- play_arrow Configuring Firewall Filters
- play_arrow Understanding How Firewall Filters Protect Your Network
- Firewall Filters Overview
- Router Data Flow Overview
- Stateless Firewall Filter Overview
- Understanding How to Use Standard Firewall Filters
- Understanding How Firewall Filters Control Packet Flows
- Stateless Firewall Filter Components
- Stateless Firewall Filter Application Points
- How Standard Firewall Filters Evaluate Packets
- Understanding Firewall Filter Fast Lookup Filter
- Understanding Egress Firewall Filters with PVLANs
- Selective Class-based Filtering on PTX Routers
- Guidelines for Configuring Firewall Filters
- Guidelines for Applying Standard Firewall Filters
- Supported Standards for Filtering
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filters
- play_arrow Firewall Filter Match Conditions and Actions
- Overview of Firewall Filters (OCX Series)
- Overview of Firewall Filter Profiles on ACX Series Routers (Junos OS Evolved)
- Understanding Firewall Filter Match Conditions
- Understanding Firewall Filter Planning
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Match Conditions
- Firewall Filter Flexible Match Conditions
- Firewall Filter Nonterminating Actions
- Firewall Filter Terminating Actions
- Firewall Filter Match Conditions and Actions (ACX Series Routers)
- Firewall Filter Match Conditions and Actions in ACX Series Routers (Junos OS Evolved)
- Firewall Filter Match Conditions for Protocol-Independent Traffic
- Firewall Filter Match Conditions for IPv4 Traffic
- Firewall Filter Match Conditions for IPv6 Traffic
- Firewall Filter Match Conditions Based on Numbers or Text Aliases
- Firewall Filter Match Conditions Based on Bit-Field Values
- Firewall Filter Match Conditions Based on Address Fields
- Firewall Filter Match Conditions Based on Address Classes
- Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic
- Firewall Filter Match Conditions for MPLS Traffic
- Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic
- Firewall Filter Match Conditions for VPLS Traffic
- Firewall Filter Match Conditions for Layer 2 CCC Traffic
- Firewall Filter Match Conditions for Layer 2 Bridging Traffic
- Firewall Filter Support on Loopback Interface
- play_arrow Applying Firewall Filters to Routing Engine Traffic
- Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs
- Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List
- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources
- Example: Configure a Filter to Block Telnet and SSH Access
- Example: Configuring a Filter to Block TFTP Access
- Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags
- Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods
- Example: Protecting the Routing Engine with a Packets-Per-Second Rate Limiting Filter
- Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber
- Port Number Requirements for DHCP Firewall Filters
- Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine
- play_arrow Applying Firewall Filters to Transit Traffic
- Example: Configuring a Filter for Use as an Ingress Queuing Filter
- Example: Configuring a Filter to Match on IPv6 Flags
- Example: Configuring a Filter to Match on Port and Protocol Fields
- Example: Configuring a Filter to Count Accepted and Rejected Packets
- Example: Configuring a Filter to Count and Discard IP Options Packets
- Example: Configuring a Filter to Count IP Options Packets
- Example: Configuring a Filter to Count and Sample Accepted Packets
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Set the DSCP Bit to Zero
- Example: Configuring a Filter to Match on Two Unrelated Criteria
- Example: Configuring a Filter to Accept DHCP Packets Based on Address
- Example: Configuring a Filter to Accept OSPF Packets from a Prefix
- Example: Configuring a Stateless Firewall Filter to Handle Fragments
- Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation
- Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header
- Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses
- Example: Configuring a Rate-Limiting Filter Based on Destination Class
- play_arrow Configuring Firewall Filters in Logical Systems
- Firewall Filters in Logical Systems Overview
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems
- References from a Firewall Filter in a Logical System to Subordinate Objects
- References from a Firewall Filter in a Logical System to Nonfirewall Objects
- References from a Nonfirewall Object in a Logical System to a Firewall Filter
- Example: Configuring Filter-Based Forwarding
- Example: Configuring Filter-Based Forwarding on Logical Systems
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods
- Unsupported Firewall Filter Statements for Logical Systems
- Unsupported Actions for Firewall Filters in Logical Systems
- Filter-Based Forwarding for Routing Instances
- Forwarding Table Filters for Routing Instances on ACX Series Routers
- Configuring Forwarding Table Filters
- play_arrow Configuring Firewall Filter Accounting and Logging
- play_arrow Attaching Multiple Firewall Filters to a Single Interface
- Applying Firewall Filters to Interfaces
- Configuring Firewall Filters
- Multifield Classifier Example: Configuring Multifield Classification
- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC
- Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure)
- Understanding Multiple Firewall Filters in a Nested Configuration
- Guidelines for Nesting References to Multiple Firewall Filters
- Understanding Multiple Firewall Filters Applied as a List
- Guidelines for Applying Multiple Firewall Filters as a List
- Example: Applying Lists of Multiple Firewall Filters
- Example: Nesting References to Multiple Firewall Filters
- Example: Filtering Packets Received on an Interface Set
- play_arrow Attaching a Single Firewall Filter to Multiple Interfaces
- Interface-Specific Firewall Filter Instances Overview
- Interface-Specific Firewall Filter Instances Overview
- Filtering Packets Received on a Set of Interface Groups Overview
- Filtering Packets Received on an Interface Set Overview
- Example: Configuring Interface-Specific Firewall Filter Counters
- Example: Configuring a Stateless Firewall Filter on an Interface Group
- play_arrow Configuring Filter-Based Tunneling Across IP Networks
- Understanding Filter-Based Tunneling Across IPv4 Networks
- Firewall Filter-Based L2TP Tunneling in IPv4 Networks Overview
- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks
- Components of Filter-Based Tunneling Across IPv4 Networks
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling
- play_arrow Configuring Service Filters
- Service Filter Overview
- How Service Filters Evaluate Packets
- Guidelines for Configuring Service Filters
- Guidelines for Applying Service Filters
- Example: Configuring and Applying Service Filters
- Service Filter Match Conditions for IPv4 or IPv6 Traffic
- Service Filter Nonterminating Actions
- Service Filter Terminating Actions
- play_arrow Configuring Simple Filters
- play_arrow Configuring Layer 2 Firewall Filters
- Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances
- Example: Configuring Filtering of Frames by MAC Address
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits
- Example: Configuring Filtering of Frames by Packet Loss Priority
- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core
- Understanding Firewall Filters on OVSDB-Managed Interfaces
- Example: Applying a Firewall Filter to OVSDB-Managed Interfaces
- play_arrow Configuring Firewall Filters for Forwarding, Fragments, and Policing
- Filter-Based Forwarding Overview
- Firewall Filters That Handle Fragmented Packets Overview
- Stateless Firewall Filters That Reference Policers Overview
- Example: Configuring Filter-Based Forwarding on the Source Address
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address
- play_arrow Configuring Firewall Filters (EX Series Switches)
- Firewall Filters for EX Series Switches Overview
- Understanding Planning of Firewall Filters
- Understanding Firewall Filter Match Conditions
- Understanding How Firewall Filters Control Packet Flows
- Understanding How Firewall Filters Are Evaluated
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches
- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches
- Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches
- Support for Match Conditions and Actions for Loopback Firewall Filters on Switches
- Configuring Firewall Filters (CLI Procedure)
- Understanding How Firewall Filters Test a Packet's Protocol
- Understanding Filter-Based Forwarding for EX Series Switches
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches
- Example: Configuring a Firewall Filter on a Management Interface on an EX Series Switch
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Example: Applying Firewall Filters to Multiple Supplicants on Interfaces Enabled for 802.1X or MAC RADIUS Authentication
- Verifying That Policers Are Operational
- Troubleshooting Firewall Filters
- play_arrow Configuring Firewall Filters (QFX Series Switches, EX4600 Switches, PTX Series Routers)
- Overview of Firewall Filters (QFX Series)
- Understanding Firewall Filter Planning
- Planning the Number of Firewall Filters to Create
- Firewall Filter Match Conditions and Actions (QFX and EX Series Switches)
- Firewall Filter Match Conditions and Actions (QFX10000 Switches)
- Firewall Filter Match Conditions and Actions (PTX Series Routers)
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Configuring Firewall Filters
- Applying Firewall Filters to Interfaces
- Overview of MPLS Firewall Filters on Loopback Interface
- Configuring MPLS Firewall Filters and Policers on Switches
- Configuring MPLS Firewall Filters and Policers on Routers
- Configuring MPLS Firewall Filters and Policers
- Understanding How a Firewall Filter Tests a Protocol
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets
- Understanding Filter-Based Forwarding
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device
- Configuring a Firewall Filter to De-Encapsulate GRE or IPIP Traffic
- Verifying That Firewall Filters Are Operational
- Monitoring Firewall Filter Traffic
- Troubleshooting Firewall Filter Configuration
- play_arrow Configuring Firewall Filter Accounting and Logging (EX9200 Switches)
-
- play_arrow Configuring Traffic Policers
- play_arrow Understanding Traffic Policers
- Policer Implementation Overview
- ARP Policer Overview
- Example: Configuring ARP Policer
- Understanding the Benefits of Policers and Token Bucket Algorithms
- Determining Proper Burst Size for Traffic Policers
- Controlling Network Access Using Traffic Policing Overview
- Traffic Policer Types
- Order of Policer and Firewall Filter Operations
- Understanding the Frame Length for Policing Packets
- Supported Standards for Policing
- Hierarchical Policer Configuration Overview
- Understanding Enhanced Hierarchical Policers
- Packets-Per-Second (pps)-Based Policer Overview
- Guidelines for Applying Traffic Policers
- Policer Support for Aggregated Ethernet Interfaces Overview
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers
- Hierarchical Policers on ACX Series Routers Overview
- Guidelines for Configuring Hierarchical Policers on ACX Series Routers
- Hierarchical Policer Modes on ACX Series Routers
- Processing of Hierarchical Policers on ACX Series Routers
- Actions Performed for Hierarchical Policers on ACX Series Routers
- Configuring Aggregate Parent and Child Policers on ACX Series Routers
- play_arrow Configuring Policer Rate Limits and Actions
- play_arrow Configuring Layer 2 Policers
- Hierarchical Policers
- Configuring a Policer Overhead
- Two-Color and Three-Color Policers at Layer 2
- Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Two-Color Layer 2 Policer for the Pseudowire
- Configuring a Three-Color Layer 2 Policer for the Pseudowire
- Applying the Policers to Dynamic Profile Interfaces
- Attaching Dynamic Profiles to Routing Instances
- Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview
- Configuring a Policer for the Complex Configuration
- Creating a Dynamic Profile for the Complex Configuration
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration
- Verifying Layer 2 Traffic Policers on VPLS Connections
- Understanding Policers on OVSDB-Managed Interfaces
- Example: Applying a Policer to OVSDB-Managed Interfaces
- play_arrow Configuring Two-Color and Three-Color Traffic Policers at Layer 3
- Two-Color Policer Configuration Overview
- Basic Single-Rate Two-Color Policers
- Bandwidth Policers
- Prefix-Specific Counting and Policing Actions
- Policer Overhead to Account for Rate Shaping in the Traffic Manager
- Three-Color Policer Configuration Overview
- Applying Policers
- Three-Color Policer Configuration Guidelines
- Basic Single-Rate Three-Color Policers
- Basic Two-Rate Three-Color Policers
- Example: Configuring a Two-Rate Three-Color Policer
- play_arrow Configuring Logical and Physical Interface Traffic Policers at Layer 3
- play_arrow Configuring Policers on Switches
- Overview of Policers
- Traffic Policer Types
- Understanding the Use of Policers in Firewall Filters
- Understanding Tricolor Marking Architecture
- Configuring Policers to Control Traffic Rates (CLI Procedure)
- Configuring Tricolor Marking Policers
- Understanding Policers with Link Aggregation Groups
- Understanding Color-Blind Mode for Single-Rate Tricolor Marking
- Understanding Color-Aware Mode for Single-Rate Tricolor Marking
- Understanding Color-Blind Mode for Two-Rate Tricolor Marking
- Understanding Color-Aware Mode for Two-Rate Tricolor Marking
- Example: Using Two-Color Policers and Prefix Lists
- Example: Using Policers to Manage Oversubscription
- Assigning Forwarding Classes and Loss Priority
- Configuring Color-Blind Egress Policers for Medium-Low PLP
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates
- Verifying That Two-Color Policers Are Operational
- Verifying That Three-Color Policers Are Operational
- Troubleshooting Policer Configuration
- Troubleshooting Policer Configuration
-
- play_arrow Configuration Statements and Operational Commands
- play_arrow Troubleshooting
- play_arrow Knowledge Base
-
Policy Framework Overview
The Junos® operating system (Junos OS) provides a policy framework, which is a collection of Junos OS policies that allows you to control flows of routing information and packets.
The Junos OS policy architecture is simple and straightforward. However, the actual implementation of each policy adds layers of complexity to the policy as well as adding power and flexibility to your router’s capabilities. Configuring a policy has a major impact on the flow of routing information or packets within and through the router. For example, you can configure a routing policy that does not allow routes associated with a particular customer to be placed in the routing table. As a result of this routing policy, the customer routes are not used to forward data packets to various destinations and the routes are not advertised by the routing protocol to neighbors.
Before configuring a policy, determine what you want to accomplish with it and thoroughly understand how to achieve your goal using the various match conditions and actions. Also, make certain that you understand the default policies and actions for the policy you are configuring.
Routing Policy and Firewall Filters
The policy framework is composed of the following policies:
Routing policy—Allows you to control the routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. All routing protocols use the Junos OS routing tables to store the routes that they learn and to determine which routes they should advertise in their protocol packets. Routing policy allows you to control which routes the routing protocols store in and retrieve from the routing table.
Firewall filter policy—Allows you to control packets transiting the router to a network destination and packets destined for and sent by the router.
Note:The term firewall filter policy is used here to emphasize that a firewall filter is a policy and shares some fundamental similarities with a routing policy. However, when referring to a firewall filter policy in the rest of this manual, the term firewall filter is used.
Reasons to Create a Routing Policy
The following are typical circumstances under which you might want to preempt the default routing policies in the routing policy framework by creating your own routing policies:
You do not want a protocol to import all routes into the routing table. If the routing table does not learn about certain routes, they can never be used to forward packets and they can never be redistributed into other routing protocols.
You do not want a routing protocol to export all the active routes it learns.
You want a routing protocol to announce active routes learned from another routing protocol, which is sometimes called route redistribution.
You want to manipulate route characteristics, such as the preference value, AS path, or community. You can manipulate the route characteristics to control which route is selected as the active route to reach a destination. In general, the active route is also advertised to a router’s neighbors.
You want to change the default BGP route flap-damping parameters.
You want to perform per-packet load balancing.
You want to enable class of service (CoS).
Router Flows Affected by Policies
The Junos OS policies affect the following router flows:
Flow of routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. The Routing Engine handles this flow. Routing information is the information about routes learned by the routing protocols from a router’s neighbors. This information is stored in routing tables and is subsequently advertised by the routing protocols to the router’s neighbors. Routing policies allow you to control the flow of this information.
Flow of data packets in and out of the router’s physical interfaces. The Packet Forwarding Engine handles this flow. Data packets are chunks of data that transit the router as they are being forwarded from a source to a destination. When a router receives a data packet on an interface, it determines where to forward the packet by looking in the forwarding table for the best route to a destination. The router then forwards the data packet toward its destination through the appropriate interface. Firewall filters allow you to control the flow of these data packets.
Flow of local packets from the router’s physical interfaces and to the Routing Engine. The Routing Engine handles this flow. Local packets are chunks of data that are destined for or sent by the router. Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, and data for administrative protocols such as the Internet Control Message Protocol (ICMP). When the Routing Engine receives a local packet, it forwards the packet to the appropriate process or to the kernel, which are both part of the Routing Engine, or to the Packet Forwarding Engine. Firewall filters allow you to control the flow of these local packets.
Note:In the rest of this chapter, the term packets refers to both data and local packets unless explicitly stated otherwise.
Figure 1 illustrates the flows through the router. Although the flows are very different from each other, they are also interdependent. Routing policies determine which routes are placed in the forwarding table. The forwarding table, in turn, has an integral role in determining the appropriate physical interface through which to forward a packet.

You can configure routing policies to control which routes the routing protocols place in the routing tables and to control which routes the routing protocols advertise from the routing tables (see Figure 2). The routing protocols advertise active routes only from the routing tables. (An active route is a route that is chosen from all routes in the routing table to reach a destination.)
You can also use routing policies to do the following:
Change specific route characteristics, which allow you to control which route is selected as the active route to reach a destination. In general, the active route is also advertised to a router’s neighbors.
Change to the default BGP route flap-damping values.
Perform per-packet load balancing.
Enable class of service (CoS).

You can configure firewall filters to control the following aspects of packet flow (see Figure 3):
Which data packets are accepted on and transmitted from the physical interfaces. To control the flow of data packets, you apply firewall filters to the physical interfaces.
Which local packets are transmitted from the physical interfaces and to the Routing Engine. To control local packets, you apply firewall filters on the loopback interface, which is the interface to the Routing Engine.
Firewall filters provide a means of protecting your router from excessive traffic transiting the router to a network destination or destined for the Routing Engine. Firewall filters that control local packets can also protect your router from external incidents such as denial-of-service attacks.

Control Points
All policies provide two points at which you can control routing information or packets through the router (see Figure 4). These control points allow you to control the following:
Routing information before and after it is placed in the routing table.
Data packets before and after a forwarding table lookup.
Local packets before and after they are received by the Routing Engine. (Figure 4 appears to depict only one control point but because of the bidirectional flow of the local packets, two control points actually exist.)

Because there are two control points, you can configure policies that control the routing information or data packets before and after their interaction with their respective tables, and policies that control local packets before and after their interaction with the Routing Engine. Import routing policies control the routing information that is placed in the routing tables, whereas export routing policies control the routing information that is advertised from the routing tables. Input firewall filters control packets that are received on a router interface, whereas output firewall filters control packets that are transmitted from a router interface.
Policy Components
All policies are composed of the following components that you configure:
Match conditions—Criteria against which a route or packets are compared. You can configure one or more criteria. If all criteria match, one or more actions are applied.
Actions—What happens if all criteria match. You can configure one or more actions.
Terms—Named structures in which match conditions and actions are defined. You can define one or more terms.
The policy framework software evaluates each incoming and outgoing route or packet against the match conditions in a term. If the criteria in the match conditions are met, the defined action is taken.
In general, the policy framework software compares the route or packet against the match conditions in the first term in the policy, then goes on to the next term, and so on. Therefore, the order in which you arrange terms in a policy is relevant.
The order of match conditions within a term is not relevant because a route or packet must match all match conditions in a term for an action to be taken.