
vMX

vMX Getting Started Guide for KVM

Published

2021-09-21

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

vMX vMX Getting Started Guide for KVM
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vii

1 vMX Overview

vMX Overview | 2

Virtual Network Interfaces for vMX | 7

2 Installing and Deploying vMX on KVM

Minimum Hardware and Software Requirements | 11

vMX Package Contents | 18

Installing vMX on KVM | 20

Preparing the Ubuntu Host to Install vMX | 20

Upgrading the Kernel | 22

Upgrading to libvirt 1.2.19 | 22

Updating Drivers for the X710 NIC | 24

Install the Other Required Packages | 24

Preparing the Red Hat Enterprise Linux Host to Install vMX | 25

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX | 25

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX | 28

Preparing the CentOS Host to Install vMX | 32

Installing vMX for Different Use Cases | 35

Installing vMX for Lab Simulation | 40

Installing vMX for Low-Bandwidth Applications | 42

Installing vMX for High-Bandwidth Applications | 44

Installing vMX with Dual Routing Engines | 46

Installing vMX with Mixed WAN Interfaces | 50

Deploying and Managing vMX | 52

Specifying vMX Configuration File Parameters | 52

iii

Configuring the Host | 53

Configuring the VCP VM | 54

Configuring the VFP VM | 56

Configuring Interfaces | 59

Connecting to VMs | 60

Logging In to VCP | 61

Logging In to VFP | 61

Managing vMX | 62

Deploying vMX | 62

Managing vMX Deployments | 63

Specifying the Temporary File Directory | 64

Specifying the Environment File | 65

Configuring Logging Options for vMX | 65

Connecting to Console Port for the VMs | 65

Getting Help for the Script Options | 66

Binding virtio Devices | 66

Setting Up the Device Bindings | 67

Creating Device Bindings | 69

Deleting Device Bindings | 70

Verifying Device Bindings | 70

Installing Nested vMX VMs | 71

Overview of the Nested VM Model | 71

Hardware and Software Requirements for Nested vMX VMs | 75

Installing and Launching the Nested vMX VM on KVM | 76

Preparing the Ubuntu Host to Install the Nested vMX VM | 76

Loading the Modified IXGBE Driver | 77

Launching a Nested vMX Instance | 78

Connecting to the VFP Console Port | 81

Connecting to the VCP | 81

Example: Enabling SR-IOV on vMX Instances on KVM | 83

Procedure for Identifying PCI-Addresses and Kernel Name for the NIC | 84

Download and Install the Latest Driver Software from Intel | 85

iv

Prepare NIC to Use SR-IOV in System Mode | 85

Setting SR-IOV at Boot-Time | 86

Verify sriov_numvfs Settings | 87

Changing the Number of sriov_numvfs | 89

Updating the VMX Configuration File (vmx.conf) Parameters | 90

Changes Required for Using Intel ixgbe Driver | 93

3 Configuring Modified and Unmodified Drivers

Modified and Unmodified i40e Driver | 95

Understanding the Differences between Modified and Unmodified i40e Driver | 95

Deploying vMX with Unmodified i40e Driver | 96

Moving from Modified i40e Driver to Unmodified i40e Driver | 98

Moving from Unmodified i40e Driver to Modified i40e Driver | 100

Modified and Unmodified IXGBE Driver | 100

Understanding the Differences between Modified and Unmodified IXGBE Driver | 101

Deploying vMX with Unmodified IXGBE Driver | 102

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver | 104

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver | 105

Understanding the Features Supported on Modified and Unmodified Drivers | 106

4 Configuring vMX Chassis-Level Features

Configuring the Number of Active Ports on vMX | 110

Naming the Interfaces | 110

Configuring the Media MTU | 111

Enabling Performance Mode or Lite Mode | 112

Tuning Performance Mode | 114

lite-mode | 115

performance-mode | 117

v

5 Class of Service for vMX

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Configuring Four-Level Hierarchical Scheduling on vMX | 125

Packet Loss Priority and Drop Profiles on vMX | 126

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX | 128

Configuring Drop Profiles | 128

Configuring Schedulers with Drop Profiles | 129

Configuring Hierarchical CoS on vMX | 131

Enabling Flexible Queuing | 131

Mapping Forwarding Classes to Queues on vMX | 131

Configuring Traffic Control Profiles for vMX | 132

Configuring Schedulers on vMX | 132

Example: Configuring Hierarchical CoS on vMX | 133

Requirements | 134

Overview | 134

Configuration | 134

Bypassing the Queuing Chip | 139

6 Troubleshooting vMX

Verifying Whether VMs Are Running | 142

Viewing CPU Information | 142

Viewing VFP Statistics | 143

Viewing VFP Log Files | 145

Troubleshooting VFP and VCP Connection Establishment | 146

Verifying BIOS Settings for SR-IOV | 148

vi

About This Guide

Use this guide to install the virtual MX router in the KVM environment. This guide also includes basic
vMX configuration and management procedures.

After completing the installation and basic configuration procedures covered in this guide, refer to the
Junos OS documentation for information about further software configuration on the vMX router.

RELATED DOCUMENTATION

Junos OS for MX Series Documentation

vii

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/mx-series/index.html

1
CHAPTER

vMX Overview

vMX Overview | 2

Virtual Network Interfaces for vMX | 7

vMX Overview

IN THIS SECTION

Benefits and Uses of vMX Routers | 2

Automation for vMX Routers | 3

Architecture of a vMX Instance | 3

Traffic Flow in a vMX Router | 6

Read this topic to get an overview about vMX virtual routers.
The vMX router is a virtual version of the MX Series 3D Universal Edge Router. Like the MX Series
router, the vMX router runs the Junos operating system (Junos OS) and supports Junos OS packet
handling and forwarding modeled after the Trio chipset. Configuration and management of vMX routers
are the same as for physical MX Series routers, allowing you to add the vMX router to a network
without having to update your operations support systems (OSS).

You install vMX software components on an industry-standard x86 server running a hypervisor, either
the kernel-based virtual machine (KVM) hypervisor or the VMware ESXi hypervisor.

For servers running the KVM hypervisor, you also run the Linux operating system and applicable third-
party software. vMX software components come in one software package that you install by running an
orchestration script included with the package. The orchestration script uses a configuration file that
you customize for your vMX deployment. You can install multiple vMX instances on one server.

For servers running the ESXi hypervisor, you run the applicable third-party software.

Some Junos OS software features require a license to activate the feature. To understand more about
vMX Licenses, see, vMX Licenses for KVM and VMware. Please refer to the Licensing Guide for general
information about License Management. Please refer to the product Data Sheets for further details, or
contact your Juniper Account Team or Juniper Partner.

Benefits and Uses of vMX Routers

You can use virtual devices to lower your capital expenditure and operating costs, sometimes through
automating network operations. Even without automation, use of the vMX application on standard x86
servers enables you to:

2

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/vmx-licensing.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/licensing.html
https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000522-en.pdf

• Quickly introduce new services

• More easily deliver customized and personalized services to customers

• Scale operations to push IP services closer to customers or to manage network growth when growth
forecasts are low or uncertain

• Quickly expand service offerings into new sites

A well designed automation strategy decreases costs as well as increasing network efficiency. By
automating network tasks with the vMX router, you can:

• Simplify network operations

• Quickly deploy new vMX instances

• Efficiently install a default Junos OS configuration on all or selected vMX instances

• Quickly reconfigure existing vMX routers

You can deploy the vMX router to meet some specific network edge requirements, such as:

• Network simulation

• Terminate broadband subscribers with a virtual broadband network gateway (vBNG)

• Temporary deployment until a physical MX Series router is available

Automation for vMX Routers

Automating network tasks simplifies network configuration, provisioning, and maintenance. Because the
vMX software uses the same Junos OS software as MX Series routers and other Juniper Networks
routing devices, vMX supports the same automation tools as Junos OS. In addition, you can use
standard automation tools to deploy the vMX, as you do other virtualized software.

Architecture of a vMX Instance

The vMX architecture is organized in layers:

• The vMX router at the top layer

• Third-party software and the hypervisor in the middle layer

3

Linux, third-party software, and the KVM hypervisor in the middle layer in Junos OS Release 15.1F3
or earlier releases. In Junos OS Release 15.1F3 and earlier releases, the host contains the Linux
operating system, applicable third-party software, and the hypervisor.

• The x86 server in the physical layer at the bottom

Figure 1 on page 4 illustrates the architecture of a single vMX instance inside a server. Understanding
this architecture can help you plan your vMX configuration.

Figure 1: vMX Instance in a Server

The physical layer of the server contains the physical NICs, CPUs, memory, and Ethernet management
port. The host contains applicable third-party software and the hypervisor.

Supported in Junos OS Release 15.1F3 and earlier releases, the host contains the Linux operating
system, applicable third-party software, and the hypervisor.

The vMX instance contains two separate virtual machines (VMs), one for the virtual forwarding plane
(VFP) and one for the virtual control plane (VCP). The VFP VM runs the virtual Trio forwarding plane
software and the VCP VM runs Junos OS.

The hypervisor presents the physical NIC to the VFP VM as a virtual NIC. Each virtual NIC maps to a
vMX interface. Figure 2 on page 5 illustrates the mapping.

4

The orchestration script maps each virtual NIC to a vMX interface that you specify in the configuration
file. After you run the orchestration script and the vMX instance is created, you use the Junos OS CLI to
configure these vMX interfaces in the VCP (supported in Junos OS Release 15.1F3 or earlier releases).

Figure 2: NIC Mapping

After the vMX instance is created, you use the Junos OS CLI to configure these vMX interfaces in the
VCP. The vMX router supports the following types of interface names:

• Gigabit Ethernet (ge)

• 10-Gigabit Ethernet (xe)

• 100-Gigabit Ethernet (et)

NOTE: vMX interfaces configured with the Junos OS CLI and the underlying physical NIC on the
server are independent of each other in terms of interface type (for example, ge-0/0/0 can get
mapped to a 10-Gigabit NIC).

The VCP VM and VFP VM require Layer 2 connectivity to communicate with each other. An internal
bridge that is local to the server for each vMX instance enables this communication.

The VCP VM and VFP VM also require Layer 2 connectivity to communicate with the Ethernet
management port on the server. You must specify virtual Ethernet interfaces with unique IP addresses

5

and MAC addresses for both the VFP and VCP to set up an external bridge for a vMX instance. Ethernet
management traffic for all vMX instances enters the server through the Ethernet management port.

The way network traffic passes from the physical NIC to the virtual NIC depends on the virtualization
technique that you configure.

vMX can be configured to run in two modes depending on the use case:

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher
bandwidth.

NOTE: Performance mode is the default mode.

Traffic Flow in a vMX Router

The x86 server architecture consists of multiple sockets and multiple cores within a socket. Each socket
also has memory that is used to store packets during I/O transfers from the NIC to the host. To
efficiently read packets from memory, guest applications and associated peripherals (such as the NIC)
should reside within a single socket. A penalty is associated with spanning CPU sockets for memory
accesses, which might result in non-deterministic performance.

The VFP consists of the following functional components:

• Receive thread (RX): RX moves packets from the NIC to the VFP. It performs preclassification to
ensure host-bound packets receive priority.

• Worker thread: The Worker performs lookup and tasks associated with packet manipulation and
processing. It is the equivalent of the lookup ASIC on the physical MX Series router.

• Transmit thread (TX): TX moves packets from the Worker to the physical NIC.

The RX and TX components are assigned to the same core (I/O core). If there are enough cores available
for the VFP, the QoS scheduler can be allocated separate cores. If there are not enough cores available,
the QoS scheduler shares the TX core.

TX has a QoS scheduler that can prioritize packets across several queues before they are sent to the NIC
(supported in Junos OS Release 16.2).

The RX and TX components can be dedicated to a single core for each 1G or 10G port for the most
efficient packet processing. High-bandwidth applications must use SR-IOV. The Worker component
utilizes a scale-out distributed architecture that enables multiple Workers to process packets based on

6

packets-per-second processing needs. Each Worker requires a dedicated core (supported in Junos OS
Release 16.2).

RELATED DOCUMENTATION

Virtual Network Interfaces for vMX | 7

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/
vmx-licensing.html

Virtual Network Interfaces for vMX

IN THIS SECTION

Paravirtualization | 8

PCI Passthrough with SR-IOV | 9

In a virtual environment, packet input and output capabilities play a significant role in the performance
of the packet processing functionality inside the virtual machine, specifically the VFP VM. VFP supports
two types of virtual network interfaces:

• Paravirtualized—Paravirtualized network interfaces use network drivers in the guest OS and host OS
that interact with the virtual environment and communicate effectively to give higher performance
than fully emulated interfaces. In KVM, the supported paravirtualized interface is virtio. For VMware,
VMXNET3 is supported.

• PCI pass-through—PCI pass-through enables PCI devices such as network interfaces to appear as if
they were physically attached to the guest operating system, bypassing the hypervisor and providing
a high rate of data transfer. The physical network interfaces support single root I/O virtualization
(SR-IOV) capability and can be connected to the VMs using PCI pass-through.

Choose the type based on how you want to use the vMX router. SeeTable 1 on page 8.

7

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/vmx-licensing.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/vmx-licensing.html

Table 1: Considerations for Choosing a Virtualization Technique

Consideration Paravirtualization Technique PCI Passthrough Technique

Interfaces virtio (for KVM), VMXNET3 (for
VMware)

SR-IOV

Use Cases • Network simulation

• Low-throughput applications

• Static vMX deployments

• High-throughput applications

Host Requirements No requirements specific to this
technique

Physical NIC must support PCI
passthrough

VM Mobility (Junos OS
Release 15.1F4 or earlier
releases)

Moving vMX instance to a new
server without reconfiguration.

Creating an identical vMX
instance on a new server.

Paravirtualization

Supported in Junos OS Release 15.1F4, in a paravirtualized router, the VM and the host work together
to efficiently move packets from the physical NIC to the application in the VM. You implement
paravirtualization on the vMX router by configuring virtio, a technique that the KVM hypervisor
supports that optimizes network and disk operations for the VM. Both the VFP VM and the host contain
virtio drivers that interact to move packets. You implement paravirtualization on the VMware server by
configuring VMXNET3 on the ESXi hypervisor. You must provide the following information in the
configuration file for each vMX interface:

• Junos OS name

• Unique MAC address

If you want to move the VM from one server to another, you can do so without reconfiguration,
provided the names and MAC addresses of each interface remain the same.

8

PCI Passthrough with SR-IOV

Supported in Junos OS Release 15.1F4, The vMX router supports PCI passthrough in combination with
single root I/O virtualization (SR-IOV). In the PCI passthrough technique, you directly assign a NIC’s
memory space to a VM, enabling packets to bypass the hypervisor. Bypassing the hypervisor increases
efficiency and results in high throughput of packets.

With SR-IOV, the hypervisor detects the physical NICs (known as a physical functions) and creates
multiple virtual NICs (known as virtual functions) in the VFP VM. In the vMX implementation, the host
dedicates a NIC to a single VM.

When you configure PCI passthrough with SR-IOV, you specify the following parameters for each vMX
interface:

• Junos OS name

• Unique MAC address

• Name of the physical NIC

Because you create a direct connection between a virtual NIC and a physical NIC, you cannot move a
VM from one host to another. If you need to move a VM to another host, you must install a new vMX
instance on that host, and delete the vMX instance on the original host.

RELATED DOCUMENTATION

vMX Overview | 2

Licenses for vMX

9

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/vmx-licensing.html#id-managing-vmx-licenses

2
CHAPTER

Installing and Deploying vMX on KVM

Minimum Hardware and Software Requirements | 11

vMX Package Contents | 18

Installing vMX on KVM | 20

Deploying and Managing vMX | 52

Installing Nested vMX VMs | 71

Example: Enabling SR-IOV on vMX Instances on KVM | 83

Minimum Hardware and Software Requirements

The tables lists the hardware requirements.

Table 2: Minimum Hardware Requirements for vMX

Description Value

Sample system
configuration

For lab simulation and low performance (less than 100 Mbps) use cases, any
x86 processor (Intel or AMD) with VT-d capability.

For all other use cases, Intel Ivy Bridge processors or later are required.
Example of Ivy Bridge processor: Intel Xeon E5-2667 v2 @ 3.30 GHz 25 MB
Cache

For single root I/O virtualization (SR-IOV) NIC type, use Intel Ivy Bridge CPU
(or higher) and Intel x520 NICs using ixgbe driver or X710 NICs with 10G
ports and using i40e driver. Any other NIC models are not supported.

For Junos OS Release 19.1R1-S1 and Junos OS Release 19.2R1 onwards, for
single root I/O virtualization (SR-IOV) NIC type, use Intel Ivy Bridge CPU (or
higher) and Intel x520 NICs using ixgbe driver, or X710 and XL710 NICs with
10G ports using i40e driver or XL710Q-DA2 NIC with 40G ports using i40e
driver. Any other NIC models are not supported.

NOTE: XL710Q-DA2 with 40G ports is only supported with i40e driver
version 2.4.10 or later on Ubuntu 16.04 or RHEL 7.5

When using 40G ports on the vMX instances, quality-of-service (QoS) is not
supported.

Number of cores

NOTE: Performance
mode is the default
mode and the
minimum value is
based on one port.

For lite mode with lab simulation use case applications: Minimum of 4

• 1 for VCP

• 3 for VFP

NOTE: If you want to use lite mode when you are running with more than 3
vCPUs for the VFP, you must explicitly configure lite mode.

11

Table 2: Minimum Hardware Requirements for vMX (Continued)

Description Value

For performance mode with low-bandwidth (virtio) or high-bandwidth (SR-
IOV) applications: Minimum of 9

• 1 for VCP

• 8 for VFP

The exact number of required vCPUs differs depending on the Junos OS
features that are configured and other factors, such as average packet size.
You can contact Juniper Networks Technical Assistance Center (JTAC) for
validation of your configuration and make sure to test the full configuration
under load before use in production. For typical configurations, we
recommend the following formula to calculate the minimum vCPUs required
by the VFP:

• Without QoS—(4 * number-of-ports) + 4

• With QoS—(5 * number-of-ports) + 4

NOTE: All VFP vCPUs must be in the same physical non-uniform memory
access (NUMA) node for optimal performance.

In addition to vCPUs for the VFP, we recommend 2 x vCPUs for VCP and 2 x
vCPUs for Host OS on any server running the vMX.

12

Table 2: Minimum Hardware Requirements for vMX (Continued)

Description Value

Memory

NOTE: Performance
mode is the default
mode.

For lite mode: Minimum of 3 GB

• 1 GB for VCP

• 2 GB for VFP

For performance mode:

• Minimum of 5 GB

1 GB for VCP
4 GB for VFP

• Recommended of 16 GB

4 GB for VCP
12 GB for VFP

Additional 2 GB recommended for host OS

Storage Local or NAS

Each vMX instance requires 44 GB of disk storage

Minimum storage requirements:

• 40 GB for VCP

• 4 GB for VFP

vNICs SR-IOV

NOTE: SR-IOV is only supported with Intel Ivy Bridge CPU (or higher) and
Intel x520 NICs using ixgbe driver or X710 NICs with 10G ports and using
i40e driver. Any other NIC models are not supported.

Support for unmodified ixgbe driver and i40e driver is available from Junos
OS Release 18.4R1 onwards.

13

Table 2: Minimum Hardware Requirements for vMX (Continued)

Description Value

Other requirements Intel VT-d capability

Hyperthreading (recommended)

AES-NI

Table 3 on page 14 lists the software requirements.

Table 3: Software Requirements for Ubuntu

Description Value

Operating system

NOTE: Only English
localization is
supported.

• For Junos OS 20.1R1 and later releases:

• Ubuntu 18.04.3 LTS

• Linux 4.15.0-70-generic

• For Junos OS 18.2 and later releases:

• Ubuntu 16.04.5 LTS

• Linux 4.4.0-62-generic

• Prior to Junos OS 18.2 Release

• Ubuntu 14.04.1 LTS

• Linux 3.19.0-80-generic

Virtualization • QEMU-KVM 2.11.1(Debian 1:2.11+dfsg-1ubuntu7.20) For Ubuntu
18.04.3 LTS (For Junos OS Release 20.1R1)

• QEMU-KVM 2.0.0+dfsg-2ubuntu1.11

14

Table 3: Software Requirements for Ubuntu (Continued)

Description Value

Required packages

NOTE: Other
additional packages
might be required to
satisfy all
dependencies.

The required packages might change depending upon the supported Ubuntu
version.

• For Ubuntu 18.04.3 LTS.

bridge-utils qemu-kvm libvirt-bin python python-netifaces,vnc4server
libyaml-dev python-yaml numactl libparted0-dev libpciaccess-dev
libnuma-dev libyajl-dev libxml2-dev libglib2.0-dev libnl-3-dev python-pip
python-dev libxslt1-dev

• The required packages (Previous releases)

bridge-utils qemu-kvm libvirt-bin python python-netifaces vnc4server
libyaml-dev python-yaml numactl libparted0-dev libpciaccess-dev
libnuma-dev libyajl-dev libxml2-dev libglib2.0-dev libnl-dev python-pip
python-dev libxml2-dev libxslt-dev

Libvirt versions:

• libvirt 1.2.19

• libvirt 1.3.1 (Junos OS 18.2 and later releases)

• libvirtd (libvirt) 4.0.0 (Junos OS Release 20.1R1 and later releases)

NOTE: Use the apt-get install pkg name or sudo apt-get install <pkg-name> commands to install
a package.

Table 4 on page 16 lists the software requirements for Red Hat Enterprise Linux.

15

Table 4: Software Requirements for Red Hat Enterprise Linux

Description Value

Operating system

NOTE: Only English
localization is
supported.

• Junos OS Release 20.3R1

Red Hat Enterprise Linux Server 7.7

Kernel: 3.10.0-1062.4.1.el7.x86_64

• Junos OS Release 19.4R1

Red Hat Enterprise Linux Server 7.6

Kernel: 3.10.0-862.el7.x86_64

• Junos OS Release 19.1R1-S1 and Junos OS Release 19.2R1

Red Hat Enterprise Linux Server 7.5 (Maipo)

Kernel: 3.10.0-862.el7.x86_64

• Junos OS Release 17.4R1

Red Hat Enterprise Linux 7.2

Kernel: 3.10.0-327.4.5

• Junos OS Release 17.3R1

Red Hat Enterprise Linux 7.3

Kernel: 3.10.0-514.6.2

Virtualization QEMU-KVM 1.5.3

Required packages

NOTE: SR-IOV
requires these
packages: kernel-devel
gcc

python27-python-pip python27-python-devel numactl-libs libpciaccess-
devel parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-
devel libyaml-devel numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-
kvm numactl telnet net-tools

NOTE: libvirt 1.2.17 or later

16

NOTE: Use the yum install pkg name command to install a package.

Table 5 on page 17 lists the software requirements for CentOS.

Table 5: Software Requirements for CentOS

Description Value

Operating system

NOTE: Only English
localization is supported.

CentOS 7.2

Linux 3.10.0-327.22.2

Virtualization QEMU-KVM 1.5.3

Required packages python27-python-pip python27-python-devel numactl-libs libpciaccess-
devel parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel
libxslt-devel libyaml-devel numactl-devel redhat-lsb kmod-ixgbe libvirt-
daemon-kvm numactl telnet net-tools

NOTE: libvirt 1.2.19

To avoid any conflicts, install libvirt 1.2.19 instead of updating from
libvirt 1.2.17.

NOTE: Use the yum install pkg name command to install a package.

RELATED DOCUMENTATION

Preparing the Ubuntu Host to Install vMX

Preparing the Red Hat Enterprise Linux Host to Install vMX

Preparing the CentOS Host to Install vMX

Installing vMX for Different Use Cases

17

vMX Package Contents

Table 6 on page 18 lists the contents of the vMX package.

Table 6: vMX Package Contents

Filename Description

vmx.sh Main orchestration script.

Note: Only English locale is supported for using the vmx.sh script.

vmx_release.txt vMX release information details

config/ Startup configuration file:

• config/vmx.conf—Configuration file for defining vMX parameters.

• config/vmx-junosdev.conf—Configuration file for binding devices (for virtio
NICs).

See "Specifying vMX Configuration File Parameters" on page 52 for more
information.

drivers/ Source files for modified ixgbe and i40e drivers.

env/ OS environment settings.

images/ Software image files.

• images/junos-vmx-x86-64-*.qcow2—Software image files for VCP.

• images/vmxhdd.img—Software image file for VCP file storage.

• images/vFPC_*.img—Software image file for VFP.

openstack Scripts and xml files for open stack deployment.

18

Table 6: vMX Package Contents (Continued)

Filename Description

scripts Juniper Networks orchestration scripts.

The vMX package consists of the following components: (in Junos OS Release 15.1F4 and earlier
releases)

build
config
— vmx.conf
— vmx-junosdev.conf
docs
drivers
— ixgbe-3.19.1
env
images
— jinstall64-vmx-15.1F4.15-domestic.img
— jinstall64-vmx-15.1F4.15-domestic-signed.img
— vmxhdd.img
— vFPC_20151203.img
scripts
— common
— junosdev-bind
— kvm
— templates
vmx.sh

NOTE: Modified IXGBE drivers are included in the package. Multicast promiscuous mode for
Virtual Functions is needed to receive control traffic that comes with broadcast MAC addresses.
The reference driver does not come with this mode set, so the IXGBE drivers in this package
contain certain modifications to overcome this limitation.

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 11

19

Installing vMX on KVM | 20

Deploying and Managing vMX | 52

Installing vMX on KVM

IN THIS SECTION

Preparing the Ubuntu Host to Install vMX | 20

Upgrading the Kernel | 22

Upgrading to libvirt 1.2.19 | 22

Updating Drivers for the X710 NIC | 24

Install the Other Required Packages | 24

Preparing the Red Hat Enterprise Linux Host to Install vMX | 25

Preparing the CentOS Host to Install vMX | 32

Installing vMX for Different Use Cases | 35

Read this topic to understand how to install the virtual MX router in the KVM environment.

Preparing the Ubuntu Host to Install vMX

To prepare the Ubuntu host system for installing vMX (Starting in Junos OS Release 15.1F6):

1. Meet the minimum software and OS requirements described in "Minimum Hardware and Software
Requirements" on page 11.

2. See "Upgrading Kernel " on page 22and "Upgrading to libvirt 1.2.19" on page 22 sections below.

3. If you are using Intel XL710 PCI-Express family cards, make sure you update the drivers. See
"Updating Drivers for the X710 NIC" on page 24.

4. Enable Intel VT-d in BIOS. (We recommend that you verify the process with the vendor because
different systems have different methods to enable VT-d.)

Refer to the procedure to enable VT-d available on the Intel Website.

20

5. Disable KSM by setting KSM_ENABLED=0 in /etc/default/qemu-kvm.

6. Disable APIC virtualization by editing the /etc/modprobe.d/qemu-system-x86.conf file and adding
enable_apicv=0 to the line containing options kvm_intel.

options kvm_intel nested=1 enable_apicv=0

7. Restart the host to disable KSM and APIC virtualization.

8. If you are using SR-IOV, you must perform this step.

NOTE: You must remove any previous installation with an external bridge in /etc/network/
interfaces and revert to using the original management interface. Make sure that the
ifconfig -a command does not show external bridges before you proceed with the
installation.

To determine whether an external bridge is displayed, use the ifconfig command to see the
management interface. To confirm that this interface is used for an external bridge group,
use the brctl show command to see whether the management interface is listed as an
external bridge.

Enable SR-IOV capability by turning on intel_iommu=on in the /etc/default/grub directory.

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

Append the intel_iommu=on string to any existing text for the GRUB_CMDLINE_LINUX_DEFAULT parameter.

Run the update-grub command followed by the reboot command.

9. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the
host and make sure the NUMA node for the VFP has at least 16 1G Huge Pages. To configure the
size of Huge Pages, add the following line in /etc/default/grub:

GRUB_CMDLINE_LINUX="default_hugepagesz=1G hugepagesz=1G hugepages=number-of-huge-pages"

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

10. Run the modprobe kvm-intel command before you install vMX.

NOTE: Starting in Junos OS 18.2 and later releases, Ubuntu 16.04.5 LTS and Linux 4.4.0-62-
generic are supported.

To meet the minimum software and OS requirements, you might need to perform these tasks:

21

Upgrading the Kernel

NOTE: Upgrading Linux kernel in Ubuntu 16.04 version is not required.

NOTE: If you are using Ubuntu 14.04.1 LTS, which comes with 3.19.0-80-generic, you can skip
this step. Ubuntu 14.04 comes with a lower version of kernel (Linux 3.13.0-24-generic) than the
recommended version (Linux 3.19.0-80-generic).

To upgrade the kernel:

1. Determine your version of the kernel.

uname -a
Linux rbu-node-33 3.19.0-80-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64 x86_64
x86_64 GNU/Linux

2. If your version differs from the version shown in step 1, run the following commands:

apt-get install linux-firmware
apt-get install linux-image-3.19.0-80-generic
apt-get install linux-image-extra-3.19.0-80-generic
apt-get install linux-headers-3.19.0-80-generic

3. Restart the system.

Upgrading to libvirt 1.2.19

NOTE: Ubuntu 16.04.5 supports Libvirt version is 1.3.1. Upgrading libvirt in Ubuntu 16.04 is not
required.

Ubuntu 14.04 supports libvirt 1.2.2 (which works for VFP lite mode). If you are using the VFP
performance mode or deploying multiple vMX instances using the VFP lite mode, you must upgrade to
libvirt 1.2.19.

22

To upgrade libvirt:

1. Make sure that you install all the packages listed in "Minimum Hardware and Software
Requirements" on page 11.

2. Navigate to the /tmp directory using the cd /tmp command.

3. Get the libvirt-1.2.19 source code by using the command
wget http://libvirt.org/sources/libvirt-1.2.19.tar.gz.

4. Uncompress and untar the file using the tar xzvf libvirt-1.2.19.tar.gz command.

5. Navigate to the libvirt-1.2.19 directory using the cd libvirt-1.2.19 command.

6. Stop libvirtd with the service libvirt-bin stop command.

7. Run the ./configure --prefix=/usr --localstatedir=/ --with-numactl command.

8. Run the make command.

9. Run the make install command.

10. Make sure that the libvirtd daemon is running. (Use the service libvirt-bin start command to start
it again. If it does not start, use the /usr/sbin/libvirtd -d command.)

root@vmx-server:~# ps aux | grep libvirtd
root 1509 0.0 0.0 372564 16452 ? Sl 10:25 0:00 /usr/sbin/libvirtd -d

11. Verify that the versions of libvirtd and virsh are 1.2.19.

root@vmx-server:~# /usr/sbin/libvirtd --version
libvirtd (libvirt) 1.2.19
root@vmx-server:~# /usr/bin/virsh --version
1.2.19
root@vmx-server:~#

The system displays the code compilation log.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

23

Updating Drivers for the X710 NIC

If you are using Intel XL710 PCI-Express family NICs, make sure you update the drivers before you
install vMX.

To update the drivers:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Install the i40e driver from the installation directory.

cd drivers/i40e-1.3.46/src
make install

3. Install the latest i40evf driver from Intel.

For example, the following commands download and install Version 1.4.15:

cd /tmp
wget https://downloadmirror.intel.com/26003/eng/i40evf-1.4.15.tar.gz
tar zxvf i40evf-1.4.15.tar.gz
cd i40evf-1.4.15/src
make install

4. Update initrd with the drivers.

update-initramfs -u -k 'uname -r'

5. Activate the new driver.

rmmod i40e
modprobe i40e

Install the Other Required Packages

24

Use the following commands to install python-netifaces package on Ubuntu.

apt-get install python-pip
apt-get install python-netifaces
pip install pyyaml

Preparing the Red Hat Enterprise Linux Host to Install vMX

IN THIS SECTION

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX | 25

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX | 28

To prepare the host system running Red Hat Enterprise Linux for installing vMX, perform the task for
your version:

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX

To prepare the host system running Red Hat Enterprise Linux 7.3 for installing vMX:

1. Meet the minimum software and OS requirements described in "Minimum Hardware and Software
Requirements" on page 11.

2. Enable hyperthreading and VT-d in BIOS.

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have
different methods to access and change BIOS settings.

3. During the OS installation, select the Virtualization Host and Virtualization Platform software
collections.

If you did not select these software collections during the GUI installation, use the following
commands to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

25

4. Register your host using your Red Hat account credentials. Enable the appropriate repositories.

subscription-manager register --username username --password password --auto-attach
subscription-manager repos --enable rhel-7-fast-datapath-htb-rpms
subscription-manager repos --enable rhel-7-fast-datapath-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
subscription-manager repos --enable rhel-7-server-nfv-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms
subscription-manager repos --enable rhel-7-server-rh-common-rpms
subscription-manager repos --enable rhel-7-server-rhn-tools-beta-rpms
subscription-manager repos --enable rhel-7-server-rpms
subscription-manager repos --enable rhel-ha-for-rhel-7-server-rpms
subscription-manager repos --enable rhel-server-rhscl-7-rpms

To install the Extra Packages for Enterprise Linux 7 (epel) repository:

yum -y install wget
cd /tmp/
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum -y install epel-release-latest-7.noarch.rpm

5. Update currently installed packages.

yum upgrade

6. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the
host and make sure that the NUMA node for the VFP has at least sixteen 1G Huge Pages. To
configure the size of Huge Pages, use the following step:

For Red Hat: Add the Huge Pages configuration.

grubby --update-kernel=ALL --args="default_hugepagesz=huge-pages-size hugepagesz=huge-
pages-size hugepages=number-of-huge-pages"
grub2-install /dev/boot-device-name
reboot

Use the mount | grep boot command to determine the boot device name.

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

26

7. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel
parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel
numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools dosfstools

8. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

Reboot and log in again.

9. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

10. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

11. If you have installed any Red Hat OpenStack libraries, you must change script/templates/red_{vPFE,
vRE}-ref.xml to use <type arch='x86_64' machine='pc-0.13'>hvm</type> as the machine type.

12. Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

To verify that KSM is disabled run the following command.

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

27

13. Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding
enable_apicv=n to the line containing options kvm_intel.

modprobe -r kvm_intel

vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=n

You can use enable_apicv=0 also.

modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

14. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

15. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configure QEMU to run as the root user by setting the /etc/libvirt/
qemu.conf file to user="root".

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX

To prepare the host system running Red Hat Enterprise Linux 7.2 for installing vMX:

28

1. Meet the minimum software and OS requirements described in "Minimum Hardware and Software
Requirements" on page 11.

2. Enable hyperthreading and VT-d in BIOS.

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have
different methods to access and change BIOS settings.

3. During the OS installation, select the Virtualization Host and Virtualization Platform software
collections.

If you did not select these software collections during the GUI installation, use the following
commands to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

4. Register your host using your Red Hat account credentials. Enable the appropriate repositories.

subscription-manager register --username username --password password --auto-attach
subscription-manager repos --enable rhel-server-rhscl-7-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
subscription-manager repos --enable rhel-7-server-rhn-tools-beta-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms

5. Update currently installed packages.

yum upgrade

6. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel
parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel
numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools dosfstools

7. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the
host and make sure that the NUMA node for the VFP has at least sixteen 1G Huge Pages. To
configure the size of Huge Pages, use the following step:

29

For Red Hat: Add the Huge Pages configuration.

grubby --update-kernel=ALL --args="default_hugepagesz=huge-pages-size hugepagesz=huge-
pages-size hugepages=number-of-huge-pages"
grub2-install /dev/boot-device-name
 reboot

Use the mount | grep boot command to determine the boot device name.

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

8. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

Reboot and log in again.

9. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

10. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

11. If you have installed any Red Hat OpenStack libraries, you must change script/templates/red_{vPFE,
vRE}-ref.xml to use <type arch='x86_64' machine='pc-0.13'>hvm</type> as the machine type.

12. Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

To verify that KSM is disabled run the following command.

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

30

13. Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding
enable_apicv=n to the line containing options kvm_intel.

modprobe -r kvm_intel

vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=n

You can use enable_apicv=0 also.

modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

14. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

15. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configure QEMU to run as the root user by setting the /etc/libvirt/
qemu.conf file to user="root".

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

31

Preparing the CentOS Host to Install vMX

To prepare the host system running CentOS for installing vMX:

1. Meet the minimum software and OS requirements described in "Minimum Hardware and Software
Requirements" on page 11.

2. Enable hyperthreading and VT-d in BIOS.

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have
different methods to access and change BIOS settings.

3. During the OS installation, select the Virtualization Host and Virtualization Platform software
collections.

If you did not select these software collections during the GUI installation, use the following
commands to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

4. Enable the appropriate repositories.

yum install -y "http://elrepo.org/elrepo-release-7.0-4.el7.elrepo.noarch.rpm"
yum install centos-release-scl

5. Update currently installed packages.

yum upgrade

6. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel
parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel
numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools

7. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

32

Reboot and log in again.

8. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

9. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

NOTE: In case of error with installation, use the following workaround:

yum install python27-python-pip
scl enable python27 bash
 # source scl_source enable python27
export LD_LIBRARY_PATH=/opt/rh/python27/root/usr/lib64
pip install -upgrade pip
pip install netifaces pyyaml

10. Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

To verify that KSM is disabled run the following command.

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

11. Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding
enable_apicv=0 to the line containing options kvm_intel.

• modprobe -r kvm_intel

33

• vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=0

• modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

12. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

13. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configure QEMU to run as the root user by setting the /etc/libvirt/
qemu.conf file to user=root.

14. Add this line to the end of the /etc/profile file.

export PATH=/opt/rh/python27/root/usr/bin:$PATH

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

34

Installing vMX for Different Use Cases

IN THIS SECTION

Installing vMX for Lab Simulation | 40

Installing vMX for Low-Bandwidth Applications | 42

Installing vMX for High-Bandwidth Applications | 44

Installing vMX with Dual Routing Engines | 46

Installing vMX with Mixed WAN Interfaces | 50

Installing vMX is different for specific use cases. Table lists the sample configuration requirements for
some vMX use cases.

Table 7: Sample Configurations for Use Cases (supported in Junos OS Release 18.3 to 18.4)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

5 GB:
1 GB for VCP
4 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

10:
1 for VCP
9 for VFP

20 GB:
4 GB for VCP
16 GB for VFP

virtio

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance

10:
1 for VCP
9 for VFP

20 GB
4 GB for VCP
16 GB for VFP

SR-IOV

35

Table 7: Sample Configurations for Use Cases (supported in Junos OS Release 18.3 to 18.4) (Continued)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Dual virtual Routing
Engines

NOTE: When
deploying on separate
hosts, you must set up
a connection between
the hosts for the VCPs
to communicate with
each other.

Double the number of
VCP resources for your
particular use case is
consumed when
deploying both VCP
instances.

Double the number of
VCP resources for your
particular use case is
consumed when
deploying both VCP
instances.

virtio or SR-IOV

Table 8: Sample Configurations for Use Cases (supported in Junos OS Release 18.1 to 18.2)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

5 GB:
1 GB for VCP
4 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

8:
1 for VCP
7 for VFP

16 GB:
4 GB for VCP
12 GB for VFP

virtio

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance

8:
1 for VCP
7 for VFP

16 GB
4 GB for VCP
12 GB for VFP

SR-IOV

36

Table 8: Sample Configurations for Use Cases (supported in Junos OS Release 18.1 to 18.2) (Continued)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Dual virtual Routing
Engines

NOTE: When
deploying on separate
hosts, you must set up
a connection between
the hosts for the VCPs
to communicate with
each other.

Double the number of
VCP resources for your
particular use case is
consumed when
deploying both VCP
instances.

Double the number of
VCP resources for your
particular use case is
consumed when
deploying both VCP
instances.

virtio or SR-IOV

Table 9: Sample Configurations for Use Cases (supported in Junos OS Release 17.4)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

5 GB:
1 GB for VCP
4 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

8:
1 for VCP
7 for VFP

16 GB:
4 GB for VCP
12 GB for VFP

virtio

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance

8:
1 for VCP
7 for VFP

16 GB
4 GB for VCP
12 GB for VFP

SR-IOV

37

Table 10: Sample Configurations for Use Cases (supported in Junos OS Release 15.1F6 to 17.3)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

5 GB:
1 GB for VCP
4 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

8:
1 for VCP
7 for VFP

16 GB:
4 GB for VCP
12 GB for VFP

virtio

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance

8:
1 for VCP
7 for VFP

16 GB
4 GB for VCP
12 GB for VFP

SR-IOV

Table 11: Sample Configurations for Use Cases (supported in Junos OS Release 15.1F4 to 15.1F3)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

10 GB:
2 GB for VCP
8 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

4:
1 for VCP
3 for VFP

10 GB:
2 GB for VCP
8 GB for VFP

virtio or SR-IOV

38

Table 11: Sample Configurations for Use Cases (supported in Junos OS Release 15.1F4 to 15.1F3)
(Continued)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance (with
minimum of two 10Gb
Ethernet ports)

Up to 80 Gbps of raw
performance

8:
1 for VCP
7 for VFP

16 GB
4 GB for VCP
12 GB for VFP

SR-IOV

Table 12: Sample Configurations for Use Cases (supported in Junos OS Release 14.1)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

Lab simulation

Up to 100 Mbps
performance

4:
1 for VCP
3 for VFP

8 GB:
2 GB for VCP
6 GB for VFP

virtio

Low-bandwidth
applications

Up to 3 Gbps
performance

4:
1 for VCP
3 for VFP

8 GB:
2 GB for VCP
6 GB for VFP

virtio or SR-IOV

39

Table 12: Sample Configurations for Use Cases (supported in Junos OS Release 14.1) (Continued)

Use Case Minimum vCPUs Minimum Memory NIC Device Type

High-bandwidth
applications or
performance testing

For 3 Gbps and beyond
performance (with
minimum of two 10Gb
Ethernet ports)

Up to 80 Gbps of raw
performance

5:
1 for VCP
4 for VFP

8 GB
2 GB for VCP
6 GB for VFP

SR-IOV

NOTE: From Junos OS Release 18.4R1 (Ubuntu host) and Junos OS Release 19.1R1 (RedHat
host), you can set the use_native_drivers value to true in the vMX configuration file to use the
latest unmodified drivers for your network interface cards for vMX installations

To install vMX for a particular use case, perform one of the following tasks:

Installing vMX for Lab Simulation

Starting in Junos OS Release 14.1, the use case for lab simulation uses the virtio NIC.

To install vMX for the lab simulation (less than 100 Mbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name
2. Change directory to the location of the uncompressed vMX package.

cd package-location
3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type : virtio

See "Specifying vMX Configuration File Parameters" on page 52.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf
startup configuration file and provide verbose-level logging to a file. See "Deploying and Managing
vMX" on page 52.

40

5. From the VCP, enable lite mode for the VFP.

user@vmx# set chassis fpc 0 lite-mode

Here is a sample vMX startup configuration file using the virtio device type for lab simulation:

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 4 characters
 host-management-interface : eth0
 routing-engine-image : "/home/vmx/vmxlite/images/junos-vmx-x86-64.qcow2"
 routing-engine-hdd : "/home/vmx/vmxlite/images/vmxhdd.img"
 forwarding-engine-image : "/home/vmx/vmxlite/images/vFPC.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#vRE VM parameters
CONTROL_PLANE:
 vcpus : 1
 memory-mb : 1024
 console_port: 8601

 interfaces :
 - type : static
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters
FORWARDING_PLANE:
 memory-mb : 4096
 vcpus : 3
 console_port: 8602
 device-type : virtio

41

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces
JUNOS_DEVICES:
 - interface : ge-0/0/0
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1
 mac-address : "02:06:0A:0E:FF:F1"
 description : "ge-0/0/1 interface"

Installing vMX for Low-Bandwidth Applications

Starting in Junos OS Release 14.1, the use case for low-bandwidth applications uses virtio or SR-IOV
NICs.

To install vMX for the low-bandwidth (up to 3 Gbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name
2. Change directory to the location of the uncompressed vMX package.

cd package-location
3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: virtio or device-type: sriov

See "Specifying vMX Configuration File Parameters" on page 52.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf
startup configuration file and provide verbose-level logging to a file. See "Deploying and Managing
vMX" on page 52.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

42

Here is a sample vMX startup configuration file using the virtio device type for low-bandwidth
applications:

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 4 characters
 host-management-interface : eth0
 routing-engine-image : "/home/vmx/vmx/images/junos-vmx-x86-64.qcow2"
 routing-engine-hdd : "/home/vmx/vmx/images/vmxhdd.img"
 forwarding-engine-image : "/home/vmx/vmx/images/vFPC.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#vRE VM parameters
CONTROL_PLANE:
 vcpus : 1
 memory-mb : 4096
 console_port: 8601

 interfaces :
 - type : static
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters
FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 9
 console_port: 8602
 device-type : virtio

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

43

#Interfaces
JUNOS_DEVICES:
 - interface : ge-0/0/0
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1
 mac-address : "02:06:0A:0E:FF:F1"
 description : "ge-0/0/1 interface"

Installing vMX for High-Bandwidth Applications

Starting in Junos OS Release 14.1, the use case for high-bandwidth applications uses the SR-IOV NICs.

To install vMX for the high-bandwidth (above 3 Gbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name
2. Change directory to the location of the uncompressed vMX package.

cd package-location
3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: sriov

See "Specifying vMX Configuration File Parameters" on page 52.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf
startup configuration file and provide verbose-level logging to a file. See "Deploying and Managing
vMX" on page 52.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

Here is a sample vMX startup configuration file using the SR-IOV device type:

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 4 characters

44

 host-management-interface : eth0
 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"
 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"
 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#VCP VM parameters
CONTROL_PLANE:
 vcpus : 1
 memory-mb : 4096
 console_port: 8601

 interfaces :
 - type : static
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

#VFP VM parameters
FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 9
 console_port: 8602
 device-type : sriov

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces
JUNOS_DEVICES:
 - interface : ge-0/0/0
 port-speed-mbps : 10000
 nic : eth1
 mtu : 2000

45

 virtual-function : 0
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 connects to eth1"

 - interface : ge-0/0/1
 port-speed-mbps : 10000
 nic : eth2
 mtu : 2000
 virtual-function : 0
 mac-address : "02:06:0A:0E:FF:F1"
 description : "ge-0/0/1 connects to eth2"

For more information see, "Example: Enabling SR-IOV on vMX Instances on KVM" on page 83.

Installing vMX with Dual Routing Engines

You can set up redundant Routing Engines on the vMX server by creating the primary Routing Engine
(re0) and backup Routing Engine (re1) in the CONTROL_PLANE section of the vMX startup
configuration file (default file is config/vmx.conf).

NOTE: When deploying the Routing Engines on separate hosts, you must set up a connection
between the hosts for the VCPs to communicate with each other.

Starting in Junos OS Release 18.1 to install vMX for the dual Routing Engines use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name
2. Change directory to the location of the uncompressed vMX package.

cd package-location
3. Edit the config/vmx.conf text file with a text editor to configure the vMX instance.

The default CONTROL_PLANE section resembles the following with one interface entry:

CONTROL_PLANE:
 vcpus : 1
 memory-mb : 2048
 console_port: 8896

 interfaces :
 - type : static

46

 ipaddr : 10.216.48.117
 macaddr : "0A:01:03:A1:A1:02"

To set up the redundant Routing Engines:

a. Navigate to CONTROL_PLANE and specify the proper number of vCPUs (vcpus) and amount of memory
(memory-mb).

b. Starting with Junos OS Release 18.1R1, add the deploy parameter to designate the Routing Engine
instance deployed on this host. If you do not specify this parameter, all instances (0,1) are
deployed on the host.

When deploying the Routing Engines on separate hosts, you must set up a connection between
the hosts for the VCPs to communicate with each other.

c. Modify the interfaces entry to add instance : 0 after the type parameter to set up re0.

Specify the ipaddr and macaddr parameters. This address is the management IP address for the
VCP VM (fxp0).

d. Add another entry, but specify instance : 1 to set up re1 and specify the console_port parameter
for re1 after the instance : 1 parameter.

Specify the ipaddr and macaddr parameters. This address is the management IP address for the
VCP VM (fxp0).

The revised CONTROL_PLANE section that deploys re0 on the host resembles the following example with
two interface entries:

CONTROL_PLANE:
 vcpus : 1
 memory-mb : 4096
 console_port : 8896
 deploy : 0

 interfaces :
 - type : static
 instance : 0
 ipaddr : 10.216.48.117
 macaddr : "0A:01:03:A1:A1:02"

 - type : static
 instance : 1
 console_port : 8897

47

 ipaddr : 10.216.48.118
 macaddr : "0A:01:03:A1:A1:06"

See "Specifying vMX Configuration File Parameters" on page 52.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf
startup configuration file and provide verbose-level logging to a file. See "Deploying and Managing
vMX" on page 52.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

6. When deploying the Routing Engines on separate hosts, you must set up a connection between the
hosts for the VCPs to communicate with each other.

For example, to set up a connection (such as br-int-vmx1) between the two hosts over an interface
(such as eth1), run the following command on both hosts:

ifconfig eth1 up && brctl addif br-int-vmx1 eth1

Here is a sample vMX startup configuration file that is deploying the first Routing Engine instance on
this host:

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 4 characters
 host-management-interface : eth0
 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"
 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"
 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#VCP VM parameters
CONTROL_PLANE:
 vcpus : 1

48

 memory-mb : 4096
 console_port : 8601
 deploy : 0

 interfaces :
 - type : static
 instance : 0
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

 - type : static
 instance : 1
 console_port : 8612
 ipaddr : 10.102.144.95
 macaddr : "0A:00:DD:C0:DE:0F"

#VFP VM parameters
FORWARDING_PLANE:
 memory-mb : 12288
 vcpus : 10
 console_port: 8602
 device-type : sriov

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces
JUNOS_DEVICES:
 - interface : ge-0/0/0
 port-speed-mbps : 10000
 nic : eth1
 mtu : 2000
 virtual-function : 0
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 connects to eth1"

 - interface : ge-0/0/1
 port-speed-mbps : 10000
 nic : eth2

49

 mtu : 2000
 virtual-function : 0
 mac-address : "02:06:0A:0E:FF:F1"
 description : "ge-0/0/1 connects to eth2"

Installing vMX with Mixed WAN Interfaces

Starting in Junos OS Release 17.2, the use case for mixed WAN interfaces uses the virtio and SR-IOV
interfaces. Sample configuration requirements are the same as for using SR-IOV device type.

To install vMX with mixed interfaces:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name
2. Change directory to the location of the uncompressed vMX package.

cd package-location
3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: mixed

When configuring the interfaces, make sure the virtio interfaces are specified before the SR-IOV
interfaces. The type parameter specifies the interface type.

See "Specifying vMX Configuration File Parameters" on page 52.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf
startup configuration file and provide verbose-level logging to a file. See "Deploying and Managing
vMX" on page 52.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

Here is a sample vMX startup configuration file using mixed interfaces:

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 4 characters
 host-management-interface : eth0
 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"
 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"

50

 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#VCP VM parameters
CONTROL_PLANE:
 vcpus : 1
 memory-mb : 4096
 console_port: 8601

 interfaces :
 - type : static
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

#VFP VM parameters
FORWARDING_PLANE:
 memory-mb : 12288
 vcpus : 10
 console_port: 8602
 device-type : mixed

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces
JUNOS_DEVICES:
 - interface : ge-0/0/0
 type : virtio
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1
 type : sriov

51

 port-speed-mbps : 10000
 nic : eth2
 mtu : 2000
 virtual-function : 0
 mac-address : "02:06:0A:0E:FF:F1"
 description : "ge-0/0/1 connects to eth2"

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 11

vMX Package Contents | 18

Deploying and Managing vMX | 52

Deploying and Managing vMX

IN THIS SECTION

Specifying vMX Configuration File Parameters | 52

Connecting to VMs | 60

Managing vMX | 62

Binding virtio Devices | 66

Read this topic to understand the procedures required to manage vMX instance after you install it.

Specifying vMX Configuration File Parameters

IN THIS SECTION

Configuring the Host | 53

52

Configuring the VCP VM | 54

Configuring the VFP VM | 56

Configuring Interfaces | 59

The parameters required to configure vMX are defined in the startup configuration file. The
configuration file is in YAML format. The default file is config/vmx.conf. We recommend you to rename
the configuration file to a different name so that you can use the same configuration file every time you
create different instances.

NOTE: You must set up these three interfaces to launch the VFP.

• Management access

• Bridge for internal communication between the VCP and VFP

• WAN interface (minimum of one)

Starting in Junos OS Release 18.1, to configure the vMX instance, download and modify the startup
configuration file (vmx.conf).

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance and save the
file.

To customize the configuration, perform these tasks:

Configuring the Host

To configure the host environment, you must change the identifier for each vMX instance and you must
provide the correct path for the images.

To configure the host, navigate to Host and specify the following parameters:

53

http://www.yaml.org/

Parameter Description

identifier Name of the vMX instance, maximum of four alphanumeric characters.

host-management-
interface

Name of the physical NIC on the host device that is used for management
access (eth0).

NOTE: The interfaces for HOST:host-management-interface,
CONTROL_PLANE, and FORWARDING_PLANE must be on the same subnet.

routing-engine-image Absolute path to the junos-vmx-x86-64-*.qcow2 file for launching VCP.

routing-engine-hdd Absolute path to the vmxhdd.img file for VCP storage.

forwarding-engine-
image

Absolute path to the vFPC-*.img file for launching VFP.

make-local-copy-of-
images

(Optional) Makes a local copy of the VCP and VFP images and uses the local
copy to launch vMX. Default value is yes.

NOTE: Copy the image file from its default location to ensure that the scripts
do not try to use the same image file concurrently.

make-local-copy-of-
vmxhdd

(Optional) Makes a local copy of the VCP storage image and uses the local
copy to launch vMX. Default value is yes.

NOTE: Copy the image file from its default location to ensure that the scripts
do not try to use the same image file concurrently.

Configuring the VCP VM

To configure the VCP VM, you must change the IP address and you must make sure the console port is
not being used by another vMX instance or another server.

To configure the VCP VM, navigate to CONTROL_PLANE and specify the following parameters:

54

NOTE:

Parameter Description

vcpus Number of vCPUs for the VCP, default is 1. Starting in Junos OS Release 18.1, If
you are deploying dual VCP instances, you must double the number of vCPUs.

memory-mb Amount of memory for the VCP, default is 2 GB.

In Junos OS Release 15.1F6, amount of memory for the VCP; minimum is 4 GB
(performance mode) and 1 GB (lite mode).

console_port KVM TCP-based console port. It must be a unique number.

deploy (Optional) VCP instance to deploy on this host. Specify the number of the
instance; first instance is 0, second instance is 1, and multiple instances are
separated by a comma. If you do not specify this parameter, both instances (0,1)
are deployed on this host. If none is set, no VCP instance will be deployed on this
host.

NOTE: When deploying on separate hosts, you must set up a connection
between the hosts for the VCPs to communicate.

Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for
example, one server as the RE and one server as the PFE), and you want to
disable VCP for the Control Plane on the server, you have the option to specify
none.

console_listen (Optional) IP address for the interface from which the console can be accessed;
default is 127.0.0.1, which only allows access from within the host. To allow
access from any interfaces, specify 0.0.0.0.

55

(Continued)

Parameter Description

instance (starting
in Junos OS
Release 18.1)

VCP instance. Navigate to interfaces > type (static) and include this parameter
below it.

(Optional) Create the second instance below the first instance and include the
console_port parameter for the second instance. The parameters for specifying
both VCP instances might resemble the following:

 interfaces :
 - type : static
 instance : 0
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

 - type : static
 instance : 1
 console_port: 8612
 ipaddr : 10.102.144.95
 macaddr : "0A:00:DD:C0:DE:0F"

ipaddr Management IP address for the VCP VM (fxp0). Navigate to interfaces > type
(static) > ipaddr to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE,
and FORWARDING_PLANE must be on the same subnet.

Configuring the VFP VM

Before you configure the VFP VM, consider the following:

• You must make sure the console port is not being used by another vMX instance or another server.

• To disable network access to the VFP console, do not configure an IP address.

• Based on your requirements, you might want to change the memory, number of vCPUs, and the
device type. See "Installing vMX for Different Use Cases" on page 35 for some sample configuration
requirements.

56

NOTE: Starting in Junos OS Release 18.1 if you are deploying across multiple servers (for
example, one server as the RE and one server as the PFE), and you need to disable VFP for the
Forwarding Plane on the server, you have the option to specify none.

To configure the VFP VM, navigate to FORWARDING_PLANE and specify the following parameters:

Parameter Description

memory-mb Amount of memory for the VFP, default is 6 GB.

vcpus Number of vCPUs for the VFP, default is 3.

console_port KVM TCP-based console port. It must be a unique number.

deploy (Optional) VFP instance to deploy on this host. Specify the number of the
instance; first instance is 0, second instance is 1, and multiple instances are
separated by a comma. If you do not specify this parameter, both instances (0,1)
are deployed on this host. If none is set, no VFP instance will be deployed on this
host.

NOTE: When deploying on separate hosts, you must set up a connection
between the hosts for the VFPs to communicate.

console_listen (Optional) IP address for the interface from which the console can be accessed;
default is 127.0.0.1, which only allows access from within the host. To allow
access from any interfaces, specify 0.0.0.0.

device-type NIC interface type, either sriov or virtio. If you are configuring both virtio and
SR-IOV interfaces, specify mixed.

ipaddr Management IP address for the VFP VM (eth0). Navigate to interfaces > type
(static) > ipaddr to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE,
and FORWARDING_PLANE must be on the same subnet.

57

(Continued)

Parameter Description

use_native_drivers Set to true to allow using the host’s driver.

NOTE: From Junos OS Release 18.4R1 (Ubuntu host) and Junos OS Release
19.1R1 (Red Hat host), you can set the use_native_drivers value to true to use
the latest unmodified drivers for your network interface cards for vMX
installations.

To configure the VFP VM, navigate to FORWARDING_PLANE and specify the following parameters
(supported in Junos OS Release 15.1F6):

Parameter Description

memory-mb Amount of memory for the VFP; minimum is 12 GB (performance mode) and 4 GB
(lite mode).

vcpus Number of vCPUs for the VFP; minimum is 7 (performance mode) and 3 (lite mode).

console_port KVM TCP-based console port. It must be a unique number.

console_listen (Optional) IP address for the interface from which the console can be accessed;
default is 127.0.0.1, which only allows access from within the host. To allow access
from any interfaces, specify 0.0.0.0.

device-type NIC interface type, either sriov or virtio.

ipaddr Management IP address for the VFP VM (eth0). Navigate to interfaces > type (static)
> ipaddr to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE, and
FORWARDING_PLANE must be on the same subnet.

58

Configuring Interfaces

The JUNOS_DEVICES interface names correspond to the Linux physical NIC names on the host. Bring
up the Linux physical NIC ports that are defined in this section before proceeding. For example, use the
ifconfig eth9 up command to bring up the NIC ports on the eth9 interface.

To configure interfaces for virtio device types, you must specify the interface and the MAC address. You
can bind virtio devices to connect virtio NICs in the vMX to physical NICs or virtio NICs in another vMX
(see "Binding virtio Devices" on page 66).

To configure interfaces for SR-IOV device types, you must specify the interface, the NIC, and the MAC
address.

To configure the routed interfaces, navigate to JUNOS_DEVICES and specify the following parameters:

Parameter Description

interface Name of the interface on the vMX.

NOTE: The interface names that are defined in the vmx.conf file must be
contiguous starting from ge-0/0/0. The total number of interfaces supported is
23 for configurations running in performance mode. If you are running virtio
interfaces in lite mode, you can use up to 96 interfaces.

type (supported in
Junos OS Release
17.2 onwards)

NIC interface type, either sriov or virtio.

NOTE: If you are configuring both interface types, you must specify the virtio
interfaces before the SR-IOV interfaces.

port-speed-mbps (SR-IOV only) Port speed for the physical NIC, default is 10000 Mbps.

nic (SR-IOV only) Name of the physical NIC.

NOTE: Depending on the version of udev, you can rename the classic Linux
standard ethXX names. See Predictable Network Interface Names for more
information.

mtu (SR-IOV only) MTU value, default is 2000 and maximum is 9500.

To change the MTU configuration for virtio device types, modify the mtu
parameter in the device binding file (vmx-junosdev.conf).

59

http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/

(Continued)

Parameter Description

virtual-function (SR-IOV only) Child unit of the physical NIC, default is 0.

(SR-IOV only) Virtual function number of the physical NIC; default is 0
(supported in Junos OS Release 15.1F5 and earlier releases).

mac-address Unicast MAC address for the physical NIC.

description Description of the mapping.

Release History Table

Release Description

18.1 Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you want to disable VCP for the Control Plane on the server,
you have the option to specify none.

18.1 Starting in Junos OS Release 18.1 if you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you need to disable VFP for the Forwarding Plane on the
server, you have the option to specify none.

Connecting to VMs

IN THIS SECTION

Logging In to VCP | 61

Logging In to VFP | 61

Perform these tasks to connect to the virtual machines for first-time configuration, to enable access by
other means (like Telnet or SSH):

60

Logging In to VCP

You can access the serial console using the ./vmx.sh --console vcp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file, and log in with the username root and no
password.

To disconnect from the console, log out of the session and press Ctrl +]. At the telnet> prompt, type
close and press Enter.

Logging In to VFP

You can access the serial console using the ./vmx.sh --console vfp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file, and log in with the username root and
password root.

To disconnect from the console, log out of the session and press Ctrl +]. At the telnet> prompt, type
close and press Enter.

To SSH into the virtual forwarding plane (VFP), use the IP address defined under FORWARDING_PLANE
in the vmx.conf file. For security reasons, you cannot connect to VFP using the Telnet protocol.

Also for security reasons you cannot connect to the VFP instance using the SSH protocol with the root
user. You must first access the VFP with console, login as root user, and create a user that you can then
use to SSH in with.

For example:

Access the VFP with the console:

root@ubuntu:~/19.2/vmx# ./vmx.sh --console vfp vmx1

root@qemux86-64:/home/pfe/riot# ./vfp_util.sh -create_user
Enter Username:pfe
Enter Password:
Re-enter Password:
Not copying any file from skel directory into it.
User pfe created, HOME:/var/pfe
Restarting OpenBSD Secure Shell server: sshd.

61

Now when using SSH to access the VFP as the PFE user you can login as super user to access to the
root directory.

pfe@qemux86-64:~$ su
root@qemux86-64:/var/pfe# id
 uid=0(root) gid=0(root) groups=0(root)
 root@qemux86-64:/var/pfe#

Managing vMX

IN THIS SECTION

Deploying vMX | 62

Managing vMX Deployments | 63

Specifying the Temporary File Directory | 64

Specifying the Environment File | 65

Configuring Logging Options for vMX | 65

Connecting to Console Port for the VMs | 65

Getting Help for the Script Options | 66

NOTE: Only English locale is supported for using the vmx.sh script.

After you install and deploy vMX, you can use the vmx.sh script with different options to perform these
tasks:

Deploying vMX

NOTE: You must be logged in as root to use the control options.

Using the --install option also launches the VCP and VFP VMs.

62

We recommend you deploy the vMX by running the ./vmx.sh -lv --install script to provide verbose-
level logging to a file for the deployment of the vMX instance.

NOTE: Only English locale is supported for using the vmx.sh script.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

NOTE: Before you reboot the host server, you must shut down the vMX instance using the
request system halt command.

To deploy vMX, use these options with the vmx.sh script:

--cfg file Use the specified vMX startup configuration file. The default file is config/vmx.conf.

--install Start vMX by setting up the environment, driver dependencies, and memory requirements
and deploying the vMX. If you do not specify a startup configuration file with the --cfg
option, the default file is used.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

This example deploys a new vMX instance specified by the my-vmx.cfg configuration file and provides
verbose-level logging to a file:

./vmx.sh -lv --install --cfg config/my-vmx.cfg

Managing vMX Deployments

NOTE: You must be logged in as root to use the control options.

Use these options with the vmx.sh script to stop, start, restart, verify, and clean up an existing vMX:

63

--cfg file Use the specified vMX startup configuration file. The default file is config/vmx.conf.

--cleanup Stop vMX and clean up relevant information about the vMX instance. It also tears down the
Linux bridges and other dependencies. If you do not specify a startup configuration file with
the --cfg option, the default file is used.

--restart Stop and start a running vMX. This option is useful for redeploying a vMX that has
parameter changes in the startup configuration file. If you do not specify a startup
configuration file with the --cfg option, the default file is used.

--start Start the vMX that was running and stopped. If you do not specify a startup configuration
file with the --cfg option, the default file is used.

--status Verify the status of a deployed vMX. If you do not specify a startup configuration file with
the --cfg option, the default file is used.

--stop Stop vMX without cleaning up build files so that the vMX can be started quickly without
setup performed by the --install option.

This example tears down an existing vMX instance specified by the my-vmx.cfg configuration file:

./vmx.sh --cleanup --cfg config/my-vmx.cfg

Starting in Junos OS release 19.1 onwards, if you are deploying the vMX image with i40e driver-based
NIC cards and want to redeploy the vMX that has parameter changes in the startup configuration file,
we recommend not using the options such as --restart or --start/--stop. You must use the following
options:

1. Use the ./vmx.sh --cleanup command to clean up an existing vMX.

2. Run the ./vmx.sh -lv --install script to re-deploy vMX.

The vMX instance starts with the updated configuration.

Specifying the Temporary File Directory

NOTE: You must be logged in as root to use the control options.

To specify the directory used for temporary files, run the ./vmx.sh build directory script. The default
directory is build/vmx-id, where vmx-id is the vMX identifier specified in the startup configuration file.

64

By default, copies of the VCP and VFP images are copied to this directory. We recommend that you do
not change the make-local-copy-of-images and make-local-copy-of-vmxhdd parameters when specifying
startup configuration file parameters for the host.

Specifying the Environment File

NOTE: You must be logged in as root to use the control options.

To specify the environment file (.env), run the ./vmx.sh env file script. The default file is env/
ubuntu_sriov.env.

Configuring Logging Options for vMX

You can enable logging options. It is especially useful when used with the control options, such as --
install.

Use these options to configure logging:

-l Enable logging to a file in the specified build directory. The default directory is build/vmx-id/logs,
where vmx-id is the vMX identifier specified in the startup configuration file. By default, logging is
disabled.

-lv Enable logging with verbose details.

-lvf Enable logging with verbose details to the foreground (standard output).

This example deploys a new vMX instance specified by the my-vmx.cfg configuration file and provides
verbose-level logging to a file:

./vmx.sh -lv --install --cfg config/my-vmx.cfg

Connecting to Console Port for the VMs

Use these options with the vmx.sh script to connect to the console of the VCP or VFP of the specified
vMX:

--console vcp [vmx-
id]

Connect to the console of the VCP for the specified vMX. The vMX identifier is
specified in the startup configuration file.

--console vfp [vmx-
id]

Connect to the console of the VFP for the specified vMX. The vMX identifier is
specified in the startup configuration file.

65

This example connects to the console of the VCP for the vMX instance specified by the vmx1 identifier:

./vmx.sh --console vcp vmx1

Getting Help for the Script Options

To obtain on-line help for the vmx.sh script options, run the ./vmx.sh --help script.

Binding virtio Devices

IN THIS SECTION

Setting Up the Device Bindings | 67

Creating Device Bindings | 69

Deleting Device Bindings | 70

Verifying Device Bindings | 70

For configurations using virtio device types, you can bind multiple vMX instances together on the same
system if the host has enough CPU and memory to support the vMX instances. You configure each vMX
instance with a different startup configuration file.

If you are deploying multiple vMX instances, make sure:

• The VM identifiers are unique across all instances.

• The console ports of the VCP and the VFP are unique across all instances.

• The external static IP address of the VCP and the VFP are unique across all instances.

• The MAC addresses of the VCP and the VFP are unique across all instances, whenever specified.

NOTE: All VMs share the same management domain. The physical management interface (for
example, eth0) is also part of this global external bridge.

You can connect virtio NICs in the vMX to physical NICs or virtio NICs in another vMX by binding these
devices as shown in Figure 3 on page 67.

66

Figure 3: Binding Devices

To manage device bindings, perform these tasks:

Setting Up the Device Bindings

The parameters required to configure vMX to bind devices are defined in the device-binding file. The
device-binding file is in YAML format. The default file is config/vmx-junosdev.conf.

The device-binding file defines the endpoints of each link originating from the VFP of a vMX. One
endpoint must be a device using virtio NICs. The other endpoint can be a physical NIC, a virtio NIC in
another vMX instance, or a Linux bridge.

To bind the vMX instances together:

1. Edit the config/vmx-junosdev.conf file to set up the communication between the vMX instances.

2. Modify the link_name to the name of the Linux bridge (as shown by the brctl show command). The
link name can be 15 characters long. It must be unique for each bridge. If more than two interfaces
(virtual or physical) are connected by a Linux bridge, then the bridge name is derived from the
dev_name of the common endpoint for the connected devices.

3. Specify the mtu to change the MTU value for virtio device types from the default of 1500. The
maximum value is 9500.

To change the MTU configuration for SR-IOV device types, modify the mtu parameter in the startup
configuration file (vmx.conf).

4. Specify the endpoints for vMX devices (junos_dev type) by customizing these parameters:

• type—Type of device is junos_dev.

67

http://www.yaml.org/

• vm-name—Name of the vMX identifier specified in the startup configuration file for that vMX
instance.

• dev-name—Name of the interface on vMX as specified in the startup configuration file.

5. Specify the endpoints for physical NICs (host_dev type) by customizing these parameters:

• type—Type of device is host_dev.

• dev-name—Name of the physical NIC on the host.

6. Specify the endpoints for bridges (bridge_dev type) by customizing these parameters:

• type—Type of device is bridge_dev.

• dev-name—Name of the Linux bridge.

7. If you have multiple device-binding files, save them with different names.

Here is a sample vMX device-binding file:

interfaces :

 - link_name : link_host
 mtu : 1500
 endpoint_1 :
 - type : junos_dev
 vm_name : vmx1
 dev_name : ge-0/0/0
 endpoint_2 :
 - type : host_dev
 dev_name : int2

 - link_name : link_vmx_12
 mtu : 1500
 endpoint_1 :
 - type : junos_dev
 vm_name : vmx1
 dev_name : ge-0/0/1
 endpoint_2 :
 - type : junos_dev
 vm_name : vmx2
 dev_name : ge-0/0/0

 - link_name : bridge_vmx_123
 endpoint_1 :
 - type : junos_dev

68

 vm_name : vmx1
 dev_name : ge-0/0/2
 endpoint_2 :
 - type : bridge_dev
 dev_name : bridge1

 - link_name : bridge_vmx_123
 endpoint_1 :
 - type : junos_dev
 vm_name : vmx2
 dev_name : ge-0/0/1
 endpoint_2 :
 - type : bridge_dev
 dev_name : bridge1

 - link_name : bridge_vmx_123
 endpoint_1 :
 - type : junos_dev
 vm_name : vmx3
 dev_name : ge-0/0/0
 endpoint_2 :
 - type : bridge_dev
 dev_name : bridge1

The link_host entry shows how to connect the ge-0/0/0 interface on vmx1 to the physical NIC. The
link_vmx_12 entry shows how to connect two interfaces on vmx1 and vmx2 to each other. The
bridge_vmx_123 entries show how to connect the interfaces on vmx1, vmx2, and vmx3 with a bridge.

Creating Device Bindings

NOTE: You must be logged in as root to bind devices.

To bind devices with virtio NICs to other devices, define your devices in the vMX device-binding file and
run the ./vmx.sh --bind-dev –-cfg device-binding-file script to create the device binding. If you do not
specify a file, the default file is config/vmx-junosdev.conf.

This example creates device bindings with the specified device-binding file:

./vmx.sh --bind-dev –-cfg config/vmx1-junosdev.conf

69

Deleting Device Bindings

NOTE: You must be logged in as root to unbind devices.

To unbind devices, run the ./vmx.sh --unbind-dev –-cfg device-binding-file script to delete the device
bindings created with the --bind-dev option. If you do not specify a file, the default file is config/vmx-
junosdev.conf.

This example deletes device bindings with the specified device-binding file:

./vmx.sh --unbind-dev –-cfg config/vmx1-junosdev.conf

Verifying Device Bindings

NOTE: You must be logged in as root to bind devices.

To verify the status of device bindings created with the --bind-dev option, run the ./vmx.sh --bind-check
–-cfg device-binding-file script. If you do not specify a file, the default file is config/vmx-junosdev.conf.

This example verifies the status of the device bindings for the specified device-binding file:

./vmx.sh --bind-check –-cfg config/vmx1-junosdev.conf

Release History Table

Release Description

18.1 Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you want to disable VCP for the Control Plane on the server,
you have the option to specify none.

18.1 Starting in Junos OS Release 18.1 if you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you need to disable VFP for the Forwarding Plane on the
server, you have the option to specify none.

18.1 Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you want to disable VCP for the Control Plane on the server,
you have the option to specify none.

70

18.1 Starting in Junos OS Release 18.1 if you are deploying across multiple servers (for example, one server
as the RE and one server as the PFE), and you need to disable VFP for the Forwarding Plane on the
server, you have the option to specify none.

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 11

vMX Package Contents | 18

Installing vMX on KVM | 20

Installing Nested vMX VMs | 71

Installing Nested vMX VMs

IN THIS SECTION

Overview of the Nested VM Model | 71

Hardware and Software Requirements for Nested vMX VMs | 75

Installing and Launching the Nested vMX VM on KVM | 76

A nested virtual machine is a virtual machine contained within another VM. Read this topic to
understand how to launch the nested vMX VM on KVM.

Overview of the Nested VM Model

IN THIS SECTION

Nested VM with Virtio Interfaces | 72

Nested VM with SR-IOV Interfaces | 73

71

System Requirements for Nested VM Model | 74

vMX Limitations with the Nested VM Model | 74

The nested vMX virtual machine (VM) model has the virtual control plane (VCP) running as a VM within
the virtual forwarding plane (VFP) VM. The VFP VM runs the virtual Trio forwarding plane software and
the VCP VM runs Junos OS. The VCP VM and VFP VM require Layer 2 connectivity to communicate
with each other. An internal bridge that is local to the server for each vMX instance enables this
communication. The VCP VM and VFP VM also require Layer 2 connectivity to communicate with the
Ethernet management port on the server. You must specify virtual Ethernet interfaces with unique IP
addresses and MAC addresses for both the VFP and VCP to set up an external bridge for a vMX
instance. Ethernet management traffic for all vMX instances enters the server through the Ethernet
management port.

The nested vMX VM supports virtio and SR-IOV interfaces for forwarding ports. The first interface is
used for management and must be a virtio interface connected to the br-ext bridge (external bridge).
Subsequent interfaces are WAN interfaces and can be virtio or SR-IOV interfaces. You must create the
bridges for all the virtio interfaces. You must have at least one WAN interface for forwarding.

Nested VM with Virtio Interfaces

In virtio mode, the server interfaces must not be configured with the VFs. You can remove or reset the
interfaces (eth1) using the rmmod ixgbe command and you can add the IXGBE driver with default interface
to the server interface using the modprobe ixgbe command.

72

Figure 4 on page 73 illustrates the nested vMX VM model with virtio interfaces.

Figure 4: Nested VM with virtio Interfaces

Nested VM with SR-IOV Interfaces

In SR-IOV mode, the vMX interfaces are associated with the server interfaces. For example, the ge-0/0/0
interface is associated with eth1 . eth1 is defined in the .conf file- interface: ge-0/0/0 ,nic: eth1.

The VF is added to the IXGBE driver of the server interface eth1 which associated with the VF and can
be checked using the ip link show eth1 command while running in the SR-IOV mode.

73

Figure 5 on page 74 illustrates the nested vMX VM model with SR-IOV interfaces.

Figure 5: Nested VM with SR-IOV Interfaces

For SR-IOV interfaces, you must load the modified IXGBE driver before launching the nested vMX VM.

The way network traffic passes from the physical NIC to the virtual NIC depends on the virtualization
technique that you configure.

System Requirements for Nested VM Model

vMX can be configured to run in two modes depending on the use case:

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher
bandwidth.

NOTE: Performance mode is the default mode.

vMX Limitations with the Nested VM Model

vMX does not support the following features with the nested VM model:

• Attachment or detachment of interfaces while a vMX instance is running

• Upgrade of Junos OS release

74

Hardware and Software Requirements for Nested vMX VMs

Table 13 on page 75 lists the hardware requirements.

Table 13: Minimum Hardware Requirements for the Nested vMX VM

Description Value

Sample system
configuration

For virtio: Any x86 processor (Intel or AMD) with VT-d capability.

For SR-IOV: Intel 82599-based PCI-Express cards (10 Gbps) and Ivy
Bridge processors.

Number of cores

NOTE: Performance
mode is the default mode
and the minimum value is
based on one port.

• For lite mode: Minimum of 4 vCPUs

NOTE: If you want to use lite mode when you are running with more
than 4 vCPUs for the VFP, you must explicitly configure lite mode.

• For performance mode: Minimum of 8 vCPUs

NOTE: To calculate the recommended number of vCPUs needed by
VFP for performance mode:

(3 * number-of-forwarding-ports) + 4

Memory • For lite mode: Minimum of 3 GB

• For performance mode:

• Minimum of 5 GB

• Recommended of 16 GB

Table 14 on page 75 lists the software requirements.

Table 14: Software Requirements for Ubuntu

Description Value

Operating system Ubuntu 14.04.1 LTS

Linux 3.19.0-80-generic

75

Table 14: Software Requirements for Ubuntu (Continued)

Description Value

Virtualization QEMU-KVM 2.0.0+dfsg-2ubuntu1.11

Required packages

NOTE: Other additional packages might be required to
satisfy all dependencies.

bridge-utils qemu-kvm libvirt-bin virtinst

NOTE: libvirt 1.2.19

Installing and Launching the Nested vMX VM on KVM

IN THIS SECTION

Preparing the Ubuntu Host to Install the Nested vMX VM | 76

Loading the Modified IXGBE Driver | 77

Launching a Nested vMX Instance | 78

Connecting to the VFP Console Port | 81

Connecting to the VCP | 81

To launch the nested vMX VM on KVM, perform these tasks.

Preparing the Ubuntu Host to Install the Nested vMX VM

To prepare the Ubuntu host system for installing vMX:

1. Meet the software and OS requirements described in "Hardware and Software Requirements for
Nested vMX VMs" on page 75.

2. Enable Intel VT-d in BIOS. (We recommend that you verify the process with the vendor because
different systems have different methods to enable VT-d.)

Refer to the procedure to enable VT-d available on the Intel Website.

3. Disable KSM by setting KSM_ENABLED=0 in /etc/default/qemu-kvm.

76

4. Disable APIC virtualization by editing the /etc/modprobe.d/qemu-system-x86.conf file and adding
enable_apicv=0 to the line containing options kvm_intel.

options kvm_intel nested=1 enable_apicv=0

5. Restart the host to disable KSM and APIC virtualization.

6. If you are using SR-IOV, you must perform this step.

NOTE: You must remove any previous installation with an external bridge in /etc/network/
interfaces and revert to using the original management interface. Make sure that the ifconfig
-a command does not show external bridges before you proceed with the installation.

To determine whether an external bridge is displayed, use the ifconfig command to see the
management interface. To confirm that this interface is used for an external bridge group, use
the brctl show command to see whether the management interface is listed as an external
bridge.

Enable SR-IOV capability by turning on intel_iommu=on in the /etc/default/grub directory.

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

Append the intel_iommu=on string to any existing text for the GRUB_CMDLINE_LINUX_DEFAULT parameter.

7. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the host
and make sure the NUMA node for the VFP has at least 16 1G Huge Pages. To configure the size of
Huge Pages, add the following line in /etc/default/grub:

GRUB_CMDLINE_LINUX="default_hugepagesz=1G hugepagesz=1G hugepages=number-of-huge-pages"

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

8. Run the update-grub command followed by the reboot command.

9. Run the modprobe kvm-intel command before you install vMX.

Loading the Modified IXGBE Driver

If you are using SR-IOV interfaces, you must load the modified IXGBE driver before launching the nested
vMX VM. To load the modified IXGBE driver:

1. Download the vMX KVM software package and uncompress the package.

tar xvf package-name

77

2. Before compiling the driver, make sure gcc and make are installed.

sudo apt-get update
sudo apt-get install make gcc

3. Unload the default IXGBE driver, compile the modified Juniper Networks driver, and load the
modified IXGBE driver.

cd package-location/drivers/ixgbe-3.19.1/src
make
sudo rmmod ixgbe
sudo insmod ./ixgbe.ko max_vfs=1,1
sudo make install

4. Verify the driver version (3.19.1) on the SR-IOV interfaces.

Launching a Nested vMX Instance

To launch the nested vMX instance:

1. Download the vMX Nested software package.

2. Convert the vmdk image to qcow2 format.

qemu-img convert -f vmdk -O qcow2 vmdk-filename qcow2-filename

3. Create the bridges for the virtio interfaces.

brctl addbr bridge-name

NOTE: When you create a bridge using the brctl addbr <bridge-name> command, the server
might lose the connection. Alternatively, you can spawn the vMX in unnested mode (either in
SRIOV or virtio mode) and use the virsh destroy vcp vcp-name and virsh destroy vfp vfp-name
commands to create and retain the bridge.

NOTE: You must create the bridges for the virtio interfaces before you launch the nested
vMX instance.

78

4. Launch the nested vMX VM instance with the virt-install command. For example:

sudo virt-install --hvm --vcpus=number-vcpus -r memory \
 --serial tcp,host=:console-port,mode=bind,protocol=telnet \
 --nographics --import --noautoconsole \
 --cpu \
SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x
tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme \
 -w bridge=br-ext,model=virtio \
 -w bridge=bridge-name,model=virtio \
 --host-device=pci-id \
 -n name --disk disk-image,format=qcow2

where:

• --vcpus—Specifies the number of vCPUs.

For lite mode, minimum of 4 vCPUs. For performance mode, minimum of [(4 * number-of-
forwarding-ports) + 4] vCPUs.

• -r—Specifies the amount of memory the VM uses in MB. Minimum of 16 GB.

• --serial—Specifies the serial port for the VFP.

• -w—Specifies the virtio interface. The first interface is used for management and is connected to
the br-ext bridge. Subsequent interfaces are WAN interfaces and are connected to the bridges on
the host.

• --host-device—Specifies the SR-IOV interface as the PCI ID of the virtual function (VF0).

To determine the PCI ID:

a. Use the ip link command to obtain the interface names for which you create VFs that are
bound to the vMX instance.

b. Use the ethtool -i interface-name utility to determine the PCI bus information.

driver: ixgbe
version: 3.19.1
firmware-version: 0x61bd0001
bus-info: 0000:81:00.0
supports-statistics: yes

79

supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: no

c. Use the virsh nodedev-list command to obtain the VF PCI ID.

pci_0000_81_00_0
pci_0000_81_00_1
pci_0000_81_10_0
pci_0000_81_10_1

• -n—Specifies the name of the vMX VM.

• --disk—Specifies the path to the qcow2 file (vmx-nested-release.qcow2).

For example, this command launches a vMX instance in performance mode with two virtio interfaces
connected to the vnet0 and vnet1 bridges:

sudo virt-install --hvm --vcpus=12 -r 16384 \
 --serial tcp,host=:4001,mode=bind,protocol=telnet \
 --nographics --import --noautoconsole \
 --cpu \
SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x
tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme \
 -w bridge=br-ext,model=virtio \
 -w bridge=vnet0,model=virtio \
 -w bridge=vnet1,model=virtio \
 -n vmx1 --disk vmx-nested-17.2R1.13-4.qcow2,format=qcow2

For example, this command launches a vMX instance in performance mode with two SR-IOV interfaces:

sudo virt-install --hvm --vcpus=12 -r 16384 \
 --serial tcp,host=:4001,mode=bind,protocol=telnet \
 --nographics --import --noautoconsole \
 --cpu \
SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x
tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme \
 -w bridge=br-ext,model=virtio \
 --host-device=pci_0000_81_10_0 \

80

 --host-device=pci_0000_81_10_1 \
 -n vmx2 --disk vmx-nested-17.2R1.13-4.qcow2,format=qcow2

Connecting to the VFP Console Port

After launching the vMX instance with the virt-install command, you can connect to the console port
of the VFP from the host with the telnet localhost serial-port command, where serial-port is the port
you specified as host with the -serial parameter.

For example:

$ telnet localhost 4001

Log in with the default username jnpr and password jnpr123. Become root using the sudo -i command.

The br-ext interface tries to fetch an IP address using DHCP. Use the ifconfig br-ext command to
display the assigned IP address. If DHCP is unavailable or if you prefer a static IP address, assign an IP
address to br-ext. You can now connect to the VFP using the SSH protocol and this assigned IP address.

Connecting to the VCP

When the VCP VM is launched, you can connect to the VCP console port at TCP port 8601 from the
VFP VM using this command:

$ telnet localhost 8601

From the console port, you can log in with username root and no password.

At a minimum, you must perform these initial Junos OS configuration tasks after logging in to the VCP:

1. Start the CLI.

root@% cli
root@>

81

2. Enter configuration mode.

root@> configure

[edit]
root@#

3. Configure the root password.

[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

4. Configure the IP address and prefix length for the router’s management Ethernet interface.

[edit]
root@# set interfaces fxp0 unit 0 family inet address address/prefix-length

5. Commit the configuration.

[edit]
root@# commit

RELATED DOCUMENTATION

Installing vMX on KVM | 20

Deploying and Managing vMX | 52

82

Example: Enabling SR-IOV on vMX Instances on
KVM

IN THIS SECTION

Procedure for Identifying PCI-Addresses and Kernel Name for the NIC | 84

Download and Install the Latest Driver Software from Intel | 85

Prepare NIC to Use SR-IOV in System Mode | 85

Setting SR-IOV at Boot-Time | 86

Verify sriov_numvfs Settings | 87

Changing the Number of sriov_numvfs | 89

Updating the VMX Configuration File (vmx.conf) Parameters | 90

Changes Required for Using Intel ixgbe Driver | 93

vMX on KVM supports single-root I/O virtualization (SR-IOV) interface types. Single root I/O
virtualization (SR-IOV) allows a physical function to appear as multiple, separate vNICs. SR-IOV allows a
device, such as a network adapter to have separate access to its resources among various hardware
functions. If you have a physical NIC that supports SR-IOV, you can attach SR-IOV-enabled vNICs or
virtual functions (VFs) to the vMX instance to improve performance.

System requirements:

• Junos OS Release 18.4 or later.

• SR-IOV on the VMX for KVM requires one of the following Intel NIC drivers:

• Intel X520 or X540 using 10G ports and ixgbe driver

• Intel X710 or XL710 using 10G ports and i40e driver

Starting in Junos OS Release 19.1R1-S1 and in Junos OS Release 19.2R1, support for 40G ports with
Intel XL710-QDA2 NICs are available for VMX instances. When using 40G ports, the vMX
autodetects the port speed and assigns two I/O vCPUs.

To enable SR-IOV on VMX instances, you must complete the following tasks:

• Prepare a NIC to use SR-IOV in system (/sys/) mode.

83

• Install driver from Intel, you must compile the driver, uninstall old driver, and install new compiled
driver

NOTE: The vMX installer provides a modified intel-driver as well. You can either use the
native drivers from Intel, or use vMX modified driver.

• Prepare vmx.conf file

• Use Junos CLI to configure native driver

• BIOS requirement to enable SR-IOV- Ensure that Intel VT-d or AMD IOMMU are enabled in the
system’s BIOS settings.

Procedure for Identifying PCI-Addresses and Kernel Name for the NIC

1. To find the PCI address, use the following command:

lab@ubuntu2:/etc/modprobe.d$ ethtool -i ens8f1 | grep bus

bus-info: 0000:85:00.1

2. To find the kernel name using PCI, use the following command:

lab@ubuntu2:~$ cd /sys/bus/pci/devices
lab@ubuntu2:/sys/bus/pci/devices$ ls 0000\:85\:00.1/net/

ens8f1

3. To find out the driver in use for the NIC, use the following command:

lab@ubuntu2:~$ ethtool -i ens8f1 | grep ^driver

driver: ixgbe

84

Download and Install the Latest Driver Software from Intel

You can download the latest driver software from Intel and replace existing driver software provided by
Ubuntu.

In this example, download the software from Intel® Network Adapter Driver for PCIe* Intel® 10 Gigabit
Ethernet Network Connections Under Linux and save it into any directory of your choice and follow the
README instructions to proceed next.

To install driver software from Intel:

1. Install the driver software.

cd ~/intel_ixgbe/ixgbe-5.5.3/src
sudo make install

2. Uninstall the old driver and load the updated driver by using the rmmod/modprobe command.

sudo rmmod ixgbe
sudo modprobe ixgbe

WARNING: The command rmmod uninstalls the 10GE driver. If this is the only interface
you are connected to, then access to the host will be lost.

3. Verify if the new driver is installed correctly.

lab@ubuntu2:~/intel_ixgbe/ixgbe-5.5.3/src$ modinfo ixgbe | grep -i version
version: 5.5.3

Prepare NIC to Use SR-IOV in System Mode

The host needs to be informed for each dedicated NIC by setting the sriov_numvfs value, how many VFs
are going to use SR-IOV for the given NIC. The vmx.sh script have no information of how many VFs will
use the shared NIC. Because of this, you must configure the sriov_numvfs accordingly.

This value can be set as a boot-option to be persistent after a reboot and can be changed on-the-fly
which would not be persistent after a reboot.

85

https://downloadcenter.intel.com/download/14687/Intel-Network-Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-Connections-Under-Linux-
https://downloadcenter.intel.com/download/14687/Intel-Network-Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-Connections-Under-Linux-

The procedure given in this example is temporary solution for configuring sriov_numvfs using /sys Any
setting to /sys/class/net/interface-name/device/sriov_numvfs is non-permanent, hence the
configuration does not survive a reboot.

To prepare NIC to use SR-IOV, complete the following steps:

Create a virtual function (VF) using the following command:

echo num_of_vf > /sys/class/net/interface-name/device/sriov_numvfs

Below command allows 4 VNFs to use shared NIC ens8f1 for SR-IOV. You must either use sudo or need
login as root user.

As sudo user:
root@ubuntu2:~# echo 4 | sudo tee -a /sys/class/net/ens8f1/device/sriov_numvfs

As root user
root@ubuntu2:~# echo 4 > /sys/class/net/ens8f1/device/sriov_numvfs

NOTE: The sriov_numvfs option only accepts values 0-n, where n is the maximum number of VFs
that are supported by the SR-IOV.

Setting SR-IOV at Boot-Time

The following procedures provide some alternate methods for configuring SR-IOV where the
configuration persists a reboot of the host.

Following options are available to set the value during the boot-process of the host:

• Using rc.local

• Setting modprobe options

• Setting kernel-paramater using grub

Below example shows a method to configure the sriov_numvfs value by using grub kernel command

• You must set "intel_iommu=on" and ixgbe.max_vfs= value

86

For more information on hugepages, see Preparing the Ubuntu Host to Install vMX.

Edit the file “/etc/default/grub”:

lab@ubuntu2:~$ cat /etc/default/grub | grep -i cmd
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"
GRUB_CMDLINE_LINUX="isolcpus=34-41,48-55 default_hugepagesz=1G
hugepagesz=1G hugepages=120 ixgbe.max_vfs=8"

After editing, update the following:

sudo update-grub

Write new boot-loader to make changes active upon next reboot.

sudo grub-install /dev/sda

Reboot the host to make settings active.

sudo reboot

Verify sriov_numvfs Settings

IN THIS SECTION

Purpose | 87

Action | 88

Purpose

To verify the sriov_numvfs configuration using the CLI. In this example, the required NIC to use with SR-
IOV is ens8f1 at PCI-address 85:00.0. Please note the “Virtual Function” in the output.

87

https://www.juniper.net/documentation/en_US/vmx/topics/task/installation/vmx-install-preparing.html

Action

lab@ubuntu2:~$ lspci | grep 85

85:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network
Connection (rev 01)
85:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network
Connection (rev 01)
85:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:10.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)
85:11.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

88

Function (rev 01)

The /sys/class/net/ens8f1/device/sriov_numvfs also contains the desired value of sriov_numvfs.

lab@ubuntu2:~$ cat /sys/class/net/ens8f1/device/sriov_numvfs

8

For testing, the sriov_numvfs can be changed quickly by directly writing into /sys/class/net/interface-
name/device/sriov_numvfs.

Changing the Number of sriov_numvfs

We recommend creating sriov_numvfs in advance (example: by using grub command at boot-time),
because, changing the VF’s number is not allowed after deploying 1st vMX instance which uses given
NIC with SR-IOV. If you must change the VF’s number, then you must stop the running vMX. We
recommend to set the sriov_numvfs option to a higher value to avoid changing the sriov_numvfs
number afterwards.

To change an already configured value of VFs, you must first change it's value as 0, and then change it to
required integer value.

If there are no VFs assigned, the number of VFs can be changed to any valid value (0 - n, where n is the
maximum number of VFs that are supported by the SR-IOV)

You must perform the following steps to modify the number of VFs:

1. Stop running VNFs using the shared SR-IOV NIC.

2. Disable the SR-IOV network adapter by setting the number of Virtual Functors (VFs) to 0.

As root:
root@ubuntu2:~# echo 0 > /sys/class/net/ens8f1/device/sriov_numvfs

As sudo:
lab@ubuntu2:~$ echo 0 | sudo tee -a /sys/class/net/ens8f1/device/sriov_numvfs

89

3. Change the required number of VF (you are using six in this example)

root@ubuntu2:~# echo 6 > /sys/class/net/ens8f1/device/sriov_numvfs

NOTE: If you see the following error message, then first set the value to zero as described in
step 2 before performing step 3

root@ubuntu2:~# echo 6 > /sys/class/net/ens8f1/device/sriov_numvfs bash: echo: write
error: Device or resource busy

4. Verify your configuration by using the following command:

root@ubuntu2:~# cat /sys/class/net/ens8f1/device/sriov_numvfs

Before restarting the vMX, adopt the vmx.conf file for SR-IOV usage.

Updating the VMX Configuration File (vmx.conf) Parameters

The parameters required to configure vMX are defined in the startup configuration file. The
configuration file is in YAML format. The default file is config/vmx.conf. You can save your configuration
file to a different name for different instances.

To configure interfaces for SR-IOV device types, you must specify the interface, the NIC, and the MAC
address. Table 15 on page 90 provides the details of the configuration parameters that we are using to
change vmx.conf file.

Table 15: VMX Configuration File Parameters

Components VM Parameters Description

vPFE device-type Use sriov for all interfaces using the SR-
IOV or use mixed to allow mixing of SR-IOV
and non-SR-IOV-based interfaces.

90

Table 15: VMX Configuration File Parameters (Continued)

Components VM Parameters Description

use_native_drivers Set to true to allow using the host’s Intel
ixgbe driver (which was downloaded and
complied in above steps)

Interfaces type If type is set to sriov, then port-speed-mbps
and nic must be set.

port-speed-mbps Set it to 10000 for 10GE NIC.

nic The kernel-name for the interface to use.

virtual-function Set to 0 for first vMX instance using this
NIC. Ensure to set to 1 for 2nd vMX using
this shared NIC (and so on)

mac-address Ensure that each VF instance using the
shared NIC is using a unique or different
MAC address.

A sample vmx.conf file:

lab@ubuntu2:~/vmx/config$ cat vmx.conf.sriov

##
#
vmx.conf
Config file for vmx on the hypervisor.
Uses YAML syntax.
Leave a space after ":" to specify the parameter value.
#
##

91

#Configuration on the host side - management interface, VM images etc.
HOST:
 identifier : vmx1 # Maximum 6 characters
 host-management-interface : ens4f0
 routing-engine-image : "/home/lab/vmx/images/junos-vmx-x86-64-18.1R3-S2.5.qcow2"
 routing-engine-hdd : "/home/lab/vmx/images/vmxhdd.img"
 forwarding-engine-image : "/home/lab/vmx/images/vFPC-20181023.img"

#External bridge configuration
BRIDGES:
 - type : external
 name : br-ext # Max 10 characters

#vRE VM parameters
CONTROL_PLANE:
 vcpus : 1
 memory-mb : 1024
 console_port: 8601

 interfaces :
 - type : static
 ipaddr : 10.102.144.94
 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters
FORWARDING_PLANE:
 memory-mb : 8192
 vcpus : 4
 console_port: 8602
 device-type : mixed <<<< sriov or mixed
 use_native_drivers : true <<<< use drivers as provided by the host

 interfaces :
 - type : static
 ipaddr : 10.102.144.98
 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces
JUNOS_DEVICES:

92

 - interface : ge-0/0/0
 type : virtio <<< required
 mac-address : "02:06:0A:0E:FF:F0"
 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1
 type : sriov <<< required
 mtu : 9192 <<< required
 port-speed-mbps : 10000 <<< required
 nic : ens8f1 <<< required
 virtual-function : 0 <<< use consecutive / unique numbers for each vMX
instance
 mac-address : "02:06:0A:0E:FF:F1" <<< make sure that each vNF is using a
DIFFERENT MAC-address
 description : "ge-0/0/1 interface"

Start vmx-install

lab@ubuntu2:~/vmx$ sudo ./vmx.sh --install --cfg ./config/vmx.conf.sriov

Changes Required for Using Intel ixgbe Driver

When you try to move an existing deployment from modified IXGBE driver to unmodified IXGBE driver,
enter edit mode in Junos CLI and use the following command when using "native" drivers.

user@host# set interfaces vlan-offload

For more information, see "Modified and Unmodified IXGBE Driver" on page 100.

RELATED DOCUMENTATION

Modified and Unmodified IXGBE Driver | 100

Minimum Hardware and Software Requirements | 11

93

3
CHAPTER

Configuring Modified and Unmodified
Drivers

Modified and Unmodified i40e Driver | 95

Modified and Unmodified IXGBE Driver | 100

Understanding the Features Supported on Modified and Unmodified Drivers |
 106

Modified and Unmodified i40e Driver

IN THIS SECTION

Understanding the Differences between Modified and Unmodified i40e Driver | 95

Deploying vMX with Unmodified i40e Driver | 96

Moving from Modified i40e Driver to Unmodified i40e Driver | 98

Moving from Unmodified i40e Driver to Modified i40e Driver | 100

Read this topic to understand modified and unmodified i40e driver support for vMX instances.

Understanding the Differences between Modified and Unmodified i40e
Driver

The single root I/O virtualization (SR-IOV) functionality consists of a physical function (PF) driver and a
virtual function (VF) driver. The PF driver of an SR-IOV device is used to manage the physical function of
an SR-IOV capable device. A VF driver of an SR-IOV device shares one or more physical resources with
the physical function and other virtual functions that are associated with the same physical function.

In the modified i40e driver the physical function sets the port to the MAC promiscuous and VLAN
promiscuous mode. In this case, all the frames associated with the port is passed to the single VF which
is associated with the vMX. A single VF instance might be supported on a PF and the total number of
VLANs per IFD is limited to 64 if the vlan-offload option is configured.

In the unmodified i40e driver, the vMX configures the device through the PF driver with the VLAN ID
that the PF driver receive. When an Ethernet frame is received, the outer VLAN is compared with
configured VLAN ID and frame, and then forwarded to the VF associated with the vMX. In another vMX
instance, using a different VF on the same physical port, you must configure a different set of VLAN IDs
to the device to receive the Ethernet frames. As a result, multiple vMX instances can share the same
physical port only if the VLAN ID is unique. The IFL configuration determines the VLAN ID of the
Ethernet frame that needs to be sent to the vMX through the VF.

95

NOTE: When using the modified driver, you can only create a single VF per PF. Unmodified
driver supports multiple VFs per PF.

NOTE: By default LLDP is consumed by i40e physical function (PF) driver. To disable the LLDP
packet consumption at PF level, use following command:

#echo lldp stop > /sys/kernel/debug/i40e/PCI-bus-info/

You can retrieve PCI bus information from the output of ethtool -i interface-name| grep bus-
info command.

NOTE: If you notice that i40e driver link is not stable, you can renegotiate the link speed by using
the following command:

ethtool -r ethX/interface-name

Deploying vMX with Unmodified i40e Driver

Before installing a vMX instance, you must choose to load the unmodified i40e driver. To load the
unmodified i40e driver:

NOTE: Starting in Junos OS Release 18.4R1, vMX instances can be deployed with an unmodified
i40e driver on Ubuntu version 16.04. XL710 NIC recommended if unmodified i40e driver version
is 2.4.10 and firmware version 6.01. Unmodified 2.4.10 driver is qualified for XL710.

NOTE: To use the unmodified driver, you must set the value of the use_native_drivers command
to true in the vMX configuration file.

1. Upgrade the host OS to Ubuntu 16.04 version or later, and ensure that the IP route package value is
iproute2-4.9.0.

96

2. Remove the existing driver module.

rmmod i40e

3. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod i40e.ko

4. Use the ethtool -i interface-name utility to determine the driver information.

[root@host ~]# ethtool -i eth8

driver: i40e
version: 2.4.10
firmware-version: 6.01 0x80003484 1.1747.0

NOTE: The firmware version must be compatible with the driver version that you are
installing.

5. Create a virtual function (VF) using either of the following commands.

echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

For example, if you want to create two VFs, use the following command:

echo 2 > /sys/class/net/eth16/device/sriov_numvfs

If you want to modify the number of VFs, use the following command:

echo 0 > /sys/class/net/<interface-name>/device/sriov_numvfs
echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

97

NOTE: On some PCI devices, when you change the number of VFs, you might receive the
error message : Device or resource busy. In such cases, you first set sriov_numvfs to 0, and
then set it to your new value.

If the value of sriov_numvfs > 0, then you have to set it to 0 first and then change it to
numeric value.

6. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602
 device-type : sriov
 use_native_drivers : true

7. Install vMX.

 ./vmx.sh --install --cfg ../vmx.conf

The vMX programs the PF driver with VLAN information. The PF driver compares the outer VLAN of
the VLAN tag information of the packets against the programmed VLAN and forwards to corresponding
VF.

1. Enter the CLI configuration mode after logging in to the vMX and set the per interface configuration
knob for the respective interface.

set interfaces <interface-name> vlan-offload

Moving from Modified i40e Driver to Unmodified i40e Driver

When you try to move an existing deployment from modified i40e driver to unmodified i40e driver,
perform the following steps:

98

NOTE: Use the set interface <interface-name> vlan-offload command to offload the VLAN
filtering to unmodified PF driver.

NOTE: Support for modified drivers for i40e is not available starting in Junos OS Release 19.1
and later releases.

1. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ./i40e.ko <installing the driver>
ethtool -i eth8
driver: i40e
version: 2.4.10
firmware-version: 6.01 0x80003484 1.1747.0

NOTE: The firmware version must be compatible with the driver version you are installing.

2. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602
 device-type : sriov
 use_native_drivers : true

3. Install vMX.

 ./vmx.sh --install --cfg ../vmx.conf

4. Login to vMX and set the per IFD configuration knob for the respective IFDs.

set interfaces <interface-name> vlan-offload

99

Moving from Unmodified i40e Driver to Modified i40e Driver

When you try to move an existing deployment to from unmodified i40e driver to modified i40e driver,
perform the following steps:

1. Clear the relevant knob from vMX configuration file.

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602
 device-type : sriov

2. Clean the vMX.

 ./vmx.sh --cleanup --cfg ../vmx.conf

3. Reinstall vMX on your device.

 ./vmx.sh --install --cfg ../vmx.conf

RELATED DOCUMENTATION

Example: Enabling SR-IOV on vMX Instances on KVM | 83

Modified and Unmodified IXGBE Driver | 100

Understanding the Features Supported on Modified and Unmodified Drivers | 106

Modified and Unmodified IXGBE Driver

IN THIS SECTION

Understanding the Differences between Modified and Unmodified IXGBE Driver | 101

Deploying vMX with Unmodified IXGBE Driver | 102

100

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver | 104

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver | 105

Read this topic to understand the modified and unmodified IXGBE driver support for vMX instances.

Understanding the Differences between Modified and Unmodified IXGBE
Driver

The single root I/O virtualization (SR-IOV) functionality consists of a physical function (PF) driver and a
virtual function (VF) driver. The PF driver of an SR-IOV device is used to manage the physical function of
an SR-IOV capable device. A VF driver of an SR-IOV device shares one or more physical resources with
the physical function and other virtual functions that are associated with the same physical function.

In the modified IXGBE driver, the PF driver is in VLAN promiscuous mode and the modified driver
accepts and transfers all the packets to the virtual Forwarding Plane (vFP) irrespective of the VLAN tag.
The vFP does the filtering of packets based on the VLAN and rejects the packets if the VLAN is not
programmed. The knowledge of VLAN stays within the vFP.

In the unmodified IXGBE driver, the vMX configures the device using the PF driver with the VLAN ID
the driver receives. When an Ethernet frame is received, the outer VLAN is compared with the
configured VLAN ID and frame, and then forwarded to the appropriate VF associated with the vMX
instance. When another vMX instance is using a different VF on the same physical port, you can
configure a different set of VLAN IDs to the device to receive the Ethernet frames. As a result, multiple
vMX instances can share the same physical port only if the VLAN ID is unique (multiple VFs are
supported on a port).

The IFL configuration determines the VLAN ID of the Ethernet frames that can be sent to the vMX
through the VF. In the case of unmodified IXGBE driver, the MAC cannot be set to promiscuous mode
resulting in the layer 2 forwarding functionality not being supported on the vMX with the unmodified
driver.

NOTE: On a vMX instance, you can create multiple VFs on the same PF, but only one VF from
the PF must be assigned to one vMX instance. You can assign other VFs from the same PF to
other vMX instances.

101

Deploying vMX with Unmodified IXGBE Driver

Before installing a vMX instance, you must choose to load the unmodified IXGBE driver. To load the
unmodified IXGBE driver:

NOTE: Starting in Junos OS Release 18.4R1, vMX instances can be deployed with an unmodified
IXGBE driver on Ubuntu version 16.04. IXGBE based NIC recommended if IXGBE driver version
is 5.3.6 and compatible firmware version is 0x61bd0001.

NOTE: To use the unmodified driver, you must set the value of the use_native_drivers command
to true in the vMX configuration file.

1. Upgrade the host OS to Ubuntu 16.04 version or later, and ensure that the IP route package value is
iproute2-4.9.0.

2. Remove the existing driver module.

rmmod ixgbe

3. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ixgbe.ko

4. Use the ethtool -i interface-name utility to determine the driver information.

[root@host ~]# ethtool -i eth6

driver: ixgbe
version: 5.3.6
firmware-version: 0x61bd0001

NOTE: The firmware version must be compatible with the driver version that you are
installing.

102

5. Create a virtual function (VF) using either of the following commands.

echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

For example, if you want to create two VFs, use the following command:

echo 2 > /sys/class/net/eth16/device/sriov_numvfs

If you want to modify the number of VFs, use the following command:

echo 0 > /sys/class/net/<interface-name>/device/sriov_numvfs
echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

NOTE: On some PCI devices, when you change the number of VFs, you might receive the
error message : Device or resource busy. In such cases, you first set sriov_numvfs to 0, and
then set it to your new value.

If the value of sriov_numvfs > 0, then you have to set it to 0 first and then change it to
numeric value.

6. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602
 device-type : sriov
 use_native_drivers : true

7. Install vMX.

 ./vmx.sh --install --cfg ../vmx.conf

The vMX programs the PF driver with VLAN information. The PF driver compares the outer VLAN of
the VLAN tag information of the packets against the programmed VLAN and forwards to corresponding
VF.

103

1. Enter the CLI configuration mode after logging in to the vMX and set the per interface configuration
knob for the respective interface.

set interfaces <interface-name> vlan-offload

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver

When you try to move an existing deployment from modified IXGBE driver to unmodified IXGBE driver,
perform the following steps:

NOTE: Use the set interface <interface-name> new-vlan-offload-knob command to offload the
VLAN filtering to unmodified PF driver.

1. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ./ixgbe.ko <installing the driver>
ethtool -i eth8
driver: ixgbe
version: 5.3.6
firmware-version: 0x61bd0001

NOTE: The vMX with the modified driver is the default choice at the time of spawning vMX.
You can choose the unmodified PF driver through the configuration. This selection must be
made before installing vMX and cannot be modified during run time.

2. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602

104

 device-type : sriov
 use_native_drivers : true

3. Install vMX.

 ./vmx.sh --install --cfg ../vmx.conf

4. Login to vMX and set the VLAN offload option.

set interfaces <interface-name> vlan-offload

A single VF instance might be supported on a PF and the total number of VLANs per interface is
limited to 64 if the vlan-offload option is configured.

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver

When you try to move an existing deployment from unmodified IXGBE driver to modified IXGBE driver,
perform the following steps:

1. Clear the relevant knob from vMX configuration file.

FORWARDING_PLANE:
 memory-mb : 16384
 vcpus : 12
 console_port: 8602
 device-type : sriov

2. Cleanup the vMX, delete existing configuration and VLAN IDs.

 ./vmx.sh --cleanup --cfg ../vmx.conf

3. Reinstall vMX on your device.

 ./vmx.sh --install --cfg ../vmx.conf

105

RELATED DOCUMENTATION

Example: Enabling SR-IOV on vMX Instances on KVM | 83

Modified and Unmodified i40e Driver | 95

Understanding the Features Supported on Modified and Unmodified Drivers | 106

Understanding the Features Supported on Modified
and Unmodified Drivers

Table 16 on page 106 lists the features that are supported on modified and unmodified drivers.

Table 16: Features Supported on Modified and Unmodified Drivers

Feature IXGBE Driver i40e Driver

vlan-offload=on vlan-offload=off vlan-offload=on vlan-offload=off

trust=on trust=off trust=on trust=off trust=on trust=off trust=on trust=off

Untagged
(IPv4 or
IPv6)

Yes Yes Yes Yes Yes Yes Yes Yes

Single tag
(IPv4 or
IPv6)

Yes Yes No No Yes Yes Yes Yes

Q-in-Q or
double tag

Yes Yes No No Yes Yes Yes Yes

MTU (64 -
9000)

Yes Yes Yes Yes Yes Yes Yes Yes

MPLS Yes Yes Yes Yes Yes Yes Yes Yes

106

Table 16: Features Supported on Modified and Unmodified Drivers (Continued)

Feature IXGBE Driver i40e Driver

BGP Yes Yes Yes Yes Yes Yes Yes Yes

OSPF
version 2

Yes Yes Yes Yes Yes Yes Yes Yes

OSPF
version 3

Yes Yes Yes Yes Yes Yes Yes Yes

AE or LACP Yes No Yes No Yes Yes Yes Yes

LLDP Yes Yes Yes Yes Yes Yes Yes Yes

STP Yes Yes Yes Yes Yes Yes Yes Yes

BFD or
Micro-BFD

Yes Yes Yes Yes Yes Yes Yes Yes

CFM Yes Yes Yes Yes Yes Yes Yes Yes

LFM Yes Yes Yes Yes Yes Yes Yes Yes

ISIS Yes Yes Yes Yes Yes Yes Yes Yes

VRRP No No No No Yes Yes Yes Yes

Multicast
(PIM or
IGMP or
IGMP
traffic)

Yes No Yes No Yes No Yes No

107

Table 16: Features Supported on Modified and Unmodified Drivers (Continued)

Feature IXGBE Driver i40e Driver

Layer 2
bridging

No No No No Yes No Yes No

Multiple
VFs per PF
with VLAN
to VF
mapping

Yes Yes No No Yes Yes No No

NOTE: By default, the ethtool priv-flag vf-true-promisc-support option is set to false. It means
that the promiscuous mode for the virtual function (VF) 'will be set to limited mode.

To set the promiscuous mode for the VF to true promiscuous and allow the VF to see all ingress
traffic, use the following command:

#ethtool set-priv-flags vf-true-promisc-support on

NOTE: Support for modified drivers for i40e is not available starting in Junos OS Release 19.1
and later releases.

NOTE: The use_native_drivers option does not support Layer 2 promiscuous mode and other
such features.

RELATED DOCUMENTATION

Modified and Unmodified i40e Driver | 95

Modified and Unmodified IXGBE Driver | 100

108

4
CHAPTER

Configuring vMX Chassis-Level
Features

Configuring the Number of Active Ports on vMX | 110

Naming the Interfaces | 110

Configuring the Media MTU | 111

Enabling Performance Mode or Lite Mode | 112

Tuning Performance Mode | 114

lite-mode | 115

performance-mode | 117

Configuring the Number of Active Ports on vMX

You can specify the number of active ports for vMX. The default number of ports is 10, but you can
specify any value in the range of 1 through 23. You can change this number if you want to limit the
number of Ethernet interfaces in the VCP VM to match the number of NICs added to the VFP VM.

NOTE: If you are running virtio interfaces in lite mode, you can use up to 96 ports.

Other configurations running in performance mode support up to 23 ports.

To specify the number of active ports, configure the number of ports at the [edit chassis fpc 0 pic 0]
hierarchy level.

[edit]
user@vmx# set chassis fpc 0 pic 0 number-of-ports

RELATED DOCUMENTATION

Naming the Interfaces | 110

Configuring the Media MTU | 111

Enabling Performance Mode or Lite Mode | 112

Tuning Performance Mode | 114

Naming the Interfaces

vMX supports the following interface types:

• Gigabit Ethernet (ge)

• 10-Gigabit Ethernet (xe)

• 100-Gigabit Ethernet (et)

By default, the interfaces come up as ge interfaces with 1 Gbps bandwidth in the Junos OS
configuration. The default port speed values for the interface types are 1 Gbps (ge), 10 Gbps (xe), and
100 Gbps (et). If you do not enable schedulers, the speed is only for display purposes and is not

110

enforced. If you enable schedulers, the transmit rate of the port is limited to the speed unless it is
overridden by the shaping rate in the CoS configuration.

To specify the interface types, configure the interface type at the [edit chassis fpc 0 pic 0] hierarchy
level.

[edit]
user@vmx# set chassis fpc 0 pic 0 interface-type (ge | xe | et)

RELATED DOCUMENTATION

Configuring the Number of Active Ports on vMX | 110

Configuring the Media MTU | 111

Enabling Performance Mode or Lite Mode | 112

Tuning Performance Mode | 114

Configuring the Media MTU

For vMX, you can configure the media MTU in the range 256 through 9500.

NOTE: For VMware, the maximum value is 9000. For AWS, the maximum value is 1514.

You configure the MTU by including the mtu statement at the [edit interface interface-name] hierarchy
level.

[edit]
user@vmx# set interface ge-0/0/0 mtu bytes

RELATED DOCUMENTATION

Configuring the Number of Active Ports on vMX | 110

Naming the Interfaces | 110

111

Enabling Performance Mode or Lite Mode | 112

Tuning Performance Mode | 114

Enabling Performance Mode or Lite Mode

vMX can be configured to run in two modes depending on the use case.

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher
bandwidth.

NOTE: Starting in Junos OS Release 15.1F6 and later releases performance mode is enabled
implicitly by default.

When you enable performance mode, make sure you have configured the proper number of
vCPUs (four or more VPCUs) and memory for your VMs based on your use case.

You can explicitly enable lite-mode. If you are using paravirtualized network interfaces such as virtio (for
KVM) or VMXNET3 (for VMware) for lab simulation use cases, you can disable performance mode by
including the lite-mode statement at the [edit chassis fpc 0] hierarchy level.

[edit]
user@vmx# set chassis fpc 0 lite-mode

You can explicitly enable performance mode by including the performance-mode statement at the [edit
chassis fpc 0] hierarchy level.

[edit]
user@vmx# set chassis fpc 0 performance-mode

112

NOTE: We recommend that you enable hyperthreading in BIOS. We recommend that you verify
the process with the vendor because different systems have different methods to enable
hyperthreading.

Starting with Junos OS Release 17.3R1, the show chassis hardware command displays the mode in which
vMX is running in the part number field for the FPC. RIOT-PERF indicates performance mode and RIOT-
LITE indicates lite mode. For example, this output indicates that vMX is running in lite mode.

user@vmx> show chassis hardware

Hardware inventory:
Item Version Part number Serial number Description
Chassis VM54599D128A VMX
Midplane
Routing Engine 0 RE-VMX
CB 0 VMX SCB
CB 1 VMX SCB
FPC 0 Virtual FPC
 CPU Rev. 1.0 RIOT-LITE BUILTIN
 MIC 0 Virtual
 PIC 0 BUILTIN BUILTIN Virtual

Table 17 on page 113 highlights some of the challenging features which are supported in the Fast Path
and some which are not supported. Features which are not supported in the Fast Path still work but they
get less than 100K PPS per worker vCPU.

Table 17: Features Support in Fast Path

Features Support in Fast Path

Pseudowire Headend Termination (PWHT) (Layer 2 VPN) Not Supported

L2 circuit Not Supported

Ethernet VPN (EVPN) Not Supported

113

Table 17: Features Support in Fast Path (Continued)

Features Support in Fast Path

Virtual Extensible LAN protocol (VXLAN) Not Supported

MPLS-over-UDP (MPLSoUDP) Not Supported

Inline J-flow Supported

Pseudowire Headend Termination (PWHT) (Layer 3 VPN and IP) Supported

GRE Supported

logical tunnel interfaces (lt) Supported

Release History Table

Release Description

15.1F6 Starting in Junos OS Release 15.1F6 and later releases performance mode is enabled implicitly by
default.

RELATED DOCUMENTATION

Tuning Performance Mode | 114

lite-mode | 115

performance-mode | 117

Tuning Performance Mode

To tune performance mode for the traffic, you can specify the number of Workers dedicated to
processing multicast and control traffic. You can specify any value in the range of 0 through 15. The
default of 0 specifies that all available Workers are used to process all traffic.

114

The number of dedicated Workers specified in relation to the number of available Workers results in the
following behavior:

• If the number of dedicated Workers is greater than or equal to the number of available Workers, then
all available Workers are used to process all traffic.

• If the number of dedicated Workers is less than the number of available Workers, then the first set of
available Workers (equal to the specified number of dedicated Workers) is used to process multicast
and control traffic while the remaining available Workers are used to process flow cache traffic.

To specify the number of dedicated Workers for processing multicast and control traffic, configure the
number of Workers at the [edit chassis fpc 0 performance-mode] hierarchy level.

[edit]
user@vmx# set chassis fpc 0 performance-mode number-of-ucode-workers number-workers

NOTE: Changing the number of Workers reboots the FPC.

RELATED DOCUMENTATION

Enabling Performance Mode or Lite Mode | 112

performance-mode | 117

lite-mode

IN THIS SECTION

Syntax | 116

Hierarchy Level | 116

Release Information | 116

Description | 116

Options | 117

Required Privilege Level | 117

115

Syntax

lite-mode;

Hierarchy Level

[edit chassis fpc 0]

Release Information

Statement introduced in Junos OS Release 15.1F4 and 16.1R1.

Description

(vMX routers only) Enables vMX to run in lite mode and disables performance mode. Lite mode needs
fewer vCPUs and memory to run at lower bandwidth. If you are using paravirtualized network interfaces
such as virtio (for KVM) or VMXNET3 (for VMware) for lab simulation use cases, you can enable lite
mode.

NOTE: Make sure you have configured the proper number of vCPUs and memory for your VMs
based on your use case. If you have not configured enough vCPUs for performance mode, vMX
runs in lite mode.

Starting with Junos OS Release 15.1F6, performance mode is enabled by default for vMX.

NOTE: The FPC reboots if you change this configuration.

116

Options

lite-mode Enables lite mode.

To disable lite mode, enable performance mode by including the performance-mode statement
at the [edit chassis fpc 0] hierarchy level.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

performance-mode | 117

performance-mode

IN THIS SECTION

Syntax | 118

Hierarchy Level | 118

Release Information | 118

Description | 118

Options | 119

Required Privilege Level | 119

117

Syntax

performance-mode {
 number-of-ucode-workers number-of-ucode-workers;
}

Hierarchy Level

[edit chassis fpc 0]

Release Information

Statement introduced in Junos OS Release 15.1F4 and 16.1R1.

number-of-ucode-workers option introduced in Junos OS Release 15.1F6 and 16.2R1 for vMX routers.

Description

(vMX routers only) Enables vMX to run in performance mode. Performance mode needs more vCPUs
and memory to run at higher bandwidth.

NOTE: When you enable performance mode, make sure you have configured the proper number
of vCPUs and memory for your VMs based on your use case. If you have not configured enough
vCPUs, vMX runs in lite mode.

Starting with Junos OS Release 15.1F6, performance mode is enabled by default for vMX.

NOTE: The FPC reboots if you change this configuration.

You can tune performance mode for unicast traffic by changing the number of Workers dedicated to
processing multicast and control traffic. Starting with Junos OS Release 17.2R1, you do not need to

118

specify dedicated Workers for processing multicast traffic. The default specifies that all available
Workers are used to process all traffic.

The number of dedicated Workers specified in relation to the number of available Workers results in the
following behavior:

• If the number of dedicated Workers is greater than or equal to the number of available Workers, then
all available Workers are used to process all traffic.

• If the number of dedicated Workers is less than the number of available Workers, then the first set of
available Workers (equal to the specified number of dedicated Workers) is used to process multicast
and control traffic while the remaining available Workers are used to process flow cache traffic.

Options

performance-mode Enables performance mode.

To disable performance mode, enable lite mode by including the lite-mode
statement at the [edit chassis fpc 0] hierarchy level.

number-of-ucode-
workers number-
workers

Specifies the number of dedicated Workers for processing multicast and control
traffic.

• Range: 0 through 15

• Default: 0 specifies that all available Workers are used to process all traffic.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

lite-mode | 115

119

5
CHAPTER

Class of Service for vMX

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Configuring Four-Level Hierarchical Scheduling on vMX | 125

Packet Loss Priority and Drop Profiles on vMX | 126

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX |
 128

Configuring Hierarchical CoS on vMX | 131

Example: Configuring Hierarchical CoS on vMX | 133

Bypassing the Queuing Chip | 139

CoS on vMX Overview

vMX supports two-level hierarchical scheduling (per-unit scheduler or hierarchical scheduler) with VLAN
queuing. Each VLAN (logical interface) uses three traffic classes and eight queues.

Starting with Junos OS Release 17.3R1, vMX supports four-level hierarchical scheduling for up to 16
level 2 CoS scheduler nodes. The level 2 node maps to the interface set or VLAN (logical interface).

vMX supports shaping at the traffic class level, not at the queue level. A traffic class is a bundle of
queues with fixed priority. The next level in the hierarchy is the VLAN (logical interface), which is a
bundle of traffic classes.

vMX has the following fixed priorities and queues for these traffic classes:

• Traffic Class 1: High (strict priority)

Queue 0

Queue 6

• Traffic Class 2: Medium (strict priority)

Queue 1

Queue 7

• Traffic Class 3: Low

Queue 2

Queue 3

Queue 4

Queue 5

NOTE: Both Traffic Class 1 and Traffic Class 2 follow strict priority, so all excess traffic is
discarded as tail drops. However, Traffic Class 3 does not follow strict priority, so the shaping rate
is set to the shaping rate of the VLAN.

All queues in the same traffic class have equal priority, so the scheduler pulls packets from each
queue in the traffic class based on weighted round robin (WRR) for the VLAN.

All configured forwarding classes must be mapped to one of the queues.

The following features are not supported::

121

• Weighted random early detection (WRED)

• Queue buffer size configuration

NOTE: No commit errors are displayed for unsupported features.

Starting in Junos OS Release 18.4R1, the quality of service (QoS) configuration is enhanced such that,
when a port is oversubscribed and congested, a subscriber with higher priority gets more weight than a
subscriber with a lower priority. For example, when a subscriber on a port has 100 MB service and
another subscriber has 10 MB service then the subscriber with 100 MB service gets more priority than
the subscriber with 10 MB service. You must ensure that the priority is followed at level 1 and level 2
nodes, regardless of the weight. The WRR provides the ability handle the oversubscription so that the
scheduled traffic reflects a ratio of the shaping rate configured for the individual VLANs.

Use the following commands to configure a maximum number of 16384 subscribers per port on a level 2
node and a maximum number of 32768 subscribers per port on a level 3 node:

set interfaces <interface-name> hierarchical-scheduler maximum-hierarchy 3 max-l2-nodes 16384
set interfaces <interface-name> hierarchical-scheduler maximum-hierarchy 3 max-l3-nodes 32768

NOTE: The default number of subscribers that are configured per level 2 node is 4000.

Use the following command to disable the WRR feature:

subport_oversubscription_disable=1 in the /etc/riot/runtime.conf of the vFP

The following list describes the limitations for WRR:

• The delay-buffer rate must be configured for WRR to work appropriately.

• A discrepancy in the delay-buffer rate values, among the VLANs belonging to the same level 2
scheduler node can cause the WRR to work incorrectly.

• The WRR works incorrectly when the ratio of shaping rate is greater than 100 among all the
subscribers.

• The number of level 2 scheduler nodes and the number of subscribers per level 2 scheduler node
must be equal to 32,000.

• Any modification to the level 2 scheduler node configuration would require a FPC reset.

122

RELATED DOCUMENTATION

CoS Features and Limitations on vMX | 123

Packet Loss Priority and Drop Profiles on vMX | 126

CoS Features and Limitations on vMX

IN THIS SECTION

Weighted Round-Robin of Subscriber Traffic on a Port Limitations | 124

vMX has the following limitations for CoS support:

• Schedulers support only the transmit-rate and excess-rate statements. Only weights are supported
at the queue level, so transmission rate and excess rate are used for calculating queue weights.

• If transmit-rate percent is configured at the queue level, then configure guaranteed rate at the
VLAN level.

NOTE: Guaranteed rate is not supported, but it is used to calculate queue weights.

• If you only configure transmit rate, queue weights are calculated based on the transmission rate.

• If you only configure excess rate, queue weights are calculated based on the excess rate.

• If you configure both transmit rate and excess rate, queue weights are calculated based on the
excess rate.

• If you configure the excess rate for one queue, the excess rate is expected for all the queues to
compute the weights. If the excess rate is not configured, the default weight of 1 is used.

NOTE: To get the expected behavior, you must configure the excess rate for all queues.

• Traffic control profiles support only the shaping-rate and scheduler-map statements.

If a traffic control profile has a default scheduler map, you must configure the guaranteed rate.

123

• For high- and medium-priority traffic classes, the transmission rate is the shaping rate.

• For low-priority queues, the shaping rate for the VLAN is used for the queue. As a result, the low-
priority queues can burst up to the configured shaping rate for the VLAN. The transmission rate is
used as the WRR weight when there is more than one queue configured for a given priority.

Some considerations for the high- and medium-priority traffic classes:

• All excess traffic from the traffic classes for high- and medium-priority queues are discarded as tail
drops.

• For high- and medium-priority traffic classes, the transmission rate is the shaping rate.

If the transmission rate is not configured and the shaping rate is configured, then the queue weight is
calculated based upon the configured shaping rate.

If you configure the transmission rate for both queues of the same traffic class, the shaping rate of
the traffic class is the sum of the individual transmission rates of the queues for that traffic class.

• If a queue is not configured, its transmission rate is set to zero.

If no queues are configured, the shaping rate of the VLAN is applied to the traffic class as the
transmission rate.

• If any of the queues in the traffic class is configured, the shaping rate of the VLAN is set to the
guaranteed rate of the configured queue. If a queue is not configured, the guaranteed rate is set to
zero by default.

• If the sum of the rates of the individual queues in a traffic class exceeds the shaping rate of the
VLAN, the shaping rate of the VLAN is used as the shaping rate of the traffic class.

Weighted Round-Robin of Subscriber Traffic on a Port Limitations

The following list describes the limitations for WRR:

• A discrepancy in the delay-buffer rate values among the VLANs belonging to the same level 2
scheduler node can cause the WRR to work incorrectly.

• WRR does not work correctly if the ratio of the shaping rate is greater than 100 among all the
subscribers.

• The number of level 2 scheduler nodes and the number of subscribers per level 2 scheduler node
must be equal to 32,000 for it to work correctly.

• Any modification to the level 2 scheduler node configuration requires an FPC reset.

124

RELATED DOCUMENTATION

Configuring Hierarchical CoS on vMX | 131

CoS on vMX Overview | 121

Configuring Four-Level Hierarchical Scheduling on
vMX

Starting with Junos OS Release 17.3R1, four-level hierarchical scheduling for up to 16 level 2 CoS
scheduler nodes is supported on vMX routers. The level 2 node maps to the interface set or VLAN
(logical interface). Two of the level 2 nodes are used for control traffic. If you configure less than four
nodes, no commit errors are displayed but there are not enough nodes for other applications to use.
Different interfaces can have a different number of level 2 nodes. The interface can be an inline service
interface.

To configure four-level hierarchical scheduling:

1. Hierarchical CoS is disabled by default. Configure flexible queuing to enable CoS.

[edit]
user@vmx# set chassis fpc 0 flexible-queuing-mode

NOTE: The FPC reboots if you enable flexible queuing.

2. Enable hierarchical scheduling.

[edit]
user@vmx# set interfaces interface-name implicit-hierarchy

3. Set the maximum number of hierarchical scheduling levels for node scaling to 3. If the maximum-
hierarchy-levels option is not configured, it is automatically set to 2.

[edit]
user@vmx# set interfaces interface-name hierarchical-scheduler maximum-hierarchy-levels 3

125

4. Specify the maximum number of level 2 scheduler nodes; only 1, 2, 4, 8, and 16 are valid values. The
default value is 4. We recommend that you do not configure less than four nodes because two of the
nodes are used for control traffic.

[edit]
user@vmx# set interfaces interface-name hierarchical-scheduler maximum-l2-nodes number-of-
nodes

For example:

[edit]
user@vmx# set interfaces ge-0/0/0 hierarchical-scheduler maximum-l2-nodes 4

NOTE: This configuration must be present before you reboot the FPC.

RELATED DOCUMENTATION

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Configuring Hierarchical CoS on vMX | 131

Packet Loss Priority and Drop Profiles on vMX

IN THIS SECTION

Limitations | 127

vMX handles packet priorities within a queue by assigning a threshold to each loss priority within a
queue and dropping new packets of that loss priority level when the queue depth exceeds the threshold.
When the queue becomes oversubscribed, packets of lower priority are dropped to ensure that there is
room in the queue for packets of higher priority.

126

Packet loss priority has four loss priority levels:

• low

• medium-low

• medium-high

• high

vMX supports three thresholds so the medium-low and medium-high loss priority levels are grouped
together. vMX maps the packet loss priority to tricolor marking as follows:

Packet Loss Priority Color

low green

medium-low yellow

medium-high yellow

high red

vMX drop profiles define the threshold within a queue for a given loss priority as the fill level value
associated with the drop probability of 100 percent. If you do not specify a drop probability of 100
percent in the drop profile, the threshold defaults to 100 percent. All other fill level values are ignored.
These drop profiles can be referenced by the scheduler to evaluate packets with different loss priority
settings.

You can set packet loss priority for packets using behavior aggregate (BA) classifiers, firewall filters, or
firewall policers.

Limitations

vMX has the following limitations for supporting drop profiles and packet loss priority:

• If you do not apply drop profiles to the queue, then packets are tail dropped.

127

• The show interface queue command does not display separate drop rates for the medium-high PLP
and medium-low PLP because they both map to yellow. All yellow drop rates appear as medium-high
drops.

RELATED DOCUMENTATION

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX | 128

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Managing Congestion Using Drop Profiles and
Packet Loss Priorities on vMX

IN THIS SECTION

Configuring Drop Profiles | 128

Configuring Schedulers with Drop Profiles | 129

When you are configuring CoS, you can manage congestion by configuring drop profiles to specify the
thresholds for packet loss priority. You reference the drop profiles in the scheduler configuration to
assign a drop profile to the loss priority setting.

To configure how packet loss priority is handled for queues, perform these tasks:

Configuring Drop Profiles

Drop profiles specify the threshold for a given loss priority.

128

NOTE: The threshold for the loss priority assigned this drop profile is the fill-level value
associated with the drop-probability of 100. If you do not specify a drop probability of 100
percent in the drop profile, the fill level defaults to 100 percent. All other fill levels are ignored.

To specify the drop profile, include the drop-profiles statement at the [edit class-of-service] hierarchy
level.

[edit]
user@vmx# set class-of-service drop-profiles profile-name

To specify the threshold for the loss priority, include the fill-level and drop-probability statements at
the [edit class-of-service drop-profiles profile-name] hierarchy level.

[edit class-of-service drop-profiles profile-name]
user@vmx# set fill-level percentage drop-probability percentage

For example, the dpLow drop profile specifies a threshold of 100 percent, the dpMed drop profile specifies a
threshold of 75 percent, and the dpHigh drop profile specifies a threshold of 50 percent.

[edit]
user@vmx# set class-of-service drop-profiles dpLow fill-level 100 drop-probability 100
user@vmx# set class-of-service drop-profiles dpMed fill-level 75 drop-probability 100
user@vmx# set class-of-service drop-profiles dpHigh fill-level 50 drop-probability 100

Configuring Schedulers with Drop Profiles

The drop profile map contains the mapping of loss priority and protocol type to configured drop profiles.
You can associate multiple drop profile maps with a scheduler.

129

NOTE: If you do not apply drop profiles to the queue, then packets are tail dropped.

To specify the drop profile map, include the drop-profile-map statement at the [edit class-of-service
schedulers scheduler-name] hierarchy level.

[edit class-of-service schedulers scheduler-name]
user@vmx# set drop-profile-map loss-priority (any | low | medium-low | medium-high | high)
protocol any drop-profile profile-name

For example, the sched-be scheduler applies the dpLow drop profile to packets with low loss priority for
any protocol type, applies the dpMed drop profile to packets with medium-high loss priority for any
protocol type, and applies the dpHigh drop profile to packets with high loss priority for any protocol type.

[edit class-of-service schedulers sched-be]
user@vmx# set drop-profile-map loss-priority low protocol any drop-profile dpLow
user@vmx# set drop-profile-map loss-priority medium-high protocol any drop-profile dpMed
user@vmx# set drop-profile-map loss-priority high protocol any drop-profile dpHigh

RELATED DOCUMENTATION

Packet Loss Priority and Drop Profiles on vMX | 126

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

130

Configuring Hierarchical CoS on vMX

IN THIS SECTION

Enabling Flexible Queuing | 131

Mapping Forwarding Classes to Queues on vMX | 131

Configuring Traffic Control Profiles for vMX | 132

Configuring Schedulers on vMX | 132

To configure hierarchical CoS, perform these tasks:

Enabling Flexible Queuing

Hierarchical CoS is disabled by default. To enable hierarchical CoS, include the flexible-queuing-mode
statement at the [edit chassis fpc 0] hierarchy level and restart the FPC.

[edit]
user@vmx# set chassis fpc 0 flexible-queuing-mode

Mapping Forwarding Classes to Queues on vMX

You must map all configured forwarding classes to one of the queues.

[edit]
user@vmx# set class-of-service forwarding-classes class class-name queue-num queue-number

131

Configuring Traffic Control Profiles for vMX

Traffic control profiles support only the shaping-rate and scheduler-map statements for vMX.

To specify the shaping rate, include the shaping-rate statement at the [edit class-of-service traffic-
control-profiles profile-name] hierarchy level.

[edit]
user@vmx# set class-of-service traffic-control-profiles profile-name shaping-rate rate

To specify the scheduler map, include the scheduler-map statement at the [edit class-of-service
traffic-control-profiles profile-name] hierarchy level.

[edit]
user@vmx# set class-of-service traffic-control-profiles profile-name scheduler-map map-name

Configuring Schedulers on vMX

The scheduler map contains the mapping of forwarding classes to their schedulers. The scheduler
defines the properties for the queue.

Schedulers support only the transmit-rate and excess-rate proportion statements for vMX.

To specify the transmission rate, include the transmit-rate statement at the [edit class-of-service
schedulers scheduler-name] hierarchy level.

[edit]
user@vmx# set class-of-service schedulers scheduler-name transmit-rate rate

132

BEST PRACTICE: Guaranteed rate is not supported, so there is no reserved bandwidth for the
VLAN. To get the expected behavior, we recommend that you configure the transmit rate to be
the guaranteed rate.

To specify the proportion of the excess bandwidth to share, include the excess-rate proportion
statement at the [edit class-of-service schedulers scheduler-name] hierarchy level. The value is in the
range of 0 through 1000.

[edit]
user@vmx# set class-of-service schedulers scheduler-name excess-rate proportion value

If you configure the excess rate for one queue, the excess rate is expected for all the queues to compute
the weights. If the excess rate is not configured, the default weight of 1 is used.

NOTE: To get the expected behavior, you must configure the excess rate for all queues.

For example, if you configure excess rate for the low-priority queues, configure the same excess
rate for the high- and medium-priority queues.

RELATED DOCUMENTATION

Example: Configuring Hierarchical CoS on vMX | 133

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Example: Configuring Hierarchical CoS on vMX

IN THIS SECTION

Requirements | 134

133

Overview | 134

Configuration | 134

This example describes how to configure hierarchical CoS on vMX with eight queues.

Requirements

This example uses the following hardware and software components:

• Junos OS Release 16.2

• vMX Release 16.2

Overview

This example configures two-level hierarchical schedulers with specified transmission rates.

Configuration

IN THIS SECTION

Configuring the Chassis | 135

Applying Shaping and Scheduling to VLANs | 135

134

Configuring the Chassis

CLI Quick Configuration

[edit]
set chassis fpc 0 flexible-queuing-mode

Step-by-Step Procedure

To enable hierarchical CoS on the chassis:

1. Enable flexible queuing mode on the chassis.

[edit]
user@vmx# set chassis fpc 0 flexible-queuing-mode

Once you commit the configuration, the FPC is restarted.

Applying Shaping and Scheduling to VLANs

CLI Quick Configuration

[edit]
set class-of-service forwarding-classes class voice1 queue-num 0
set class-of-service forwarding-classes class video1 queue-num 1
set class-of-service forwarding-classes class data1 queue-num 2
set class-of-service forwarding-classes class data2 queue-num 3
set class-of-service forwarding-classes class data3 queue-num 4
set class-of-service forwarding-classes class data4 queue-num 5
set class-of-service forwarding-classes class voice2 queue-num 6
set class-of-service forwarding-classes class video2 queue-num 7
set interfaces ge-0/0/0 hierarchical-scheduler maximum-hierarchy-levels 2
set interfaces ge-0/0/0 vlan-tagging
set interfaces ge-0/0/0 unit 100 vlan-id 100
set interfaces ge-0/0/0 unit 100 family inet address 10.2.2.1/24
set interfaces ge-0/0/1 hierarchical-scheduler maximum-hierarchy-levels 2
set interfaces ge-0/0/1 vlan-tagging
set interfaces ge-0/0/1 unit 100 vlan-id 100
set interfaces ge-0/0/1 unit 100 family inet address 10.1.1.1/24

135

set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice1 loss-priority
low code-points 000
set class-of-service classifiers inet-precedence vlan_tos forwarding-class video1 loss-priority
low code-points 001
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data1 loss-priority
low code-points 010
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data2 loss-priority
low code-points 011
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data3 loss-priority
low code-points 100
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data4 loss-priority
low code-points 101
set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice2 loss-priority
low code-points 110
set class-of-service classifiers inet-precedence vlan_tos forwarding-class video2 loss-priority
low code-points 111
set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp shaping-rate 50m
set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp scheduler-map vlan_smap
set class-of-service interfaces ge-0/0/1 unit 100 output-traffic-control-profile
ge_0_0_1_vlan_100_tcp
set class-of-service interfaces ge-0/0/0 unit 100 classifiers inet-precedence vlan_tos
set class-of-service scheduler-maps vlan_smap forwarding-class voice1 scheduler sched_voice1
set class-of-service scheduler-maps vlan_smap forwarding-class video1 scheduler sched_video1
set class-of-service scheduler-maps vlan_smap forwarding-class data1 scheduler sched_data1
set class-of-service scheduler-maps vlan_smap forwarding-class data2 scheduler sched_data2
set class-of-service scheduler-maps vlan_smap forwarding-class data3 scheduler sched_data3
set class-of-service scheduler-maps vlan_smap forwarding-class data4 scheduler sched_data4
set class-of-service scheduler-maps vlan_smap forwarding-class voice2 scheduler sched_voice2
set class-of-service scheduler-maps vlan_smap forwarding-class video2 scheduler sched_video2
set class-of-service schedulers sched_voice1 transmit-rate 15m
set class-of-service schedulers sched_video1 transmit-rate 15m
set class-of-service schedulers sched_data1 transmit-rate 5m
set class-of-service schedulers sched_data2 transmit-rate 5m
set class-of-service schedulers sched_data3 transmit-rate 5m
set class-of-service schedulers sched_data4 transmit-rate 5m
set class-of-service schedulers sched_voice2 transmit-rate 10m
set class-of-service schedulers sched_video2 transmit-rate 10m

Step-by-Step Procedure

To apply shaping and scheduling:

136

1. Map the forwarding classes to their respective queues.

[edit]
user@vmx# set class-of-service forwarding-classes class voice1 queue-num 0
user@vmx# set class-of-service forwarding-classes class video1 queue-num 1
user@vmx# set class-of-service forwarding-classes class data1 queue-num 2
user@vmx# set class-of-service forwarding-classes class data2 queue-num 3
user@vmx# set class-of-service forwarding-classes class data3 queue-num 4
user@vmx# set class-of-service forwarding-classes class data4 queue-num 5
user@vmx# set class-of-service forwarding-classes class voice2 queue-num 6
user@vmx# set class-of-service forwarding-classes class video2 queue-num 7

2. Configure the interfaces to enable two-level hierarchical scheduling and apply scheduling to the
VLANs.

[edit]
user@vmx# set interfaces ge-0/0/0 hierarchical-scheduler maximum-hierarchy-levels 2
user@vmx# set interfaces ge-0/0/0 vlan-tagging
user@vmx# set interfaces ge-0/0/0 unit 100 vlan-id 100
user@vmx# set interfaces ge-0/0/0 unit 100 family inet address 10.2.2.1/24
user@vmx# set interfaces ge-0/0/1 hierarchical-scheduler maximum-hierarchy-levels 2
user@vmx# set interfaces ge-0/0/1 vlan-tagging
user@vmx# set interfaces ge-0/0/1 unit 100 vlan-id 100
user@vmx# set interfaces ge-0/0/1 unit 100 family inet address 10.1.1.1/24

3. Configure the classifiers.

[edit]
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice1
loss-priority low code-points 000
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class video1
loss-priority low code-points 001
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data1
loss-priority low code-points 010
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data2
loss-priority low code-points 011
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data3
loss-priority low code-points 100
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data4
loss-priority low code-points 101

137

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice2
loss-priority low code-points 110
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class video2
loss-priority low code-points 111

4. Configure the traffic control profiles.

[edit]
user@vmx# set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp shaping-rate 50m
user@vmx# set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp scheduler-map
vlan_smap

5. Map the traffic control profiles to their respective interface.

[edit]
user@vmx# set class-of-service interfaces ge-0/0/1 unit 100 output-traffic-control-profile
ge_0_0_1_vlan_100_tcp
user@vmx# set class-of-service interfaces ge-0/0/0 unit 100 classifiers inet-precedence
vlan_tos

6. Configure the scheduler maps.

[edit]
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class voice1 scheduler
sched_voice1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class video1 scheduler
sched_video1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data1 scheduler
sched_data1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data2 scheduler
sched_data2
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data3 scheduler
sched_data3
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data4 scheduler
sched_data4
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class voice2 scheduler
sched_voice2
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class video2 scheduler
sched_video2

138

7. Configure the schedulers.

[edit]
user@vmx# set class-of-service schedulers sched_voice1 transmit-rate 15m
user@vmx# set class-of-service schedulers sched_video1 transmit-rate 15m
user@vmx# set class-of-service schedulers sched_data1 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data2 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data3 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data4 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_voice2 transmit-rate 10m
user@vmx# set class-of-service schedulers sched_video2 transmit-rate 10m

RELATED DOCUMENTATION

Configuring Hierarchical CoS on vMX | 131

CoS on vMX Overview | 121

CoS Features and Limitations on vMX | 123

Configuring Hierarchical CoS on vMX | 131

Bypassing the Queuing Chip

When flexible queuing option is enabled, QoS is applied on all the configured ports. Applying QoS on
the ports requires additional vCPU reserve for each port and this affects vCPU resource allocation. By
default, all traffic passes through the queuing-chip, which decreases the available vCPU resource, there
by affecting the performance.

Starting with Junos OS 18.2R1, you can bypass the queuing-chip on vMX routers to save vCPU
resources when scheduling is not needed on an interface. In cases when you do not require QoS
features such as hierarchical scheduling or per-vlan queuing on a particular interface, you can bypass the
queuing-chip to increase the available bandwidth.

Use the following commands to enable bypass queue option:

139

1. Enable bypass the queuing-chip on vMX VM:

[edit interfaces]
user@router# set ge-0/0/1 bypass-queuing-chip

NOTE: Enabling the bypass queue option reboots the FPC.

When you configure the bypass queuing chip option, the show interface queue command does not
display any output.

2. Optionally you can configure to share the resources (QoS scheduling and Workers) among a selected
set of ports. This feature is supported for active-standby configuration of LAG.

[edit interfaces]
user@router# set interfaces ae0 aggregated-ether-options share-standby

When you configure the share-standby option, all the members of aggregated Ethernet (AE) interface
share the same resources (vCPUs) for both Worker processing and QoS scheduling.

RELATED DOCUMENTATION

Increasing Available Bandwidth on Rich-Queuing MPCs by Bypassing the Queuing Chip

bypass-queuing-chip

share-standby

140

https://www.juniper.net/documentation/en_US/junos/topics/task/configuration/cos-bypass-queueing-chip-mpcs.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/bypass-queuing-chip-edit-interfaces.html
https://www.juniper.net/documentation/en_US/vmx/topics/reference/configuration-statement/share-standby-edit-aggregated-ethernet.html

6
CHAPTER

Troubleshooting vMX

Verifying Whether VMs Are Running | 142

Viewing CPU Information | 142

Viewing VFP Statistics | 143

Viewing VFP Log Files | 145

Troubleshooting VFP and VCP Connection Establishment | 146

Verifying BIOS Settings for SR-IOV | 148

Verifying Whether VMs Are Running

To verify that the VMs are running after vMX is installed, use the virsh list command. The virsh list
command displays the name and state of the VM. The state can be: running, idle, paused, shutdown,
crashed, or dying.

You can stop and start VMs with the following virsh commands.

• virsh destroy—Forcefully stop a VM while leaving its resources intact.

• virsh start—Start an inactive VM that was defined previously.

RELATED DOCUMENTATION

Connecting to VMs | 60

Viewing CPU Information

On the host server, use the lscpu command to display CPU information. The output displays such
information as the total number of CPUs, the number of cores per socket, and the number of CPU
sockets. For example:

root@vmx-host:~# lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 62

142

Stepping: 7
CPU MHz: 3191.766
BogoMIPS: 6385.87
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 38400K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36
NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37
NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

RELATED DOCUMENTATION

Verifying Whether VMs Are Running | 142

Viewing VFP Statistics | 143

Viewing VFP Log Files | 145

Troubleshooting VFP and VCP Connection Establishment | 146

Viewing VFP Statistics

You can view the VFP statistics from a Web browser. The displayed statistics are not absolute counters;
they are relative to the start of the HTTP session and start as all zero counters.

The RPIO Stats and Hostif Stats sections provide statistics about the internal communication between
the VCP and the VFP. The RPIO session uses ports 3000 and 3001 and the HostIF session uses port
3002.

The Port Stats section provides statistics about the packets received from and transmitted to the NIC
interfaces.

• There is a receive (rx) and transmit (tx) line for each port. Port 0 maps to the ge-0/0/0 interface, port
1 maps to the ge-0/0/1 interface, and so forth. rx0 displays statistics for packets received from port
0 and tx1 displays statistics for packets transmitted to port 1.

• Errors are miscellaneous errors reported by the physical layer NIC.

The Ring Stats section provides statistics about packet processing.

143

• There is an I/O thread (io) for packets received from a port.

• There is a Worker thread (wk) for each CPU core.

• The host interface (host) sends protocol packets to the VCP.

• The queue processes the packets. The columns provide this information about the queues:

• The Producer and Consumer columns display the source and destination that generate packets
for this queue. The values can be io, wk, tx, or host.

• The Priority column displays the priority of the queue. The values can be Normal or High (only for
control packets).

• The Free and Used columns display the queue occupancy. The queue has 1024 entries.

• The Enqueues and Dequeues columns display the number of queue operations.

• The Drops column indicates whether the queue is being drained fast enough.

To view the statistics:

1. By default, you cannot log in to the Web browser window without configuring the username and
password credentials and enabling HTTP access.

From the VFP console, configure the username and password by invoking the /home/pfe/riot/
vfp_util.sh -setpass command.

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -setpass
Enter new Username: pfe
Enter new Password:
Re-enter Password:
Password successfully changed
root@vfp-vmx1:/home/pfe/riot#

To enable HTTP access, invoke this command.

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -http_enable

2. Navigate to http://vfp-mgmt-ip:8080/, where vfp-mgmt-ip is the management IP address for the VFP
VM.

3. When prompted, enter pfe as the username and the password configured in Step 1.

4. View the statistics displayed in the browser window.

144

5. After troubleshooting, you can disable HTTP access to improve security with this command:

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -http_disable

RELATED DOCUMENTATION

Viewing VFP Log Files

vMX Overview | 2

Viewing VFP Log Files

The VFP saves the following files:

• VFP log files are saved in the /var/log directory.

• VFP crash files are automatically saved in the VCP /var/crash directory.

To view the VFP log or crash files:

1. Log in to the VFP console by using the ./vmx.sh --console vfp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file.

2. Navigate to the appropriate directory to determine whether there are any files to view.

cd /var/crash
ls -l

-rwxr-xr-x 1 root root 864678 Jan 4 02:14 core.riot.1420366466.8271.gz

145

3. (Optional) If necessary, unzip the file and view it using GDB.

gunzip core.riot.1420366466.8271.gz
gdb /build/app core.riot.1420366466.8271

The VFP is configured for remote logging of the /var/log/messages directory. You can configure the
VCP syslog facility to record the VFP log messages:

user@vmx# set system syslog file messages any any
user@vmx# set system syslog server routing-instances all
user@vmx# set services app-engine monitor-cpu 50 100
user@vmx# commit

RELATED DOCUMENTATION

Verifying Whether VMs Are Running | 142

Viewing CPU Information | 142

Viewing VFP Statistics | 143

Troubleshooting VFP and VCP Connection Establishment | 146

Troubleshooting VFP and VCP Connection
Establishment

IN THIS SECTION

Purpose | 147

Action | 147

146

Purpose

When the VCP and VFP connection is established, the show interfaces terse command in the VCP CLI
displays the ge-0/0/x interfaces and the following messages appear in the VFP syslog file:

RPIO: Accepted connection from 128.0.0.1:50896 <-> vPFE:3000
RPIO: Accepted connection from 128.0.0.1:56098 <-> vPFE:3000
HOSTIF: Accepted connection

If the VCP cannot connect to the VFP, the VFP syslog file does not display the RPIO and HOSTIF messages.

Action

Run the request chassis fpc slot 0 restart command from the VCP CLI. If an FPC is in transition error
message is displayed, then run restart chassis-control.

If these commands do not correct the problem, verify whether the VCP can ping the VFP from the
routing-instance __juniper_private1__. The three management interfaces (for the host, VCP VM, and
VFP VM) connected to the internal bridge should be able to reach each other. For example:

root> ping 128.0.0.16 routing-instance __juniper_private1__
PING 128.0.0.16 (128.0.0.16): 56 data bytes
64 bytes from 128.0.0.16: icmp_seq=0 ttl=64 time=0.273 ms
64 bytes from 128.0.0.16: icmp_seq=1 ttl=64 time=0.606 ms

If the VCP cannot ping the VFP, perform these tasks:

1. Use the brctl show command to verify the bridge configuration and connected interfaces.

2. Verify that the startup configuration file is correct.

3. Verify that the VFP and the VCP VMs are up and the correct IP addresses are assigned.

4. Restart the FPC from the VCP VM.

5. Restart the chassis management process from VCP VM.

6. Stop and start the VFP VM.

7. Stop and start the VCP VM.

8. Restart the host.

147

If the problem persists, contact the Juniper Networks Technical Assistance Center (JTAC).

RELATED DOCUMENTATION

Connecting to VMs | 60

Verifying Whether VMs Are Running | 142

Viewing VFP Statistics | 143

Viewing VFP Log Files | 145

Verifying BIOS Settings for SR-IOV

If you are having problems with the SR-IOV ports, make sure BIOS has the following settings:

• SR-IOV is enabled.

• VT-d is enabled.

• Hyperthreading is enabled.

We recommend that you verify the process with the vendor because different systems have different
methods to access and change BIOS settings.

RELATED DOCUMENTATION

vMX Package Contents | 18

Installing vMX on KVM | 20

Deploying and Managing vMX | 52

148

	Table of Contents
	About This Guide
	vMX Overview
	vMX Overview
	Virtual Network Interfaces for vMX

	Installing and Deploying vMX on KVM
	Minimum Hardware and Software Requirements
	vMX Package Contents
	Installing vMX on KVM
	Preparing the Ubuntu Host to Install vMX
	Upgrading the Kernel
	Upgrading to libvirt 1.2.19
	Updating Drivers for the X710 NIC
	Install the Other Required Packages
	Preparing the Red Hat Enterprise Linux Host to Install vMX
	Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX
	Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX

	Preparing the CentOS Host to Install vMX
	Installing vMX for Different Use Cases
	Installing vMX for Lab Simulation
	Installing vMX for Low-Bandwidth Applications
	Installing vMX for High-Bandwidth Applications
	Installing vMX with Dual Routing Engines
	Installing vMX with Mixed WAN Interfaces

	Deploying and Managing vMX
	Specifying vMX Configuration File Parameters
	Configuring the Host
	Configuring the VCP VM
	Configuring the VFP VM
	Configuring Interfaces

	Connecting to VMs
	Logging In to VCP
	Logging In to VFP

	Managing vMX
	Deploying vMX
	Managing vMX Deployments
	Specifying the Temporary File Directory
	Specifying the Environment File
	Configuring Logging Options for vMX
	Connecting to Console Port for the VMs
	Getting Help for the Script Options

	Binding virtio Devices
	Setting Up the Device Bindings
	Creating Device Bindings
	Deleting Device Bindings
	Verifying Device Bindings

	Installing Nested vMX VMs
	Overview of the Nested VM Model
	Hardware and Software Requirements for Nested vMX VMs
	Installing and Launching the Nested vMX VM on KVM
	Preparing the Ubuntu Host to Install the Nested vMX VM
	Loading the Modified IXGBE Driver
	Launching a Nested vMX Instance
	Connecting to the VFP Console Port
	Connecting to the VCP

	Example: Enabling SR-IOV on vMX Instances on KVM
	Procedure for Identifying PCI-Addresses and Kernel Name for the NIC
	Download and Install the Latest Driver Software from Intel
	Prepare NIC to Use SR-IOV in System Mode
	Setting SR-IOV at Boot-Time
	Verify sriov_numvfs Settings
	Changing the Number of sriov_numvfs
	Updating the VMX Configuration File (vmx.conf) Parameters
	Changes Required for Using Intel ixgbe Driver

	Configuring Modified and Unmodified Drivers
	Modified and Unmodified i40e Driver
	Understanding the Differences between Modified and Unmodified i40e Driver
	Deploying vMX with Unmodified i40e Driver
	Moving from Modified i40e Driver to Unmodified i40e Driver
	Moving from Unmodified i40e Driver to Modified i40e Driver

	Modified and Unmodified IXGBE Driver
	Understanding the Differences between Modified and Unmodified IXGBE Driver
	Deploying vMX with Unmodified IXGBE Driver
	Moving from Modified IXGBE Driver to Unmodified IXGBE Driver
	Moving from Unmodified IXGBE Driver to Modified IXGBE Driver

	Understanding the Features Supported on Modified and Unmodified Drivers

	Configuring vMX Chassis-Level Features
	Configuring the Number of Active Ports on vMX
	Naming the Interfaces
	Configuring the Media MTU
	Enabling Performance Mode or Lite Mode
	Tuning Performance Mode
	lite-mode
	performance-mode

	Class of Service for vMX
	CoS on vMX Overview
	CoS Features and Limitations on vMX
	Configuring Four-Level Hierarchical Scheduling on vMX
	Packet Loss Priority and Drop Profiles on vMX
	Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX
	Configuring Drop Profiles
	Configuring Schedulers with Drop Profiles

	Configuring Hierarchical CoS on vMX
	Enabling Flexible Queuing
	Mapping Forwarding Classes to Queues on vMX
	Configuring Traffic Control Profiles for vMX
	Configuring Schedulers on vMX

	Example: Configuring Hierarchical CoS on vMX
	Requirements
	Overview
	Configuration

	Bypassing the Queuing Chip

	Troubleshooting vMX
	Verifying Whether VMs Are Running
	Viewing CPU Information
	Viewing VFP Statistics
	Viewing VFP Log Files
	Troubleshooting VFP and VCP Connection Establishment
	Verifying BIOS Settings for SR-IOV

