

You can create one single root partition with at least 200-GB space.

15

Alternatively, you can create a root partition with at least 50-GB space and a data partition with
at least 150-GB space. You must also bind-mount the system directories "/var/local", "/var/lib/
rancher", and "/var/lib/registry". For example:

mkdir -p /export/rancher /var/lib/rancher /export/registry /var/lib/registry /export/
local /var/local
vi /etc/fstab
[...]
/export/rancher /var/lib/rancher none bind 0 0
/export/registry /var/lib/registry none bind 0 0
/export/local /var/local none bind 0 0
[...]

mount -a

You use the data partition mounted at /export for Postgres, ZooKeeper, Kafka, and Elasticsearch.
You use the data partition mounted at /var/local for Paragon Insights Influxdb.

• Ceph partition:

The unformatted partition for Ceph storage must have at least 30-GB space.

NOTE: Instead of using this partition, you can use a separate unformatted disk with
at least 30-GB space for Ceph storage.

Network Requirements

• All nodes must run NTP or other time-synchronization at all times.

• An SSH server must be running on all nodes. You need a common SSH username and password for all
nodes.

16

• You must configure DNS on all nodes, and make sure all the nodes (including the Ansible control host
node) are synchronized.

• All nodes need Internet connection. If the cluster nodes do not have Internet connection, you can
use the air-gap method for installation. The air-gap method is supported on nodes with Ubuntu and
RHEL as the base OS.

• You must allow intercluster communication between the nodes. In particular, you must keep the
ports listed in Ports That Firewalls Must Allow on page 17 open for communication. Ensure that you
check for any iptables entry on the servers that might be blocking any of these ports.

Table 3: Ports That Firewalls Must Allow

Port Numbers Purpose

Enable these ports on all cluster nodes for administrative user access.

80 HTTP (TCP)

443 HTTPS (TCP)

7000 Paragon Planner communications (TCP)

Enable these ports on all cluster nodes for communication with network elements.

67 ztpservicedhcp (UDP)

161 SNMP, for telemetry collection (UDP)

162 ingest-snmp-proxy-udp (UDP)

11111 hb-proxy-syslog-udp (UDP)

4000 ingest-jti-native-proxy-udp (UDP)

830 NETCONF communication (TCP)

7804 NETCONF callback (TCP)

4189 PCEP Server (TCP)

30000-32767 Kubernetes port assignment range (TCP)

17

Table 3: Ports That Firewalls Must Allow (Continued)

Port Numbers Purpose

Enable communication between cluster nodes on all ports. At the least, open the following ports.

6443 Communicate with worker nodes in the cluster (TCP)

3300 ceph (TCP)

6789 ceph (TCP)

6800-7300 ceph (TCP)

6666 calico etcd (TCP)

2379 etcd client requests (TCP)

2380 etcd peer communication (TCP)

9080 cephcsi (TCP)

9081 cephcsi (TCP)

7472 metallb (TCP)

7964 metallb (TCP)

179 calico (TCP)

10250-10256 Kubernetes API communication (TCP)

Enable this port between the control host and the cluster nodes.

22 TCP

9345 Kubernetes RKE2 control plane (TCP)

18

Web Browser Requirements

Table 4 on page 19 lists the 64-bit Web browsers that support Paragon Automation.

Table 4: Supported Web Browsers

Browser Supported Versions Supported OS Versions

Chrome 85 and later Windows 10

Firefox 79 and later Windows 10

Safari 14.0.3 MacOS 10.15 and later

Installation on VMs

Paragon Automation can be installed on virtual machines (VMs). The VMs can be created on any
Hypervisor, but must fulfill all the size, software, and networking requirements described in this topic.

The VMs must have the recommended base OS installed. The installation process for VMs and bare-
metal servers is the same.

RELATED DOCUMENTATION

Installation Prerequisites on Ubuntu | 21

Install Multinode Cluster on Ubuntu | 39

Installation Prerequisites on Red Hat Enterprise Linux | 67

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Air-Gap Install Paragon Automation on RHEL | 106

19

3
CHAPTER

Install Paragon Automation On
Ubuntu

IN THIS CHAPTER

Installation Prerequisites on Ubuntu | 21

Install Multinode Cluster on Ubuntu | 39

Air-Gap Install Paragon Automation on Ubuntu | 60

Modify cRPD Configuration | 62

Installation Prerequisites on Ubuntu

IN THIS SECTION

Prepare the Control Host | 22

Prepare Cluster Nodes | 24

Virtual IP Address Considerations | 30

Configure DNS Server (Optional) | 38

To successfully install and deploy a Paragon Automation cluster, you must have a control host that
installs the distribution software on multiple cluster nodes. You can download the distribution software
on the control host and then create and configure the installation files to run the installation from the
control host. You must have Internet access to download the packages on the control host. You must
also have Internet access on the cluster nodes to download any additional software such as Docker and
OS patches. The order of installation tasks is shown at a high level in Figure 11 on page 21.

Figure 11: High-Level Process Flow for Installing Paragon Automation

Before you download and install the distribution software, you must configure the control host and the
cluster nodes as described in this topic.

21

Prepare the Control Host

The control host is a dedicated machine that orchestrates the installation and upgrade of a Paragon
Automation cluster. It carries out the Ansible operations that run the software installer and install the
software on the cluster nodes as illustrated in Control Host Functions on page 22.

You must download the installer packages on the Ansible control host. As part of the Paragon
Automation installation process, the control host installs any additional packages required on the cluster
nodes. The packages include optional OS packages, Docker, and Elasticsearch. All microservices,
including third-party microservices, are downloaded onto the cluster nodes. The microservices do not
access any public registries during installation.

The control host can be on a different broadcast domain from the cluster nodes, but you must ensure
that the control host can use SSH to connect to all the nodes.

Figure 12: Control Host Functions

After installation is complete, the control host plays no role in the functioning of the cluster. However,
you'll need the control host to update the software or any component, make changes to the cluster, or
reinstall the cluster if a node fails. You can also use the control host to archive configuration files. We
recommend that you keep the control host available, and not use it for something else, after installation.

Prepare the control host for the installation process as follows:

1. Install the base OS—Install Ubuntu version 20.04.4 LTS (Focal Fossa) or Ubuntu 22.04.2 LTS (Jammy
Jellyfish). Release 23.2 is qualified to work with Ubuntu 22.04.2 LTS (Jammy Jellyfish).

2. Install Docker—Install and configure Docker on the control host to implement the Linux container
environment. Paragon Automation supports Docker CE and Docker EE. The Docker version you
choose to install in the control host is independent of the Docker version you plan to use in the
cluster nodes.

22

If you want to install Docker EE, ensure that you have a trial or subscription before installation. For
more information about Docker EE, supported systems, and installation instructions, see https://
www.docker.com/blog/docker-enterprise-edition/.

To download and install Docker CE, perform the following steps:

sudo apt-get install -y apt-transport-https ca-certificates curl gnupg-agent software-
properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $
(lsb_release -cs) stable"
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io

To verify that Docker is installed and running, use the # docker run hello-world command.

To verify the Docker version installed, use the # docker version or # docker --version commands.

For full instructions and more information, see https://docs.docker.com/engine/install/ubuntu/.

3. Configure SSH client authentication—The installer running on the control host connects to the cluster
nodes using SSH. For SSH authentication, you must use a root or non-root user account with
superuser (sudo) privileges. We will refer to this account as the install user account in subsequent
steps. You must ensure that the install user account is configured on all the nodes in the cluster. The
installer will use the inventory file to determine which username to use, and whether the
authentication will use SSH keys or a password. See Customize the Inventory File - Multinode
Implementation.

If you choose the ssh-key authentication (recommended) method, generate the SSH key.

cd ~/.ssh
ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): <= ENTER (use default)
Enter passphrase (empty for no passphrase): <= ENTER (no passphrase)
Enter same passphrase again: <= ENTER (no passphrase)
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:YS8cWopND9RFnpHGqaI1Q8e5ca2fxP/yMVzZtIDINbg root@Control1
The key's randomart image is:
+---[RSA 2048]----+
| ..o *=+ |
| ..= *o*oo |
| . .o==*+. . .|

23

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/
https://docs.docker.com/engine/install/ubuntu/

| =+oO.Eo ..+|
| o.++ So.o oo|
| . .o .. . |
| .+ |
| . .o |
| o. |
+----[SHA256]-----+

If you want to protect the SSH key with a passphrase, you can use ssh-agent key manager. See https://
www.ssh.com/academy/ssh/agent.

NOTE: You'll need to copy this key to the nodes as part of the cluster nodes preparation
tasks, as described in the next section.

4. (Optional) Install wget—Install the wget utility to download the Paragon Automation distribution
software.

apt install wget

Alternatively, you can use rsync or any other file download software to copy the distribution software.

Prepare Cluster Nodes

The primary and worker nodes are collectively called cluster nodes. Each cluster node must have at least
one unique static IP address, as illustrated in Figure 13 on page 25. When configuring the hostnames,
use only lowercase letters, and do not include any special characters other than hyphen (-) or the period
(.). If the implementation has a separate IP network to provide communication between the Paragon
Automation components, as described in "Paragon Automation (Pathfinder, Planner, Insights) Installation
Overview" on page 2, you must assign a second set of IP addresses to the worker nodes. These IP
addresses enable devices outside the cluster to reach the worker nodes and also enable communication
between:

• Paragon Automation and the managed devices

• Paragon Automation and the network administrator

We recommend that you place all the nodes in the same broadcast domain. For cluster nodes in
different broadcast domains, see "Configure Load Balancing " on page 38 for additional load balancing
configuration.

24

https://www.ssh.com/academy/ssh/agent
https://www.ssh.com/academy/ssh/agent

Figure 13: Cluster Node Functions

As described in "Paragon Automation System Requirements" on page 10, you can install Paragon
Automation using a multinode deployment.

You need to prepare the cluster nodes for the Paragon Automation installation process as follows:

1. Configure raw disk storage—The cluster nodes must have raw storage block devices with
unpartitioned disks or unformatted disk partitions attached. You can also partition the nodes such
that the root partition and other file systems can use a portion of the disk space available. You must
leave the remaining space unformatted, with no file systems, and reserve it for Ceph to use. For
more information, see "Disk Requirements" on page 15.

NOTE: You don't need to install or configure anything to allow Ceph to use the
unpartitioned disks or unformatted disk partitions. The Paragon Automation
installation process automatically assigns the space for Ceph storage.

For multinode clusters, you must have a minimum of three cluster nodes with storage space
attached. That is, a minimum of three worker nodes with an unpartitioned disk or unformatted disk
partition for storage.

Installation fails if unformatted disks are not available.

Ceph requires newer Kernel versions. If your Linux kernel is very old, consider upgrading or
reinstalling a new one. For a list of minimum Linux kernel versions supported by Ceph for your OS,
see https://docs.ceph.com/en/latest/start/os-recommendations. To upgrade your Linux kernel
version, see Upgrade your Ubuntu Linux Kernel Version.

25

https://docs.ceph.com/en/latest/start/os-recommendations/

NOTE: Ceph does not work on Linux kernel version 4.15.0-55.60.

2. Install the base OS—Install Ubuntu version 20.04.4 LTS (Focal Fossa) or Ubuntu 22.04.2 LTS (Jammy
Jellyfish). Release 23.2 is qualified to work with Ubuntu 22.04.2 LTS (Jammy Jellyfish).

3. Create install-user account—The install user is the user that the Ansible playbooks use to log in to
the primary and worker nodes and perform all the installation tasks. Ensure that you configure
either a root password or an account with superuser (sudo) privileges. You will add this information
to the inventory file during the installation process.

Set the root user password.

passwd root
New password:
Retype new password:
passwd: password updated successfully

4. Install SSH authentication—The installer running on the control host connects to the cluster nodes
through SSH using the install-user account.

a. Log in to the cluster nodes. and install the open-ssh server on all nodes.

b. Edit the sshd_config file.

vi /etc/ssh/sshd_config

c. If you are using "root" as the install-user account, then permit root login.

PermitRootLogin yes

If you chose to use plain text password for authentication, then you must enable password
authentication.

PasswordAuthentication yes

We do not recommend the use of password authentication.

d. Ensure that the AllowTcpForwarding parameter is set to yes.

AllowTcpForwarding yes

NOTE: Paragon Automation installation fails when the AllowTcpForwarding parameter
is set to no.

e. If you changed /etc/ssh/sshd_config, restart the SSH daemon.

systemctl restart sshd

26

f. Log in to the control host:

i. To allow authentication using the SSH key, copy id_rsa.pub to the cluster nodes.

ssh-copy-id -i ~/.ssh/id_rsa.pub cluster-node-IP-or-hostname

Repeat this step for all the nodes in the cluster (primary and workers). cluster-node-IP is the
unique address of the node as shown in Figure 13 on page 25. If a hostname is used
instead, the Ansible control host should be able to resolve the name to its IP address.

ii. Use SSH authentication to log in to the cluster node using the install-user account. You
must not need a password to log in.

You should be able to use SSH to connect to all nodes in the cluster (primary and workers)
from the control host using the install-user account. If you are not able to log in, review the
previous steps and make sure that you didn't miss anything.

5. Install Docker—Select one of the following Docker versions to install.

• Docker CE—If you want to use Docker CE, you do not need to install it on the cluster nodes. The
deploy script installs Docker CE on the nodes during Paragon Automation installation.

• Docker EE—If you want to use Docker EE, you must install Docker EE on all the cluster nodes. If
you install Docker EE on the nodes, the deploy script uses the installed version and does not
attempt to install Docker CE in its place. For more information about Docker EE and supported
systems, and for instructions to download and install Docker EE, see https://www.docker.com/
blog/docker-enterprise-edition/.

The Docker version you choose to install in the cluster nodes is not dependent on the Docker
version installed in the control host.

6. Install Python—Install Python 3, if it is not preinstalled with your OS, on the cluster nodes:

apt install python3

To verify the Python version installed, use the # python3 -V or # python3 --version command.

7. Use the # apt list --installed command and ensure that the following packages are installed:

apt-transport-https, bash-completion, gdisk, iptables, lvm2, openssl

If you want to use the air-gap method to install Paragon Automation on a cluster running Ubuntu
base OS, ensure that the following packages are pre-installed:

ca-certificates, curl, docker.io, jq, keepalived
Additionally, the following optional packages are recommended to be installed to aid in
troubleshooting:

net-tools, tcpdump, traceroute

27

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/

8. If you base OS is Ubuntu version 20.04.4 LTS, set the iptables FORWARD chain policy to ACCEPT on all the
cluster nodes.

a. Log in to a cluster node.

b. Set the iptables FORWARD chain policy to ACCEPT.

root@worker-node# iptables -P FORWARD ACCEPT

c. Install the iptables-persistent package to make the change persistent across reboots.

root@worker-node#apt install iptables-persistent

You can choose to answer no if prompted to save rules.

d. Add the following rule.

root@worker-node# cat > /etc/iptables/rules.v4 << EOF
*filter
:INPUT ACCEPT
:FORWARD ACCEPT
:OUTPUT ACCEPT
COMMIT
*nat
:PREROUTING ACCEPT
:INPUT ACCEPT
:OUTPUT ACCEPT
:POSTROUTING ACCEPT
COMMIT
EOF

e. Delete the /etc/iptables/rules.v6 file.

root@worker-node# rm /etc/iptables/rules.v6

Repeat these steps on all cluster nodes.

9. Install and enable NTP—All nodes must run Network Time Protocol (NTP) or any other time-
synchronization protocol at all times. By default, Paragon Automation installs the Chrony NTP
client. If you don't want to use Chrony, you can manually install NTP on all nodes and ensure that
the timedatectl command reports that the clocks are synchronized. However, if you want to use the

28

air-gap method to install Paragon Automation, and you want to use Chrony, you must pre-install
Chrony. The installer does not install Chrony during air-gap installations.

a. Install ntpdate to synchronize date and time by querying an NTP server.

apt install ntpdate -y

b. Run the following command twice to reduce the offset with the NTP server.

ntpdate ntp-server

c. Install the NTP protocol.

apt install ntp -y

d. Configure the NTP server pools.

vi /etc/ntp.conf

e. Replace the default Ubuntu pools with the NTP server closest to your location in the ntp.conf
file.

server ntp-server prefer iburst

Save and exit the file.

f. Restart the NTP service.

systemctl restart ntp

g. Confirm that the system is in sync with the NTP server.

timedatectl

10. (Optional) Upgrade your Ubuntu Linux kernel versionTo upgrade the kernel version of your Ubuntu
server to the latest LTS version to meet the requirements for Paragon Automation installation:

a. Log in as the root user.

b. Check the existing kernel version.

root@server# uname -msr

If the Linux kernel version is earlier than 4.15, upgrade the kernel.

c. Update apt repositories:

root@server# apt update

d. Upgrade existing software packages, including kernel upgrades:

root@server# apt upgrade -y

29

root@server# apt install --install-recommends linux-generic-hwe-xx.xx

Here, xx.xx is your Ubuntu OS version.

e. Reboot the server to load the new kernel:

root@server# reboot

f. Verify the new kernel version:

root@server# uname -msr

Virtual IP Address Considerations

IN THIS SECTION

VIP Address for the Registries in a Multi-Primary Node Deployment | 36

VIP Addresses for MD5 Authentication | 36

Configure Load Balancing | 38

The Kubernetes worker nodes host the pods that handle the workload of the applications.
A pod is the smallest deployable unit of computing created and managed in Kubernetes. A pod contains
one or more containers, with shared storage and network resources, and with specific instructions on
how to run the applications. Containers are the lowest level of processing, and you execute applications
or microservices in containers.

The primary node in the cluster determines which worker node will host a particular pod and containers.

You implement all features of Paragon Automation using a combination of microservices. You need to
make some of these microservices accessible from outside the cluster as they provide services to end
users (managed devices) and administrators. For example, you must make the pceserver service
accessible to establish Path Computation Element Protocol (PCEP) sessions between provider edge (PE)
routers and Paragon Automation.

You need to expose these services outside of the Kubernetes cluster with specific addresses that are
reachable from the external devices. Because a service can be running on any of the worker nodes at a
given time, you must use virtual IP addresses (VIPs) as the external addresses. You must not use the
address of any given worker node as an external address.

30

In this example:

• Consider that Worker 1 is 10.1.x.3 and Worker 2 is 10.1.x.4.

• SERVICE IP = PCEP VIP is 10.1.x.200

• PCC_IP is 10.1.x.100

Paragon Automation services use one of two methods of exposing services outside the cluster:

• Load balancer—Each load balancer is associated with a specific IP address and routes external traffic
to a specific service in the cluster. This is the default method for many Kubernetes installations in the
cloud. The load balancer method supports multiple protocols and multiple ports per service. Each
service has its own load balancer and IP address.

• Paragon Automation uses the MetalLB load balancer. MetalLB simulates external load balancer by
either managing virtual IP addresses in Layer 2 mode, or interacts with external router(s) in Layer 3
mode. MetalLB provides load-balancing infrastructure to the kubernetes cluster.

Services of type "LoadBalancer" will interact with the Kubernetes load-balancing infrastructure to
assign an externally reachable IP address. Some services can share an external IP address.

31

• Ingress—The ingress method acts as a proxy to bring traffic into the cluster, and then uses internal
service routing to route the traffic to its destination. Under the hood, this method also uses a load
balancer service to expose itself to the world so it can act as that proxy.

Paragon Automation uses the following ingress proxies:

• Ambassador

• Nginx

Devices from outside the cluster need to access the following services and thus these services require a
VIP address.

Table 5: Services That Need VIPs

Required VIP Address Description Load Balancer/Proxy

Ingress controller Used for accessing the Paragon
Automation GUI over the Web.

Paragon Automation provides a
common Web server that provides
access to the components and
applications. Access to the server is
managed through the Kubernetes
Ingress Controller.

Ambassador

MetalLB

Paragon Insights services Used for Insights services such as
syslog, DHCP relay, and JTI.

MetalLB

Paragon Pathfinder PCE server Used to establish PCEP sessions
with devices in the network.

MetalLB

SNMP trap receiver proxy
(Optional)

User for the SNMP trap receiver
proxy only if this functionality is
required.

MetalLB

32

Table 5: Services That Need VIPs (Continued)

Required VIP Address Description Load Balancer/Proxy

Infrastructure Nginx Ingress
Controller

Used as a proxy for the Paragon
Pathfinder netflowd server and,
optionally, the Paragon Pathfinder
PCE server.

The Nginx Ingress Controller needs
a VIP within the MetalLB load
balancer pool. This means that
during the installation process you
need to include this address as part
of the LoadBalancer IP address
ranges that you will be required to
include while creating the
configuration file.

Nginx

MetalLB

Pathfinder Netflowd Used for Paragon Pathfinder
netflowd server.

Netflowd can use Nginx as proxy, in
which case it will not require its
own VIP address.

MetalLB

Registry (Optional) Used for connecting to multiple
container registries on the primary
nodes.

-

PCEP server (Optional) Used for the PCE server for MD5
authentication.

-

cRPD (Optional) Used to connect to the BGP
Monitoring Protocol (BMP) pod for
MD5 authentication.

-

Ports used by Ambassador:

• HTTP 80 (TCP) redirect to HTTPS

• HTTPS 443 (TCP)

• Paragon Planner 7000 (TCP)

33

• DCS/NETCONF initiated 7804 (TCP)

Figure 14: Ambassador

Ports used by Insights Services, Path Computation Element (PCE) server, and SNMP:

• Insights Services

JTI 4000 (UDP)

DHCP (ZTP) 67 (UDP)

SYSLOG 514 (UDP)

SNMP proxy 162 (UDP)

• PCE Server

PCEP 4189 (TCP)

• SNMP

SNMP Trap Receiver 162 (UDP)

34

Figure 15: Ports Used by Services

Ports used by Nginx Controller:

• NetFlow 9000 (UDP)

• PCEP 4189 (TCP)

Using Nginx for PCEP

During the installation process, you will be asked whether you want to enable ingress proxy for PCEP.
You can select from None or Nginx-Ingress as the proxy for the Path Computation Element (PCE) server.

If you select Nginx-Ingress as the proxy, you do not need to configure the VIP for the PCE server
described in Table 5 on page 32. In this case, the VIP address for Infrastructure Nginx Ingress Controller
is used for the PCE server also. If you choose to not use a netflowd proxy, the VIP for the Infrastructure
Nginx Ingress Controller is used for netflowd, as well.

NOTE: The benefit of using Nginx is that you can use a single IP address for multiple
services.

35

Figure 16: Nginx Controller

VIP Address for the Registries in a Multi-Primary Node Deployment

If you are deploying a setup with multiple primary nodes,, and you deploy multiple container registries
(one on each primary node), you will need an additional VIP address in the same broadcast domain as
the cluster nodes. This address will be used to connect to the container registries deployed on each
primary node.

The installation wizard refers to this IP address as the Virtual IP address for registry. The VIP address
pool of the MetalLB load balancer must not contain this VIP address.

VIP Addresses for MD5 Authentication

You can configure MD5 authentication to secure PCEP sessions between the router and Paragon
Pathfinder as well as ensure that the BMP service is peering with the correct BGP-LS router. Paragon
Automation uses Multus to provide the secondary interface on the PCE server and BMP pod for direct
access to the router. You need the following VIP addresses in the same subnet as your cluster nodes:

• VIP address for the PCE server in the CIDR format

• VIP address for cRPD in the CIDR format

The VIP address pool of the MetalLB load balancer must not contain these VIP addresses.

36

If you choose to configure MD5 authentication, you must additionally configure the authentication key
and virtual IP addresses on the routers. You must also configure the authentication key in the Paragon
Automation UI.

• MD5 on PCEP sessions.—Configure the MD5 authentication key on the router and the Paragon
Automation UI and VIP address on the router.

• Configure the following in the Junos CLI:

user@pcc# set protocols pcep pce pce-id authentication-key pce-md5-key

user@pcc# set protocols pcep pce pce-id destination-ipv4-address vip-for-pce

• Enter the pce-md5-key authentication key in the MD5 String field in the Protocols:PCEP section
on the Configuration > Devices > Edit Device Name page.

The MD5 authentication key must be less than or equal to 79 characters.

• MD5 on cRPD— Determine the cRPD MD5 authentication key and configure the key and VIP
address of cRPD on the router.

1. Determine or set the MD5 authentication key in the following ways.

a. Run the conf command script and enable MD5 authentication on cRPD. Search for the
crpd_auth_key parameter in the config.yml file. If there is a key present, it indicates that cRPD is
configured for MD5. For example: crpd_auth_key : northstar . You can use the key present in the
config.yml file (or you can also edit the key) and enter it on the router.

b. If no MD5 authentication key is present in the config.yml file, you must log in to cRPD and set
the authentication key using one of the following commands:

set groups extra protocols bgp group name authentication-key crpd-md5-key

or

set protocols bgp group name authentication-key crpd-md5-key

The MD5 authentication key must be less than or equal to 79 characters.

2. Configure the router to enable MD5 for cRPD.

user@pcc# set protocols bgp group name neighbor vip-for-crpd authentication-key md5-key

NOTE: You must identify all the required VIP addresses before you start the Paragon
Automation installation process. You will be asked to enter these addresses as part of
the installation process.

37

Configure Load Balancing

VIPs are managed in Layer 2 by default. When all cluster nodes are in the same broadcast domain, each
VIP address is assigned to one cluster node at a time. Layer 2 mode provides fail-over of the VIP and
does not provide actual load balancing. For true load balancing between the cluster nodes or if the
nodes are in different broadcast domains, you must configure load balancing in Layer 3.

You must configure a BGP router to advertise the VIP address to the network. Make sure that the BGP
router uses ECMP to balance TCP/IP sessions between different hosts. Connect the BGP router directly
to the cluster nodes.

To configure load balancing on the cluster nodes, edit the config.yml file. For example:

metallb_config:
 peers:
 - peer-address: 192.x.x.1 ## address of BGP router
 peer-asn: 64501 ## autonomous system number of BGP router
 my-asn: 64500 ## ASN of cluster
 address-pools:
 - name: default
 protocol: bgp
 addresses:
 - 10.x.x.0/24

In this example, The BGP router at 192.x.x.1 is responsible for advertising reachability of the VIP
addresses with the 10.x.x.0/24 prefix to the rest of the network. The cluster allocates the VIP address of
this range and advertises the address for the cluster nodes that can handle the address.

Configure DNS Server (Optional)

You can access the main Web gateway either through the ingress controller's VIP address or through a
hostname that is configured in the Domain Name System (DNS) server that resolves to the ingress
controller's VIP address. You need to configure the DNS server only if you want to use a hostname to
access the Web gateway.

Add the hostname to the DNS as an A, AAAA, or CNAME record. For lab and Proof of Concept (POC)
setups, you can add the hostname to the /etc/hosts file on the cluster nodes.

38

RELATED DOCUMENTATION

Install Multinode Cluster on Ubuntu | 39

Install Multinode Cluster on Ubuntu

IN THIS SECTION

Download the Paragon Automation Software | 40

Install Paragon Automation on a Multinode Cluster | 41

Log in to the Paragon Automation UI | 59

Read the following topics to learn how to install Paragon Automation on a multinode cluster with
Ubuntu host OS. Figure 17 on page 39 shows a summary of installation tasks at a high level. Ensure
that you've completed the preconfiguration and preparation steps described in "Installation
Prerequisites on Ubuntu" on page 21 before you begin installation.

Figure 17: Installation Sequence - Infographic

39

To view a higher-resolution image in your Web browser, right-click the image and open in a new tab. To
view the image in PDF, use the zoom option to zoom in.

Download the Paragon Automation Software

Prerequisite

• You need a Juniper account to download the Paragon Automation software.

1. Log in to the control host.

2. Create a directory in which you'll download the software.

We refer to this directory as pa-download-dir in this guide.

3. Select the version number from the Version list on the Paragon Automation software download page
at https://support.juniper.net/support/downloads/?p=pa.

4. Download the Paragon Automation Setup installation files to the download folder using the wget
"http://cdn.juniper.net/software/file-download-url" command.

The Paragon Automation setup installation bundle consists of the following scripts and TAR files to
install each of the component modules:

• davinci.tar.gz, which is the primary installer file.

• infra.tar, which installs the Kubernetes infrastructure components including Docker and Helm.

• ems.tar, which installs the base platform component.

• northstar.tar, which installs the Paragon Pathfinder and Paragon Planner components.

• healthbot.tar, which installs the Paragon Insights component.

• paragon_ui.tar, which installs the Paragon Automation UI component.

• addons.tar, which installs infrastructure components that are not part of the base Kubernetes
installation. The infrastructure components include, IAM, Kafka, ZooKeeper, cert-manager,
Ambassador, Postgres, Metrics, Kubernetes Dashboard, Open Distro for Elasticsearch, Fluentd,
Reloader, ArangoDB, and Argo.

• helm-charts.tar, which contains all the helm-charts required for installation.

• rke2-packages.tgz, which installs the RKE2-based Kubernetes components.

• 3rdparty.tar.gz, which installs the required third-party utilities.

40

https://support.juniper.net/support/downloads/?p=pa

• rhel-84-airgap.tar.gz, which installs Paragon Automation using the air-gap method on nodes only
where the base OS is Red Hat Enterprise Linux (RHEL). You can choose to delete this file if you
are not installing Paragon Automation using the air-gapped method on an RHEL base OS.

• run script, which executes the installer image.

Now that you've downloaded the software, you're ready to install Paragon Automation.

Install Paragon Automation on a Multinode Cluster

To install Paragon Automation on a Kubernetes cluster of multiple primary and worker nodes:

1. Make the run script executable in the pa-download-dir directory.

chmod +x run

2. Use the run script to create and initialize a configuration directory with the configuration template
files.

./run -c config-dir init

config-dir is a user-defined directory on the control host that contains configuration information for a
particular installation. The init command automatically creates the directory if it does not exist.
Alternatively, you can create the directory before you execute the init command.

Ensure that you include the dot and slash (./) with the run command.

If you are using the same control host to manage multiple installations of Paragon Automation, you
can differentiate between installations by using differently named configuration directories.

3. Ensure that the control host can connect to the cluster nodes through SSH using the install-user
account.

Copy the private key that you generated in "Configure SSH client authentication" on page 23 to the
user-defined config-dir directory. The installer allows the Docker container to access the config-dir
directory. The SSH key must be available in the directory for the control host to connect to the
cluster nodes.

cd config-dir
cp ~/.ssh/id_rsa .
cd ..

41

Ensure that you include the dot (.) at the end of the copy command (cp).

4. Customize the inventory file, created under the config-dir directory, with the IP addresses or
hostnames of the cluster nodes, as well as the usernames and authentication information that are
required to connect to the nodes. The inventory file is in the YAML format and describes the cluster
nodes on which Paragon Automation will be installed. You can edit the file using the inv command or
a Linux text editor such as vi.

a. Customize the inventory file using the inv command:

./run -c config-dir inv

The following table lists the configuration options that the inv command prompts you to enter.

Table 6: inv Command Options

inv Command Prompts Description

Kubernetes master nodes Enter IP addresses of the Kubernetes primary
nodes.

Kubernetes worker nodes Enter IP addresses of the Kubernetes worker
nodes.

Local storage nodes Define the nodes that have disk space available for
applications. The local storage nodes are
prepopulated with the IP addresses of the primary
and worker nodes. You can edit these addresses.
Enter IP addresses of the nodes on which you want
to run applications that require local storage.

Services such as Postgres, ZooKeeper, and Kafka
use local storage or disk space partitioned inside
export/local-volumes. By default, worker nodes
have local storage available. If you do not add
primary nodes here, you can run only those
applications that do not require local storage on the
primary nodes.

NOTE: Local storage is different from Ceph
storage.

42

Table 6: inv Command Options (Continued)

inv Command Prompts Description

Kubernetes nodes' username (for example, root) Configure the user account and authentication
methods to authenticate the installer with the
cluster nodes. The user account must be root or, in
the case of non-root users, the account must have
superuser (sudo) privileges.

SSH private key file (optional) If you chose ssh-key authentication, for the control
host to authenticate with the nodes during the
installation process, configure the directory
(config-dir) where the
ansible_ssh_private_key_file is located, and the
id_rsa file, as "{{ config-dir }}/id_rsa".

Kubernetes nodes' password (optional) If you chose password authentication for the
control host to authenticate with the nodes during
the installation process, enter the authentication
password directly. WARNING: The password is
written in plain text.

We do not recommend using this option for
authentication.

Kubernetes cluster name (optional) Enter a name for your Kubernetes cluster.

Write inventory file? Click Yes to save the inventory information.

For example:

$./run -c config-dir inv
Loaded image: paragonautomation:latest
====================
PO-Runtime installer
====================

Supported command:
 deploy [-t tags] deploy runtime
 destroy [-t tags] destroy runtime
 init init configuration skeleton

43

 inv basic inventory editor
 conf basic configuration editor
 info [-mc] cluster installation info

Starting now: inv

INVENTORY

This script will prompt for the DNS names or IP addresses of the Kubernetes master and
worker nodes.
Addresses should be provided as comma-delimited lists.

At least three master nodes are recommended. The number of masters should be an odd number.
A minimum of four nodes are recommended.

Root access to the Kubernetes nodes is required.

See https://docs.ansible.com/ansible/2.10/user_guide/intro_inventory.html

? Kubernetes master nodes 10.12.xx.x3,10.12.xx.x4,10.12.xx.x5
? Kubernetes worker nodes 10.12.xx.x6
? Local storage nodes 10.12.xx.x3,10.12.xx.x4,10.12.xx.x5,10.12.xx.x6
? Kubernetes nodes' username (e.g. root) root
? SSH private key file (optional; e.g. "{{ inventory_dir }}/id_rsa") config/id_rsa
? Kubernetes nodes' password (optional; WARNING - written as plain text)
? Kubernetes cluster name (optional) k8scluster
? Write inventory file? Yes

b. Alternatively, you can customize the inventory file manually using a text editor.

vi config-dir/inventory

Edit the following groups in the inventory file.

i. Add the IP addresses of the Kubernetes primary and worker nodes of the cluster.

The master group identifies the primary nodes, and the node group identifies the worker
nodes. You cannot have the same IP address in both master and node groups.

44

To create a multi-primary node setup, list the addresses or hostnames of all the nodes that
will be acting as primary under the master group. Add the addresses or hostnames of the
nodes that will be acting as workers under the node group.

 master:
 hosts:
 10.12.xx.x3: {}
 10.12.xx.x4: {}
 10.12.xx.x5: {}
 node:
 hosts:
 10.12.xx.x6: {}

ii. Define the nodes that have disk space available for applications under the
local_storage_nodes:children group.

 local_storage_nodes:
 children:
 master:
 hosts:
 10.12.xx.x3: {}
 10.12.xx.x4: {}
 10.12.xx.x5: {}
 node:
 hosts:
 10.12.xx.x6: {}

iii. Configure the user account and authentication methods to authenticate the installer in the
Ansible control host with the cluster nodes under the vars group.

 vars:
 ansible_user: root
 ansible_ssh_private_key_file: config/id_rsa
 ansible_password:

iv. (Optional) Specify a name for your Kubernetes cluster in the kubernetes_cluster_name group.

kubernetes_cluster_name: k8scluster

45

5. Configure the installer using the conf command.

./run -c config-dir conf

The conf command runs an interactive installation wizard that enables you to choose the components
you want to install and configure a basic Paragon Automation setup. The command populates the
config.yml file with your input configuration. For advanced configuration, you must edit the
config.yml file manually.

Enter the information as prompted by the wizard. Use the cursor keys to move the cursor, use the
space key to select an option, and use the a or i key to toggle selecting or clearing all options. Press
Enter to move to the next configuration option. You can skip configuration options by entering a
period (.). You can reenter all your choices by exiting the wizard and restarting from the beginning.
The installer allows you to exit the wizard after you save the choices that you already made or to
restart from the beginning. You cannot go back and redo the choices that you already made in the
current workflow without exiting and restarting the wizard altogether.

The following table lists the configuration options that the conf command prompts you to enter :

Table 7: conf Command Options

conf Command Prompts Description/Options

Select components You can install the Infrastructure, Pathfinder, Insights, and base platform
components. By default, all components are selected.

You can choose to install Pathfinder based on your requirement. However,
you must install all other components.

46

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

Infrastructure Options These options appear only if you selected to install the Infrastructure
component at the previous prompt.

• Install Kubernetes Cluster—Install the required Kubernetes cluster. If you
are installing Paragon Automation on an existing cluster, you can clear
this selection.

• Install MetalLB LoadBalancer—Install an internal load balancer for the
Kubernetes cluster. By default, this option is already selected. If you are
installing Paragon Automation on an existing cluster with preconfigured
load balancing, you can clear this selection.

• Install Nginx Ingress Controller—Install Nginx Ingress Controller is a load-
balancing proxy for the Pathfinder components.

• Install Chrony NTP Client—Install Chrony NTP. You need NTP to
synchronize the clocks of the cluster nodes. If NTP is already installed
and configured, you need not install Chrony. All nodes must run NTP or
some other time-synchronization protocol at all times.

• Allow Master Scheduling—Master scheduling determines how the nodes
acting as primary nodes are used. Master is another term for a node
acting as primary.

If you select this option, the primary nodes can also act as worker nodes,
which means they not only act as the control plane but can run
application workloads as well. If you do not select master scheduling, the
primary nodes are used only as the control plane.

Master scheduling allows the available resources of the nodes acting as
primary to be available for workloads. However, if you select this option,
a misbehaving workload might exhaust resources on the primary node
and affect the stability of the whole cluster. Without master scheduling,
if you have multiple primary nodes with high capacity and disk space,
you risk wasting their resources by not utilizing them completely.

NOTE: This option is required for Ceph storage redundancy.

List of NTP servers Enter a comma-separated list of NTP servers. This option is displayed only if
you chose to install Chrony NTP.

47

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

Virtual IP address (es) for
ingress controller

Enter a VIP address to be used for Web access of the Kubernetes cluster or
the Paragon Automation UI. This must be an unused IP address that is
managed by the MetalLB load balancer pool.

Virtual IP address for
Infrastructure Nginx Ingress
Controller

Enter a VIP address for the Nginx Ingress Controller. This must be an unused
IP address that is managed by the MetalLB load balancer pool. This address
is used for NetFlow traffic.

Virtual IP address for Insights
services

Enter a VIP address for Paragon Insights services. This must be an unused IP
address that is managed by the MetalLB load balancer pool.

Virtual IP address for SNMP
trap receiver (optional)

Enter a VIP address for the SNMP trap receiver proxy only if this
functionality is required.

If you do not need this option, enter a period (.).

Pathfinder Options Select to install Netflowd. You can configure a VIP address for netflowd or
use a proxy for netflowd (same as the VIP address for the Infrastructure
Nginx Ingress Controller).

If you choose to not install netflowd, you cannot configure a VIP address for
netflowd.

Use netflowd proxy Enter Y to use a netflowd proxy. This option appears only if you chose to
install netflowd.

If you chose to use a netflowd proxy, you needn't configure a VIP address
for netflowd. The VIP address for the Infrastructure Nginx Ingress Controller
is used as the proxy for netflowd.

Virtual IP address for
Pathfinder Netflowd

Enter a VIP address to be used for Paragon Pathfinder netflowd. This option
appears only if you chose not to use netflowd proxy.

PCE Server Proxy Select the proxy mode for the PCE server. Select from None and Nginx-
Ingress.

48

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

Virtual IP address for
Pathfinder PCE server

Enter a VIP address to be used for Paragon Pathfinder PCE server access.
This address must be an unused IP address that is managed by the load
balancer.

If you selected Nginx-Ingress, as the PCE Server Proxy, this VIP address is
not necessary. The wizard does not prompt you to enter this address and
PCEP will use the same address as the VIP address for Infrastructure Nginx
Ingress Controller.

NOTE: The addresses for ingress controller, Infrastructure Nginx Ingress
Controller, Insights services, and PCE server must be unique. You cannot
use the same address for all four VIP addresses.

All these addresses are listed automatically in the LoadBalancer IP address
ranges option.

LoadBalancer IP address
ranges

The LoadBalancer IP addresses are prepopulated from your VIP addresses
range. You can edit these addresses. The externally accessible services are
handled through MetalLB, which needs one or more IP address ranges that
are accessible from outside the cluster. VIPs addresses for the different
servers are selected from these ranges of addresses.

The address ranges can be (but need not be) in the same broadcast domain
as the cluster nodes. For ease of management, because the network
topologies need access to Insights services and the PCE server clients, we
recommend that you select the VIP addresses from the same range.

For more information, see "Virtual IP Address Considerations" on page 30.

Addresses can be entered as comma-separated values (CSV), as a range, or
as a combination of both. For example:

• 10.x.x.1, 10.x.x.2, 10.x.x.3

• 10.x.x.1-10.x.x.3

• 10.x.x.1, 10.x.x.3-10.x.x.5

• 10.x.x.1-3 is not a valid format.

49

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

Multi-master node detected
do you want to setup multiple
registries

Enter Y to configure a configure registry on each primary node.

You see this option only if you've configured multiple primary nodes in the
inventory file (multi-primary installation).

Virtual IP address for registry Enter a VIP address for the container registry for a multi-primary node
deployment only. Make sure that the VIP address is in the same Layer 2
domain as the primary nodes. This VIP address is not part of the
LoadBalancer pool of VIP addresses.

You see this option only if you chose to configure multiple container
registries.

Enable md5 for PCE Server Enter Y to configure MD5 authentication between the router and Pathfinder.

NOTE: If you enable MD5 on PCEP sessions, you must also configure the
authentication key in the Paragon Automation UI and the same
authentication key and the VIP address on the router. For information on
how to configure the authentication key and VIP address, see "VIP
Addresses for MD5 Authentication" on page 37.

IP for PCEP server (must be
outside metallb range and
must be in the same subnet as
the host with its subnet prefix
in CIDR notation)

Enter a VIP address for the PCE server. The IP address must in the CIDR
format.

Make sure that the VIP address is in the same Layer 2 domain as the primary
nodes. This VIP address is not part of the LoadBalancer pool of VIP
addresses.

Enable md5 for BGP Enter Y to configure MD5 authentication between cRPD and the BGP-LS
router.

50

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

IP for CRPD (must be outside
metallb range and must be in
the same subnet as the host
with its subnet prefix in CIDR
notation)

Enter a VIP address for the BGP Monitoring Protocol (BMP). The IP address
must in the CIDR format.

Make sure that the VIP address is in the same Layer 2 domain as the primary
nodes. This VIP address is not part of the LoadBalancer pool of VIP
addresses.

NOTE: If you enable MD5 on cRPD sessions, you must also configure the
router to enable MD5 for cRPD and configure the VIP address on the
router. For information on how to determine the MD5 authentication key
and configure the router, see "VIP Addresses for MD5 Authentication" on
page 37.

Multus Interface Enter the Multus interface type.

Multus Destination routes ?
can be more than 1 peer with
its subnet prefix in CIDR
notation

Enter the Multus routes in the CIDR format.

Multus Gateway IP address Enter the IP address of the Multus gateway.

Hostname of Main web
application

Enter a hostname for the ingress controller. You can configure this value as
an IP address or as a fully qualified domain name (FQDN). For example, you
can enter 10.12.xx.100 or www.paragon.juniper.net (DNS name). Do not
include http:// or https://.

NOTE: You will use this hostname to access the Paragon Automation Web
UI from your browser. For example, https://hostname or https://IP-
address.

51

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

BGP autonomous system
number of CRPD peer

Set up the Containerized Routing Protocol Daemon (cRPD) autonomous
systems and the nodes with which cRPD creates its BGP sessions.

You must configure the autonomous system (AS) number of the network to
allow cRPD to peer with one or more BGP Link State (BGP-LS) routers in the
network. By default, the AS number is 64500.

NOTE: While you can configure the AS number at the time of installation,
you can also modify the cRPD configuration later. See "Modify cRPD
Configuration" on page 62 .

52

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

Comma separated list of
CRPD peers

Configure cRPD to peer with at least one BGP-LS router in the network to
import the network topology. For a single autonomous system, configure the
address of the BGP-LS routers that will peer with cRPD to provide topology
information to Paragon Pathfinder. The cRPD instance running as part of a
cluster will initiate a BGP-LS connection to the specified peer routers and
import topology data after the session is established. If more than one peer
is required, you can add the peers as CSVs, as a range, or as a combination of
both, similar to how you add LoadBalancer IP addresses.

NOTE: While you can configure the peer IP addresses at the time of
installation, you can also modify the cRPD configuration later, as
described in "Modify cRPD Configuration" on page 62.

You must configure the BGP peer routers to accept BGP connections
initiated from cRPD. The BGP session will be initiated from cRPD using the
address of the worker where the bmp pod is running as the source address.

Because cRPD could be running on any of the worker nodes at a given time,
you must allow connections from any of these addresses. You can allow the
range of IP addresses that the worker addresses belong to (for example,
10.xx.43.0/24), or the specific IP address of each worker (for example,
10.xx.43.1/32, 10.xx.43.2/32, and 10.xx.43.3). You could also configure this
using the neighbor command with the passive option to prevent the router
from attempting to initiate the connection.

If you chose to enter each individual worker address, either with the allow
command or the neighbor command, make sure you include all the workers,
because any worker could be running cRPD at a given time. Only one BGP
session will be initiated. If the node running cRPD fails, the bmp pod that
contains the cRPD container will be created in a different node, and the BGP
session will be re-initiated.

The sequence of commands in the following example shows the options to
configure a Juniper device to allow BGP-LS connections from cRPD.

The following commands configure the router to accept BGP-LS sessions
from any host in the 10.xx.43.0/24 network, where all the worker nodes are
connected.

[edit groups northstar]
root@system# show protocols bgp group northstar
type internal;
family traffic-engineering {

53

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

 unicast;
}
export TE;
allow 10.xx.43.0/24;

[edit groups northstar]
root@system# show policy-options policy-statement TE
from family traffic-engineering;
then accept;

The following commands configure the router to accept BGP-LS sessions
from 10.xx.43.1, 10.xx.43.2, and 10.xx.43.3 (the addresses of the three
workers in the cluster) only.

[edit protocols bgp group BGP-LS]
root@vmx101# show | display set
set protocols bgp group BGP-LS family traffic-engineering unicast
set protocols bgp group BGP-LS peer-as 11
set protocols bgp group BGP-LS allow 10.x.43.1
set protocols bgp group BGP-LS allow 10.x.43.2
set protocols bgp group BGP-LS allow 10.x.43.3
set protocols bgp group BGP-LS export TE

cRPD initiates the BGP session. Only one session is established at a time
and is initiated using the address of the worker node currently running
cRPD. If you choose to configure the specific IP addresses instead of using
the allow option, configure the addresses of all the workers nodes for
redundancy.

The following commands also configure the router to accept BGP-LS
sessions from 10.xx.43.1, 10.xx.43.2, and 10.xx.43.3 only (the addresses of
the three workers in the cluster). The passive option prevents the router
from attempting to initiate a BGP-LS session with cRPD. The router will wait
for the session to be initiated by any of these three routers.

[edit protocols bgp group BGP-LS]
root@vmx101# show | display set
set protocols bgp group BGP-LS family traffic-engineering unicast
set protocols bgp group BGP-LS peer-as 11
set protocols bgp group BGP-LS neighbor 10.xx.43.1
set protocols bgp group BGP-LS neighbor 10.xx.43.2
set protocols bgp group BGP-LS neighbor 10.xx.43.3

54

Table 7: conf Command Options (Continued)

conf Command Prompts Description/Options

set protocols bgp group BGP-LS passive
set protocols bgp group BGP-LS export TE

You will also need to enable OSPF/IS-IS and MPLS traffic engineering as
shown here:

set protocols rsvp interface interface.unit

set protocols isis interface interface.unit
set protocols isis traffic-engineering igp-topology
Or
set protocols ospf area area interface interface.unit
set protocols ospf traffic-engineering igp-topology

set protocols mpls interface interface.unit
set protocols mpls traffic-engineering database import igp-topology

For more information, see https://www.juniper.net/documentation/us/en/
software/junos/mpls/topics/topic-map/mpls-traffic-engineering-
configuration.html.

Finish and write configuration
to file

Click Yes to save the configuration information.

This action configures a basic setup and saves the information in the
config.yml file in the config-dir directory.

Click No to restart the wizard without exiting the current session. The
previously entered configuration parameters and selections appear
preconfigured in the wizard. You can choose to retain them or reenter new
values.

Click Cancel to exit the wizard without saving the configuration.

For example:

$./run -c config conf
Loaded image: paragonautomation.latest
====================
PO-Runtime installer
====================

55

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html

Supported command:
 deploy [-t tags] deploy runtime
 destroy [-t tags] destroy runtime
 init init configuration skeleton
 inv basic inventory editor
 conf basic configuration editor
 info [-mc] cluster installation info

Starting now: conf
NOTE: depending on options chosen additional IP addresses may be required for:
 multi-master Kubernetes Master Virtual IP address
 Infrastructure Virtual IP address(es) for ingress controller
 Infrastructure Virtual IP address for Infrastructure Nginx Ingress
Cont
roller
 Insights Virtual IP address for Insights services
 Insights Virtual IP address for SNMP Trap receiver (optional)
 Pathfinder Virtual IP address for Pathfinder Netflowd
 Pathfinder Virtual IP address for Pathfinder PCE server
 multi-registry Paragon External Registry Virtual IP address

? Select components done (4 selections)
? Infrastructure Options done (4 selections)
? List of NTP servers 0.pool.ntp.org
? Virtual IP address(es) for ingress controller 10.12.xx.x7
? Virtual IP address for Insights services 10.12.xx.x8
? Virtual IP address for SNMP Trap receiver (optional)
? Pathfinder Options [Install Netflowd]
? Use netflowd proxy? Yes
? PCEServer proxy Nginx Ingress
? LoadBalancer IP address ranges 10.12.xx.x7-10.12.xx.x9
? Multi-master node detected do you want to setup multiple registries Yes
? Virtual IP address for registry 10.12.xx.10
? Enable md5 for PCE Server ? Yes
? IP for PCEP server (must be outside metallb range and must be in the same subnet as the
host with its subnet prefix in CIDR notation) 10.12.xx.219/24
? Enable md5 for BGP ? Yes
? IP for CRPD (must be outside metallb range and must be in the same subnet as the host with
its subnet prefix in CIDR notation) 10.12.xx.220/24
? Multus Interface ? eth1
? Multus Destination routes ? can be more than 1 peer with its subnet prefix in CIDR notation
10.12.xx.41/24,10.13.xx.21/24
? Multus Gateway IP Address ? 10.12.xx.101

56

? Hostname of Main web application host.example.net
? BGP autonomous system number of CRPD peer 64500
? Comma separated list of CRPD peers 10.12.xx.11
? Finish and write configuration to file Yes

6. (Optional) For more advanced configuration of the cluster, use a text editor to manually edit the
config.yml file.

The config.yml file consists of an essential section at the beginning of the file that corresponds to the
configuration options that the installation wizard prompts you to enter. The file also has an extensive
list of sections under the essential section that allows you to enter complex configuration values
directly in the file.

You can configure the following options:

• (Optional) Set the grafana_admin_password password to log in to the Grafana application. Grafana is a
visualization tool commonly used to visualize and analyze data from various sources, including
logs.

By default, the username is preconfigured as admin in # grafana_admin_user: admin. Use admin as
username and the password you configure to log in to Grafana.

grafana_admin_user: admin
grafana_admin_password: grafana_password

If you do not configure the grafana_admin_password password, the installer generates a random
password. You can retrieve the password using the command:

kubectl get secret -n kube-system grafana -o jsonpath={..grafana-password} | base64 -d

• Set the iam_skip_mail_verification configuration option to true for user management without SMTP
by Identity and Access Management (IAM). By default, this option is set to false for user
management with SMTP. You must configure SMTP in Paragon Automation so that you can notify
Paragon Automation users when their account is created, activated, or locked, or when their
account password is changed.

• Configure the callback_vip option with an IP address different from that of the virtual IP (VIP)
address of the ingress controller. You can use an IP address from the MetalLB pool of VIP
addresses. You configure this IP address to enable segregation of management and data traffic
from the southbound and northbound interfaces. By default, callback_vip is assigned the same or
one of the addresses of the ingress controller.

Save and exit the file after you finish editing it.

57

7. (Optional) If you want to deploy custom SSL certificates signed by a recognized certificate authority
(CA), store the private key and certificate in the config-dir directory. Save the private key as
ambassador.key.pem and the certificate as ambassador.cert.pem.

By default, Ambassador uses a locally generated certificate signed by the Kubernetes cluster-internal
CA.

NOTE: If the certificate is about to expire, save the new certificate as
ambassador.cert.pem in the same directory, and execute the ./run -c config-dir deploy -t
ambassador command.

8. Install the Paragon Automation cluster based on the information that you configured in the
config.yml and inventory files.

./run -c config-dir deploy

The installation time to install the configured cluster depends on the complexity of the cluster. A
basic setup installation takes at least 45 minutes to complete.

The installer checks NTP synchronization at the beginning of installation. If clocks are out of sync,
installation fails.

For multi-primary node deployments only, the installer checks both individual server CPU and
memory as well as total available CPU and memory per cluster. If the following requirements are not
met, installation fails.

• Minimum CPU per cluster: 20 CPU

• Minimum Memory per cluster: 32-GB

• Minimum CPU per node: 4 CPU

• Minimum memory per node: 6-GB

To disable CPU and memory check, use the following command and rerun the deployment.

./run -c config-dir deploy -e ignore_iops_check=yes

If you are installing Paragon Automation on an existing Kubernetes cluster, the deploy command
upgrades the currently deployed cluster to the latest Kubernetes version. The command also
upgrades the Docker CE version, if required. If Docker EE is already installed on the nodes, the deploy
command does not overwrite it with Docker CE. When upgrading the Kubernetes version or the
Docker version, the command performs the upgrade sequentially on one node at a time. The
command cordons off each node and removes it from scheduling. It performs upgrades, restarts
Kubernetes on the node, and finally uncordons the node and brings it back into scheduling.

58

9. After deployment is completed, log in to the worker nodes.

Use a text editor to configure the following recommended information for Paragon Insights in the
limits.conf and sysctl.conf files. These values set the soft and hard memory limits for influx DB
memory requirements. If you do not set these limits, you might see errors such as “out of memory” or
“too many open files” because of the default system limits.

a.

vi /etc/security/limits.conf
 # End of file
 * hard nofile 1048576
 * soft nofile 1048576
 root hard nofile 1048576
 root soft nofile 1048576
 influxdb hard nofile 1048576
 influxdb soft nofile 1048576

b.

vi /etc/sysctl.conf
 fs.file-max = 2097152
 vm.max_map_count=262144
 fs.inotify.max_user_watches=524288
 fs.inotify.max_user_instances=512

Repeat this step for all worker nodes.

Now that you've installed and deployed your Paragon Automation cluster, you're ready to log in to the
Paragon Automation UI.

Log in to the Paragon Automation UI

To log in to the Paragon Automation UI:

1. Open a browser, and enter either the hostname of the main Web application or the VIP address of
the ingress controller that you entered in the URL field of the installation wizard.

For example, https://vip-of-ingress-controller-or-hostname-of-main-web-application . The Paragon
Automation login page is displayed.

2. For first-time access, enter admin as username and Admin123! as the password to log in. You must
change the password immediately.

59

The Set Password page appears. To access the Paragon Automation setup, you must set a new
password.

3. Set a new password that meets the password requirements.

Use between 6 and 20 characters and a combination of uppercase letters, lowercase letters,
numbers, and special characters. Confirm the new password, and click OK.

The Dashboard page appears. You have successfully installed and logged in to the Paragon
Automation UI.

4. Update the URL to access the Paragon Automation UI in Administration > Authentication > Portal
Settings to ensure that the activation e-mail sent to users for activating their account contains the
correct link to access the GUI. For more information, see Configure Portal Settings.

For high-level tasks that you can perform after you log in to the Paragon Automation UI, see Paragon
Automation Quick Start - Up and Running.

Air-Gap Install Paragon Automation on Ubuntu

You can install and deploy a paragon Automation cluster using the air-gap method of installation. In the
air-gap method you need not have Internet access on the cluster nodes. You need a control host to
download the distribution software and then create and configure the installation files to run the
installation from the control host. You must be able to use SSH to connect to all the nodes.

To use the air-gap method install Paragon Automation on nodes with Ubuntu as the base OS, perform
the following steps.
1. Prepare the control host for the installation process as described in "Prepare the Control Host" on

page 22.

2. Prepare the cluster nodes for the installation process as described in "Prepare Cluster Nodes" on
page 24.

NOTE: You must ensure that the following packages are installed on the cluster nodes
else air-gap installation will fail:

apt-transport-https, ca-certificates, curl, docker.io, jq, keepalived

If you want to use Chrony, you must pre-install Chrony. The installer does not install
Chrony during air-gap installations.

3. Ensure you have the required VIP addresses as described in "Virtual IP Address Considerations" on
page 30.

4. Log in to the control host node.

60

5. Download the Paragon Automation Setup installation folder to a download directory and extract the
folder. You can use the wget "http://cdn.juniper.net/software/file-download-url" command to download
the folder and any extraction utility to extract the files.

You need a Juniper account to download the Paragon Automation software.

6. Follow steps 1 through 7 of the installation process as described in "Install Multinode Cluster on
Ubuntu" on page 39.

7. Install the Paragon Automation cluster based on the information that you configured in the
config.yml and inventory files.

./run -c config-dir deploy -e offline_install=true

The installation time to install the configured cluster depends on the complexity of the cluster. A
basic setup installation takes at least 45 minutes to complete.

NTP synchronization is checked at the start of deployment. If clocks are out of sync, deployment
fails.

8. When deployment is completed, log in to the worker nodes.

Use a text editor to configure the soft and hard memory limits for influx DB memory requirements
for Paragon Insights in the limits.conf and sysctl.conf files.

a. # vi /etc/security/limits.conf
 # End of file
 * hard nofile 1048576
 * soft nofile 1048576
 root hard nofile 1048576
 root soft nofile 1048576
 influxdb hard nofile 1048576
 influxdb soft nofile 1048576

b. # vi /etc/sysctl.conf
 fs.file-max = 2097152
 vm.max_map_count=262144
 fs.inotify.max_user_watches=524288
 fs.inotify.max_user_instances=512

Repeat this step for all worker nodes.

9. Follow the steps described in "Log in to the Paragon Automation UI" on page 59 to access the GUI.

61

Modify cRPD Configuration

During the installation of Paragon Automation, you can configure the address of the BGP-LS routers
that will peer with cRPD to provide topology information to Paragon Pathfinder. You can also modify the
cRPD configuration after installation, in the following ways:

• You can edit the BGP Monitoring Protocol (BMP) configuration file (kube-cfg.yml) located in the
Paragon Automation primary node /etc/kubernetes/po/bmp/ directory, and then apply the new
configuration.

To edit the BMP configuration file and add a new neighbor:

1. Edit the kube-cfg.yml file.

root@primary-node:~# vi /etc/kubernetes/po/bmp/kube-cfg.yml

apiVersion: v1
kind: ConfigMap
metadata:
 namespace: northstar
 name: crpd-config
data:
 config: |
 protocols {
 bgp {
 group northstar {
 neighbor 10.xx.43.1;
 neighbor 10.xx.43.2; <= make sure you include the “;”
 }
 }
 }

2. Apply the changes in the kube-cfg.yml file.

root@primary-node:~# kubectl apply -f /etc/kubernetes/po/bmp/kube-cfg.yml
deployment.apps/bmp configured
configmap/crpd-config configured
service/bmp-grpc unchanged
service/crpd unchanged

62

service/bgp unchanged
persistentvolumeclaim/crpd-data unchanged

3. Connect to the cRPD container.

root@primary-node:/# cd usr/local/bin/

root@primary-node:/usr/local/bin# ./pf-crpd

4. Verify that the changes are applied.

root@bmp-5888bb7dfd-72v9t> show configuration protocols bgp | display inheritance
group northstar {
---more--
 ##
 ## '10.xx.43.1' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.1;
 ##
 ## '10.xx.43.2' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.2;

NOTE: Any additional neighbor will be added under a configuration group named
extra. Use the | display inheritance command to see the new neighbor.

• Connect to the cRPD container and edit the configuration like you would on any Junos device.

To connect to cRPD and add a new neighbor or change the autonomous system (AS) number:

1. Connect to the cRPD container and enter configuration mode.

root@primary-node:/# cd usr/local/bin/

root@primary-node:/usr/local/bin# ./pf-crpd

root@ bmp-5888bb7dfd-72v9 > edit

63

[edit]
root@ bmp-5888bb7dfd-72v9t#

2. Review the current BGP configuration and AS number.

[edit]
root@bmp-5888bb7dfd-72v9t# show protocols bgp | display inheritance
group northstar {
---more--
 ##
 ## '10.xx.43.1' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.1;
 ##
 ## '10.xx.43.2' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.2;

[edit]
root@bmp-5888bb7dfd-72v9t# show routing-options autonomous-system
11;

3. Change the AS number.

[edit]
root@bmp-5888bb7dfd-72v9t# set routing-options autonomous-system 64500

4. Add a new neighbor.

[edit]
root@bmp-5f78448d69-f84q7# edit protocols bgp

[edit protocols bgp]
root@bmp-5888bb7dfd-72v9t# set group northstar neighbor 10.xx.43.3

[edit protocols bgp group northstar]
root@bmp-5888bb7dfd-72v9t# show | display inheritance
---more---
neighbor 10.xx.43.3;
 ##

64

 ## '10.xx.43.1' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.1;
 ##
 ## '10.xx.43.2' was inherited from group 'extra'
 ##
 neighbor 10.xx.43.2;

NOTE: You could also add the neighbor under the configuration group extra.
However, if the pod is restarted, this change will be overwritten by the configuration
in the kube-cfg.yml file.

5. Commit your configuration changes.

[edit]
root@bmp-5f78448d69-f84q7# commit

65

4
CHAPTER

Install Paragon Automation on RHEL

IN THIS CHAPTER

Installation Prerequisites on Red Hat Enterprise Linux | 67

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Air-Gap Install Paragon Automation on RHEL | 106

Installation Prerequisites on Red Hat Enterprise
Linux

IN THIS SECTION

Prepare the Control Host | 68

Prepare Cluster Nodes | 70

Virtual IP Address Considerations | 75

Configure DNS Server (Optional) | 83

To successfully install and deploy a Paragon Automation cluster, you must have a control host that
installs the distribution software on multiple cluster nodes. You can download the distribution software
on the control host and then create and configure the installation files to run the installation from the
control host. You must have Internet access to download the packages on the control host. You must
also have Internet access on the cluster nodes to download any additional software such as Docker and
OS patches. Alternatively, you can use the air-gap method of installation if your cluster nodes don't have
Internet access.

The order of installation tasks is shown at a high level in Figure 18 on page 67.

Figure 18: High-Level Process Flow for Installing Paragon Automation

Before you download and install the distribution software, you must configure the control host and the
cluster nodes as described in this topic.

67

Prepare the Control Host

The control host is a dedicated machine that orchestrates the installation and upgrade of a Paragon
Automation cluster. It carries out the Ansible operations that run the software installer and install the
software on the cluster nodes as illustrated in Control Host Functions on page 68.

You must download the installer packages on the Ansible control host. As part of the Paragon
Automation installation process, the control host installs any additional packages required on the cluster
nodes. The packages include optional OS packages, Docker, and Elasticsearch. All microservices,
including third-party microservices, are downloaded onto the cluster nodes. The microservices do not
access any public registries during installation.

The control host can be on a different broadcast domain from the cluster nodes, but you must ensure
that the control host can use SSH to connect to all the nodes.

Figure 19: Control Host Functions

After installation is complete, the control host plays no role in the functioning of the cluster. However,
you'll need the control host to update the software or any component, make changes to the cluster, or
reinstall the cluster if a node fails. You can also use the control host to archive configuration files. We
recommend that you keep the control host available, and not use it for something else, after installation.

Prepare the control host for the installation process as follows:

1. Install the base OS—Install Red Hat Enterprise Linux (RHEL). Paragon Automation is qualified to work
with RHEL 8.4 and RHEL 8.10. Paragon Automation has experimental support on RHEL 8.8.

NOTE: If you are using RHEL version 8.10, you must remove the following RPM bundle:

68

rpm -e buildah cockpit-podman podman-catatonit podman

2. Install Docker—Install and configure Docker on the control host to implement the Linux container
environment. Paragon Automation supports Docker CE and Docker EE. The Docker version you
choose to install in the control host is independent of the Docker version you plan to use in the
cluster nodes.

If you want to install Docker EE, ensure that you have a trial or subscription before installation. For
more information about Docker EE, supported systems, and installation instructions, see https://
www.docker.com/blog/docker-enterprise-edition/.

To download and install Docker CE, perform the following steps:

sudo yum install -y yum-utils
sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/rhel/docker-ce.repo
sudo yum install docker-ce docker-ce-cli containerd.io docker-compose-plugin
sudo systemctl start docker

To verify that Docker is installed and running, use the # docker run hello-world command.

To verify the Docker version installed, use the # docker --version command.

For full instructions and more information, see https://docs.docker.com/engine/install/rhel/.

3. Configure SSH client authentication—The installer running on the control host connects to the cluster
nodes using SSH. For SSH authentication, you must use a root or non-root user account with
superuser (sudo) privileges. We will refer to this account as the install user account in subsequent
steps. You must ensure that the install user account is configured on all the nodes in the cluster. The
installer will use the inventory file to determine which username to use, and whether the
authentication will use SSH keys or a password. See, customize the inventory file for multinode
implementations.

If you choose the ssh-key authentication (recommended) method, generate the SSH key.

cd ~/.ssh
ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): <= ENTER (use default)
Enter passphrase (empty for no passphrase): <= ENTER (no passphrase)
Enter same passphrase again: <= ENTER (no passphrase)
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.

69

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/
https://docs.docker.com/engine/install/rhel/

The key fingerprint is:
SHA256:YS8cWopND9RFnpHGqaI1Q8e5ca2fxP/yMVzZtIDINbg root@Control1
The key's randomart image is:
+---[RSA 2048]----+
| ..o *=+ |
| ..= *o*oo |
| . .o==*+. . .|
| =+oO.Eo ..+|
| o.++ So.o oo|
| . .o .. . |
| .+ |
| . .o |
| o. |
+----[SHA256]-----+

If you want to protect the SSH key with a passphrase, you can use ssh-agent key manager. See https://
www.ssh.com/academy/ssh/agent.

NOTE: You'll need to copy this key to the nodes as part of the cluster nodes preparation
tasks, as described in the next section.

4. (Optional) Install wget—Install the wget utility to download the Paragon Automation distribution
software.

yum install wget

Alternatively, you can use rsync or any other file download software to copy the distribution software.

Prepare Cluster Nodes

The primary and worker nodes are collectively called cluster nodes. Each cluster node must have at least
one unique static IP address, as illustrated in Figure 20 on page 71. When configuring the hostnames,
use only lowercase letters, and do not include any special characters other than hyphen (-) or the period
(.). If the implementation has a separate IP network to provide communication between the Paragon
Automation components, as described in the overview section, the IP addresses in that separate
network do not need to be reachable outside the cluster. However, then you must assign a second set of
IP addresses to the worker nodes. These IP addresses enable devices outside the cluster to reach the
worker nodes and also enable communication between:

• Paragon Automation and the managed devices

• Paragon Automation and the network administrator

70

https://www.ssh.com/academy/ssh/agent
https://www.ssh.com/academy/ssh/agent

We recommend that you place all the nodes in the same broadcast domain. For cluster nodes in
different broadcast domains, see "Configure Load Balancing " on page 83 for additional load balancing
configuration.

Figure 20: Cluster Node Functions

As described in "Paragon Automation System Requirements" on page 10, you can install Paragon
Automation using a multinode deployment.

You need to prepare the cluster nodes for the Paragon Automation installation process as follows:

1. Configure raw disk storage—The cluster nodes must have raw storage block devices with
unpartitioned disks or unformatted disk partitions attached. You can also partition the nodes such
that the root partition and other file systems can use a portion of the disk space available. You must
leave the remaining space unformatted, with no file systems, and reserve it for Ceph to use. For
more information, see "Disk Requirements" on page 15.

NOTE: You don't need to install or configure anything to allow Ceph to use the
unpartitioned disks or unformatted disk partitions. The Paragon Automation
installation process automatically assigns the space for Ceph storage.

For multinode clusters, you must have a minimum of three cluster nodes with storage space
attached.

Ceph requires newer Kernel versions. If your Linux kernel is very old, consider upgrading or
reinstalling a new one. For a list of minimum Linux kernel versions supported by Ceph for your OS,
see https://docs.ceph.com/en/latest/start/os-recommendations.

71

https://docs.ceph.com/en/latest/start/os-recommendations/

2. Install the base OS—Install RHEL. Paragon Automation is qualified to work with RHEL 8.4 and
RHEL 8.10. Paragon Automation also has experimental support on RHEL 8.8.

NOTE: If you are using RHEL version 8.10, you must remove the following RPM
bundle:

rpm -e buildah cockpit-podman podman-catatonit podman

3. Create install-user account—The install user is the user that the Ansible playbooks use to log in to
the primary and worker nodes and perform all the installation tasks. Ensure that you configure
either a root password or an account with superuser (sudo) privileges. You will add this information
to the inventory file during the installation process.

Set the root user password.

passwd root
New password:
Retype new password:
passwd: password updated successfully

4. Install SSH authentication—The installer running on the control host connects to the cluster nodes
through SSH using the install-user account.

a. Log in to the cluster nodes and install the open-ssh server on all nodes.

b. Edit the sshd_config file.

vi /etc/ssh/sshd_config

c. If you are using "root" as the install-user account, then permit root login.

PermitRootLogin yes

If you chose to use plain text password for authentication, then you must enable password
authentication.

PasswordAuthentication yes

We do not recommend the use of password authentication.

d. Ensure that the AllowTcpForwarding parameter is set to yes.

AllowTcpForwarding yes

72

NOTE: Paragon Automation installation fails when the AllowTcpForwarding parameter
is set to no.

e. If you changed /etc/ssh/sshd_config, restart the SSH daemon.

systemctl restart sshd

f. Log in to the control host:

i. To allow authentication using the SSH key, copy id_rsa.pub to the cluster nodes.

ssh-copy-id -i ~/.ssh/id_rsa.pub cluster-node-IP-or-hostname

Repeat this step for all the nodes in the cluster (primary and workers). cluster-node-IP is the
unique address of the node as shown in Figure 20 on page 71. If a hostname is used
instead, the Ansible control host should be able to resolve the name to its IP address.

ii. Use SSH authentication to log in to the cluster node using the install-user account. You
must not need a password to log in.

You should be able to use SSH to connect to all nodes in the cluster (primary and workers)
from the control host using the install-user account. If you are not able to log in, review the
previous steps and make sure that you didn't miss anything.

5. Install Docker—Select one of the following Docker versions to install.

• Docker CE—If you want to use Docker CE, you do not need to install it on the cluster nodes. The
deploy script installs Docker CE on the nodes during Paragon Automation installation.

• Docker EE—If you want to use Docker EE, you must install Docker EE on all the cluster nodes. If
you install Docker EE on the nodes, the deploy script uses the installed version and does not
attempt to install Docker CE in its place. For more information about Docker EE and supported
systems, and for instructions to download and install Docker EE, see https://www.docker.com/
blog/docker-enterprise-edition/.

The Docker version you choose to install in the cluster nodes is not dependent on the Docker
version installed in the control host.

6. Disable Firewall—Disable the local firewall.

systemctl stop firewalld

systemctl disable firewalld

systemctl mask firewalld

systemctl mask system-udevd –now

73

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/

Consider protecting your cluster with an external firewall.

7. Install Python—Install Python 3, if it is not preinstalled with your OS, on the cluster nodes:

yum install python3

To verify the Python version installed, use the # python3 --version command.

8. Use the # yum list installed command and ensure that the following packages are installed:

bash-completion, gdisk, iptables, lvm2, python-six, PyYAML, openssl, python3-pip, network-scripts, fio, jq,
pytz

Additionally, the following optional packages are recommended to be installed to aid in
troubleshooting:

net-tools, tcpdump, traceroute

9. Run these commands to download and install the following packages:

rpm -Uvh python3-markupsafe-0.23-19.el8.x86_64.rpm

rpm -Uvh python3-pytz-2017.2-11.el8.noarch.rpm

rpm -Uvh python3-babel-2.5.1-7.el8.noarch.rpm

rpm -Uvh python3-jinja2-2.10.1-3.el8.noarch.rpm

10. Install and Enable NTP—All nodes must run NTP or other time-synchronization at all times. By
default, Paragon Automation installs the Chrony NTP client. If you don't want to use Chrony, you
must manually install an alternative service on all nodes and ensure that the timedatectl command
reports that the clocks are synchronized. However, if you want to use the air-gap method to install
Paragon Automation, and you want to use Chrony, you must pre-install Chrony. The installer does
not install Chrony during air-gap installations.

timedatectl
 Local time: Fri 2022-05-20 07:14:49 PDT
 Universal time: Fri 2022-05-20 14:14:49 UTC
 RTC time: Fri 2022-05-20 14:14:48
 Time zone: America/Los_Angeles (PDT, -0700)
 System clock synchronized: yes
systemd-timesyncd.service active: no
 RTC in local TZ: no

11. (Optional) Upgrade your Linux kernel version—Upgrade the kernel version of your RHEL server to
the latest LTS version to meet the requirements for Paragon Automation installation.

For Red Hat Enterprise Linux (RHEL) 8.4, ensure that the Linux kernel version is 4.18 and later.

74

Virtual IP Address Considerations

IN THIS SECTION

VIP Address for the Registries in a Multi-Primary Node Deployment | 81

VIP Addresses for MD5 Authentication | 81

Configure Load Balancing | 83

The Kubernetes worker nodes host the pods that handle the workload of the applications.
A pod is the smallest deployable unit of computing created and managed in Kubernetes. A pod contains
one or more containers, with shared storage and network resources, and with specific instructions on
how to run the applications. Containers are the lowest level of processing, and you execute applications
or microservices in containers.

The primary node in the cluster determines which worker node will host a particular pod and containers.

You implement all features of Paragon Automation using a combination of microservices. You need to
make some of these microservices accessible from outside the cluster as they provide services to end
users (managed devices) and administrators. For example, you must make the pceserver service
accessible to establish Path Computation Element Protocol (PCEP) sessions between provider edge (PE)
routers and Paragon Automation.

You need to expose these services outside of the Kubernetes cluster with specific addresses that are
reachable from the external devices. Because a service can be running on any of the worker nodes at a
given time, you must use virtual IP addresses (VIPs) as the external addresses. You must not use the
address of any given worker node as an external address.

75

In this example:

• Consider that Worker 1 is 10.1.x.3 and Worker 2 is 10.1.x.4.

• SERVICE IP = PCEP VIP is 10.1.x.200

• PCC_IP is 10.1.x.100

Paragon Automation services use one of two methods of exposing services outside the cluster:

• Load balancer—Each load balancer is associated with a specific IP address and routes external traffic
to a specific service in the cluster. This is the default method for many Kubernetes installations in the
cloud. The load balancer method supports multiple protocols and multiple ports per service. Each
service has its own load balancer and IP address.

Paragon Automation uses the MetalLB load balancer. MetalLB simulates external load balancer by
either managing virtual IP addresses in Layer 2 mode, or interacts with external router(s) in Layer 3
mode. MetalLB provides load-balancing infrastructure to the kubernetes cluster.

Services of type "LoadBalancer" will interact with the Kubernetes load-balancing infrastructure to
assign an externally reachable IP address. Some services can share an external IP address.

76

• Ingress—The ingress method acts as a proxy to bring traffic into the cluster, and then uses internal
service routing to route the traffic to its destination. Under the hood, this method also uses a load
balancer service to expose itself to the world so it can act as that proxy.

Paragon Automation uses the following ingress proxies:

• Ambassador

• Nginx

Devices from outside the cluster need to access the following services and thus these services require a
VIP address.

Table 8: Services That Need VIPs

Required VIP Address Description Load Balancer/Proxy

Ingress controller Used for accessing the Paragon
Automation GUI over the Web.

Paragon Automation provides a
common Web server that provides
access to the components and
applications. Access to the server is
managed through the Kubernetes
Ingress Controller.

Ambassador

MetalLB

Paragon Insights services Used for Insights services such as
syslog, DHCP relay, and JTI.

MetalLB

Paragon Pathfinder PCE server Used to establish PCEP sessions
with devices in the network.

MetalLB

SNMP trap receiver proxy
(Optional)

User for the SNMP trap receiver
proxy only if this functionality is
required.

MetalLB

77

Table 8: Services That Need VIPs (Continued)

Required VIP Address Description Load Balancer/Proxy

Infrastructure Nginx Ingress
Controller

Used as a proxy for the Paragon
Pathfinder netflowd server and,
optionally, the Paragon Pathfinder
PCE server.

The Nginx Ingress Controller needs
a VIP within the MetalLB load
balancer pool. This means that
during the installation process you
need to include this address as part
of the LoadBalancer IP address
ranges that you will be required to
include while creating the
configuration file.

Nginx

MetalLB

Pathfinder Netflowd Used for Paragon Pathfinder
netflowd server.

Netflowd can use Nginx as proxy, in
which case it will not require its
own VIP address.

MetalLB

Registry (Optional) Used for connecting to multiple
container registries on the primary
nodes.

-

PCEP server (Optional) Used for the PCE server for MD5
authentication.

-

cRPD (Optional) Used to connect to the BGP
Monitoring Protocol (BMP) pod for
MD5 authentication.

-

Ports used by Ambassador:

• HTTP 80 (TCP) redirect to HTTPS

• HTTPS 443 (TCP)

• Paragon Planner 7000 (TCP)

78

• DCS/NETCONF initiated 7804 (TCP)

Figure 21: Ambassador

Ports used by Insights Services, Path Computation Element (PCE) server, and SNMP:

• Insights Services

JTI 4000 (UDP)

DHCP (ZTP) 67 (UDP)

SYSLOG 514 (UDP)

SNMP proxy 162 (UDP)

• PCE Server

PCEP 4189 (TCP)

• SNMP

SNMP Trap Receiver 162 (UDP)

79

Figure 22: Ports Used by Services

Ports used by Nginx Controller:

• NetFlow 9000 (UDP)

• PCEP 4189 (TCP)

Using Nginx for PCEP

During the installation process, you will be asked whether you want to enable ingress proxy for PCEP.
You can select from None or Nginx-Ingress as the proxy for the Path Computation Element (PCE) server.

If you select Nginx-Ingress as the proxy, you do not need to configure the VIP for the PCE server
described in the table. In this case, the VIP address for Infrastructure Nginx Ingress Controller is used for
the PCE server also. If you choose to not use a netflowd proxy, the VIP for the Infrastructure Nginx
Ingress Controller is used for netflowd, as well.

NOTE: The benefit of using Nginx is that you can use a single IP address for multiple
services.

80

Figure 23: Nginx Controller

VIP Address for the Registries in a Multi-Primary Node Deployment

If you are deploying a setup with multiple primary nodes, and you deploy multiple container registries
(one on each primary node), you will need an additional VIP address in the same broadcast domain as
the cluster nodes. This address will be used to connect to the container registries deployed on each
primary node.

The installation wizard refers to this IP address as the Virtual IP address for registry. The VIP address
pool of the MetalLB load balancer must not contain this VIP address.

VIP Addresses for MD5 Authentication

You can configure MD5 authentication to secure PCEP sessions between the router and Paragon
Pathfinder as well as ensure that the BMP service is peering with the correct BGP-LS router. Paragon
Automation uses Multus to provide the secondary interface on the PCE server and BMP pod for direct
access to the router. You need the following VIP addresses in the same subnet as your cluster nodes:

• VIP address for the PCE server in the CIDR format

• VIP address for cRPD in the CIDR format

The VIP address pool of the MetalLB load balancer must not contain these VIP addresses.

81

If you choose to configure MD5 authentication, you must additionally configure the authentication key
and virtual IP addresses on the routers. You must also configure the authentication key in the Paragon
Automation UI.

• MD5 on PCE server.—Configure the MD5 authentication key on the router and the Paragon
Automation UI and VIP address on the router.

• Configure the following in the Junos CLI:

user@pcc# set protocols pcep pce pce-id authentication-key pce-md5-key

user@pcc# set protocols pcep pce pce-id destination-ipv4-address vip-for-pce

• Enter the pce-md5-key authentication key in the MD5 String field in the Protocols:PCEP section
on the Configuration > Devices > Edit Device Name page.

The MD5 authentication key must be less than or equal to 79 characters.

• MD5 on cRPD— Determine the cRPD MD5 authentication key and configure the key and VIP
address of cRPD on the router.

1. Determine or set the MD5 authentication key in the following ways.

a. Run the conf command script and enable MD5 authentication on cRPD. Search for the
crpd_auth_key parameter in the config.yml file. If there is a key present, it indicates that cRPD is
configured for MD5. For example: crpd_auth_key : northstar . You can use the key present in the
config.yml file (or you can also edit the key) and enter it on the router.

b. If no MD5 authentication key is present in the config.yml file, you must log in to cRPD and set
the authentication key using one of the following commands:

set groups extra protocols bgp group name authentication-key crpd-md5-key

or

set protocols bgp group name authentication-key crpd-md5-key

The MD5 authentication key must be less than or equal to 79 characters.

2. Configure the router to enable MD5 for cRPD.

user@pcc# set protocols bgp group name neighbor vip-for-crpd authentication-key md5-key

NOTE: You must identify all the required VIP addresses before you start the Paragon
Automation installation process. You will be asked to enter these addresses as part of
the installation process.

82

Configure Load Balancing

VIPs are managed in Layer 2 by default. When all cluster nodes are in the same broadcast domain, each
VIP address is assigned to one cluster node at a time. Layer 2 mode provides fail-over of the VIP and
does not provide actual load balancing. For true load balancing between the cluster nodes or if the
nodes are in different broadcast domains, you must configure load balancing in Layer 3.

You must configure a BGP router to advertise the VIP address to the network. Make sure that the BGP
router uses ECMP to balance TCP/IP sessions between different hosts. Connect the BGP router directly
to the cluster nodes.

To configure load balancing on the cluster nodes, edit the config.yml file. For example:

metallb_config:
 peers:
 - peer-address: 192.x.x.1 ## address of BGP router
 peer-asn: 64501 ## autonomous system number of BGP router
 my-asn: 64500 ## ASN of cluster
 address-pools:
 - name: default
 protocol: bgp
 addresses:
 - 10.x.x.0/24

In this example, The BGP router at 192.x.x.1 is responsible for advertising reachability of the VIP
addresses with the 10.x.x.0/24 prefix to the rest of the network. The cluster allocates the VIP address of
this range and advertises the address for the cluster nodes that can handle the address.

Configure DNS Server (Optional)

You can access the main Web gateway either through the ingress controller's VIP address or through a
hostname that is configured in the Domain Name System (DNS) server that resolves to the ingress
controller's VIP address. You need to configure the DNS server only if you want to use a hostname to
access the Web gateway.

Add the hostname to the DNS as an A, AAAA, or CNAME record. For lab and Proof of Concept (POC)
setups, you can add the hostname to the /etc/hosts file on the cluster nodes.

83

RELATED DOCUMENTATION

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Air-Gap Install Paragon Automation on RHEL | 106

Install Multinode Cluster on Red Hat Enterprise
Linux

IN THIS SECTION

Download the Paragon Automation Software | 85

Install Paragon Automation on a Multinode Cluster | 86

Log in to the Paragon Automation UI | 105

Read the following topics to learn how to install Paragon Automation on a multinode cluster with Red
Hat Enterprise Linux (RHEL) host OS. Figure 24 on page 85 shows a summary of installation tasks at a
high level. Ensure that you've completed the preconfiguration and preparation steps described in
"Installation Prerequisites on Red Hat Enterprise Linux" on page 67 before you begin installation.

84

Figure 24: Installation Sequence - Infographic

To view a higher-resolution image in your Web browser, right-click the image and open in a new tab. To
view the image in PDF, use the zoom option to zoom in.

Download the Paragon Automation Software

Prerequisite

• You need a Juniper account to download the Paragon Automation software.

1. Log in to the control host.

2. Create a directory in which you'll download the software.

We refer to this directory as pa-download-dir in this guide.

3. Select the version number from the Version list on the Paragon Automation software download page
at https://support.juniper.net/support/downloads/?p=pa.

4. Download the Paragon Automation Setup installation files to the download folder and extract the
file. You can use the wget "http://cdn.juniper.net/software/file-download-url" command to download the
files and any extraction utility to extract the files.

The Paragon Automation setup installation bundle consists of the following scripts and TAR files to
install each of the component modules:

• davinci.tar.gz, which is the primary installer file.

85

https://support.juniper.net/support/downloads/?p=pa

• infra.tar, which installs the Kubernetes infrastructure components including Docker and Helm.

• ems.tar, which installs the base platform component.

• northstar.tar, which installs the Paragon Pathfinder and Paragon Planner components.

• healthbot.tar, which installs the Paragon Insights component.

• paragon_ui.tar, which installs the Paragon Automation UI component.

• addons.tar, which installs infrastructure components that are not part of the base Kubernetes
installation. The infrastructure components include, IAM, Kafka, ZooKeeper, cert-manager,
Ambassador, Postgres, Metrics, Kubernetes Dashboard, Open Distro for Elasticsearch, Fluentd,
Reloader, ArangoDB, and Argo.

• rke2-packages.tgz, which installs the RKE2-based Kubernetes components.

• 3rdparty.tar.gz, which installs the required third-party utilities.

• rhel-84-airgap.tar.gz, which installs Paragon Automation using the air-gap method on nodes only
where the base OS is Red Hat Enterprise Linux (RHEL). You can choose to delete this file if you
are not installing Paragon Automation using the air-gapped method on an RHEL base OS.

• run script, which executes the installer image.

Now that you've downloaded the software, you're ready to install Paragon Automation.

Install Paragon Automation on a Multinode Cluster

To install Paragon Automation on a Kubernetes cluster of multiple primary and worker nodes:

1. Make the run script executable in the pa-download-dir directory.

chmod +x run

2. Use the run script to create and initialize a configuration directory with the configuration template
files.

./run -c config-dir init

config-dir is a user-defined directory on the control host that contains configuration information for a
particular installation. The init command automatically creates the directory if it does not exist.
Alternatively, you can create the directory before you execute the init command.

86

Ensure that you include the dot and slash (./) with the run command.

If you are using the same control host to manage multiple installations of Paragon Automation, you
can differentiate between installations by using differently named configuration directories.

3. Ensure that the control host can connect to the cluster nodes through SSH using the install-user
account.

Copy the private key that you generated in "Configure SSH client authentication" on page 69 to the
user-defined config-dir directory. The installer allows the Docker container to access the config-dir
directory. The SSH key must be available in the directory for the control host to connect to the
cluster nodes.

cd config-dir
cp ~/.ssh/id_rsa .
cd ..

Ensure that you include the dot (.) at the end of the copy command (cp).

4. Customize the inventory file, available in the config-dir directory, with the IP addresses or hostnames
of the cluster nodes, as well as the usernames and authentication information that are required to
connect to the nodes. The inventory file is in the YAML format and describes the cluster nodes on
which Paragon Automation will be installed. You can edit the file using the inv command or a Linux
text editor such as vi.

a. Customize the inventory file using the inv command:

./run -c config-dir inv

The following table lists the configuration options that the inv command prompts you to enter.

Table 9: inv Command Options

inv Command Prompts Description

Kubernetes master nodes Enter IP addresses of the Kubernetes primary
nodes.

Kubernetes worker nodes Enter IP addresses of the Kubernetes worker
nodes.

87

Table 9: inv Command Options (Continued)

inv Command Prompts Description

Local storage nodes Define the nodes that have disk space available for
applications. The local storage nodes are
prepopulated with the IP addresses of the primary
and worker nodes. You can edit these addresses.
Enter IP addresses of the nodes on which you want
to run applications that require local storage.

Services such as Postgres, ZooKeeper, and Kafka
use local storage or disk space partitioned inside
export/local-volumes. By default, worker nodes
have local storage available. If you do not add
primary nodes here, you can run only those
applications that do not require local storage on the
primary nodes.

NOTE: Local storage is different from Ceph
storage.

Kubernetes nodes' username (for example, root) Configure the user account and authentication
methods to authenticate the installer with the
cluster nodes. The user account must be root or, in
the case of non-root users, the account must have
superuser (sudo) privileges.

SSH private key file (optional) If you chose ssh-key authentication, for the control
host to authenticate with the nodes during the
installation process, configure the directory
(config-dir) where the
ansible_ssh_private_key_file is located, and the
id_rsa file, as "{{ config-dir }}/id_rsa".

Kubernetes nodes' password (optional) If you chose password authentication for the
control host to authenticate with the nodes during
the installation process, enter the authentication
password directly. WARNING: The password is
written in plain text.

We do not recommend using this option for
authentication.

88

Table 9: inv Command Options (Continued)

inv Command Prompts Description

Kubernetes cluster name (optional) Enter a name for your Kubernetes cluster.

Write inventory file? Click Yes to save the inventory information.

For example:

$./run -c config-dir inv
Loaded image: paragonautomation:latest
====================
PO-Runtime installer
====================

Supported command:
 deploy [-t tags] deploy runtime
 destroy [-t tags] destroy runtime
 init init configuration skeleton
 inv basic inventory editor
 conf basic configuration editor
 info [-mc] cluster installation info

Starting now: inv

INVENTORY

This script will prompt for the DNS names or IP addresses of the Kubernetes master and
worker nodes.
Addresses should be provided as comma-delimited lists.

At least three master nodes are recommended. The number of masters should be an odd number.
A minimum of four nodes are recommended.

Root access to the Kubernetes nodes is required.

See https://docs.ansible.com/ansible/2.10/user_guide/intro_inventory.html

? Kubernetes master nodes 10.12.xx.x3,10.12.xx.x4,10.12.xx.x5

89

? Kubernetes worker nodes 10.12.xx.x6
? Local storage nodes 10.12.xx.x3,10.12.xx.x4,10.12.xx.x5,10.12.xx.x6
? Kubernetes nodes' username (e.g. root) root
? SSH private key file (optional; e.g. "{{ inventory_dir }}/id_rsa") config/id_rsa
? Kubernetes nodes' password (optional; WARNING - written as plain text)
? Kubernetes cluster name (optional) k8scluster
? Write inventory file? Yes

b. Alternatively, you can customize the inventory file manually using a text editor.

vi config-dir/inventory

Edit the following groups in the inventory file.

i. Add the IP addresses of the Kubernetes primary and worker nodes of the cluster.

The master group identifies the primary nodes, and the node group identifies the worker
nodes. You cannot have the same IP address in both master and node groups.

To create a multi-primary node setup, list the addresses or hostnames of all the nodes that
will be acting as primary nodes under the master group. Add the addresses or hostnames of
the nodes that will be acting as worker nodes under the node group.

 master:
 hosts:
 10.12.xx.x3: {}
 10.12.xx.x4: {}
 10.12.xx.x5: {}
 node:
 hosts:
 10.12.xx.x6: {}

ii. Define the nodes that have disk space available for applications under the
local_storage_nodes:children group.

 local_storage_nodes:
 children:
 master:
 hosts:
 10.12.xx.x3: {}
 10.12.xx.x4: {}

90

 10.12.xx.x5: {}
 node:
 hosts:
 10.12.xx.x6: {}

iii. Configure the user account and authentication methods to authenticate the installer in the
Ansible control host with the cluster nodes under the vars group.

 vars:
 ansible_user: root
 ansible_ssh_private_key_file: config/id_rsa
 ansible_password:

iv. (Optional) Specify a name for your Kubernetes cluster in the kubernetes_cluster_name group.

kubernetes_cluster_name: k8scluster

5. Configure the installer using the conf command.

./run -c config-dir conf

The conf command runs an interactive installation wizard that enables you to choose the components
you want to install and configure a basic Paragon Automation setup. The command populates the
config.yml file with your input configuration. For advanced configuration, you must edit the
config.yml file manually.

Enter the information as prompted by the wizard. Use the cursor keys to move the cursor, use the
space key to select an option, and use the a or i key to toggle selecting or clearing all options. Press
Enter to move to the next configuration option. You can skip configuration options by entering a
period (.). You can reenter all your choices by exiting the wizard and restarting from the beginning.
The installer allows you to exit the wizard after you save the choices that you already made or to
restart from the beginning. You cannot go back and redo the choices that you already made in the
current workflow without exiting and restarting the wizard altogether.

The following table lists the configuration options that the conf command prompts you to enter :

91

Table 10: conf Command Options

conf Command Prompts Description/Options

Select components You can install the Infrastructure, Pathfinder, Insights, and base platform
components. By default, all components are selected.

You can choose to install Pathfinder based on your requirement. However,
you must install all other components.

92

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Infrastructure Options These options appear only if you selected to install the Infrastructure
component at the previous prompt.

• Install Kubernetes Cluster—Install the required Kubernetes cluster. If you
are installing Paragon Automation on an existing cluster, you can clear
this selection.

• Install MetalLB LoadBalancer—Install an internal load balancer for the
Kubernetes cluster. By default, this option is already selected. If you are
installing Paragon Automation on an existing cluster with preconfigured
load balancing, you can clear this selection.

• Install Nginx Ingress Controller—Install Nginx Ingress Controller is a load-
balancing proxy for the Pathfinder components.

• Install Chrony NTP Client—Install Chrony NTP. You need NTP to
synchronize the clocks of the cluster nodes. If NTP is already installed
and configured, you need not install Chrony. All nodes must run NTP or
some other time-synchronization protocol at all times.

• Allow Master Scheduling—Select to enable master scheduling. Master
scheduling determines how the nodes acting as primary nodes are used.
Master is another term for a node acting as primary.

If you select this option, the primary nodes can also act as worker nodes,
which means they not only act as the control plane but can run
application workloads as well. If you do not select master scheduling, the
primary nodes are used only as the control plane.

Master scheduling allows the available resources of the nodes acting as
primary to be available for workloads. However, if you select this option,
a misbehaving workload might exhaust resources on the primary node
and affect the stability of the whole cluster. Without master scheduling,
if you have multiple primary nodes with high capacity and disk space,
you risk wasting their resources by not utilizing them completely.

NOTE: This option is required for Ceph storage redundancy.

List of NTP servers Enter a comma-separated list of NTP servers. This option is displayed only if
you chose to install Chrony NTP.

93

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Virtual IP address (es) for
ingress controller

Enter a VIP address to be used for Web access of the Kubernetes cluster or
the Paragon Automation UI. This must be an unused IP address that is
managed by the MetalLB load balancer pool.

Virtual IP address for
Infrastructure Nginx Ingress
Controller

Enter a VIP address for the Nginx Ingress Controller. This must be an unused
IP address that is managed by the MetalLB load balancer pool. This address
is used for NetFlow traffic.

Virtual IP address for Insights
services

Enter a VIP address for Paragon Insights services. This must be an unused IP
address that is managed by the MetalLB load balancer pool.

Virtual IP address for SNMP
trap receiver (optional)

Enter a VIP address for the SNMP trap receiver proxy only if this
functionality is required.

If you do not need this option, enter a period (.).

Pathfinder Options Select to install Netflowd. You can configure a VIP address for netflowd or
use a proxy for netflowd (same as the VIP address for the Infrastructure
Nginx Ingress Controller).

If you choose to not install netflowd, you cannot configure a VIP address for
netflowd.

Use netflowd proxy Enter Y to use a netflowd proxy. This option appears only if you chose to
install netflowd.

If you chose to use a netflowd proxy, you needn't configure a VIP address
for netflowd. The VIP address for the Infrastructure Nginx Ingress Controller
is used as the proxy for netflowd.

Virtual IP address for
Pathfinder Netflowd

Enter a VIP address to be used for Paragon Pathfinder netflowd. This option
appears only if you chose not to use netflowd proxy.

PCE Server Proxy Select the proxy mode for the PCE server. Select from None and Nginx-
Ingress.

94

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Virtual IP address for
Pathfinder PCE server

Enter a VIP address to be used for Paragon Pathfinder PCE server access.
This address must be an unused IP address that is managed by the load
balancer.

If you selected Nginx-Ingress, as the PCE Server Proxy, this VIP address is
not necessary. The wizard does not prompt you to enter this address and
PCEP will use the same address as the VIP address for Infrastructure Nginx
Ingress Controller.

NOTE: The addresses for ingress controller, Infrastructure Nginx Ingress
Controller, Insights services, and PCE server must be unique. You cannot
use the same address for all four VIP addresses.

All these addresses are listed automatically in the LoadBalancer IP address
ranges option.

LoadBalancer IP address
ranges

The LoadBalancer IP addresses are prepopulated from your VIP addresses
range. You can edit these addresses. The externally accessible services are
handled through MetalLB, which needs one or more IP address ranges that
are accessible from outside the cluster. VIPs addresses for the different
servers are selected from these ranges of addresses.

The address ranges can be (but need not be) in the same broadcast domain
as the cluster nodes. For ease of management, because the network
topologies need access to Insights services and the PCE server clients, we
recommend that you select the VIP addresses from the same range.

For more information, see "Virtual IP Address Considerations" on page 75.

Addresses can be entered as comma-separated values (CSV), as a range, or
as a combination of both. For example:

• 10.x.x.1, 10.x.x.2, 10.x.x.3

• 10.x.x.1-10.x.x.3

• 10.x.x.1, 10.x.x.3-10.x.x.5

• 10.x.x.1-3 is not a valid format.

95

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Multi-master node detected
do you want to setup multiple
registries

Enter y to configure a configure registry on each primary node.

You see this option only if you've configured multiple primary nodes in the
inventory file (multi-primary installation).

Virtual IP address for registry Enter a VIP address for the container registry for a multi-primary node
deployment only. Make sure that the VIP address is in the same Layer 2
domain as the primary nodes. This VIP address is not part of the
LoadBalancer pool of VIP addresses.

You see this option only if you chose to configure multiple container
registries.

Enable md5 for PCE Server Enter Y to configure MD5 authentication between the router and Pathfinder.

NOTE: If you enable MD5 on PCEP sessions, you must also configure the
authentication key in the Paragon Automation UI and the same
authentication key and the VIP address on the router. For information on
how to configure the authentication key and VIP address, see "VIP
Addresses for MD5 Authentication" on page 82.

IP for PCEP server (must be
outside metallb range and
must be in the same subnet as
the host with its subnet prefix
in CIDR notation)

Enter a VIP address for the PCE server. The IP address must in the CIDR
format.

Make sure that the VIP address is in the same Layer 2 domain as the primary
nodes. This VIP address is not part of the LoadBalancer pool of VIP
addresses.

Enable md5 for BGP Enter Y to configure MD5 authentication between cRPD and the BGP-LS
router.

96

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

IP for CRPD (must be outside
metallb range and must be in
the same subnet as the host
with its subnet prefix in CIDR
notation)

Enter a VIP address for the BGP Monitoring Protocol (BMP) pod. The IP
address must in the CIDR format.

Make sure that the VIP address is in the same Layer 2 domain as the primary
nodes. This VIP address is not part of the LoadBalancer pool of VIP
addresses.

NOTE: If you enable MD5 on cRPD sessions, you must also configure the
router to enable MD5 for cRPD and configure the VIP address on the
router. For information on how to determine the MD5 authentication key
and configure the router, see "VIP Addresses for MD5 Authentication" on
page 82.

To determine the crpd-md5-key , check the crpd_auth_key parameter in the
config.yml file, after running the conf command. For example:
crpd_auth_key : northstar . If there is a key present, it indicates that cRPD
is configured for MD5. You can use the key present in the config.yml file
(or you can also edit the key) and enter it on the router.

If no key is present in the config.ymlfile, you must log in to cRPD and set
the authentication key using one of the following commands:

set groups extra protocols bgp group name authentication-key crpd-md5-
key

or

set protocols bgp group name authentication-key crpd-md5-key

The MD5 authentication key must be less than or equal to 79 characters.
The same key must be entered in cRPD and on the router.

Multus Interface Enter the Multus interface type.

Multus Destination routes ?
can be more than 1 peer with
its subnet prefix in CIDR
notation

Enter the Multus routes in the CIDR format.

Multus Gateway IP address Enter the IP address of the Multus gateway.

97

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Hostname of Main web
application

Enter a hostname for the ingress controller. You can configure this value as
an IP address or as a fully qualified domain name (FQDN). For example, you
can enter 10.12.xx.100 or www.paragon.juniper.net (DNS name). Do not
include http:// or https://.

NOTE: You will use this hostname to access the Paragon Automation Web
UI from your browser. For example, https://hostname or https://IP-
address.

BGP autonomous system
number of CRPD peer

Set up the Containerized Routing Protocol Daemon (cRPD) autonomous
systems and the nodes with which cRPD creates its BGP sessions.

You must configure the autonomous system (AS) number of the network to
allow cRPD to peer with one or more BGP Link State (BGP-LS) routers in the
network. By default, the AS number is 64500.

NOTE: While you can configure the AS number at the time of installation,
you can also modify the cRPD configuration later. See "Modify cRPD
Configuration" on page 62 .

98

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

Comma separated list of
CRPD peers

Configure cRPD to peer with at least one BGP-LS router in the network to
import the network topology. For a single autonomous system, configure the
address of the BGP-LS routers that will peer with cRPD to provide topology
information to Paragon Pathfinder. The cRPD instance running as part of a
cluster will initiate a BGP-LS connection to the specified peer routers and
import topology data after the session is established. If more than one peer
is required, you can add the peers as CSVs, as a range, or as a combination of
both, similar to how you add LoadBalancer IP addresses.

NOTE: While you can configure the peer IP addresses at the time of
installation, you can also modify the cRPD configuration later, as
described in "Modify cRPD Configuration" on page 62.

You must configure the BGP peer routers to accept BGP connections
initiated from cRPD. The BGP session will be initiated from cRPD using the
address of the worker where the bmp pod is running as the source address.

Because cRPD could be running on any of the worker nodes at a given time,
you must allow connections from any of these addresses. You can allow the
range of IP addresses that the worker addresses belong to (for example,
10.xx.43.0/24), or the specific IP address of each worker (for example,
10.xx.43.1/32, 10.xx.43.2/32, and 10.xx.43.3). You could also configure this
using the neighbor command with the passive option to prevent the router
from attempting to initiate the connection.

If you chose to enter each individual worker address, either with the allow
command or the neighbor command, make sure you include all the workers,
because any worker could be running cRPD at a given time. Only one BGP
session will be initiated. If the node running cRPD fails, the bmp pod that
contains the cRPD container will be created in a different node, and the BGP
session will be re-initiated.

The sequence of commands in the following example shows the options to
configure a Juniper device to allow BGP-LS connections from cRPD.

The following commands configure the router to accept BGP-LS sessions
from any host in the 10.xx.43.0/24 network, where all the worker nodes are
connected.

[edit groups northstar]
root@system# show protocols bgp group northstar
type internal;
family traffic-engineering {

99

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

 unicast;
}
export TE;
allow 10.xx.43.0/24;

[edit groups northstar]
root@system# show policy-options policy-statement TE
from family traffic-engineering;
then accept;

The following commands configure the router to accept BGP-LS sessions
from 10.xx.43.1, 10.xx.43.2, and 10.xx.43.3 (the addresses of the three
workers in the cluster) only.

[edit protocols bgp group BGP-LS]
root@vmx101# show | display set
set protocols bgp group BGP-LS family traffic-engineering unicast
set protocols bgp group BGP-LS peer-as 11
set protocols bgp group BGP-LS allow 10.x.43.1
set protocols bgp group BGP-LS allow 10.x.43.2
set protocols bgp group BGP-LS allow 10.x.43.3
set protocols bgp group BGP-LS export TE

cRPD initiates the BGP session. Only one session is established at a time
and is initiated using the address of the worker node currently running
cRPD. If you choose to configure the specific IP addresses instead of using
the allow option, configure the addresses of all the workers nodes for
redundancy.

The following commands also configure the router to accept BGP-LS
sessions from 10.xx.43.1, 10.xx.43.2, and 10.xx.43.3 only (the addresses of
the three workers in the cluster). The passive option prevents the router
from attempting to initiate a BGP-LS session with cRPD. The router will wait
for the session to be initiated by any of these three routers.

[edit protocols bgp group BGP-LS]
root@vmx101# show | display set
set protocols bgp group BGP-LS family traffic-engineering unicast
set protocols bgp group BGP-LS peer-as 11
set protocols bgp group BGP-LS neighbor 10.xx.43.1
set protocols bgp group BGP-LS neighbor 10.xx.43.2
set protocols bgp group BGP-LS neighbor 10.xx.43.3

100

Table 10: conf Command Options (Continued)

conf Command Prompts Description/Options

set protocols bgp group BGP-LS passive
set protocols bgp group BGP-LS export TE

You will also need to enable OSPF/IS-IS and MPLS traffic engineering as
shown here:

set protocols rsvp interface interface.unit

set protocols isis interface interface.unit
set protocols isis traffic-engineering igp-topology
Or
set protocols ospf area area interface interface.unit
set protocols ospf traffic-engineering igp-topology

set protocols mpls interface interface.unit
set protocols mpls traffic-engineering database import igp-topology

For more information, see https://www.juniper.net/documentation/us/en/
software/junos/mpls/topics/topic-map/mpls-traffic-engineering-
configuration.html.

Finish and write configuration
to file

Click Yes to save the configuration information.

This action configures a basic setup and saves the information in the
config.yml file in the config-dir directory.

For example:

$./run -c config conf
Loaded image: paragonautomation.latest
====================
PO-Runtime installer
====================

Supported command:
 deploy [-t tags] deploy runtime
 destroy [-t tags] destroy runtime
 init init configuration skeleton
 inv basic inventory editor
 conf basic configuration editor

101

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html

 info [-mc] cluster installation info

Starting now: conf
NOTE: depending on options chosen additional IP addresses may be required for:
 multi-master Kubernetes Master Virtual IP address
 Infrastructure Virtual IP address(es) for ingress controller
 Infrastructure Virtual IP address for Infrastructure Nginx Ingress
Cont
roller
 Insights Virtual IP address for Insights services
 Insights Virtual IP address for SNMP Trap receiver (optional)
 Pathfinder Virtual IP address for Pathfinder Netflowd
 Pathfinder Virtual IP address for Pathfinder PCE server
 multi-registry Paragon External Registry Virtual IP address

? Select components done (4 selections)
? Infrastructure Options done (4 selections)
? List of NTP servers 0.pool.ntp.org
? Virtual IP address(es) for ingress controller 10.12.xx.x7
? Virtual IP address for Insights services 10.12.xx.x8
? Virtual IP address for SNMP Trap receiver (optional)
? Pathfinder Options [Install Netflowd]
? Use netflowd proxy? Yes
? PCEServer proxy Nginx Ingress
? LoadBalancer IP address ranges 10.12.xx.x7-10.12.xx.x9
? Multi-master node detected do you want to setup multiple registries Yes
? Virtual IP address for registry 10.12.xx.10
? Enable md5 for PCE Server ? Yes
? IP for PCEP server (must be outside metallb range and must be in the same subnet as the
host with its subnet prefix in CIDR notation) 10.12.xx.219/24
? Enable md5 for BGP ? Yes
? IP for CRPD (must be outside metallb range and must be in the same subnet as the host with
its subnet prefix in CIDR notation) 10.12.xx.220/24
? Multus Interface ? eth1
? Multus Destination routes ? can be more than 1 peer with its subnet prefix in CIDR notation
10.12.xx.41/24,10.13.xx.21/24
? Multus Gateway IP Address ? 10.12.xx.101
? Hostname of Main web application host.example.net
? BGP autonomous system number of CRPD peer 64500
? Comma separated list of CRPD peers 10.12.xx.11
? Finish and write configuration to file Yes

102

6. (Optional) For more advanced configuration of the cluster, use a text editor to manually edit the
config.yml file.

The config.yml file consists of an essential section at the beginning of the file that corresponds to the
configuration options that the installation wizard prompts you to enter. The file also has an extensive
list of sections under the essential section that allows you to enter complex configuration values
directly in the file.

You can configure the following options:

• (Optional) Set the grafana_admin_password password to log in to the Grafana application. Grafana is a
visualization tool commonly used to visualize and analyze data from various sources, including
logs.

By default, the username is preconfigured as admin in # grafana_admin_user: admin. Use admin as
username and the password you configure to log in to Grafana.

grafana_admin_user: admin
grafana_admin_password: grafana_password

If you do not configure the grafana_admin_password password, the installer generates a random
password. You can retrieve the password using the command:

kubectl get secret -n kube-system grafana -o jsonpath={..grafana-password} | base64 -d

• Set the iam_skip_mail_verification configuration option to true for user management without SMTP
by Identity and Access Management (IAM). By default, this option is set to false for user
management with SMTP. You must configure SMTP in Paragon Automation so that you can notify
Paragon Automation users when their account is created, activated, or locked, or when their
account password is changed.

• Configure the callback_vip option with an IP address different from that of the virtual IP (VIP)
address of the ingress controller. You can use an IP address from the MetalLB pool of VIP
addresses. You configure this IP address to enable segregation of management and data traffic
from the southbound and northbound interfaces. By default, callback_vip is assigned the same or
one of the addresses of the ingress controller.

Save and exit the file after you finish editing it.

7. (Optional) If you want to deploy custom SSL certificates signed by a recognized certificate authority
(CA), store the private key and certificate in the config-dir directory. Save the private key as
ambassador.key.pem and the certificate as ambassador.cert.pem.

By default, Ambassador uses a locally generated certificate signed by the Kubernetes cluster-internal
CA.

103

NOTE: If the certificate is about to expire, save the new certificate as
ambassador.cert.pem in the same directory, and execute the ./run -c config-dir deploy -t
ambassador command.

8. Install the Paragon Automation cluster based on the information that you configured in the
config.yml and inventory files.

./run -c config-dir deploy

The installation time to install the configured cluster depends on the complexity of the cluster. A
basic setup installation takes at least 45 minutes to complete.

The installer checks NTP synchronization at the beginning of installation. If clocks are out of sync,
installation fails.

For multi-primary node deployments only, the installer checks both individual server CPU and
memory as well as total available CPU and memory per cluster. If the following requirements are not
met, installation fails.

• Minimum CPU per cluster: 20 CPU

• Minimum Memory per cluster: 32-GB

• Minimum CPU per node: 4 CPU

• Minimum memory per node: 6-GB

To disable CPU and memory check, use the following command and rerun the deployment.

./run -c config-dir deploy -e ignore_iops_check=yes

If you are installing Paragon Automation on an existing Kubernetes cluster, the deploy command
upgrades the currently deployed cluster to the latest Kubernetes version. The command also
upgrades the Docker CE version, if required. If Docker EE is already installed on the nodes, the deploy
command does not overwrite it with Docker CE. When upgrading the Kubernetes version or the
Docker version, the command performs the upgrade sequentially on one node at a time. The
command cordons off each node and removes it from scheduling. It performs upgrades, restarts
Kubernetes on the node, and finally uncordons the node and brings it back into scheduling.

9. After deployment is completed, log in to the worker nodes.

Use a text editor to configure the following recommended information for Paragon Insights in the
limits.conf and sysctl.conf files. These values set the soft and hard memory limits for influx DB
memory requirements. If you do not set these limits, you might see errors such as “out of memory” or
“too many open files” because of the default system limits.

104

a.

vi /etc/security/limits.conf
 # End of file
 * hard nofile 1048576
 * soft nofile 1048576
 root hard nofile 1048576
 root soft nofile 1048576
 influxdb hard nofile 1048576
 influxdb soft nofile 1048576

b.

vi /etc/sysctl.conf
 fs.file-max = 2097152
 vm.max_map_count=262144
 fs.inotify.max_user_watches=524288
 fs.inotify.max_user_instances=512

Repeat this step for all worker nodes.

Now that you've installed and deployed your Paragon Automation cluster, you're ready to log in to the
Paragon Automation UI.

Log in to the Paragon Automation UI

To log in to the Paragon Automation UI:

1. Open a browser, and enter either the hostname of the main Web application or the VIP address of
the ingress controller that you entered in the URL field of the installation wizard.

For example, https://vip-of-ingress-controller-or-hostname-of-main-web-application . The Paragon
Automation login page is displayed.

2. For first-time access, enter admin as username and Admin123! as the password to log in. You must
change the password immediately.

The Set Password page appears. To access the Paragon Automation setup, you must set a new
password.

3. Set a new password that meets the password requirements.

Use between 6 and 20 characters and a combination of uppercase letters, lowercase letters,
numbers, and special characters. Confirm the new password, and click OK.

105

The Dashboard page appears. You have successfully installed and logged in to the Paragon
Automation UI.

4. Update the URL to access the Paragon Automation UI in Administration > Authentication > Portal
Settings to ensure that the activation e-mail sent to users for activating their account contains the
correct link to access the GUI. For more information, see Configure Portal Settings.

For high-level tasks that you can perform after you log in to the Paragon Automation UI, see Paragon
Automation Quick Start - Up and Running.

Air-Gap Install Paragon Automation on RHEL

IN THIS SECTION

Prerequisites | 106

Download and Install Paragon Automation | 107

You can install and deploy a paragon Automation cluster using the air-gap method of installation. In the
air-gap method you need not have Internet access on the cluster nodes. You need a control host to
download the distribution software and then create and configure the installation files to run the
installation from the control host. You must be able to use SSH to connect to all the nodes.

Prerequisites

Before you download and install the distribution software, you must preconfigure the control host and
the cluster nodes as described in the following sections.

1. Prepare the control host for the installation process as described in "Prepare the Control Host" on
page 68.

2. Prepare the cluster nodes for the installation process as described in "Prepare Cluster Nodes" on
page 70.

If you want to use Chrony, you must pre-install Chrony. The installer does not install Chrony during
air-gap installations.

3. Ensure you have the required virtual IP addresses as described in "Virtual IP Address Considerations"
on page 75.

106

Download and Install Paragon Automation

1. Log in to the control host.

2. Download the Paragon Automation Setup installation folder to a download directory and extract
the folder. You can use the wget "http://cdn.juniper.net/software/file-download-url" command to
download the folder and any extraction utility to extract the files.

You need a Juniper account to download the Paragon Automation software.

NOTE: During the installation process, you must download the rhel-84-airgap.tar.gz
file to use the air-gap method.

3.

4. Copy the rhel-84-airgap.tar.gz file to all your cluster nodes.

a. Log in to a cluster node.

b. Copy the rhel-84-airgap.tar.gz file to the /root directory.

c. Change directory to /root.

d. Extract the rhel-84-airgap.tar.gz using the tar -zxvf rhel-84-airgap.tar.gz command.

e. Run the yum -y install *.rpm command to deploy the RPM packages.

Repeat Step 3 on all your cluster nodes.

5. Log back in to your control host.

6. Follow steps 1 through 7 of the installation process as described in "Install Paragon Automation on
a Multinode Cluster" on page 86.

7. Manually edit the config.yml file using a text editor and set the following values.

docker_version: 20.10.13-3

containerd_version_redhat: 1.5.10-3

8. Log in to the cluster nodes through SSH using the install-user account. Perform the following steps
on all the cluster nodes.

a. Set all the repos in /etc/yum.repos.d/ to enabled = 0, using a text editor.

Repeat this step for all cluster nodes.

107

b. Apply the following firewall rules to all nodes:

"iptables -A OUTPUT --dst=10.0.0.0/8 -j ACCEPT"
"iptables -A OUTPUT --dst=172.16.0.0/12 -j ACCEPT"
"iptables -A OUTPUT --dst=192.168.0.0/16 -j ACCEPT"
"iptables -A OUTPUT --dst=127.0.0.1 -j ACCEPT"

9. Log back in to the control host, and install the Paragon Automation cluster based on the
information that you configured in the config.yml and inventory files.

./run -c config-dir deploy -e offline_install=true

The installation time to install the configured cluster depends on the complexity of the cluster. A
basic setup installation takes at least 45 minutes to complete.

NTP synchronization is checked at the start of deployment. If clocks are out of sync, deployment
fails.

10. When deployment is completed, log in to the worker nodes.

Use a text editor to configure the soft and hard memory limits for influx DB memory requirements
for Paragon Insights in the limits.conf and sysctl.conf files.

a. # vi /etc/security/limits.conf
 # End of file
 * hard nofile 1048576
 * soft nofile 1048576
 root hard nofile 1048576
 root soft nofile 1048576
 influxdb hard nofile 1048576
 influxdb soft nofile 1048576

b. # vi /etc/sysctl.conf
 fs.file-max = 2097152
 vm.max_map_count=262144
 fs.inotify.max_user_watches=524288
 fs.inotify.max_user_instances=512

Repeat this step for all worker nodes.

11. Follow the steps described in "Log in to the Paragon Automation UI- Multinode installation" on
page 105 to access the GUI.

108

5
CHAPTER

Configure Disaster Recovery

IN THIS CHAPTER

Configure Disaster Recovery for Paragon Pathfinder | 110

Configure Disaster Recovery for Paragon Pathfinder

You can deploy Paragon Automation at two different geographical locations so that when the Paragon
Pathfinder component is down at one location, the Paragon Pathfinder component at the other location
can continue managing Path Computation Client (PCC)-delegated LSPs in your network. You can
configure a federated exchange of information to synchronize the two deployments so that you can
manage the topologies and modify and optimize LSPs from either one of the instances of Paragon
Pathfinder.

To configure a disaster recovery setup of Paragon Pathfinder instances in dual Paragon Automation
deployments, perform the following steps.
1. Prepare the deployments to configure disaster recovery for Paragon Pathfinder.

• For new deployments of Paragon Automation:

Edit the config.yml file for both deployments as follows:

prepare_multi_cluster: true
Proceed with installing both Paragon Automation clusters as usual.

• For existing deployments of Paragon Automation:

a. Edit the config.yml file for both deployments as follows:

prepare_multi_cluster: true

b. Rerun the following deploy command for both deployments.

./run -c config-dir deploy -t rabbitmq,ambassador

c. Verify that both the deployments are functioning normally.

Now you have prepared two active Paragon Automation deployment clusters to configure
disaster recovery for Paragon Pathfinder.

2. Configure federated exchange of information between the two active deployments.

• Through the cmgd CLI.

northstar {
 topology-server {
 messaging-bus {
 use-federated-exchange;
 }

• Through the Paragon Automation UI.

110

Navigate to Configuration > Network Settings > Pathfinder Setting > Topology Server >
Messaging Bus and enable the use-federated-exchange flag on both clusters.

3. Restart the toposerver pod.

kubectl -n northstar rollout restart deployment ns-toposerver

4. Create an inventory_ha inventory file to activate the information federation. Create the file in the
same config-dir directory as the inventory and config.yml files of one Paragon Automation
deployment. If the two deployment have different Ansible control hosts, create the file in the config-
dir directory of any one of the control hosts.

Sample inventory_ha file:

all:
 hosts:
 <IP address of one primary node of deployment Cluster 1>:
 ansible_user: root
 ansible_ssh_private_key_file: <SSH key to access the primary node of Cluster 1>
 vip: <Cluster 1 ingress_vip>
 <IP address of one primary node of deployment Cluster 2>:
 ansible_user: root
 ansible_ssh_private_key_file: <SSH key to access the primary node of Cluster 2>
 vip: <Cluster 2 ingress_vip>

For example:

all:
 hosts:
 10.49.43.01:
 ansible_user: root
 ansible_ssh_private_key_file: config/id_rsa
 vip: 10.54.239.01
 10.49.43.02:
 ansible_user: root
 ansible_ssh_private_key_file: config/id_rsa
 vip: 10.54.239.02

5. Activate the information federation using the deploy-federated-exchange command.

./run -c config-dir deploy-federated-exchange

Verification

111

1. Verify that information federation between the two deployment clusters is operational, using the
kubectl exec -it -n northstar rabbitmq-0 – rabbitmqctl list_parameters command. The output of the
command must be similar to:

Listing runtime parameters for vhost "/" …

component name

federation-upstream my-upstream

{"expires":30000,"uri":"amqps://northstar:BJitYWROJ5@10.54.239.02?cacertfile=/opt/bitnami/
rabbitmq/certs/ca_certificate.pem&verify=verify_none"}

2. Federation link is automatically created once there is an exchange with matching name created.

a. Log in into one of the rabbitmq pods.

kubectl exec -it -n northstar rabbitmq-0 -- bash

b. Run the following command in the rabbitmq pod.

for i in 0 1 2; do rabbitmqctl federation_status -n rabbit@rabbitmq-$i.rabbitmq-
headless.northstar.svc.cluster.local; done

The output of the command must be similar to:

I have no name!@rabbitmq-0:/$ for i in 0 1 2; do rabbitmqctl federation_status -n
rabbit@rabbitmq-$i.rabbitmq-headless.northstar.svc.cluster.local; done
Listing federation links on node rabbit@rabbitmq-0.rabbitmq-
headless.northstar.svc.cluster.local...
[#{error => <<>>,exchange => <<"controller.federated.topo">>,
 id => <<"f0e7320f">>,last_changed => <<"2023-04-18 09:19:14">>,
 local_connection =>
<<"<rabbit@rabbitmq-0.rabbitmq-headless.northstar.svc.cluster.local.3.24866.9>">>,
 queue => <<>>,status => running,type => exchange,
 upstream => <<"my-upstream">>,
 upstream_exchange => <<"controller.federated.topo">>,
 upstream_queue => <<>>,uri => <<"amqps://10.54.239.100">>,vhost => <<"/">>}]
Listing federation links on node rabbit@rabbitmq-1.rabbitmq-
headless.northstar.svc.cluster.local...
[]
Listing federation links on node rabbit@rabbitmq-2.rabbitmq-

112

headless.northstar.svc.cluster.local...
[]

RELATED DOCUMENTATION

Disaster Recovery Overview

113

6
CHAPTER

Upgrade and Update Paragon
Automation

IN THIS CHAPTER

Upgrade to Paragon Automation Release 23.2 | 115

Reinstall Paragon Automation | 122

Edit Cluster Nodes | 123

Uninstall Paragon Automation | 126

Upgrade to Paragon Automation Release 23.2

IN THIS SECTION

Before You Upgrade: | 115

Upgrade from Release 23.1 to Release 23.2 | 115

You cannot directly upgrade an earlier release of Paragon Automation to Release 23.2. You must install
Release 23.2 afresh.

However, in order to migrate your current Release 23.1 configuration to Release 23.2, you can use the
back up and restore functionality as described in this topic.

NOTE: You cannot custom select applications to be backed up and restored. You can
back up and restore only a preconfigured and fixed set of applications and
administrations settings for each component, See "Backup and Restore" on page 129 for
a complete list of applications that can be backed up.

Before You Upgrade:

Upgrade your current release of Paragon Automation to Release 23.1. For information on how to
upgrade your current release to Release 23.1, see Upgrade to Paragon Automation Release 23.1.

Upgrade from Release 23.1 to Release 23.2

1. Log in to the primary node of your Release 23.1 cluster.

2. Check for any errors in the pods using the health-check.sh script.

root@primary23.1:~# health-check.sh
===
Get node count of Kubernetes cluster.
===

115

https://www.juniper.net/documentation/us/en/software/paragon-automation23.1/paragon-automation-installation-guide/topics/task/paragon-upgrade.html

 There are 4 nodes in the cluster.
===
Get node status of Kubernetes cluster.
===
4 nodes are in the Ready state.
NAME STATUS ROLES AGE VERSION
10.16.18.20 Ready control-plane,master 26h v1.21.14
10.16.18.21 Ready <none> 26h v1.21.14
10.16.18.22 Ready <none> 26h v1.21.14
10.16.18.23 Ready <none> 26h v1.21.14
===
Get node readiness and taint status of Kubernetes cluster.
===
All 4 nodes are in a Ready state.
All 4 nodes have no taints.
===
Check DiskPressure status for each node
==
DiskPressure status for each node:
Node DiskPressure
10.16.18.20 False
10.16.18.21 False
10.16.18.22 False
10.16.18.23 False
==
Check Network and Calico status for each node
==
NetworkUnavailable and Calico status for each node:
Node NetworkUnavailable Ready Calico
10.16.18.20 False True
10.16.18.21 False True
10.16.18.22 False True
10.16.18.23 False True

==
Checking Memory Pressure status on nodes
==

Node 10.16.18.20 is not reporting any memory pressure issues.
Node 10.16.18.21 is not reporting any memory pressure issues.
Node 10.16.18.22 is not reporting any memory pressure issues.
Node 10.16.18.23 is not reporting any memory pressure issues.

116

==
Checking PIDPressure on nodes
==

Node 10.16.18.20 is not reporting any PID pressure issues.
Node 10.16.18.21 is not reporting any PID pressure issues.
Node 10.16.18.22 is not reporting any PID pressure issues.
Node 10.16.18.23 is not reporting any PID pressure issues.

==
Checking Kubernetes PODS status
==

No errors found in pods.
==
Checking Kubernetes services status
==
No Kubernetes services found in Pending state.
==
Checking Postgres Status
==
Result includes the NorthStar database schema.
 version | description
---------+---
 0.28 | Version 28 of the NorthStar database schema
(1 row)

Your pods are healthy, if your output contains the "No errors found in pods." message.

3. Execute the data.sh –backup backup script.

root@primary23.1:~# data.sh –backup
===============================Backup
Report================================

Name: db-backup-paa-2023-10-18
Namespace: common
Selector: controller-uid=446d45fd-0a7e-4b21-94b1-02f079b11879
Labels: apps=db-backup
 common=db-backup
 id=paa-2023-10-18

117

Annotations: <none>
Parallelism: 1
Completions: 1
Start Time: Wed, 18 Oct 2023 08:39:04 -0700
Completed At: Wed, 18 Oct 2023 08:39:23 -0700
Duration: 19s
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
Pod Template:
 Labels: app=db-backup
 common=db-backup
 controller-uid=446d45fd-0a7e-4b21-94b1-02f079b11879
 id=paa-2023-10-18
 job-name=db-backup-paa-2023-10-18
 Service Account: db-backup
 Containers:
 db-backup:
 Image: localhost:5000/eng-registry.juniper.net/northstar-scm/northstar-containers/
ns_dbinit:release-23-1-ge572e4b914
 Port: <none>
 Host Port: <none>
 Command:
 /bin/sh
 Args:
 -c
 exec /entrypoint.sh --backup /paa-2023-10-18
 Environment:
 PG_HOST: atom-db.common
 PG_PORT: 5432
 PG_ADMIN_USER: <set to the key 'username' in secret 'atom.atom-db.credentials'>
Optional: false
 PG_ADMIN_PASS: <set to the key 'password' in secret 'atom.atom-db.credentials'>
Optional: false
 Mounts:
 /opt/northstar/data/backup from postgres-backup (rw)
 Volumes:
 postgres-backup:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same
namespace)
 ClaimName: db-backup-pvc
 ReadOnly: false
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

118

 Normal SuccessfulCreate 47m job-controller Created pod: db-backup-
paa-2023-10-18-95b8j
 Normal Completed 47m job-controller Job completed

===
Running EMS Backup.
===============================Get Backup file location======================

Name: local-pv-81fa4ecb
Labels: <none>
Annotations: pv.kubernetes.io/bound-by-controller: yes
 pv.kubernetes.io/provisioned-by: local-volume-provisioner-10.16.18.20-
b73872bc-257c-4e82-b744-c6981bc3e131
Finalizers: [kubernetes.io/pv-protection]
StorageClass: local-storage
Status: Bound
Claim: common/db-backup-pvc
Reclaim Policy: Delete
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 149Gi
Node Affinity:
 Required Terms:
 Term 0: kubernetes.io/hostname in [10.16.18.20]
Message:
Source:
 Type: LocalVolume (a persistent volume backed by local storage on a node)
 Path: /export/local-volumes/pv1
Events: <none>

===
Running Pathfinder Kubernetes Config Backup.
===

Saving ns-anuta-rest secret
Saving ns-anuta-rest configmaps

=============================Backup Completed================================

119

4. Search for the backup source in the Backup Report and navigate to that directory and verify that the
files are present.

root@primary23.1:~# cd /export/local-volumes/pv1
root@primary:/export/local-volumes/pv1# ls
paa-2023-10-18
root@primary23.1:/export/local-volumes/pv1# cd paa-2023-10-18/
root@primary23.1:/export/local-volumes/pv1/paa-2023-10-18# ls
auditlog.pgdump dmc-scope-bkup.yml jobmanager.pgdump ns_cmgd.pgdump
ns_deviceprofiles.pgdump ns_NorthStarMLO.pgdump ns_pcs_provision.pgdump ns_rest.pgdump
devicemanager.pgdump dpm.pgdump job-scope-bkup.yml ns_db_meta.pgdump
ns_health_monitor.pgdump ns_pcsadmin.pgdump ns_pcs_restconf.pgdump
ns_taskscheduler.pgdump
devicemodel.pgdump iam.pgdump jobstore.pgdump ns_device_config.pgdump
ns_ipe.pgdump ns_pcs.pgdump ns_planner.pgdump
paragon_insights.tar.gz

5. Install a Paragon Automation Release 23.2 cluster.

NOTE: If you are using the config.yml file of your older release of Paragon
Automation to install Release 23.2, ensure that you comment out
kubernetes_master_address in the file.

6. Log in to one of the primary nodes.

7. Check for any errors in the pods using the health-check.sh script.

root@primary:~# health-check.sh

8. Execute the backup script to create a dummy back up of your 23.2 configuration.

root@primary:~# data.sh –backup

9. Search for the back up data directory in the back up report, navigate to the data directory and
rename the Release 23.2 backup file.

root@primary:~# cd /export/local-volumes/pv1
root@primary:/export/local-volumes/pv1# mv paa-2023-10-18/ paa-2023-10-18-dummy

120

10. Copy the Release 23.1 backup data to the Release 23.2 backup data directory.

root@primary:/export/local-volumes/pv1# scp -prv paa-2023-10-18 10.52.43.112:/export/local-
volumes/pv2/

11. Get your MGD container name:

root@primary:# kubectl get po -n healthbot | grep mgd

12. Execute the restore script on a Release 23.2 primary node.

root@primary:# kubectl exec -ti -n healthbot mgd-858f4b8c9-sttnh -- cli request system
restore path /paa-2023-10-18

13. Find the restore pod in common namespace.

root@primary:# kubectl get po -n common | grep restore
db-restore-paa-2023-10-18-6znb8

14. Check the logs from the restore pod.

root@primary:# kubectl logs -n common db-restore-paa-2023-10-18-6znb8

15. Follow the logs and refresh the output looking for Restore Complete towards the end of the logs.

2023-10-18 16:01:11,127:DEBUG:pg_restore: creating ACL "metric_helpers.TABLE
pg_stat_statements"
2023-10-18 16:01:11,129:DEBUG:pg_restore: creating ACL "metric_helpers.TABLE table_bloat"
2023-10-18 16:01:11,131:DEBUG:pg_restore: creating ACL "pg_catalog.TABLE pg_stat_activity"
2023-10-18 16:01:11,137:INFO:Restore complete
2023-10-18 16:01:11,388:INFO:Deleted secret ems/jobmanager-identitysrvcreds
2023-10-18 16:01:11,396:INFO:Deleted secret ems/devicemodel-connector-default-scope-id
2023-10-18 16:01:11,396:WARNING:Could not restore common/iam-smtp-config, iam-smtp-bkup.yml
not found
2023-10-18 16:01:21,405:DEBUG:Waiting for secrets to be deleted (10/60) sec
2023-10-18 16:01:21,433:INFO:Created secret ems/jobmanager-identitysrvcreds
2023-10-18 16:01:21,443:INFO:Created secret ems/devicemodel-connector-default-scope-id
2023-10-18 16:01:21,444:INFO:Starting northstar applications
2023-10-18 16:01:22,810:INFO:Starting ems applications

121

2023-10-18 16:01:23,164:INFO:Starting auditlog applications
2023-10-18 16:01:23,247:INFO:Starting iam applications

16. Log in to the paragon Automation Release 23.2 UI and verify the restored data.

RELATED DOCUMENTATION

Backup and Restore | 129

Reinstall Paragon Automation

To reinstall Paragon Automation, run the deploy script again on the control host.

To update an existing instance of Paragon Automation, edit the inventory and config.yml files, and run
the deploy script again on the control host.

./run -c config-dir deploy

If the deploy script fails for a particular component, you can run the destroy command to uninstall the
component, and then reinstall it with the deploy script.

./run -c config-dir destroy -t tags
./run -c config-dir deploy -t tags

We support the following optional parameters for the deploy script:

• --list-tags—View a list of available tags.

• -t tag1,tag2—Deploy or redeploy a subset of the installation tasks or components of the cluster
selectively. For example, to install or update only the Infrastructure component, use # ./run -c config-
dir deploy -t infra.

• --skip-tags tag1,tag2—Skip over some installation tasks. For example, to deploy the cluster without
installing the Paragon Insights component, use # ./run -c config-dir deploy --skip-tags healthbot.

• --ask-vault-pass—Prompt for the password to decrypt authentication passwords, if Ansible vault was
previously configured.

122

RELATED DOCUMENTATION

Install Multinode Cluster on Ubuntu | 39

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Troubleshoot Paragon Automation Installation | 144

Edit Cluster Nodes

IN THIS SECTION

Edit Primary Nodes in Multi-Primary Node Clusters and Worker Nodes in All Clusters | 123

Edit Primary Nodes in Single-Primary Node Clusters | 125

Use the information provided in this topic to edit operational Paragon Automation cluster nodes. You
can use the repair command to add, remove, or replace cluster nodes, and repair failed nodes. The repair
process rebuilds the cluster node and restarts the pods in the node.

Edit Primary Nodes in Multi-Primary Node Clusters and Worker Nodes in
All Clusters

In clusters with multiple primary nodes, you can edit both primary and worker nodes by adding or
removing primary and worker nodes. However, when you add or remove primary nodes, you must
ensure that the total number of primary nodes is an odd number. You must also have a minimum of
three primary nodes for high availability in the control plane. Use the following procedure to edit nodes
in multi-primary node clusters.

You can also use the same procedure to edit only worker nodes in single-primary node clusters.

1. Prepare the new node or the replacement node and ensure that it meets all the cluster node
prerequisites. See "Prepare Ubuntu Cluster Nodes" on page 24 or "Prepare RHEL Cluster Nodes" on
page 70depending on your base OS.

2. Log in to node you want to add or repair.

123

3. Disable the udevd daemon.

a. Check whether udevd is running.

systemctl is-active systemd-udevd

b. If udevd is active, disable it. # systemctl mask system-udevd --now

4. Log in to the control host.

5. If you are adding a node, edit the inventory file to add the IP address of the new node.

If you are removing a node, edit the inventory file to delete the IP address of the node you want to
remove.

If you are replacing a node, and the IP address of the replacement node is different from the current
node, update the inventory file to replace the old node address with the new node address.

If you are repairing a node and the IP address is unchanged, you need not edit the inventory file.

6. Run one of the following commands:

If the node address is unchanged or you are adding or removing a node, use

./run –c config-dir repair node-ip-address-or-hostname

If the node address has changed, use

./run -c config-dir repair old-node-ip-address-or-hostname,new-node-ip-address-or-hostname

7. When a node is repaired or replaced, the Ceph distributed filesystems are not automatically updated.
If the data disks were destroyed as part of the repair process, then the object storage daemons
(OSDs) hosted on those data disks must be recovered.

a. Connect to the Ceph toolbox and view the status of OSDs. The ceph-tools script is installed on a
primary node. You can log in to the primary node and use the kubectl interface to access ceph-
tools. To use a node other than the primary node, you must copy the admin.conf file (in the config-
dir on the control host) and set the kubeconfig environment variable or use the export
KUBECONFIG=config-dir/admin.conf command.

$ ceph-tools# ceph osd status

b. Verify that all OSDs are listed as exists,up. If OSDs are damaged, follow the troubleshooting
instructions explained in "Troubleshoot Ceph and Rook" on page 171.

8. Log in to node that you added or repaired after verifying that all OSDs are created.

9. Re-enable udevd on that node.

systemctl unmask system-udevd

124

Edit Primary Nodes in Single-Primary Node Clusters

In single-primary node clusters, you can edit both primary and worker nodes. However, you cannot
remove or add primary nodes.

NOTE: You can add additional primary nodes only if your existing cluster is already a
multiple-primary cluster.

During node repair, you cannot schedule new pods, and existing pods remain nonoperational, resulting
in service degradation.

You need the latest version of the etcd-snapshot.db file to restore the primary node in single-primary
node clusters.

NOTE: The etcd-snapshot.db file is backed up locally in /export/backup/etcd-
snapshot.db every five minutes. We recommend that you copy this file to a separate
remote location at regular intervals or mount /export/backup/ to an external fileserver.

To replace or repair the primary node, you must have the etcd-snapshot.db file available.

1. Log in to the node that you want to replace or repair.

2. Disable the udevd process.

a. Check whether udevd is running.

systemctl is-active systemd-udevd

b. If udevd is active, disable it. # systemctl mask system-udevd --now

3. Log in to the control host.

4. Copy the etcd-snapshot.db file to the control host or restore the external /export/backup/ mount.

5. Run one of the following commands to replace or repair the node:

If the node address is unchanged, use

./run –c config-dir repair node-ip-address-or-hostname –e etcd_backup=path-to-etcd-snapshot.db

If the node address has changed, use

./run –c config-dir repair old-node-ip-address-or-hostname,new-node-ip-address-or-hostname –e
etcd_backup=path-to-etcd-snapshot.db

125

6. When a node is repaired or replaced, the Ceph distributed filesystems are not automatically updated.
If the data disks were destroyed as part of the repair process, then the object storage daemons
(OSDs) hosted on those data disks must be recovered.

a. Connect to the Ceph toolbox and view the status of OSDs. The ceph-tools script is installed on a
primary node. You can log in to the primary node and use the kubectl interface to access ceph-
tools. To use a node other than the primary node, you must copy the admin.conf file (in the
config-dir on the control host) and set the kubeconfig environment variable or use the export
KUBECONFIG=config-dir/admin.conf command.

$ ceph-tools# ceph osd status

b. Verify that all OSDs are listed as exists,up. If OSDs are damaged, follow the troubleshooting
instructions explained in "Troubleshoot Ceph and Rook" on page 171.

7. Log in to the node that you added or repaired after verifying that all OSDs are created.

8. Re-enable udevd on that node.

systemctl unmask system-udevd

RELATED DOCUMENTATION

Install Multinode Cluster on Ubuntu | 39

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Troubleshoot Paragon Automation Installation | 144

Uninstall Paragon Automation

To uninstall Paragon Automation:

1. Log in to the control host.

2. Uninstall individual components or component groups.

./run -c config-dir destroy -t tags

To view a list of available tags, use # ./run -c config-dir deploy --list-tags.

126

If you uninstall Paragon Automation completely, you must also ensure that you've removed
the /var/lib/rook directory from all nodes, and cleared all Ceph block devices. For information about
clearing Ceph block devices, see "Reformat a Disk" on page 171.

NOTE: To completely uninstall the whole cluster, we recommend that you re-image all
the cluster nodes. Re-imaging is a faster and a more complete option.

RELATED DOCUMENTATION

Reinstall Paragon Automation | 122

Edit Cluster Nodes | 123

127

7
CHAPTER

Backup and Restore

IN THIS CHAPTER

Backup and Restore | 129

Backup and Restore

IN THIS SECTION

Back Up the Configuration | 132

Restore the Configuration | 134

Backup and Restore Scripts | 137

This topic describes the backup and restore capabilities available in Paragon Automation. Although
Paragon Automation is a GUI-based application, the backup and restore operations are managed from
the Paragon Insights cMGD CLI. Postgres is the primary persistent storage database for microservices.
Backup files are saved in a local persistent volume on the cluster nodes. The backup procedure can be
performed while microservices are running and does not affect the operation of the cluster. However,
for restore procedures, microservices are stopped and the cluster is not functional until the databases
are restored.

Currently, you cannot custom select applications to be backed up and restored. You can back up and
restore only a preconfigured and fixed set of applications and administrations settings for each
component, as listed in Table 11 on page 129.

Table 11: Fixed Set of Backup Configuration Settings

Devices Alerts/Alarm Settings Admin Groups

Topics Plot Settings User Defined Actions and
Functions

Playbooks Summarization Profiles Auditlogs

Device Groups Ingest Settings Topology Filter Configuration

Network Groups SNMP Proxy Configuration Pathfinder Settings

Notification Settings IAM Settings LSP Policies and Profiles

129

Retention Policies Workflows Report Generation Settings
(Destination, Report and Scheduler
Settings)

The backup procedure has the following limitations:

• Telemetry data—Data captured from the devices will not be backed up, by default. Telemetry data
must be backed up manually.

For more information, see Backup and Restore the TSDB.

• Transient and logging data—Data which is being processed and expired events will not be backed up.
For example:

• Alerts and alarms generated

• Configuration changes which are not committed

• Most application logs

• Non-Paragon-Automation Configuration—Configuration done on third-party services supported by
Paragon Automation will not be backed up. For example:

• LDAP user details

• Topology Ingest Configuration-The cRPD configuration to peer with BGP-LS routers for topology
information will not be backed up. This must be manually reconfigured again as required. For more
information, see "Modify cRPD Configuration" on page 62.

You use containerized scripts invoked through Kubernetes jobs to implement the backup and restore
procedures.

You can manually back up your cluster using the instructions described in "Back Up the Configuration"
on page 132. You can also, use a backup script to back up your cluster using the instructions described
in "Backup and Restore Scripts" on page 137.

Similarly, you can manually restore the backed up configuration using the instructions described in
"Restore the Configuration" on page 134. You can also use a restore script to restore your backed up
configuration using the instructions described in "Backup and Restore Scripts" on page 137.

130

Figure 25: Backup and Restore Process

For Paragon Automation Release 23.2, you can restore a backed up configuration from earlier releases
of Paragon Automation only after you perform a dummy back up of a fresh Release 23.2 installation. To
use the restore operation on a Release 23.2 cluster, we recommend that you:

1. Upgrade your current Paragon Automation cluster to Release 23.1.

2. Back up the Release 23.1 configuration.

3. Install a Release 23.2 cluster.

4. Back up the 23.2 cluster.

5. Copy the Release 23.1 configuration to the backed up Release 23.2 location.

6. Restore the copied backed up configuration.

131

Back Up the Configuration

Data across most Paragon Automation applications is primarily stored in Postgres. When you back up a
configuration, system-determined and predefined data is backed up. When you perform a backup, the
operational system and microservices are not affected. You can continue to use Paragon Automation
while a backup is running. You'll use the management daemon (MGD) CLI, managed by Paragon Insights
(formerly Healthbot), to perform the backup.

To back up the current Paragon Automation configuration:

1. Determine the name of the MGD Kubernetes pod, and connect to the cMGD CLI using this name.

For example:

root@primary-node:~# kubectl get -n healthbot pods -l app=mgd
NAME READY STATUS RESTARTS AGE
mgd-57b5754b7f-26mlm 1/1 Running 0 10d
root@primary-node:~# kubectl exec -it -n healthbot mgd-57b5754b7f-26mlm -- bash
root@primary-node:~# cli

NOTE: The main CLI tool in Kubernetes is kubectl, which is installed on a primary node.
You can use a node other than the primary node, but you must ensure that you copy
the admin.conf file and set the kubeconfig environment variable. Alternatively, you can
use the export KUBECONFIG=config-dir/admin.conf command.

You can also access the Kubernetes API from any node that has access to the cluster,
including the control host.

2. Enter the request system backup path path-to-backup-folder command to start a backup job that backs up
all databases up until the moment you run the command.

For example:

root@mgd-57b5754b7f-26mlm> request system backup path /hello/world

The command creates a corresponding Kubernetes db-backup-hello-world job. The Kubernetes job
creates a backup of the predefined data. The files are stored in a local persistent volume.

3. After backup is complete, you must explicitly and manually back up the base platform resources
using kubectl.

132

a. Back up jobmanager-identitysrvcreds and devicemodel-connector-default-scope-id.

root@primary-node:~# kubectl get secrets -n ems jobmanager-identitysrvcreds devicemodel-
connector-default-scope-id -o yaml > ems-scope-bkup.yaml

b. (Optional) If SMTP is configured on the Paragon Automation cluster, then back up the available
iam-smtp-config secret.

root@primary-node:~# kubectl get secrets -n common iam-smtp-config -o yaml > iam-smtp-
bkup.yaml

If this command fails, then SMTP is not configured in the cluster and you can ignore the error.

Frequently Used kubectl Commands to View Backup Details

To view the status of your backup or the location of your backup files, or to view more information on
the backup files, use the following commands.

• Backup jobs exist in the common namespace and use the common=db-backup label. To view all backup
jobs:

root@primary-node:~# kubectl get -n common jobs -l common=db-backup
NAME COMPLETIONS DURATION AGE
db-backup-hello-world 1/1 3m11s 2d20h

• To view more details of a specific Kubernetes job:

root@primary-node:~# kubectl describe -n common jobs/db-backup-hello-world

• To view the logs of a specific Kubernetes job:

root@primary-node:~# kubectl logs -n common --tail 50 jobs/db-backup-hello-world

133

• To determine the location of the backup files:

root@primary-node:~# kubectl get -n common pvc db-backup-pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
db-backup-pvc Bound local-pv-cb20f386 145Gi RWO local-storage 3d3h

The output points you to the local persistent volume. Use that persistent volume to determine the
node on which the backup files are stored.

root@primary-node:~# kubectl describe -n common pv local-pv-cb20f386
Node Affinity:
 Required Terms:
 Term 0: kubernetes.io/hostname in [10.49.xxx.x2]
Message:
Source:
 Type: LocalVolume (a persistent volume backed by local storage on a node)
 Path: /export/local-volumes/pv*

To view all the backup files, log in to the node and navigate to the location of the backup folder.

root@primary-node:~# ssh root@10.49.xxx.x2
root@10.49.xxx.x2:~# ls -l /export/local-volumes/pv*

To view commonly seen backup and restore failure scenarios, see "Common Backup and Restore Issues"
on page 145.

Restore the Configuration

You can restore a Paragon Automation configuration from a previously backed-up configuration folder. A
restore operation rewrites the databases with all the backed-up configuration information. You cannot
selectively restore databases. When you perform a restore operation, a Kubernetes job is spawned,
which stops the affected microservices. The job restores the backed-up configuration and restarts the
microservices. Paragon Automation remains nonfunctional until the restoration procedure is complete.

You cannot run multiple restore jobs at the same time because the Kubernetes job stops the
microservices during the restoration process. Also, you cannot run both backup and restore processes
concurrently.

134

NOTE: We strongly recommend that you restore a configuration during a maintenance
window, otherwise the system can go into an inconsistent state.

To restore the Paragon Automation configuration to a previously backed-up configuration:

1. Determine the name of the MGD Kubernetes pod, and connect to the cMGD CLI using this name.

For example:

root@primary-node:~# kubectl get -n healthbot pods -l app=mgd
NAME READY STATUS RESTARTS AGE
mgd-57b5754b7f-26mlm 1/1 Running 0 10d
root@primary-node:~# kubectl exec -it -n healthbot mgd-57b5754b7f-26mlm -- bash
root@primary-node:~# cli

2. Enter the request system restore path path-to-backup-folder command to restore the configuration with
the files in the specified backup folder on the persistent volume.

For example:

root@mgd-57b5754b7f-26mlm> request system restore path /hello/world

A corresponding Kubernetes db-restore-hello-world job is created. The restore process takes longer
than a backup process because the Kubernetes job stops restarts the microservices. When the
restoration is complete, the Paragon Automation system is not operational immediately. You must
wait around ten minutes for the system to stabilize and become fully functional.

NOTE: If you are logged in during the restore process, you must log out and log back in
after the restore process is complete.

3. After restore process is complete, you must explicitly restore the base platform resources with the
previously manually backed-up base-platform backup files.

a. Delete the jobmanager-identitysrvcreds and devicemodel-connector-default-scope-id base-
platform secrets resources.

root@primary-node:~# kubectl delete secrets -n ems jobmanager-identitysrvcreds devicemodel-
connector-default-scope-id

135

b. Restore the previously backed-up base-platform resources.

root@primary-node:~# kubectl apply -f ems-scope-bkup.yaml

c. Restart the jobmanager and devicemodel-connector base-platform services.

root@primary-node:~# kubectl rollout restart deploy jobmanager devicemodel-connector -n ems

d. (Optional) If SMTP is configured on the Paragon Automation cluster, delete the current SMTP
secrets file and restore from the previously backed-up file.

root@primary-node:~# kubectl delete secret -n common iam-smtp-config
root@primary-node:~# kubectl apply -f iam-smtp-bkup.yaml

e. (Optional) Delete the manually backed-up files. You can delete the manually backed-up files, if you
have nightly backup schedule or if you have already restored from a particular file and no longer
need it.

root@primary-node:~# rm ems-scope-bkup.yaml iam-smtp-bkup.yaml

Frequently Used kubectl Commands to View Restore Details

To view more information and the status of your restore process, use the following commands:

• Restore jobs exist in the common namespace and use the common=db-restore label. To view all restore
jobs:

root@primary-node:~# kubectl get -n common jobs -l common=db-restore
NAME COMPLETIONS DURATION AGE
db-restore-hello-world 0/1 20s 21s

• To view more details of a specific Kubernetes job:

root@primary-node:~# kubectl describe -n common jobs/db-restore-hello-world

136

• To view the logs of a particular Kubernetes job:

root@primary-node:~# kubectl logs -n common --tail 50 jobs/db-restore-hello-world

To view commonly seen backup and restore failure scenarios, see "Common Backup and Restore Issues"
on page 145.

Backup and Restore Scripts

IN THIS SECTION

Backup Script Operation | 137

Restore Script Operation | 140

Caveats of Backup and Restore Scripts | 141

You can also use the Paragon Automation backup and restore scripts to simplify the backup and restore
operations. This topic describes the backup and restore script operations and the caveats around the
usage of the scripts.

Backup Script Operation

The backup script automatically backs up your current configuration. The primary benefit of the backup
script is that you can run it as a cron job with the required frequency so as to schedule regular backups.
Additionally, the backup script creates distinguishable date stamped backup folders and the folders do
not get overwritten if the script is run on different days.

To back up your configuration using the backup script:

1. Log in to any one of the primary nodes.

2. Execute the backup script.

root@primary-node:~# data.sh --backup

137

The script runs a backup job to back up your current configuration. A backup folder is created and saved
in a local persistent volume on one of the cluster nodes. The folder name is in the <name>-
year_month_day format. The folder in your cluster node contains all your backed up configuration
metadata.

The script also creates a folder of the same name in the current path in your primary node. The backup
folder in your primary node contains the JSON files required for base platform used while restoring the
backed up configuration.

As the script is running, a backup summary is generated and displayed onscreen. The summary contains
the node and location of the backup files. For example:

===============================Backup
Report================================

Name: db-backup-paa-2023-10-18
Namespace: common
Selector: controller-uid=446d45fd-0a7e-4b21-94b1-02f079b11879
Labels: apps=db-backup
 common=db-backup
 id=paa-2023-10-18
Annotations: <none>
Parallelism: 1
Completions: 1
Start Time: Wed, 18 Oct 2023 08:39:04 -0700
Completed At: Wed, 18 Oct 2023 08:39:23 -0700
Duration: 19s
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
Pod Template:
 Labels: app=db-backup
 common=db-backup
 controller-uid=446d45fd-0a7e-4b21-94b1-02f079b11879
 id=paa-2023-10-18
 job-name=db-backup-paa-2023-10-18
 Service Account: db-backup
 Containers:
 db-backup:
 Image: localhost:5000/eng-registry.juniper.net/northstar-scm/northstar-containers/
ns_dbinit:release-23-1-ge572e4b914
 Port: <none>
 Host Port: <none>
 Command:

138

 /bin/sh
 Args:
 -c
 exec /entrypoint.sh --backup /paa-2023-10-18
 Environment:
 PG_HOST: atom-db.common
 PG_PORT: 5432
 PG_ADMIN_USER: <set to the key 'username' in secret 'atom.atom-db.credentials'>
Optional: false
 PG_ADMIN_PASS: <set to the key 'password' in secret 'atom.atom-db.credentials'>
Optional: false
 Mounts:
 /opt/northstar/data/backup from postgres-backup (rw)
 Volumes:
 postgres-backup:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same
namespace)
 ClaimName: db-backup-pvc
 ReadOnly: false
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 47m job-controller Created pod: db-backup-paa-2023-10-18-95b8j
 Normal Completed 47m job-controller Job completed

===
Running EMS Backup.
===============================Get Backup file location======================

Name: local-pv-81fa4ecb
Labels: <none>
Annotations: pv.kubernetes.io/bound-by-controller: yes
 pv.kubernetes.io/provisioned-by: local-volume-provisioner-10.16.18.20-
b73872bc-257c-4e82-b744-c6981bc3e131
Finalizers: [kubernetes.io/pv-protection]
StorageClass: local-storage
Status: Bound
Claim: common/db-backup-pvc
Reclaim Policy: Delete
Access Modes: RWO
VolumeMode: Filesystem

139

Capacity: 149Gi
Node Affinity:
 Required Terms:
 Term 0: kubernetes.io/hostname in [10.16.18.20]
Message:
Source:
 Type: LocalVolume (a persistent volume backed by local storage on a node)
 Path: /export/local-volumes/pv1
Events: <none>

===
Running Pathfinder Kubernetes Config Backup.
===

...<snipped>...

=============================Backup Completed================================

In this example, the backup folder containing all the backup metadata is stored in your cluster node with
IP address 10.16.18.20 in the /export/local-volumes/pv1 folder.

Restore Script Operation

The restore script automatically restores your backed up configuration.

To restore your configuration using the restore script:

1. Log in to any one of the primary nodes.

2. Get your MGD container name:

#kubectl get po -n healthbot | grep mgd

3. Execute the restore command.

#kubectl exec -ti -n healthbot mgd-858f4b8c9-sttnh -- cli request system restore path /
paa-2023-10-18

140

4. Find the restore pod in common namespace.

#kubectl get po -n common | grep restore
db-restore-paa-2023-10-18-6znb8

5. Check logs from restore pod.

#kubectl logs -n common db-restore-paa-2023-10-18-6znb8

6. Follow logs and refresh looking for Restore Complete towards the end of the logs.

2023-10-18 16:01:11,127:DEBUG:pg_restore: creating ACL "metric_helpers.TABLE
pg_stat_statements"
2023-10-18 16:01:11,129:DEBUG:pg_restore: creating ACL "metric_helpers.TABLE table_bloat"
2023-10-18 16:01:11,131:DEBUG:pg_restore: creating ACL "pg_catalog.TABLE pg_stat_activity"
2023-10-18 16:01:11,137:INFO:Restore complete
2023-10-18 16:01:11,388:INFO:Deleted secret ems/jobmanager-identitysrvcreds
2023-10-18 16:01:11,396:INFO:Deleted secret ems/devicemodel-connector-default-scope-id
2023-10-18 16:01:11,396:WARNING:Could not restore common/iam-smtp-config, iam-smtp-bkup.yml
not found
2023-10-18 16:01:21,405:DEBUG:Waiting for secrets to be deleted (10/60) sec
2023-10-18 16:01:21,433:INFO:Created secret ems/jobmanager-identitysrvcreds
2023-10-18 16:01:21,443:INFO:Created secret ems/devicemodel-connector-default-scope-id
2023-10-18 16:01:21,444:INFO:Starting northstar applications
2023-10-18 16:01:22,810:INFO:Starting ems applications
2023-10-18 16:01:23,164:INFO:Starting auditlog applications
2023-10-18 16:01:23,247:INFO:Starting iam applications

7. Log in to the Release 23.2 UI and verify the restored data.

Caveats of Backup and Restore Scripts

The caveats of the backup and restore scripts are as following:

• You can run the scripts either on a weekly basis or only once daily. Running them multiple times in a
24-hour period returns an error since there is already a backup folder for that day named <name>-
year_month_day. If you need to take a manual backup in the same 24-hour period, you must remove
the job using the kubectl delete -n common jobs command. For example:

kubectl delete -n common jobs db-backup-paa-2023_20_04

141

• The scripts fill disk space with backup files depending on the frequency and size of backup files.
Consider removing outdated backup metadata and files to free up disk space. You can remove the
Kubernetes metadata using the kubectl delete -n common jobs command. For example:

kubectl delete -n common jobs db-backup-paa-2023_20_04

You can remove the backup files by deleting the <name>-year-month-day folders created in the /
root/ folder in the local volume path displayed in the summary when you run the backup script.

RELATED DOCUMENTATION

Troubleshoot Paragon Automation Installation | 144

Reinstall Paragon Automation | 122

Uninstall Paragon Automation | 126

142

8
CHAPTER

Troubleshooting

IN THIS CHAPTER

Troubleshoot Paragon Automation Installation | 144

Troubleshoot Paragon Automation Installation

SUMMARY

Read the following topics to learn how to
troubleshoot typical problems that you might
encounter during and after installation.

IN THIS SECTION

Resolve Merge Conflicts of the Configuration
File | 144

Resolve Common Backup and Restore
Issues | 145

View Installation Log Files | 145

View Log Files in Grafana | 146

Troubleshooting Using the kubectl
Interface | 146

Troubleshoot Using the paragon CLI
Utility | 153

Troubleshoot Ceph and Rook | 171

Troubleshoot Air-Gap Installation
Failure | 174

Recover from a RabbitMQ Cluster
Failure | 175

Disable udevd Daemon During OSD
Creation | 176

Wrapper Scripts for Common Utility
Commands | 177

Back Up the Control Host | 177

User Service Accounts for Debugging | 178

Resolve Merge Conflicts of the Configuration File

The init script creates the template configuration files. If you update an existing installation using the
same config-dir directory that was used for the installation, the template files that the init script creates
are merged with the existing configuration files. Sometimes, this merging action creates a merge conflict
that you must resolve. The script prompts you about how to resolve the conflict. When prompted, select
one of the following options:

144

• C—You can retain the existing configuration file and discard the new template file. This is the default
option.

• n—You can discard the existing configuration file and reinitialize the template file.

• m—You can merge the files manually. Conflicting sections are marked with lines starting with <<<<<<<<,
||||||||, ========, and >>>>>>>>. You must edit the file and remove the merge markers before you
proceed with the update.

• d—You can view the differences between the files before you decide how to resolve the conflict.

Resolve Common Backup and Restore Issues

Suppose you destroy an existing cluster and redeploy a software image on the same cluster nodes. In
such a scenario, if you try to restore a configuration from a previously backed-up configuration folder,
the restore operation might fail. The restore operation fails because the mount path for the backed-up
configuration is now changed. When you destroy an existing cluster, the persistent volume is deleted.
When you redeploy the new image, the persistent volume gets re-created in one of the cluster nodes
wherever space is available, but not necessarily in the same node as it was present in previously. As a
result, the restore operation fails.

To work around these backup and restore issues:

1. Determine the mount path of the new persistent volume.

2. Copy the contents of the previous persistent volume's mount path to the new path.

3. Retry the restore operation.

View Installation Log Files

If the deploy script fails, you must check the installation log files in the config-dir directory. By default, the
config-dir directory stores six zipped log files. The current log file is saved as log, and the previous log
files are saved as log.1 through log.5 files. Every time you run the deploy script, the current log is saved,
and the oldest one is discarded.

You typically find error messages at the end of a log file. View the error message, and fix the
configuration.

145

View Log Files in Grafana

Grafana is an open-source data visualization tool. You use the Grafana UI to create and to view charts,
graphs, and other visuals to help organize and understand data. You can create dashboards to monitor
the status of devices, and you can also query data and view the results from the UI. Grafana UI renders
data from Paragon Automation time series database (TSDB). For more information, see Grafana
Documentation.

To view logs in the Grafana application:

1. Use one of the following methods to access Grafana:

• Use the virtual IP (VIP) address of the ingress controller: Open a browser and enter https://vip-of-
ingress-controller-or-hostname-of-main-web-application/cluster-logs in the URL field.

• Use the Logs page: In the Paragon Automation UI, click Monitoring > Logs in the left-nav bar.

2. Enter the grafana_admin_user username and the grafana_admin_password password that you configured in
the config.yml file during installation. The default username is admin.

If you do not configure the grafana_admin_password password, the installer generates a random
password. You can retrieve the password using the following command:

kubectl get secret -n kube-system grafana -o jsonpath={..grafana-password} | base64 -d

3. Click Home at the top left corner of the page.

4. Click Paragon Logs to view the logs. If it's not already visible, search for and click Paragon Logs.

5. (Optional) For instructions on how to create queries, see Query and Transform Data .

Troubleshooting Using the kubectl Interface

IN THIS SECTION

View Node Status | 149

View Pod Status | 150

View Detailed Information About a Pod | 150

View the Logs for a Container in a Pod | 150

Run a Command on a Container in a Pod | 151

View Services | 152

Frequently Used kubectl Commands | 152

146

https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/
https://grafana.com/docs/grafana/latest/panels-visualizations/query-transform-data/

kubectl (Kube Control) is a command-line utility that interacts with the Kubernetes API, and the most
common command line took to control Kubernetes clusters.

You can issue kubectl commands on the primary node right after installation. To issue kubectl commands
on the worker nodes, you need to copy the admin.conf file and set the kubeconfig environment variable
or use the export KUBECONFIG=config-dir /admin.conf command. The admin.conf file is copied to the
config-dir directory on the control host as part of the installation process.

You use the kubectl command-line tool to communicate with the Kubernetes API and obtain information
about API resources such as nodes, pods, and services, show log files, as well as create, delete, or modify
those resources.

The syntax of kubectl commands is as follows:

kubectl [command] [TYPE] [NAME] [flags]

[command] is simply the action that you want to execute.

You can use the following command to view a list of kubectl commands:

root@primary-node:/# kubectl [enter]

You can ask for help, to get details and list all the flags and options associated with a particular
command. For example:

root@primary-node:/# kubectl get -h

To verify and troubleshoot the operations in Paragon Automation, you'll use the following commands:

[command] Description

get Display one or many resources.

The output shows a table of the most important
information about the specified resources.

describe Show details of a specific resource or a group of
resources.

explain Documentation of resources.

logs Display the logs for a container in a pod.

rollout restart Manage the rollout of a resource.

147

(Continued)

[command] Description

edit Edit a resource.

[TYPE] represents the type of resource that you want to view. Resource types are case-insensitive, and
you can use singular, plural, or abbreviated forms.

For example, pod, node, service, or deployment. For a complete list of resources, and allowed
abbreviations (example, pod = po), issue this command:

kubectl api-resources

To learn more about a resource, issue this command:

kubectl explain [TYPE]

For example:

root@primary-node:/# kubectl explain pod
KIND: Pod
VERSION: v1

DESCRIPTION:
 Pod is a collection of containers that can run on a host. This resource is
 created by clients and scheduled onto hosts.
---more---

[NAME] is the name of a specific resource—for example, the name of a service or pod. Names are case-
sensitive.

root@primary-node:/# kubectl get pod pod_name

[flags] provide additional options for a command. For example, -o lists more attributes for a resource.
Use help (-h) to get information about the available flags.

Note that most Kubernetes resources (such as pods and services) are in some namespaces, while others
are not (such as nodes).

Namespaces provide a mechanism for isolating groups of resources within a single cluster. Names of
resources need to be unique within a namespace, but not across namespaces.

148

When you use a command on a resource that is in a namespace, you must include the namespace as
part of the command. Namespaces are case-sensitive. Without the proper namespace, the specific
resource you are interested in might not be displayed.

root@primary-node:/# kubectl get services mgd
Error from server (NotFound): services "mgd" not found

root@primary-node:/# kubectl get services mgd -n healthbot
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mgd ClusterIP 10.102.xx.12 <none> 22/TCP,6500/TCP,8082/TCP 18h

You can get a list of all namespaces by issuing the kubectl get namespace command.

If you want to display resources for all namespaces, or you are not sure what namespaces the specific
resource you are interested in belongs to, you can enter --all-namespaces or - A.

For more information about Kubernetes, see:

• https://kubernetes.io/docs/reference/kubectl/overview/

• https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Use the following topics to troubleshoot and view installation details using the kubectl interface.

View Node Status

Use the kubectl get nodes command, abbreviated as the kubectl get no command, to view the status of the
cluster nodes. The status of the nodes must be Ready, and the roles must be either control-plane or none.
For example:

root@primary-node:~# kubectl get no
NAME STATUS ROLES AGE VERSION
10.49.xx.x1 Ready control-plane,master 5d5h v1.20.4
10.49.xx.x6 Ready <none> 5d5h v1.20.4
10.49.xx.x7 Ready <none> 5d5h v1.20.4
10.49.xx.x8 Ready <none> 5d5h v1.20.4

If a node is not Ready, verify whether the kubelet process is running. You can also use the system log of
the node to investigate the issue.

To verify kubelet: root@primary-node:/# kubelet

149

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

View Pod Status

Use the kubectl get po –n namespace or kubectl get po -A command to view the status of a pod. You can
specify an individual namespace (such as healthbot, northstar, and common) or you can use the -A parameter
to view the status of all namespaces. For example:

root@primary-node:~# kubectl get po -n northstar
NAME READY STATUS RESTARTS AGE
bmp-854f8d4b58-4hwx4 3/3 Running 1 30h
dcscheduler-55d69d9645-m9ncf 1/1 Running 1 7h13m

The status of healthy pods must be Running or Completed, and the number of ready containers should
match the total. If the status of a pod is not Running or if the number of containers does not match, use
the kubectl describe po or kubectl log (POD | TYPE/NAME) [-c CONTAINER] command to troubleshoot the issue
further.

View Detailed Information About a Pod

Use the kubectl describe po -n namespace pod-name command to view detailed information about a specific
pod. For example:

root@primary-node:~# kubectl describe po -n northstar bmp-854f8d4b58-4hwx4
Name: bmp-854f8d4b58-4hwx4
Namespace: northstar
Priority: 0
Node: 10.49.xx.x1/10.49.xx.x1
Start Time: Mon, 10 May 2021 07:11:17 -0700
Labels: app=bmp
 northstar=bmp
 pod-template-hash=854f8d4b58
…

View the Logs for a Container in a Pod

Use the kubectl logs -n namespace pod-name [-c container-name] command to view the logs for a particular
pod. If a pod has multiple containers, you must specify the container for which you want to view the
logs. For example:

root@primary-node:~# kubectl logs -n common atom-db-0 | tail -3
2021-05-31 17:39:21.708 36 LOG {ticks: 0, maint: 0, retry: 0}

150

2021-05-31 17:39:26,292 INFO: Lock owner: atom-db-0; I am atom-db-0
2021-05-31 17:39:26,350 INFO: no action. i am the leader with the lock

Run a Command on a Container in a Pod

Use the kubectl exec –ti –n namespace pod-name [-c container-name] -- command-line command to run
commands on a container inside a pod. For example:

root@primary-node:~# kubectl exec -ti -n common atom-db-0 -- bash

 ____ _ _
/ ___| _ __ (_) | ___
___ \| '_ \| | |/ _ \
 ___) | |_) | | | (_) |
|____/| .__/|_|_|___/
 |_|

This container is managed by runit, when stopping/starting services use sv

Examples:

sv stop cron
sv restart patroni

Current status: (sv status /etc/service/*)

run: /etc/service/cron: (pid 29) 26948s
run: /etc/service/patroni: (pid 27) 26948s
run: /etc/service/pgqd: (pid 28) 26948s
root@atom-db-0:/home/postgres#

After you run exec the command, you get a bash shell into the Postgres database server. You can access
the bash shell inside the container, and run commands to connect to the database. Not all containers
provide a bash shell. Some containers provide only SSH, and some containers do not have any shells.

151

View Services

Use the kubectl get svc -n namespace or kubectl get svc -A command to view the cluster services. You can
specify an individual namespace (such as healthbot, northstar, and common), or you can use the -A parameter
to view the services for all namespaces. For example:

root@primary-node:~# kubectl get svc -A --sort-by spec.type
NAMESPACE NAME TYPE EXTERNAL-IP PORT(S)
…
healthbot tsdb-shim LoadBalancer 10.54.xxx.x3
8086:32081/TCP
healthbot ingest-snmp-proxy-udp LoadBalancer 10.54.xxx.x3 162:32685/
UDP
healthbot hb-proxy-syslog-udp LoadBalancer 10.54.xxx.x3 514:31535/
UDP
ems ztpservicedhcp LoadBalancer 10.54.xxx.x3 67:30336/
UDP
ambassador ambassador LoadBalancer 10.54.xxx.x2 80:32214/
TCP,443:31315/TCP,7804:32529/TCP,7000:30571/TCP
northstar ns-pceserver LoadBalancer 10.54.xxx.x4
4189:32629/TCP
…

In this example, the services are sorted by type, and only services of type LoadBalancer are displayed. You
can view the services that are provided by the cluster and the external IP addresses that are selected by
the load balancer to access those services.

You can access these services from outside the cluster. The external IP address is exposed and
accessible from devices outside the cluster.

Frequently Used kubectl Commands

• List the replication controllers:

kubectl get –n namespace deploy

kubectl get –n namespace statefulset

152

• Restart a component:

kubectl rollout restart –n namespace deploy deployment-name

• Edit a Kubernetes resource: You can edit a deployment or any Kubernetes API object, and these
changes are saved to the cluster. However, if you reinstall the cluster, these changes are not
preserved.

kubectl edit –ti –n namespace deploy deployment-name

Troubleshoot Using the paragon CLI Utility

We've introduced the paragon command CLI utility to run commands on pods running in the system. The
paragon commands are a set of intuitive commands to enable you to analyze, query, and troubleshoot
your cluster. To execute the commands, log in to any of the primary nodes. The output of some of the
commands is color-coded because, for some commands, the paragon command utility executes the
kubecolor commands instead of kubectl, kubecolor color codes your kubectl command output. See
Figure 26 on page 155 for an example output.
To view the entire set of commands help options available, use one of the following commands:

root@primary-node:~# paragon ?
root@primary-node:~# paragon --help
root@primary-node:~# paragon -h

You can view help options at any command level (not only at top level). For example:

root@primary-node:~# paragon insights cli ?

 paragon insights cli alerta => Gets into the CLI of paragon insights alerta pod.
 paragon insights cli byoi => Gets into the CLI of byoi plugin.Usage : --byoi <BYOI plugin
name>.
 paragon insights cli configserver => Gets into the CLI of paragon insights config-server pod.
 paragon insights cli grafana => Gets into the CLI of paragon insights grafana pod.
 paragon insights cli influxdb => Gets into the CLI of paragon insights InfluxDB pod.Use
Argument: --influx <influxdb-nodeip> to specify the node ip ,else the command will use first

153

influx node as default.Eg: --influx influxdb-172-16-18-21
 paragon insights cli mgd => Gets into the CLI of paragon insights mgd pod.

You can use the tab option to view possible auto-completion options for the commands. To see top-level
command auto-completion, type paragon and press tab. For example:

root@primary-node:~# paragon
ambassador describe get pathfinder set common ems insights rookceph

To view the underlying command that a paragon command runs, use the echo or -e option. For example:

root@primary-node:~# paragon -e get nodes all

 >>>> command: kubecolor --force-colors get nodes

To execute a paragon command as well as view the underlying command that it runs, use the debug or -d
option. For example:

root@primary-node:~# paragon -d get nodes all

 >>>> command: kubecolor --force-colors get nodes

NAME STATUS ROLES AGE VERSION
ix-pgn-pr-01 Ready control-plane,etcd,master 17d v1.26.6+rke2r1
ix-pgn-pr-02 Ready control-plane,etcd,master 17d v1.26.6+rke2r1
ix-pgn-pr-03 Ready control-plane,etcd,master 17d v1.26.6+rke2r1
ix-pgn-wo-01 Ready <none> 17d v1.26.6+rke2r1

To view the entire list of paragon commands and the corresponding underlying commands that they run,
use:

root@primary-node:~# paragon --mapped

154

Figure 26: Example paragon command output

Follow the instructions with regards to specific usage criteria such as arguments or prerequisites, if any,
in the help section of each command. Some commands need mandatory arguments. For instance, the
paragon insights logs devicegroup analytical command needs the argument --dg devicegroup-name-with
subgroup . For example:

paragon insights logs devicegroup analytical --dg controller-0

Some commands have prerequisites. For instance, prior to using the paragon insights get playbooks
command, you must set the username and password by using the paragon set username --cred username and
paragon set password --cred password commands.

The complete set of commands along with their usage criteria is listed in Table 12 on page 155.

Table 12: paragon CLI Utility

Command Description

paragon ambassador get emissary Shows Paragon ambassador emissary pods.

paragon ambassador get pods Shows all Paragon ambassador pods.

paragon ambassador get services Shows all Paragon ambassador services.

155

Table 12: paragon CLI Utility (Continued)

Command Description

paragon common postgres roles Helps to find the Postgres roles.

paragon describe node Shows the description of a particular node in the
cluster.

Use the --node node-ip argument.

Example: paragon describe node --node 172.16.x.221

You can use the paragon get nodes all command to get
the node IP address.

paragon ems get devicemanager Shows the device manager Paragon ems pods.

paragon ems get jobmanager Shows the job manager Paragon EMS pods.

paragon ems get pods Shows all Paragon EMS pods.

paragon ems get services Shows all Paragon EMS services.

paragon ems logs devicemanager Shows the logs of Paragon EMS device manager pods.

Use the --type follow argument to get live streaming
logs.

paragon ems logs jobmanager Shows the logs of paragon ems job manager pod. Use
the --type follow argument to get live streaming logs.

paragon get namespaces Shows all namespaces available in Paragon.

paragon get nodes all Shows a list of all nodes in the cluster.

156

Table 12: paragon CLI Utility (Continued)

Command Description

paragon get nodes diskpressure Validates if kubelet has any disk pressure.

Use the --node node_ip/node_name argument.

Example: paragon get nodes diskpressure --node
172.16.x.221

paragon get nodes memorypressure Validates if kubelet has sufficient memory.

Use the --node node_ip/node_name argument.

Example: paragon get nodes memorypressure --node
172.16.x.221

paragon get nodes networkunavailable Checks for issues with calico and the network.

Use the --node node_ip/node_name argument.

Example: paragon get nodes networkunavailable --node
davinci-primary

paragon get nodes notready Shows list of all nodes that is not ready in the cluster.

paragon get nodes pidpressure Validates if kubelet has sufficient PID available.

Use the --node node_ip/node_name argument.

Example: paragon get nodes pidpressure --node
davinci-worker1

paragon get nodes ready Shows list of all nodes that is ready in the cluster.

paragon get nodes taint Shows list of all taint on the nodes.

paragon get pods healthy Shows all the healthy Paragon pods.

157

Table 12: paragon CLI Utility (Continued)

Command Description

paragon get pods unhealthy Shows all the unhealthy Paragon pods.

paragon get services exposed Shows all the Paragon services that are exposed.

paragon insights cli alerta Logs in to the CLI of the Paragon Insights alerta pod.

paragon insights cli byoi Logs in to the CLI of the BYOI plug-in.

Use the --byoi BYOI plugin name argument.

paragon insights cli configserver Logs in to the CLI of Paragon Insights config-server
pod.

paragon insights cli grafana Logs in to the CLI of Paragon Insights grafana pod.

paragon insights cli influxdb Logs in to the CLI of Paragon Insights influxdb pod.

Use the --influx influxdb-nodeip argument to specify
the node IP If not, the command will use the first
influxdb node as the default node.

Example: paragon insights cli influxdb --influx
influxdb-172.16.x.21

paragon insights cli mgd Logs in to the CLI of Paragon Insights mgd pod.

paragon insights describe alerta Describes the Paragon Insights alerta pod.

paragon insights describe api Describes the Paragon Insights REST API pod.

paragon insights describe configserver Describes the Paragon Insights config-server pod.

paragon insights describe grafana Describes the Paragon Insights grafana pod.

158

Table 12: paragon CLI Utility (Continued)

Command Description

paragon insights describe influxdb Describes the Paragon Insights influxdb pod.

Use the --influx influxdb-nodeip argument to specify
the node IP. If not, the command will use the first
influxdb node as the default node.

Example: paragon insights describe influxdb --influx
influxdb-172.16.x.21

paragon insights describe mgd Describes the Paragon Insights mgd pod.

paragon insights get alerta Shows the Paragon Insights alerta pod.

paragon insights get api Shows the Paragon Insights REST API pod.

paragon insights get configserver Shows the Paragon Insights config-server pod.

paragon insights get devicegroups Shows all the Paragon Insights device groups.

The default username is admin. To modify the
username, run the paragon set user --cred username >
command.

As a prerequisite, run the paragon set password --cred
password command to set the Paragon (UI host)
password.

paragon insights get devices Shows all Paragon Insights devices.

The default username is admin. To modify the
username, run the paragon set user --cred username
command.

As a prerequisite, run the paragon set password --cred
password command to set the Paragon (UI host)
password.

159

Table 12: paragon CLI Utility (Continued)

Command Description

paragon insights get grafana Shows the Paragon Insights grafana pod.

paragon insights get influxdb Shows the Paragon Insights influxdb pod.

paragon insights get ingest Shows the Paragon Insights network telemetry
ingestion pods.

paragon insights get mgd Shows the Paragon Insights mgd pod.

paragon insights get playbooks Shows all Paragon Insights playbooks.

The default username is admin. To modify the
username, run the paragon set user --cred username
command.

As a prerequisite, run the paragon set password --cred
password command to set the Paragon (UI host)
password.

paragon insights get pods Shows all the Paragon Insights pods.

paragon insights get services Shows all the Paragon Insights services.

paragon insights logs alerta Shows the logs of the Paragon Insights alerta pod.

paragon insights logs api Shows the logs of the Paragon Insights rest api pod.

paragon insights logs byoi Shows the logs of the Paragon Insights BYOI plug-in.

Use the --byoi BYOI plugin name argument.

paragon insights logs configserver Shows the logs of the Paragon Insights config-server
pod.

160

Table 12: paragon CLI Utility (Continued)

Command Description

paragon insights logs devicegroup analytical Shows the logs of the Paragon Insights device group
for service analytical engine.

Use the --dg device Group name with subgroup
argument.

Example: paragon insights logs devicegroup analytical
--dg controller-0

In the example, controller is the devicegroup name and
0 is the subgroup.

paragon insights logs devicegroup itsdb Shows the logs of the Paragon Insights device group
for service itsdb.

Use the --dg device Group name with subgroup
argument.

Example: paragon insights logs devicegroup itsdb --dg
controller-0

In the example, controller is the devicegroup name and
0 is the subgroup.

paragon insights logs devicegroup jtimon Shows the logs of the Paragon Insights device group
for service jtimon.

Use the --dg device Group name with subgroup
argument.

Example: paragon insights logs devicegroup jtimon --
dg controller-0

In the example, controller is the devicegroup name and
0 is the subgroup.

161

Table 12: paragon CLI Utility (Continued)

Command Description

paragon insights logs devicegroup native Shows the logs of the Paragon Insights device group
for service jti native.

Use the --dg device Group name with subgroup
argument.

Example: paragon insights logs devicegroup native --
dg controller-0

In the example, controller is the devicegroup name and
0 is the subgroup.

paragon insights logs devicegroup syslog Shows the logs of the Paragon Insights device group
for service syslog.

Use the --dg device Group name with subgroup
argument.

Example: paragon insights logs devicegroup syslog --
dg controller-0

In the example, controller is the devicegroup name and
0 is the subgroup.

paragon insights logs grafana Shows the logs of the Paragon Insights Grafana pod.

paragon insights logs influxdb Shows the logs of the Paragon Insights influxdb pod.

Use the --influx influxdb-nodeip argument to specify
the node IP. If not, the command will use the first
influxdb node as the default node.

Example: paragon insights logs influxdb --influx
influxdb-172.16.x.21

paragon insights logs mgd Shows the logs of the Paragon Insights mgd pod.

paragon pathfinder cli bmp Logs in to the CLI of the Paragon Pathfinder BMP
container.

162

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder cli configserver Logs in to the CLI of the Paragon Pathfinder ns-
configserver container.

paragon pathfinder cli crpd Logs in to the CLI of the Paragon Pathfinder cRPD
container.

paragon pathfinder cli debugutils Logs in to the CLI of the Paragon Pathfinder debugutils
container.

paragon pathfinder cli netconf Logs in to the CLI of the Paragon Pathfinder netconf
container.

paragon pathfinder cli pceserver Logs in to the CLI of the Paragon Pathfinder ns-
pceserver container (PCEP) services.

paragon pathfinder cli pcserver Logs in to the CLI of the Paragon Pathfinder ns-
pcserver (PCS) container.

paragon pathfinder cli pcviewer Logs in to the CLI of the Paragon Pathfinder ns-
pcsviewer (Paragon Planner Desktop Application)
container.

paragon pathfinder cli scheduler Gets into the CLI of paragon pathfinder scheduler
container.

paragon pathfinder cli toposerver Logs into the CLI of the Paragon Pathfinder ns-
toposerver (Topology service) container.

paragon pathfinder cli web Logs into the CLI of the Paragon Pathfinder ns-web
container.

paragon pathfinder debug bgpls config Debugs the Paragon Pathfinder cRPD routing-options
configuration related to BGP-LS.

163

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder debug bgpls routes Debugs the Paragon Pathfinder cRPD routes related to
BGP-LS.

paragon pathfinder debug genjvisiondata help Shows Paragon Pathfinder debugutils genjvisiondata
help.

paragon pathfinder debug genjvisiondata params Shows Paragon Pathfinder debugutils genjvisiondata
params.

paragon pathfinder debug lsp Logs in to the Paragon Pathfinder PCEP CLI for
debugging.

paragon pathfinder debug postgres status Shows the Kubernetes cluster Postgres status.

paragon pathfinder debug rabbitmq status Shows the rabbitmqctl cluster status.

paragon pathfinder debug snoop amqp Runs Paragon Pathfinder debugutils pod to snoop and
decode data exchanged between AMQP.

paragon pathfinder debug snoop help Shows Paragon Pathfinder debugutils snoop help.

paragon pathfinder debug snoop postgres Runs Paragon Pathfinder debugutils pod to snoop and
decode data exchanged between Postgres.

paragon pathfinder debug snoop redis link Runs Paragon Pathfinder debugutils pod to snoop and
decode data exchanged between Redis link.

paragon pathfinder debug snoop redis lsp Runs Paragon Pathfinder debugutils pod to snoop and
decode data exchanged between Redis lsp.

paragon pathfinder debug snoop redis node Runs Paragon Pathfinder debugutils pod to snoop and
decode data exchanged between redis nodes.

164

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder debug topoutil help Shows Paragon Pathfinder debugutils topo_util help.

paragon pathfinder debug topoutil safemode deactivate Shows Paragon Pathfinder debugutils topo_util tool to
deactivate safe mode.

paragon pathfinder debug topoutil topo refresh Runs Paragon Pathfinder debugutils topo_util tool to
refresh the current topology.

paragon pathfinder debug topoutil topo save Runs Paragon Pathfinder debugutils topo_util tool to
save the current topology snapshot.

paragon pathfinder describe bmp Describes Paragon Pathfinder pod including cRPD and
BMP containers.

paragon pathfinder describe configserver Describes Paragon Pathfinder pod including config-
server container.

paragon pathfinder describe debugutils Describes Paragon Pathfinder pod including debugutils
container.

paragon pathfinder describe netconf Describes Paragon Pathfinder pod including ns-
netconfd container.

paragon pathfinder describe pceserver Describes Paragon Pathfinder pod including ns-
pceserver container (PCEP services).

paragon pathfinder describe pcserver Describes Paragon Pathfinder pod including ns-
pcserver container (PCS).

paragon pathfinder describe pcviewer Describes paragon pathfinder pod including ns-
pcsviewer container (Paragon Planner Desktop
Application).

165

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder describe scheduler Describes Paragon Pathfinder pod including scheduler
container.

paragon pathfinder describe toposerver Describes Paragon Pathfinder pod including ns-
toposerver (Topology service) container.

paragon pathfinder describe web Describes Paragon Pathfinder pod including web
container.

paragon pathfinder get bmp Shows Paragon Pathfinder pod including cRPD and
BMP containers.

paragon pathfinder get configserver Shows Paragon Pathfinder pod including ns-
configserver and syslog containers.

paragon pathfinder get debugutils Shows Paragon Pathfinder pod including debugutils
container.

paragon pathfinder get netconf Shows Paragon Pathfinder pod associated with the
netconf process.

paragon pathfinder get pceserver Shows Paragon Pathfinder pod including ns-pceserver
container (PCEP services).

paragon pathfinder get pcserver Shows Paragon Pathfinder pod including ns-pcserver
container (PCS).

paragon pathfinder get pcviewer Shows Paragon Pathfinder pod including ns-pcsviewer
container (Paragon Planner Desktop Application).

paragon pathfinder get pods Shows all Paragon Pathfinder pods.

166

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder get scheduler Shows Paragon Pathfinder pod associated with the
scheduler process.

paragon pathfinder get services Shows all Paragon Pathfinder services.

paragon pathfinder get toposerver Shows Paragon Pathfinder pod including ns-toposerver
container (Topology service).

paragon pathfinder get web Shows Paragon Pathfinder pod associated with the ns-
web process.

paragon pathfinder logs bmp container bmp Shows the logs of Paragon Pathfinder bmp pods bmp
container. Use the --type follow argument to get live
streaming logs.

paragon pathfinder logs bmp container crpd Shows the logs of Paragon Pathfinder bmp pods cRPD
container. Use the --type follow argument to get live
streaming logs.

paragon pathfinder logs bmp container syslog Shows the logs of Paragon Pathfinder bmp pods syslog
container. Use the --type follow argument to get live
streaming logs.

paragon pathfinder logs configserver container
nsconfigserver

Shows the logs of Paragon Pathfinder configserver
pods ns-configserver container. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs configserver container syslog Shows the logs of Paragon Pathfinder configserver
pods syslog container. Use the --type follow argument
to get live streaming logs.

paragon pathfinder logs netconf container nsnetconfd Shows the logs of Paragon Pathfinder netconf pods ns-
netconfd container. Use the --type follow argument to
get live streaming logs.

167

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder logs netconf container syslog Shows the logs of Paragon Pathfinder netconf pods
syslog container. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs pceserver container
nspceserver

Shows the logs of Paragon Pathfinder pceserver pods
ns-pceserver container. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs pceserver container syslog Shows the logs of Paragon Pathfinder pceserver pods
syslog container. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs pceserver syslog filtered Shows processed logs of Paragon Pathfinder pceserver
pods syslog container fetching only timestamp, level,
and message. Use the --type follow argument to get
live streaming logs.

paragon pathfinder logs pcserver container nspcserver Shows the logs of Paragon Pathfinder pcserver pods
ns-pcserver container. Use the --type follow argument
to get live streaming logs.

paragon pathfinder logs pcserver container syslog Shows the logs of Paragon Pathfinder pcserver pods
syslog container. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs pcserver syslog filtered Shows processed logs of Paragon Pathfinder pceserver
pods syslog container fetching only with timestamp,
level, and message. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs pcviewer container nspcviewer Shows the logs of Paragon Pathfinder pcviewer pods
ns-pcviewer container. Use the --type follow argument
to get live streaming logs.

168

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder logs pcviewer container syslog Shows the logs of Paragon Pathfinder pcviewer pods
syslog container. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs toposerver container
nstopodbinit

Shows the logs of Paragon Pathfinder toposerver pods
ns-topo-dbinit container. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs toposerver container
nstopodbinitcache

Shows the logs of Paragon Pathfinder toposerver pods
ns-topo-dbinit-cache container. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs toposerver container
nstoposerver

Shows the logs of Paragon Pathfinder toposerver pods
ns-toposerver container. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs toposerver container syslog Shows the logs of Paragon Pathfinder toposerver pods
syslog container. Use the --type follow argument to
get live streaming logs.

paragon pathfinder logs toposerver syslog filtered Shows processed logs of Paragon Pathfinder
toposerver pods syslog container fetching only with
timestamp, level, and message. Use the --type follow
argument to get live streaming logs.

paragon pathfinder logs web container nsweb Shows the logs of Paragon Pathfinder web pods ns-
web container. Use the --type follow argument to get
live streaming logs.

paragon pathfinder logs web container nswebdbinit Shows the logs of Paragon Pathfinder web pods ns-
web-dbinit container. Use the --type follow argument
to get live streaming logs.

169

Table 12: paragon CLI Utility (Continued)

Command Description

paragon pathfinder logs web container syslog Shows the logs of Paragon Pathfinder web pods syslog
container. Use the --type follow argument to get live
streaming logs.

paragon pathfinder rabbitmq geoha status Shows the federation status (from rabbitmq-0
instance). GeoHa status is only available for a dual
cluster setup.

paragon rookceph ceph osddf Reports Rook and Ceph OSD file system disk space
usage.

paragon rookceph ceph osdpoolstats Shows Rook and Ceph OSD pool statistics.

paragon rookceph ceph osdstatus Shows Rook and Ceph OSD status.

paragon rookceph ceph osdtree Shows Rook and Ceph OSD tree.

paragon rookceph ceph osdutilization Shows Rook and Ceph OSD utilization.

paragon rookceph ceph pgstat Shows Rook and Ceph pg status.

paragon rookceph ceph status Shows Rook and Ceph status.

paragon rookceph cli toolbox Logs in to the CLI of Rook and Ceph toolbox pod.

paragon rookceph get pods Shows Rook and Ceph pods.

paragon rookceph get services Shows Rook and Ceph services.

paragon rookceph radosgw get period This is RADOS gateway user administration utility
which gets the period info.

170

Table 12: paragon CLI Utility (Continued)

Command Description

paragon rookceph radosgw synch status This is RADOS gateway user administration utility
which gets the metadata sync status.

paragon set password Sets the Paragon (UI host) password for REST calls
authentication.

Use this mandatory one-time set password command
to set the password using the --cred password
argument.

Example: paragon set password --cred AdminXYX!

paragon set username Sets the Paragon (UI host) username for Rest calls
authentication. The default username is admin.

Use the --cred username argument to set a different
username.

Example: paragon set username --cred newadmin

Troubleshoot Ceph and Rook

Ceph requires relatively newer Kernel versions. If your Linux kernel is very old, consider upgrading or
reinstalling a new one.

Use this section to troubleshoot issues with Ceph and Rook.

Insufficient Disk Space

A common reason for installation failure is that the object storage daemons (OSDs) are not created. An
OSD configures the storage on a cluster node. OSDs might not be created because of non-availability of
disk resources, in the form of either insufficient resources or incorrectly partitioned disk space. Ensure
that the nodes have sufficient unpartitioned disk space available.

Reformat a Disk

171

Examine the logs of the "rook-ceph-osd-prepare-hostname-*" jobs. The logs are descriptive. If you need
to reformat the disk or partition, and restart Rook, perform the following steps:

1. Use one of the following methods to reformat an existing disk or partition.

• If you have a block storage device that should have been used for Ceph, but wasn't used because
it was in an unusable state, you can reformat the disk completely.

$ sgdisk -zap /dev/disk
$ dd if=/dev/zero of=/dev/disk bs=1M count=100

• If you have a disk partition that should have been used for Ceph, you can clear the data on the
partition completely.

$ wipefs -a -f /dev/partition
$ dd if=/dev/zero of=/dev/partition bs=1M count=100

NOTE: These commands completely reformat the disk or partitions that you are using
and you will lose all data on them.

2. Restart Rook to save the changes and reattempt the OSD creation process.

$ kubectl rollout restart deploy -n rook-ceph rook-ceph-operator

View Pod Status

To check the status of Rook and Ceph pods installed in the rook-ceph namespace, use the # kubectl get po
-n rook-ceph command. The following pods must be in the running state.

• rook-ceph-mon-*—Typically, three monitor pods are created.

• rook-ceph-mgr-*—One manager pod

• rook-ceph-osd-*—Three or more OSD pods

• rook-ceph-mds-cephfs-*—Metadata servers

• rook-ceph-rgw-object-store-*—ObjectStore gateway

• rook-ceph-tools*—For additional debugging options.

To connect to the toolbox, use the command:

172

$ kubectl exec -ti -n rook-ceph $(kubectl get po -n rook-ceph -l app=rook-ceph-tools \ -o
jsonpath={..metadata.name}) -- bash

Some of the common commands you can use in the toolbox are:

ceph status # ceph osd status, # ceph osd df, # ceph osd utilization, # ceph osd pool stats, # ceph osd
tree, and # ceph pg stat

Troubleshoot Ceph OSD failure

Check the status of pods installed in the rook-ceph namespace.

kubectl get po -n rook-ceph

If a rook-ceph-osd-* pod is in the Error or CrashLoopBackoff state, then you must repair the disk.

1. Stop the rook-ceph-operator .

kubectl scale deploy -n rook-ceph rook-ceph-operator --replicas=0

2. Remove the failing OSD processes.

kubectl delete deploy -n rook-ceph rook-ceph-osd-number

3. Connect to the toolbox.

$ kubectl exec -ti -n rook-ceph $(kubectl get po -n rook-ceph -l app=rook-ceph-tools -o
jsonpath={..metadata.name}) -- bash

4. Identify the failing OSD.

ceph osd status

5. Mark out the failed OSD.

[root@rook-ceph-tools-/]# ceph osd out 5
marked out osd.5.
[root@rook-ceph-tools-/]# ceph osd status
ID HOST USED AVAIL WR OPS WR DATA RD OPS RD DATA STATE
 0 10.xx.xx.210 4856M 75.2G 0 0 0 0 exists,up
 1 10.xx.xx.215 2986M 77.0G 0 0 1 89 exists,up
 2 10.xx.xx.98 3243M 76.8G 0 0 1 15 exists,up
 3 10.xx.xx.195 4945M 75.1G 0 0 0 0 exists,up
 4 10.xx.xx.170 5053M 75.0G 0 0 0 0 exists,up
 5 10.xx.xx.197 0 0 0 0 0 0 exists

173

6. Remove the failed OSD.

ceph osd purge number --yes-i-really-mean-it

7. Connect to the node that hosted the failed OSD and do one of the following:

• Replace the hard disk in case of a hardware failure.

• Reformat the disk completely.

$ sgdisk -zap /dev/disk
$ dd if=/dev/zero of=/dev/disk bs=1M count=100

• Reformat the partition completely.

$ wipefs -a -f /dev/partition
$ dd if=/dev/zero of=/dev/partition bs=1M count=100

8. Restart rook-ceph-operator.

kubectl scale deploy -n rook-ceph rook-ceph-operator --replicas=1

9. Monitor the OSD pods.

kubectl get po -n rook-ceph

If the OSD does not recover, use the same procedure to remove the OSD, and then remove the disk
or delete the partition before restarting rook-ceph-operator.

Troubleshoot Air-Gap Installation Failure

The air-gap installation as well as the kube-apiserver fails with the following error because you do not
have an existing /etc/resolv.conf file.

TASK [kubernetes/master : Activate etcd backup cronjob]
**
fatal: [192.xx.xx.2]: FAILED! => changed=true
 cmd:
 - kubectl
 - apply

174

 - -f
 - /etc/kubernetes/etcd-backup.yaml
 delta: '0:00:00.197012'
 end: '2022-09-13 13:46:31.220256'
 msg: non-zero return code
 rc: 1
 start: '2022-09-13 13:46:31.023244'
 stderr: The connection to the server 192.xx.xx.2:6443 was refused - did you specify the right
host or port?
 stderr_lines: <omitted>
 stdout: ''
 stdout_lines: <omitted>

To create a new file, you must run the #touch /etc/resolv.conf command as the root user, and then
redeploy the Paragon Automation cluster.

Recover from a RabbitMQ Cluster Failure

If your Paragon Automation cluster fails (for example, from a power outage), the RabbitMQ message bus
may not restart properly.
To check for this condition, run the kubectl get po -n northstar -l app=rabbitmq command. This command
should show three pods with their status as Running. For example:

$ kubectl get po -n northstar -l app=rabbitmq
NAME READY STATUS RESTARTS AGE
rabbitmq-0 1/1 Running 0 10m
rabbitmq-1 1/1 Running 0 10m
rabbitmq-2 1/1 Running 0 9m37s

However, if the status of one or more pods is Error, use the following recovery procedure:

1. Delete RabbitMQ.

kubectl delete po -n northstar -l app=rabbitmq

2. Check the status of the pods.

kubectl get po -n northstar -l app=rabbitmq.

Repeat kubectl delete po -n northstar -l app=rabbitmq until the status of all pods is Running.

175

3. Restart the Paragon Pathfinder applications.

kubectl rollout restart deploy -n northstar

Disable udevd Daemon During OSD Creation

You use the udevd daemon for managing new hardware such as disks, network cards, and CDs. During the
creation of OSDs, the udevd daemon detects the OSDs and can lock them before they are fully initialized.
The Paragon Automation installer disables systemd-udevd during installation and enables it after Rook has
initialized the OSDs.
When adding or replacing nodes and repairing failed nodes, you must manually disable the udevd daemon
so that OSD creation does not fail. You can reenable the daemon after the OSDs are created.

Use these commands to manually disable and enable udevd.

1. Log in to the node that you want to add or repair.

2. Disable the udevd daemon.

a. Check whether udevd is running.

systemctl is-active systemd-udevd

b. If udevd is active, disable it. # systemctl mask system-udevd --now

3. When you repair or replace a node, the Ceph distributed filesystems are not automatically updated. If
the data disks are destroyed as part of the repair process, then you must recover the object storage
daemons (OSDs) hosted on those data disks.

a. Connect to the Ceph toolbox and view the status of OSDs. The ceph-tools script is installed on a
primary node. You can log in to the primary node and use the kubectl interface to access ceph-
tools. To use a node other than the primary node, you must copy the admin.conf file (in the
config-dir directory on the control host) and set the kubeconfig environment variable or use the
export KUBECONFIG=config-dir/admin.conf command.

$ ceph-tools # ceph osd status

b. Verify that all OSDs are listed as exists,up. If OSDs are damaged, follow the troubleshooting
instructions explained in "Troubleshoot Ceph and Rook" on page 171.

4. Log in to node that you added or repaired after verifying that all OSDs are created.

5. Reenable udevd on the node.

systemctl unmask system-udevd

176

Alternatively, you can set disable_udevd: true in the config.yml and run the ./run -c config-dir deploy
command. We do not recommend that you redeploy the cluster only to disable the udevd daemon.

Wrapper Scripts for Common Utility Commands

You can use the following wrapper scripts installed in /usr/local/bin to connect to and run commands on
pods running in the system.

Command Description

paragon-db [arguments] Connect to the database server and start the Postgres
SQL shell using the superuser account. Optional
arguments are passed to the Postgres SQL command.

pf-cmgd [arguments] Start the CLI in the Paragon Pathfinder CMGD pod.
Optional arguments are executed by the CLI.

pf-crpd [arguments] Start the CLI in the Paragon Pathfinder cRPD pod.
Optional arguments are executed by the CLI.

pf-redis [arguments] Start the (authenticated) redis-cli in the Paragon
Pathfinder Redis pod. Optional arguments are
executed by the Redis pod.

pf-debugutils [arguments] Start the shell in the Paragon Pathfinder debugutils
pod. Optional arguments are executed by the shell.
Pathfinder debugutils utilities are installed if
install_northstar_debugutils: true is configured in the
config.yml file.

ceph-tools [arguments] Start the shell to the Ceph toolbox. Optional
arguments are executed by the shell.

Back Up the Control Host

If your control host fails, you must back up the config-dir directory to a remote location to be able to
rebuild your cluster . The config-dir contains the inventory, config.yml, and id_rsa files.
Alternatively, you can also rebuild the inventory and config.yml files by downloading information from
the cluster using the following commands:

177

kubectl get cm -n common metadata -o jsonpath={..inventory} > inventory

kubectl get cm -n common metadata -o jsonpath={..config_yml} > config.yml

You cannot recover SSH keys; you must replace failed keys with new keys.

User Service Accounts for Debugging

Paragon Pathfinder, telemetry manager, and base platform applications internally use Paragon Insights
for telemetry collection. To debug configuration issues associated with these applications, three user
service accounts are created, by default, during Paragon Automation installation. The scope of these
service accounts is limited to debugging the corresponding application only. The service accounts details
are listed in the following table.

Table 13: Service Account Details

Application Name and Scope Account Username Account Default Password

Paragon Pathfinder (northstar) hb-northstar-admin Admin123!

Telemetry manager (tm) hb-tm-admin

Base platform (ems-dmon) hb-ems-dmon

You must use these accounts solely for debugging purposes. Do not use these accounts for day-to-day
operations or for modifying any configuration. We recommend that you change the login credentials for
security reasons.

RELATED DOCUMENTATION

Install Multinode Cluster on Ubuntu | 39

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Backup and Restore | 129

Upgrade to Paragon Automation Release 23.2 | 115

Edit Cluster Nodes | 123

178

9
CHAPTER

Migrate Data

IN THIS CHAPTER

Migrate Data from NorthStar to Paragon Automation | 180

Migrate Data from NorthStar to Paragon
Automation

IN THIS SECTION

Prerequisites | 180

Create the nsmigration Task Pod | 182

Export Cassandra DB Data to CSV Files | 182

Migrate DeviceProfile and Cassandra DB | 185

(Optional) Migrate Analytics Data | 188

(Optional) Migrate NorthStar Planner Data | 191

You can migrate DeviceProfile, Cassandra DB, and Analytics (ES DB) data from an existing NorthStar
Release 6.x setup to a Paragon Automation setup.

Use the steps described in this topic to migrate date from NorthStar to Paragon Automation.

Prerequisites

• Ensure that both the NorthStar and Paragon Automation setups are up and running.

• Cassandra must be accessible from Paragon Automation. Set the rpc_address parameter in the /opt/
northstar/data/apache-cassandra/conf/cassandra.yaml path to an address to which the Paragon
Automation setup can connect. After setting the address, restart Cassandra for the configuration
changes to take effect:

root@ns1: # supervisorctl restart infra:cassandra

• Ensure that both NorthStar and Paragon Automation have sufficient disk space to migrate the
Cassandra DB. The Cassandra migration exports all data to CSV files and sufficient space must be
available for the migration operation. To ensure that sufficient space is available:

180

1. Log in to NorthStar and check the current disk usage by Cassandra. For a multisite setup, issue the
following command on all nodes in the setup and add them to calculate total disk usage:

[root@ns1-site1 ~]# du -sh /opt/northstar/data/apache-cassandra/
404M /opt/northstar/data/apache-cassandra/ <--- Disk space used by Cassandra

2. Ensure that the available disk space on both NorthStar and Paragon exceeds the total Cassandra
disk usage by at least a factor of 2. For Paragon Automation, this amount of space must be
available on every node that has scheduling enabled on the device used for the /var/local
directory. For NorthStar, only the node from which data is exported must have the available disk
space.

For example, on a Paragon Automation node that has a large root partition '/' without an optional
partition for '/var/local':

root@pa-master:~# df -h
Filesystem Size Used Avail Use% Mounted on
udev 11G 0 11G 0% /dev
tmpfs 2.2G 32M 2.1G 2% /run
/dev/sda3 150G 33G 110G 24% / <--- Available space for /var/local
tmpfs 11G 0 11G 0% /dev/shm
...

See "Disk Requirements" on page 15 for more information on partition options.

On NorthStar:

[root@ns1-site1 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 108G 9.6G 99G 9% / <--- Available space
devtmpfs 7.6G 0 7.6G 0% /dev
tmpfs 7.6G 12K 7.6G 1% /dev/shm
tmpfs 7.6G 25M 7.6G 1% /run

Follow this procedure to migrate data from NorthStar to Paragon Automation.

181

Create the nsmigration Task Pod

1. Log in to the Paragon Automation primary node.

2. Create the nsmigration task pod.

root@pa-primary: # kubectl apply -f /etc/kubernetes/po/nsmigration/kube-cfg.yml
 job.batch/nsmigration created

3. Log in to the nsmigration task pod.

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=nsmigration -o
jsonpath={..metadata.name}) -c nsmigration -n northstar -- bash
root@nsmigration-fcvl6:/# cd /opt/northstar/util/db/nsmigration

Export Cassandra DB Data to CSV Files

For the migration procedure, you must export the contents of the Cassandra database in NorthStar to
CSV files and copy those files to Paragon Automation.
1. Copy the opt/northstar/thirdparty/dsbulk-1.8.0.tar.gz file and /opt/northstar/util/db/export_csv/
cass_dsbulk_export_csv.py from the nsmigration container in Paragon Automation to the target
NorthStar installation:

Copy the files locally to the current node:

root@pa-master:~ mkdir migration_files && cd migration_files
root@pa-master:~/migration_files# kubectl cp northstar/$(kubectl get po -n northstar -l
app=nsmigration -o jsonpath={..metadata.name}):/opt/northstar/thirdparty/
dsbulk-1.8.0.tar.gz ./dsbulk-1.8.0.tar.gz
root@pa-master:~/migration_files# kubectl cp northstar/$(kubectl get po -n northstar -l
app=nsmigration -o jsonpath={..metadata.name}):/opt/northstar/util/db/export_csv/
cass_dsbulk_export_csv.py ./cass_dsbulk_export_csv.py

Copy the files to the target NorthStar installation.

root@pa-master:~# scp -r migration_files root@${northstar_host}:/root/

182

2. Log in to the NorthStar instance, and install the migration utils by extracting the dsbulk-1.8.0.tar.gz
file,

[root@ns1-site1 migration_files]# tar -xf dsbulk-1.8.0.tar.gz

3. Export the contents of the Cassandra database to CSV files by running the
cass_dsbulk_export_csv.py script. The --skip-historical-data option can be passed to this script to skip
the export of historical event date. For more information, see Table 14 on page 183.

Source the NorthStar environment file.

[root@ns1-site1 migration_files]# source /opt/northstar/northstar.env

Run the export script.

[root@ns1-site1 migration_files]# python3 cass_dsbulk_export_csv.py --dsbulk=$PWD/
dsbulk-1.8.0/bin/dsbulk

Table 14: Historical Event Data Tables

keyspace table

taskscheduler taskstatus

pcs topology, lsp_topo, lsp_link, ntad, messages,
pcs_lsp_event, link_event, node_event

pcs_provision provision

Running the script exports the contents of the Cassandra database (according to db_schema.json) to
the export_csv folder in the current working directory. The script pipes the progress output from the
dsbulk invocations to stdout. Each table has its own sub-directory with one or more CSV files. The
procedure may take a long time for larger databases.

[root@ns1-site1 migration_files]# python3 cass_dsbulk_export_csv.py --dsbulk=$PWD/
dsbulk-1.8.0/bin/dsbulk
2021-11-22 23:12:36,908: INFO: ns_dsbulk_export: Exporting NorthStarMLO:Default (page size
500)
2021-11-22 23:12:39,232: INFO: ns_dsbulk_export: Operation directory: /root/dsbulk/logs/
UNLOAD_20211122-231239-029958

183

2021-11-22 23:12:43,580: INFO: ns_dsbulk_export: total | failed | rows/s | p50ms | p99ms |
p999ms
2021-11-22 23:12:43,580: INFO: ns_dsbulk_export: 1 | 0 | 2 | 8.18 | 8.19 |
8.19
2021-11-22 23:12:43,581: INFO: ns_dsbulk_export: Operation UNLOAD_20211122-231239-029958
completed successfully in less than one second.
...
2021-11-22 23:14:22,886: INFO: ns_dsbulk_export: Exporting pcs:links (page size 500)
2021-11-22 23:14:24,891: INFO: ns_dsbulk_export: Operation directory: /root/dsbulk/logs/
UNLOAD_20211122-231424-683902
2021-11-22 23:14:28,863: INFO: ns_dsbulk_export: total | failed | rows/s | p50ms | p99ms |
p999ms
2021-11-22 23:14:28,863: INFO: ns_dsbulk_export: 16 | 0 | 29 | 6.08 | 6.09 |
6.09
2021-11-22 23:14:28,863: INFO: ns_dsbulk_export: Operation UNLOAD_20211122-231424-683902
completed successfully in less than one second
...
[root@ns1-site1 migration_files]# ls -l export_csv/
total 0
drwxr-xr-x. 2 root root 6 Nov 22 23:20 anycastgroup-anycastgroupIndex
drwxr-xr-x. 2 root root 6 Nov 22 23:20 cmgd-configuration
drwxr-xr-x. 2 root root 6 Nov 22 23:19 device_config-configlets
drwxr-xr-x. 2 root root 6 Nov 22 23:19 device_config-configlets_workorder
...
[root@ns1-site1 migration_files]# ls -l export_csv/pcs-links
total 16
-rw-r--r--. 1 root root 14685 Nov 22 23:14 pcs-links-000001.csv

NOTE: The exported CSV files also serve as a backup of the Cassandra DB data. We
recommend archiving the files in case data needs to be restored in the future.

4. Copy the export_csv folder to the Paragon Automation node where the nsmigration pod is running.

root@pa-master:~# kubectl get po -n northstar -l app=nsmigration -o jsonpath={..spec.nodeName}
10.52.44.210 <--- In this example, this is the worker3
node

184

Copy the exported files to the correct directory on worker3 node.

root@pa-worker3:~# cd /var/local/ns_db_migration/ && scp -r root@{northstar_ip}:/root/
migration_files/export_csv .

Migrate DeviceProfile and Cassandra DB

1. Run the ns_data_migration.py -a -sp -dp script from the nsmigration task pod. The complete command
syntax is ./ns_data_migration.py -a ns-app-server-ip -su root -sp ns-app-user-ssh-password -dh cassandra-db-
host -du cassandra -dp cassandra-password -dcsv /opt/northstar/ns_db_migration/export_csv -pu postgres-user -
pp postgres-password -ph postgres-host -po postgres-port -pah vip-of-ingress-controller-or-hostname-of-main-
web-application -pau paragon-web-ui-login -pap paragon-web-ui-password -dr 1.
For example:

root@nsmigration-7xbbz:/opt/northstar/util/db/nsmigration# ./ns_data_migration.py -a
10.xx.xx.200 -su root -sp password -dh 10.xx.xx.200 -dp password -dcsv /opt/northstar/
ns_db_migration/export_csv -pu northstar -pp BB91qaDCfjpGWPbjEZBV -ph atom-db.common -po 5432
-pah 10.xx.xx.11 -pau admin -pap password1 -dr 1
Logs stored at /opt/northstar/util/db/nsmigration/logs/nsdatamigration.log
Cassandra connection established...connection attempt: 1
Testing cassandra connectivity
Connected to cluster Test Cluster
Testing EMS connectivity
scope_id: d3ae39f7-35c6-49dd-a1bd-c509a38bd4ea, auth_token length: 1160
scoped token length: 1303
jwt_token length: 40974
All connection ok starting mirgation
Starting device profile migration...
Found 2 devices in Northstar device profile

...
2022-04-26 20:57:01,976:INFO:Loading health_monitor-health_history-000001.csv (~ 5 rows)
2022-04-26 20:57:01,996:INFO:Loaded 5/~5 rows
2022-04-26 20:57:01,996:INFO:Copying csv data for table health_monitor:thresholds
2022-04-26 20:57:01,997:INFO:Using batch size 500
2022-04-26 20:57:02,001:INFO:Loading health_monitor-thresholds-000001.csv (~ 1 rows)
2022-04-26 20:57:02,003:INFO:Loaded 1/~1 rows
2022-04-26 20:57:02,004:INFO:Copying csv data for table planner:networkdata

185

2022-04-26 20:57:02,005:INFO:Using batch size 20
2022-04-26 20:57:02,008:INFO:Loading planner-networkdata-000001.csv (~ 1 rows)
2022-04-26 20:57:02,071:INFO:Loaded 1/~1 rows
...
The NS data migration completed

You must specify the following parameters while running the ns_data_migration.py script.

• -a APP, --app APP—IP address or hostname of the application server

• -su SSHUSER, --sshuser SSHUSER—SSH username (default is root)

• -sp SSHPASS, --sshpass SSHPASS—SSH password

• -so SSHPORT, --sshport SSHPORT—SSH port (default is 22)

• -du DBUSER, --dbuser DBUSER—Cassandra DB username (default is cassandra)

• -dp DBPASS, --dbpass DBPASS—Cassandra DB password

• -do DBPORT, --dbport DBPORT—Cassandra DB port (default is 9042)

• -dh DBHOST, --dbhost DBHOST—Comma-separated host IP addresses of Cassandra DB

• -pu PGUSER, --pguser PGUSER—Postgres DB username (default is northstar)

• -dcsv DBCSV, --dbCsvPath DBCSV—The path with CSV data exported from Cassandra

• -pp PGPASS, --pgpass PGPASS—Postgres DB password

• -ph PGHOST, --pghost PGHOST—Postgres DB host (default is atom-db.common)

• -po PGPORT, --pgport PGPORT—Postgres DB port (default is 5432)

• -pah PARAGONHOST, --paragonHost PARAGONHOST—Virtual IP (VIP) address of Paragon Automation Web UI

• -pau PARAGONUSER, --paragonUser PARAGONUSER—Paragon Automation Web UI username

• -pap PARAGONPASSWORD, --paragonPassword PARAGONPASSWORD—Paragon Automation Web UI user password

• -dr DISCOVERYRETRIES, --discoveryRetries DISCOVERYRETRIES—Device discovery retries (default is 2).
You use the dr DISCOVERYRETRIES option for DeviceProfile migration when Paragon Automation fails
to discover devices at the first attempt. There are multiple reasons for discovery failure, such as
devices not being reachable or device credentials being incorrect. Despite discovery failure for
devices with incorrect information, Paragon Automation discovers devices with correct
information. Partial failure for a subset of devices while discovering multiple devices at a time is
possible. To determine the exact reason of failure, see the Monitoring > Jobs page in the Paragon
Automation Web UI.

186

If the dr option is set to more than 1, on getting a discovery failure, the ns_data_migration.py script
retries the discovery for all the devices. This attempt does not impact the devices that are already
discovered. However, the chances of successfully discovering devices in subsequent attempts for
any failed device discovery is minimal. We recommend that you set the maximum value for the dr
option to 2, which is the default value. If there are too many devices in the network, then use a
value of 1 to avoid unnecessary retries.

NOTE: When migrating Cassandra DB data from NorthStar to Paragon Automation,
large tables with millions of rows might cause the migration to proceed very slowly and
take a long time. Often these large tables contain historical event data that you can
discard during migration. To skip migrating this data, you can manually set the '--
dbSkipHistoricalData' flag while calling the 'ns_data_migration.py' script. This means that the
data in the historical event tables listed in Table 14 on page 183 is not available in
Paragon Automation. This data is permanently lost if not backed up once the NorthStar
instance is removed.

2. Verify the DeviceProfile data.

Log in to Paragon Automation Web UI and navigate to Configuration > Device. Verify that all the
devices are discovered and present. Also, verify that the configuration information is the same as that
in the NorthStar device profile.

To view the device discovery result, go to the Monitoring > Jobs page in the Paragon Automation
Web UI.

3. Verify Cassandra DB data.

The log output of the ns_data_migration.py script indicates whether there were any problems migrating
data from Cassandra. You can also run a script to verify the data in Paragon Automation against the
exported CSV files. Note, this may take a long time for larger databases. From the nsmigration
container, run:

root@nsmigration-h7b9m:~# python3 /opt/northstar/util/db/dbinit.py --schema=/opt/northstar/
util/db/db_schema.json --host=$PG_HOST --port=$PG_PORT --user=$PG_USER --password=$PG_PASS --
dbtype=postgres --check-schema-version --from-cassandra-csv=/opt/northstar/ns_db_migration/
export_csv --verify-data --log-level=DEBUG 2>&1 | tee debug_migration.log
...
2022-04-26 21:11:12,466:INFO:Loading health_monitor-health_history-000001.csv (~ 5 rows)
2022-04-26 21:11:12,484:INFO:Loaded 5/~5 rows
2022-04-26 21:11:12,484:INFO:Verify stats health_monitor:health_history: Verified 5/5
2022-04-26 21:11:12,484:INFO:Copying csv data for table health_monitor:thresholds
2022-04-26 21:11:12,484:INFO:Using batch size 500
2022-04-26 21:11:12,489:INFO:Loading health_monitor-thresholds-000001.csv (~ 1 rows)
2022-04-26 21:11:12,491:INFO:Loaded 1/~1 rows

187

2022-04-26 21:11:12,491:INFO:Verify stats health_monitor:thresholds: Verified 1/1
2022-04-26 21:11:12,491:INFO:Copying csv data for table planner:networkdata
2022-04-26 21:11:12,491:INFO:Using batch size 20
2022-04-26 21:11:12,496:INFO:Loading planner-networkdata-000001.csv (~ 1 rows)
2022-04-26 21:11:12,532:INFO:Loaded 1/~1 rows
2022-04-26 21:11:12,533:INFO:Verify stats planner:networkdata: Verified 1/1

The script outputs (rows verified)/(rows checked) in each table (see lines beginning with "Verify") to
stdout and debug_migration.log. Note that some rows may have been updated after the data was
imported but before it was verified, so 'rows verified' may not always equal 'rows checked'. The
exported CSV files can be removed once the migration is complete by simply removing the /var/
local/ns_db_migration/export_csv directory on the relevant node.

(Optional) Migrate Analytics Data

If you have installed Analytics, perform the following steps to migrate analytics data from NorthStar ES
DB to Paragon Automation Influx DB:
1. Log in to the nsmigration task pod, and run the import_es_data.py -a script.

root@nsmigration-p7tcd:/# cd /opt/northstar/util/db/nsmigration
root@nsmigration-p7tcd:/opt/northstar/util/db/nsmigration# ./import_es_data.py -a 10.xx.xx.95
Logs stored at /opt/northstar/util/db/nsmigration/logs/es_data_migration.log
Certs are missing, fetching them from Northstar app server
Please enter SSH password:
Testing Elasticsearch connectivity
Elasticsearch DB connection ok
Testing Influx DB connectivity
Influx DB connection ok
Starting data extraction for type= interface

<OUTPUT SNIPPED>

 "migration_rate_sec": 1471.1758360302051,
 "timetaken_min": 0.7725,
 "total_points": 68189
}
ETLWorker-2 completed, total points=68189 in 0.7725 minutes with
migration_rate=1471.1758360302051

You must specify the following import_es_data.py script options:.

188

• Statistics type—By default, supports interface, label-switched path (LSP), and link-latency
statistics data. You can select a specific type by using the --type option.

• Rollups type—By default, supports daily and hourly time periods. You can select a specific type by
using the --rollup_type option.

• Migration schema—The mapping of ES DB to Influx DB schema is defined in the /opt/northstar/
util/db/nsmigration/es_influx_mapping.json file.

• Rollup ages—By default, fetches hourly and daily data for the last 180 days and 1000 days,
respectively. You can change the ages by using the --hourly_age and --daily_age options.

• ETL parallel worker process—By default, uses four ETL parallel worker processes. You can change
the worker process by using the --wp option.

• Execution time—The script execution time varies based on data volume, the number of days, and
the number of ETL parallel worker processes. For example, if four ETL workers use a migration
rate of 1500, then:

• 25,000 LSP statistics of 180 days hourly can take 5 hours

• 50,000 LSP statistics of 180 days hourly can take 10 hours

For more information about script arguments, see help 'import_es_data.py -h'.

2. Verify Influx DB data using the following commands.

• To query all tunnel traffic data for the last 30 days in Influx DB, run the /opt/pcs/bin/
getTrafficFiles.py script inside the dcscheduler pod:

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=dcscheduler -o
jsonpath={..metadata.name}) -c dcscheduler -n northstar -- /opt/pcs/bin/
getTrafficFiles.py -t tunnel_traffic -i 1d -b 30
#Starting Time : 08/17/21 12:00:00 AM
#Interval : 24 hour
UNIT = 1

Aggregation:
- Series: time series
- Statistic: 95th percentile
- Interval: 1 day
Report Date= 2021-09-16 (Thu) 08:56

vmx101:Silver-101-102 A2Z 0 -1 -1 -1 0 -1
-1
vmx101:Silver-101-104 A2Z 0 -1 -1

189

vmx102:Silver-102-101 A2Z 0 1071913 1072869 1073082 1073378 1073436 1073378 1073620
1073378 1073388 1073484 1073896 1074086 1073974 1073795 1073378 1073590 1073790 1074498
1074595 1074498 1074092 1076565 1076565 1076919 1075502 1075857 1075325 1075148 -1 -1
vmx102:Silver-102-103 A2Z 0 2118101 2120705 2121258 2120438 2120773 2119652 2121258
2120296 2120190 2120962 2121364 2121867 2121817 2122209 2120167 2120323 2121665 2122733
2122685 2122321 2121511 2121855 2119546 2119700 2109572 2102489 2101604 2121258 2109749
2110280
vmx102:Silver-102-104 A2Z 0 3442749 3449550 3450757 3448983 3448603 3446081 3453525
3451513 3448142 3449008 3450874 3452721 3451650 3450733 3447297 3447147 3449132 3451747
3450887 3450727 3448429 3452310 3448132 3447328 3200657 3200480 3197646 3445363 3215530
3215884
vmx103:Silver-103-101 A2Z 0 2149705 2151625 2158319 2170251 2170980 2171171 2169252
2167757 2168518 2172730 2168582 2166350 2161904 2161460 2167162 2158050 2160413 2166131
2167033 2166226 2165632 2171717 2178973 2178102 2158015 2158015 2157661 2157306 -1 -1
vmx103:Silver-103-102 A2Z 0 2122922 2125508 2131074 2141411 2142899 2141840 2139937
2138338 2139743 2144156 2139602 2138745 2134561 2132725 2137973 2129397 2132755 2138203
2138653 2136713 2135444 2144637 2150006 2147677 2108332 2107801 2107270 2124800 2112228
2113113
vmx103:Silver-103-104 A2Z 0 3426540 3437589 3447876 3461550 3464308 3461249 3460710
3453848 3458821 3463446 3456119 3456969 3450036 3446943 3451602 3439059 3445325 3455444
3455491 3454308 3449833 3468558 3472376 3470223 3185429 3187731 3183304 3430135 3198001
3202781
vmx104:Silver-104-102 A2Z 0
vmx104:Silver-104-103 A2Z 0
vmx105:rsvp-105-106 A2Z 0 114 114 121 116 122 125 125 114 214 224 215 223 213 223 222 226
222 217 213 214 216 219 218 219 202 202 202 211 204 202

• To query all egress interface traffic data for the last 30 days in Influx DB, run the /opt/pcs/bin/
getTrafficFiles.py script inside the dcscheduler pod:

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=dcscheduler -o
jsonpath={..metadata.name}) -c dcscheduler -n northstar -- /opt/pcs/bin/
getTrafficFiles.py -t interface_out -i 1d -b 30
#Starting Time : 08/17/21 12:00:00 AM
#Interval : 24 hour
UNIT = 1

Aggregation:
- Series: time series
- Statistic: 95th percentile
- Interval: 1 day
Report Date= 2021-09-16 (Thu) 08:49

190

vmx101 ge-0/0/8.0 A2Z 0 2620 2620 2621 2621 2621 2621 2622 2622 2623 2624 2626 2627 2627
2627 2627 2627 2627 2627 2627 2628 2631 2631 2632 2632 0 0 0 2632 -1 -1
vmx101 ge-0/0/5 A2Z 0 843 846 848 860 843 858 863 866 1001 1012 1012 1018 1011 1048 1018
1048 1027 1013 1025 1017 1010 1046 1046 1048 1053 1055 1073 1045 -1 -1
...
...
...
vmx107 ge-0/0/8.0 A2Z 0 2620 2621 2622 2622 2623 2624 2626 2626 2630 2631 2632 2632 2632
2632 2632 2632 2633 2633 2635 2635 2635 2635 2636 2636 0 0 0 2636 0 0
vmx107 ge-0/1/9.0 A2Z 0 6888955 6907022 6907653 6902645 6899706 6892876 6905804 6902894
6899395 6897851 6897322 6896863 6900351 6898745 6890080 6889337 6896781 6902034 6899116
6898749 6898630 6903136 6889662 6890800 6401393 6410976 6400867 6885900 6431500 6436156
vmx107 ge-0/0/5 A2Z 0 4290428 4296767 4297691 4295393 4292480 4290593 4293842 4293149
4295279 4294504 4294045 4294905 4294996 4294921 4292093 4292703 4295408 4297494 4296424
4295983 4295972 4296808 4294929 4299425 4285605 4286205 4285146 4288390 2126258 2127510
vmx107 ge-0/0/6 A2Z 0 122 122 122 122 122 122
122 122 122
vmx107 ge-0/0/7 A2Z 0 878 874 915 898 886 879 897 889 1028 1021 1022 1023 1055 1079 1077
1097 1094 1092 1044 1007 1028 1062 1065 1057 1094 1075 1071 1102 1082 1054
vmx107 ge-0/0/8 A2Z 0 2921 2925 2925 2924 2925 2926 2928 2928 2930 2934 2934 2936 2934
2935 2935 2934 2935 2936 2939 2938 2938 19892 20581 20965 20582 21076 20376 21578 23252
21312
vmx107 ge-0/1/8 A2Z 0 2127443 2130145 2130846 2128792 2128138 2127177 2128628 2128331
2128820 2128716 2128916 2129022 2129380 2128995 2127648 2127240 2128885 2130132 2130474
2130345 2129410 2129376 2125952 2125957 2117061 2114139 2119148 2126518 2122808 2121792
vmx107 ge-0/1/9 A2Z 0 6889737 6907821 6908350 6903585 6900486 6893779 6906516 6903747
6900412 6898908 6898427 6897892 6901325 6899809 6891078 6890377 6897822 6903099 6900152
6899763 6899726 6904248 6890745 6891782 6402507 6412083 6401924 6884168 6432556 6437280

(Optional) Migrate NorthStar Planner Data

If you want to use saved NorthStar Planner models on the NorthStar application server file system in
Paragon Automation, copy the models using the following steps:
1. Log in to the NorthStar server.

191

2. Use scp and copy the directory (/opt/northstar/data/specs) where your Planner models are saved to
the Paragon Automation primary node (/root/ns_specs). For example:

[root@ns1-site1 specs]# ls -l /opt/northstar/data/specs
total 8
drwx------ 2 root root 4096 Sep 16 08:18 network1
drwx------ 2 root root 4096 Sep 16 08:18 sample_fish

[root@ns1-site1 data]#
[root@ns1-site1 ~]# scp -r /opt/northstar/data/specs root@10.xx.xx.153:/root/ns_specs
The authenticity of host '10.xx.xx.153 (10.xx.xx.153)' can't be established.
ECDSA key fingerprint is SHA256:haylHqFfEuIEm8xThKbHJhG2uuTpT2xBpC2GZdzfZss.
ECDSA key fingerprint is MD5:15:71:76:c7:d2:2b:0d:fe:ff:0d:5f:62:7f:52:80:fe.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.xx.xx.153' (ECDSA) to the list of known hosts.
bblink.x
 100% 3893 2.2MB/s 00:00
bgplink.x
 100% 140 9.6KB/s 00:00
bgpnode.x
 100% 120 56.5KB/s 00:00
bgpobj.x
 100% 4888 1.8MB/s 00:00
cosalias.x
 100% 385 180.4KB/s 00:00
custrate.x
 100% 1062 184.0KB/s 00:00
demand.x
 100% 104KB 2.1MB/s 00:00
dparam.x
 100% 11KB 2.5MB/s 00:00
...

3. Log in to the Paragon Automation primary node.

4. Copy the /root/ns_specs folder to the NorthStar Planner pod at /opt/northstar/data/specs using the
kubectl command. For example:

root@pa-primary:~# ls -l /root/ns_specs
total 8
drwx------ 4 root root 4096 Sep 16 01:41 network1

192

drwx------ 4 root root 4096 Sep 16 01:41 sample_fish

root@pa-primary:~# kubectl cp /root/ns_specs northstar/$(kubectl get po -n northstar -l
app=ns-web-planner -o jsonpath={..metadata.name}):/opt/northstar/data/specs -c ns-web-planner

5. Verify that the NorthStar Planner models are copied inside the NorthStar Planner pod at /opt/
northstar/data/specs/ns_specs.

root@pa-primary:~/ns_specs# kubectl exec -it $(kubectl get po -n northstar -l app=ns-web-
planner -o jsonpath={..metadata.name}) -c ns-web-planner -n northstar -- ls -l /opt/northstar/
data/specs/ns_specs
total 8
drwx------ 2 root root 4096 Sep 16 08:18 network1
drwx------ 2 root root 4096 Sep 16 08:18 sample_fish

RELATED DOCUMENTATION

Paragon Automation System Requirements | 10

Install Multinode Cluster on Ubuntu | 39

Install Multinode Cluster on Red Hat Enterprise Linux | 84

Uninstall Paragon Automation | 126

193

	Table of Contents
	About This Guide
	Introduction
	Paragon Automation (Pathfinder, Planner, Insights) Installation Overview

	System Requirements
	Paragon Automation System Requirements

	Install Paragon Automation On Ubuntu
	Installation Prerequisites on Ubuntu
	Prepare the Control Host
	Prepare Cluster Nodes
	Virtual IP Address Considerations
	Configure DNS Server (Optional)

	Install Multinode Cluster on Ubuntu
	Download the Paragon Automation Software
	Install Paragon Automation on a Multinode Cluster
	Log in to the Paragon Automation UI

	Air-Gap Install Paragon Automation on Ubuntu
	Modify cRPD Configuration

	Install Paragon Automation on RHEL
	Installation Prerequisites on Red Hat Enterprise Linux
	Prepare the Control Host
	Prepare Cluster Nodes
	Virtual IP Address Considerations
	Configure DNS Server (Optional)

	Install Multinode Cluster on Red Hat Enterprise Linux
	Download the Paragon Automation Software
	Install Paragon Automation on a Multinode Cluster
	Log in to the Paragon Automation UI

	Air-Gap Install Paragon Automation on RHEL
	Prerequisites
	Download and Install Paragon Automation

	Configure Disaster Recovery
	Configure Disaster Recovery for Paragon Pathfinder

	Upgrade and Update Paragon Automation
	Upgrade to Paragon Automation Release 23.2
	Reinstall Paragon Automation
	Edit Cluster Nodes
	Edit Primary Nodes in Multi-Primary Node Clusters and Worker Nodes in All Clusters
	Edit Primary Nodes in Single-Primary Node Clusters

	Uninstall Paragon Automation

	Backup and Restore
	Backup and Restore
	Back Up the Configuration
	Restore the Configuration
	Backup and Restore Scripts

	Troubleshooting
	Troubleshoot Paragon Automation Installation
	Resolve Merge Conflicts of the Configuration File
	Resolve Common Backup and Restore Issues
	View Installation Log Files
	View Log Files in Grafana
	Troubleshooting Using the kubectl Interface
	View Node Status
	View Pod Status
	View Detailed Information About a Pod
	View the Logs for a Container in a Pod
	Run a Command on a Container in a Pod
	View Services
	Frequently Used kubectl Commands

	Troubleshoot Using the paragon CLI Utility
	Troubleshoot Ceph and Rook
	Troubleshoot Air-Gap Installation Failure
	Recover from a RabbitMQ Cluster Failure
	Disable udevd Daemon During OSD Creation
	Wrapper Scripts for Common Utility Commands
	Back Up the Control Host
	User Service Accounts for Debugging

	Migrate Data
	Migrate Data from NorthStar to Paragon Automation
	Prerequisites
	Create the nsmigration Task Pod
	Export Cassandra DB Data to CSV Files
	Migrate DeviceProfile and Cassandra DB
	(Optional) Migrate Analytics Data
	(Optional) Migrate NorthStar Planner Data

