- play_arrow Fast Track: Initial Installation
- play_arrow Site Planning, Preparation, and Specifications
- play_arrow Planning and Preparing the Site
- Overview of Preparing the Site for the MX2010 Router
- MX2010 Cabinet Airflow Requirements
- MX2010 Cabinet Size and Clearance Requirements
- MX2010 Chassis Moving Guidelines
- MX2010 Physical Specifications
- MX2010 Rack Requirements
- MX2010 Router Transport Kit Moving Requirements and Guidelines
- MX2010 Router Environmental Specifications
- MX2000 Router Grounding Specifications
- MX2010 Site Preparation Checklist
- Clearance Requirements for Airflow and Hardware Maintenance for the MX2010 Router
- play_arrow Transceiver and Cable Specifications
- play_arrow Pinout Specifications
- play_arrow AC Power Requirements, Specifications, and Guidelines
- MX2010 AC Power Requirements
- MX2000 AC Power Cord Specifications
- MX2000 AC Power System Electrical Specifications
- MX2000 Router Grounding Specifications
- MX2000 Three-Phase Delta AC Power Distribution Module Electrical Specifications
- MX2000 Three-Phase Wye AC Power Distribution Module Electrical Specifications
- MX2000 Single-Phase AC Power Distribution Module Electrical Specifications
- Calculating AC Power Requirements for MX2010 Routers
- Mapping Input Power from AC Power Distribution Modules to AC Power Supply Modules on MX2000 Routers
- play_arrow DC Power Requirements, Specifications, and Guidelines
- MX2010 DC Power Requirements
- MX2010 DC Power Distribution Description (-48 V)
- MX2010 DC Power Distribution (240 V China) Description
- MX2010 DC Power (-48 V) System Electrical Specifications
- MX2010 Router DC (240 V China) System Electrical Specifications
- Calculating DC Power Requirements for MX2010 Routers
- DC Power (-48 V) Circuit Breaker Requirements for the MX2010 Router
- DC Power (240 V China) Circuit Breaker Requirements for the MX2000 Router
- DC Power Cable Specifications for the MX2010 Router
- play_arrow Universal (HVAC/HVDC) Power Requirements, Specifications, and Guidelines
- MX2010 High-Voltage Universal (HVAC/HVDC) Power Requirements
- MX2000 High-Voltage Universal PDM (MX2K-PDM-HV) Power Cord Specifications
- MX2000 Router High-Voltage Universal (HVAC/HVDC) Power Subsystem Electrical Specifications
- Determining High-Voltage Universal (HVAC/HVDC) Power Requirements for Your MX2010 Router
- High-Voltage Universal (HVAC/HVDC) Power Circuit Breaker Requirements for the MX2000 Router
-
- play_arrow Initial Installation and Configuration
- play_arrow Installation Overview
- Installing an MX2010 Router Overview
- Tools and Parts Required to Unpack the MX2010 Router
- Tools Required to Install the MX2010 Router Using a Pallet Jack
- Tools Required to Install the MX2010 Router Using a Router Transport Kit
- Tools and Parts Required to Maintain the MX2010 Hardware Components
- Tools and Parts Required for Connecting an MX2000 Router to Power
- Tools and Parts Required for MX2010 Router Connections
- play_arrow Unpacking the Router
- play_arrow Installing the Mounting Hardware
- play_arrow Installing the Router
- Removing Components from the MX2010 Router Chassis Before Installing It in a Rack
- Installing an MX2010 Router Using a Pallet Jack Overview
- Installing the Pallet Jack Attachment
- Installing the MX2010 Router Using a Pallet Jack with Attachment
- Installing an MX2010 Router Using a Router Transport Kit Overview
- Installing the Router Transport Kit on the MX2010 Router
- Securing the MX2010 Router to the Router Transport Platform
- Using the Router Transport Kit to Install the MX2010 Router in a Four-Post Rack
- Using the Router Transport Kit to Install the MX2010 Router in an Open-Frame Rack
- Reinstalling Components in the MX2000 Router After Initially Installing the Router in a Rack
- play_arrow Connecting the Router to Power
- Grounding an MX2000 Router
- Connecting AC Power to an MX2000 Router with Three-Phase Delta AC Power Distribution Modules
- Connecting AC Power to an MX2000 Router with Three-Phase Wye AC Power Distribution Modules
- Connecting Power to an MX2000 Single-Phase AC Power Distribution Module
- Mapping Input Power from AC Power Distribution Modules to AC Power Supply Modules on MX2000 Routers
- Connecting Power to a DC-Powered MX2010 Router with Power Distribution Modules (-48 V)
- Connecting Power to a DC-Powered MX2000 Router with DC Power Distribution Modules (240 V China)
- Connecting Power to a High Voltage-Powered MX2000 Router with Power Distribution Modules
- Connecting an MX2000 DC Router Power Distribution Module (-48 V) Cable
- Connecting an MX2000 DC Router Power Distribution Module (240 V China) Cable
- Powering On the DC-Powered MX2010 Router
- Powering On the DC-Powered (240 V China) MX2000 Router
- Powering On the High-Voltage Powered Universal (HVAC/HVDC) MX2000 Router
- Powering On a Three-Phase AC-Powered MX2000 Router
- play_arrow Connecting the Router to the Network
- Connecting the MX2010 Router to Management and Alarm Devices
- Connecting the MX2010 Router to a Network for Out-of-Band Management
- Connecting an MX2000 Router to a Console or Auxiliary Device
- Connecting an MX2010 Router to an External Alarm-Reporting Device
- Connecting the Alarm Relay Wires to the MX2010 Craft Interface
- Disconnecting the Alarm Relay Wires from the MX2010 Craft Interface
- Connecting MPC or MIC Cables to the MX2010 Router
- Register Products—Mandatory to Validate SLAs
- play_arrow Initially Configuring the Router
-
- play_arrow Installing and Replacing Components
- play_arrow Installing Components
- Installing an MX2010 Adapter Card
- Installing the MX2010 Air Filter
- Installing the MX2010 Craft Interface
- Installing the MX2010 Standard DC Cable Manager
- Installing an MX2000 Router DC Power Distribution Module (-48 V)
- Installing an MX2000 Router DC Power Distribution Module (240 V China)
- Installing an MX2000 Router High-Voltage Universal (HVAC/HVDC) Power Distribution Module
- Installing an MX2010 DC Power Supply Module (-48 V)
- Installing MX2000 Router DC Power Supply Modules (240 V China)
- Installing MX2000 Router High-Voltage Universal (HVAC/HVDC) Power Supply Modules
- Installing an MX2010 Dual-Wide MIC
- Installing the MX2010 Standard EMI Cover
- Installing the MX2010 Extended EMI Cover
- Installing an MX2010 Fan Tray
- Installing the MX2010 Air Baffle
- Installing the MX2010 Standard Cable Manager
- Installing the MX2010 Extended Cable Manager
- Installing the MX2010 Extended DC Cable Manager
- Installing an MX2010 MIC
- Installing an MX2000 SFB
- Installing an MX2010 CB-RE
- Installing MX2000 Router AC Power Supply Modules
- Installing MX2000 Router DC Power Supply Modules (-48 V)
- Installing an MX2000 Router Three-Phase Delta AC Power Distribution Module
- Installing an MX2000 Router Three-Phase Wye AC Power Distribution Module
- Installing an MX2000 Single-Phase AC Power Distribution Module
- Installing an SFP or XFP into an MX2000 MPC or MIC
- play_arrow Replacing Components
- Tools and Parts Required for Replacing MX2010 Hardware Components
- Tools and Parts Required to Remove Components from an MX2010 Router
- Removing a CB-RE from an MX2000 Router
- Upgrading to the Control Board-Routing Engine REMX2K-X8-64G in a Redundant Host Subsystem
- Upgrading to the REMX2K-X8-64G CB-RE in a Nonredundant Host Subsystem
- Replacing a Cable on an MX2010 MPC or MIC
- Replacing the MX2010 Air Filters
- Replacing the MX2010 Standard Cable Managers
- Replacing the MX2010 Extended Cable Manager
- Replacing the MX2010 Craft Interface
- Replacing an MX2010 DC Power Supply Module (-48 V)
- Replacing an MX2000 DC Power Supply Module (240 V China)
- Replacing an MX2000 High-Voltage Second-Generation Universal (HVAC/HVDC) Power Supply Module
- Replacing an MX2000 DC Power Distribution Module (-48 V)
- Replacing an MX2000 DC Power Distribution Module (240 V China)
- Replacing an MX2000 High-Voltage Universal (HVAC/HVDC) Power Distribution Module
- Replacing an MX2010 DC Power Distribution Module Cable
- Connecting an MX2000 DC Router Power Distribution Module (240 V China) Cable
- Replacing the MX2010 Standard EMI Cover
- Replacing the MX2010 Extended EMI Cover
- Replacing an MX2010 Fan Tray
- Replacing the MX2010 Air Baffle
- Replacing an MX2010 MIC
- Replacing an MX2010 MPC and Adapter Card
- Replacing an MX2000 SFB
- Replacing an MX2000 CB-RE
- Replacing an SFP or XFP Transceiver on an MX2010 MPC or MIC
- Replacing an MX2000 AC Power Supply Module
- Replacing an MX2010 Three-Phase Delta AC Power Cord
- Replacing an MX2000 Three-Phase Delta AC Power Distribution Module
- Replacing an MX2010 Three-Phase Wye AC Power Cord
- Replacing an MX2020 Three-Phase Wye AC Power Distribution Module
-
- play_arrow Maintaining the Chassis and Components
- play_arrow Maintaining Components
- Maintaining the MX2010 Adapter Cards
- Maintaining Cables That Connect to MX2010 MPCs or MICs
- Maintaining and Verifying the Status of the MX2010 Router Components
- Maintaining the MX2010 Air Filters
- Maintaining the MX2010 Air Vents
- Maintaining the MX2010 Chassis FRU Power-On Sequence
- Maintaining the MX2010 Control Boards
- Maintaining the MX2010 Cooling System Components
- Maintaining the MX2010 Cooling System Zones
- Maintaining the MX2010 Ethernet Switch
- Maintaining the MX2010 Fan Trays
- Maintaining the MX2010 Air Baffle
- Maintaining the MX2010 Host Subsystem
- Maintaining MX2010 MICs
- Maintaining MX2010 MPCs
- Maintaining MX2010 Packet Forwarding Engine Components
- Maintaining the Power Supply Modules on the MX2000 Line of Routers
- Maintaining the MX2010 Power Usage
- Converting an MX2000 Router Between AC and DC Power
- Maintaining the MX2010 Routing Engines
- Maintaining the MX2010 SFB
- Maintaining the MX2010 Switch Processor Mezzanine Board (SPMB)
- Maintaining and Verifying the MX2010 Router Version
- Maintaining and Verifying the Status of the MX2010 Craft Interface
- Taking an MX2000 Host Subsystem Offline
- Holding an MX2010 MPC
- Storing an MX2010 MPC
- Routine Maintenance Procedures for the MX2010 Router
- play_arrow Packing and Returning Components
- play_arrow Powering Off the Router
-
- play_arrow Troubleshooting Hardware
- play_arrow Contacting Customer Support and Returning the Chassis or Components
- play_arrow Contacting Customer Support
- play_arrow Locating Component Serial Numbers
- Displaying MX2010 Router Components and Serial Numbers
- MX2010 CB-RE Serial Number Label
- MX2010 Chassis Serial Number Label
- MX2010 Craft Interface Serial Number Label
- MX2010 Fan Tray Serial Number Label
- MX2010 MIC Serial Number Label
- MX2010 MPC Serial Number Label
- MX2010 Power Distribution Module Serial Number Label
- MX2010 Power Supply Module Serial Number Label
- MX2010 SFB Serial Number Label
- play_arrow Packing and Returning Components
-
- play_arrow Safety and Compliance Information
- play_arrow General Safety Guidelines and Warnings
- play_arrow Installation and Maintenance Safety Guidelines and Warnings
- play_arrow Radiation and Laser Warnings
- play_arrow Maintenance and Operational Safety Guidelines and Warnings
- play_arrow Electrical Safety Guidelines and Warnings
- General Electrical Safety Guidelines and Warnings
- Prevention of Electrostatic Discharge Damage
- AC Power Electrical Safety Guidelines
- AC Power Disconnection Warning
- DC Power Copper Conductors Warning
- DC Power Disconnection Warning
- DC Power Grounding Requirements and Warning
- DC Power Wiring Sequence Warning
- DC Power Wiring Terminations Warning
- Midplane Energy Hazard Warning
- Multiple Power Supplies Disconnection Warning
- Action to Take After an Electrical Accident
- play_arrow Agency Approvals and Compliance Statements
-
MX2010 High-Voltage Universal (HVAC/HVDC) Power Supply Module Description
The MX2008, MX2010, and MX2020 routers support the same power modules AC, DC, 240 V China, and universal PSMs and PDMs.
The MX2010 supports a universal HVAC/HVDC power system. The HVAC/HVDC power system operates with nine feeds. A total of nine feeds are required to fully power the MX2010. Another nine feeds are required to provide feed redundancy (a total of 18 feeds In the HVAC/HVDC power configuration, the router contains up to nine HVAC/HVDC PSMs located at the rear of the chassis in slots PSM0 through PSM8, (left to right). The HVAC/HVDC PSMs in slots PSM0 through PSM8 provide power to the all router components including MPCs in slot 0 through 9, CB-REs in slot 0 and 1, SFBs in slot 0 through 7, and fan trays 0, 1, 2, and 3.
The MX2010 systems configured for universal (HVAC/HVDC) input power must use only universal PDMs and PSMs. AC, DC, 240 V China, and universal PSMs or PDMs must not be mixed within a single system.
Up to nine PSMs may be connected in parallel to increase available system power across MPCs as needed and provide redundancy. Figure 1 shows the universal PSM.

The HVAC/HVDC power system is feed redundant. Each universal PSM can be connected to two separate feeds from different sources that are used to provide feed redundancy. The PSM has two independent power trains connected in parallel at the output while each input is connected to its own feed. Power always is drawn from both feeds. There are two PDMs per power system capable of carrying nine feeds each. The bottom PDM in each power cage provides power to INP0 of all PSMs installed in the cage, while top PDM in each power cage provides power to INP1 of all PSMs installed in the cage. Feed connection to the PDMs should be done according to standard TIA-942 “Telecommunications Infrastructure Standard for Data” depending on tiering level. The primary input of the PSM is a dual-redundant feed, INP0 and INP1. Both feeds are active during operation, and always carry current. Two dual-position DIP switches accessible from front panel indicate whether respective input INP0 or INP1 is expected to be connected or not. Set the input mode DIP switch to the on or off position to determine the power supply feeds (see Table 1 and Figure 2). In addition, a PSM failure triggers the alarm LED on the craft interface. Each PDM has an LED per feed indicating whether the feed is active or not, or whether the feed is connected properly. See MX2010 High-Voltage Universal (HVAC/HVDC) Power Supply Module Description.
Switch Location Left (Input 0) | Switch Location Middle (Input 1) | Input Source |
---|---|---|
Off | Off | None are expected to be connected. |
On | Off | Only input (0) is expected to be connected. |
Off | On | Only input( 1) is expected to be connected. |
On | On | Both input 0 and input 1 are expected to be connected. |

The universal HVAC/HVDC PSM has one more (third) DIP input switch accessible from the front panel, see Figure 2. This switch indicates the PSM in the system is using the universal (MX2K-PDM-HV) PDM that has 30 A rated power cord. This should be in the ON position.
Switch Location Right (Input 2) | Meaning |
On. See Figure 2. | PSM is using the universal HVAC/HVDC PDM that has 30 A-rated power cord. Note: The switch must be in the On position for proper operation. |