JUDLR@! | Engineering

Simplicity

Virtual Route Reflector

VRR Getting Started Guide for KVM

Published
2021-10-05




Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Virtual Route Reflector vRR Getting Started Guide for KVM
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.


https://support.juniper.net/support/eula/

Table of Contents

About This Guide | iv

1 Virtual Route Reflector Overview
Understanding Virtual Route Reflector | 2
Virtual Route Reflector Hardware Requirements | 3
Virtual Route Reflector Software Requirements | 4

2 Installing and Configuring Virtual Route Reflector on KVM

Installing the Virtual Route Reflector Image on KVM | 8

Configuring the Linux Bridges | 9
Launching the vRR VM | 10
Launching a vRR VM Using the Unified Image | 15

Configuring Interfaces, Protocols, and Routes of the Virtual Route Reflector Using Junos
CLl | 17

Enabling SR-IOV on VRR Instances on KVM | 20




About This Guide

Use this guide to install the virtual Route Reflector in the KVM environment. This guide also includes

basic VRR configuration and management procedures.

After completing the installation and basic configuration procedures covered in this guide, refer to the
Junos OS documentation for information about further software configuration.

Using Route Reflectors for BGP Networks


https://www.juniper.net/documentation/en_US/junos/topics/concept/routing-protocol-bgp-security-route-reflector-understanding.html

CHAPTER

Virtual Route Reflector Overview

Understanding Virtual Route Reflector | 2
Virtual Route Reflector Hardware Requirements | 3

Virtual Route Reflector Software Requirements | 4




Understanding Virtual Route Reflector

IN THIS SECTION

Virtual Route Reflector Package Contents | 2

Virtual Route Reflector Restrictions | 3

The virtual Route Reflector (vVRR) feature allows you to implement route reflector capability using a
general purpose virtual machine that can be run on a 64-bit Intel-based blade server or appliance.
Because a route reflector works in the control plane, it can run in a virtualized environment. A virtual
route reflector on an Intel-based blade server or appliance works the same as a route reflector on a
router, providing a scalable alternative to full mesh internal BGP peering. The vRR feature has the
following benefits:

Scalability: By implementing the vRR feature, you gain scalability improvements, depending on the
server core hardware on which the feature runs. Also, you can implement virtual route reflectors at
multiple locations in the network, which helps scale the BGP network with lower cost.

Faster and more flexible deployment: You install the vRR feature on an Intel server, using open source
tools, which reduces your router maintenance.

Space savings: Hardware-based route reflectors require central office space. You can deploy the vRR
feature on any server that is available in the server infrastructure or in the data centers, which saves
space.

Virtual Route Reflector Package Contents

The VRR software packages are available as these types of packages:

Application package—This package is for launching vRR software in a virtualized environment for the
first time.

Install package—This package is for upgrading vRR software that is already running to the next Junos
OS release.

Starting with Junos OS Release 15.1, the install package for VRR (jinstall64-vrr-*.*) is no longer
available. Use the install package of Junos OS for MX Series platforms: junos-install-mx-x86-64-*.tgz
(e.g. use 64 Bit-MX High-End Series for MX240: Downloads for MX240) to upgrade vRR.


https://support.juniper.net/support/downloads/?p=mx240

The vRR software images are available in these flavors:
¢ KVM and OpenStack—TGZ package

o VMware ESXi—OVA package

e Unified—64-bit Junos OS (upgraded FreeBSD kernel)
e Legacy—64-bit Junos OS

Starting with Junos OS Release 15.1, the legacy package (jinstall64-vrr-*.*) is no longer available.

Virtual Route Reflector Restrictions

The following features are not supported with the vRR feature:
e Graceful Routing Engine Switchover (GRES)

e Nonstop Active Routing (NSR)

¢ Unified in-service software upgrade (unified ISSU)

VRR is qualified primarily as a route reflector with minimal data plane support. For packet forwarding,
MPLS VPN, and CoS feature support, you might consider vMX.

Release History Table

Release = Description

16.1 Starting with Junos OS Release 16.1, use the KVM archive (vrr-bundle-kvm-*.tgz) for vRR deployments
on Linux hosts.

15.1 Starting with Junos OS Release 15.1, the install or the legacy package for vRR (jinstall64-vrr-*.*) is no
longer available. For Junos Releases 15.1 >= Junos Os Releases < 16.1, use the unified package (junos-
x86-64-* vmdk).

Virtual Route Reflector Hardware Requirements

Table 1 on page 4 lists the hardware requirements.



Table 1: Hardware Requirements

Description Value
CPU Intel Xeon Nehalem or newer generation processor
Memory 8 GB for VRR to run with default settings

32 GB for vRR to achieve higher scale

Storage Local or NAS

Each vRR instance requires 25G of disk storage

Other requirements Hyperthreading (recommended)

Any ESXi HCL supported NIC

Virtual Route Reflector Software Requirements

You can install vRR on Linux systems using KVM and libvirt.

Table 2 on page 5 lists the supported operating systems for the host.



Table 2: Supported Operating Systems

Operating
System

Ubuntu

CentOS

Red Hat
Enterprse Linux

Releases

Starting with VRR Release 19.1R1, Ubuntu 16.04 with QEMU-KVM
1:2.5+dfsg-5ubuntu10.43 and libvirt 1.3.1 is supported. For vRR releases before
19.1R1, Ubuntu 14.04 with QEMU-KVM 2.0.0+dfsg-2ubuntu1.11 and libvirt 1.2.2
is supported.

e Ubuntu 14.04
QEMU-KVM 2.0.0+dfsg-2ubuntul.11
libvirt 1.2.2

e Ubuntu 16.04
QEMU-KVM 1:2.5+dfsg-5ubuntu10.43
libvirt 1.3.1

e CentOS7.1
QEMU-KVM 1.5.3
libvirt 1.2.8

e CentO0S7.2
QEMU-KVM 1.5.3
libvirt 1.2.17

e Red Hat Enterprise Linux 7.1
QEMU-KVM 1.5.3
libvirt 1.2.8

e Red Hat Enterprise Linux 7.2
QEMU-KVM 1.5.3
libvirt 1.2.17

To install vRR, you must also install these packages:

e virt-manager

e bridge-utils



Release History Table

Release = Description

19.1R1 Starting with VRR Release 19.1R1, Ubuntu 16.04 with QEMU-KVM 1:2.5+dfsg-5ubuntu10.43 and libvirt
1.3.1 is supported. For VRR releases before 19.1R1, Ubuntu 14.04 with QEMU-KVM
2.0.0+dfsg-2ubuntul.11 and libvirt 1.2.2 is supported.



CHAPTER

Installing and Configuring Virtual
Route Reflector on KVM

Installing the Virtual Route Reflector Image on KVM | 8

Launching a VRR VM Using the Unified Image | 15

Configuring Interfaces, Protocols, and Routes of the Virtual Route Reflector Using
Junos CLI | 17

Enabling SR-IOV on VRR Instances on KVM | 20




Installing the Virtual Route Reflector Image on KVM

IN THIS SECTION

Configuring the Linux Bridges | 9
Launching the vRRVM | 10

Before you install vRR:

1. Download the VRR software package (vrr-*.tgz) from the Virtual Route Reflector page and
uncompress the package in a location accessible to the server.

2. (For Ubuntu) Prepare the Ubuntu host by disabling APIC virtualization.

Edit the /etc/modprobe.d/qemu-system-x86.conf file and add enable_apicv=0 to the line containing

options kvm_intel.

options kvm_intel nested=1 enable_apicv=0

Reboot the host or unload and reload the kernel module.

3. (For CentQOS) Copy the VRR image to the libvirtd directory and rename it with the name of your VM.

cp vrr-image-name vrr-vm-filename

NOTE: For Junos Releases 15.1 >= Junos Os Releases < 16.1, use the unified package.
Convert the vmdk image to qcow2 format using the gemu-img convert -f vmdk -0 qcow2 vmak-

filename gcow?-filename command. For example: gemu-img convert -f vimdk -O qcow2 junos-
x86-64-15.1R1.9.vmdk junos-x86-64-15.1R1.9.qcow2

Starting with Junos OS Release 16.1, use the VRR KVM bundle: vrr-bundle-
kvm-21.1R1.11.tgz. Only the qcow2 image within the KVM bundle: junos-x86-64-*.img is
required to bring up VRR (you don't have to use the metadata.img).


https://support.juniper.net/support/downloads/?p=virtual-route-reflector

For example, these commands copy the download image to the vrr-VMO1.img file in the libvirtd/
images directory:

cp jinstall64-vrr-14.2R3.8-domestic.img /var/lib/libvirtd/images/vrr-VMo1.img
cp junos-x86-64-17.3R1.10.qcow2 /var/lib/libvirtd/images/vrr-VMe1.img

To install vRR, perform these tasks:

Configuring the Linux Bridges

You must set up these Linux bridges for the VRR interfaces to have proper connectivity.
e emO interface (for example, vrr-mgmt)

e eml interface (for example, vrr-ext)

NOTE: The emO interface can only function as a management interface. You cannot use the emO
interface for routing configurations.

For remote connectivity to the VRR instance, you can add physical interfaces from the host.

The bridges are not persistent across reboots. To make them permanent, you must add them to the
appropriate configuration files for your Linux distribution.

To configure the bridges:

1. Create the bridges.

user@node:~$ brctl addbr vrr-mgmt
user@node:~$ brctl addbr vrr-ext

Verify that the bridges have been created with the brctl show command.

2. For each bridge, an interface with the same name is created on the system. Make sure these
interfaces are in an Admin Up state.

user@node:~$ ip link set dev vrr-mgmt up
user@node:~$ ip link set dev vrr-ext up



Verify that the interfaces are up with the ip 1ink show command.

3. To provide remote connectivity for the VvRR instance, add physical interfaces to these bridges.

user@node:~$ brctl addif vrr-mgmt interface-name

user@node:~$ brctl addif vrr-ext interface-name

NOTE: KVM installations support virtio driver for the em1 and em2 interfaces.

I Launching the vRR VM

The physical interfaces are mapped to the VM interfaces (such as em0) using Linux bridging. Figure 1 on
page 10 illustrates this mapping. You can use an XML template or the virt-install utility to create this
interface mapping when you launch the vRR VM.

Figure 1: vRR Interface Mapping

vrr-ext2
Linux Bridging ===

Physical NIC

Physical NIC
----- and Ports

and Ports [t

8200228

To launch the VRR instance:

1. You can use the virsh create command or the virt-install utility.

e Use the virsh create vrr-instance-name.xml command with the XML template file.

For example: virsh create vrr.xml

10



Here is a sample XML template file for vrr.xml.

<domain type='kvm' id='10'>
<!-- Assign VRR VM instance name -->
<name>sample_vrr</name>
<!-- Assign Memory required for this VRR VM instance -->
<memory unit='KiB'>25165824</memory>
<currentMemory unit='KiB'>25165824</currentMemory>
<memoryBacking>
<locked/>
</memoryBacking>
<!-- Assign required virtual CPU for VRR VM instance, here 4 vcpu is assigned -->
<vcpu placement='static' cpuset='0-3'>4</vcpu>
<cputune>
<vcpupin vcpu='0"' cpuset='0"'/>
<vcpupin vepu='1"' cpuset="1"'/>
<vcpupin vcpu='2"' cpuset='2"'/>
<vcpupin vcpu='3"' cpuset='3'/>
</cputune>
<resource>
<partition>/machine</partition>
</resource>
<sysinfo type='smbios'>
<bios>
<entry name='vendor'>Juniper</entry>
</bios>
<system>
<entry name='manufacturer'>Juniper</entry>
<entry name='product'>VRR</entry>
<entry name='version'>16.1</entry>
</system>
</sysinfo>
<os>
<type arch='x86_64"' machine="'pc-i440fx-1.7"'>hvm</type>
<boot dev="hd'/>
<smbios mode='sysinfo'/>
</os>
<features>
<acpi/>
<apic/>
</features>

<cpu mode="host-model'>



<model fallback='allow'/>
<topology sockets='1"' cores='4"' threads='1"'/>
</cpu>
<clock offset='utc'/>
<devices>
<emulator>/usr/bin/kvm</emulator>
<!-- Provide VRR VM instance image location -->
<disk type='file' device='disk'>
<driver name='gemu' type='qcow2' cache='writethrough'/>
<source file='/var/tmp/junos-x86-64-21.1R1.11.img'/>
<backingStore/>
<target dev='vda' bus='virtio'/>
<alias name='virtio-diske'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</disk>
<controller type='pci' index='0"' model='pci-root'>
<alias name='pci.Q'/>
</controller>
<!-- em@ - management interface with the associated bridge -->
<interface type='bridge'>
<source bridge='vrr-mgmt'/>
<target dev='vnet5'/>
<model type='virtio'/>
<alias name='net@'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
</interface>
<!-- eml - external data interface with the associated bridge -->
<interface type='bridge'>
<source bridge='vrr-ext'/>
<target dev='vnet7'/>
<model type='virtio'/>
<alias name='netl1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
</interface>
<!-- em2 - external data interface with the associated bridge -->
<interface type='bridge'>
<source bridge='vrr-ext2'/>
<target dev='vnet8'/>
<model type='virtio'/>
<alias name='net2'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
</interface>
<!-- em3 - external data interface with the associated bridge -->



<interface type='bridge'>
<source bridge='vrr-ext2'/>
<target dev='vnet9'/>
<model type='virtio'/>
<alias name='net3'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
</interface>
<serial type='pty'>
<source path="'/dev/pts/0'/>
<target port='0'/>
<alias name='serial@'/>
</serial>
<console type='pty' tty='/dev/pts/0'>
<source path='/dev/pts/0'/>
<target type='serial' port='0'/>
<alias name='serial@'/>
</console>
<memballoon model='none'>
<alias name='balloon®@'/>
</memballoon>
</devices>
<seclabel type='none' model='none'/>
</domain>

(For Junos OS Release 14.1 or 14.2) You can use the virt-install utility.

virt-install --name vrr-instance-name \

--vcpus 1 \

--ram 8192 \

--import \

--disk path=./image-name,format=qcow2,bus=virtio \
--disk path=./metadata.img,format=qcow2,bus=virtio \
--serial tcp,host=0.0.0.0:5025,protocol=telnet \
--network bridge=vrr-mgmt,model=virtio \

--network bridge=vrr-ext,model=virtio

where:
--name Specifies the name of the VRR instance.

--disk Specifies the path to the image file.



For example:

virt-install --name vrr-142r1 \

--vcpus 1 \

--ram 8192 \

--import \

--disk path=./junos-x86-64-14.2R1.6.1img,format=qcow2,bus=virtio \
--disk path=./metadata.img,format=qcow2,bus=virtio \

--serial tcp,host=0.0.0.0:5025,protocol=telnet \

--network bridge=vrr-mgmt,model=virtio \

--network bridge=vrr-ext,model=virtio

NOTE: After you have installed and started the vRR instance, you can access the serial
console port for the VM using the Telnet protocol. For example: telnet 127.0.0.1 5025

2. You can connect to the VM console using the virsh console vrr-instance-name command.

Wait for the system to boot and present the login prompt. You can log in and configure vRR as you
would normally do on a router.

To disconnect from the console, press Ctrl +].

3. Verify that your VM is installed as VRR using the show version command.

NOTE: The model must appear as vrr.

For example:

root> show version

Model: vrr



4. Verify that your VM is installed using the show interfaces terse command. The added interfaces

appear as em interfaces. For example:

root> show interfaces terse

Interface Admin Link Proto Local Remote
emo up up
eml up up

‘ Configuring Interfaces, Protocols, and Routes of the Virtual Route Reflector Using Junos CLI | 17

Launching a VRR VM Using the Unified Image

NOTE: For Junos Releases prior to 16.1, a unified image in generic vmdk format must be used for
VRR.

For Junos Release 16.1 and beyond, vRR KVM bundle can be used, which already includes
platform specific VRR qcow2 image: junos-x86-64-*.img. There is no need to convert the *.vmdk
to *.img - as explained in this section).

The libvirt driver in the KVM/QEMU hypervisor supports gcow2-formatted images. You must convert
the vmdk image downloaded from Juniper Networks to qcow2 format before you can launch the vRR

VM.

To launch the vRR VM:



1. Convert the vimdk image to qcow2 format.

gemu-img convert -f vmdk -0 qcow2 vmdk-filename qcow2-filename

For example:

gemu-img convert -f vmdk -0 qcow2 junos-x86-64-15.1R1.9.vmdk junos-x86-64-15.1R1.9.qcow2

2. (For Junos OS Release 14.2 or earlier) The Routing Engine type is passed to the guest VM as an
SMBIOS Type 1 argument (product). The libvirt versions that do not honor SMBIOS XML elements
must pass this information as command line arguments. The XML configuration file used with legacy
images (for Release 14.2 or earlier) must be updated with these XML elements based on the libvirt
version installed on the host. Use the libvirtd --version command to determine the libvirt version.

For libvirt 0.10.2 and libvirt 1.2.8, you pass the product argument as these command line arguments:

<gemu: commandline>
<gemu:arg value='-smbios'/>
<gemu:arg value='type=1,product=VRR'/>

</qgemu:commandline>

For libvirt 1.2.6, you pass the product argument as these XML elements:

<sysinfo type='smbios'>
<system>
<entry name='product'>VRR</entry>
</system>
</sysinfo>

3. Launch the VM using the virsh create vrr-configuration-file command. For example:

virsh create vrr.xml



‘ Configuring Interfaces, Protocols, and Routes of the Virtual Route Reflector Using Junos CLI | 17

Configuring Interfaces, Protocols, and Routes of the
Virtual Route Reflector Using Junos CLI

1. Using the Junos CLI in the virtual machine console, configure the interfaces that were connected to
the OVS virtual switch-br (for KVM or OpenStack) or the vSwitch (for VMware). Specify the IP
addresses that were assigned to the VNICs while configuring OVS (KVM) or vSwitch (VMware).

[edit]
user@host# set interfaces interface-name family inet address address

user@host# set interfaces interface-name family inet6 address address
2. Configure the loopback interface with the IP address for the vRR.
[edit]
user@host# set interfaces 1lo@ unit @ family inet address address
user@host# set interfaces lo@® unit 0 family inet6 address address
3. Add a static default route to the gateway address of the management IP address:
[edit]
user@host# set routing-options static route 0.0.0.0/0 next-hop address
4. Configure the hostname for the vRR.
[edit system]
user@host# set host-name hostname
5. Configure the root password.

[edit system]
user@host# set root-authentication plain-text-password



6. Addauser.
[edit system login]
user@host# set user wuser-name
7. Set the user identification (UID).
[edit system login user wuser-name]
user@host# set uid wid-value
8. Assign the user to a login class.
[edit system login user user-name]
user@host# set class class-name
9. Set the user password.
[edit system login user user-name]
user@host# set authentication plain-text-password
10. Enable Telnet and FTP access.
[edit system services]

user@host# set ftp
user@host# set telnet

11. Configure the types of system log messages to send to files and to user terminals.

[edit system syslog]

user@host# set user * any emergency

user@host# set file messages any notice
user@host# set file messages authorization info

user@host# set file interactive-commands interactive-commands any

12. Configure the VRR to always use 64-bit processing.

[edit system processes]
user@host# set routing force-64-bit



13. Configure the router ID and the autonomous system (AS) number.

14.

15.

16.

17.

18.

[edit routing-options]
user@host# set router-id address
user@host# set autonomous-system autonomous-system

Configure BGP, including the cluster identifier and the neighbor relationships with all IBGP-enabled
devices in the autonomous system (AS).

[edit protocols bgp group group-namel
user@host# set type internal
user@host# set local-address address
user@host# set cluster cluster-name

user@host# set neighbor address
(External peers only) Specify that the BGP next-hop value not be changed.
[edit protocols bgp group group-name multihop]
user@host# set no-nexthop-change
Configure a forwarding-table export policy to prevent the installation of BGP routes in the

forwarding table. A vRR is not expected to be in the forwarding path for BGP service prefixes.

[edit policy-options]

user@host# set policy-statement policy-name term term-name from protocol bgp

user@host# set policy-statement policy-name term term-name then reject
Apply the BGP policy to the forwarding table.

[edit routing-options]

user@host# set forwarding-table export policy-name

Configure other desired protocols for the interfaces.



Enabling SR-IOV on VvRR Instances on KVM

VRR on KVM supports single-root |/O Virtualization (SR-IOV) interface types. Single root 1/0
virtualization (SR-10V) allows a physical function to appear as multiple, separate vNICs. SR-IOV allows a
device, such as a network adapter to have separate access to its resources among various hardware
functions. If you have a physical NIC that supports SR-IOV, you can attach SR-IOV-enabled vNICs or
virtual functions (VFs) to the VvRR instances to improve performance.

e BIOS requirement to enable SR-IOV; Ensure that Intel VT-d or AMD IOMMU are enabled in the
systems BIOS settings

e SR-IOV on VRR for KVM requires one of the following Intel NIC drivers:
e Intel X710 or XL710 using 40G ports and i40e driver

o Intel X520 or X540 using 10G ports and ixgbe driver

e Junos OS Release:

e Starting with Junos OS Release 17.4 onwards, support for 40G ports with Intel X710/XL710 NICs
is available on VRR.

o Starting with Junos OS Release 20.4R3, support for 10G ports with Intel X520/X540 NICs is
available on VRR.

1. Look for NICs (devices) available on your host using the Ishw -businfo -c network command.

¢ |n the output below: 10G NICs are enp2s0f0 and enp2s0f1

e 40G NICs are enp4s0f0 and enp4s0fl

root@vrr-host: lshw -businfo -c network

Bus info Device Class Description

pci@0000:02:00.0 enp2s0fo network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pci@000:02:00.1 enp2s0fi network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pci@000:04:00.0 enp4sofo network Ethernet Controller XL710 for 40GbE QSFP+
pci@000:04:00.1 enp4sofi network Ethernet Controller XL710 for 40GbE QSFP+
pci@000:04:02.0 enp4s2 network Illegal Vendor ID

pci@000:07:00.0 enp7s0fo network 1350 Gigabit Network Connection
pci@000:07:00.1 enp7s0fi network 1350 Gigabit Network Connection

2. Remove any VMs on the host using the device that you plan to configure SR-IOV on.



3. Check the maximum number of VFs supported on the device (for example enp2s0f0 and enp4s0f0)

cat /sys/class/net/ enp4sof@/device/sriov_totalvfs 63

4. Configure the number of VFs you want on the device

echo 2 > /sys/class/net/enp4s0f@/device/sriov_numvfs (as a root user)

5. Verify if the VFs are created using the Ispci command. You should see Virtual Functions
corresponding to the Ethernet Controller of the device.

Ispci | grep Ethernet
04:00.0 Ethernet controller: Intel Corporation Ethernet Controller XL710 for 40GbE QSFP+ (rev

02) - PF1
04:00.1 Ethernet controller: Intel Corporation Ethernet Controller XL710 for 40GbE QSFP+ (rev
02) - PF2

04:02.0 Ethernet controller: Intel Corporation XL710/X71@ Virtual Function (rev 02) - VF1
04:0a.0 Ethernet controller: Intel Corporation XL710/X71@ Virtual Function (rev 02) - VF2

6. Replace the existing interface stanza for the network device to obtain a new XML. Ensure to keep
the management device entry as it is.

<interface type='hostdev' managed='yes'>

<mac address='30:b6:4f:60:f2:82'/> - the same as in a non-SR-IOV XML or pick a valid
mac

<driver name='kvm'/>

<source>

<address type='pci' domain='0x0000' bus='0x04’ slot='0x00’ function='0x0'/> - get

this value from 1lspci output for the VF - column 1 domain:bus:slot:function (domain is 0x0000
by default).

</source>

<alias name='hostdev@'/>

<address type='pci' domain='0x0000' bus='0x01"' slot='0x01’ function='0x0'/> - keep the
same as in the existing XML

</interface>

7. Bring up the VRR instance with new SRIOV based interfaces



8. Finally, to check if the VF devices that are created in Junos VRR, perform grep for “renaming” in the

boot messages

root@device> show system boot-messages | grep renaming
re_vrr_ifd_rename: renaming ixvx -> emx - 10G (ixv*)
re_vrr_ifd_rename: renaming ixlv* -> emx - 40G (ix1lvx)
re_vrr_ifd_rename: renaming vtnet* -> em* - Management

RELATED DOCUMENTATION

Example: Enabling SR-IOV on vMX Instances on KVM

22


https://www.juniper.net/documentation/us/en/software/vmx/vmx-getting-started/topics/task/vmx-enabling-sriov-kvm-example.html

	Table of Contents
	About This Guide
	Virtual Route Reflector Overview
	Understanding Virtual Route Reflector
	Virtual Route Reflector Hardware Requirements
	Virtual Route Reflector Software Requirements

	Installing and Configuring Virtual Route Reflector on KVM
	Installing the Virtual Route Reflector Image on KVM
	Configuring the Linux Bridges
	Launching the vRR VM

	Launching a vRR VM Using the Unified Image
	Configuring Interfaces, Protocols, and Routes of the Virtual Route Reflector Using Junos CLI
	Enabling SR-IOV on vRR Instances on KVM


