- play_arrow Configuring Firewall Filters
- play_arrow Understanding How Firewall Filters Protect Your Network
- Firewall Filters Overview
- Router Data Flow Overview
- Stateless Firewall Filter Overview
- Understanding How to Use Standard Firewall Filters
- Understanding How Firewall Filters Control Packet Flows
- Stateless Firewall Filter Components
- Stateless Firewall Filter Application Points
- How Standard Firewall Filters Evaluate Packets
- Understanding Firewall Filter Fast Lookup Filter
- Understanding Egress Firewall Filters with PVLANs
- Selective Class-based Filtering on PTX Routers
- Guidelines for Configuring Firewall Filters
- Guidelines for Applying Standard Firewall Filters
- Supported Standards for Filtering
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filters
- play_arrow Firewall Filter Match Conditions and Actions
- Overview of Firewall Filters (OCX Series)
- Overview of Firewall Filter Profiles on ACX Series Routers (Junos OS Evolved)
- Understanding Firewall Filter Match Conditions
- Understanding Firewall Filter Planning
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Match Conditions
- Firewall Filter Flexible Match Conditions
- Firewall Filter Nonterminating Actions
- Firewall Filter Terminating Actions
- Firewall Filter Match Conditions and Actions (ACX Series Routers)
- Firewall Filter Match Conditions and Actions in ACX Series Routers (Junos OS Evolved)
- Firewall Filter Match Conditions for Protocol-Independent Traffic
- Firewall Filter Match Conditions for IPv4 Traffic
- Firewall Filter Match Conditions for IPv6 Traffic
- Firewall Filter Match Conditions Based on Numbers or Text Aliases
- Firewall Filter Match Conditions Based on Bit-Field Values
- Firewall Filter Match Conditions Based on Address Fields
- Firewall Filter Match Conditions Based on Address Classes
- Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic
- Firewall Filter Match Conditions for MPLS Traffic
- Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic
- Firewall Filter Match Conditions for VPLS Traffic
- Firewall Filter Match Conditions for Layer 2 CCC Traffic
- Firewall Filter Match Conditions for Layer 2 Bridging Traffic
- Firewall Filter Support on Loopback Interface
- play_arrow Applying Firewall Filters to Routing Engine Traffic
- Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs
- Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List
- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources
- Example: Configure a Filter to Block Telnet and SSH Access
- Example: Configuring a Filter to Block TFTP Access
- Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags
- Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods
- Example: Protecting the Routing Engine with a Packets-Per-Second Rate Limiting Filter
- Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber
- Port Number Requirements for DHCP Firewall Filters
- Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine
- play_arrow Applying Firewall Filters to Transit Traffic
- Example: Configuring a Filter for Use as an Ingress Queuing Filter
- Example: Configuring a Filter to Match on IPv6 Flags
- Example: Configuring a Filter to Match on Port and Protocol Fields
- Example: Configuring a Filter to Count Accepted and Rejected Packets
- Example: Configuring a Filter to Count and Discard IP Options Packets
- Example: Configuring a Filter to Count IP Options Packets
- Example: Configuring a Filter to Count and Sample Accepted Packets
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Match on Two Unrelated Criteria
- Example: Configuring a Filter to Accept DHCP Packets Based on Address
- Example: Configuring a Filter to Accept OSPF Packets from a Prefix
- Example: Configuring a Stateless Firewall Filter to Handle Fragments
- Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation
- Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header
- Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses
- Example: Configuring a Rate-Limiting Filter Based on Destination Class
- play_arrow Configuring Firewall Filters in Logical Systems
- Firewall Filters in Logical Systems Overview
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems
- References from a Firewall Filter in a Logical System to Subordinate Objects
- References from a Firewall Filter in a Logical System to Nonfirewall Objects
- References from a Nonfirewall Object in a Logical System to a Firewall Filter
- Example: Configuring Filter-Based Forwarding
- Example: Configuring Filter-Based Forwarding on Logical Systems
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Unsupported Firewall Filter Statements for Logical Systems
- Unsupported Actions for Firewall Filters in Logical Systems
- Filter-Based Forwarding for Routing Instances
- Forwarding Table Filters for Routing Instances on ACX Series Routers
- Configuring Forwarding Table Filters
- play_arrow Configuring Firewall Filter Accounting and Logging
- play_arrow Attaching Multiple Firewall Filters to a Single Interface
- Applying Firewall Filters to Interfaces
- Configuring Firewall Filters
- Multifield Classifier Example: Configuring Multifield Classification
- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC
- Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure)
- Understanding Multiple Firewall Filters in a Nested Configuration
- Guidelines for Nesting References to Multiple Firewall Filters
- Understanding Multiple Firewall Filters Applied as a List
- Guidelines for Applying Multiple Firewall Filters as a List
- Example: Applying Lists of Multiple Firewall Filters
- Example: Nesting References to Multiple Firewall Filters
- Example: Filtering Packets Received on an Interface Set
- play_arrow Attaching a Single Firewall Filter to Multiple Interfaces
- Interface-Specific Firewall Filter Instances Overview
- Interface-Specific Firewall Filter Instances Overview
- Filtering Packets Received on a Set of Interface Groups Overview
- Filtering Packets Received on an Interface Set Overview
- Example: Configuring Interface-Specific Firewall Filter Counters
- Example: Configuring a Stateless Firewall Filter on an Interface Group
- play_arrow Configuring Filter-Based Tunneling Across IP Networks
- Understanding Filter-Based Tunneling Across IPv4 Networks
- Firewall Filter-Based L2TP Tunneling in IPv4 Networks Overview
- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks
- Components of Filter-Based Tunneling Across IPv4 Networks
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling
- play_arrow Configuring Service Filters
- Service Filter Overview
- How Service Filters Evaluate Packets
- Guidelines for Configuring Service Filters
- Guidelines for Applying Service Filters
- Example: Configuring and Applying Service Filters
- Service Filter Match Conditions for IPv4 or IPv6 Traffic
- Service Filter Nonterminating Actions
- Service Filter Terminating Actions
- play_arrow Configuring Simple Filters
- play_arrow Configuring Layer 2 Firewall Filters
- Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances
- Example: Configuring Filtering of Frames by MAC Address
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits
- Example: Configuring Filtering of Frames by Packet Loss Priority
- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core
- Understanding Firewall Filters on OVSDB-Managed Interfaces
- Example: Applying a Firewall Filter to OVSDB-Managed Interfaces
- play_arrow Configuring Firewall Filters for Forwarding, Fragments, and Policing
- Filter-Based Forwarding Overview
- Firewall Filters That Handle Fragmented Packets Overview
- Stateless Firewall Filters That Reference Policers Overview
- Example: Configuring Filter-Based Forwarding on the Source Address
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address
- play_arrow Configuring Firewall Filters (EX Series Switches)
- Firewall Filters for EX Series Switches Overview
- Understanding Planning of Firewall Filters
- Understanding Firewall Filter Match Conditions
- Understanding How Firewall Filters Control Packet Flows
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches
- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches
- Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches
- Support for Match Conditions and Actions for Loopback Firewall Filters on Switches
- Configuring Firewall Filters (CLI Procedure)
- Understanding How Firewall Filters Test a Packet's Protocol
- Understanding Filter-Based Forwarding for EX Series Switches
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches
- Example: Configuring a Firewall Filter on a Management Interface on an EX Series Switch
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Example: Applying Firewall Filters to Multiple Supplicants on Interfaces Enabled for 802.1X or MAC RADIUS Authentication
- Verifying That Policers Are Operational
- Troubleshooting Firewall Filters
- play_arrow Configuring Firewall Filters (QFX Series Switches, EX4600 Switches, PTX Series Routers)
- Overview of Firewall Filters (QFX Series)
- Understanding Firewall Filter Planning
- Planning the Number of Firewall Filters to Create
- Firewall Filter Match Conditions and Actions (QFX and EX Series Switches)
- Firewall Filter Match Conditions and Actions (QFX10000 Switches)
- Firewall Filter Match Conditions and Actions (PTX Series Routers)
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Configuring Firewall Filters
- Applying Firewall Filters to Interfaces
- Overview of MPLS Firewall Filters on Loopback Interface
- Configuring MPLS Firewall Filters and Policers on Switches
- Configuring MPLS Firewall Filters and Policers on Routers
- Configuring MPLS Firewall Filters and Policers
- Understanding How a Firewall Filter Tests a Protocol
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets
- Understanding Filter-Based Forwarding
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Configuring a Firewall Filter to De-Encapsulate GRE or IPIP Traffic
- Verifying That Firewall Filters Are Operational
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filter Configuration
- play_arrow Configuring Firewall Filter Accounting and Logging (EX9200 Switches)
-
- play_arrow Configuring Traffic Policers
- play_arrow Understanding Traffic Policers
- Policer Implementation Overview
- ARP Policer Overview
- Example: Configuring ARP Policer
- Understanding the Benefits of Policers and Token Bucket Algorithms
- Determining Proper Burst Size for Traffic Policers
- Controlling Network Access Using Traffic Policing Overview
- Traffic Policer Types
- Order of Policer and Firewall Filter Operations
- Understanding the Frame Length for Policing Packets
- Supported Standards for Policing
- Hierarchical Policer Configuration Overview
- Understanding Enhanced Hierarchical Policers
- Packets-Per-Second (pps)-Based Policer Overview
- Guidelines for Applying Traffic Policers
- Policer Support for Aggregated Ethernet Interfaces Overview
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Hierarchical Policers on ACX Series Routers Overview
- Guidelines for Configuring Hierarchical Policers on ACX Series Routers
- Hierarchical Policer Modes on ACX Series Routers
- Processing of Hierarchical Policers on ACX Series Routers
- Actions Performed for Hierarchical Policers on ACX Series Routers
- Configuring Aggregate Parent and Child Policers on ACX Series Routers
- play_arrow Configuring Policer Rate Limits and Actions
- play_arrow Configuring Layer 2 Policers
- Hierarchical Policers
- Configuring a Policer Overhead
- Two-Color and Three-Color Policers at Layer 2
- Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Two-Color Layer 2 Policer for the Pseudowire
- Configuring a Three-Color Layer 2 Policer for the Pseudowire
- Applying the Policers to Dynamic Profile Interfaces
- Attaching Dynamic Profiles to Routing Instances
- Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Policer for the Complex Configuration
- Creating a Dynamic Profile for the Complex Configuration
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration
- Verifying Layer 2 Traffic Policers on VPLS Connections
- Understanding Policers on OVSDB-Managed Interfaces
- Example: Applying a Policer to OVSDB-Managed Interfaces
- play_arrow Configuring Two-Color and Three-Color Traffic Policers at Layer 3
- Two-Color Policer Configuration Overview
- Basic Single-Rate Two-Color Policers
- Bandwidth Policers
- Prefix-Specific Counting and Policing Actions
- Policer Overhead to Account for Rate Shaping in the Traffic Manager
- Three-Color Policer Configuration Overview
- Applying Policers
- Three-Color Policer Configuration Guidelines
- Basic Single-Rate Three-Color Policers
- Basic Two-Rate Three-Color Policers
- Example: Configuring a Two-Rate Three-Color Policer
- play_arrow Configuring Logical and Physical Interface Traffic Policers at Layer 3
- play_arrow Configuring Policers on Switches
- Overview of Policers
- Traffic Policer Types
- Understanding the Use of Policers in Firewall Filters
- Understanding Tricolor Marking Architecture
- Configuring Policers to Control Traffic Rates (CLI Procedure)
- Configuring Tricolor Marking Policers
- Understanding Policers with Link Aggregation Groups
- Understanding Color-Blind Mode for Single-Rate Tricolor Marking
- Understanding Color-Aware Mode for Single-Rate Tricolor Marking
- Understanding Color-Blind Mode for Two-Rate Tricolor Marking
- Understanding Color-Aware Mode for Two-Rate Tricolor Marking
- Example: Using Two-Color Policers and Prefix Lists
- Example: Using Policers to Manage Oversubscription
- Assigning Forwarding Classes and Loss Priority
- Configuring Color-Blind Egress Policers for Medium-Low PLP
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates
- Verifying That Two-Color Policers Are Operational
- Verifying That Three-Color Policers Are Operational
- Troubleshooting Policer Configuration
- Troubleshooting Policer Configuration
-
- play_arrow Configuration Statements and Operational Commands
- play_arrow Troubleshooting
- play_arrow Knowledge Base
-
Understanding Policy Subroutines in Routing Policy Match Conditions
You can use a routing policy called from another routing policy as a match condition. This process makes the called policy a subroutine.
In some ways, the Junos OS policy framework is similar to a programming language. This similarity includes the concept of nesting policies into a policy subroutine. A subroutine in a software program is a section of code that you reference on a regular basis. A policy subroutine works in the same fashion—you reference an existing policy as a match criterion in another policy. The routing device first evaluates the subroutine and then evaluates the main policy. The evaluation of the subroutine returns a true or false Boolean result to the main policy. Because you are referencing the subroutine as a match criterion, a true result means that the main policy has a match and can perform any configured actions. A false result from the subroutine, however, means that the main policy does not have a match.
Configuring Subroutines
To configure a subroutine in a routing policy to be called from
another routing policy, create the subroutine and specify its name
using the policy
match condition in the from
or to
statement of another routing policy.
Do not evaluate a routing policy within itself. The result is that no prefixes ever match the routing policy.
The action specified in a subroutine is used to provide a match condition to the calling policy. If the subroutine specifies an action of accept, the calling policy considers the route to be a match. If the subroutine specifies an action of reject, the calling policy considers the route not to match. If the subroutine specifies an action that is meant to manipulate the route characteristics, the changes are made.
Possible Consequences of Termination Actions in Subroutines
A subroutine with particular statements can behave differently from a routing policy that contains the same statements. With a subroutine, you must remember that the possible termination actions of accept or reject specified by the subroutine or the default policy can greatly affect the expected results.
In particular, you must consider what happens if a match does not occur with routes specified in a subroutine and if the default policy action that is taken is the action that you expect and want.
For example, imagine that you are a network administrator at an Internet service provider (ISP) that provides service to Customer A. You have configured several routing policies for the different classes of neighbors that Customer A presents on various links. To save time maintaining the routing policies for Customer A, you have configured a subroutine that identifies their routes and various routing policies that call the subroutine, as shown below:
[edit] policy-options { policy-statement customer-a-subroutine { from { route-filter 10.1/16 exact; route-filter 10.5/16 exact; route-filter 192.168.10/24 exact; } then accept; } } policy-options { policy-statement send-customer-a-default { from { policy customer-a-subroutine; } then { set metric 500; accept; } } } policy-options { policy-statement send-customer-a-primary { from { policy customer-a-subroutine; } then { set metric 100; accept; } } } policy-options { policy-statement send-customer-a-secondary { from { policy customer-a-subroutine; } then { set metric 200; accept; } } } protocols { bgp { group customer-a { export send-customer-a-default; neighbor 10.1.1.1; neighbor 10.1.2.1; neighbor 10.1.3.1 { export send-customer-a-primary; } neighbor 10.1.4.1 { export send-customer-a-secondary; } } } }
The following results occur with this configuration:
The group-level
export
statement resets the metric to 500 when advertising all BGP routes to neighbors 10.1.1.1 and 10.1.2.1 rather than just the routes that match the subroutine route filters.The neighbor-level
export
statements reset the metric to 100 and 200 when advertising all BGP routes to neighbors 10.1.3.1 and 10.1.4.1, respectively, rather than just the BGP routes that match the subroutine route filters.
These unexpected results occur because the subroutine policy does not specify a termination action for routes that do not match the route filter and therefore, the default BGP export policy of accepting all BGP routes is taken.
If the statements included in this particular subroutine had been contained within the calling policies themselves, only the desired routes would have their metrics reset.
This example illustrates the differences between routing policies and subroutines and the importance of the termination action in a subroutine. Here, the default BGP export policy action for the subroutine was not carefully considered. A solution to this particular example is to add one more term to the subroutine that rejects all other routes that do not match the route filters:
[edit] policy-options { policy-statement customer-a-subroutine { term accept-exact { from { route-filter 10.1/16 exact; route-filter 10.5/16 exact; route-filter 192.168.10/24 exact; } then accept; } term reject-others { then reject; } } }
Termination action strategies for subroutines in general include the following:
Depend upon the default policy action to handle all other routes.
Add a term that accepts all other routes.
Add a term that rejects all other routes.
The option that you choose depends upon what you want to achieve with your subroutine. Plan your subroutines carefully.