
Paragon Insights Data Ingest Guide

Published

2023-10-03

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Paragon Insights Data Ingest Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 “Push” Model Data Ingest Methods

Paragon Insights Push-Model Overview | 2

Paragon Insights Push-Model Ingest Methods | 2

Native GPB | 3

NetFlow | 4

Example: Add a Device In Paragon Insights, Configure Paragon Insights for NetFlow, and
Monitor | 8

Add the Device In Paragon Insights | 8

Add Device Group | 9

Define NetFlow Ingest Settings - Review Predefined Templates | 9

Define NetFlow Ingest Settings - (Optional) Create Your Own NetFlow Template | 10

Define NetFlow Ingest Settings - Clone an Existing NetFlow Template | 11

Define NetFlow Ingest Settings - Delete a NetFlow Template | 11

Configure a Rule Using the Flow Sensor | 12

Add the Rule to a Playbook | 20

Apply the Playbook to a Device Group | 20

Monitor the Devices | 21

Differences Between NetFlow and sFlow | 21

sFlow | 22

OpenConfig | 35

Syslog | 38

Monitor the Devices | 59

SNMP Trap and Inform Notifications | 59

Glossary | 60

Configurations | 62

Understand Inband Flow Analyzer 2.0 | 73

iii

Configure Device Details for Inband Flow Analyzer Devices | 79

Delete an Inband Flow Analyzer Device | 80

Understand Bring Your Own Ingest | 81

Bring Your Own Ingest Default Plug-in Workflow | 83

Load Bring Your Own Ingest Default Plug-ins | 85

Configure Bring Your Own Ingest Default Plug-in Instances | 86

Configure Ingest Mapping for Default BYOI Plug-ins | 88

Bring Your Own Ingest Custom Plug-in Workflow | 89

Build and Load BYOI Custom Plug-in Images | 91

Use JSON Configuration File Attributes in Ingest Image | 93

Create a Shell Script for Configuration Updates | 96

Tag and Export the BYOI Custom Plugin Image | 96

Configure Kubernetes YAML File | 96

(Optional) Assign Virtual IP Address to Plugin | 100

Load the BYOI Custom Plugin | 102

Configure Bring Your Own Ingest Custom Plug-in Instances | 102

Use the Sample Rule and Playbook Configurations for BYOI Custom Plug-ins | 105

Delete a Bring Your Own Ingest Plug-in | 106

2 “Pull” Model Data Ingest Methods

Paragon Insights Pull-Model Overview | 109

Paragon Insights Pull-Model Ingest Methods | 109

Server Monitoring Ingest | 109

Configure a Rule Using Server Monitoring Sensor | 114

Understanding kube-state-metrics Service | 116

iAgent (CLI/NETCONF) | 128

Example: PaloAlto Panos– Show Running Security Policy | 131

iv

Outbound SSH (Device-Initiated) | 135

iAgent - vCenter/ESXi Server Monitor | 142

SNMP | 142

SNMP in Paragon Insights | 143

Example: Creating a Rule using SNMP Ingest | 157

CONFIGURE NETWORK DEVICES | 158

CREATE RULE, APPLY PLAYBOOK | 158

Monitor the Devices | 171

v

About This Guide

Paragon Insights (formerly HealthBot) accepts data from a variety of Juniper and third-party devices. It
accepts this data from various types of telemetry sensors and from traditional network management
protocols like syslog and SNMP. We provide this data ingest guide as a way to understand the ingest
methods that Paragon Insights supports and so that you can decide the best ways for you to get the
needed health and performance data from your devices.

As mentioned in the user guide, Paragon Insights supports push and pull models of data collection. In
the push model, your devices push telemetry data to Paragon Insights. In the pull mode, Paragon
Insights periodically polls your devices for data. This guide describes each of the supported ingest
methods, with examples, sorted by whether they fall into the push or pull model. Along with each
description, we provide the required Junos OS version and device configurations needed to enable the
specific ingest type.

vi

1
CHAPTER

“Push” Model Data Ingest Methods

Paragon Insights Push-Model Overview | 2

Paragon Insights Push-Model Ingest Methods | 2

Understand Inband Flow Analyzer 2.0 | 73

Configure Device Details for Inband Flow Analyzer Devices | 79

Delete an Inband Flow Analyzer Device | 80

Understand Bring Your Own Ingest | 81

Bring Your Own Ingest Default Plug-in Workflow | 83

Load Bring Your Own Ingest Default Plug-ins | 85

Configure Bring Your Own Ingest Default Plug-in Instances | 86

Configure Ingest Mapping for Default BYOI Plug-ins | 88

Bring Your Own Ingest Custom Plug-in Workflow | 89

Build and Load BYOI Custom Plug-in Images | 91

Configure Bring Your Own Ingest Custom Plug-in Instances | 102

Use the Sample Rule and Playbook Configurations for BYOI Custom Plug-ins |
 105

Delete a Bring Your Own Ingest Plug-in | 106

Paragon Insights Push-Model Overview

As the number of objects in the network, and the metrics they generate, have grown, gathering
operational statistics for monitoring the health of a network has become an ever-increasing challenge.
Traditional ’pull’ data-gathering models, like SNMP and the CLI, require additional processing to
periodically poll the network element, and can directly limit scaling.

The ’push’ model overcomes these limits by delivering data asynchronously, which eliminates polling.
With this model, the Paragon Insights server can make a single request to a network device to stream
periodic updates. As a result, the ’push’ model is highly scalable and can support the monitoring of
thousands of objects in a network. Junos devices support this model in the form of the Junos Telemetry
Interface (JTI).

Paragon Insights currently supports five ‘push’ ingest types.

Paragon Insights Push-Model Ingest Methods

IN THIS SECTION

Native GPB | 3

NetFlow | 4

Example: Add a Device In Paragon Insights, Configure Paragon Insights for NetFlow, and Monitor | 8

Differences Between NetFlow and sFlow | 21

sFlow | 22

OpenConfig | 35

Syslog | 38

Monitor the Devices | 59

SNMP Trap and Inform Notifications | 59

Paragon Insights currently supports the following push-model sensors:

• "Native GPB" on page 3

• "NetFlow" on page 4

2

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-telemetry-interface/junos-telemetry-interface.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-telemetry-interface/junos-telemetry-interface.html

• "sFlow" on page 22

• "OpenConfig" on page 35

• "Syslog" on page 38

• "SNMP Trap and Inform Notifications" on page 59

Native GPB

IN THIS SECTION

Native GPB - Device Configuration | 3

Native sensors use a Juniper-proprietary data model using Google protocol buffers (GPB). The device
pushes telemetry data (when configured) over UDP.

The device pushes data from the Packet Forwarding Engine, that is, directly from a line card. This means
telemetry data is sent over the forwarding plane, so the collector must have in-band connectivity to the
device.

To use native format, you configure the device with settings that include where to send the telemetry
data. When you configure Paragon Insights to start collecting the data, the stream is already flowing
towards the server.

For more information on native sensors, see Understanding the Junos Telemetry Interface Export
Format of Collected Data.

Native GPB - Device Configuration

The requirements for using the Native GPB sensor type on a Junos OS device are shown below.

3

https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-telemetry-interface-export-format-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-telemetry-interface-export-format-understanding.html

• Junos OS Version: 15.1 or later

• Required configuration—configure a sensor profile for each relevant related rule in Paragon Insights:

##Streaming Server Profile
set services analytics streaming-server COLLECTOR-1 remote-address <HealthBot-server-address>
set services analytics streaming-server COLLECTOR-1 remote-port 22000
##Export Profile
set services analytics export-profile EXP-PROF-1 local-address <local-router-IP>
set services analytics export-profile EXP-PROF-1 local-port 22001
set services analytics export-profile EXP-PROF-1 reporting-rate 30
set services analytics export-profile EXP-PROF-1 format gpb
set services analytics export-profile EXP-PROF-1 transport udp
##Sensor Profile
set services analytics sensor SENSOR-1 server-name COLLECTOR-1
set services analytics sensor SENSOR-1 export-name EXP-PROF-1
set services analytics sensor SENSOR-1 resource <resource> # example /junos/system/linecard/
interface/

To configure streaming server port in Paragon Insights GUI:

1. Go to Settings > Ingest.

2. Select Native GPB tab on the Ingest Settings page.

3. Enter the port number. The port number must be the same as the remote-port configured in the
streaming server profile.

You can use the toggle button to enable or disable the Port field.

4. Click Save & Deploy to enable the sensor to collect data in your network.

See Configuring a Junos Telemetry Interface Sensor for more information.

NetFlow

IN THIS SECTION

NetFlow Templates | 5

NetFlow Ingest Processing | 6

4

https://www.juniper.net/documentation/en_US/junos/topics/task/configuration/junos-telemetry-interface-configuring.html

NetFlow - Device Configuration | 7

Starting with Release 3.0.0, Paragon Insights (formerly HealthBot) supports NetFlow natively as another
ingest method, using a data model that aligns with other Paragon Insights ingest mechanisms to provide
all the same feature richness. With this release, Paragon Insights supports NetFlow v9 and NetFlow v10
(IPFIX).

How it Works

NetFlow is a network protocol for collecting IP traffic statistics, which can then be exported to a tool for
analysis. NetFlow is available in different versions, the latest being NetFlow v9 and NetFlow v10. The
NetFlow v9 data export format is described in RFC 3954; NetFlow v10 is officially known as IPFIX and
standardized in RFC 7011.

Junos devices support flow monitoring and aggregation using these protocols; the Junos OS samples the
traffic, builds a flow table, and sends the details of the flow table over a configured UDP port to a
collector, in this case Paragon Insights. Paragon Insights receives the incoming Netflow data, auto-
detects it as v9 or v10, and process it further.

As shown above, the network device pushes data from the Packet Forwarding Engine, that is, directly
from a line card. This means flow data is sent over the forwarding plane, so the collector must have in-
band connectivity to the device. To use the flow sensor option, you configure the device with settings
that include where to send the flow data. When you configure Paragon Insights to start collecting the
data, the flow data is already flowing towards the server.

NetFlow Templates

Where other ingest methods have established sensor formats and identification details - for example,
native GPB references paths, SNMP references MIBs, etc. - flow has no equivalent mechanism. Instead,
Paragon Insights uses templates. These flow templates provide a mechanism to identify and decode
incoming flow data before sending it for further processing.

Paragon Insights provides predefined flow templates for NetFlow v9 and v10 (IPFIX), or you can define
your own. The predefined templates match those which the Junos OS currently supports. For example,

5

https://tools.ietf.org/html/rfc3954
https://tools.ietf.org/html/rfc7011

the Junos OS template, ipv4-template, aligns with the Paragon Insights template hb-ipfix-ipv4-template. To
view the fields used in the Junos OS templates, see Understanding Inline Active Flow Monitoring.

NOTE: In the current ingest implementation for NetFlow, the following field types are not
supported:

• Fields for enterprise specific elements

• Variable length fields

NetFlow Ingest Processing

The raw flow data that Paragon Insights receives is in binary format and unreadable. In order to make
this data usable, Paragon Insights processes the incoming flow data as follows:

• Paragon Insights listens for incoming flow data on a configured port

• Since NetFlow messages don’t include a field that identifies the sending device, Paragon Insights uses
the configured source IP address to derive a device ID

• Templates identify and decode incoming flow data to determine which fields it contains

The resulting decoded and normalized data is now in a readable and usable format. Here is an
example of flow data decoded using the hb-ipfix-ipv4-template template:

hb-ipfix-ipv4-template, destinationIPv4Address=192.168.48.200, destinationTransportPort=443,
icmpTypeCodeIPv4=0,ingressInterface=1113, ipClassOfService=0,protocolIdentifier=6,
sourceIPv4Address=172.16.235.191,sourceTransportPort=51032,
bgpDestinationAsNumber=4200000000i,bgpSourceAsNumber=65000i, destinationIPv4PrefixLength=24i,
dot1qCustomerVlanId=0i,dot1qVlanId=0i,egressInterface=1041i, flowEndMilliseconds=1483484591502u,
flowEndReason=2i,flowStartMilliseconds=1483484577531u, ipNextHopIPv4Address="192.168.41.49",
maximumTTL=120i,minimumTTL=120i,octetDeltaCount=188i, packetDeltaCount=4i,sourceIPv4PrefixLength=19i,
tcpControlBits=16i,vlanId=0i 1483484642000000000

The data shows information from the NetFlow messages using naming according to IPFIX
Information Elements. For example, destinationIPv4Address maps to element ID 12 in the elements
table.

• Paragon Insights then performs further tagging, normalization, and aggregation as defined in the
corresponding rule by the user.

• Finally, the time-series database, TSDB receives the data. This is where things like trigger evaluation
happen.

6

https://www.juniper.net/documentation/en_US/junos/topics/concept/inline-sampling-overview.html
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml

WARNING: For NetFlow ingest, ensure that there is no source NAT in the network
path(s) between the device and Paragon Insights. If the network path contains source
NAT, then the received device information is not accurate.

NetFlow - Device Configuration

To use NetFlow as an ingest method in Paragon Insights, you must add configuration to the device you
wish to monitor, to enable it to export flow data into Paragon Insights.

This example includes the Netflow v10 IPv4 template; adjust as needed for your environment. If not
already done, complete device configuration to send NetFlow data to Paragon Insights as shown below.

IPFIX template configuration

set services flow-monitoring version-ipfix template IPv4-TEMPLATE ipv4-template

Apply IPFIX template to enable traffic sampling

set forwarding-options sampling instance IPFIX-IPv4-INSTANCE input rate 10
set forwarding-options sampling instance IPFIX-IPv4-INSTANCE family inet output flow-server
10.102.70.200 port 2055

10.102.70.200 = Paragon Insights server

NOTE: This is the IP address of Paragon Insights node receiving the NetFlow traffic as per the Device
Group configuration field of Flow Deploy Nodes. This is not the virtual IP address of the Paragon
Insights cluster (Netflow protocol has limitation in receiving the traffic using virtual IP address).

port 2055; use this value in Paragon Insights GUI (device group config)

set forwarding-options sampling instance IPFIX-IPv4-INSTANCE family inet output flow-server
10.102.70.200 version-ipfix template IPv4-TEMPLATE
set forwarding-options sampling instance IPFIX-IPv4-INSTANCE family inet output inline-jflow
source-address 198.51.100.1

inline-jflow = Enable inline flow monitoring for traffic from the designated address

198.51.100.1 = in-band interface doing the exporting; use this value in Paragon Insights GUI (device
config)

7

Associate sampling instance with the FPC

set chassis fpc 0 sampling-instance IPFIX-IPv4-INSTANCE

Specify which interface traffic to sample

set interfaces ge-0/0/0 unit 0 family inet sampling input
set interfaces ge-0/0/0 unit 0 family inet sampling output

Example: Add a Device In Paragon Insights, Configure Paragon Insights
for NetFlow, and Monitor

IN THIS SECTION

Add the Device In Paragon Insights | 8

Add Device Group | 9

Define NetFlow Ingest Settings - Review Predefined Templates | 9

Define NetFlow Ingest Settings - (Optional) Create Your Own NetFlow Template | 10

Define NetFlow Ingest Settings - Clone an Existing NetFlow Template | 11

Define NetFlow Ingest Settings - Delete a NetFlow Template | 11

Configure a Rule Using the Flow Sensor | 12

Add the Rule to a Playbook | 20

Apply the Playbook to a Device Group | 20

Monitor the Devices | 21

The following example walks through how to:

Add the Device In Paragon Insights

Now add the device in Paragon Insights, specifying the IP address(es) that will send the flow data.

1. In the Paragon Insights GUI, click Configuration > Device in the left-nav bar, and click the add device
button (+ Device).

8

2. Click the + (Add Device) button

3. In the Add Device(s) window that appears, fill in the appropriate fields.

Be sure to fill in the Flow IPs field with the IP address(es) from which NetFlow data will arrive.

4. Click Save & Deploy.

For more information about adding a device, see Adding a Device in Manage Devices, Device Groups,
and Network Groups.

Usage Notes:

• Incoming NetFlow messages don’t include a device ID; Paragon Insights uses the message’s source IP
address to derive a device ID

• When configuring this step, use the in-band interface IP address you configured in the sampling
instance configuration on the device.

Add Device Group

With the device added, you now need to create a device group and define the flow ingest port for the
device group.

1. Click Configuration > Device Group

2. Click the + (Add Device Group) button

3. In the Add Device Group window that appears, fill in the fields as appropriate. In the Flow Ports field,
enter the port(s) on which NetFlow data will arrive.

NOTE: If your Paragon Insights installation is a multi-node installation using Kubernetes, you
must also specify which Paragon Insights nodes will receive the NetFlow traffic by filling in
the Flow Deploy Nodes field in the Add/Edit Device Group window.

4. Click Save & Deploy

Usage Notes:

• Paragon Insights will listen for NetFlow messages on this port for devices in this group.

• The configured NetFlow ingest ports cannot be the same across device groups. You must
configure a different port (or ports) for each group.

Define NetFlow Ingest Settings - Review Predefined Templates

NetFlow templates provide a mechanism to identify and decode incoming flow data before sending it
for further processing within Paragon Insights.

1. Click Settings > Ingest in the left-nav bar.

9

The Ingest Settings page appears.

2. Click the NetFlow tab to view the NetFlow Settings page.

3. On the NetFlow settings page, review the available templates for use in a rule.

Usage Notes:

• Notice that there are default flow templates for IPv4, IPv6, MPLS, MPLS-IPv4, MPLS-IPv6, and VPLS,
for each of NetFlow v9 and v10.

• The NetFlow templates include recognition patterns, called include fields and exclude fields, which
help to recognize, identify, and categorize the incoming messages.

• Since NetFlow messages don’t distinguish between keys and values (all fields are simply incoming
data), the templates specify which fields should be treated as keys for raw data.

Define NetFlow Ingest Settings - (Optional) Create Your Own NetFlow Template

If the existing templates do not meet your needs, you can create your own template. You can also use
custom templates to support other vendors’ devices.

1. Click the plus (+) icon on the NetFlow settings page. .

2. In the Add Template window that appears, fill in the following fields (you can leave the other settings
as is):

• Template Name - give the template a name

• NetFlow version - select v9 or v10

• Priority - Available values are 1 through 10

• Include Fields - add one or more fields that you want included in the template you wish to use

• Exclude Fields - add one or more fields that you do not want included in the template you wish to
use

• Key Fields - specify which fields in the incoming messages should be treated as keys

3. Click Save & Deploy

You should now see the template added to the NetFlow settings page.

4. (Optional) Repeat the steps above to create more templates.

Usage Notes:

• Priority - when a playbook includes multiple rules using the flow sensor, the priority value identifies
which sensor and template gets priority over the other(s).

• Include/Exclude fields - include fields to help identify the template to use, or at least a ‘short list’ of
templates to use; exclude fields then narrow down to the single desired template.

10

• Example 1 - consider the hb-ipfix-ipv4-template template: it includes two IPv4 fields to narrow
down to hb-ipfix-ipv4-template and hb-ipfix-mpls-ipv4-template, and excludes an MPLS field to
eliminate hb-ipfix-mpls-ipv4-template, leaving only hb-ipfix-ipv4-template.

• Example 2 - consider the hb-ipfix-mpls-ipv4-template template: it includes the same two IPv4
fields to narrow down to hb-ipfix-ipv4-template and hb-ipfix-mpls-ipv4-template. It also includes
an MPLS field, which immediately eliminates the former template and leaving the latter as the
template to use.

Define NetFlow Ingest Settings - Clone an Existing NetFlow Template

Starting in Paragon Insights Release 4.0.0, you can clone an existing NetFlow template.

To clone an existing NetFlow template:

1. Click Settings > Ingest from the left-nav bar.

The Ingest Settings page is displayed.

2. Click the NetFlow tab to view the Netflow Settings page.

3. To clone a particular template for Paragon Insights Releases 4.1.0 and 4.0.0, click the Clone icon.

To clone a particular template for Paragon Insights Release 4.2.0 and later, select the option button
next to the name of the template and click Clone.

The Clone Template: <name of template> page is displayed.

From the Clone Template: <name of template> page, you can

• Edit the Template Name, Description, and Priority sections.

• Choose between Netflow v9 or Netflow v10 versions.

• Add or exclude fields from Include Fields, Exclude Fields, and Key Fields.

4. After you have made the necessary edits, click Save to save the modifications and to clone the
template.

Alternatively, click Save & Deploy to save modifications, clone the template, and deploy the
template.

Define NetFlow Ingest Settings - Delete a NetFlow Template

To delete a NetFlow template:

1. Click Settings > Ingest from the left-nav bar.

The Ingest Settings page is displayed.

2. Click the NetFlow tab to view the NetFlow page.

3. Select the device that you want to delete, and click the delete (trash can) icon.

11

The CONFIRM DELETE TEMPLATE pop-up appears.

Figure 1: Confirm Delete Template Pop-up

4. Do any one of the following:

• Click Yes to delete the NetFlow template from the database. However, the changes are not
applied to the ingest service.

NOTE:

• We recommended that you do not delete a NetFlow tempate that is currently in use.

• After you delete a NetFlow template from the database, you cannot associate that
template with another device group or device even if you have not deployed changes.

• You can also deploy changes to the ingest service or roll back the changes that you
have already deleted, from the PENDING CONFIGURATION page. For more
information, see Commit or Roll Back Configuration Changes in Paragon Insights.

• Select the Deploy changes check box and then click Yes to delete the template from the database,
and to apply the changes to the ingest service.

• (Optional) Click No to cancel this operation.

Configure a Rule Using the Flow Sensor

With the NetFlow ingest settings complete, you can now create a rule using flow as the sensor.

This example rule includes three elements:

12

• A flow sensor that uses the NetFlow v10 IPv4 template

• Six fields capturing data of interest

• A trigger that indicates when traffic flow is higher or lower than expected

NOTE: See the usage notes at the end of this section for more detail on what has been
configured.

1. Click Configuration > Rules in the left-nav bar.

2. On the Rules page, click the + Add Rule button.

The Rules page refreshes to show a nearly empty rule on the right part of the page.

3. In the top row of the rule window, leave the topic set as external and set the rule name that
appears after the slash (/). In this example, it is periodic-aggregation-flow-rule.

4. Add a description and synopsis if you wish.

5. Click the + Add Sensor button and enter the following parameters in the Sensors tab:

6. Now move to the Fields tab, click the + Add Field button and enter the following parameters to
configure the first field, source-ipv4-address:

13

7. Click the + Add Field button again and enter the following parameters to configure the second field,
destination-ipv4-address:

8. Click the + Add Field button again and enter the following parameters to configure the third field,
sensor-traffic-count:

14

9. Click the + Add Field button again and enter the following parameters to configure the fourth field,
total-traffic-count:

10. Click the + Add Field button again and enter the following parameters to configure the fifth field,
traffic-count-maximum:

15

11. Click the + Add Field button once more and enter the following parameters to configure the sixth
field, traffic-count-minimum:

12. As the last step for the fields configuration, set the field aggregation time-range value to 10s:

13. Now move to the Variables tab, click the + ADD VARIABLE button and create the traffic-count-max
and traffic-count-min variables that are the constants for the traffic-count-maximum and traffic-
count-minimum fields, respectively.

16

NOTE: Only the definition for the traffic-count-max is shown graphically. Choose an
appropriate Default Value when configuring both traffic-count-max and traffic-count-min
variables. The value shown above is for testing purposes only and may not be appropriate
for your network.

14. Now move to the Triggers tab, click the + Add trigger button and enter the following parameters to
configure a trigger called traffic-measurement-trigger:

17

15. At the upper right of the window, click the Save & Deploy button.

Usage Notes:

• Sensor Tab:

• The sensor name ipv4-flow-sensor is user-defined

18

• The sensor type is flow

• The sensor uses the predefined template hb-ipfix-ipv4-template

• Variables Tab:

• The variables traffic-count-max and traffic-count-min are statically configured integers. In this
case the values represent Bytes per second

• These values are referenced in fields traffic-count-maximum and traffic-count-minimum and
provide a reference point to compare against the total-traffic-count field

• Fields Tab:

• Six fields are defined; some fields are used in the trigger settings while one field is referenced
within another field

• The field names are user-defined fields (UDF)

• Fields source-ipv4-address, destination-ipv4-address, and sensor-traffic-count are extracting
information from the flow sensor input

• Path values for these fields identify specific values from the NetFlow messages, using naming
according to IPFIX Information Elements

• Fields source-ipv4-address and destination-ipv4-address have the Add to rule key setting
enabled, indicating that this field should be shown as a searchable key for this rule on the device
health pages

• Field total-traffic-count - sums the IPv4 packet count from the sensor-traffic-count field every 10
seconds

• The fields traffic-count-maximum and traffic-count-minimum are simply fixed values; the values
are derived from the variables defined above

• Field aggregation time-range - typically set to a value higher (longer) than individual field time
range settings with the aim of reducing the frequency of information being sent to the database

• Triggers Tab:

• The trigger name traffic-measurement-trigger is user-defined.

• frequency 90s - HearthBot compares traffic counts every 90 seconds

• In the term traffic-abnormal-gr:

• When $total-traffic-count (the periodic count of incoming IPv4 traffic) is greater than $traffic-
count-maximum (2500 Bps), show red and the message: “Total traffic count is above normal.
Current total traffic count is : $total-traffic-count”.

19

https://www.iana.org/assignments/ipfix/ipfix.xhtml

• In the term traffic-abnormal-ls:

• When $total-traffic-count (the periodic count of incoming IPv4 traffic) is less than $traffic-
count-minimum (500 Bps), show yellow and the message: “Total traffic count is below normal.
Current total traffic count is : $total-traffic-count”.

• In the term default-term:

• Otherwise, show green and the message: “Total traffic count is normal. Current total traffic count
is : $total-traffic-count”.

Add the Rule to a Playbook

With the rule created, you can now add it to a playbook. For this example, create a new playbook to
hold the new rule.

1. Click Configuration > Playbooks in the left-nav bar.

2. On the Playbooks page, click the create + Create Playbook button.

3. On the page that appears, enter the following parameters:

4. Click Save & Deploy

Apply the Playbook to a Device Group

1. On the Playbooks page, click the Apply (Airplane) icon for the playbook you configured above.

2. On the Run Playbook page that appears

• Enter a name for the playbook instance.

• Select the desired device group from the Apply Group pull-down menu.

20

• Click Run Instance.

3. On the Playbooks page, confirm that the playbook instance is running. Note that the playbook may
take some time to activate.

Monitor the Devices

With the playbook applied, you can begin to monitor the devices.

1. Click Monitor > Device Group Health in the left-nav bar and select the device group to which you
applied the playbook from the Device Group pull-down menu.

2. Select one of more of the devices to monitor.

3. In the Tile View, the external tile contains the parameters from the rule you configured earlier.

Differences Between NetFlow and sFlow

While the names sound similar, NetFlow and sFlow are two very different protocols. Table 1 on page
21 shows the differences between "NetFlow" on page 4 and "sFlow" on page 22.

Table 1: NetFlow and sFlow Differences

NetFlow/IPFIX sFlow

Overview A flow is a sequence of packets that share the same
properties and travels between a sending host and a
receiving host. Flow analysis looks at the metadata in
the flow of packets. NetFlow is based on flow analysis
techniques.

sFlow takes actual network packet
samples from a device and forwards
them to a collector for analysis. sFlow is
a packet sampling and analysis
technology, not a flow analysis
technology.

More Detail Flow analysis deals with identifying top talkers, top
protocols, bandwidth usage, etc. within the network. It
uses traffic metadata to provide this information.

Packet analysis deals with gaining in-
depth information regarding a specific
network conversation. This is possible
because the packet header and payload
are included in the sFlow data.

21

Table 1: NetFlow and sFlow Differences (Continued)

NetFlow/IPFIX sFlow

Data NetFlow/IPFIX allows a user to define what data is
collected from the devices as fields in a template. The
data can be based on packet headers, traffic
characteristics, or values from within the devices
themselves.

NetFlow can provide information from layer 2 through
layer 4 of the OSI model.

sFlow specifies a single way to report
data: provide the entire packet header
and payload data from a sampled
interface.

sFlow can provide information from layer
2 through layer 7 of the OSI model.

Time NetFlow/IPFIX headers contain the export time of the
flow. Flow data can accumulate and be sent at any
configured frequency. Template definitions allow for
over 30 different methods to represent the time of an
observed flow.

The sFlow standard requires that
sampled packets are forwarded to the
collector immediately upon capture.

State NetFlow/IPFIX is a stateful protocol. The device
receiving NetFlow data (Paragon Insights) must
confirm the receipt of the data before more is sent.

sFlow is a stateless protocol. The sender
simply forwards captured packets to the
receiver (Paragon Insights).

Processing NetFlow/IPFIX is a stateful protocol. The sending and
receiving devices must both have the correct
NetFlow/IPFIX template to encode and decode the
flow. New templates can be configured by users and
shared between sender and receiver (Paragon Insights)

The sending device uses the sFlow
standard to encode the messages
(packets) and the collector (Paragon
Insights) uses the same standard to
decode them.

sFlow

IN THIS SECTION

sFlow Protocol | 23

sFlow Ingest Processing | 23

sFlow - Configuration in Paragon Insights | 24

22

sFlow - Device Configuration | 35

Starting with Paragon Insights Release 3.2.0, Paragon Insights supports sFlow (v5) natively as another
flow-based ingest method, using a data model that aligns with other Paragon Insights ingest mechanisms
to provide all the same feature richness.

sFlow Protocol

sFlow is a statistical sampling-based technology for high-speed switched or routed networks. You can
configure sFlow to continuously monitor traffic at wire speed on all interfaces simultaneously if you
want.

sFlow provides or helps with:

• detailed and quantitative traffic measurements at gigabit speeds

• insight into forwarding decisions

• troubleshooting for network issues

• congestion control

• security and audit trail analysis

• route profiling

Everything that sFlow does above, it does without impact to forwarding or network performance. For
more information on sFlow, see: RFC 3176, InMon Corporation's sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks.

As a statistical sampling protocol, Juniper’s sFlow agent samples the traffic and counters on network
interfaces, creates sFlow datagrams and forwards them to external sFlow collectors. Paragon Insights is
one such collector.

sFlow Ingest Processing

The raw sFlow data that Paragon Insights receives is in binary format and unreadable. In order to make
this data usable, Paragon Insights processes the incoming flow data as follows:

• Paragon Insights listens for incoming flow data on a configured port

• Based on Paragon Insights rule configuration, data is decoded and grouped into data sets by record
type (raw packet header, Ethernet frame, etc.)

23

https://www.ietf.org/rfc/rfc3176.txt
https://www.ietf.org/rfc/rfc3176.txt

• Maps the sFlow source IP (extracted from sFlow packets) to a Paragon Insights Device ID

NOTE: If no match can be made, the packet is dropped with no further decoding performed.

• Normalizes the fields for further use within the system

• Paragon Insights then performs further tagging, normalization, and aggregation as defined in the
corresponding rule by the user.

• Finally, the time-series database, TSDB receives the data. This is where things like trigger evaluation
happen.

sFlow - Configuration in Paragon Insights

As mentioned above, processing of sFlow packets depends on Paragon Insights rule configuration. It also
requires that you enable sFlow in the device group or device definition. This section describes sFlow
enablement, and rule and sensor configuration options for sFlow.

First, to enable sFlow, you must enter at least one IP address in the device definition under Flow Source
IPs, and enter at least one port number in the device group definition under sFlow Ports. Figure 2 on
page 24 below is a composite image that shows the device group definition overlaid with the device
definition. The appropriate sections of each window are highlighted in red.

Figure 2: Enable sFlow Composite Image

24

The devices in the group send their sFlow packets to Paragon Insights over the configured UDP port
from the configured IP address(es). The port number(s) used in these definitions must be unique across
the entire Paragon Insights installation.

NOTE:

• The Flow Source IPs address(es) must match an IP address that can be mapped from the
Hostname/IP Address/Range field in the device definition. If devices send sFlow packets, but
Paragon Insights cannot match the source IP to a defined device IP, then the packets are
dropped without decoding.

• Paragon Insights cannot differentiate sFlow from NetFlow by looking at the packets. If you
are using both NetFlow and sFlow, the port numbers must also be unique between the two
flow types.

Due to the nature of sFlow and the potentially huge amount of data that can come from even a single
device, we recommend the following best-practices for managing sFlow ingest:

BEST PRACTICE:

• Use unique ports from the range: UDP/49152 to UDP/65535 for sFlow.

• Use periodic aggregation to reduce the number of write procedures in the TSDB.

• Do not enable the raw table data storage option in sFlow unless sufficient high-speed
storage is available for Paragon Insights TSDB.

Configure sFlow Ingest

As with other ingest methods, navigate to Settings > Ingest and choose the sFlow tab on the left of the
Ingest window.

The Sflow Settings are broken down into 4 sections:

• Sample There are two pre-defined sample categories and each is represented in the sFlow header
as an integer sample-type value. Table 2 on page 26 below shows the sample types and
their numeric value.

25

Table 2: sFlow Sample Types

Sample Type Integer Value in sFlow Header

counter-sample 2

expanded-counter-sample 4

flow-sample 1

expanded-flow-sample 3

NOTE: The difference between the expanded sensor types and the non-expanded
sample types is the size of the data fields. The field names and types are the same,
but the field sizes are larger in the expanded sample types.

Packet definitions for these sample types can be found here: sFlow Samples

Table 3 on page 26 shows the other fields contained in an sFlow sample header (by sample
type) along with the field type.

Table 3: sFlow Packet Header Fields

field type/size
in bits

counter-sample flow-sample

integer/32 sampleSequenceNumber sampleSequenceNumber

integer/8 sourceIDType

• 0 = SNMP interface index

• 1 = VLAN ID
(smonVlanDataSource)

• 2 = Physical entity
(entPhysicalEntry)

sourceIDType

• 0 = SNMP interface index

• 1 = VLAN ID (smonVlanDataSource)

• 2 = Physical entity (entPhysicalEntry)

26

http://www.sflow.org/developers/diagrams/sFlowV5Sample.pdf

Table 3: sFlow Packet Header Fields (Continued)

field type/size
in bits

counter-sample flow-sample

integer/24 sourceIDValue sourceIDValue

integer/32 n (the number of sampled records
contained in the Counter sample)

sampleSamplingRate

integer/32 - samplePool (number of packets that could
have been sampled)

integer/32 - sampleDroppedPackets (number of packets
dropped due to lack of resources)

integer/8 - sampleInputInterfaceFormat (input
interface type)

integer/32 - sampleInputInterfaceValue (input interface
(SNMP interface index)

integer/1 sampleOutputInterfaceFormat (output
interface type)

integer/33 - sampleOutputInterfaceValue (SNMP
interface index)

integer/32 - n (the number of flow records)

data counter records flow records

• Flow
Record

The Flow Record section provides the tools needed to define the different types of flow
that might be seen in an sFlow capture. Paragon Insights ships with 16 types of pre-
defined flow records, each of which have a format number and a sensor path for use in
defining sFlow rules, shown in Table 4 on page 28 below. There are several fields in each

27

type of flow record. These can be seen by selecting the desired record type from the list
and clicking the edit (pencil) button.

Table 4: Flow Record Types

Record Type Format Number Sensor Path Value

raw packet headers 1 /sflow-v5/flow-sample/raw-
packet-header

Ethernet frame data 2 /sflow-v5/flow-sample/ethernet-
frame-data

IPv4 data 3 /sflow-v5/flow-sample/ipv4-data

IPv6 data 4 /sflow-v5/flow-sample/ipv6-data

extended switch data 1001 /sflow-v5/flow-sample/extended-
switch-data

extended router data 1002 /sflow-v5/flow-sample/extended-
router-data

extended gateway data 1003 /sflow-v5/flow-sample/extended-
gateway-data

extended user data 1004 /sflow-v5/flow-sample/extended-
user-data

extended URL data 1005 /sflow-v5/flow-sample/extended-
url-data

extended MPLS data 1006 /sflow-v5/flow-sample/extended-
mpls-data

extended NAT data 1007 sflow-v5/flow-sample/extended-
nat-data

28

Table 4: Flow Record Types (Continued)

Record Type Format Number Sensor Path Value

extended MPLS tunnel 1008 /sflow-v5/flow-sample/extended-
mpls-tunnel

extended MPLS VC 1009 /sflow-v5/flow-sample/extended-
mpls-vc

extended MPLS FEC 1010 /sflow-v5/flow-sample/extended-
mpls-fec

extended LVP FEC 1011 /sflow-v5/flow-sample/extended-
mpls-lvp-fec

extended VLAN tunnel 1012 /sflow-v5/flow-sample/extended-
vlan-tunnel

When you configure rules for sFlow, you can choose from any of these record types. You
can create new flow records by clicking the add (+) icon on the Sflow Settings page.

• Counter
Record

The Counter Record section provides the definition for the two pre-defined counter
record types. There are two types of counter records, ethernet-interface-counters and
generic-interface-counters. Generic interface counters are format number 1 and
Ethernet interface counters are format number 2. The sensor path for generic interface
counters is /sflow-v5/counter-sample/generic-interface-counter. The sensor path for
Ethernet interface counters is /sflow-v5/counter-sample/ethernet-interface-counter.

The fields available within the counter records are the possible errors and the countable
statistics such as:

• frame errors

• collisions

• deferred transmissions

• transmit errors

• administration status

29

• operational status

• input packets

• output packets

• input errors

• output errors

• and others

You can use either the generic interface counter or Ethernet interface counter in rules that you
define. The counter sensors can be defined to pick even single fields from either of the available
counters. You can create additional counter record types by clicking the add (+) icon on the Sflow
Settings page (Counter Record section).

• Protocol The Protocol section provides a means to define which protocol the sFlow captures
contain and allow for the decoding of many network protocols. The fields that are
contained in each protocol entry are the same fields as would be seen in a frame or packet
of that type. For example, an Ethernet frame would have a destination MAC address, a
source MAC address, and an ethernet-next-header-type field. The fields defined in any
protocol you want to decode must appear in the protocol definition in the same order as
they would appear in the packet or frame.

The number column that appears is the IANA protocol number assigned to that protocol.
For example, the tcp protocol is protocol number 6.

NOTE: On the Sample, Flow Record, and Counter Record sections, there is an Enterprise column.
This column is for the use of vendor-specific or custom decoding details. For example, a Foundry
ACL-based flow sample has the enterprise value 1991, Format 1, includes additional fields
specifically for that Foundry flow.In most instances, the Enterprise value is 0.

Extend sFlow Decoding Capabilities

You can extend the protocol decoding capabilities of Paragon Insights by creating additional decoding
schemas under the Sample, Flow Record, Counter Record, and Protocol tabs on the sFlow ingest settings
page.

Once you have updated the ingest settings, the new rules can make use of them as follows:

30

• Use a packet capture utility such as Wireshark to identify the order in which the new protocols
appear within the sFlow packets.

• Ensure that the sensor path you use in the sensor definition is formatted like this: /sflow-v5/<sample-
name>/<record-name>/<l2-protocol>/<l3-protocol>, where sample-name is the new sample, record-name is
the new counter or flow record, and the l2-protocol and l3-protocol are the new protocols. Again,
these protocols must be named and positioned as they appear in the sFlow captures.

Configure sFlow Rules

As with other rule definitions, sFlow rules are made up of sensors, fields, vectors, and so on. An sFlow
sensor has a Sensor Name, a Sensor Type of sFlow, and an sFlow Path as shown in Figure 3 on page 31.

Figure 3: sFlow Sensor Definition

The sensor path serves a big role in sensor definition. Paragon Insights uses the sensor path to define
not only the sFlow flow type, but the sample type, record type, protocol, and other custom path
elements if needed.

Delete sFlow Settings

To delete an sFlow Setting:

1. Click Settings > Ingest from the left-nav bar.

The Ingest Settings page is displayed.

2. Click the sFlow tab to view the sFlow Settings page.

31

3. Do one of the following.

• To delete an sFlow sample:

a. Click Sample to view the list of sFlow samples.

b. Select the sFlow sample that you want to delete.

c. Click the delete (trash can) icon.

The CONFIRM DELETE SAMPLE pop-up appears.

Figure 4: Confirm Delete Sample Pop-up

• To delete a flow record:

a. Click Flow Record to view the list of flow records.

b. Select the flow record that you want to delete.

c. Click the delete (trash can) icon.

The CONFIRM DELETE FLOW RECORD pop-up appears.

32

Figure 5: Confirm Delete Flow Record Pop-up

• To delete a counter record:

a. Click Counter Record to view the list of counter records.

b. Select the counter record that you want to delete.

c. Click the delete (trash can) icon.

The CONFIRM DELETE COUNTER RECORD pop-up appears.

Figure 6: Confirm Delete Pop-up

• To delete a protocol:

33

a. Click Protocol to view the list of protocols.

b. Select the protocol that you want to delete.

c. Click the delete (trash can) icon.

The CONFIRM DELETE PROTOCOL pop-up appears.

Figure 7: Confirm Delete Protocol Pop-up

4. In the pop-up that appears, do any one of the following:

• Click Yes to delete the sFlow setting from the database. However, the changes are not applied to
the ingest service.

NOTE:

• We recommended that you do not delete an sFlow setting that is currently in use.

• After you delete an sFlow setting from the database, you cannot configure that sFlow
setting in new devices or device groups even if you have not deployed changes.

• You can also deploy changes to the ingest service or roll back the changes that you
have already deleted, from the PENDING CONFIGURATION page. For more
information, see Commit or Roll Back Configuration Changes in Paragon Insights.

• Select the Deploy changes check box and then click Yes to delete the sFlow setting from the
database, and to apply the changes to the ingest service.

• (Optional) Click No to cancel this operation.

34

sFlow - Device Configuration

When you configure a device to send sFlow to a collector, you simply set an source IP address, sample-
rate, polling-interval, udp-port, interface to capture from, and provide the IP address of the collector.
There is no opportunity to filter or choose what data gets sent from the device side.

The following example shows the output from a switch already configured to send sFlow to a collector
at IP address 10.204.32.46

[edit protocols sflow]
user@switch# show
polling-interval 20;
sample-rate egress 1000;
collector 10.204.32.46 {
 udp-port 5600;
}
interfaces ge-0/0/0.0;

OpenConfig

IN THIS SECTION

OpenConfig RPC | 36

gNMI-Encoded OpenConfig RPC | 36

OpenConfig - Device Configuration | 38

This format utilizes the OpenConfig data model using gRPC. The network device acts as a gRPC server
to terminate gRPC sessions from Paragon Insights, which runs as the client. RPC calls from Paragon
Insights trigger the creation of sensors that either stream data periodically or report events, which are
then funneled onto the appropriate gRPC channel as protobuf (GPB) messages.

In Paragon Insights releases prior to 3.1.0, OpenConfig could only be used on Junos OS and certain
Cisco devices. This is because Paragon Insights has native support for the OpenConfig RPCs used by
Juniper and Cisco, each of which uses its own proprietary encoding for OpenConfig data. Starting with
release 3.1.0, Paragon Insights supports the gRPC Network Management Interface (gNMI) for

35

OpenConfig communication. This protocol allows Paragon Insights to work with many third-party
OpenConfig implementations in a vendor independent way.

With OpenConfig, the device receives sensor subscriptions from Paragon Insights and pushes telemetry
data through any available interface, whether in-band or out-of-band.

Note that in the figure above, the out-of-band connection is shown as connecting to the fxp0 interface of
a Junos device. If the device was from a third-party vendor, the out-of-band connection would be to the
vendor-specific management port. Similarly, the in-band connection(s) would be to the vendor-specific
interface designation.

OpenConfig RPC

To use OpenConfig format, you configure the device as a gRPC server. With Paragon Insights acting as
the client, you define which sensors you want it to subscribe to, and it makes subscription requests
towards the device.

Data streamed through gRPC is formatted in OpenConfig key/value pairs in protocol buffer (GPB)
encoded messages. Keys are strings that correspond to the path of the system resources in the
OpenConfig schema for the device being monitored; values correspond to integers or strings that
identify the operational state of the system resource, such as interface counters. OpenConfig RPC
messages can be transferred in bulk, such as providing multiple interface counters in one message,
thereby increasing efficiency of the message transfer.

For more information on OpenConfig sensors, see Understanding OpenConfig and gRPC on Junos
Telemetry Interface.

gNMI-Encoded OpenConfig RPC

gNMI-encoded OpenConfig works much like OpenConfig RPC in that you must set the network device
up as an OpenConfig server to which Paragon Insights makes subscription requests. However, gNMI
supports more subscription types than Paragon Insights currently supports. Currently, Paragon Insights
only supports gNMI STREAM subscriptions in the SAMPLE mode. STREAM subscriptions are long-lived

36

https://www.juniper.net/documentation/en_US/junos/topics/concept/open-config-grpc-junos-telemetry-interface-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/open-config-grpc-junos-telemetry-interface-understanding.html

subscriptions that continue, indefinitely, to transmit updates relating to the set of paths configured
within the subscription. SAMPLE mode STREAM subscriptions must include a sample_interval.

The messages returned to the client through gNMI are encoded by the device in protobuf, JSON, or
JSON-IETF format and cannot be sent in bulk. This, in part, makes gNMI-encoded messaging less
efficient than gRPC-encoded messaging.

WARNING:

• For JSON or JSON-IETF, it is assumed that the device returns gNMI updates as only
leaf values encoded in JSON, rather than returning an entire hierarchy or sub-
hierarchy as a JSON object.

• Numbers encoded in JSON or JSON-IETF are decoded by Paragon Insights as either
float64, int64, or string, according to RFC 7159 and RFC 7951. If your OpenConfig
rules contain fields that are of a different type, we recommend that you change the
field types accordingly.

Junos OS and Cisco devices can be managed by Paragon Insights using gNMI-encoded OpenConfig. If a
device does not support gNMI in general, or the STREAM subscription in SAMPLE mode, or does not
support an OpenConfig request, it returns one of the following errors:

• Unimplemented

• Unavailable

• InvalidArgument

In the case of a Junos OS or Cisco device, the error causes the connection to fall back to OpenConfig
RPC. In the case of a third-party device, the connection simply fails due to the error.

gNMI-encoded OpenConfig can be enabled at the device or device-group level. If enabled at the device-
group level, then all devices added to the group use gNMI by default. If enabled (or not enabled) at the
device level, then the device level setting takes precedence over the device-group level setting.

NOTE: During the initial connection gNMI devices attempt to perform an initial sync with the
client. The device sends a continuous stream of data until the device and the collector (Paragon
Insights) are in sync. After initial sync, the device begins normal streaming operations based on
the configured reporting rate. Because of the processing load this creates, Paragon Insights has
this feature disabled by default. It can be enabled at the device-group or device level if needed.

For more information about gNMI, see: gRPC Network Management Interface (gNMI).

37

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7951
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

OpenConfig - Device Configuration

OpenConfig requires:

• Junos OS Version: 16.1 or later

• The OpenConfig sensor requires that the Junos device have the OpenConfig and network agent
packages installed. These packages are built into Junos OS Releases 18.2X75, 18.3, and later. For
releases between 16.1 and 18.2X75 or 18.2, you must install the packages.

For information on installing network agent package, see Installing the Network Agent Package
(Junos Telemetry Interface) topic.

To verify whether you have these packages, enter the following command:

user@host> show version | match "Junos:|openconfig|na telemetry"

Junos: 19.2R1.8
JUNOS na telemetry [19.2R1.8]
JUNOS Openconfig [19.2R1.8]

See Understanding OpenConfig and gRPC on Junos Telemetry Interface for more information.

• Network agent is not supported on PPC platforms (MX104, MX80, and so on)

• Required configuration:

set system services extension-service request-response grpc clear-text port number

Syslog

IN THIS SECTION

Overview | 39

System-Generated Fields | 40

Usage Notes | 41

Optional Configuration Elements | 41

38

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/task/network-agent-installing.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/task/network-agent-installing.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/open-config-grpc-junos-telemetry-interface-understanding.html

Example: Creating a Rule Using Syslog Ingest | 43

CONFIGURE NETWORK DEVICES | 44

SET UP SYSLOG INGEST | 44

CREATE RULE, APPLY PLAYBOOK | 52

In addition to the JTI-related options above, starting with Release 2.1.0, Paragon Insights also supports
syslog natively as another data collection method, using a data model that aligns with other Paragon
Insights ingest mechanisms to provide all the same feature richness.

A device can push syslog messages (when configured) over UDP to the Paragon Insights server either
out-of-band through the Routing Engine (RE) using the router’s management interface, or in-band
through the Packet Forwarding Engine, that is, directly from a line card.

To use syslog format, you configure the device with settings that include where to send the syslog
messages. See "Syslog - Device Configuration" on page 43 below for details. When you configure
Paragon Insights to start collecting the data, messages are already flowing towards the server.

For more information on syslog as used by Juniper devices, see Junos OS System Log Overview.

Overview

Syslog ingest requires some setup before you can use it as a sensor in a rule:

• Pattern - A pattern identifies some syslog event; you create a pattern for each event you want to
monitor. You can configure patterns for both structured and unstructured events.

• Pattern set - With the patterns configured, you then group them into a pattern set, which you then
reference when defining the syslog sensor settings within a rule.

To see how patterns and pattern sets are used, see "Example: Creating a Rule Using Syslog Ingest" on
page 43.

39

https://www.juniper.net/documentation/en_US/junos/topics/concept/syslog-messages-configuration-overview.html

System-Generated Fields

Some fields are common in syslog messages. Paragon Insights extracts these fields and includes them
automatically in the raw table, enabling you to make use of them directly when creating a rule, and
avoiding the need to configure patterns.

To illustrate use of these values, consider the following example syslog messages:

Structured - <30>1 2019-11-22T03:17:53.605-08:00 R1 mib2d 28633 SNMP_TRAP_LINK_DOWN [junos@2636.1.1.1.2.29 snmp-
interface-index="545" admin-status="up(1)" operational-status="down(2)" interface-name="ge-1/0/0.16"] ifIndex 545,
ifAdminStatus up(1), ifOperStatus down(2), ifName ge-1/0/0.16

Equivalent unstructured - <30>Nov 22 03:17:53 R1 mib2d[28633]: SNMP_TRAP_LINK_DOWN: ifIndex 545, ifAdminStatus
up(1), ifOperStatus down(2), ifName ge-1/0/0.16

System-generated fields:

• "__log_priority__" - Priority of syslog message

• In the examples, <30> denotes the priority

• “__log_timestamp__" - Timestamp in epcoh in the syslog message

• In the structured example, 2019-11-22T03:17:53.605-08:00 is converted to epoch with -08:00
indicating the time zone

• In the unstructured example, the time zone from the configuration will be used to calculate epoch

• "__log_host__" - Host name in the syslog message

• In the examples, R1 denotes the host name

• "__log_application_name__” - Application name in the syslog message

• In the examples, mib2d is the application name

• "__log_application_process_id__” - Application process ID in the syslog message

• In the examples, 28633 is the ID

• "__log_message_payload__" - Payload in the message

• Structured example - “SNMP_TRAP_LINK_DOWN [junos@2636.1.1.1.2.29 snmp-interface-index="545" admin-
status="up(1)" operational-status="down(2)" interface-name="ge-1/0/0.16"] ifIndex 545, ifAdminStatus up(1),
ifOperStatus down(2), ifName ge-1/0/0.16”

• Unstructured example - “SNMP_TRAP_LINK_DOWN: ifIndex 545, ifAdminStatus up(1), ifOperStatus down(2),
ifName ge-1/0/0.16”

40

• "Event-id" - Denotes the event ID configured in the pattern

• In the examples, SNMP_TRAP_LINK_DOWN is the event ID

NOTE: Be sure not to define any new fields using a name already defined above.

Usage Notes

• If you add a device in Paragon Insights using its IP address (and the address is not the actual host
name of the device), you must also add the device’s host name in the Syslog Hostnames field.

• Multiple device groups can listen for syslog messages using the same port.

• A configured time zone is not considered when processing structured messages, as the messages
themselves include the time zone.

• Daylight savings time is not currently supported.

Optional Configuration Elements

Configure Syslog Ports

By default, Paragon Insights listens for syslog messages from all device groups on UDP port 514. You
can change the system-level syslog port, as well as configure one or more ports per device group. The
more specific device group setting takes precedence over the system level setting.

To change the system-level syslog port:

1. Click Settings > Ingest in the left-nav bar.

2. Select the Syslog tab on the Ingest Settings page.

3. On the Syslog page, edit the port number.

4. Click Save & Deploy.

To configure a syslog port for a device group:

1. Go to the Configuration > Device Group page and click on the name of a device group.

2. Click the Edit (pencil) icon.

3. In the pop-up window, enter the port(s) in the Syslog Ports field.

4. Click Save & Deploy.

41

Configure Time Zone for a Device

When a device exports structured syslog messages, time zone information is included within the
message. However, unstructured syslog messages do not include time zone information. By default,
Paragon Insights uses GMT as the time zone for a device. In these cases you can assign a time zone to a
device or device group within Paragon Insights.

To configure a device’s time zone at the device group level:

1. Go to the Configuration > Device Group page and click on the name of a device group.

2. Click the Edit (pencil) icon.

3. In the pop-up window, enter a value in the Timezone field, for example -05:00.

To configure a device’s time zone at the device level:

1. Go to the Configuration > Device page and click on the name of a device.

2. Click the Edit (pencil) icon.

3. In the pop-up window, enter a value in the Timezone field, for example -05:00.

NOTE: The more specific device setting takes precedence over the device group setting.

Configure Multiple Source IP Addresses for a Device

In cases where syslog messages arrive from a device using a different source IP address than the one
originally configured in the Paragon Insights GUI, you can add additional source IP addresses.

To support additional source IP addresses:

1. Go to the Configuration > Device page and click on the name of a device.

2. Click the Edit (pencil) icon.

3. In the pop-up window, enter the IP address(es) in the Syslog Source IPs field.

Configure Host Name Aliases for a Device

When a device has more than one host name, such as a device with dual REs, syslog messages can arrive
at the Paragon Insights server with a host name that is not the device’s main host name. In these cases,
you can add host name aliases for that device.

42

NOTE: If you add a device in Paragon Insights using its IP address, you must also add the host
name that will appear in the syslog messages.

To configure additional hostname aliases:

1. Go to the Configuration > Device page and click on the name of a device.

2. Click the Edit (pencil) icon.

3. In the pop-up window, enter the host name(s) in the Syslog Host Names field.

Syslog - Device Configuration

Syslog requires that you have at least the following configuration elements committed on your device(s)
in addition to

• Junos OS Version: Any release

• Required configuration:

set system syslog host 110.1x.x0.1 any any
set system syslog host 10.1x.x0.1 allow-duplicates
set system syslog host 10.1x.x0.1 structured-data

10.1x.x0.1 = Paragon Insights server

Example: Creating a Rule Using Syslog Ingest

To illustrate how to configure and use a syslog sensor, consider a scenario where you want to:

• Monitor interface operational down status

• Use two syslog events, one structured and one unstructured

• SNMP_TRAP_LINK_DOWN

• PSEUDO_FPC_DOWN

• Use a rule with a trigger to indicate when the interface goes down

To implement this scenario, you will need to complete the following activities:

• "CONFIGURE NETWORK DEVICES" on page 44

43

https://apps.juniper.net/syslog-explorer/#msg=SNMP_TRAP_LINK_DOWN&sw=Junos%20OS&rel=19.3R1

• "SET UP SYSLOG INGEST" on page 44

• "CREATE RULE, APPLY PLAYBOOK" on page 52

• "Monitor the Devices" on page 59

The workflow is as follows:

CONFIGURE NETWORK DEVICES

NOTE: This example assumes you have already added your devices into Paragon Insights and
assigned them to a device group.

Add Syslog Configuration to the Network Device

If not already done, configure your network device(s) to send syslog data to Paragon Insights. The
example device configuration from the previous section is repeated here:

set system syslog host 10.1x.x0.1 any any
set system syslog host 10.1x.x0.1 allow-duplicates
set system syslog host 10.1x.x0.1 structured-data

10.1x.x0.1 = Paragon Insights server

SET UP SYSLOG INGEST

Configure Events Patterns

An Event pattern is a configuration to monitor some syslog event; you create a pattern for each event
you want to monitor. This example uses patterns to monitor four syslog events (two structured and two
unstructured).

44

NOTE: See the usage notes at the end of this section for more detail on what has been
configured.

1. In the Paragon Insights GUI, click Settings > Ingest in the left-nav bar.

2. Select the Syslog tab on the Ingest Settings page.

3. On the Syslog page, click the plus (+) icon.

4. In the pop-up window that appears, enter the following parameters for the first pattern, named
snmp-if-link-down:

5. Click Save and Deploy.

6. Click the plus (+) icon once more and enter the following parameters for the second pattern, named
fpc-offline:

45

NOTE: The full value entered in the Filter field is fpc%{NUMBER:fpc} Marking ports %
{WORD:port-status}

7. Click Save and Deploy. On the Syslog page you should see the two patterns you just created.

Usage notes for the patterns

For structured syslog:

• The event ID (SNMP_TRAP_LINK_DOWN) references the event name found within the syslog
messages.

• Fields are optional for structured syslog messages; if you don’t configure fields, the attribute names
from the message will be treated as field names.

• In this example, however we have user-defined fields:

• The field names (if-name, snmp-index) are user-defined.

• The field interface-name value is an attribute from the syslog message, for example, ge-0/3/1.0;
this field is renamed as if-name

• The field snmp-interface-index value is an attribute from the syslog message, for example,
ifIndex 539; this field is renamed as snmp-index

• The field snmp-interface-index here is defined as an integer; by default the fields extracted
from a syslog message are of type string, however type integer changes this to treat the value
as an integer

• The constant section is optional, in this example, we have user-defined constants.

• The constant name ifOperStatus is user-defined; in this case it has the integer value of '2'

46

• Filter configuration is optional for a structured syslog, though you can do so if desired; if used, the
filter-generated fields will override the fields included in the syslog message.

• The key fields section is optional; by default the hostname and event ID will be the keys used by
Paragon Insights; add additional key fields here; in this example, we have key-fields, namely
interface-name, where the name and value are extracted from the syslog message’s attribute-value
pair

For unstructured syslog:

• The event ID is user defined, this case PSEUDO_FPC_DOWN

• For example, neither the unstructured syslog Nov 22 02:27:05 R1 fpc1 Marking ports down nor its
structured counterpart <166>1 2019-11-22T02:38:23.132-08:00 R1 - - - - fpc1 Marking ports down includes
an event ID

• A filter must be used to derive fields (unlike proper structured syslog); this example uses fpc%
{NUMBER:fpc} Marking ports %{WORD:port-status}, where fpc becomes the field name and NUMBER denotes
the syntax used to extract the characters out of that particular portion of the message, for example
“2”

• An example of a syslog message that matches the grok filter is “fpc2 Marking ports down”

• constant fpc-status - has a string value of ‘online’

Regarding filters:

• By default in a pattern, field and constant values are a string; to treat it as an integer or float, define
the pattern’s field type as integer or float

• For unstructured patterns, you must configure a filter as the messages are sent essentially as plain
text and don’t include field info on their own

• Filters should always be written to match the portion of message after the event ID; this allows the
filter to parse a syslog message irrespective of whether it arrives in unstructured or structured format

• For example, the filter fpc%{NUMBER:fpc} Marking ports %{WORD:port-status} matches both versions of the
following syslog message:

• Structured: <166>1 2019-11-22T02:38:23.132-08:00 R1 - - - - fpc1 Marking ports down

• Unstructured: Nov 22 02:27:05 R1 fpc1 Marking ports down

Clone an Existing Syslog Events Pattern

Starting with Paragon Insights Release 4.0.0, you can clone an existing Syslog pattern.

To clone an existing Syslog events pattern:

47

1. Click Settings > Ingest in the left-nav bar.

The Ingest Settings page is displayed.

2. Click the Syslog tab to view the Syslog page.

3. Click to expand the Events Pattern section in the Syslog Settings page to view existing syslog events
patterns.

4. To clone a pattern for Paragon Insights Release 4.0.0 and 4.1.0, click the Clone icon.

To clone a particular template for Paragon Insights Release 4.2.0 and later, select the option button
next to the name of the template and click Clone.

The Clone Pattern: <name of syslog pattern> page is displayed.

From the Clone Pattern: <name of syslog pattern> page, you can

• Edit existing fields

• Add new fields or constants

• Add or remove key fields

5. Click Save to save configuration and clone the syslog pattern.

Alternatively, click Save & Deploy to save configuration, clone syslog pattern, and deploy the pattern.

Add Patterns to a Pattern Set

With the patterns configured, group them into a pattern set.

1. On the Syslog page,click to expand the Pattern Set section and click the plus (+) icon.

2. In the pop-up window that appears, enter the following parameters:

48

3. Click Save and Deploy. On the Syslog page you should see the pattern set you just created.

Clone an Existing Syslog Pattern Set

Starting with Paragon Insights Release 4.0.0, you can clone an existing Syslog pattern set.

To clone an existing Syslog pattern set:

1. Click Settings > Ingest in the left-nav bar.

The Ingest Settings page is displayed.

2. Click the Syslog tab to view the Syslog page.

3. Click to expand the Pattern Set section in the Syslog page to view existing syslog pattern sets.

4. To clone a pattern set for Paragon Insights Release 4.0.0 and 4.1.0, click the Clone icon.

To clone a particular template for Paragon Insights Release 4.2.0 and later, select the option button
next to the name of the template and click Clone.

The Clone Pattern-set: <name of pattern-set> page is displayed.

From the Clone Pattern-set: <name of pattern-set> page, you can

• Edit the name and description fields

• Add or remove patterns from the Patterns field.

5. Click Save to save configuration and clone the syslog pattern set.

Alternatively, click Save & Deploy to save configuration, clone syslog pattern set, and deploy the
pattern set.

Configure Header Pattern

Starting in Paragon Insights Release 4.0.0, you can configure the pattern for parsing the header portion
of a syslog message. With this release, unstructured syslog messages of non-Juniper devices are
supported. In earlier releases, you can only parse the payload portion of either a structured syslog
message as specified in RFC 5424 standard, or a Juniper device’s unstructured syslog message.

In general, it is assumed that any unstructured syslog message matches the Juniper syslog message
pattern. For example, you do not have to configure a Juniper header pattern as this pattern is inbuilt
with Paragon Insights. However, in case of a non-Juniper device’s unstructured syslog message that does
not match with the inbuilt pattern, a first match is made with one of the user-configured header
patterns. Following a successful match, the fields are extracted. When there is no match, the incoming
syslog message is dropped.

49

https://tools.ietf.org/html/rfc5424

To configure a header pattern:

1. Navigate to Settings > Ingest in the left-nav bar.

The Ingest Settings page is displayed.

2. Click Syslog to view the Syslog page.

3. Click to expand the Header Pattern section.

The Header Pattern section of the Syslog page is displayed. You can add a new header pattern and
edit or delete an existing header pattern from this page.

4. Click the plus (+) icon to add a new header.

The Add Header Pattern page is displayed.

5. Enter the following information in the Add Header Pattern page.

a. Enter a name for the header pattern in the Name field.

b. Enter a description for the header pattern in the Description field.

For example, you can provide a one-line description of why you are creating this header pattern.

c. Enter the filter or regular expression (regex) for the header patter in the Filter field.

NOTE: You can use regex101.com to edit, validate, and modify the filter pattern you want
to add to the header pattern.

An example of a filter pattern is (.*):([A-Z][a-z]{2} \d{1,2} \d{1,2}:\d{1,2}:\d{1,2}\.\d*)\s:\s([a-z]*)\
[(\d*)\]:\s*(.*)\s*.

d. log-host, log-timestamp, and log-message-payload of the Fields section are mandatory fields that
determine the position of the header.

In the Fields section,

i. Click log-host, and enter the following information.

• Enter a name for the log host in the Name field.

log-host is the default name.

• Enter a description for log-host in the Description field.

The default description is Position of host name.

• Enter the capture group value with prefix $ in the From field.

50

https://regex101.com/

The capture group determines from which position in the header the log-host starts.

ii. Click log-timestamp, and enter the following information.

• Enter a name for the log timestamp in the Name field.

log-timestamp is the default name.

• Enter a description for log-timestamp in the Description field.

The default description is Position of time stamp.

• Enter the capture group value with prefix $ in the From field.

The capture group determines from which position in the header the log-timestamp
starts.

NOTE: Ensure that timestamp format follows this sample timestamp format: “Jan _2
15:04:05 2006”. Otherwise parsing of syslog messages will lead to an undefined
behaviour.

iii. Click log-message-payload, and enter the following information.

• Enter a name for the log message payload in the Name field.

log-message-payload is the default name.

• Enter a description for log-message-payload in the Description field.

The default description is Position of payload.

• Enter the capture group value with prefix $ in the From field.

The capture group determines from which position in the header the log-message-
payload starts.

iv. (Optional) Click the plus (+) icon to add a new field.

• Enter a name for the new field in the Name field.

• Enter a description for the new field in the Description field.

• Enter the capture group value with prefix $ in the From field.

The capture group determines from which position in the header the new field starts.

You can add one or more than one fields by clicking the plus (+) icon.

6. Enter the name(s) of key fields in the Key Fields text box.

51

7. Click Save to save configuration, or click Save & Deploy to save and immediately deploy the
configuration.

Alternatively, to cancel the configuration, click Cancel.

Editing an Existing Header Pattern

To edit an already configured header pattern:

1. Navigate to Settings > Ingest in the left-nav bar.

The Ingest Settings page is displayed.

2. Click Syslog to view the Syslog page.

3. Click to expand the Header Pattern section.

The Header Pattern section of the Syslog Setting page is displayed.

4. Select the header pattern you want to edit by selecting the check box next to the name of the header
pattern, and click the Edit (pencil) icon.

The Edit Header Pattern Header Name page is displayed.

5. After you have edited the required fields, click Save to save configuration.

You can also click Save & Deploy to save and immediately deploy the edited configuration.

CREATE RULE, APPLY PLAYBOOK

Configure a Rule Using the Syslog Sensor

With the syslog ingest settings complete, you can now create a rule using syslog as the sensor.

This rule includes three elements:

• A syslog sensor

• Four fields capturing data of interest

• A trigger that indicates when the interface goes down

NOTE: See the usage notes at the end of this section for more detail on what has been
configured.

1. Click Configuration > Rules in the left-nav bar.

52

2. On the Rules page, click the + Add Rule button.

3. On the page that appears, in the top row of the rule window, set the rule name. In this example, it is
check-interface-status.

4. Add a description and synopsis if you wish.

5. Click the + Add sensor button and enter the following parameters in the Sensors tab:

6. Now move to the Fields tab, click the + Add field button, and enter the following parameters to
configure the first field, named event-id:

7. Click the + Add field button again and enter the following parameters to configure the second field,
named fpc-slot:

53

8. Click the + Add field button again and enter the following parameters to configure the third field,
named if-name:

9. Click the + Add field button once more and enter the following parameters to configure the fourth
field, named snmp-index:

54

10. Now move to the Triggers tab, click the + Add trigger button, and enter the following parameters to
configure a trigger named link-down:

55

11. At the upper right of the window, click the + Save & Deploy button.

Usage Notes for the rule

• Sensor tab

56

• The sensor name if-status-sensor is user-defined

• The sensor type is syslog

• Pattern set check-interface-status - reference to the pattern set configured earlier

• If not set, the Maximum hold period defaults to 1s

• Fields tab

• Four fields are defined; although the patterns are capturing more than four fields of data, this
example defines four fields of interest here; these fields are used in the trigger settings

• The field names (event-id, fpc-slot, if-name, snmp-index) are user-defined

• path event-id - default field created by syslog ingest in the raw table; references the field from the
pattern configuration

• path fpc - references the value from the filter used in the unstructured pattern configuration

• path if-name - references the field from the pattern configuration

• Data if missing all interfaces - if the if-name value is not included in the syslog message, use
the string value “all interfaces”

• path snmp-index - references the field from the pattern configuration

• Triggers tab

• The trigger name link-down is user-defined

• frequency 2s - Paragon Insights checks for link-down syslog messages every 2 seconds

• term is-link-down - when $event-id is like SNMP_TRAP_LINK_DOWN, in any syslog message in
the last 300 seconds, make red and show the message Link down for $if-name(snmp-id: $snmp-
index)

• $event-id - $ indicates to reference the rule field event-id

• Link down for $if-name(snmp-id: $snmp-index) - for example, “Link down for ge-2/0/0 of FPC
2”

• $if-name - references the field value, i.e., the name of the interface in the syslog message

• term is-fpc-down - when $event-id is like PSEUDO_FPC_DOWN, in any syslog message in the
last 300 seconds, make red and show the message Link down for $if-name of FPC$fpc-slot

• $event-id - $ indicates to reference the rule field event-id

• $if-name - “all interfaces”

57

• Link down for $if-name of FPC$fpc-slot - for example, “Link down for all interfaces of FPC 2”

Add the Rule to a Playbook

With the rule created, you can now add it to a playbook. For this example, create a new playbook to
hold the new rule.

1. Click Configuration > Playbooks in the left-nav bar.

2. On the Playbooks page, click the + Create Playbook button.

3. On the page that appears, enter the following parameters:

4. Click Save & Deploy.

Apply the Playbook to a Device Group

To make use of the playbook, apply it to a device group.

1. On the Playbooks page, click the Apply (Airplane) icon for the check-interface-status playbook.

2. On the page that appears:

• Enter a name

• Select the desired device group

• Click Run Instance

58

3. On the Playbooks page, confirm that the playbook instance is running. Note that the playbook may
take some time to activate.

Monitor the Devices

With the playbook applied, you can begin to monitor the devices.

1. Click Monitor > Device Group Health in the left-nav bar, and select the device group to which you
applied the playbook from the Device Group pull-down menu.

2. Select one of more of the devices to monitor.

3. In the Tile View, the tile labeled external contains the parameters from the rule you configured
earlier.

NOTE: For this example, since the rule trigger does not include a ‘green’ term, the status will
show red when there is an issue and otherwise will show gray (no data).

SNMP Trap and Inform Notifications

IN THIS SECTION

Glossary | 60

Configurations | 62

Paragon Insights Release 4.0.0 supports inform and trap notifications that are sent by devices in the
network for fault management. Traps and informs are notifications about change of state in network
that are sent between the SNMP manager (Paragon Insights) and the SNMP agents (devices), on which
Paragon Insights performs trigger evaluations. Paragon Insights processes traps and informs from the
configured device only if a playbook containing an SNMP-notification rule is running for the specified
device. In all other cases, the trap or inform message is dropped by the SNMP Manager.

The following sections describe relevant terms, configuration of traps and informs through CLI, port
configuration, and accessing status of SNMP traps through CLI.

59

NOTE: SNMP trap notifications are supported by SNMPv2c and SNMPv3. SNMP inform
messages are supported only when you use SNMPv3 protocol.

Glossary

The following terms are used when describing processes or concepts related to SNMP traps and
informs.

• Authoritative agent — In SNMPv3 transactions between two entities (agent and manager), the flow
of sending notification is controlled through authentication and privacy that are unique features in
SNMPv3.Authentication identifies and verifies the source of an SNMPv3 message. The privacy
feature prevents packet analyzers from snooping the content of messages by encrypting them.

The entity that controls the notification flow is known as authoritative agent. In SNMPv3, the non-
authoritative entity must know the <Engine ID> of the authoritative agent for a successful
communication.

• Traps or trap messages — A trap is an unacknowledged notification sent from an SNMP agent to the
SNMP manager. In trap messages, SNMP agent is the authoritative agent. The administrator must
configure the SNMP v3 <user> (distinct from the local IAM users) and <Context Engine ID> on the
device that sends out the trap messages. For traps, the <Context Engine ID> is set to the Engine ID
that uniquely identifies the SNMP agent.

• Informs or inform messages — An inform is also a notification sent from an SNMP agent to the SNMP
manager. In inform messages, SNMP manager is the authoritative agent. The configuration is done on
the device that needs to send inform messages, with the details of the remote authoritative agent,
SNMP manager. The administrator must configure the <user> found in the remote SNMP manager.

• Engine ID — <Engine ID> is a hexadecimal generated for a given agent that uniquely identifies the
SNMP agent and needs to be unique across a given administrative domain. It also must be persistent
across reboots or upgrades.

• Security Engine ID — It is a security parameter in the SNMP communication between the agent and
the manager. It is usually set to the <Engine ID> of the authoritative agent involved. A trap message
has two parts: a header and a trap Protocol Data Unit (PDU). The header contains the <Security
Engine ID> and a <username> set in the trap configuration. When an agent sends a trap, these
parameters in the trap header are checked against the details stored in the USM table. The trap is
further processed only when there is a match.

• Context Engine ID — <Context Engine ID> is part of a trap PDU. It uniquely identifies a device which
has sent the original trap message. <Context Engine ID> and <Security Engine ID> are identical is
most cases.

60

• USM Table — SNMP managers receiving the traps needs to maintain the USM table (User-based
Security Model) which has <Security Engine ID> and <username> as the key to verify the source of
the trap messages.

• Virtual IP Address for SNMP Proxy — Paragon Insights is deployed as a Kubernetes application and it
uses load balancers that exposes virtual IP addresses to external entities. When messages are routed
through the load balancer, the source IP address of the trap message will be set to the IP address of
the load balancer.

The load balancer has an option to retain the source IP address if you allot an exclusive virtual IP
address for services that require the source IP address of SNMP agents to be preserved. Since in
SNMP notifications, the source IP address is required for parsing the message, an exclusive virtual IP
must be allotted for SNMP Proxy. The same virtual IP needs to be configured on the device or device
groups as the target address.

Events such as interface flap in your network can create multiple inform or trap notifications. To
determine the order of the notifications, Paragon Insights must capture the timestamp of devices
sending SNMP notifications in nanosecond. However, SNMP protocol records the device timestamp (in
seconds) as the notifications reach Paragon Insights. As SNMP notifications are sent through UDP, there
is also no guarantee of the order of SNMP notifications.

To enable you to capture the order of SNMP notifications, the following fields are parsed from the
SNMP Header of the notification packets.

• Message ID: Used by devices to identify the SNMP message and match responses to the message.
Message ID can be found in the SNMP Header.

When you create a rule for SNMP trap or inform notifications, use the path __msg_id__ in a field to
collect message ID.

• Request ID: Used to identify the SNMP protocol data unit (PDU). Request ID can be found in the trap
or inform PDU.

When you create a rule for SNMP trap or inform notifications, use the path __req_id__ in a field to
collect request ID.

• SNMP Version: Identifies the version number of the SNMP notification (2 or 3).

When you create a rule for SNMP trap or inform notifications, use the path __version__ in a field to
collect version number.

• SNMP PDU Type: Identifies the type of SNMP notification (v2c trap or inform request).

When you create a rule for SNMP trap or inform notifications, use the path __pdu_type__ in a field to
collect the PDU type.

61

The SNMP PDU type field data captured in the time-series database shows v2c for all SNMP trap
notifications. You can check the version number to determine if the trap is generated using SNMP
v2c or SNMP v3.

Configurations

IN THIS SECTION

Find the Engine Id | 62

Trap Configurations | 63

SNMPv3 Inform Configurations | 68

Port Configuration | 70

Rule Configuration | 71

The following sections detail how to:

• "Find the Engine Id" on page 62

• "Trap Configurations" on page 63

• "SNMPv3 Inform Configurations" on page 68

• "Rule Configuration" on page 71

• "Port Configuration" on page 70

Find the Engine Id

Depending on if you configure devices to send trap or inform notifications, you need to first find the
<Engine ID> of either the SNMP agent. You can refer to the sample commands below to find the engine
id in Junos devices.

NOTE: The CLI command to find <Engine ID> varies from vendor-to-vendor.

To find the <Engine ID> of SNMP agents (devices) that are Junos-based platforms, enter the following
command in CLI.

show snmp v3 engine-id

62

You will receive a HEX output as the device <Engine ID>.

Trap Configurations

You can configure a device to send trap notifications using SNMPv2c and SNMPv3.

The source IP address needs to be unique across all the devices as it uniquely identifies the device. The
source IP address can only be configured under device while community name can be configured under
both device and device group.

NOTE: In Paragon Insights, the SNMPv2c and SNMPv3 ingest and trap configurations share the
same workflow.

To configure SNMP trap notifications at the device level:

1. Click the Configuration > Device option in the left navigation bar.

2. Click the add device button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device.

The following table describes the attributes in the Add a Device window:

Table 5: Add Device(s) Page Details

Attributes Description

Name Name of the device. Default is hostname. (Required)

Hostname / IP Address / Range Hostname or IP address of a single device. If you are
providing a range of IP addresses, enter the IP
address for the device that marks the start and end
of the address range. (Required)

SNMP

SNMP Port Number Port number required for SNMP. The port number is
set to the standard value of 161.

SNMP Version Select either v2c or v3 in the drop-down menu.

63

Table 5: Add Device(s) Page Details (Continued)

Attributes Description

SNMP Community This field appears if you selected v2c in SNMP
Version field.

Enter an SNMP Community string if you configure
SNMPv2c for trap notifications.

In SNMPv2c, Community string is used to verify the
authenticity of the trap message issued by the SNMP
agent (devices such as routers, switches, servers, and
so on).

SNMPv3 Username This field appears if you selected v3 in SNMP Version
field.

Enter a username for trap notifications.

Authentication None This field appears if you selected v3 in SNMP Version
field.

Enable this option on if you want to set SNMPv3
authentication to None.

Protocol None This field appears if you selected v3 in SNMP Version
field.

Enable this option on if you want to set SNMPv3
protocol to None.

SNMPv3 Authentication Protocol This field appears if you selected v3 in SNMP Version
field and disabled Authentication None.

Select an authentication protocol from the drop-
down menu.

SNMP authentication protocol hashes the SNMP
username with the passphrase you enter. The hashed
output is sent along with the trap notification
message. Paragon Insights again hashes the
username with the passphrase you entered for
authentication. If the output matches, the trap
notification is further processed.

64

Table 5: Add Device(s) Page Details (Continued)

Attributes Description

SNMPv3 Authentication Passphrase This field appears if you selected v3 in SNMP Version
field and disabled Privacy None.

Enter a passphrase for SNMPv3 authentication.

SNMPv3 Privacy Protocol Select a privacy protocol from the drop-down menu.

Privacy algorithm encrypts the trap notification
message with the protocol passphrase so that the
message cannot be read by an unauthorized
application in the network.

SNMPv3 Privacy Passphrase This field appears if you selected v3 in SNMP Version
field and disabled Privacy None.

Enter a passphrase to encrypt the trap notification.

Context Engine ID This field appears if you selected v3 in SNMP Version
field.

The Engine ID must be set to engine-id of the SNMP
agent.

Source IP Address Enter the source IP address of the device.

This field is mandatory for SNMPv2c traps and
optional for SNMPv3 traps and informs.

If you use NAT or an SNMP Proxy, the virtual IP
address you configure for the SNMP Proxy must be
set as the source IP address.

To set virtual IP address for SNMP Proxy, go to
Settings > Deployment in the left navigation bar. In
the Loadbalancer page, enter the virtual IP adres and
click Save and Deploy button.

4. Click Save to commit the configuration or click Save and Deploy to deploy the configuration in
Paragon Insights.

To configure SNMP trap notifications at the device-group level:

65

1. Click the Configuration > Device Group option in the left navigation bar.

2. Click the add group button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device group.

The following table describes the attributes in the Add a Device Group window:

Table 6: Add Device Group Page Details

Attributes Description

Name Name of the device group. (Required)

Description Description for the device group.

Devices Add devices to the device group from the drop-down list. (Required)

Starting in Paragon Insights Release 4.0.0, you can add more than 50 devices per
device group. However, the actual scale of the number of devices you can add
depends on the available system resources.

For example, consider that you want to create a device group of 120 devices. In
releases earlier than release 4.0.0, it is recommended that you create three device
groups of 50, 50, and 20 devices respectively. With Paragon Insights Release 4.0.0,
you just create one device group.

SNMP

SNMP Port Number Port number required for SNMP. The port number is set to the standard value of 161.

SNMP Version Select either v2c or v3 in the drop-down menu.

• If you select v2c, the SNMP Community name field appears. The string used in v2c
authentication is set to public by default. It is recommended that users change the
community string.

• If you select v3, you are given an option to set username, authentication and
privacy methods, and authentication and privacy secrets.

66

Table 6: Add Device Group Page Details (Continued)

Attributes Description

Notification Ports Enter notification ports separated by comma.

Paragon Insights listens on these notification ports for traps and inform notification
messages from device groups.

SNMP Community This field appears if you selected v2c in SNMP Version field.

Enter an SNMP Community string if you configure SNMPv2c for traps and ingest.

In SNMPv2c, Community string is used to verify the authenticity of the trap
notification messages issued by the SNMP agent.

SNMPv3 Username This field appears if you selected v3 in SNMP Version field.

Enter a username for trap notifications.

The USM configuration configured under device-groups is shared among devices
configured under the same device-group.

Authentication
None

This field appears if you selected v3 in SNMP Version field.

Enable this option on if you want to set SNMPv3 authentication to None.

Privacy None This field appears if you selected v3 in SNMP Version field.

Enable this option on if you want to set SNMPv3 privacy protocol to None.

SNMPv3
Authentication
Protocol

This field appears if you selected v3 in SNMP Version field and disabled
Authentication None.

Select an authentication protocol from the drop-down menu.

SNMP authentication protocol hashes the SNMP username with the passphrase you
enter. The hashed output is sent along with the trap notification message. Paragon
Insights again hashes the username with the passphrase you entered for
authentication. If the output matches, the trap notification is further processed.

SNMPv3
Authentication
Passphrase

This field appears if you selected v3 in SNMP Version field and disabled Privacy None.

Enter a passphrase for SNMPv3 authentication.

67

Table 6: Add Device Group Page Details (Continued)

Attributes Description

SNMPv3 Privacy
Protocol

Select a privacy protocol from the drop-down menu.

Privacy algorithm encrypts the trap notification message with the protocol passphrase
so that the message cannot be read by an unauthorized application in the network.

SNMPv3 Privacy
Passphrase

This field appears if you selected v3 in SNMP Version field and disabled Privacy None.

Enter a passphrase to encrypt the trap notification.

Logging Configuration

SNMP Notification Paragon Insights Release 4.0.0 supports collecting log data for SNMP notification. You
can collect different severity levels of logs for snmp-notification service in a device
group.

Use these fields to configure which log levels to collect:

Global Log
Level

From the drop-down list, select the level of the log messages that you
want to collect for every running Paragon Insights service for the
device group. The level is set to error by default.

Log Level for
specific
services

Select the log level from the drop-down list for any specific service
that you want to configure differently from the Global Log Level
setting. The log level that you select for a specific service takes
precedence over the Global Log Level setting.

4. Click Save to commit the configuration or click Save and Deploy to deploy the configuration in
Paragon Insights. For information on how to use the device group cards, see Monitor Device and
Network Health.

SNMPv3 Inform Configurations

To enable devices to send inform notifications, you must configure SNMPv3 USM user(s).

To create USM users in Paragon Insights:

1. Navigate to Settings > Ingest.

2. Select the SNMP Notification tab on the Ingest Settings page.

68

3. Click the Usm Users section.

4. Click the plus (+) icon to add a USM user.

5. In the Add USM User page, enter the username, select the authentication and the privacy protocols,
and enter passphrases.

If you enabled Authentication None and Privacy none, the protocol menu and passphrase fields do
not appear.

6. Click Save to only save the configuration and Save and Deploy to deploy the configuration in
Insights.

After adding USM users, you can configure the following details in the Add Device(s) page in Device
Configuration or Add Device Group page in Device Group Configuration.

Table 7: SNMP Configuration for Informs

Attributes Description

SNMP

SNMP Port Number Port number required for SNMP. The port number is set to the standard value of 161.

SNMP Version Select v3 in the drop-down menu.

Notification Ports
(Device Groups only)

Enter notification ports separated by comma.

Paragon Insights listens on these notification ports for traps and inform notification
messages from device groups.

Context Engine ID
(Devices only)

This field appears if you selected v3 in SNMP Version field.

The Engine ID must be set to engine-id of the SNMP agent.

69

Table 7: SNMP Configuration for Informs (Continued)

Attributes Description

Source IP Address
(Devices only)

This field appears if you selected v3 in SNMP Version field.

Enter the source-IP-address of the device.

If you use NAT or an SNMP Proxy, the virtual IP address you configure for the SNMP
Proxy must be set as the source IP address.

To set virtual IP address for SNMP Proxy, go to Settings > Deployment in the left
navigation bar. In the Loadbalancer page, enter the virtual IP address and click Save
and Deploy.

Starting with Paragon Insights 4.2.0, you can collect _device_timestamp_ as a raw data metric. Device
timestamp (in seconds) denotes the time when the inform notification is sent from a device.

NOTE: Device timestamp for an inform notification is captured by the SNMP sensor only if you
configured authentication for an inform message.

The device timestamp data for SNMP trap notifications are the same as the received time metric in
Paragon Insights. The device timestamp for traps and the time metric for trap notifications denote the
time when the SNMP notification is received by Paragon insights.

Port Configuration

By default, Paragon Insights listens for traps and informs in the standard SNMP trap port 162. This can
be changed if needed either at the global level which is applicable to all device groups or at the device
group level applicable to a specific device group.

Port configured under ingest will apply to all device groups. Trap and Inform messages received through
any other port are discarded.

To configure port number at the ingest level:

1. Navigate to Settings > Ingest in the left-nav bar.

2. Select the SNMP Notification tab on the Ingest Settings page.

3. In the Port section, enter the port number.

4. Click Save to only save the configuration and Save and Deploy to deploy the configuration in
Insights.

70

Port configured under device group will apply to only a specific device group. Traps and informs received
through any other port are discarded. To configure port numbers at the device group level, see Table 6
on page 66.

Rule Configuration

Once the device is configured to send traps or inform notification, you must configure a rule on the
device with SNMP trap so that, Paragon Insights can process traps from the device. In device groups,
you can apply a playbook instance that has the snmp-notification rule. When you configure SNMP
notification in any rule, you must select the MIB name you want to monitor. Go to Juniper MIBS
Explorer to browse MIB files for Junos devices and Cisco MIBS Locator to browse MIB files for Cisco
devices.

The following example shows how you can configure a rule with SNMP notification to send alerts if an
interface comes up for the chassis.interfaces/ topic.

NOTE: It is assumed that you have configured the device or device group for SNMP trap
notification. See "Paragon Insights Pull-Model Ingest Methods" on page 109 to configure SNMP
trap notifications in devices or device groups.

To configure a rule under topic system.trap/:

1. Go to Configuration > Rules.

2. Click the Add Rules button in the Rules page.

Enter the rule name in the topic/rule-name format in the Rule field and description in the Description
field. For example, chassis.interfaces/linkup.

3. Click Add Sensor button in Sensors tab.

4. Enter a name in the Sensor Name field and select SNMP Notification from the drop-down menu in
Sensor Type.

5. Enter notification name in MIB-Name::Notification Name format.

For example, IFMIB::linkDown.

6. Click Add Field button in the Fields tab.

The fields for SNMP Notification rule can be derived as described:

• Variables (varbinds) for the given trap.

The variables of the trap can be defined as fields. The following steps use the example
IfAdminStatus as varbind and IF-MIB:linkDown as the snmp-notification.

71

https://apps.juniper.net/mib-explorer/
https://apps.juniper.net/mib-explorer/
https://cfnng.cisco.com/mibs

a. Enter IfAdminStatus in the Field Name.

b. Select Integer as Field Type.

The Field Type you enter in the GUI must be same as the type defined in the MIB File.

c. Select Sensor as Ingest Type (field soruce).

The Ingest Type (field source) must be set to sensor.

d. Select the sensor name from the drop-down menu under Sensor.

The sensor name is the name you entered for the snmp-notification sensor.

e. Enter IfAdminStatus as sensor path.

The Path must be set the to the variable (varbind) name defined in the MIB file.

To add a second field for IfOperStatus as variable (varbind) for a given snmp-notification, follow
the steps described here but change the field name and sensor path to IfOperStatus.

7. Click Save to commit the rule or Save & Deploy to deploy the rule in Paragon Insights.

You can see the new topic name and rule in the list of existing rules.

You can also configure triggers or functions based on the fields you add. See how to create a new
rule in GUI as explained in Paragon Insights Rules and Playbooks.

You must include this rule in a playbook and apply the playbook instance on a device or device group.

To check the new SNMP notifications sent by device groups, log into Paragon Insights server as a root
user and type the following command.

healthbot cli --device-group healthbot -s influxdb

You can track new entries sent by SNMP trap notifications to the Paragon Insights server for the fields
(for example, IfAdminStatus) you configured.

Release History Table

Release Description

4.0.0 Starting in Paragon Insights Release 4.0.0, you can clone an existing NetFlow template.

4.0.0 Starting with Paragon Insights Release 4.0.0, you can clone an existing Syslog pattern.

4.0.0 Starting with Paragon Insights Release 4.0.0, you can clone an existing Syslog pattern set.

72

4.0.0 Starting in Paragon Insights Release 4.0.0, you can configure the pattern for parsing the header portion
of a syslog message.

4.0.0 Paragon Insights Release 4.0.0 supports inform and trap notifications that are sent by devices in the
network for fault management.

4.0.0 Starting in Paragon Insights Release 4.0.0, you can add more than 50 devices per device group.

4.0.0 Paragon Insights Release 4.0.0 supports collecting log data for SNMP notification.

3.1.0 Starting with Paragon Insights Release 3.2.0, Paragon Insights supports sFlow (v5)

3.1.0 Starting with release 3.1.0, Paragon Insights supports the gRPC Network Management Interface (gNMI)
for OpenConfig communication.

3.0.0 Starting with Release 3.0.0, Paragon Insights (formerly HealthBot) supports NetFlow natively as another
ingest method

2.1.0 starting with Release 2.1.0, Paragon Insights also supports syslog natively as another data collection
method

2.0.0 In Paragon Insights releases prior to 3.1.0, OpenConfig could only be used on Junos OS and certain
Cisco devices.

Understand Inband Flow Analyzer 2.0

IN THIS SECTION

Device Configuration | 74

Paragon Insights Configuration | 76

Inband Network Telemetry (INT) is a vendor-neutral network monitoring framework that provides per-
hop granular data in the forwarding (data) plane. INT allows you to observe changes in flow patterns
caused by microbursts, packet transmission delay, latency per node, and new ports in flow paths.

73

Inband Flow Analyzer (IFA) 2.0 is an implementation of INT in Junos OS switches to collect flow data
and export the data to external collectors for per-hop or end-to-end analysis. IFA uses probe packets to
collect data such as per-hop latency, per-hop ingress and egress ports, packet Receive (RX) timestamp (in
seconds), queue ID, congestion, and egress port speed. The IFA packets traverse the same path in the
network and use the same queues as the packets in the forwarding plane. So, the IFA packets
experience similar latency and congestion as the packets in the forwarding plane.

Device Configuration

The QFX5120-32C and QFX5120-48Y devices support Inband Network Telemetry (INT) using IFA 2.0.
The IFA probe packets collect flow metrics and export the data in the Internet Protocol Flow
Information Export (IPFIX) format. Starting with Release 4.2.0, Paragon Insights supports analysis of the
IPv4 Virtual Extensible LAN (VXLAN) flow data using the IFA sensor. Paragon Insights identifies VXLAN
flows if the standard VXLAN port 4789 is present as the destination port in the Outer L4 Header (Layer
4 Header). The format of the IFA 2.0 packet with the VXLAN flow data is shown in Figure 8 on page
75.

NOTE: IFA uses revenue ports to export data to collectors. You cannot use management ports to
export IFA data.

See IFA Configurations and Design Considerations for detailed information on supported platforms and
the device configuration required to use IFA.

74

https://www.juniper.net/documentation/us/en/software/junos/flow-monitoring/topics/topic-map/ifa2.0-probe-for-real-time-performance-monitoring.html

Figure 8: Format of VXLAN IFA 2.0 Packet

75

IFA probe packets use three nodes that have separate functionality as they collect flow information:

• IFA Initiator Node (ingress node)—Samples the IPv4 VXLAN traffic, converts packets to IFA format by
adding an IFA header, and updates IFA probe packet with the Initiator Node metadata. The IFA
Header has the total maximum length allowed for the IFA Metadata Stack. The metadata stack is
where each node adds its respective hop-specific metadata.

• IFA Transit Node—Identifies IFA packets and appends metadata into the metadata stack of the
packet. A transit node checks the current length against the total maximum length in the IFA Header.
If the current length equals or exceeds the maximum length, the Transit Node does not append its
metadata to the IFA Metadata Stack.

• IFA Terminating Node (egress node)—Appends its metadata and exports a copy of the flow data to
the IFA 2.0 application (the IFA firmware). The IFA application adds the egress port number, converts
the packets into IPFIX format, and sends them to a collector such as Paragon Insights.

See IFA Configurations and Design Considerations for more information.

NOTE: You must configure the IFA Initiator Node, IFA Transit Node, and IFA Terminating Node in
the QFX5120-32C and QFX5120-48Y switches.

Paragon Insights Configuration

In Paragon Insights, you must perform the following tasks:

1. Configure IFA flow IP address in devices and configure IP address of the deploy node and the UDP
port in the device group. Paragon Insights deploys the IFA ingest on the configured deploy node.

See Manage Devices, Device Groups, and Network Groups for more information.

2. Create a new rule for IFA ingest.

See Paragon Insights Rules and Playbooks for more information.

3. Create a playbook and deploy the playbook instance in device groups.

See Paragon Insights Rules and Playbooks for more information.

4. Configure device details such as device name and device ID in the ingest. See "Configure Device
Details for Inband Flow Analyzer Devices" on page 79.

Paragon Insights supports hb_ifa_v2_0 as the IFA sensor name. The IFA sensor supports fields described
in Table 8 on page 77.

76

https://www.juniper.net/documentation/us/en/software/junos/flow-monitoring/topics/topic-map/ifa2.0-probe-for-real-time-performance-monitoring.html

Table 8: IFA Sensor Fields

Field Key Field Data Type Description

source_ip Yes String IP address of the Initiator Node from which the IFA flow
packets originate.

source_port Yes String Source port of the Initiator Node from which the IFA packet
originates.

dest_ip Yes String IP address of the Terminating Node.

dest_port Yes String Destination port of the Terminating Node that exports the
IFA packets.

proto Yes String Value of the protocol used for the IFA flow.

hop Yes String The hop field denotes the number of hops that the the IFA
packet traversed. If there are n nodes, the hop value starts
with 1 for the Initiator node, 2 for the Transit node, and so on
until it reaches the Terminating node that is assigned a value
of n.

NOTE:

The IFA sensor can additionally assign the hop value 65,535
to describe end-to-end latency and the complete IFA flow
path.

In Paragon Insights rules, the hop field captures the sequence
number (hop value) at each hop.

node_id No String Device ID of the IFA Initiator node, the IFA Transit node, or
the IFA Terminator node, when the hop field’s value is not
65,535. The device ID is present in the IFA Metadata Stack.

When the hop field’s value is 65,535, the node_id field
denotes the complete path taken by the IFA probe packet.

77

Table 8: IFA Sensor Fields (Continued)

Field Key Field Data Type Description

node_name No String Displays name of the IFA node associated with the node_id, if
you previously configured Paragon Insights to display the
node_name.

If you didn't configure Paragon Insights to display the
node_name, the node_id Is displayed.

ingress_port No String Ingress port of the node through which the IFA flow enters.

egress_port No String Egress port of the node through which the IFA flow exits.

egress_portspeed No Unsigned
integer 32

Speed (in Gigabits per second) of the egress port.

congestion_bits No Unsigned
integer 32

Congestion bit that indicates if an IFA packet experienced
congestion or not.

queue_id No Unsigned
integer 32

Identifier (ID) of the queue taken by the IFA packets in a node.

residence_time_ns No Unsigned
integer 32

Time taken (in nanoseconds) by the IFA packet within a node.

rx_ts_ns No Unsigned
integer 64

Receive timestamp value when the IFA probe packet enters a
node.

latency No Unsigned
integer 64

Difference between the received timestamp of the current
node and the previous node, when the hop field’s value is not
65,535.

When the hop field’s value is 65,535, the latency field
denotes the end-to-end latency of the complete path.

Paragon Insights ingests the IFA data as IPFIX records and creates multi-row entries in the time-series
database (TSDB) for each IPFIX record. The TSDB rows capture per hop details such as:

• Ingress and egress ports

78

• Latency

• Receive packet (RX) timestamp

• Sequence number that increments at each hop

• A record of the end-to-end latency from the Initiator node to the Terminating node

RELATED DOCUMENTATION

Paragon Insights Pull-Model Ingest Methods | 109

Configure Device Details for Inband Flow Analyzer
Devices

You can access the IFA Devices page from Settings>Ingest. In the Ingest Settings page, click the IFA
Devices menu. In Paragon Insights Release 4.3, you can assign device specific details, such as device
name and device ID, for the Inband Flow Analyzer (IFA) devices. Paragon Insights maps the device
names to their respective device ID. The device ID you enter corresponds to the device ID in the Junos
device configuration you earlier completed to enable IFA. Monitoring the end-to-end path of IFA devices
in a flow is more human readable. You can view the device name you configure in the IFA Devices page
instead of the device ID. Paragon Insights displays this name as node_name in the time series database
field table.

To assign a name to an IFA device:

1. Click the add icon (+).

The Create IFA Device page appears.

2. Enter the device ID.

Ensure that the device ID matches the device ID you entered for IFA devices. See IFA Configurations
and Design Considerations for more information.

3. Do one of the following:

• Click Save to only save the configuration.

Paragon Insights saves the configuration to assign a name to the device but you cannot view the
device name while monitoring the complete path of the IFA probe packets.

• Click Save and Deploy saves and deploys the configuration. You can see the device name you
configured as node_name in the complete path of the IFA probe packets.

79

https://www.juniper.net/documentation/us/en/software/junos/flow-monitoring/topics/topic-map/ifa2.0-probe-for-real-time-performance-monitoring.html
https://www.juniper.net/documentation/us/en/software/junos/flow-monitoring/topics/topic-map/ifa2.0-probe-for-real-time-performance-monitoring.html

View the complete path of IFA probe packets in a flow using Grafana. See Monitor Network Device
Health Using Grafana for more information.

RELATED DOCUMENTATION

Understand Inband Flow Analyzer 2.0 | 73

Delete an Inband Flow Analyzer Device

To delete an IFA device:

1. Click Settings > Ingest from the left-nav bar.

The Ingest Settings page is displayed.

2. Click the IFA Device tab to view the IFA Devices page.

3. Select the device that you want to delete, and click the delete (trash can) icon.

The CONFIRM DELETE pop-up appears.

Figure 9: Confirm Delete Pop-up

4. Do any one of the following:

• Click Yes to delete the IFA device from the database. However, the changes are not applied to the
ingest service.

80

NOTE:

• We recommended that you do not delete an IFA device that is currently in use.

• After you delete an IFA device from the database, you cannot associate that IFA device
with another device group even if you have not deployed changes.

• You can also deploy changes to the ingest service or roll back the changes that you
have already deleted, from the PENDING CONFIGURATION page. For more
information, see Commit or Roll Back Configuration Changes in Paragon Insights.

• Select the Deploy changes check box and then click Yes to delete the IFA device from the
database, and to apply the changes to the ingest service.

• (Optional) Click No to cancel this operation.

Understand Bring Your Own Ingest

IN THIS SECTION

Benefits | 82

Paragon Insights provides Bring Your Own Ingest (BYOI) default plug-ins and support for BYOI custom
plug-ins. BYOI plug-ins ingest telemetry data that is stored in third-party sources such as a data lake or
external databases. You can export such telemetry data that you collected through the BYOI plug-ins
and store it in the Paragon Insights time series database (TSDB).

Bring Your Own Ingest Plug-ins include an input plug-in that is developed by the user and the output
plug-in developed by Juniper Networks. The BYOI input plug-in streams data from different data sources
(Kafka) that use different data models (OpenConfig or NETCONF YANG), data encoding (based on
Extended Markup Language [XML] or JavaScript Object Notation [JSON]), data security, and messaging
buses (Kafka), and sends the data to the output plug-in. The output plug-in converts that data into the
line protocol format and writes the data to the Paragon Insights TSDB.

Paragon Insights supports two types of BYOI plug-ins:

81

• Default plug-ins—Use default plug-ins to measure metrics that are unique to your network. You can
work with Juniper Networks to develop default BYOI plug-ins. To load a default plug-in, you require
Paragon Insights Release 4.2 or later.

Juniper Network develops and sends you the default plug-ins, with the Kubernetes YAML files and
the plug-in configurations that are included as a compressed tar file. For more information on the
workflow to deploy a default plug-in, see "Bring Your Own Ingest Default Plug-in Workflow" on page
83.

• Custom plug-ins—You can use custom plug-in when you want to stream pre-existing telemetry data
to Paragon Insights for analysis. You must develop the BYOI plug-in, build the BYOI plug-in ingest
image, and load the plug-in image and Kubernetes YAML file for the plug-in to the Paragon Insights
server.

To load a custom plug-in, you require Paragon Insights Release 4.2 or later. After you successfully
load the custom plug-in, it is listed in the Custom Plugins tab of the Bring Your Own Ingest Plugins
page.

For more information on the workflow to deploy a custom plug-ins, see "Bring Your Own Ingest
Custom Plug-in Workflow" on page 89.

Benefits

Deploying bring your own ingest plug-ins has the following benefits:

• Reduces the cost of collecting telemetry data from devices by exporting previously collected data to
Paragon Insights.

• Enables you to use all Paragon Insights features—such as custom or default rules, playbooks, reports,
graphs, network health view, and more—on the external data you ingest into Paragon Insights.

RELATED DOCUMENTATION

Load Bring Your Own Ingest Default Plug-ins | 85

Build and Load BYOI Custom Plug-in Images | 91

82

Bring Your Own Ingest Default Plug-in Workflow

The workflow to load and deploy the BYOI default plug-in involves the steps that are illustrated in
Figure 10 on page 84.

83

Figure 10: Default BYOI Plug-in Workflow

84

The following tasks comprise the end-to-end workflow to use the BYOI default plug-in:

1. Load the default plug-in to the primary node of the Paragon Insights server. See "Load Bring Your
Own Ingest Default Plug-ins" on page 85.

2. Create an instance of the plug-in you earlier loaded. See "Configure Bring Your Own Ingest Default
Plug-in Instances" on page 86.

3. Map the plug-in instance to sensors and device groups that can then use the plug-in. See "Configure
Ingest Mapping for Default BYOI Plug-ins" on page 88.

4. Add the default plug-in as a sensor in a rule. See Create a New Rule Using Paragon Insights GUI in
Paragon Insights Rules and Playbooks.

5. Add the rule to a playbook. See Create a New Playbook Using Paragon Insights GUI in Paragon
Insights Rules and Playbooks.

6. Deploy a playbook instance. See Manage Playbook Instances in Paragon Insights Rules and
Playbooks.

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

Load Bring Your Own Ingest Default Plug-ins

To load a BYOI default plug-in, we recommend that you have a multinode installation of Paragon Insights
in your proof of concept or production systems. A root or a non-root user can enter the commands to
load your BYOI default plug-in on your server that hosts the Paragon Insights application.

1. Log in to the primary node of the Paragon Insights server using your server credentials.

2. Enter the following command to list the loaded default plug-ins.

user@primary-node# sudo healthbot list-plugins -d

3. Enter the following command to load a BYOI plug-in.

user@primary-node# sudo healthbot -v load-plugin -n plugin-name

For example, user@primary-node# sudo healthbot -v load-plugin -n tlive_kafka_oc.

An authentication prompt appears.

4. Enter your GUI login credentials for Paragon Insights.

A CLI message confirms that the plug-in is successfully loaded.

85

You can see the loaded default plug-in in the Paragon Insights GUI. The default plug-in appears as a
new tab in the Default Plugins page (Settings > Ingest > BYO Ingest Plugins).

5. Login to the Paragon Insights GUI and click Settings>BYO Ingest Plugins to verify that the plug-in is
visible in the GUI.

You can see the loaded default plug-in listed in the Default Plugins page.

After the plug-in is loaded successfully, you must create an instance of the default plug-in and configure
ingest mapping.

What's Next

• "Configure Bring Your Own Ingest Default Plug-in Instances" on page 86

• "Configure Ingest Mapping for Default BYOI Plug-ins" on page 88

Configure Bring Your Own Ingest Default Plug-in
Instances

You must configure a new instance of the Bring Your Own default plug-in Ingest (BYOI) that you
previously loaded.

To configure a default plug-in instance:

1. Select Configuration > Ingest.

The Ingest Settings page appears.

2. Click the BYO Ingest Plugins tab.

If you loaded the default plug-in, you can see its name as a tab on the Default Plugins page.

3. Click + New Instance.

The Add a default-plugin-name Instance page appears. For example, Add a tlive-kafka-oc Instance
page.

4. Enter details as described in Table 9 on page 87.

NOTE:

Fields marked with an asterisk (*) are mandatory.

5. Do one of the following:

• Save—Save the default plug-in instance configuration but do not deploy the configuration.

86

You can use this option to save make multiple changes in Paragon Insights configurations and
commit the changes in bulk or to roll back the changes. See Commit or Roll Back Configuration
Changes in Paragon Insights for more information.

• Save & Deploy—Save and deploy the configuration.

Paragon Insights creates an instance for the BYOI plug-in and deploys the configuration.

Table 9: Fields on the Add a Default-Plugin-Name Instance Page

Field Description

Name Enter a name for the default ingest plug-in instance.

You can enter a name that follows the regular
expression '^[a-zA-Z][a-zA-Z0-9_-]*$' with maximum
64 characters.

For example, t1 as name for an instance of the Tlive-
kafka-oc plug-in.

Brokers Enter one or more broker names separated by
commas.

If you do not enter a broker, the default Kafka broker
is healthbot.

Topics Enter healthbot as the topic to which the plugin
subscribes.

Authentication

SASL Username Enter the username for authentication.

Password Enter a password that has 6 to 128 characters long.

The password must contain a combination of
uppercase characters, lowercase characters, numbers,
and special characters. Paragon Insights supports all
keyboard special characters such as comma, asterisk,
ampersand and so on.

87

Table 9: Fields on the Add a Default-Plugin-Name Instance Page (Continued)

Field Description

TLS

CA Profile Name Enter the name of the trusted certificate authority
(CA).

Local Certification Profile Name Enter the name of the self-signed certificate created
for Paragon Insights.

Skip Certification Chain and Host Verification Toggle the switch on if you want to skip verifying the
integrity of the CA certificate.

NOTE: The connection between the ingest plug-in
and the external data source is encrypted even if you
skip verification of the certificate.

After you complete the instance configuration, you must configure the ingest mapping for the default
plug-in instance. See "Configure Ingest Mapping for Default BYOI Plug-ins" on page 88 for more
information.

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

Configure Ingest Mapping for Default BYOI Plug-ins

For default ingest plug-ins, you must configure the sensors and device groups that can use the plug-in.

To configure the ingest mappings for a default plug-in:

1. Go to Configuration > Ingest > BYOI Plugins.

2. Click +New Mapping in the Ingest Mapping tab.

The Add a New Ingest Mapping page appears.

88

NOTE: You can configure multiple ingest mappings for the same default plug-in.

3. Enter the details as described in Table 10 on page 89.

Table 10: Attributes in Add a New Ingest Mapping Page

Attributes Description

Name Enter a name for the ingest mapping.

The name is an instance identifier of the ingest mapping.

Sensor Type Select the type of sensor to be used for the plug-in from the list.

Plugin Name Enter the name of the default ingest plug-in.

Constraint to Device
Groups

Select device groups from the list. The ingest and sensor mapping is applied to
only the selected device groups.

4. Do one of the following:

• Save — Save your ingest mapping but do not deploy the updated configuration. You can use this
option when, for example, you are making several changes and want to deploy all your updates at
the same time later.

• Save & Deploy — Save the ingest mapping configuration and deploy the configuration in your
production environment.

You can use BYOI ingest in rules after you configure the ingest mapping for a default plug-in.

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

Bring Your Own Ingest Custom Plug-in Workflow

The workflow to build, load, and to deploy the BYOI custom plug-in involves the steps that are
illustrated in Figure 11 on page 90.

89

Figure 11: Custom Plug-in Deployment Workflow

90

You must perform the following tasks to use custom BYOI plug-in in Paragon Insights:

1. Custom BYOI plug-in requires an ingest image file and a Kubernetes YAML file. Build the ingest
image, configure the Kubernetes YAML file, and load the image and YAML files. See "Build and Load
BYOI Custom Plug-in Images" on page 91.

2. Create an instance of the plug-in you earlier loaded. See "Configure Bring Your Own Ingest Custom
Plug-in Instances" on page 102.

3. Create rules, playbooks, and device groups that use the custom plug-in. See "Use the Sample Rule
and Playbook Configurations for BYOI Custom Plug-ins" on page 105.

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

Build and Load BYOI Custom Plug-in Images

IN THIS SECTION

Use JSON Configuration File Attributes in Ingest Image | 93

Create a Shell Script for Configuration Updates | 96

Tag and Export the BYOI Custom Plugin Image | 96

Configure Kubernetes YAML File | 96

(Optional) Assign Virtual IP Address to Plugin | 100

Load the BYOI Custom Plugin | 102

To send data to Paragon Insights using Bring Your Own Ingest (BYOI) custom plug-ins, you must code
the input plug-in and create a plug-in ingest image file with a shell script and a process file. The ingest
image also contains a Kubernetes YAML file for the ingest container. Paragon Insights executes the shell
script when configurations of the BYOI ingest and device group (mapped to the ingest) change. The
Kubernetes YAML file contains configurations that instruct the Kubernetes engine to start and to stop
the service for a BYOI plugin ingest.

The workflow to build and load the BYOI custom plug-in image is as follows:

91

1. Create an ingest image to write data to the Paragon Automation database and a shell script for
configuration updates.

• The process file (a Python file in our example) parses attributes in the JSON configuration file to
send data as fields to the Paragon Insights database.

See "Use JSON Configuration File Attributes in Ingest Image" on page 93 for an example Python
script.

• Paragon Insights informs the BYOI plug-in to execute the shell script when you change
configurations.

See "Create a Shell Script for Configuration Updates" on page 96 for an example shell script.

2. Tag the image file and export the image as a compressed tar file.

See "Tag and Export the BYOI Custom Plugin Image" on page 96 for commands to tag and export
the image file.

3. Modify the Kubernetes Jinja template to create a YAML file for the Kubernetes container pod. The
container pod is where the BYOI ingest is deployed in Paragon Insights.

See "Configure Kubernetes YAML File" on page 96 for a sample Kubernetes Jinja template file.

4. Assign a different IP address if you want the BYOI plugin to be accessible for external applications.

See "(Optional) Assign Virtual IP Address to Plugin" on page 100 for a Kubernetes Jinja template in
which you can assign a custom virtual IP address for the BYOI plug-in.

5. Load the compressed tar file and Kubernetes YAML file to the Paragon Insights primary node.

See "Load the BYOI Custom Plugin" on page 102 to load the BYOI plug-in image file and the
Kubernetes YAML file.

WHAT'S NEXT

"Configure Bring Your Own Ingest Custom Plug-in Instances" | 102

"Use the Sample Rule and Playbook Configurations for BYOI Custom Plug-ins" | 105

92

Use JSON Configuration File Attributes in Ingest Image

IN THIS SECTION

Decode Device Password | 95

You can create a Python file, such as the following example file, and include it in the BYOI plug-in image.
When you run the image in a Kubernetes container, Paragon Insights executes the Python file. The
following sample Python file uses the attributes described in Table 11 on page 94 to send a key (a
random integer between 0 and 9 in the example file) for the measurement (topic/rule/sensor_name/
byoi) to the database.

import requests
import time
import random
import os
import json

read tand_host, tand_port from env vars
tand_host = os.environ.get('TAND_HOST', 'localhost')
tand_port = os.environ.get('TAND_PORT', '3000')

read device, plugin, rule related attributes from config json
with open('/etc/byoi/config.json', 'r') as f:
 config_json = json.load(f)
input, device, sensor as lists. modify index as needed. Using 0 for all idxes
database = config_json['hbin']['inputs'][0]['plugin']['config']['device'][0]['healthbot-storage']
['database']
measurement = config_json['hbin']['inputs'][0]['plugin']['config']['device'][0]['sensor'][0]
['measurement']

Construct post request and data
url = 'http://{}:{}/write?db={}'. \
 format(tand_host, tand_port, database)
data = '{} {} {}'
metric = 'key'

93

while True:
 fields = '{}={}'.format(metric, random.randint(0,9))
 timestamp = int(time.time()) * 1000000000
 x = requests.post(url, data=data.format(measurement, fields, timestamp))
 time.sleep(10)

In the Python file, use the following URL format to send data to Paragon Insights.

url = 'http://{}:{}/write?db={}'. \
format(tand_host, tand_port, database)

The entry in the database (db) field must follow the syntax database-name:device-group-name:device-
name.

The line protocol (post body) contains a string in the following format.

data = '{} {} {}'.format(measurement, fields, timestamp)

When you create an instance of a custom BYOI plug-in, a JavaScript Object Notation (JSON)
configuration file is attached inside the Kubernetes container for the BYOI ingest instance. The JSON
configuration file contains information such as the device, device group, sensor path, hostname, and port
of the backend service to which ingest data is sent. You can go through the JSON configuration
using /etc/byoi/config.json for all the available attributes.

Table 11 on page 94 lists several key attributes in the JSON configuration file.

Table 11: Attributes in the JSON Configuration File

Attributes Description How to Access Attributes

tand_host Host name of the backend service to
which the plug-in sends the ingest
data.

Environment Variable $TAND_HOST

tand_port Port number of the backend service to
which the plug-in sends the ingest
data.

Environment Variable $TAND_PORT

94

Table 11: Attributes in the JSON Configuration File (Continued)

Attributes Description How to Access Attributes

database Name of database where the ingest
data is stored.

The value for this attribute differs for
each Paragon Insights node.

config_json['hbin']
['inputs']['plugin']['config']
['device'][idx]['healthbot-storage']
['database']

measurement Measurement of database in line
protocol. See the InfluxDB
documentation to learn more about
measurement.

For example, topic/rule/sensor_name/
byoi.

The value of sensor_name differs from
sensor to sensor.

config_json['hbin']['inputs']['plugin']
['config']['device'][idx]['sensor']
[sensor_idx]['measurement']

fields Metric-value pairs, separated by
comma without space.

For example,
cpu_usage=50,memory_utilization=12.

None

timestamp Unix Epoch timestamp in nanoseconds. None

password Encoded password of the device that
receives the streaming data.

See "Decode Device Password" on
page 95 for decoding device
password.

config_json['hbin']
['inputs']['plugin']['config']
['device'][idx]['authentication']
['password']['password']

Decode Device Password

The JSON configuration file can contain encoded sensitive information such as the password of the
device that streams data.

To decode the data, you can initiate a POST call using the API api-server:9000/api/v2/junos-decode inside the
plugin container, with the encoded data in the post body.

95

https://docs.influxdata.com/influxdb/cloud/reference/syntax/line-protocol/#measurement
https://docs.influxdata.com/influxdb/cloud/reference/syntax/line-protocol/#measurement

The following sample POST call decodes an encoded password present in the JSON configuration file.

curl -X POST -L api-server:9000/api/v2/junos-decode -H "Content-Type: application/json" -d
'{"data": "$ABC123"}' -v

Create a Shell Script for Configuration Updates

When the BYOI ingest image configuration or the Paragon Insights device group configuration changes,
the JSON configuration file is updated. When there is a change in configuration, Paragon Insights must
re-read the configuration file by invoking the shell script located at /jfit_scripts/jfit_reconfigure.sh.
When you build the ingest plugin image, you can name your shell script jfit_reconfigure.sh and copy the
script to /jfit_scripts/ folder.

In the shell script, you can send a SIGHUP signal to the main process or simply kill old processes and
start new ones. The following example shell script sends a SIGHUP signal to the main plug-in process:

pid=`ps -ef | grep ".*main.py" | grep -v 'grep' | awk '{ print $1}'` && \
 kill -s HUP $pid

Tag and Export the BYOI Custom Plugin Image

After you build the custom plugin, you must tag the plug-in image and export it as a tar file. You can tag
the plug-in image in the healthbot_plugin_name:your_version format. The plug-in image must be exported as a
compressed tar file using the following command:

docker save tag -o healthbot_plugin_name.tar.gz

Configure Kubernetes YAML File

The Kubernetes Jinja template file has the basic configuration required to deploy Kubernetes resources
such as containers for the for the BYOI ingest pod.

You can use the following sample Kubernetes Jinja template to create a YAML file. You must replace:

96

• Placeholders for commands and args, <ADD_COMMAND> and <ADD_ARGUMENTS>. For example,
replace <ADD_COMMAND> with python3 and ADD_ARGUMENTS> with the name of your Python
file.

• <PLUGIN_NAME_CAPITALIZED> with your plugin name in uppercase letters.

You can add other properties to the ’containers’ part, such as volumes or Kubernetes secrets, in the
template. After you modify the sample Kubernetes Jinja template, change the name of the file to
healthbot_<plugin_name>.yaml.j2 and save it.

Sample Kubernetes Jinja template

 set sg_name = '-' + env['SUBGROUP'] -%}
{%- set sg_dir = '_' + env['SUBGROUP'] -%}
{% if env['SUBGROUP'] == '' -%}
 {%- set sg_name = '' -%}
 {%- set sg_dir = '' -%}
{%- endif %}
kind: ConfigMap
apiVersion: v1
metadata:
 namespace: {{ env['NAMESPACE'] }}
 name: {{ env['GROUP_TYPE'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}
 labels:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: {{ env['SUBGROUP'] }}
data:
 TAND_HOST: '{{ env['GROUP_TYPE_SHORT'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}-terminus'
 TAND_PORT: '{{env['tand:TAND_PORT']}}'
 PUBLISHD_HOST: '{{env['publishd:PUBLISHD_HOST']}}'
 PUBLISHD_PORT: '{{env['publishd:PUBLISHD_PORT']}}'
 CONFIG_MANAGER_PORT: {{env['configmanager:CONFIG_MANAGER_PORT']}}
 CHANNEL: '{{ env['GROUP_TYPE'] }}-{{ env['GROUP_NAME'] }}'
 GODEBUG: 'madvdontneed=1'
 IAM_SERVER: '{{ env['iam:IAM_SERVER'] }}'
 IAM_SERVER_PORT: '{{ env['iam:IAM_SERVER_PORT'] }}'
 IAM_SERVER_PROTOCOL: '{{ env['iam:IAM_SERVER_PROTOCOL'] }}'
 IAM_NAMESPACE: '{{ env['iam:IAM_NAMESPACE'] }}'

97

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: {{ env['NAMESPACE'] }}
 name: {{ env['GROUP_TYPE'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}
 labels:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: {{ env['SUBGROUP'] }}
spec:
 replicas: 1
 selector:
 matchLabels:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: {{ env['SUBGROUP'] }}
 template:
 metadata:
 namespace: {{ env['NAMESPACE'] }}
 labels:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: {{ env['SUBGROUP'] }}
 spec:
 tolerations:
 - key: "node.kubernetes.io/not-ready"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 180
 - key: "node.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 180
 initContainers:
 - name: sync
 image: {{ env['REGISTRY'] }}/{{ env['HEALTHBOT_INIT_CONTAINER_IMAGE'] }}:
 {{ env['HEALTHBOT_INIT_CONTAINER_TAG'] }}

98

 imagePullPolicy: Always
 command: ["python3"]
 args: ["/root/sync_files.py", "-c", "{{ env['GROUP_TYPE'] }}-
 {{ env['GROUP_NAME'] }}"]
 env:
 - name: NODE_IP
 valueFrom:
 fieldRef:
 fieldPath: status.hostIP
 envFrom:
 - configMapRef:
 name: {{ env['GROUP_TYPE'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}
 containers:
 - name: {{ env['CUSTOM_PLUGIN_NAME'] }}
 image: {{ env['REGISTRY'] }}/{{ env['HEALTHBOT_<PLUGIN_NAME_CAPITALIZED>_IMAGE’] }}:
 {{ env[’HEALTHBOT_<PLUGIN_NAME_CAPITALIZED>_TAG’] }}
 imagePullPolicy: Always
 #example
 #command: [“python3”]
 #args: [“/main.py”]
 command: [<ADD_COMMAND>]
 args: [<ADD_ARGUMENTS>]
 env:
 - name: NODE_IP
 valueFrom:
 fieldRef:
 fieldPath: status.hostIP
 envFrom:
 - configMapRef:
 name: {{ env['GROUP_TYPE'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}
 volumeMounts:
 - name: default
 mountPath: /etc/byoi
 - name: data-model
 mountPath: /etc/ml
 volumes:
 - name: default
 hostPath:
 type: DirectoryOrCreate
 path: {{ env['JFIT_OUTPUT_PATH'] }}/{{ env['GROUP_NAME'] }}
 {{ sg_dir }}/custom_{{ env['CUSTOM_PLUGIN_NAME'] }}_collector

99

 - name: data-model
 hostPath:
 type: DirectoryOrCreate
 path: {{ env['JFIT_ETC_PATH'] }}/data/models/{{ env['GROUP_NAME'] }}
 imagePullSecrets:
 - name: registry-secret

(Optional) Assign Virtual IP Address to Plugin

For a custom BYOI plug-in to be reachable from an external network, the plug-in needs to be exposed as
a Kubernetes load balancer service. This is an optional configuration. By default, the plug-in uses virtual
IP address of the Paragon Insights gateway. You can also assign a custom virtual IP address and add the
following template to the end of the Kubernetes Jinja template file in "Configure Kubernetes YAML File"
on page 96.

Ensure that you replace <PLUGIN_PORT> and <PROTOCOL> in the given template with your desired
values such as port 80 for protocol HTTP. See Kubernetes documentation for supported protocols.

To configure a custom virtual IP for the BYOI plugin, replace <custom_load_balancer_ip> with an IP
address.

{% set service_values = env.get('SERVICE_VALUES', {}) -%}
{%- set global_annotations = service_values.get('annotations') -%}
{%- set global_load_balancer_ip = service_values.get('loadBalancerIP') -%}
{%- set custom_annotations = service_values.get(svc_name, {}).get('annotations') -%}
{%- set custom_load_balancer_ip = service_values.get(svc_name, {}).get('loadBalancerIP') -%}
{%- set service_type = service_values.get(svc_name, {}).get('type', 'LoadBalancer') -%}
{%- for ip in env['LOAD_BALANCER_IPS'] %}
apiVersion: v1
kind: Service
metadata:
 namespace: {{ env['NAMESPACE'] }}
 {%- if loop.index0 == 0 %}
 name: {{ env['GROUP_TYPE_SHORT'] }}-{{ env['GROUP_NAME_VALID'] }}
 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}
 {%- else %}
 name: {{ env['GROUP_TYPE_SHORT'] }}-{{ env['GROUP_NAME_VALID'] }}

100

https://kubernetes.io/docs/concepts/services-networking/service/#protocol-support

 {{ sg_name }}-{{ env['CUSTOM_PLUGIN_NAME'] }}-{{loop.index0}}
 {%- endif %}
 labels:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: '{{ env['SUBGROUP'] }}'
 annotations:
 {% if env.get('LOADBALANCER_PROVIDER', 'User') == 'HealthBot' %}
 metallb.universe.tf/allow-shared-ip: healthbot-{{loop.index0}}
 {% elif custom_annotations %}
 {{ custom_annotations }}
 {% elif global_annotations %}
 {{ global_annotations }}
 {% else %}
 {}
 {% endif %}
spec:
 type: LoadBalancer
 {%- if env.get('LOADBALANCER_PROVIDER', 'User') == 'HealthBot' %}
 loadBalancerIP: {{ ip }}
 {%- elif custom_load_balancer_ip %}
 loadBalancerIP: {{ custom_load_balancer_ip }}
 {%- elif global_load_balancer_ip %}
 loadBalancerIP: {{ global_load_balancer_ip }}
 {%- endif %}
 selector:
 app: {{ env['CUSTOM_PLUGIN_NAME'] }}
 group-name: {{ env['GROUP_NAME'] }}
 group-type: {{ env['GROUP_TYPE'] }}
 subgroup: '{{ env['SUBGROUP'] }}'
 ports:
 - name: port
 port:<PLUGIN_PORT>
 protocol:<PROTOCOL>
{% endfor %}

After you configure the port and protocol, external applications can communicate with the custom BYOI
plug-in via <gateway_IP>:<PLUGIN_PORT>. If you configured a custom virtual IP for the plug-in to act as a load
balancer service, external applications can communicate with the plugin via
custom_load_balancer_ip:PLUGIN_PORT.

Use 0.0.0.0:<PLUGIN_PORT> to connect to the server running inside the plug-in from the Kubernetes host.

101

You can configure different ports for different applications in the given Kubernetes Jinja template under
the ports section.

NOTE: If you configure different port numbers in the Kubernetes Jinja template, you must hard
code the port number and the corresponding port name in your respective applications.

Load the BYOI Custom Plugin

Mount the BYOI custom plug-in image tar file and the modified Kubernetes YAML file to the Paragon
Insights primary node and load the plug-in in the Paragon Insights management CLI.

1. Mount the BYOI plugin image (compressed tar file) using the following command:

export HB_EXTRA_MOUNT1=/path/to/healthbot_<plugin_name>.tar.gz
2. Mount the Kubernetes YAML file using the following command:

export HB_EXTRA_MOUNT2=/path/to/healthbot_<plugin_name>.yml.j2
3. Load the plugin image and the Kubernetes YAML file using the following command:

sudo -E healthbot load-plugin -i $HB_EXTRA_MOUNT1 -c $HB_EXTRA_MOUNT2

You can see a confirmation message when the plugin loads successfully.

4. (Optional) Select the Configuration > Data Ingest > Settings > BYO Ingest Plugins page and view the
custom plug-in in the Custom Plugins tab.

After you load your plug-in, create an instance of the custom BYOI plug-in in the Bring Your Own Ingest
page. Since custom plug-ins do not use the default Paragon Automation resources, you must configure a
new rule and a playbook for the ingest plug-in.

Configure Bring Your Own Ingest Custom Plug-in
Instances

For custom ingest plug-ins, you must configure key-value pairs in the Paragon Insights GUI.

To configure a custom ingest plug-in instance:

1. Select Configuration > Ingest > BYOI Plugins.

The Bring Your Own Ingest Plugin page appears.

102

2. Click +New Instance in the Custom tab.

The Create Custom Plugins page appears.

3. Enter the details as described in Table 12 on page 103.

4. Do one of the following:

• Save—Save your ingest mapping but do not deploy the updated configuration. You can use this
option when, for example, you are making several changes and want to deploy all your updates at
the same time later. See Commit or Roll Back Configuration Changes in Paragon Insights for more
information.

• Save & Deploy—Save the custom plug-in instance configuration and deploy the configuration in
Paragon Insights.

Fields marked with an asterisk (*) are mandatory.

Table 12: Fields on the Create Custom Plugins Page

Fields Description

Name Enter the name of the custom ingest plug-in instance.

Plugin Name Enter the name given to the input ingest plug-in that you created.

Service Name Enter a name for the service.

The service name can be same as the name of the custom ingest plug-in.

Key Name of key parameters in the ingest plug-in. For example, sensor or frequency.

You can add one or more ingest parameters as a key using the + icon.

Value Enter the value for the key parameter.

For example, you must enter a sensor path as value if sensor is your key.

Authentication

SASL Username Enter the plain text username for authentication.

103

Table 12: Fields on the Create Custom Plugins Page (Continued)

Fields Description

Password Enter a password.

The password must be 6 to 128 characters long and must contain a combination
of uppercase and lowercase characters. It must also contain numbers and special
characters.

TLS

CA Profile Name Enter the name of the trusted certificate authority (CA).

Local Certification
Profile Name

Enter the name of the self-signed certificate you created for Paragon Insights.

Skip Certification Chain
and Host Verification

Toggle the switch on if you want to skip verifying the integrity of the CA
certificate.

NOTE: Connection between the input ingest plug-in and the external data source
is encrypted even if you skip verification of the certificate.

After you configure a custom plug-in instance, you must create a new rule with the BYOI ingest
parameters. To collect data using the custom ingest plug-in, you must add this rule to a new playbook
and run a playbook instance on device or network groups. See "Use the Sample Rule and Playbook
Configurations for BYOI Custom Plug-ins" on page 105 for sample rule and playbook configurations for
custom BYOI plugins.

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

104

Use the Sample Rule and Playbook Configurations
for BYOI Custom Plug-ins

Before you configure a custom rule, playbook, and device group for the Bring Your Own Ingest (BYOI)
custom plug-in, you must create an instance of the custom plug-in. See "Configure Bring Your Own
Ingest Custom Plug-in Instances" on page 102 for more information.

You must write your own rules for custom Bring Your Own Ingest plug-ins. You must deploy a custom
rule in a new playbook that you create for the BYOI plug-in ingest. You must also create a new device
group that you add later in the BYOI playbook. Enter the rule and playbook configurations in Paragon
Insights management CLI.

The following sample rule triggers an alert when value of key is greater than 5. The trigger alert
frequency is set to 10 seconds.

set healthbot topic external rule r1 sensorsensor_a byoi plugin name example-plug-in
set healthbot topic external rule r1 field key sensor sensor_a path key
set healthbot topic external rule r1 field key type integer
set healthbot topic external rule r1 trigger trigger_789 frequency 10s
set healthbot topic external rule r1 trigger trigger_789 term Term_1 when greater-than "$key" 5
set healthbot topic external rule r1 trigger trigger_789 term Term_1 then status color red
set healthbot topic external rule r1 trigger trigger_789 term Term_1 then status message BAD
set healthbot topic external rule r1 trigger trigger_789 disable-alarm-deduplication

NOTE:

• The example-plug-in in the sample rule refers to the plug-in name you entered in the Name
field, when creating an instance of the custom plug-in.

• The sensor_a in the sample rule refers to the value configured for the key parameter in the
Value field, when creating an instance of the custom plug-in.

Use the following sample command to create a playbook p1 for the BYOI ingest that uses the sample
rule r1 that you previously configured.

set healthbot playbook p1 rules external/r1

105

After you deploy the playbook configuration, you must create a new instance of the playbook in the
Playbooks page. Then, you can also monitor the health of the BYOI ingest in the Health page (Monitorng
> Health).

RELATED DOCUMENTATION

Understand Bring Your Own Ingest | 81

Delete a Bring Your Own Ingest Plug-in

To delete a Bring Your Own Ingest plug-in:

1. Click Settings > Ingest from the left-nav bar.

The Ingest Settings page is displayed.

2. Click the BYO Ingest Plugins tab to view the Bring Your Own Ingest page.

3. Do one of the following.

NOTE: Default plug-ins cannot be deleted.

• To delete an ingest mapping:

a. Click Ingest Mapping.

b. Select the ingest mapping that you want to delete.

c. Click the delete (trash can) icon.

• To delete a custom plug-in:

a. Click Custom Plugins.

b. Select the custom plug-in that you want to delete.

c. Click the delete (trash can) icon.

The CONFIRM DELETE pop-up appears.

106

Figure 12: Confirm Delete Pop-up

4. Do any one of the following:

• Click Yes to delete Bring Your Own Ingest plug-in information from the database. However, the
changes are not applied to the ingest service.

NOTE:

• We recommended that you do not delete a Bring Your Own Ingest plug-in that is
currently in use.

• After you delete a Bring Your Own Ingest plug-in from the database, you cannot map
that plug-in with another device group even if you have not deployed changes.

• You can also deploy changes to the ingest service or roll back the changes that you
have already deleted, from the PENDING CONFIGURATION page. For more
information, see Commit or Roll Back Configuration Changes in Paragon Insights.

• Select the Deploy changes check box and then click Yes to delete Bring Your Own Ingest plug-in
information from the database, and to apply the changes to the ingest service.

• (Optional) Click No to cancel this operation.

107

2
CHAPTER

“Pull” Model Data Ingest Methods

Paragon Insights Pull-Model Overview | 109

Paragon Insights Pull-Model Ingest Methods | 109

Paragon Insights Pull-Model Overview

While the ’push’ model is the preferred approach for its efficiency and scalability, there are still cases
where the ’pull’ data collection model is appropriate. Two examples might be when a device doesn’t
support the Junos Telemetry Interface (JTI), or when managing third party devices. With the pull model,
Paragon Insights requests data from network devices at periodic, user-defined intervals.

Paragon Insights Pull-Model Ingest Methods

IN THIS SECTION

Server Monitoring Ingest | 109

Understanding kube-state-metrics Service | 116

iAgent (CLI/NETCONF) | 128

SNMP | 142

Paragon Insights currently supports the following pull-model sensors:

• "Server Monitoring Ingest" on page 109

• Understanding kube-state-metrics Service

• "iAgent (CLI/NETCONF)" on page 128

• "SNMP" on page 142

Server Monitoring Ingest

IN THIS SECTION

Configure a Rule Using Server Monitoring Sensor | 114

109

Starting with Paragon Insights Release 4.1.0, the Server Monitoring sensor collects data from servers
and virtual machines on which you host the Paragon application. The sensor uses the third-party plug-in,
Node Exporter. The Node Exporter plug-in is pre-installed in all server clusters of Paragon Insights. In
the GUI, the default servers and virtual machines deployed in the Paragon Insights cluster are
represented as devices that are automatically added to the Paragon-Cluster device group. The sensor
collects data from servers and virtual machines to track CPU, memory, network, traffic, disk, and
filesystem metrics. It writes the output to a time series database.

Paragon Insights has the following pre-configured playbooks to monitor server data.

• CPU utilization

• Disk reads and writes

• Errors, available bytes, and utilized bytes in filesystem

• Utilized bytes and available bytes in memory

• Received and transmitted total packet size, errors in received and transmitted packets, total received
and transmitted multicast packets in network

When you configure a rule using Server Monitoring ingest, you can use the some of the sensor paths
listed in Table 13 on page 110.

Table 13: Server Metrics

Sensor Path Description

/node/boot/time/seconds Boot time in each server node.

/node/cpu/seconds/total The total time (in seconds) the CPU stays in idle, system, user, and
nice modes.

/node/disk/read/bytes/total The total number of bytes read successfully.

/node/disk/read/errors/total The total number of read errors in nodes.

/node/disk/read/retries/total The number of times the ingest tries to read from the disk if there is
a failure.

/node/disk/read/sectors/total The total number of sectors read successfully.

110

Table 13: Server Metrics (Continued)

Sensor Path Description

/node/disk/read/time/seconds/total The total time taken to complete reads successfully per node.

/node/disk/reads/completed/total The total number of reads completed successfully.

/node/disk/write/errors/total The total number of errors in writes.

/node/disk/write/retries/total The number of times the ingest tries to write on the disk if there is a
failure.

/node/disk/write/time/seconds/total The total time taken to complete all writes.

/node/disk/writes/completed/total The total number of writes completed per node.

/node/disk/written/bytes/total The total number of bytes written successfully.

/node/disk/written/sectors/total The total number of sectors written successfully.

/node/exporter/build/info A metric that has the value '1' and has version, revision, go version,
and branch from which node exporter is built.

/node/filesystem/avail/bytes The filesystem size available to non-root users.

/node/filesystem/device/error The number of I/O errors that occur when collecting data from a
filesystem.

/node/filesystem/files The total number of index nodes permitted in a node.

/node/filesystem/files/free The number of index nodes that are free for use in a node.

/node/filesystem/free/bytes The free space (in bytes) available for the user, excluding reserved
blocks.

111

Table 13: Server Metrics (Continued)

Sensor Path Description

/node/filesystem/readonly Data that shows if the filesystem in a node is mounted as read-only.

/node/filesystem/size/bytes The size of all files in bytes.

/node/load1 Load on each server/host node captured every 1 minute.

/node/load15 Load on each server/host node captured every 15 minutes.

/node/load5 Load on each server/host node captured every 5 minutes.

/node/memory/active/bytes Size of memory in bytes that are actively used by processes.

/node/memory/compressed/bytes Total size of compressed memory.

/node/memory/free/bytes Total memory in bytes that is free for use in a node.

/node/memory/inactive/bytes Memory bytes that are not actively used by processes.

/node/memory/swap/total/bytes Total size of memory swapped in all nodes.

/node/memory/swap/used/bytes The size of swapped memory used by nodes.

/node/memory/swapped/in/bytes/total Size of memory swapped back to RAM in all nodes.

/node/memory/swapped/out/bytes/total Size of memory swapped out from RAM in all nodes.

/node/memory/total/bytes Total bytes of memory in all nodes.

/node/memory/wired/bytes Memory that cannot be swapped out.

112

Table 13: Server Metrics (Continued)

Sensor Path Description

/node/network/receive/bytes/total Total size of packets received by a device.

/node/network/receive/errs/total Total number of errors encountered by a device when receiving
packets.

/node/network/receive/multicast/total Total number of multicast packets received by a device.

/node/network/receive/packets/total Total number of packets received by a device.

/node/network/transmit/bytes/total Total size of packets received by a device.

/node/network/transmit/errs/total Total number of errors encountered by a device when receiving
packets.

/node/network/transmit/multicast/total Total number of multicast packets transmitted by a device.

node/network/transmit/packets/total Total number of packets transmitted by a device.

/node/scrape/collector/duration/seconds Time taken by each collector to scrape metrics.

/node/scrape/collector/success Number of times Node Exporter collector successfully scraped
targets.

/node/textfile/scrape/error Errors encountered by Node Exporter when scraping targets using
textfile scripts.

/node/time/seconds Displays system time in seconds in the node since epoch (1970).

/node/uname/info Name of the node from which Node Exporter collects metrics.

The following tags such as mode, device etc. can be used as key fields applicable to all metrics listed
under main metrics (/node/cpu or /node/disk). When you configure a key field in a rule, you can
mention only the key field name in Path field.

113

• /node/cpu/

• cpu: The number of cores available in CPU.

• mode: The type of CPU usage in a node such as idle, system, user, and nice.

• /node/disk/

• device: Name of disks such as disk0, disk1, sda, sdb, or sdc.

• /node/filesystem/

• device: Disk paths such as /dev/sda1, /dev/sda2, and /dev/sdb1

• fstype: Type of partition formatting such as ext4, NTFS (New Technology File System), and APFS
(Apple File System).

• mountpoint: Mount paths in the device.

• /node/network/

• device: Interface names of the device such as wlan0, en0, or docker0.

Configure a Rule Using Server Monitoring Sensor

In the following example, you can use server monitoring sensor to collect disk read data from servers.
You can configure fields for total disk read size, time taken to perform the reads, and name of the device
that has the disk (key field). You can also calculate rate of disk read and configure a trigger alert when
the total disk read exceeds a preset threshold.

1. Click Configuration > Rules.

2. On the Rules page, click + Add Rule.

3. Enter topic name as server.monitoring and set the rule name after the slash (/).

In this example, rule name can be check-disk-read.

The rule name in the top row of the rule page follows the topic/rule name format. The default topic
name is ‘external’ when you add a new rule.

4. Add a description and synopsis for your rule.

5. Click + Add Sensor and enter a name for the sensor. For example, disk.

6. Select Server Monitoring as sensor type.

7. Enter sensor path as /node/disk.

If you add a / at the end of the path, you get sensor paths for disk reads, writes, and written
records.

8. Enter a Frequency (in seconds) for the sensor. For example, 30s.

The minimum usable sensor frequency is 15 seconds. It takes at least 15 seconds before you see
data from the ingest.

114

9. Go to Fields tab and click + Add Field and enter the Field Name as device-name.

This field collects the name of the device containing the disk that generates read data.

10. Select Field Type as string.

11. Enable Add to Rule Key.

12. Select Ingest Type (Field Source) as Sensor.

13. Select the name of the sensor in the Sensor field. In this example, select disk.

14. Type Device in the Path field.

15. Go to Fields tab and click + Add Field and enter the Field Name as disk-read-total.

This field collects the total size of disk reads in bytes.

16. Select Field Type as float and Ingest Type (Field Source) as Sensor.

17. Select the name of the sensor for the Sensor field. In this example, select disk

18. Select Path as /node/disk/read/bytes/total.

19. Click + Add Field and enter the Field Name as disk-read-rate.

20. Select Field Type as float and Ingest Type (Field Source) as Formula.

21. In Formula, select Rate of Change.

22. In Field, select the field name disk-read-total.

23. Click + Add Field and enter the Field Name as read-threshold.

This field contains a constant value for disk read threshold.

24. Select Field Type as float and Ingest Type (Field Source) as Constant.

25. In Constant Value, enter a threshold value for disk reads. For example, 5.

26. Go to Triggers tab and click +Add Trigger.

27. Enter a name for the trigger such as read-trigger.

28. Enter Frequency. For example, 2o (2 offset).

If you set frequency as 2o or 2 offset, it multiplies the static frequency you set for sensor frequency
by 2.

29. Click +Add Term and enter a term name. For example, high-disk-usage.

30. In the When statement, select left operand as disk-read-total field, right operand as read-threshold
field, and the operator as Increase At Least by Value.

31. In the Then statement, set red as the color and enter Message as high disk read value.

32. Do one of the following:

• Click Save to save the rule configuration. The rule configuration is not deployed.

• Click Save and Deploy to deploy the configuration in Paragon Insights Platform.

To collect data on metrics, you must add the rule to a Playbook and apply a Playbook instance to device
or network groups.

When you start collecting server metrics, you can see the logs by providing the pod IDs for the ingest.

115

• Log in to the Paragon Insights management CLI.

• Type the command healthbot k logs server-monitoring pod id.

Understanding kube-state-metrics Service

IN THIS SECTION

Enable kube-state-metrics | 117

Sample Rules and Playbooks | 117

kube-state-metrics service is a Beta feature as of Paragon Insights Release 4.2.0.

kube-state-metrics is a third-party metrics monitoring service that generates metrics based on the
current state of Kubernetes clusters. You can use kube-state-metrics to monitor the health of
Kubernetes cluster and services. With Release 4.2.0, kube-state-metrics service is supported as a beta-
only feature. kube-state-metrics runs as a cluster service, and is installed automatically when you install
Paragon Insights. Once this service is installed, you can enable this service to generate, monitor, and
expose metrics of various objects within a Kubernetes cluster.

kube-state-metrics service provides metrics on pods, DaemonSets, deployments, persistent volume,
endpoints, ingress, job, lease, and configmap objects that are part of a Kubernetes cluster.

The following is a list of some metrics that are exposed:

• Pods running in a namespace

• Pods that are available

• Information on successful/failed deployments

• State of persistent volumes

• Information on currently running, successful, and failed jobs

• Pods that are in error state

• Health of deployment and DaemonSets

• Status and condition of Kubernetes nodes

116

Enable kube-state-metrics

You can enable kube-state-metrics from the CLI as well as from the Paragon Insights UI.

The following is an overview of steps to enable kube-state-metrics from the UI:

1. Create a device.

The device represents the cluster. The device hostname must be the kube-state-metrics service IP.
For example, kube-state-metrics.healthbot.svc.cluster.local.

2. Add the device to a device group.

3. Create rules with server-monitoring sensor type and relevant kube-state-metrics sensor path(s).

4. Apply playbooks.

Sample Rules and Playbooks

check-daemonset-status.rule

healthbot {
 topic kube-metrics {
 rule check-daemonset-status {
 keys [daemonset namespace];
 synopsis "";
 description "Checks daemon set unavailable status";
 sensor daemonset-status {
 description "Checks daemon set unavailable status";
 server-monitoring {
 sensor-name /kube/daemonset;
 frequency 60s;
 }
 }
 field daemonset {
 sensor daemonset-status {
 path daemonset;
 }
 type string;
 description "Checks status for demonset key";
 }
 field daemonset_status {
 sensor daemonset-status {
 path /kube/daemonset/status/number/unavailable;

117

 }
 type float;
 description "Field to check condition";
 }
 field namespace {
 sensor daemonset-status {
 path namespace;
 }
 type string;
 description "Checks status for namespace key";
 }
 trigger daemonset-status {
 frequency 1offset;
 term available {
 when {
 equal-to "$daemonset_status" 0;
 }
 then {
 status {
 color green;
 message "Unavailable demons set is 0 for $namespace $daemonset";
 }
 }
 }
 term notavailable {
 then {
 status {
 color red;
 message "Unavailable demons set is not 0 for $namespace $daemonset";
 }
 }
 }
 }
 }
 }
}

check-deployment-status-condition.rule

healthbot {
 topic kube-metrics {

118

 rule check-deployment-status-condition {
 keys [condition deployment namespace];
 synopsis "";
 description "Checks kube metrics deployment status condition";
 sensor deployment-status {
 description "Checks kube metrics deployment status condition";
 server-monitoring {
 sensor-name /kube/deployment;
 frequency 60s;
 }
 }
 field condition {
 sensor deployment-status {
 path condition;
 }
 type string;
 description "Deployment condition";
 }
 field deployment {
 sensor deployment-status {
 path deployment;
 }
 type string;
 description "Deployment pod name";
 }
 field namespace {
 sensor deployment-status {
 path namespace;
 }
 type string;
 description "Deployment namespace";
 }
 field status {
 sensor deployment-status {
 path status;
 }
 type string;
 description "Checks for true or false condition";
 }
 trigger deployment-status {
 frequency 1offset;
 term available {
 when {

119

 matches-with "$status" true;
 }
 then {
 status {
 color green;
 message "Deployment status for $deployment is $status";
 }
 }
 }
 term notavailable {
 then {
 status {
 color red;
 message "Deployment status for $deployment is $status";
 }
 }
 }
 }
 }
 }
}

check-deployment-status-replicas.rule

healthbot {
 topic kube-metrics {
 rule check-deployment-status-replicas {
 keys [deployment namespace];
 synopsis "";
 description "Checks kube metrics deployment replica status";
 sensor deployment-status {
 description "Checks kube metrics deployment replica status";
 server-monitoring {
 sensor-name /kube/deployment;
 frequency 60s;
 }
 }
 field deployment {
 sensor deployment-status {
 path deployment;
 }
 type string;

120

 description "Deployment pod name";
 }
 field deployment_status {
 sensor deployment-status {
 path /kube/deployment/status/replicas;
 }
 type float;
 description "Field to check 0 or other values";
 }
 field namespace {
 sensor deployment-status {
 path namespace;
 }
 type string;
 description "Namespace key";
 }
 trigger deployment-status {
 frequency 1offset;
 term available {
 when {
 not-equal-to "$deployment_status" 0;
 }
 then {
 status {
 color green;
 message "Deployment status for replicaset is $deployment_status for
$namespace $deployment";
 }
 }
 }
 term notavailable {
 then {
 status {
 color red;
 message "Deployment status for replicaset is $deployment_status for
$namespace $deployment";
 }
 }
 }
 }
 }

121

 }
}

check-pod-container-restarts.rule

healthbot {
 topic kube-metrics {
 rule check-pod-container-restarts {
 keys [container namespace pod uid];
 synopsis "";
 description "Checks pod container status restarts";
 sensor pod-init-container-status {
 description "Checks pod container status restarts";
 server-monitoring {
 sensor-name /kube/pod/container;
 frequency 60s;
 }
 }
 field container {
 sensor pod-init-container-status {
 path container;
 }
 type string;
 description "container name";
 }
 field namespace {
 sensor pod-init-container-status {
 path namespace;
 }
 type string;
 description "namespace of the pod";
 }
 field pod {
 sensor pod-init-container-status {
 path pod;
 }
 type string;
 description "pod name";
 }
 field restart-value {
 sensor pod-init-container-status {
 path /kube/pod/container/status/restarts/total;

122

 }
 type integer;
 description "restart status value";
 }
 field uid {
 sensor pod-init-container-status {
 path uid;
 }
 type string;
 description "Id ";
 }
 trigger restart-total-status {
 frequency 1offset;
 term less-than-ten {
 when {
 less-than-or-equal-to "$restart-value" 10;
 }
 then {
 status {
 color green;
 message "$namespace pod $pod container $container restart total is
$restart-value ";
 }
 }
 }
 term between-ten-and-twenty {
 when {
 range "$restart-value" {
 min 10;
 max 20;
 }
 }
 then {
 status {
 color yellow;
 message "$namespace pod $pod container $container restart total is
$restart-value ";
 }
 }
 }
 term more-than-twenty {
 then {
 status {

123

 color red;
 message "$namespace pod $pod container $container restart total is
$restart-value";
 }
 }
 }
 }
 }
 }
}

check-pod-init-container-status.rule

healthbot {
 topic kube-metrics {
 rule check-pod-init-container-status {
 keys [container namespace pod uid];
 synopsis "";
 description "Checks pod init container status waiting";
 sensor pod-init-container-status {
 description "Checks pod init container status waiting";
 server-monitoring {
 sensor-name /kube/pod/init/container;
 frequency 60s;
 }
 }
 field container {
 sensor pod-init-container-status {
 path container;
 }
 type string;
 description "container name";
 }
 field namespace {
 sensor pod-init-container-status {
 path namespace;
 }
 type string;
 description "namespace of the pod";
 }
 field pod {
 sensor pod-init-container-status {

124

 path pod;
 }
 type string;
 description "pod name";
 }
 field status {
 sensor pod-init-container-status {
 path /kube/pod/init/container/status/waiting;
 }
 type integer;
 description "Statius value (0/1)";
 }
 field uid {
 sensor pod-init-container-status {
 path uid;
 }
 type string;
 description "Id ";
 }
 trigger waiting-status {
 frequency 1offset;
 term matches-zero {
 when {
 equal-to "$status" 0 {
 time-range 10offset;
 }
 }
 then {
 status {
 color green;
 message "$namespace $pod $container status is $status";
 }
 }
 }
 term is-not-zero {
 then {
 status {
 color red;
 message "$namespace $pod $container status is $status";
 }
 }
 }
 }

125

 }
 }
}

check-node-status.rule

healthbot {
 topic kube-metrics {
 rule check-node-status {
 keys [condition node];
 synopsis "";
 description "Checks node status";
 sensor node-status {
 description "Checks node status";
 server-monitoring {
 sensor-name /kube/node;
 frequency 60s;
 }
 }
 field condition {
 sensor node-status {
 path condition;
 }
 type string;
 description "Node condition";
 }
 field node {
 sensor node-status {
 path node;
 }
 type string;
 description "Node name";
 }
 field node_status {
 constant {
 value "{{value}}";
 }
 type integer;
 description "Field to check condition";
 }
 field status {
 sensor node-status {

126

 path status;
 }
 type string;
 description "Status of the node";
 }
 trigger node-status {
 frequency 1offset;
 term available {
 when {
 matches-with "$status" false {
 ignore-case;
 }
 }
 then {
 status {
 color green;
 message "$condition for $node is $status";
 }
 }
 }
 term notavailable {
 then {
 status {
 color red;
 message "$condition for $node is $status.";
 }
 }
 }
 }
 variable value {
 value 0;
 description "Variable to match true(0) condition.";
 type int;
 }
 }
 }
}

kube-metrics.playbook

healthbot {
 playbook kube-metrics {

127

 rules [kube-metrics/check-daemonset-status kube-metrics/check-deployment-status-
replicas kube-metrics/check-node-status kube-metrics/check-pod-container-restarts kube-metrics/
check-pod-init-container-status kube-metrics/check-deployment-status-condition];
 description "Rules to check for kube-metrics ";
 synopsis "Rules to check for kube-metrics ";
 }
}

iAgent (CLI/NETCONF)

IN THIS SECTION

Example: PaloAlto Panos– Show Running Security Policy | 131

Outbound SSH (Device-Initiated) | 135

iAgent - vCenter/ESXi Server Monitor | 142

For all the benefits of the ’push’ data collection methods, some operational and state information is
available only through CLI/VTY commands. iAgent fills this gap by taking advantage of NETCONF/SSH
functionality to provide Paragon Insights with the ability to connect to a device, run commands, and
capture the output.

iAgent sensors use NETCONF/SSH and YAML-based PyEZ tables and views to fetch the necessary data.
Both structured (XML) and unstructured (VTY commands and CLI output) data is supported.

With iAgent, the Paragon Insights server initiates SSH requests over any available network interface,
whether in-band or out-of band; and the device responds (when properly configured) with the requested
data.

128

At minimum, iAgent (NETCONF) requires:

• Junos OS Version: 11.4 or later

• Minimum required device configuration:

set system services netconf ssh

Starting in HealthBot Release 3.1.0, iAgent functionality is extended to third party devices. When adding
a device, you can choose Other Vendor from the Vendor pull-down. This adds the Vendor Name text
field below the Vendor pull-down. Then you fill in the iAgent Port Number, Vendor Name, and OS name
fields highlighted in Figure 13 on page 130 to allow iAgent connections to non-Juniper devices.

NOTE: Refer to vendor documentation to understand how to configure third-party vendor
devices to allow these connections.

129

Figure 13: Add Third-Party Device

Using Netmiko, Paragon Insights makes persistent SSH connections over the selected port to the third-
party device. To gather device information, Paragon Insights sends CLI commands over SSH and receives
string blobs back as output. The string blobs are then parsed through TextFSM, using ntc-templates into
JSON format and then stored in the database. Default templates are located at /srv/salt/_textfsm. A
repository of ntc-templates for network devices is available here: NTC Templates. For advanced users

130

https://github.com/networktocode/ntc-templates/tree/master/ntc_templates/templates

who need a template which does not exist, you can create your own templates and upload them to
Paragon Insights using the Upload Rule Files button on the Configuration > Rules page. User defined
templates are stored at /jfit/_textfsm. The files must end with the .textfsm suffix.

TextFSM is integrated into PyEZ’s table/view feature which is an integral part of iAgent.

Example: PaloAlto Panos– Show Running Security Policy

IN THIS SECTION

Define PyEZ Table/View | 131

Gather Output from Device | 132

Generate JSON for Use in Paragon Insights Database | 133

To see the running security policy on a Panos device, we need to:

• Define a table/view for it

• Gather the output by sending the needed CLI to the device over SSH

• Generate JSON to store in Paragon Insights database

Define PyEZ Table/View

We need to define a PyEZ table that is used by the iAgent rule assigned to the Panos device. The
following table definition lacks a view definition. Because of this, the entire output from the show running
security-policy ends up getting stored in the database after processing.

PanosSecurityPolicyTable:
 command: show running security-policy
 platform: paloalto_panos
 key: NAME
 use_textfsm: True

131

(Optional) To store only a portion of the received data in Paragon Insights, you can define a view in the
same file. The view tells Paragon Insights which fields to pay attention to.

PanosSecurityPolicyTable:
 command: show running security-policy
 platform: paloalto_panos
 key: NAME
 use_textfsm: True
 view: TrafficAndActionView

TrafficAndActionView:
 fields:
 source: SOURCE
 destination: DESTINATION
 application_service: APPLICATION_SERVICE
 action: ACTION

Gather Output from Device

Using an iAgent rule that references the PyEZ table (or table/view) defined above, Paragon Insights
sends the command show running security-policy to the device which produces the following output:

"intrazone-default; index: 1" {
 from any;
 source any;
 source-region none;
 to any;
 destination any;
 destination-region none;
 category any;
 application/service 0:any/any/any/any;
 action allow;
 icmp-unreachable: no
 terminal yes;
 type intrazone;
}

"interzone-default; index: 2" {
 from any;

132

 source any;
 source-region none;
 to any;
 destination any;
 destination-region none;
 category any;
 application/service 0:any/any/any/any;
 action deny;
 icmp-unreachable: no
 terminal yes;
 type interzone;
}

dynamic url: no

Generate JSON for Use in Paragon Insights Database

Since the device configuration specifies Palo Alto Networks as the vendor and Panos OS as the
operating system, the TextFSM template used for this example would look like this:

Value Key,Filldown NAME (.*?)
Value Required FROM (\S+)
Value SOURCE (\S+)
Value SOURCE_REGION (\S+)
Value TO (\S+)
Value DESTINATION ([\S+\s+]+)
Value DESTINATION_REGION (\S+)
Value USER (\S+)
Value CATEGORY (\S+)
Value APPLICATION_SERVICE ([\S+\s+]+)
Value ACTION (\S+)
Value ICMP_UNREACHABLE (\S+)
Value TERMINAL (\S+)
Value TYPE (\S+)

Start
 ^${NAME}\s+\{
 ^\s+from\s+${FROM};
 ^\s+source\s+${SOURCE};
 ^\s+source-region\s+${SOURCE_REGION};
 ^\s+to\s+${TO};

133

 ^\s+destination\s+${DESTINATION};
 ^\s+destination-region\s+${DESTINATION_REGION};
 ^\s+user\s+${USER};
 ^\s+category\s+${CATEGORY};
 ^\s+application/service\s+${APPLICATION_SERVICE};
 ^\s+action\s+${ACTION};
 ^\s+icmp-unreachable:\s+${ICMP_UNREACHABLE}
 ^\s+terminal\s+${TERMINAL};
 ^\s+type\s+${TYPE};
 ^} -> Record

When the template above is used by Paragon Insights to parse the output shown previously, the
resulting JSON looks like:

{'"interzone-default; index: 2"': {'ACTION': 'deny',
 'APPLICATION_SERVICE': '0:any/any/any/any',
 'CATEGORY': 'any',
 'DESTINATION': 'any',
 'DESTINATION_REGION': 'none',
 'FROM': 'any',
 'ICMP_UNREACHABLE': 'no',
 'SOURCE': 'any',
 'SOURCE_REGION': 'none',
 'TERMINAL': 'yes',
 'TO': 'any',
 'TYPE': 'interzone',
 'USER': ''},
 '"intrazone-default; index: 1"': {'ACTION': 'allow',
 'APPLICATION_SERVICE': '0:any/any/any/any',
 'CATEGORY': 'any',
 'DESTINATION': 'any',
 'DESTINATION_REGION': 'none',
 'FROM': 'any',
 'ICMP_UNREACHABLE': 'no',
 'SOURCE': 'any',
 'SOURCE_REGION': 'none',
 'TERMINAL': 'yes',
 'TO': 'any',
 'TYPE': 'intrazone',
 'USER': ''}}

134

Outbound SSH (Device-Initiated)

IN THIS SECTION

Configure TCP Port for Outbound SSH in Ingest | 140

Connect a Device in Multiple Device Groups via Outbound SSH | 140

Starting with Release 3.2.0, HealthBot can use iAgent connections that are device-initiated using
outbound SSH. This configuration makes Paragon Insights act as the client to the device making the
connection. This type of connection is useful in environments in which the remote devices cannot
accept incoming connections. All existing iAgent rules can be used when outbound SSH is configured in
Junos OS devices.

NOTE: In the 3.2.0 release, outbound SSH is only supported on Junos OS devices.

At minimum, iAgent (outbound-ssh) requires:

• Junos OS Version: 11.4 or later

• Minimum required device configuration:

set system services outbound-ssh client client_name device-id <device-name-in-healthbot>
set system services outbound-ssh client client_name keep-alive retry 30
set system services outbound-ssh client client_name keep-alive timeout 35
set system services outbound-ssh client client_name services netconf
set system services outbound-ssh client client_name 10.1x.x0.1 port 2222

NOTE: In the configuration above, client_name can be anything that makes sense. The IP
address and port shown are examples representing Paragon Insights’s IP address and a unique
port number used for the devices in 1 device-group.

Outbound SSH is disabled by default and can be enabled at the device-group level. Once enabled, all
devices in the group use outbound SSH unless specifically configured not to. Users can disable
outbound SSH in a device through management CLI.

135

When you enable outbound SSH within the device-group, you must select a TCP port number over
which all the member devices initiate their NETCONF connections to Paragon Insights. This port must
be unique across the Paragon Insights installation. Figure 14 on page 137shows the outbound SSH
section of the add/edit device group window.

136

Figure 14: Outbound-SSH - Device Group Level

137

NOTE: To disable an individual device in a device-group from using outbound SSH, you must edit
the device and select disable in the outbound SSH configuration section. If you later change your
mind and want that device to use outbound SSH, edit the device and set outbound SSH to
reset.Figure 15 on page 139 is an edited (shortened) device add/edit window with the outbound
SSH section shown.

138

Figure 15: Outbound-SSH - Device Level

139

Configure TCP Port for Outbound SSH in Ingest

When you configure outbound SSH connections for device groups, you must configure TCP ports for
each device group. To avoid opening multiple TCP ports, Paragon Insights 4.1.0 Release supports
configuration of a single TCP port as ingest configuration for all outbound SSH connections across
device groups that use iAgent (NETCONF).

To configure iAgent (NETCONF) TCP port in ingest:

1. Go to Settings > Ingest.

2. Select the SSH tab on the Ingest Settings page.

3. In the OutboundSSH page, enter the TCP port number.

You can use the toggle button to enable or disable the Port field.

4. Do one of the following:

• Click Save and Deploy to save and commit the configuration in your existing network
configurations.

• Click Save to only save the configuration and not deploy it with the existing network.

NOTE: If you configure outbound SSH port for iAgent in device groups, that configuration
takes precedence over the ingest configuration.

Connect a Device in Multiple Device Groups via Outbound SSH

You can connect a device that is managed in different device groups through outbound SSH by
configuring multiple clients, where each client has the same port. In this case, you must create as many
copies of the device as there are device groups. Each device must have the same port number.

As an example, consider device r0 (10.1.1.1) configured for device groups dg1 and dg2. To connect
10.1.1.1 to both device groups via the same outbound SSH port, you can create one more device r1
(10.1.1.1) with the same IP and deploy it in dg2.

You must configure Paragon Insights for these ports in the respective device-groups. Figure 16 on page
141 is an example device group configuration.

140

Figure 16: Edit Device Group Configuration

141

Using the following sample client configurations, device 10.1.1.1 can connect to two device groups
using two outbound SSH clients with the same port.

set system services outbound-ssh client outbound-ssh1 device-id r0

set system services outbound-ssh client outbound-ssh1 10.1.1.1 port 2020

set system services outbound-ssh client outbound-ssh2 device-id r1

set system services outbound-ssh client outbound-ssh2 10.1.1.1 port 2020

NOTE: The 10.1.1.1 in the example denotes Paragon Insights (host) IP address.

iAgent - vCenter/ESXi Server Monitor

Since release 2.0.0, Paragon Insights has supported user-defined functions (UDFs) within fields. A user-
defined function relies on python tables and views, and YAML configuration files to allow a user to
define their own functions for processing telemetry data from Junos OS devices.

Starting with Release 3.2.0, Paragon Insights can use UDFs to process streamed data from VMWare’s
vCenter and ESXi server products.

We implement this feature by making use of VMWare’s PyVmomi API and persistent SaltStack
connections to that API. We use UDFs to process the vCenter/ESXi server data because:

• these servers do not respond to RPC with XML formatted text.

• it is extremely difficult to construct a table and view from the response data that these servers
provide

SNMP

IN THIS SECTION

SNMP in Paragon Insights | 143

Example: Creating a Rule using SNMP Ingest | 157

142

CONFIGURE NETWORK DEVICES | 158

CREATE RULE, APPLY PLAYBOOK | 158

Monitor the Devices | 171

SNMP is a widely known and accepted network management protocol that many network device
manufacturers, including Juniper Networks, provide for use with their devices. It is a polling type
protocol where network devices that are properly configured make configuration, diagnostic, and event
information available to collectors, which must also be properly configured and authenticated. The
collectors poll devices by sending specifically structured requests, called get requests, to retrieve data.

Paragon Insights supports SNMP as a sensor type, using standard get requests to gather statistics from
the device. Paragon Insights makes requests over any available interface, whether in-band or out-of-
band, and the device responds (when configured) with the requested data.

For information about SNMP as used on Junos OS devices, see Understanding SNMP Implementation in
Junos OS.

The sections below delve deeper into SNMP ingest configuration and all of the steps needed for
Paragon Insights to successfully ingest SNMP data from a device or devices in a device group.

SNMP in Paragon Insights

IN THIS SECTION

Configure a Rule Using SNMP Scalar Fields | 145

SNMP Ingest Configurations | 146

Paragon Insights supports three methods of collecting telemetry data using SNMP. The ingest, also
known as request-response, is a pull mode method in which Paragon Insights requests for telemetry

143

https://www.juniper.net/documentation/en_US/junos/topics/concept/snmp-best-practices-intro.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/snmp-best-practices-intro.html

data from the devices. The trap and inform notifications are push mode methods in which the devices
notify Paragon Insights about key performance indicator events that prevents the devices from
functioning as expected.

Paragon Insights Release 4.0.0 supports SNMPv3 alongside the current SNMPv2c as an ingest method.
Users with sp-admin role can select any version of SNMP in the Paragon Insights GUI.

SNMPv3 ingest provides you with an option to set authentication and privacy credentials to leverage
the following features:

• Authentication — Identifies and verifies the origin of an SNMPv3 message.

• Privacy — Prevents packet analyzers from snooping the content of messages by encrypting them.

• Integrity — Ensures that the content of SNMP messages is not altered while in transit without
authorization.

Table 14 on page 144 lists the supported authentication and privacy algorithms in SNMPv3 protocol.

Table 14: Authentication and Privacy Algorithms

Feature Algorithm

Supported authentication algorithms MD5

SHA

SHA224

SHA256

SHA384

SHA512

Supported privacy algorithms DES

AES

AES192

AES256

AES192C

AES256C

Paragon Insights also supports scalar object instances along with tabular objects in SNMP.

144

• The SNMP object can be scalar, tabular, or a combination of both in rules.

When you create a rule using SNMP ingest, you can add:

• Only scalar fields.

• A combination of tabular and scalar fields.

• A tabular column along with the index queried as a scalar object.

A tabular column queried as a scalar comes with the limitation that the index number does not
refer to the same Object across all the devices when you configure the tabular field in rule.

For example, IF-MIB::ifAdminStatus.16. The ifAdminStatus is a column in IF-MIB table and IF-
MIB::ifAdminStatus.16 refers to the table column with index 16.

• Only tabular fields.

• A scalar object is identified by its MIB name (for example, JUNIPER-MIB::scalarObjectName) or as
an OID.

• Paragon Insights validates a given scalar by checking the MAX-ACCESS property in the MIB
definition.

If you find MAX-ACCESS in the MIB definition set to read-only, read-create, or read-write, then that
object can be queried as a scalar.

When you query a table column with index as a scalar, you must enter the complete path to the scalar
object as MIB-Name::table column name:index number.

For example:

 IF-MIB::ifInOctets:16

NOTE: You can enter complete paths for more than one scalar object in the same query.

Configure a Rule Using SNMP Scalar Fields

The following example configuration of a rule has an SNMP tabular column as a scalar field and a second
field with a scalar not indexed in the SNMP table.

To configure a rule with scalar fields:

1. Go to Configuration > Rules.

145

https://apps.juniper.net/mib-explorer/getMibContent.html?q=junos-os/21.2R1/mib-rfc2863a.txt

2. Click +Add Rule on top of the Rules page.

Fill in the topic and rule name, description, and synopsis.

By default, the new rule is saved in topic external unless you specify a topic name here.

3. Click +Add Sensor and enter a name for the sensor.

4. Select SNMP as Sensor Type and 30s as Frequency.

5. Click Add Scalar and enter IF-MIB::ifNumber in the scalar field.

You can also enter the OID of the scalar object.

6. Click Add Scalar again and enter IF-MIB::ifAdminStatus.16 in the scalar field.

NOTE: The index number is different from one device to another and from one system to
another.

Before you configure a rule for a device, get the index number of the scalar object in that
device.

For more information, see SNMP index number.

7. Do one of the following:

• Save — Save your configuration changes but do not deploy the updated configuration. You can
use this option when, for example, you are making several changes and want to deploy all your
updates at the same time later.

• Save & Deploy — Save the rule configuration in the GUI and deploy the configuration on your
production environment. The ingest starts collecting telemetry data based on the configuration
changes.

SNMP Ingest Configurations

The SNMPv3 ingest can be set at the device or device group level, with device configuration taking
precedence if the ingest is configured at both levels. The configuration of SNMPv3 and SNMPv2c is
mutually exclusive.

NOTE: If a device is not configured for SNMP ingest, Paragon Insights uses SNMP v2c with
SNMP Community set to public as the default settings.

146

https://kb.juniper.net/InfoCenter/index?page=content&id=KB32016

NOTE: In Paragon Insights, the SNMPv2c and SNMPv3 ingest and trap configurations share the
same workflow.

To configure SNMP ingest at the device level:

1. Click the Configuration > Device option in the left navigation bar.

2. Click the add device button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device.

The following table describes the attributes in the Add a Device window:

Attributes Description

Name Name of the device. Default is hostname. (Required)

Hostname / IP Address / Range Hostname or IP address of a single device. If you are
providing a range of IP addresses, enter the IP
address for the device that marks the start and end
of the address range. (Required)

System ID to use for JTI Unique system identifier required for JTI native
sensors. Junos devices use the following format:
<host_name>:<jti_ip_address>

When a device has dual routing engines (REs), it
might send different system IDs depending on which
RE is primary. You can use a regular expression to
match both system IDs.

Flow Source IPs Enter the IP address(es) that this device uses to send
NetFlow data.

OpenConfig Port Number Port number required for JTI OpenConfig sensors.
The default value is 32767.

iAgent Port Number Port number required for iAgent. The default value is
830.

147

(Continued)

Attributes Description

Vendor Lists the vendor or supplier of the device you are
using.

The operating system you can select from the OS
drop-down list depends on the vendor you select
from the Vendor drop-down list.

The following are the list of options you can choose
from.

• Select Juniper from the vendor drop-down list to
select either Junos or Junos Evolved operating
systems from the OS drop-down list.

• Select CISCO from the Vendor drop-down list to
select either IOSXR or NXOS operating systems
from the OS drop-down list.

With Paragon Insights Release 4.0.0, NXOS OS is
also supported.

NOTE: If you plan to use Cisco IOS XR devices,
you must first configure the telemetry. For more
information, see Paragon Insights Installation
Requirements

• Select Arista from the Vendor drop-down list to
select EOS operating system from the OS drop-
down list.

• Select Paloalto from the Vendor drop-down list to
select PANOS operating system from the OS
drop-down list.

• Select Linux from the Vendor drop-down list and
you can enter the name of the operating system
in the OS field.

• If you select Other Vendor, the Vendor Name and
OS Name fields are enabled. You can enter the
name of the vendor of your choice in the Vendor

148

(Continued)

Attributes Description

Name field and the corresponding operating
system for the vendor in the OS field.

Consider the following example. If the operating
system of a vendor (listed in the Vendor drop-
down list) is not listed (in the OS drop-down list),
you can select the Other Vendor option to enter
name of the vendor and operating system of your
choice.

Starting with Release 4.0.0, Paragon Insights
supports Arista Networks, Paloalto Networks, and
Linux vendors.

Timezone Timezone for this device, specified as + or -hh:mm.
For example, +07:00

Syslog Source IPs List of IP addresses for the device sending syslog
messages to Paragon Insights. For example,
10.10.10.23, 192.168.10.100.

Syslog Hostnames List of hostnames for the device sending syslog
messages to Paragon Insights. For example,
router1.example.com.

SNMP

SNMP Port Number Port number required for SNMP ingest (request-
response) messages. The port number is set to the
standard value of 161.

SNMP Version Select either v2c or v3 in the drop-down menu.

149

(Continued)

Attributes Description

SNMP Community Enter an SNMP Community string for SNMPv2c
ingest.

In SNMPv2c, Community string is used to verify the
authenticity of the ingest (request-response) message
issued by the SNMP agent (devices such as routers,
switches, servers, and so on).

SNMPv3 Username Enter a username for SNMPv3 ingest (request-
response).

Authentication None This field appears if you selected v3 in SNMP Version
field.

Enable this option if you want to set SNMPv3
authentication to None.

Privacy None This field appears if you selected v3 in SNMP Version
field.

Enable this option if you want to set SNMPv3 privacy
protocol to None.

SNMPv3 Authentication Protocol This field appears if you selected v3 in SNMP Version
field and disabled Authentication None.

Select an authentication protocol from the drop-
down menu.

SNMP authentication protocol hashes the SNMP
username with the passphrase you enter. The hashed
output is sent along with the ingest message. Insights
again hashes the username with the passphrase you
entered for authentication. If the output matches, the
ingest message is further processed.

150

(Continued)

Attributes Description

SNMPv3 Authentication Passphrase This field appears if you selected v3 in SNMP Version
field and disabled Privacy None.

Enter a passphrase for SNMPv3 authentication.

SNMPv3 Privacy Protocol Select a privacy protocol from the drop-down menu.

Privacy algorithm encrypts the ingest message with
the protocol passphrase so that the message cannot
be read by an unauthorized application in the
network.

SNMPv3 Privacy Passphrase This field appears if you selected v3 in SNMP Version
field and disabled Privacy None.

Enter a passphrase to encrypt the ingest message.

Authentication (Required either here or at Device Group level)

Password Username Authentication username.

Password Authentication password.

SSL Server Common
Name

Server name protected by the
SSL certificate.

CA Profile* Choose the applicable CA
profile(s) from the drop-down
list.

Local Certificate* Choose the applicable local
certificate profile(s) from the
drop-down list.

151

(Continued)

Attributes Description

SSH SSH Key Profile* Choose the applicable SSH key
profile(s) from the drop-down list.

Username Authentication username.

*To edit or view details about saved security profiles, go to the Security page under the Settings
menu in the left navigation bar.

4. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the Devices table, see Monitor Device and Network Health.

To configure SNMP ingest at the device-group level:

1. Click the Configuration > Device Group option in the left-nav bar.

2. Click the add group button (+).

3. Enter the necessary values in the text boxes and select the appropriate options for the device group.

The following table describes the attributes in the Add a Device Group window:

Attributes Description

Name Name of the device group. (Required)

Description Description for the device group.

Devices Add devices to the device group from the drop-down list. (Required)

Starting in Paragon Insights 4.0.0, you can add more than 50 devices per device group.
However, the actual scale of the number of devices you can add depends on the
available system resources.

For example, consider that you want to create a device group of 120 devices. In
releases earlier than release 4.0.0, it is recommended that you create three device
groups of 50, 50, and 20 devices respectively. With Paragon Insights Release 4.0.0, you
just create one device group.

152

(Continued)

Attributes Description

Native Ports (Native GPB sensors only) List the port numbers on which the Junos Telemetry
Interface (JTI) native protocol buffers connections are established.

Flow Ports (NetFlow sensors only) List the port numbers on which the NetFlow data is received by
Paragon Insights. The port numbers must be unique across the entire Paragon Insights
installation.

Syslog Ports Specify the UDP port(s) on which syslog messages are received by Paragon Insights.

Retention Policy Select a retention policy from the drop-down list for time series data used by root cause
anaylsis (RCA). By default, the retention policy is 7 days.

Reports In the Reports field, select one or more health report profile names from the drop-down
list to generate reports fo the device group. Reports include alarm statistics, device
health data, as well as device-specific information (such as hardware and software
specifications).

To edit or view details about saved health report profiles, go to the System page under
the Settings menu in the left-nav bar. The report profiles are listed under Report
Settings.

For more information, see Alerts and Notifications.

SNMP

SNMP Port
Number

Port number required for SNMP notifications. The port number is set to the standard
value of 161.

SNMP Version Select either v2c or v3 in the drop-down menu.

• If you select v2c, the SNMP Community name field appears. The string used in v2c
authentication is set to public by default. It is recommended that users change the
community string.

• If you select v3, you are given an option to set username, authentication and
privacy methods, and authentication and privacy secrets.

153

(Continued)

Attributes Description

SNMP Community Enter an SNMP Community string for SNMPv2c ingest.

In SNMPv2c, Community string is used to verify the authenticity of the trap message
issued by the SNMP agent.

SNMPv3
Username

Enter a username for SNMPv3 ingest messages.

Authentication
None

This field appears if you selected v3 in SNMP Version field.

Enable this option on if you want to set SNMPv3 authentication to None.

Privacy None This field appears if you selected v3 in SNMP Version field.

Enable this option on if you want to set SNMPv3 privacy protocol to None.

SNMPv3
Authentication
Protocol

This field appears if you selected v3 in SNMP Version field and disabled Authentication
None.

Select an authentication protocol from the drop-down menu.

SNMP authentication protocol hashes the SNMP username with the passphrase you
enter. The hashed output is sent along with the trap notification message. Paragon
Insights again hashes the username with the passphrase you entered for authentication.
If the output matches, the trap notification is further processed.

SNMPv3
Authentication
Passphrase

This field appears if you selected v3 in SNMP Version field and disabled Privacy None.

Enter a passphrase to authenticate SNMPv3 ingest messages.

SNMPv3 Privacy
Protocol

Select a privacy protocol from the drop-down menu.

Privacy algorithm encrypts the ingest message with the protocol passphrase so that the
message cannot be read by an unauthorized application in the network.

SNMPv3 Privacy
Passphrase

This field appears if you selected v3 in SNMP Version field and disabled Privacy None.

Enter a passphrase to encrypt the trap notification.

154

(Continued)

Attributes Description

Summarization To improve the performance and disk space utilization of the Paragon Insights time
series database, you can configure data summarization methods to summarize the raw
data collected by Paragon Insights. Use these fields to configure data summarization:

Time Span The time span (in minutes) for which you want to group the data
points for data summarization.

Summarization
Profiles

Choose the data summarization profiles from the drop-down list
for which you want to apply to the ingest data. To edit or view
details about saved data summarization profiles, go to the Data
Summarization Profiles page under the Settings menu in the left-
nav bar.

For more information, see Configure Data Summarization.

Ingest Frequency Select existing Ingest Frequency Profiles to override rule or sensor frequency settings.

Authentication(Required here or at Device level)

Password Username Authentication user name.

Password Authentication password.

SSL Server Common Name Server name protected by the SSL certificate.

CA Profile* Choose the applicable CA profile(s) from the drop-down list.

Local Certificate* Choose the applicable local certificate profile(s) from the drop-
down list.

SSH SSH Key Profile* Choose the applicable SSH key profile(s) from the drop-down list.

Username Authentication username.

155

(Continued)

Attributes Description

Notifications • You can use the Alarm Manager feature to organize, track, and manage KPI event
alarm notifications received from Paragon Insights devices.

• To receive Paragon Insights alarm notifications for KPI events that have occurred on
your devices, you must first configure the notification delivery method for each KPI
event severity level (Major, Minor, and Normal). Select the delivery method from the
drop-down lists.

To edit or view details about saved delivery method profiles, go to the System page
under the Settings menu in the left-nav bar. The delivery method profiles are listed
under Notification Settings.

For more information, see Alerts and Notifications.

Logging
Configuration

You can collect different severity levels of logs for the running Paragon Insights services
of a device group. Paragon Insights Release 4.0.0 supports log collection for SNMP
notification.

Use these fields to configure which log levels to collect:

Global Log
Level

From the drop-down list, select the level of the log messages that you
want to collect for every running Paragon Insights service for the
device group. The level is set to error by default.

Log Level for
specific
services

Select the log level from the drop-down list for any specific service
that you want to configure differently from the Global Log Level
setting. The log level that you select for a specific service takes
precedence over the Global Log Level setting.

For more information, see Logs for Paragon Insights Services.

156

(Continued)

Attributes Description

Publish You can configure Paragon Insights to publish Paragon Insights sensor and field data for
a specific device group:

Destinations Select the publishing profiles that define the notification type
requirements (such as authentication parameters) for publishing the
data.

To edit or view details about saved publishing profiles, go to the System
page under the Settings menu in the left-nav bar. The publishing profiles
are listed under Notification Settings.

Field Select the Paragon Insights rule topic and rule name pairs that contain
the field data you want to publish.

Sensor (Device group only) Select the sensor paths or YAML tables that contain
the sensor data you want to publish. No sensor data is published by
default.

*To edit or view details about saved security profiles, go to the Security page under the Settings
menu in the left-nav bar.

4. Click Save to save the configuration or click Save and Deploy to save and deploy the configuration.
For information on how to use the device group cards, see Monitor Device and Network Health.

Example: Creating a Rule using SNMP Ingest

To illustrate how to configure and use an SNMP sensor, consider a scenario where you want to:

• Monitor Routing Engine CPU, CPU average, and memory utilization for a device, using SNMP data

• Create a rule with triggers that indicate when utilization for any of the above elements goes above
80%

To implement this scenario, you will need to complete the following activities:

• "CONFIGURE NETWORK DEVICES" on page 158

• "CREATE RULE, APPLY PLAYBOOK" on page 158

• "Monitor the Devices" on page 171

The workflow is as follows:

157

CONFIGURE NETWORK DEVICES

NOTE: This example assumes you have already added your devices into Paragon Insights and
assigned them to a device group.

If not already done, configure your network device(s) to accept SNMP ingest in Paragon Insights. See
"SNMP in Paragon Insights " on page 143 for steps to configure SNMP ingest.

CREATE RULE, APPLY PLAYBOOK

IN THIS SECTION

Configure a Rule Using an SNMP Sensor | 158

Add the Rule to a Playbook | 169

Apply the playbook to a device group | 170

Configure a Rule Using an SNMP Sensor

You can now create a rule using SNMP as the sensor.

This rule includes multiple elements, as shown below:

• An SNMP sensor to ingest data

• Five fields extracting specific SNMP data of interest:

• CPU utilization, memory utilization

• CPU utilization averages - 1min, 5min, 15min

• A field representing a static value, used as a threshold

• Value provided by a variable

158

• A field representing a description

• Value provided by a variable; extracted from the SNMP messages

• Five triggers, indicating when CPU, CPU average, and memory utilization is higher than the threshold
value

1. In the Paragon Insights GUI, click Configuration > Rules in the left-nav bar.

2. On the Rules page, click the + Add Rule button.

3. On the page that appears, in the top row of the rule window, set the rule name. In this example,
rule name is check-system-cpu-memory-snmp.

4. Add a description and synopsis if you wish.

5. Click the + Add sensor button and enter the following parameters to configure the sensor, system-
cpu-memory:

• Name is user-defined

• The sensor is using the Juniper SNMP MIB table jnxOperatingTable

159

• Paragon Insights polls the device group for table data every 60 seconds

6. Now move to the Variables tab, click the + Add variable button and enter the following parameters
to configure the first variable, comp-name:

• Matches any string that includes “Routing Engine”

• Referenced later in field description

7. Click the + Add variable buttononce more and enter the following parameters to configure the
second variable, static-threshold:

• Represents a (default) static value of “80”; in this case, 80%

• Referenced later in field threshold

8. Now move to the Fields tab, click the + Add field button and enter the following parameters to
configure the first field, cpu-15min-avg:

• Field names are user-defined

• Extracts jnxOperating15MinLoadAvg value from SNMP table configured in the sensor

160

• jnxOperating15MinLoadAvg - CPU Load Average (as a % value) over the last 15 minutes

9. Click the + Add field button again and enter the following parameters to configure the second field,
cpu-1min-avg:

• Extracts jnxOperating1MinLoadAvg value from SNMP table

• jnxOperating1MinLoadAvg - CPU Load Average (as a % value) over the last 1 minute

10. Click the + Add field button again and enter the following parameters to configure the third field,
cpu-5min-avg:

• Extracts jnxOperating5MinLoadAvg value from SNMP table

• jnxOperating5MinLoadAvg - CPU Load Average (as a % value) over the last 5 minutes

161

https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperating15MinLoadAvg&product=Junos%20OS&release=19.3R1
https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperating1MinLoadAvg&product=Junos%20OS&release=19.3R1
https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperating5MinLoadAvg&product=Junos%20OS&release=19.3R1

11. Click the + Add field button again and enter the following parameters to configure the fourth field,
description:

• Extracts jnxOperatingDescr value from SNMP table

• jnxOperatingDescr - name or description; for example, ”Routing Engine 0”, “FPC 0”, etc.

• The expression references the variable comp-name; filters the data further to retain only the
values that include the string “Routing Engine”

• Matching values will act as keys; each key gets a colored block in device health view

162

https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperatingDescr&product=Junos%20OS&release=19.3R1

12. Click the + Add field button again and enter the following parameters to configure the fifth field,
system-buffer-memory:

• Extracts jnxOperatingBuffer value from SNMP table

• jnxOperatingBuffer - buffer pool utilization (as a % value)

13. Click the + Add field button again and enter the following parameters to configure the sixth field,
system-cpu:

163

https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperatingBuffer&product=Junos%20OS&release=19.3R1

• Extracts jnxOperatingCPU value from SNMP table

• jnxOperatingCPU - CPU utilization (as a % value)

14. Click the + Add field button once more and enter the following parameters to configure the seventh
field, threshold:

• The expression references the variable static-threshold, giving this field the (default) integer
value “80”

• Referenced later in triggers

15. Now move to the Triggers tab, click the + Add trigger button and enter the following parameters to
configure the first trigger, system-buffer:

• Trigger names are user-defined

164

https://apps.juniper.net/mib-explorer/search.jsp#object=jnxOperatingCPU&product=Junos%20OS&release=19.3R1

• Trigger logic runs every 90 seconds

• Evaluate terms in sequence; when a term’s conditions are met, show its color and message on
the device health pages

• When system memory buffer utilization (the value in field system-buffer-memory) is greater
than 80 (the value in field threshold), set color to red and show related message

• Otherwise, set color to green and show related message

16. Click the click the + Add trigger button again and enter the following parameters to configure the
second trigger, system-cpu:

165

• Trigger logic runs every 90 seconds

• When CPU utilization (the value in field system-cpu) is greater than 80 (the value in field
threshold), set color to red and show related message

• Otherwise, set color to green and show related message

17. Click the click the + Add trigger button again and enter the following parameters to configure the
third trigger, system-cpu-15min-average:

• Trigger logic runs every 90 seconds

166

• When CPU 15min utilization average (the value in field cpu-15min-avg) is greater than or equal
to 80 (the value in field threshold), set color to red and show related message

• Otherwise, set color to green and show related message

18. Click the click the + Add trigger button again and enter the following parameters to configure the
fourth trigger, system-cpu-1min-average:

• Trigger logic runs every 90 seconds

• When CPU 1min utilization average (the value in field cpu-1min-avg) is greater than or equal to
80 (the value in field threshold), set color to red and show related message

167

• Otherwise, set color to green and show related message

19. Click the click the + Add trigger button once more and enter the following parameters to configure
the fifth trigger, called system-cpu-5min-average:

• Trigger logic runs every 90 seconds

• When CPU 5min utilization average (the value in field cpu-5min-avg) is greater than or equal to
80 (the value in field threshold), set color to red and show related message

• Otherwise, set color to green and show related message

168

20. At the upper right of the window, click the + Save & Deploy button.

Add the Rule to a Playbook

With the rule created, you can now add it to a playbook. For this example, create a new playbook to
hold the new rule.

1. Click Configuration > Playbooks in the left-navigation bar.

2. On the Playbooks page, click the + Create Playbook button.

3. On the page that appears, enter the following parameters:

169

4. Click Save & Deploy.

Apply the playbook to a device group

To make use of the playbook, apply it to a device group.

1. On the Playbooks page, click the Apply (Airplane) icon for the playbook you configured above.

2. On the page that appears:

• Enter a playbook instance name

• Select the desired device group

• (Optional) If desired, you can adjust the variables for this playbook instance to use different values
than the defaults configured in the rule

• Click Run Instance

170

3. On the Playbooks page, confirm that the playbook instance is running. Note that the playbook
instance may take some time to activate.

Monitor the Devices

With the playbook applied, you can begin to monitor the devices.

1. Click Monitor > Device Group Health in the left-nav bar.

2. Select the device group to which you applied the playbook from the Device Group pull-down menu.

3. Select one or more of the devices to monitor.

4. In the Tile View, hover your mouse over one of the external tiles.

• external is the topic name under which the rule was created

• Each colored block represents a key and its related values

• The mouse-over window shows information related to the given key, with the triggers listed
inside

171

5. In the Table View, try out the various filters and sorting options.

• Each trigger is listed as a KPI

172

Release History Table

Release Description

4.1.0 Paragon Insights 4.1.0 Release supports configuration of a single TCP port as ingest configuration for all
outbound SSH connections across device groups that use iAgent (NETCONF).

4.0.0 Paragon Insights Release 4.0.0 supports SNMPv3 alongside the current SNMPv2c as an ingest method.

4.0.0 Starting in Paragon Insights 4.0.0, you can add more than 50 devices per device group.

4.0.0 Paragon Insights Release 4.0.0 supports log collection for SNMP notification.

3.2.0 Starting with Release 3.2.0, HealthBot can use iAgent connections that are device-initiated using
outbound SSH

3.2.0 Starting with Release 3.2.0, Paragon Insights can use UDFs to process streamed data from VMWare’s
vCenter and ESXi server products

3.1.0 Starting in HealthBot Release 3.1.0, iAgent functionality is extended to third party devices.

2.0.0 Since release 2.0.0, Paragon Insights has supported user-defined functions (UDFs) within fields.

173

	Table of Contents
	About This Guide
	“Push” Model Data Ingest Methods
	Paragon Insights Push-Model Overview
	Paragon Insights Push-Model Ingest Methods
	Native GPB
	NetFlow
	Example: Add a Device In Paragon Insights, Configure Paragon Insights for NetFlow, and Monitor
	Add the Device In Paragon Insights
	Add Device Group
	Define NetFlow Ingest Settings - Review Predefined Templates
	Define NetFlow Ingest Settings - (Optional) Create Your Own NetFlow Template
	Define NetFlow Ingest Settings - Clone an Existing NetFlow Template
	Define NetFlow Ingest Settings - Delete a NetFlow Template
	Configure a Rule Using the Flow Sensor
	Add the Rule to a Playbook
	Apply the Playbook to a Device Group
	Monitor the Devices

	Differences Between NetFlow and sFlow
	sFlow
	OpenConfig
	Syslog
	Monitor the Devices
	SNMP Trap and Inform Notifications
	Glossary
	Configurations

	Understand Inband Flow Analyzer 2.0
	Configure Device Details for Inband Flow Analyzer Devices
	Delete an Inband Flow Analyzer Device
	Understand Bring Your Own Ingest
	Bring Your Own Ingest Default Plug-in Workflow
	Load Bring Your Own Ingest Default Plug-ins
	Configure Bring Your Own Ingest Default Plug-in Instances
	Configure Ingest Mapping for Default BYOI Plug-ins
	Bring Your Own Ingest Custom Plug-in Workflow
	Build and Load BYOI Custom Plug-in Images
	Use JSON Configuration File Attributes in Ingest Image
	Create a Shell Script for Configuration Updates
	Tag and Export the BYOI Custom Plugin Image
	Configure Kubernetes YAML File
	(Optional) Assign Virtual IP Address to Plugin
	Load the BYOI Custom Plugin

	Configure Bring Your Own Ingest Custom Plug-in Instances
	Use the Sample Rule and Playbook Configurations for BYOI Custom Plug-ins
	Delete a Bring Your Own Ingest Plug-in

	“Pull” Model Data Ingest Methods
	Paragon Insights Pull-Model Overview
	Paragon Insights Pull-Model Ingest Methods
	Server Monitoring Ingest
	Configure a Rule Using Server Monitoring Sensor

	Understanding kube-state-metrics Service
	iAgent (CLI/NETCONF)
	Example: PaloAlto Panos– Show Running Security Policy
	Outbound SSH (Device-Initiated)
	iAgent - vCenter/ESXi Server Monitor

	SNMP
	SNMP in Paragon Insights
	Example: Creating a Rule using SNMP Ingest
	CONFIGURE NETWORK DEVICES
	CREATE RULE, APPLY PLAYBOOK
	Configure a Rule Using an SNMP Sensor
	Add the Rule to a Playbook
	Apply the playbook to a device group

	Monitor the Devices

