Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?

 
 

MPLS LSP 的节点和路径保护

MPLS 和流量保护

通常,当 LSP 发生故障时,故障上游的路由器会向入口路由器发出中断信号。入口路由器计算到出口路由器的新路径,建立新的 LSP,然后将流量从故障路径定向到新路径。此重新路由过程可能非常耗时且容易失败。例如,传入路由器的中断信号可能会丢失,或者新路径可能需要很长时间才能启动,从而导致数据包丢失次数显著。Junos OS 提供了几种补充机制来防止 LSP 故障:

  • 备用辅助路径 - 您可以配置主路径和辅助路径。您可以使用语句 standby 配置辅助路径。要激活流量保护,只需在入口路由器上配置这些备用路径。如果主路径发生故障,入口路由器会立即将流量从故障路径重新路由到备用路径,这样就无需计算新路由并发出新路径信号。有关配置备用 LSP 的信息,请参阅 为 LSP 配置辅助路径的热备用

  • 快速重新路由 — 您可以在 LSP 上配置快速重新路由,以最大程度地减少 LSP 故障的影响。快速重新路由使故障上游的路由器能够绕过故障快速路由到故障下游的路由器。然后,上游路由器向入口路由器发出中断信号,从而在建立新的 LSP 之前保持连接。有关快速重新路由的详细概述,请参阅 快速重新路由概述。有关配置快速重新路由的信息,请参阅 配置快速重新路由

  • 链路保护 — 您可以配置链路保护,以帮助确保在此接口发生故障时,从一个路由器遍历特定接口到另一个路由器的流量可以继续到达其目标。为接口配置链路保护并为遍历此接口的 LSP 配置链路保护时,将创建一个旁路 LSP,以便在接口发生故障时处理此流量。旁路 LSP 使用不同的接口和路径到达同一目标。有关配置链路保护的信息,请参阅 在 LSP 使用的接口上配置链路保护

在 LSP 上配置备用辅助路径以及快速重新路由或链路保护时,将启用完全流量保护。当 LSP 中发生故障时,故障上游的路由器会围绕故障路由流量,并将故障通知入口路由器。这种重新路由使流量保持流动,同时等待入口路由器处理通知。收到故障通知后,入口路由器会立即将流量从修补的主路径重新路由到更理想的备用路径。

快速重新路由和链路保护可提供类似类型的流量保护。这两种功能都提供快速转移服务,并采用类似的设计。RFC 4090“ LSP 隧道的 RSVP-TE 快速重新路由扩展”中介绍了快速重新路由和链路保护。但是,您只需要配置其中一个。尽管您可以同时配置两者,但这样做几乎没有好处(如果有的话)。

节点链路保护概述

节点链路保护(多对一或设施备份)扩展了链路保护的功能,并提供与快速重新路由略有不同的保护。链路保护对于在特定链路发生故障时选择到同一路由器的备用路径很有用,而快速重新路由可以保护 LSP 整个路径上的接口或节点,而节点链路保护可建立绕过 LSP 路径中特定节点的旁路路径。

为 LSP 启用节点链路保护时,还必须在路径中的所有 RSVP 接口上启用链路保护。启用后,将建立以下类型的旁路路径:

  • 下一跳旁路 LSP — 为 LSP 提供到达相邻路由器的备用路由。当您启用节点链路保护或链路保护时,将建立这种类型的旁路路径。

  • 下一跳旁路 LSP — 为 LSP 提供通过相邻路由器到目标路由器的备用路由。这种类型的旁路路径仅在配置节点链路保护时建立。

图 1 说明了本主题中使用的 MPLS 网络拓扑示例。示例网络使用 OSPF 作为内部网关协议 (IGP) 和策略来创建流量。

图 1: 节点链路保护节点链路保护

中的 图 1 MPLS 网络说明了一种纯路由器网络,该网络由 和 、 (lsp2-r1-to-r5) 以及 和 R0R5()lsp1-r6-to-r0 之间的R1R6单向 LSP 组成。两个 LSP 都配置了通过接口 fe-0/1/0的严格路径。

在 中图 1所示的网络中,两种类型的旁路路径都是围绕受保护节点R2).预先建立的( 下一跃点旁路路径通过 来避开接口 fe-0/1/0R7,下一跃点旁路路径通过通过 和 R9R4来完全R7避免R2接口。两条旁路路径由遍历故障链路或节点的所有受保护 LSP 共享(许多 LSP 受一条旁路路径保护)。

节点链路保护(多对一或设施备份)允许节点故障上游的路由器使用备用节点将流量转发到其下游邻居。这是通过预先建立一条旁路路径来实现的,该路径由遍历故障链路的所有受保护 LSP 共享。

发生中断时,紧接中断上游的路由器会将受保护的流量交换机到旁路节点,然后向入口路由器发出故障信号。与快速重新路由一样,节点链路保护提供本地修复,恢复连接的速度快于入口路由器建立备用辅助路径或发出新主 LSP 信号的速度。

节点链路保护适用于以下情况:

  • 需要保护下游链路和节点。

  • 要保护的 LSP 数量很多。

  • 满足旁路路径的路径选择标准(优先级、带宽和链路着色)不太重要。

  • 不需要对单个 LSP 进行粒度控制。

路径保护概述

路径保护的主要优点是控制故障后流量的去向,并与快速重新路由(一对一备份或链路保护)结合使用时将数据包丢失降至最低。路径保护是在标签交换路径 (LSP) 中配置两种类型的路径:正常操作中使用的主路径和主发生故障时使用的辅助路径,如 所示 图 2

在 中图 2,由八个路由器组成的 MPLS 网络在 和 R5 之间R1有一条主路径,该路径受 和 R5之间的R1辅助路径保护。当检测到故障(例如接口关闭事件)时,系统会向入口路由器发送资源预留协议 (RSVP) 错误消息,该路由器会将流量切换到辅助路径,从而维护流量。

图 2: 路径保护路径保护

 

如果辅助路径已预先发出信号或处于待机状态,则故障恢复时间比辅助路径未预先发出信号时要快。当辅助路径未预先发出信号时,会发生呼叫建立延迟,在此期间将建立 LSP 的新物理路径,从而延长恢复时间。如果主路径中的故障得到纠正,并且在几分钟的等待时间后,入口路由器会将流量从辅助路径切换回主路径。

由于路径保护由入口路由器为整个路径提供,因此可能存在一些缺点,例如重复预订资源和不必要的链路保护。通过一次保护一个资源,本地保护可以弥补这些缺点。

在 MPLS 网络中配置路径保护(CLI 过程)

在 EX 系列交换机上实施 MPLS 的 Junos OS 提供路径保护,作为一种防止标签交换路径 (LSP) 故障的机制。路径保护可减少在 MPLS 隧道内发生故障时重新计算路由所需的时间。您可以在 MPLS 网络中的入口提供商边缘交换机上配置路径保护。请勿为出口提供商边缘交换机或提供商交换机配置路径保护。您可以显式指定用于主路径和辅助路径的提供商交换机,也可以让软件自动计算路径。

在配置路径保护之前,请确保您已:

要配置路径保护,请在入口提供商边缘交换机上完成以下任务:

配置主路径

primary 语句创建主路径,这是 LSP 的首选路径。如果主路径无法再到达出口提供商边缘交换机,则该语句将 secondary 创建备用路径。

在本主题描述的任务中, lsp-name 入口提供商边缘交换机 lsp_to_240 上的 已配置为 ,远程提供商边缘交换机上的环路接口地址已配置为 127.0.0.8

当软件从主路径切换到辅助路径时,它会不断尝试恢复到主路径,并在再次可访问时切换回主路径,但不早于语句中 revert-timer 指定的时间。

您可以配置零个主路径或一个主路径。如果未配置主路径,则会选择第一个辅助路径(如果已配置辅助路径)作为路径。如果未指定任何命名路径,或者指定的路径为空,软件将做出数据包到达出口提供商边缘交换机所需的所有路由决策。

要配置主路径:

  1. 为 LSP 创建主路径:

  2. 通过指定环路接口的 IP 地址或 MPLS 隧道中使用的每台交换机的交换机 IP 地址或主机名,为主路径配置显式路由。可以将链接类型指定为 strictloose 在每个语句中 path 。如果链路类型为 strict,LSP 必须转到语句中 path 指定的下一个地址,而不遍历其他交换机。如果链路类型为 loose,则 LSP 可以在到达此交换机之前遍历其他交换机。此配置使用路径的默认 strict 指定。

    注:

    您可以启用路径保护,而无需指定使用哪些提供商交换机。如果未列出要用于 MPLS 隧道的特定提供商交换机,交换机将计算路由。

    提示:

    请勿在这些语句中包含入口提供程序边缘交换机。按顺序列出环路接口的 IP 地址或所有其他交换机跃点的交换机地址或主机名,以出口提供商边缘交换机结尾。

配置辅助路径

您可以配置零个或多个辅助路径。所有辅助路径都是相等的,软件会按照配置中列出的顺序进行尝试。软件不会尝试在辅助路径之间切换。如果配置中的第一个辅助路径不可用,则尝试下一个辅助路径,依此类推。若要创建一组相等路径,请指定辅助路径而不指定主路径。如果未指定任何命名路径,或者指定的路径为空,软件将做出到达出口提供商边缘交换机所需的所有路由决策。

要配置辅助路径,请执行以下操作:

  1. 为 LSP 创建辅助路径:

  2. 通过指定环路接口的 IP 地址或 MPLS 隧道中使用的每台交换机的交换机 IP 地址或主机名,为辅助路径配置显式路由。可以将链接类型指定为 strictloose 在每个语句中 path 。此配置使用路径的默认 strict 指定。

    提示:

    请勿在这些语句中包含入口提供程序边缘交换机。按顺序列出环路接口的 IP 地址或所有其他交换机跃点的交换机地址或主机名,以出口提供商边缘交换机结尾。

配置恢复计时器

对于同时配置了主路径和辅助路径的 LSP,您可以选择配置恢复计时器。如果主路径关闭且流量切换到辅助路径,则恢复计时器指定 LSP 在将流量恢复到主路径之前必须等待的时间量(以秒为单位)。如果主路径在此期间遇到任何连接问题或稳定性问题,计时器将重新启动。

提示:

如果未显式配置还原计时器,则默认情况下将其设置为 60 秒。

要为配置了主路径和辅助路径的 LSP 配置恢复计时器,请执行以下操作:

  • 对于交换机上的所有 LSP:

  • 对于交换机上的特定 LSP:

防止使用以前失败的路径

如果配置通过网络的备用路径以防活动路径发生故障,则可能不希望流量恢复到故障路径,即使该路径不再出现故障也是如此。配置主路径时,流量会在故障期间切换到辅助路径,并在返回时恢复为主路径。

有时,将流量切换回以前发生故障的主路径可能不是一个特别合理的主意。在这种情况下,请仅配置辅助路径,从而在第一个辅助路径发生故障时建立下一个配置的辅助路径。稍后,如果第一个辅助路径正常运行,Junos OS 将不会恢复到该路径,而是会继续使用第二个辅助路径。

使用标记的 BGP 配置 MPLS AS 间链路节点保护

示例:配置 MPLS AS 间链路节点保护

此示例说明如何在具有第 3 层 VPN 的 AS 间部署中配置尾端保护。

要求

配置此示例之前,不需要除设备初始化之外的特殊配置。

概述

在 中 图 4,自治系统边界路由器 (ASBR) 将外部 BGP (EBGP) 运行到另一个自治系统 (AS) 中的 ASBR,以交换 /32 IPv4 路由的标签。在 AS 内,内部 BGP (IBGP) 将路由传播到提供商边缘 (PE) 设备。

如果从设备 ASBR3 到设备 ASBR1 的链路断开,在 ASBR3 重新安装新的下一跃点之前,将从 AS 64511 通过 ASBR3-ASBR1 链路流向 AS 64510 的所有流量都将被丢弃。

此示例说明如何通过将设备 ASBR3 配置为通过设备 ASBR2 对备份路径进行预编程来实现快速流量恢复。

注:

此解决方案不处理设备 P3 到设备 ASBR3 故障。对于从 AS 64510 通过 ASBR3-ASBR1 链路流向 AS 645111的流量,它也不会处理设备 ASBR3 上的故障。此流量将被丢弃。

拓扑学
图 4: MPLS AS 间链路节点保护示例拓扑MPLS AS 间链路节点保护示例拓扑

配置

CLI 快速配置

要快速配置此示例,请复制以下命令,将其粘贴到文本文件中,删除所有换行符,更改与您的网络配置匹配所需的任何详细信息,然后将命令复制并粘贴到层次结构级别的 CLI [edit] 中。

设备 ASBR1

设备 ASBR2

设备 ASBR3

设备 CE1

设备 CE2

设备 P1

设备 P2

设备 P3

设备 PE1

设备 PE2

程序
分步过程

下面的示例要求您在各个配置层级中进行导航。有关导航 CLI 的信息,请参阅《Junos OS CLI 用户指南》中的在配置模式下使用 CLI 编辑器

要配置 EBGP 方案,请执行以下操作:

  1. 配置路由器接口。

  2. 配置内部网关协议 (IGP),例如 OSPF 或 IS-IS。

  3. 配置自治系统 (AS) 编号。

  4. 配置路由策略。

  5. 配置 EBGP 会话。

  6. 配置 IBGP 会话。

  7. 配置 MPLS。

  8. 配置信令协议。

结果

在配置模式下,输入 show interfacesshow protocolsshow policy-optionsshow routing-options命令确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明,以便进行更正。

如果完成设备配置,请从配置模式输入 commit

验证

确认配置工作正常。

检查 BGP 邻居会话
目的

验证是否已启用 BGP 保护。

操作
意义

输出显示已为 EBGP 对等方、设备 ASBR1 和设备 ASBR2 启用该 Protection 选项。

这也显示在屏幕输出中 NLRI configured with protection: inet-labeled-unicast

检查路由
目的

确保备份路径已安装在路由表中。

操作
意义

show route 命令将显示设备 PE1 的活动路径和备份路径。

为 BGP 信号第 2 层服务配置出口保护服务镜像

从 Junos OS 14.2 版开始,Junos OS 支持在出口 PE 节点中出现链路或节点故障时恢复出口流量。如果核心网络中出现链路或节点故障,可以在 PE 路由器之间的传输 LSP 上触发 MPLS 快速重新路由等保护机制,在几十毫秒内修复连接。出口保护 LSP 可解决网络边缘的节点链路故障(例如,PE 路由器故障)的问题。

图 1 显示了解释此功能的用例的简化拓扑。

图 5: 从路由器 PE1 到路由器 PE2 配置的出口保护 LSP从路由器 PE1 到路由器 PE2 配置的出口保护 LSP

CE1 是 PE1 和 PE2 的多宿主。有两条路径连接 CE1 和 CE2。工作路径为 CE2-PE3-P-PE1-CE1,通过伪线 PW21。保护路径为 CE2-PE3-P-PE2-CE1,通过伪线 PW22 正常情况量流经工作路径。当 CE1 和 CE2 之间的端到端 OAM 检测到工作路径上的故障时,流量将从工作路径切换到保护路径。端到端故障检测和恢复依赖于控制平面,因此应该相对较慢。为了实现更快的保护,应使用类似于 MPLS 快速重新路由使用的本地修复机制。在上面的图 1 中,如果核心网络中的链路或节点发生故障(如 P-PE1、P-PE3 上的链路故障或 P 上的节点故障),则 PE1 和 PE3 之间的传输 LSP 将发生 MPLS 快速重新路由。故障可以在几十毫秒内本地修复。但是,如果链路或节点故障发生在边缘(如 PE3-CE2 上的链路故障或 PE3 上的节点故障),则目前没有本地修复,因此我们必须依靠 CE1-CE2 端到端保护来修复故障。

  • 设备 CE2 — 流量源

  • 路由器 PE3 — 入口 PE 路由器

  • 路由器 PE1 — (主)出口 PE 路由器

  • 路由器 PE2 — 保护器 PE 路由器

  • 设备 CE1 — 流量目标

当 CE1 与 PE1 之间的链路断开时,PE1 会短暂地将该流量重定向到 CE1,再定向到 PE2。PE2 将其转发到 CE1,直到入口路由器 PE3 重新计算以将流量转发到 PE2。

最初交通方向是;CE2 – PE3 – P – PE1 – CE1。

当 CE1 – PE1 之间的链路中断时,流量将是;CE2 – PE3 – P – PE1 – PE2 –CE1。然后 PE3 重新计算路径;CE2 – PE3 – P – PE2 – CE1。

  1. 在 PE1、PE2 和 PE3 上配置 RSVP。
  2. 配置 MPLS。
  3. 将 PE1 设置为 primary 节点,将 PE2 设置为 protector 节点。
  4. 在 PE1 和 PE2 上启用 egress-protection
  5. 在 PE1、PE2 和 PE3 上配置 LDP 和 ISIS。
  6. 在 PE1、PE2 和 PE3 上配置负载平衡策略。
  7. 在 PE1、PE2 和 PE3 配置路由选项,以根据负载平衡策略导出路由。
  8. 在 PE1 上配置 BGP,以便从路由实例播发具有上下文 ID 的 nrli,作为下一跃点。
  9. 在 PE1、PE2 和 PE3 上配置 l2vpn

    在PE1:

    在PE2:

    在PE3:

示例:为 BGP 信号第 2 层服务配置 MPLS 出口保护服务镜像

从 Junos OS 14.2 版开始,Junos OS 支持在出口 PE 节点中出现链路或节点故障时恢复出口流量。如果核心网络中出现链路或节点故障,可以在 PE 路由器之间的传输 LSP 上触发 MPLS 快速重新路由等保护机制,在几十毫秒内修复连接。出口保护 LSP 可解决网络边缘的节点链路故障(例如,PE 路由器故障)的问题。

此示例说明如何为 BGP 信号第 2 层服务配置链路保护。

要求

运行 Junos OS 14.2 或更高版本的 MX 系列路由器。

概述

如果核心网络中出现链路或节点故障,可以在 PE 路由器之间的传输 LSP 上触发 MPLS 快速重新路由等保护机制,在几十毫秒内修复连接。出口保护 LSP 可解决网络边缘的节点链路故障(例如,PE 路由器故障)的问题。

此示例包括出口保护 LSP 配置所特有的以下配置概念和语句:

  • context-identifier— 指定用于定义参与出口保护 LSP 的一对 PE 路由器的 IPv4 或 IPv6 地址。它被分配给每个有序的主PE和保护器对,以方便保护建立。此地址是全局唯一的,或者在主 PE 和保护程序所在的网络的地址空间中是唯一的。

  • egress-protection— 为受保护的第 2 层电路配置保护器信息,并在层次结构级别配置保护器第 2 层电路 [edit protocols mpls] 。将 LSP 配置为层次结构级别的出口保护 LSP [edit protocols mpls]

  • protector— 配置在备份 PE 上创建备用伪线,以便为实例提供链路或节点保护。

拓扑学

图 6: 从路由器 PE1 到路由器 PE2 配置的出口保护 LSP从路由器 PE1 到路由器 PE2 配置的出口保护 LSP

如果出口 PE 路由器 PE1 发生故障,流量将切换到在路由器 PE1 和路由器 PE2 之间配置的出口保护 LSP(保护器 PE 路由器):

  • 设备 CE2 — 流量源

  • 路由器 PE3 — 入口 PE 路由器

  • 路由器 PE1 — (主)出口 PE 路由器

  • 路由器 PE2 — 保护器 PE 路由器

  • 设备 CE1 — 流量目标

当 CE1 与 PE1 之间的链路断开时,PE1 会短暂地将该流量重定向到 CE1,再定向到 PE2。PE2 将其转发到 CE1,直到入口路由器 PE3 重新计算以将流量转发到 PE2。

最初的交通方向是:CE2 – PE3 – P – PE1 – CE1。

当 CE1 与 PE1 之间的链路断开时,流量将为:CE2 – PE3 – P – PE1 – PE2 –CE1。然后,PE3 会重新计算路径:CE2 – PE3 – P – PE2 – CE1。

此示例说明如何配置路由器 PE1、PE2 和 PE3。

配置

CLI 快速配置

要快速配置出口保护 LSP,请复制以下命令,将其粘贴到文本文件中,删除所有换行符,更改任何必要的详细信息以匹配您的网络配置,将命令复制并粘贴到 CLI 中,然后从配置模式进入 commit

PE1

PE2

PE3

分步过程

分步过程

下面的示例要求您在各个配置层级中进行导航。有关导航 CLI 的信息,请参阅 在配置模式下使用 CLI 编辑器

要为路由器 PE1 配置出口保护 LSP,请执行以下操作:

  1. 配置 RSVP。

  2. 将 MPLS 配置为使用出口保护 LSP 来防止设备 CE1 发生链路故障。

  3. 配置 BGP。

  4. 配置 IS-IS。

  5. 配置 LDP。

  6. 配置负载均衡策略。

  7. 配置路由选项以根据负载平衡策略导出路由。

  8. 将 BGP 配置为从路由实例播发 nrli,并将上下文 ID 作为下一跃点。

  9. 配置 l2vpn 实例以使用配置的出口 LSP。

  10. 如果完成设备配置,请从配置模式输入 commit

分步过程

要为路由器 PE2 配置出口保护 LSP,请执行以下操作:

  1. 配置 RSVP。

  2. 配置 MPLS 和充当出口保护 LSP 的 LSP。

  3. 配置 BGP。

  4. 配置 IS-IS。

  5. 配置 LDP。

  6. 配置负载均衡策略。

  7. 配置路由选项以根据负载平衡策略导出路由。

  8. 将 BGP 配置为从路由实例播发 nrli,并将上下文 ID 作为下一跃点。

  9. 配置 l2vpn 实例以使用配置的出口 LSP。

  10. 如果完成设备配置,请从配置模式输入 commit

分步过程

要为路由器 PE3 配置出口保护 LSP,请执行以下操作:

  1. 配置 RSVP。

  2. 配置 MPLS。

  3. 配置 BGP。

  4. 配置 IS-IS。

  5. 配置 LDP。

  6. 配置负载均衡策略。

  7. 配置路由选项以根据负载平衡策略导出路由。

  8. 将 BGP 配置为从路由实例播发具有上下文 ID 的 nlri 作为下一跃点。

  9. 配置 l2vpn 以指定连接到站点的接口以及您希望指定接口连接到的远程接口。

  10. 如果完成设备配置,请从配置输入 commit

结果

在配置模式下,输入 show protocolsshow policy-optionsshow routing-options 命令,确认路由器 PE1 上的配置。如果输出未显示预期的配置,请重复此示例中的说明,以便进行更正。

在配置模式下,输入 show protocolsshow policy-optionsshow routing-options 命令,确认路由器 PE2 上的配置。如果输出未显示预期的配置,请重复此示例中的说明,以便进行更正。

在配置模式下,输入 show protocolsshow policy-optionsshow routing-options 命令,确认路由器 PE3 上的配置。如果输出未显示预期的配置,请重复此示例中的说明,以便进行更正。

验证

确认配置工作正常。

验证 L2VPN 配置

目的

验证 LSP 是否受连接保护逻辑保护。

操作

在操作模式下,运行 show l2vpn connections extensive 命令。

意义

Egress Protection: Yes 输出显示给定的 PVC 受连接保护逻辑保护。

验证路由实例详细信息

目的

验证在主服务器上配置的路由实例信息和上下文标识符,在节点链路发生故障时用作下一跃点地址。

操作

在操作模式下,运行 show route foo detail 命令。

意义

上下文 ID 设置为 198.51.100.3 ,输出 Vrf-import: [ __vrf-import-foo-internal__] 中提及用于重写下一跃点地址的策略。

验证 IS-IS 配置

目的

验证 IS-IS 上下文标识符信息。

操作

在操作模式下,运行 show isis context-identifier detail 命令。

意义

路由器 PE2 是保护程序,配置的上下文标识符用于 MPLS 协议。

验证 MPLS 配置

目的

验证主 PE 和保护器 PE 上的上下文标识符详细信息。

操作

在操作模式下,运行 show mpls context-identifier detail 命令。

意义

上下文 ID 为 198.51.100.3,通告模式为 alias,为出口保护创建的 MPLS 表为 __198.51.100.3__.mpls.0,出口实例名称为 foo,类型为 local-l2vpn

示例:使用 PLR 作为保护器配置第 3 层 VPN 出口保护

此示例说明当客户与服务提供商多宿主时,如何在第 3 层 VPN 的出口处配置快速服务恢复。

从 Junos OS 15.1 版开始,增强的本地修复点 (PLR) 功能解决了出口节点保护的特殊场景,其中 PLR 和保护器作为一个路由器位于同一位置。在这种情况下,在本地修复期间无需绕过 LSP 重新路由流量。相反,PLR 或保护程序可以将流量直接发送到目标 CE(在主机托管保护程序模型中,PLR 或保护程序也是直接连接到 CE 的备用 PE)或备份 PE(在集中式保护程序模型中,备份 PE 是单独的路由器)。

要求

配置此示例之前,不需要除设备初始化之外的特殊配置。

此示例需要 Junos OS 15.1 或更高版本。

概述

作为出口节点保护的特殊方案,如果路由器既是保护程序又是 PLR,则会安装备份下一跃点以保护传输 LSP。特别是,它不需要旁路 LSP 进行本地维修。

在主机托管保护器模型中,PLR 或保护器通过备用交流直接连接到 CE,而在集中式保护器模型中,PLR 或保护器具有到备用 PE 的 MPLS 隧道。在任何一种情况下,PLR 或保护程序都将安装带有标签的备份下一跃点,然后在表中进行查找 context label ,即 __context__.mpls.0. 当出口节点发生故障时,PLR 或保护程序会将流量切换到 PFE 中的此备份下一跃点。将弹出数据包的外部标签(传输 LSP 标签),并在 中 __context__.mpls.0查找内部标签(出口节点分配的第 3 层 VPN 标签),从而将数据包直接转发到 CE(在并置保护程序模型中)或备份 PE(在集中式保护程序模型中)。

拓扑学

图 7 显示了示例网络。

图 7: 并置保护器模型中的同地 PLR 和保护器并置保护器模型中的同地 PLR 和保护器

配置

CLI 快速配置

要快速配置此示例,请复制以下命令,将其粘贴到文本文件中,删除所有换行符,更改与您的网络配置匹配所需的任何详细信息,然后将命令复制并粘贴到层次结构级别的 CLI [edit] 中。

设备 CE1

设备 PE1

设备 P

设备 PE2

设备 PE3

设备 CE2

配置设备 CE1

分步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅《Junos OS CLI 用户指南》中的在配置模式下使用 CLI 编辑器

  1. 配置接口。

配置设备 PE1

分步过程
  1. 配置接口。

  2. 配置自治系统 (AS) 编号。

  3. 配置 RSVP。

  4. 启用 MPLS。

  5. 配置 BGP。

  6. 启用 IS-IS。

  7. (可选)配置 OSPF

  8. 配置路由实例。

  9. 配置路由策略。

配置设备 P

分步过程
  1. 配置设备接口。

  2. 启用 IS-IS。

  3. 启用 MPLS。

  4. 配置 RSVP。

  5. (可选)配置 OSPF。

配置设备 PE2

分步过程
  1. 配置接口。

  2. 配置自治号码 (AS)。

  3. 配置 RSVP。

  4. 配置 MPLS。

  5. 配置 BGP。

  6. 配置 IS-IS。

  7. (可选)配置 OSPF。

  8. 配置路由策略。

  9. 配置路由实例。

配置设备 PE3

分步过程
  1. 配置接口。

  2. 配置自治号码 (AS)。

  3. 配置 RSVP。

  4. 配置 MPLS。

  5. 配置 BGP。

  6. 配置 IS-IS。

  7. (可选)配置 OSPF。

  8. 配置路由实例。

配置设备 CE2

分步过程
  1. 配置接口。

结果

在配置模式下,输入 show interfacesshow protocols 命令,以确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明,以便进行更正。

设备 CE1

设备 PE1

设备 P

设备 PE2

设备 PE3

设备 CE2

验证

验证路由实例

目的

检查路由表中的路由。

操作

检查上下文标识符路由

目的

检查有关上下文标识符 (10.1.1.1) 的信息。

操作

了解 EX 系列交换机上的 MPLS 和路径保护

适用于瞻博网络 EX 系列以太网交换机的 Junos OS MPLS 提供路径保护,保护您的 MPLS 网络免受标签交换路径 (LSP) 故障的影响。

默认情况下,LSP 从入口提供商边缘交换机逐跳路由自身,通过提供商交换机路由到出口提供商边缘交换机。LSP 通常遵循本地路由表指示的最短路径,通常采用与基于目标的尽力而为流量相同的路径。这些路径本质上是“软”路径,因为每当路由表或节点或链路的状态发生更改时,它们都会自动重新路由。

通常,当 LSP 发生故障时,故障上游的交换机会向入口提供商边缘交换机发出中断信号。入口提供商边缘交换机计算到出口提供商边缘交换机的新路径,建立新的 LSP,然后将流量从故障路径定向到新路径。此重新路由过程可能非常耗时且容易失败。例如,发往入换机的中断信号可能会丢失,或者新路径可能需要很长时间才能启动,从而导致数据包丢失次数显著。

您可以通过在入换机上配置主路径和辅助路径来配置路径保护。如果主路径发生故障,入换机会立即将流量从故障路径重新路由到备用路径,从此,入换机无需计算新路由并发出新路径信号。有关配置备用 LSP 的信息,请参阅在 MPLS 网络中配置路径保护(CLI 过程)。

验证 MPLS 网络中的路径保护

要验证 EX 系列交换机上的路径保护是否正常工作,请执行以下操作:

验证主路径

目的

验证主路径是否正常运行。

操作

意义

如输出中的所示 ActivePath ,LSP primary_path_lsp_to_240 处于活动状态。

验证启用 RSVP 的接口

目的

验证启用了资源预留协议 (RSVP) 的接口和数据包统计信息的状态。

操作

意义

此输出验证 RSVP 是否已启用并在接口 ge-0/0/20.0上运行。

验证辅助路径

目的

验证是否已建立辅助路径。

操作

停用对主路径至关重要的交换机,然后发出以下命令:

意义

如输出中的所示 ActivePath ,LSP secondary_path_lsp_to_240 处于活动状态。

变更历史表

是否支持某项功能取决于您使用的平台和版本。 使用 Feature Explorer 查看您使用的平台是否支持某项功能。

版本
说明
15.1
从 Junos OS 15.1 版开始,增强的本地修复点 (PLR) 功能解决了出口节点保护的特殊场景,其中 PLR 和保护器作为一个路由器位于同一位置。在这种情况下,在本地修复期间无需绕过 LSP 重新路由流量。
14.2
从 Junos OS 14.2 版开始,Junos OS 支持在出口 PE 节点中出现链路或节点故障时恢复出口流量。
14.2
从 Junos OS 14.2 版开始,Junos OS 支持在出口 PE 节点中出现链路或节点故障时恢复出口流量。