- play_arrow Configuring Firewall Filters
- play_arrow Understanding How Firewall Filters Protect Your Network
- Firewall Filters Overview
- Router Data Flow Overview
- Stateless Firewall Filter Overview
- Understanding How to Use Standard Firewall Filters
- Understanding How Firewall Filters Control Packet Flows
- Stateless Firewall Filter Components
- Stateless Firewall Filter Application Points
- How Standard Firewall Filters Evaluate Packets
- Understanding Firewall Filter Fast Lookup Filter
- Understanding Egress Firewall Filters with PVLANs
- Selective Class-based Filtering on PTX Routers
- Guidelines for Configuring Firewall Filters
- Guidelines for Applying Standard Firewall Filters
- Supported Standards for Filtering
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filters
- play_arrow Firewall Filter Match Conditions and Actions
- Overview of Firewall Filters (OCX Series)
- Overview of Firewall Filter Profiles on ACX Series Routers (Junos OS Evolved)
- Understanding Firewall Filter Match Conditions
- Understanding Firewall Filter Planning
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Match Conditions
- Firewall Filter Flexible Match Conditions
- Firewall Filter Nonterminating Actions
- Firewall Filter Terminating Actions
- Firewall Filter Match Conditions and Actions (ACX Series Routers)
- Firewall Filter Match Conditions and Actions in ACX Series Routers (Junos OS Evolved)
- Firewall Filter Match Conditions for Protocol-Independent Traffic
- Firewall Filter Match Conditions for IPv4 Traffic
- Firewall Filter Match Conditions for IPv6 Traffic
- Firewall Filter Match Conditions Based on Numbers or Text Aliases
- Firewall Filter Match Conditions Based on Bit-Field Values
- Firewall Filter Match Conditions Based on Address Fields
- Firewall Filter Match Conditions Based on Address Classes
- Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic
- Firewall Filter Match Conditions for MPLS Traffic
- Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic
- Firewall Filter Match Conditions for VPLS Traffic
- Firewall Filter Match Conditions for Layer 2 CCC Traffic
- Firewall Filter Match Conditions for Layer 2 Bridging Traffic
- Firewall Filter Support on Loopback Interface
- play_arrow Applying Firewall Filters to Routing Engine Traffic
- Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs
- Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List
- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources
- Example: Configure a Filter to Block Telnet and SSH Access
- Example: Configuring a Filter to Block TFTP Access
- Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags
- Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods
- Example: Protecting the Routing Engine with a Packets-Per-Second Rate Limiting Filter
- Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber
- Port Number Requirements for DHCP Firewall Filters
- Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine
- play_arrow Applying Firewall Filters to Transit Traffic
- Example: Configuring a Filter for Use as an Ingress Queuing Filter
- Example: Configuring a Filter to Match on IPv6 Flags
- Example: Configuring a Filter to Match on Port and Protocol Fields
- Example: Configuring a Filter to Count Accepted and Rejected Packets
- Example: Configuring a Filter to Count and Discard IP Options Packets
- Example: Configuring a Filter to Count IP Options Packets
- Example: Configuring a Filter to Count and Sample Accepted Packets
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Match on Two Unrelated Criteria
- Example: Configuring a Filter to Accept DHCP Packets Based on Address
- Example: Configuring a Filter to Accept OSPF Packets from a Prefix
- Example: Configuring a Stateless Firewall Filter to Handle Fragments
- Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation
- Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header
- Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses
- Example: Configuring a Rate-Limiting Filter Based on Destination Class
- play_arrow Configuring Firewall Filters in Logical Systems
- Firewall Filters in Logical Systems Overview
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems
- References from a Firewall Filter in a Logical System to Subordinate Objects
- References from a Firewall Filter in a Logical System to Nonfirewall Objects
- References from a Nonfirewall Object in a Logical System to a Firewall Filter
- Example: Configuring Filter-Based Forwarding
- Example: Configuring Filter-Based Forwarding on Logical Systems
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Unsupported Firewall Filter Statements for Logical Systems
- Unsupported Actions for Firewall Filters in Logical Systems
- Filter-Based Forwarding for Routing Instances
- Forwarding Table Filters for Routing Instances on ACX Series Routers
- Configuring Forwarding Table Filters
- play_arrow Configuring Firewall Filter Accounting and Logging
- play_arrow Attaching Multiple Firewall Filters to a Single Interface
- Applying Firewall Filters to Interfaces
- Configuring Firewall Filters
- Multifield Classifier Example: Configuring Multifield Classification
- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC
- Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure)
- Understanding Multiple Firewall Filters in a Nested Configuration
- Guidelines for Nesting References to Multiple Firewall Filters
- Understanding Multiple Firewall Filters Applied as a List
- Guidelines for Applying Multiple Firewall Filters as a List
- Example: Applying Lists of Multiple Firewall Filters
- Example: Nesting References to Multiple Firewall Filters
- Example: Filtering Packets Received on an Interface Set
- play_arrow Attaching a Single Firewall Filter to Multiple Interfaces
- Interface-Specific Firewall Filter Instances Overview
- Interface-Specific Firewall Filter Instances Overview
- Filtering Packets Received on a Set of Interface Groups Overview
- Filtering Packets Received on an Interface Set Overview
- Example: Configuring Interface-Specific Firewall Filter Counters
- Example: Configuring a Stateless Firewall Filter on an Interface Group
- play_arrow Configuring Filter-Based Tunneling Across IP Networks
- Understanding Filter-Based Tunneling Across IPv4 Networks
- Firewall Filter-Based L2TP Tunneling in IPv4 Networks Overview
- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks
- Components of Filter-Based Tunneling Across IPv4 Networks
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling
- play_arrow Configuring Service Filters
- Service Filter Overview
- How Service Filters Evaluate Packets
- Guidelines for Configuring Service Filters
- Guidelines for Applying Service Filters
- Example: Configuring and Applying Service Filters
- Service Filter Match Conditions for IPv4 or IPv6 Traffic
- Service Filter Nonterminating Actions
- Service Filter Terminating Actions
- play_arrow Configuring Simple Filters
- play_arrow Configuring Layer 2 Firewall Filters
- Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances
- Example: Configuring Filtering of Frames by MAC Address
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits
- Example: Configuring Filtering of Frames by Packet Loss Priority
- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core
- Understanding Firewall Filters on OVSDB-Managed Interfaces
- Example: Applying a Firewall Filter to OVSDB-Managed Interfaces
- play_arrow Configuring Firewall Filters for Forwarding, Fragments, and Policing
- Filter-Based Forwarding Overview
- Firewall Filters That Handle Fragmented Packets Overview
- Stateless Firewall Filters That Reference Policers Overview
- Example: Configuring Filter-Based Forwarding on the Source Address
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address
- play_arrow Configuring Firewall Filters (EX Series Switches)
- Firewall Filters for EX Series Switches Overview
- Understanding Planning of Firewall Filters
- Understanding Firewall Filter Match Conditions
- Understanding How Firewall Filters Control Packet Flows
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches
- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches
- Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches
- Support for Match Conditions and Actions for Loopback Firewall Filters on Switches
- Configuring Firewall Filters (CLI Procedure)
- Understanding How Firewall Filters Test a Packet's Protocol
- Understanding Filter-Based Forwarding for EX Series Switches
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches
- Example: Configuring a Firewall Filter on a Management Interface on an EX Series Switch
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Example: Applying Firewall Filters to Multiple Supplicants on Interfaces Enabled for 802.1X or MAC RADIUS Authentication
- Verifying That Policers Are Operational
- Troubleshooting Firewall Filters
- play_arrow Configuring Firewall Filters (QFX Series Switches, EX4600 Switches, PTX Series Routers)
- Overview of Firewall Filters (QFX Series)
- Understanding Firewall Filter Planning
- Planning the Number of Firewall Filters to Create
- Firewall Filter Match Conditions and Actions (QFX and EX Series Switches)
- Firewall Filter Match Conditions and Actions (QFX10000 Switches)
- Firewall Filter Match Conditions and Actions (PTX Series Routers)
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Configuring Firewall Filters
- Applying Firewall Filters to Interfaces
- Overview of MPLS Firewall Filters on Loopback Interface
- Configuring MPLS Firewall Filters and Policers on Switches
- Configuring MPLS Firewall Filters and Policers on Routers
- Configuring MPLS Firewall Filters and Policers
- Understanding How a Firewall Filter Tests a Protocol
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets
- Understanding Filter-Based Forwarding
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Configuring a Firewall Filter to De-Encapsulate GRE or IPIP Traffic
- Verifying That Firewall Filters Are Operational
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filter Configuration
- play_arrow Configuring Firewall Filter Accounting and Logging (EX9200 Switches)
-
- play_arrow Configuring Traffic Policers
- play_arrow Understanding Traffic Policers
- Policer Implementation Overview
- ARP Policer Overview
- Example: Configuring ARP Policer
- Understanding the Benefits of Policers and Token Bucket Algorithms
- Determining Proper Burst Size for Traffic Policers
- Controlling Network Access Using Traffic Policing Overview
- Traffic Policer Types
- Order of Policer and Firewall Filter Operations
- Understanding the Frame Length for Policing Packets
- Supported Standards for Policing
- Hierarchical Policer Configuration Overview
- Understanding Enhanced Hierarchical Policers
- Packets-Per-Second (pps)-Based Policer Overview
- Guidelines for Applying Traffic Policers
- Policer Support for Aggregated Ethernet Interfaces Overview
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Hierarchical Policers on ACX Series Routers Overview
- Guidelines for Configuring Hierarchical Policers on ACX Series Routers
- Hierarchical Policer Modes on ACX Series Routers
- Processing of Hierarchical Policers on ACX Series Routers
- Actions Performed for Hierarchical Policers on ACX Series Routers
- Configuring Aggregate Parent and Child Policers on ACX Series Routers
- play_arrow Configuring Policer Rate Limits and Actions
- play_arrow Configuring Layer 2 Policers
- Hierarchical Policers
- Configuring a Policer Overhead
- Two-Color and Three-Color Policers at Layer 2
- Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Two-Color Layer 2 Policer for the Pseudowire
- Configuring a Three-Color Layer 2 Policer for the Pseudowire
- Applying the Policers to Dynamic Profile Interfaces
- Attaching Dynamic Profiles to Routing Instances
- Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Policer for the Complex Configuration
- Creating a Dynamic Profile for the Complex Configuration
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration
- Verifying Layer 2 Traffic Policers on VPLS Connections
- Understanding Policers on OVSDB-Managed Interfaces
- Example: Applying a Policer to OVSDB-Managed Interfaces
- play_arrow Configuring Two-Color and Three-Color Traffic Policers at Layer 3
- Two-Color Policer Configuration Overview
- Basic Single-Rate Two-Color Policers
- Bandwidth Policers
- Prefix-Specific Counting and Policing Actions
- Policer Overhead to Account for Rate Shaping in the Traffic Manager
- Three-Color Policer Configuration Overview
- Applying Policers
- Three-Color Policer Configuration Guidelines
- Basic Single-Rate Three-Color Policers
- Basic Two-Rate Three-Color Policers
- Example: Configuring a Two-Rate Three-Color Policer
- play_arrow Configuring Logical and Physical Interface Traffic Policers at Layer 3
- play_arrow Configuring Policers on Switches
- Overview of Policers
- Traffic Policer Types
- Understanding the Use of Policers in Firewall Filters
- Understanding Tricolor Marking Architecture
- Configuring Policers to Control Traffic Rates (CLI Procedure)
- Configuring Tricolor Marking Policers
- Understanding Policers with Link Aggregation Groups
- Understanding Color-Blind Mode for Single-Rate Tricolor Marking
- Understanding Color-Aware Mode for Single-Rate Tricolor Marking
- Understanding Color-Blind Mode for Two-Rate Tricolor Marking
- Understanding Color-Aware Mode for Two-Rate Tricolor Marking
- Example: Using Two-Color Policers and Prefix Lists
- Example: Using Policers to Manage Oversubscription
- Assigning Forwarding Classes and Loss Priority
- Configuring Color-Blind Egress Policers for Medium-Low PLP
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates
- Verifying That Two-Color Policers Are Operational
- Verifying That Three-Color Policers Are Operational
- Troubleshooting Policer Configuration
- Troubleshooting Policer Configuration
-
- play_arrow Configuration Statements and Operational Commands
- play_arrow Troubleshooting
- play_arrow Knowledge Base
-
ON THIS PAGE
Example: Enabling BGP Route Advertisements
Junos OS does not advertise the routes learned from one EBGP peer back to the same
external BGP (EBGP) peer. In addition, the software does not advertise those routes back
to any EBGP peers that are in the same autonomous system (AS) as the originating peer,
regardless of the routing instance. You can modify this behavior by including the advertise-peer-as
statement in the configuration.
If you include the advertise-peer-as
statement in the configuration, BGP
advertises the route regardless of this check.
To restore the default behavior, include the no-advertise-peer-as
statement in the configuration:
The route suppression default behavior is disabled if the as-override
statement is included in the configuration. If you include both the as-override
and no-advertise-peer-as
statements in the configuration, the
no-advertise-peer-as
statement is ignored.
Requirements
No special configuration beyond device initialization is required before you configure this example.
This example was updated and re-validated on Junos release 21.2R1.
Overview
This example shows three routing devices with external BGP (EBGP) connections. Device R2 has an EBGP connection to Device R1 and another EBGP connection to Device R3. Although separated by Device R2 which is in AS 64511, Device R1 and Device R3 are in the same AS (AS 64512). Device R1 and Device R3 advertise into BGP direct routes to their own loopback interface addresses.
Device R2 receives these loopback interface routes, and the advertise
peer-as
statement allows Device R2 to advertise them. Specifically,
Device R1 sends the 192.168.0.1 route to Device R2, and because Device R2 has the
advertise peer-as
configured, Device R2 can send the
192.168.0.1 route to Device R3. Likewise, Device R3 sends the 192.168.0.3 route to
Device R2, and advertise peer-as
enables Device R2 to forward the
route to Device R1.
To enable Device R1 and Device R3 to accept routes that contain their own AS number
in the AS path, the loops 2
statement is required on Device R1 and
Device R3.
Topology

Configuration
CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a
text file, remove any line breaks, change any details necessary to match your
network configuration, and then copy and paste the commands into the CLI at the
[edit]
hierarchy level.
Device R1
set interfaces xe-0/2/0 description R1-to-R2 set interfaces xe-0/2/0 unit 0 family inet address 10.0.0.1/30 set interfaces lo0 unit 0 family inet address 192.168.0.1/32 set protocols bgp family inet unicast loops 2 set protocols bgp group ext type external set protocols bgp group ext export send-direct set protocols bgp group ext peer-as 64511 set protocols bgp group ext neighbor 10.0.0.2 set policy-options policy-statement send-direct term 1 from protocol direct set policy-options policy-statement send-direct term 1 then accept set routing-options autonomous-system 64512
Device R2
set interfaces xe-0/2/0 description R2-to-R1 set interfaces xe-0/2/0 unit 0 family inet address 10.0.0.2/30 set interfaces xe-0/2/1 description R2-to-R3 set interfaces xe-0/2/1 unit 0 family inet address 10.1.0.1/30 set interfaces lo0 unit 0 family inet address 192.168.0.2/32 set protocols bgp group ext type external set protocols bgp group ext advertise-peer-as set protocols bgp group ext export send-direct set protocols bgp group ext neighbor 10.0.0.1 peer-as 64512 set protocols bgp group ext neighbor 10.1.0.2 peer-as 64512 set policy-options policy-statement send-direct term 1 from protocol direct set policy-options policy-statement send-direct term 1 then accept set routing-options autonomous-system 64511
Device R3
set interfaces xe-0/2/0 description R3-to-R2 set interfaces xe-0/2/0 unit 0 family inet address 10.1.0.2/30 set interfaces lo0 unit 0 family inet address 192.168.0.3/32 set protocols bgp family inet unicast loops 2 set protocols bgp group ext type external set protocols bgp group ext export send-direct set protocols bgp group ext peer-as 64511 set protocols bgp group ext neighbor 10.1.0.1 set policy-options policy-statement send-direct term 1 from protocol direct set policy-options policy-statement send-direct term 1 then accept set routing-options autonomous-system 64512
Procedure
Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the Junos OS CLI User Guide.
To configure Device R1:
Configure the device interfaces.
content_copy zoom_out_map[edit interfaces] user@R1# set xe-0/2/0 description R1-to-R2 user@R1# set xe-0/2/0 unit 0 family inet address 10.0.0.1/30 user@R1# set lo0 unit 0 family inet address 192.168.0.1/32
Configure BGP.
content_copy zoom_out_map[edit protocols bgp group ext] user@R1# set type external user@R1# set peer-as 64511 user@R1# set neighbor 10.0.0.2
Prevent routes from Device R3 from being hidden on Device R1 by including the
loops 2
statement.The
loops 2
statement means that the local device’s own AS number can appear in the AS path up to one time without causing the route to be hidden. The route is hidden if the local device’s AS number is detected in the path two or more times.content_copy zoom_out_map[edit protocols bgp family inet unicast] user@R1# set loops 2
Configure the routing policy that sends direct routes.
content_copy zoom_out_map[edit policy-options policy-statement send-direct term 1] user@R1# set from protocol direct user@R1# set then accept
Apply the export policy to the BGP peering session with Device R2.
content_copy zoom_out_map[edit protocols bgp group ext] user@R1# set export send-direct
Configure the autonomous system (AS) number.
content_copy zoom_out_map[edit routing-options ] user@R1# set autonomous-system 64512
Step-by-Step Procedure
To configure Device R2:
Configure the device interfaces.
content_copy zoom_out_map[edit interfaces] user@R2# set xe-0/2/0 description R2-to-R1 user@R2# set xe-0/2/0 unit 0 family inet address 10.0.0.2/30 user@R2# set xe-0/2/1 description R2-to-R3 user@R2# set xe-0/2/1 unit 0 family inet address 10.1.0.1/30 user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
Configure BGP.
content_copy zoom_out_map[edit protocols bgp group ext] user@R2# set type external user@R2# set neighbor 10.0.0.1 peer-as 64512 user@R2# set neighbor 10.1.0.2 peer-as 64512
Configure Device R2 to advertise routes learned from one EBGP peer to another EBGP peer in the same AS.
In other words, advertise to Device R1 routes learned from Device R3 (and the reverse), even though Device R1 and Device R3 are in the same AS.
content_copy zoom_out_map[edit protocols bgp group ext] user@R2# set advertise-peer-as
Configure a routing policy that sends direct routes.
content_copy zoom_out_map[edit policy-options policy-statement send-direct term 1] user@R2# set from protocol direct user@R2# set then accept
Apply the export policy.
content_copy zoom_out_map[edit protocols bgp group ext] user@R2# set export send-direct
Configure the AS number.
content_copy zoom_out_map[edit routing-options] user@R2# set autonomous-system 64511
Results
From configuration mode, confirm your configuration by entering the
show interfaces
, show protocols
,
show policy-options
, and show
routing-options
commands. If the output does not display the
intended configuration, repeat the instructions in this example to correct
the configuration.
Device R1
user@R1# show interfaces xe-0/2/0 { description R1-to-R2; unit 0 { family inet { address 10.0.0.1/30; } } } lo0 { unit 0 { family inet { address 192.168.0.1/32; } } }
user@R1# show protocols bgp { family inet { unicast { loops 2; } } group ext { type external; export send-direct; peer-as 64511; neighbor 10.0.0.2; } }
user@R1# show policy-options policy-statement send-direct { term 1 { from protocol direct; then accept; } }
user@R1# show routing-options autonomous-system 64512;
Device R2
user@R2# show interfaces xe-0/2/0 { description R2-to-R1; unit 0 { family inet { address 10.0.0.2/30; } } } xe-0/2/1 { description R2-to-R3; unit 0 { family inet { address 10.1.0.1/30; } } } lo0 { unit 0 { family inet { address 192.168.0.2/32; } } }
user@R2# show protocols bgp { group ext { type external; advertise-peer-as; export send-direct; neighbor 10.0.0.1 { peer-as 64512; } neighbor 10.1.0.2 { peer-as 64512; } } }
user@R2# show policy-options policy-statement send-direct { term 1 { from protocol direct; then accept; } }
user@R2# show routing-options autonomous-system 64511;
If you are done configuring the devices, enter commit
from
configuration mode.
Verification
Confirm that the configuration is working properly.
Verifying the BGP Routes
Purpose
Make sure that the routing tables on Device R1 and Device R3 contain the expected routes.
Action
On Device R2, deactivate the
advertise-peer-as
statement in the BGP configuration.content_copy zoom_out_map[edit protocols bgp group ext] user@R2# deactivate advertise-peer-as user@R2# commit
On Device R3, deactivate the
loops
statement in the BGP configuration.content_copy zoom_out_map[edit protocols bgp family inet unicast ] user@R3# deactivate unicast loops user@R3# commit
On Device R1, check to see what routes are advertised to Device R2.
content_copy zoom_out_mapuser@R1> show route advertising-protocol bgp 10.0.0.2 inet.0: 5 destinations, 6 routes (5 active, 0 holddown, 0 hidden) Prefix Nexthop MED Lclpref AS path * 10.0.0.0/30 Self I * 192.168.0.1/32 Self I
On Device R2, check to see what routes are received from Device R1.
content_copy zoom_out_mapuser@R2> show route receive-protocol bgp 10.0.0.1 inet.0: 7 destinations, 9 routes (7 active, 0 holddown, 0 hidden) Prefix Nexthop MED Lclpref AS path 10.0.0.0/30 10.0.0.1 64512 I * 192.168.0.1/32 10.0.0.1 64512 I
On Device R2, check to see what routes are advertised to Device R3.
content_copy zoom_out_mapuser@R2> show route advertising-protocol bgp 10.1.0.2 inet.0: 7 destinations, 9 routes (7 active, 0 holddown, 0 hidden) Prefix Nexthop MED Lclpref AS path * 10.0.0.0/30 Self I * 10.1.0.0/30 Self I * 192.168.0.2/32 Self I
On Device R2, activate the
advertise-peer-as
statement in the BGP configuration.content_copy zoom_out_map[edit protocols bgp group ext] user@R2# activate advertise-peer-as user@R2# commit
On Device R2, recheck the routes that are advertised to Device R3.
content_copy zoom_out_mapuser@R2> show route advertising-protocol bgp 10.1.0.2 inet.0: 7 destinations, 9 routes (7 active, 0 holddown, 0 hidden) Prefix Nexthop MED Lclpref AS path * 10.0.0.0/30 Self I * 10.1.0.0/30 Self I * 192.168.0.1/32 Self 64512 I * 192.168.0.2/32 Self I * 192.168.0.3/32 10.1.0.2 64512 I
On Device R3, check the routes that are received from Device R2.
content_copy zoom_out_mapuser@R3> show route receive-protocol bgp 10.1.0.1 inet.0: 5 destinations, 6 routes (5 active, 0 holddown, 0 hidden) Prefix Nexthop MED Lclpref AS path * 10.0.0.0/30 10.1.0.1 64511 I 10.1.0.0/30 10.1.0.1 64511 I * 192.168.0.2/32 10.1.0.1 64511 I
On Device R3, activate the
loops
statement in the BGP configuration.content_copy zoom_out_map[edit protocols bgp family inet unicast ] user@R3# activate unicast loops user@R3# commit
On Device R3, recheck the routes that are received from Device R2.
content_copy zoom_out_mapuser@R3> show route receive-protocol bgp 10.1.0.1 inet.0: 6 destinations, 8 routes (6 active, 0 holddown, 1 hidden) Prefix Nexthop MED Lclpref AS path * 10.0.0.0/30 10.1.0.1 64511 I 10.1.0.0/30 10.1.0.1 64511 I * 192.168.0.1/32 10.1.0.1 64511 64512 I * 192.168.0.2/32 10.1.0.1 64511 I
Meaning
First the advertise-peer-as
statement and the
loops
statement are deactivated so that the default
behavior can be examined. Device R1 sends to Device R2 a route to Device
R1’s loopback interface address, 192.168.0.1/32. Device R2 does not
advertise this route to Device R3. After activating the
advertise-peer-as
statement, Device R2 does advertise
the 192.168.0.1/32 route to Device R3. Device R3 does not accept this route
until after the loops
statement is activated.