- play_arrow Hierarchical Class of Service
- play_arrow Configuring Hierarchical Class of Service on MX Series 5G Universal Routing Platforms
- Hierarchical Class of Service Overview
- Hierarchical Class of Service Network Scenarios
- Understanding Hierarchical Scheduling
- Priority Propagation in Hierarchical Scheduling
- Hierarchical CoS for Metro Ethernet Environments
- Hierarchical Schedulers and Traffic Control Profiles
- Example: Building a Four-Level Hierarchy of Schedulers
- Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- Example: Performing Output Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- Configuring Ingress Hierarchical CoS
- Hierarchical Class of Service for Network Slicing
- play_arrow Configuring Hierarchical Class of Service on MICs, MPCs, MLCs, and Aggregated Ethernet Interfaces
- Understanding Hierarchical Scheduling for MIC and MPC Interfaces
- Configuring Ingress Hierarchical CoS on MIC and MPC Interfaces
- Per-Unit Scheduling and Hierarchical Scheduling for MPC Interfaces
- Dedicated Queue Scaling for CoS Configurations on MIC and MPC Interfaces Overview
- Jitter Reduction in Hierarchical CoS Queues
- Example: Reducing Jitter in Hierarchical CoS Queues
- Hierarchical Schedulers on Aggregated Ethernet Interfaces Overview
- Configuring Hierarchical Schedulers on Aggregated Ethernet Interfaces
- Example: Configuring Scheduling Modes on Aggregated Interfaces
- Increasing Available Bandwidth on Rich-Queuing MPCs by Bypassing the Queuing Chip
-
- play_arrow Hierarchical CoS for Subscriber Management
- play_arrow Hierarchical Class of Service for Subscriber Management
- Hierarchical Class of Service for Subscriber Management Overview
- Understanding Hierarchical CoS for Subscriber Interfaces
- Hardware Requirements for Dynamic Hierarchical CoS
- Configuring Static Hierarchical Scheduling in a Dynamic Profile
- Configuring Hierarchical CoS for a Subscriber Interface of Aggregated Ethernet Links
- Configuring Hierarchical CoS on a Static PPPoE Subscriber Interface
- Example: Maintaining a Constant Traffic Flow by Configuring a Static VLAN Interface with a Dynamic Profile for Subscriber Access
- play_arrow Applying CoS to Groups of Subscriber Interfaces
- play_arrow Configuring Hierarchical Scheduling for MPLS Pseudowire Interfaces
- Hierarchical CoS on MPLS Pseudowire Subscriber Interfaces Overview
- CoS Configuration Overview for MPLS Pseudowire Subscriber Interfaces
- CoS Two-Level Hierarchical Scheduling on MPLS Pseudowire Subscriber Interfaces
- Configuring CoS Two-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces
- CoS Three-Level Hierarchical Scheduling on MPLS Pseudowire Subscriber Interfaces
- Configuring CoS Three-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces (Logical Interfaces over a Transport Logical Interface)
- Configuring CoS Three-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces (Logical Interfaces over a Pseudowire Interface Set)
- play_arrow Configuring Hierarchical Scheduling for L2TP
- play_arrow Preventing Bandwidth Contention on Subscriber Interfaces
- Hierarchical CoS Shaping-Rate Adjustments Overview
- Shaping Rate Adjustments for Subscriber Local Loops Overview
- Guidelines for Configuring Shaping-Rate Adjustments for Subscriber Local Loops
- Configuring the Minimum Adjusted Shaping Rate on Scheduler Nodes for Subscribers
- Configuring Shaping-Rate Adjustments on Queues
- Enabling Shaping-Rate Adjustments for Subscriber Local Loops
- Disabling Shaping-Rate Adjustments for Subscriber Local Loops
- Disabling Hierarchical Bandwidth Adjustment for Subscriber Interfaces with Reverse-OIF Mapping
- Example: Configuring Hierarchical CoS Shaping-Rate Adjustments for Subscriber Local Loops
- Verifying the Configuration of Shaping-Rate Adjustments for Subscriber Local Loops
- Verifying the Configuration of ANCP for Shaping-Rate Adjustments
- Using Hierarchical CoS to Adjust Shaping Rates Based on Multicast Traffic
- play_arrow Configuring Targeted Distribution of Subscribers on Aggregated Ethernet Interfaces
- Distribution of Demux Subscribers in an Aggregated Ethernet Interface
- Providing Accurate Scheduling for a Demux Subscriber Interface of Aggregated Ethernet Links
- Configuring the Distribution Type for Demux Subscribers on Aggregated Ethernet Interfaces
- Configuring Link and Module Redundancy for Demux Subscribers in an Aggregated Ethernet Interface
- Configuring Rebalancing of Demux Subscribers in an Aggregated Ethernet Interface
- Example: Separating Targeted Multicast Traffic for Demux Subscribers on Aggregated Ethernet Interfaces
- Verifying the Distribution of Demux Subscribers in an Aggregated Ethernet Interface
- Configuring the Distribution Type for PPPoE Subscribers on Aggregated Ethernet Interfaces
- Verifying the Distribution of PPPoE Subscribers in an Aggregated Ethernet Interface
- play_arrow Applying CoS Using Parameters Received from RADIUS
- Subscriber Interfaces That Provide Initial CoS Parameters Dynamically Obtained from RADIUS
- Changing CoS Services Overview
- CoS Traffic Shaping Attributes for Dynamic Interface Sets and Member Subscriber Sessions Overview
- Guidelines for Configuring CoS Traffic Shaping Attributes for Dynamic Interface Sets and Member Subscriber Sessions
- Configuring Initial CoS Parameters Dynamically Obtained from RADIUS
- Configuring Static Default Values for Traffic Scheduling and Shaping
- Applying CoS Traffic-Shaping Attributes to Dynamic Interface Sets and Member Subscriber Sessions
- CoS Traffic Shaping Predefined Variables for Dynamic Interface Sets
- Example: Configuring Dynamic Hierarchical Scheduling for Subscribers
-
- play_arrow Configuration Statements and Operational Commands
Hierarchical Class of Service User Guide
Use this guide to understand and configure hierarchical class of service (CoS) features in Junos OS to define service levels that provide different delay, jitter, and packet loss characteristics to particular applications served by specific traffic flows. Applying CoS features to each device in your network ensures quality of service (QoS) for traffic throughout your entire network.