- play_arrow Common Configuration for All VPNs
- play_arrow VPNs Overview
- play_arrow Assigning Routing Instances to VPNs
- play_arrow Distributing Routes in VPNs
- play_arrow Distributing VPN Routes with Target Filtering
- Configuring BGP Route Target Filtering for VPNs
- Example: BGP Route Target Filtering for VPNs
- Example: Configuring BGP Route Target Filtering for VPNs
- Configuring Static Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Example: Configuring Proxy BGP Route Target Filtering for VPNs
- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Reducing Network Resource Use with Static Route Target Filtering for VPNs
- play_arrow Configuring Forwarding Options for VPNs
- play_arrow Configuring Graceful Restart for VPNs
- play_arrow Configuring Class of Service for VPNs
- play_arrow Pinging VPNs
-
- play_arrow Common Configuration for Layer 2 VPNs and VPLS
- play_arrow Overview
- play_arrow Layer 2 VPNs Configuration Overview
- play_arrow Configuring Layer 2 Interfaces
- play_arrow Configuring Path Selection for Layer 2 VPNs and VPLS
- play_arrow Creating Backup Connections with Redundant Pseudowires
- play_arrow Configuring Class of Service for Layer 2 VPNs
- play_arrow Monitoring Layer 2 VPNs
- Configuring BFD for Layer 2 VPN and VPLS
- BFD Support for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Configuring BFD for VCCV for Layer 2 VPNs, Layer 2 Circuits, and VPLS
- Connectivity Fault Management Support for EVPN and Layer 2 VPN Overview
- Configure a MEP to Generate and Respond to CFM Protocol Messages
-
- play_arrow Configuring Group VPNs
- play_arrow Configuring Public Key Infrastructure
- play_arrow Configuring Digital Certificate Validation
- play_arrow Configuring a Device for Certificate Chains
- play_arrow Managing Certificate Revocation
-
- play_arrow Configuring Layer 2 Circuits
- play_arrow Overview
- play_arrow Layer 2 Circuits Configuration Overview
- play_arrow Configuring Class of Service with Layer 2 Circuits
- play_arrow Configuring Pseudowire Redundancy for Layer 2 Circuits
- play_arrow Configuring Load Balancing for Layer 2 Circuits
- play_arrow Configuring Protection Features for Layer 2 Circuits
- Egress Protection LSPs for Layer 2 Circuits
- Configuring Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Example: Configuring an Egress Protection LSP for a Layer 2 Circuit
- Example: Configuring Layer 2 Circuit Protect Interfaces
- Example: Configuring Layer 2 Circuit Switching Protection
- play_arrow Monitoring Layer 2 Circuits with BFD
- play_arrow Troubleshooting Layer 2 Circuits
-
- play_arrow Configuring VPWS VPNs
- play_arrow Overview
- play_arrow Configuring VPWS VPNs
- Understanding FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring MPLS Egress Protection Service Mirroring for BGP Signaled Layer 2 Services
- Understanding Multisegment Pseudowire for FEC 129
- Example: Configuring a Multisegment Pseudowire
- Configuring the FAT Flow Label for FEC 128 VPWS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPWS Pseudowires for Load-Balancing MPLS Traffic
-
- play_arrow Configuring VPLS
- play_arrow Overview
- play_arrow VPLS Configuration Overview
- play_arrow Configuring Signaling Protocols for VPLS
- VPLS Routing and Virtual Ports
- BGP Signaling for VPLS PE Routers Overview
- Control Word for BGP VPLS Overview
- Configuring a Control Word for BGP VPLS
- BGP Route Reflectors for VPLS
- Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Configuring Interoperability Between BGP Signaling and LDP Signaling in VPLS
- Example: VPLS Configuration (BGP Signaling)
- Example: VPLS Configuration (BGP and LDP Interworking)
- play_arrow Assigning Routing Instances to VPLS
- Configuring VPLS Routing Instances
- Configuring a VPLS Routing Instance
- Support of Inner VLAN List and Inner VLAN Range for Qualified BUM Pruning on a Dual-Tagged Interface for a VPLS Routing Instance Overview
- Configuring Qualified BUM Pruning for a Dual-Tagged Interface with Inner VLAN list and InnerVLAN range for a VPLS Routing Instance
- Configuring a Layer 2 Control Protocol Routing Instance
- PE Router Mesh Groups for VPLS Routing Instances
- Configuring VPLS Fast Reroute Priority
- Specifying the VT Interfaces Used by VPLS Routing Instances
- Understanding PIM Snooping for VPLS
- Example: Configuring PIM Snooping for VPLS
- VPLS Label Blocks Operation
- Configuring the Label Block Size for VPLS
- Example: Building a VPLS From Router 1 to Router 3 to Validate Label Blocks
- play_arrow Associating Interfaces with VPLS
- play_arrow Configuring Pseudowires
- Configuring Static Pseudowires for VPLS
- VPLS Path Selection Process for PE Routers
- BGP and VPLS Path Selection for Multihomed PE Routers
- Dynamic Profiles for VPLS Pseudowires
- Use Cases for Dynamic Profiles for VPLS Pseudowires
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Basic Solutions
- Example: Configuring VPLS Pseudowires with Dynamic Profiles—Complex Solutions
- Configuring the FAT Flow Label for FEC 128 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Configuring the FAT Flow Label for FEC 129 VPLS Pseudowires for Load-Balancing MPLS Traffic
- Example: Configuring H-VPLS BGP-Based and LDP-Based VPLS Interoperation
- Example: Configuring BGP-Based H-VPLS Using Different Mesh Groups for Each Spoke Router
- Example: Configuring LDP-Based H-VPLS Using a Single Mesh Group to Terminate the Layer 2 Circuits
- Example: Configuring H-VPLS With VLANs
- Example: Configuring H-VPLS Without VLANs
- Configure Hot-Standby Pseudowire Redundancy in H-VPLS
- Sample Scenario of H-VPLS on ACX Series Routers for IPTV Services
- play_arrow Configuring Multihoming
- VPLS Multihoming Overview
- Advantages of Using Autodiscovery for VPLS Multihoming
- Example: Configuring FEC 129 BGP Autodiscovery for VPWS
- Example: Configuring BGP Autodiscovery for LDP VPLS
- Example: Configuring BGP Autodiscovery for LDP VPLS with User-Defined Mesh Groups
- VPLS Multihoming Reactions to Network Failures
- Configuring VPLS Multihoming
- Example: VPLS Multihoming, Improved Convergence Time
- Example: Configuring VPLS Multihoming (FEC 129)
- Next-Generation VPLS for Multicast with Multihoming Overview
- Example: Next-Generation VPLS for Multicast with Multihoming
- play_arrow Configuring Point-to-Multipoint LSPs
- play_arrow Configuring Inter-AS VPLS and IRB VPLS
- play_arrow Configuring Load Balancing and Performance
- Configuring VPLS Load Balancing
- Configuring VPLS Load Balancing Based on IP and MPLS Information
- Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
- Example: Configuring Loop Prevention in VPLS Network Due to MAC Moves
- Understanding MAC Pinning
- Configuring MAC Pinning on Access Interfaces for Bridge Domains
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains
- Configuring MAC Pinning on Access Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning on Trunk Interfaces for Bridge Domains in a Virtual Switch
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP)
- Configuring MAC Pinning on VPLS CE Interface
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance
- Configuring MAC Pinning on Access Interfaces for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces for Logical Systems
- Configuring MAC Pinning on Access Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning on Trunk Interfaces in Virtual Switches for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Routing Instance (LDP and BGP) for Logical Systems
- Configuring MAC Pinning on VPLS CE Interface for Logical Systems
- Configuring MAC Pinning for All Pseudowires of the VPLS Site in a BGP-Based VPLS Routing Instance for Logical Systems
- Configuring MAC Pinning on All Pseudowires of a Specific Neighbor of LDP-Based VPLS Routing Instance for Logical Systems
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Access Interfaces
- Example: Prevention of Loops in Bridge Domains by Enabling the MAC Pinnning Feature on Trunk Interfaces
- Configuring Improved VPLS MAC Address Learning on T4000 Routers with Type 5 FPCs
- Understanding Qualified MAC Learning
- Qualified Learning VPLS Routing Instance Behavior
- Configuring Qualified MAC Learning
- play_arrow Configuring Class of Service and Firewall Filters in VPLS
- play_arrow Monitoring and Tracing VPLS
-
- play_arrow Configuration Statements and Operational Commands
Using the Layer 2 Interworking Interface to Interconnect a Layer 2 VPN to a Layer 2 VPN
Instead of using a physical Tunnel PIC for looping the packet received from the Layer 2 VPN to another Layer 2 VPN, the Layer 2 Interworking interface uses Junos OS to stitch together both Layer 2 VPN routes.
To configure the interworking interface, include the iw0
statement. The iw0
statement is configured at
the [edit interfaces]
hierarchy level.
[edit interfaces] iw0 { unit 0 { peer 1; } unit 1 { peer 0; } }
You must always create and delete (or deactivate) interworking (iw) interfaces in pairs, such as:
set interfaces iw0 unit 0 peer-unit 1 set interfaces iw0 unit 1 peer-unit 0
An error message displays if you delete or deactivate only one of the interworking interfaces. To successfully deactivate the interfaces and avoid any configuration errors, you must deactivate both.
The configuration of an interworking (iw) interface is
similar to the configuration of a logical tunnel (lt) interface. In
this example, the logical interfaces must be associated with the endpoints
of both Layer 2 VPN connections terminating on this router. To make
the association, include the interfaces
statement and specify iw0
as the interface name. Include the statement at the [edit routing-instances routing-instances-name protocols l2vpn site site-name]
hierarchy
level for each routing instance. The routing-instances
statement
is configured at the [edit routing-instances]
hierarchy
level.
[edit routing-instances] L2VPN-PE1 { instance-type l2vpn; interface iw0.0; route-distinguisher 65000:3; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.0 { remote-site-id 1; } } } } } L2VPN-PE5 { instance-type l2vpn; interface iw0.1; route-distinguisher 65000:33; vrf-target target:65000:2; protocols { l2vpn { encapsulation-type ethernet; site CE3 { site-identifier 3; interface iw0.1 { remote-site-id 5; } } } } }
In addition to the iw0
interface configuration,
Layer 2 interworking l2iw
protocols need to be configured.
Without the l2iw
configuration, the l2iw
routes
will not be formed, regardless of whether any iw
interfaces
are present. Only standard trace options can be configured within
the l2iw protocol. The minimum configuration necessary for the feature
to work is shown below:
[edit] protocols { l2iw; }