- play_arrow Weighted Random Early Detection (WRED) and Explicit Congestion Notification (ECN)
- play_arrow WRED and Drop Profiles
- play_arrow Explicit Congestion Notification (ECN)
-
- play_arrow CoS Queue Schedulers, Traffic Control Profiles, and Hierarchical Port Scheduling (ETS)
- play_arrow Queue Schedulers and Scheduling Priority
- Understanding Default CoS Scheduling and Classification
- Understanding CoS Scheduling Behavior and Configuration Considerations
- Understanding CoS Output Queue Schedulers
- Defining CoS Queue Schedulers
- Example: Configuring Queue Schedulers
- Defining CoS Queue Scheduling Priority
- Example: Configuring Queue Scheduling Priority
- Monitoring CoS Scheduler Maps
- play_arrow Port Scheduling and Shaping
- play_arrow Troubleshooting Egress Bandwidth Issues
- play_arrow Traffic Control Profiles and Priority Group Scheduling
- Understanding CoS Traffic Control Profiles
- Understanding CoS Priority Group Scheduling
- Understanding CoS Virtual Output Queues (VOQs)
- Defining CoS Traffic Control Profiles (Priority Group Scheduling)
- Example: Configuring Traffic Control Profiles (Priority Group Scheduling)
- Understanding CoS Priority Group and Queue Guaranteed Minimum Bandwidth
- Example: Configuring Minimum Guaranteed Output Bandwidth
- Understanding CoS Priority Group Shaping and Queue Shaping (Maximum Bandwidth)
- Example: Configuring Maximum Output Bandwidth
- play_arrow Hierarchical Port Scheduling (ETS)
-
- play_arrow Data Center Bridging and Lossless FCoE
- play_arrow Data Center Bridging
- Understanding DCB Features and Requirements
- Understanding DCBX
- Configuring the DCBX Mode
- Configuring DCBX Autonegotiation
- Understanding DCBX Application Protocol TLV Exchange
- Defining an Application for DCBX Application Protocol TLV Exchange
- Configuring an Application Map for DCBX Application Protocol TLV Exchange
- Applying an Application Map to an Interface for DCBX Application Protocol TLV Exchange
- Example: Configuring DCBX Application Protocol TLV Exchange
- play_arrow Lossless FCoE
- Example: Configuring CoS PFC for FCoE Traffic
- Example: Configuring CoS for FCoE Transit Switch Traffic Across an MC-LAG
- Example: Configuring CoS Using ELS for FCoE Transit Switch Traffic Across an MC-LAG
- Example: Configuring Lossless FCoE Traffic When the Converged Ethernet Network Does Not Use IEEE 802.1p Priority 3 for FCoE Traffic (FCoE Transit Switch)
- Example: Configuring Two or More Lossless FCoE Priorities on the Same FCoE Transit Switch Interface
- Example: Configuring Two or More Lossless FCoE IEEE 802.1p Priorities on Different FCoE Transit Switch Interfaces
- Example: Configuring Lossless IEEE 802.1p Priorities on Ethernet Interfaces for Multiple Applications (FCoE and iSCSI)
- Troubleshooting Dropped FCoE Traffic
-
- play_arrow CoS Buffers and the Shared Buffer Pool
- play_arrow CoS Buffers Overview
- play_arrow Shared Buffer Pool Examples
- Example: Recommended Configuration of the Shared Buffer Pool for Networks with Mostly Best-Effort Unicast Traffic
- Example: Recommended Configuration of the Shared Buffer Pool for Networks with Mostly Best-Effort Traffic on Links with Ethernet PAUSE Enabled
- Example: Recommended Configuration of the Shared Buffer Pool for Networks with Mostly Multicast Traffic
- Example: Recommended Configuration of the Shared Buffer Pool for Networks with Mostly Lossless Traffic
-
- play_arrow CoS on EVPN VXLANs
- play_arrow Configuration Statements and Operational Commands
Understanding Host Inbound Traffic Classification
The destination address of traffic that enters the switch can be an external device such as another switch, a router, or a server, or the destination can be the host (the switch Routing Engine or CPU). When the destination is an external device, the DSCP and IEEE 802.1p code-point bits of incoming traffic are preserved as the traffic travels through the switch to the egress port. At the egress port, the code-point bits are either preserved when the packets are sent to the next hop or they are rewritten according to the rewrite rule attached to the egress interface.
When the destination of incoming traffic is the host, DSCP bits are preserved. However, IEEE 802.1p bits are not preserved. The IEEE 802.1p bits of traffic destined for the host are set to zero (0). This does not affect system behavior because the switch prioritizes traffic destined for the host based on the protocol type. For example, the switch gives a higher priority to BPDU traffic than to ping traffic.