- play_arrow Overview
- play_arrow Understanding How Class of Service Manages Congestion and Defines Traffic Forwarding Behavior
- Understanding How Class of Service Manages Congestion and Controls Service Levels in the Network
- How CoS Applies to Packet Flow Across a Network
- The Junos OS CoS Components Used to Manage Congestion and Control Service Levels
- Mapping CoS Component Inputs to Outputs
- Default Junos OS CoS Settings
- Packet Flow Through the Junos OS CoS Process Overview
- Configuring Basic Packet Flow Through the Junos OS CoS Process
- Example: Classifying All Traffic from a Remote Device by Configuring Fixed Interface-Based Classification
- Interface Types That Do Not Support Junos OS CoS
-
- play_arrow Configuring Platform-Specific Functionality
- play_arrow Configuring Class of Service on ACX Series Universal Metro Routers
- CoS on ACX Series Routers Features Overview
- Understanding CoS CLI Configuration Statements on ACX Series Routers
- DSCP Propagation and Default CoS on ACX Series Routers
- Configuring CoS on ACX Series Routers
- Classifiers and Rewrite Rules at the Global, Physical, and Logical Interface Levels Overview
- Configuring Classifiers and Rewrite Rules at the Global and Physical Interface Levels
- Applying DSCP and DSCP IPv6 Classifiers on ACX Series Routers
- Schedulers Overview for ACX Series Routers
- Shared and Dedicated Buffer Memory Pools on ACX Series Routers
- CoS for PPP and MLPPP Interfaces on ACX Series Routers
- CoS for NAT Services on ACX Series Routers
- Hierarchical Class of Service in ACX Series Routers
- Storm Control on ACX Series Routers Overview
- play_arrow Configuring Class of Service on MX Series 5G Universal Routing Platforms
- Junos CoS on MX Series 5G Universal Routing Platforms Overview
- CoS Features and Limitations on MX Series Routers
- Configuring and Applying IEEE 802.1ad Classifiers
- Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- Example: Performing Output Scheduling and Shaping in Hierarchical CoS Queues for Traffic Routed to GRE Tunnels
- CoS-Based Interface Counters for IPv4 or IPv6 Aggregate on Layer 2
- Enabling a Timestamp for Ingress and Egress Queue Packets
- play_arrow Configuring Class of Service on PTX Series Packet Transport Routers
- CoS Features and Limitations on PTX Series Routers
- CoS Feature Differences Between PTX Series Packet Transport Routers and T Series Routers
- Understanding Scheduling on PTX Series Routers
- Virtual Output Queues on PTX Series Packet Transport Routers
- Example: Configuring Excess Rate for PTX Series Packet Transport Routers
- Identifying the Source of RED Dropped Packets on PTX Series Routers
- Configuring Queuing and Shaping on Logical Interfaces on PTX Series Routers
- Example: Configuring Queuing and Shaping on Logical Interfaces in PTX Series Packet Transport Routers
- Example: Configuring Strict-Priority Scheduling on a PTX Series Router
- CoS Support on EVPN VXLANs
- Understanding CoS CLI Configuration Statements on PTX Series Routers
- Classification Based on Outer Header of Decapsulation Tunnel
-
- play_arrow Configuring Line Card-Specific and Interface-Specific Functionality
- play_arrow Feature Support of Line Cards and Interfaces
- play_arrow Configuring Class of Service for Tunnels
- play_arrow Configuring Class of Service on Services PICs
- CoS on Services PICs Overview
- Configuring CoS Rules on Services PICs
- Configuring CoS Rule Sets on Services PICs
- Example: Configuring CoS Rules on Services PICs
- Packet Rewriting on Services Interfaces
- Multiservices PIC ToS Translation
- Fragmentation by Forwarding Class Overview
- Configuring Fragmentation by Forwarding Class
- Configuring Drop Timeout Interval for Fragmentation by Forwarding Class
- Example: Configuring Fragmentation by Forwarding Class
- Allocating Excess Bandwidth Among Frame Relay DLCIs on Multiservices PICs
- Configuring Rate Limiting and Sharing of Excess Bandwidth on Multiservices PICs
- play_arrow Configuring Class of Service on IQ and Enhanced IQ (IQE) PICs
- CoS on Enhanced IQ PICs Overview
- Calculation of Expected Traffic on IQE PIC Queues
- Configuring the Junos OS to Support Eight Queues on IQ Interfaces for T Series and M320 Routers
- BA Classifiers and ToS Translation Tables
- Configuring ToS Translation Tables
- Configuring Hierarchical Layer 2 Policers on IQE PICs
- Configuring Excess Bandwidth Sharing on IQE PICs
- Configuring Rate-Limiting Policers for High Priority Low-Latency Queues on IQE PICs
- Applying Scheduler Maps and Shaping Rate to Physical Interfaces on IQ PICs
- Applying Scheduler Maps to Chassis-Level Queues
- play_arrow Configuring Class of Service on Ethernet IQ2 and Enhanced IQ2 PICs
- CoS on Enhanced IQ2 PICs Overview
- CoS Features and Limitations on IQ2 and IQ2E PICs (M Series and T Series)
- Differences Between Gigabit Ethernet IQ and Gigabit Ethernet IQ2 PICs
- Shaping Granularity Values for Enhanced Queuing Hardware
- Ethernet IQ2 PIC RTT Delay Buffer Values
- Configuring BA Classifiers for Bridged Ethernet
- Setting the Number of Egress Queues on IQ2 and Enhanced IQ2 PICs
- Configuring the Number of Schedulers per Port for Ethernet IQ2 PICs
- Applying Scheduler Maps to Chassis-Level Queues
- CoS for L2TP Tunnels on Ethernet Interface Overview
- Configuring CoS for L2TP Tunnels on Ethernet Interfaces
- Configuring LNS CoS for Link Redundancy
- Example: Configuring L2TP LNS CoS Support for Link Redundancy
- Configuring Shaping on 10-Gigabit Ethernet IQ2 PICs
- Configuring Per-Unit Scheduling for GRE Tunnels Using IQ2 and IQ2E PICs
- Understanding Burst Size Configuration on IQ2 and IQ2E Interfaces
- Configuring Burst Size for Shapers on IQ2 and IQ2E Interfaces
- Configuring a CIR and a PIR on Ethernet IQ2 Interfaces
- Example: Configuring Shared Resources on Ethernet IQ2 Interfaces
- Configuring and Applying IEEE 802.1ad Classifiers
- Configuring Rate Limits to Protect Lower Queues on IQ2 and Enhanced IQ2 PICs
- Simple Filters Overview
- Configuring a Simple Filter
- play_arrow Configuring Class of Service on 10-Gigabit Ethernet LAN/WAN PICs with SFP+
- CoS on 10-Gigabit Ethernet LAN/WAN PIC with SFP+ Overview
- BA and Fixed Classification on 10-Gigabit Ethernet LAN/WAN PIC with SFP+ Overview
- DSCP Rewrite for the 10-Gigabit Ethernet LAN/WAN PIC with SFP+
- Configuring DSCP Rewrite for the 10-Gigabit Ethernet LAN/WAN PIC
- Queuing on 10-Gigabit Ethernet LAN/WAN PICs Properties
- Mapping Forwarding Classes to CoS Queues on 10-Gigabit Ethernet LAN/WAN PICs
- Scheduling and Shaping on 10-Gigabit Ethernet LAN/WAN PICs Overview
- Example: Configuring Shaping Overhead on 10-Gigabit Ethernet LAN/WAN PICs
- play_arrow Configuring Class of Service on Enhanced Queuing DPCs
- Enhanced Queuing DPC CoS Properties
- Configuring Rate Limits on Enhanced Queuing DPCs
- Configuring WRED on Enhanced Queuing DPCs
- Configuring MDRR on Enhanced Queuing DPCs
- Configuring Excess Bandwidth Sharing
- Configuring Customer VLAN (Level 3) Shaping on Enhanced Queuing DPCs
- Simple Filters Overview
- Configuring Simple Filters on Enhanced Queuing DPCs
- Configuring a Simple Filter
- play_arrow Configuring Class of Service on MICs, MPCs, and MLCs
- CoS Features and Limitations on MIC and MPC Interfaces
- Dedicated Queue Scaling for CoS Configurations on MIC and MPC Interfaces Overview
- Verifying the Number of Dedicated Queues Configured on MIC and MPC Interfaces
- Scaling of Per-VLAN Queuing on Non-Queuing MPCs
- Increasing Available Bandwidth on Rich-Queuing MPCs by Bypassing the Queuing Chip
- Flexible Queuing Mode
- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC
- Example: Configuring a Filter for Use as an Ingress Queuing Filter
- Ingress Queuing Filter with Policing Functionality
- Ingress Rate Limiting on MX Series Routers with MPCs
- Rate Shaping on MIC and MPC Interfaces
- Per-Priority Shaping on MIC and MPC Interfaces Overview
- Example: Configuring Per-Priority Shaping on MIC and MPC Interfaces
- Configuring Static Shaping Parameters to Account for Overhead in Downstream Traffic Rates
- Example: Configuring Static Shaping Parameters to Account for Overhead in Downstream Traffic Rates
- Traffic Burst Management on MIC and MPC Interfaces Overview
- Understanding Hierarchical Scheduling for MIC and MPC Interfaces
- Configuring Ingress Hierarchical CoS on MIC and MPC Interfaces
- Configuring a CoS Scheduling Policy on Logical Tunnel Interfaces
- Per-Unit Scheduling and Hierarchical Scheduling for MPC Interfaces
- Managing Dedicated and Remaining Queues for Static CoS Configurations on MIC and MPC Interfaces
- Excess Bandwidth Distribution on MIC and MPC Interfaces Overview
- Bandwidth Management for Downstream Traffic in Edge Networks Overview
- Scheduler Delay Buffering on MIC and MPC Interfaces
- Managing Excess Bandwidth Distribution on Static Interfaces on MICs and MPCs
- Drop Profiles on MIC and MPC Interfaces
- Intelligent Oversubscription on MIC and MPC Interfaces Overview
- Jitter Reduction in Hierarchical CoS Queues
- Example: Reducing Jitter in Hierarchical CoS Queues
- CoS on Ethernet Pseudowires in Universal Edge Networks Overview
- CoS Scheduling Policy on Logical Tunnel Interfaces Overview
- Configuring CoS on an Ethernet Pseudowire for Multiservice Edge Networks
- CoS for L2TP LNS Inline Services Overview
- Configuring Static CoS for an L2TP LNS Inline Service
- CoS on Circuit Emulation ATM MICs Overview
- Configuring CoS on Circuit Emulation ATM MICs
- Understanding IEEE 802.1p Inheritance push and swap from a Transparent Tag
- Configuring IEEE 802.1p Inheritance push and swap from the Transparent Tag
- CoS on Application Services Modular Line Card Overview
- play_arrow Configuring Class of Service on Aggregated, Channelized, and Gigabit Ethernet Interfaces
- Limitations on CoS for Aggregated Interfaces
- Policer Support for Aggregated Ethernet Interfaces Overview
- Understanding Schedulers on Aggregated Interfaces
- Examples: Configuring CoS on Aggregated Interfaces
- Hierarchical Schedulers on Aggregated Ethernet Interfaces Overview
- Configuring Hierarchical Schedulers on Aggregated Ethernet Interfaces
- Example: Configuring Scheduling Modes on Aggregated Interfaces
- Enabling VLAN Shaping and Scheduling on Aggregated Interfaces
- Class of Service on demux Interfaces
- Example: Configuring Per-Unit Schedulers for Channelized Interfaces
- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
-
- play_arrow Configuration Statements and Operational Commands
Example: Building a Four-Level Hierarchy of Schedulers
This section provides a more complete example of building a 4-level hierarchy of schedulers. The configuration parameters are shown in Figure 1. The queues are shown at the top of the figure with the other three levels of the hierarchy below.

The figure’s PIR values are configured as the shaping
rates and the CIRs are configured as the guaranteed rate on the Ethernet
interface ge-1/0/0
. The PIR can be oversubscribed (that
is, the sum of the children PIRs can exceed the parent’s, as
in svlan 1
, where 200 + 200 + 100 exceeds the parent rate
of 400)). However, the sum of the children node level’s CIRs
must never exceed the parent node’s CIR, as shown in all the
service VLANs (otherwise, the guaranteed rate could never be provided
in all cases).
This configuration example presents all details of the CoS configuration
for the interface in the figure (ge-1/0/0
), including:
Configuring the Interface Sets
[edit interfaces] interface-set svlan-0 { interface ge-1/0/0 { unit 0; unit 1; } } interface-set svlan-1 { interface ge-1/0/0 { unit 2; unit 3; unit 4; } }
Configuring the Interfaces
The keyword to configure hierarchical schedulers is at the physical interface level, as is VLAN tagging and the VLAN IDs. In this example, the interface sets are defined by logical interfaces (units) and not outer VLAN tags. All VLAN tags in this example are customer VLAN tags.
[edit interface ge-1/0/0] hierarchical-scheduler; vlan-tagging; unit 0 { vlan-id 100; } unit 1 { vlan-id 101; } unit 2 { vlan-id 102; } unit 3 { vlan-id 103; } unit 4 { vlan-id 104; }
Configuring the Traffic Control Profiles
The traffic control profiles hold parameters for levels above the queue level of the scheduler hierarchy. This section defines traffic control profiles for both the service VLAN level (logical interfaces) and the customer VLAN (VLAN tag) level.
[edit class-of-service traffic-control-profiles] tcp-500m-shaping-rate { shaping-rate 500m; } tcp-svlan0 { shaping-rate 200m; guaranteed-rate 100m; delay-buffer-rate 300m; # This parameter is not shown in the figure. } tcp-svlan1 { shaping-rate 400m; guaranteed-rate 300m; delay-buffer-rate 100m; # This parameter is not shown in the figure. } tcp-cvlan0 { shaping-rate 100m; guaranteed-rate 60m; scheduler-map tcp-map-cvlan0; # Applies scheduler maps to customer VLANs. } tcp-cvlan1 { shaping-rate 100m; guaranteed-rate 40m; scheduler-map tcp-map-cvlan1; # Applies scheduler maps to customer VLANs. } tcp-cvlan2 { shaping-rate 200m; guaranteed-rate 100m; scheduler-map tcp-map-cvlanx; # Applies scheduler maps to customer VLANs. } tcp-cvlan3 { shaping-rate 200m; guaranteed-rate 150m; scheduler-map tcp-map-cvlanx; # Applies scheduler maps to customer VLANs } tcp-cvlan4 { shaping-rate 100m; guaranteed-rate 50m; scheduler-map tcp-map-cvlanx; # Applies scheduler maps to customer VLANs }
Configuring the Schedulers
The schedulers hold the information about the queues, the last level of the hierarchy. Note the consistent naming schemes applied to repetitive elements in all parts of this example.
[edit class-of-service schedulers] sched-cvlan0-qx { priority low; transmit-rate 20m; buffer-size temporal 100ms; drop-profile loss-priority low dp-low; drop-profile loss-priority high dp-high; } sched-cvlan1-q0 { priority high; transmit-rate 20m; buffer-size percent 40; drop-profile loss-priority low dp-low; drop-profile loss-priority high dp-high; } sched-cvlanx-qx { transmit-rate percent 30; buffer-size percent 30; drop-profile loss-priority low dp-low; drop-profile loss-priority high dp-high; } sched-cvlan1-qx { transmit-rate 10m; buffer-size temporal 100ms; drop-profile loss-priority low dp-low; drop-profile loss-priority high dp-high; }
Configuring the Drop Profiles
This section configures the drop profiles for the example. For more information about interpolated drop profiles, see RED Drop Profiles for Congestion Management.
[edit class-of-service drop-profiles] dp-low { interpolate fill-level 80 drop-probability 80; interpolate fill-level 100 drop-probability 100; } dp-high { interpolate fill-level 60 drop-probability 80; interpolate fill-level 80 drop-probability 100; }
Configuring the Scheduler Maps
This section configures the scheduler maps for the example. Each one references a scheduler configured in Configuring the Schedulers.
[edit class-of-service scheduler-maps] tcp-map-cvlan0 { forwarding-class voice scheduler sched-cvlan0-qx; forwarding-class video scheduler sched-cvlan0-qx; forwarding-class data scheduler sched-cvlan0-qx; } tcp-map-cvlan1 { forwarding-class voice scheduler sched-cvlan1-q0; forwarding-class video scheduler sched-cvlan1-qx; forwarding-class data scheduler sched-cvlan1-qx; } tcp-map-cvlanx { forwarding-class voice scheduler sched-cvlanx-qx; forwarding-class video scheduler sched-cvlanx-qx; forwarding-class data scheduler sched-cvlanx-qx; }
Applying the Traffic Control Profiles
This section applies the traffic control profiles to the proper levels of the hierarchy.
Although a shaping rate can be applied directly to the physical interface, hierarchical schedulers must use a traffic control profile to hold this parameter.
[edit class-of-service interfaces] ge-1/0/0 { output-traffic-control-profile tcp-500m-shaping-rate; unit 0 { output-traffic-control-profile tcp-cvlan0; } unit 1 { output-traffic-control-profile tcp-cvlan1; } unit 2 { output-traffic-control-profile tcp-cvlan2; } unit 3 { output-traffic-control-profile tcp-cvlan3; } unit 4 { output-traffic-control-profile tcp-cvlan4; } } interface-set svlan0 { output-traffic-control-profile tcp-svlan0; } interface-set svlan1 { output-traffic-control-profile tcp-svlan1; }
You should be careful when using a show interfaces queue
command that references nonexistent class-of-service logical interfaces.
When multiple logical interfaces (units) are not configured under
the same interface set or physical interface, but are referenced by
a command such as show interfaces queue ge-10/0/1.12 forwarding-class
be
or show interfaces queue ge-10/0/1.13 forwarding-class
be
(where logical units 12 and 13 are not configured as a class-of-service
interfaces), these interfaces display the same traffic statistics
for each logical interface. In other words, even if there is no traffic
passing through a particular unconfigured logical interface, as long
as one or more of the other unconfigured logical interfaces under
the same interface set or physical interface is passing traffic, this
particular logical interface displays statistics counters showing
the total amount of traffic passed through all other unconfigured
logical interfaces together.