- play_arrow Subscriber Service Activation and Management
- play_arrow Subscriber Service Activation and Management
-
- play_arrow Configuring Dynamic Filters and Policers
- play_arrow Dynamic Firewall Filters Overview
- play_arrow Configuring Static Firewall Filters That Are Dynamically Applied
- play_arrow Streamlining Processing of Chains of Static Filters
- play_arrow Dynamically Attaching Static or Fast Update Filters to an Interface
- play_arrow Configuring Filters That Are Created Dynamically
- Parameterized Filters Overview
- Unique Identifiers for Firewall Variables
- Configuring Unique Identifiers for Parameterized Filters
- Sample Dynamic-Profile Configuration for Parameterized Filters
- Dynamic Profile After UID Substitutions for Parameterized Filters
- Multiple Parameterized Filters
- Parameterized Filter Processing Overview
- Parameterized Filters Configuration Considerations
- Guidelines for Creating and Applying Parameterized Filters for Subscriber Interfaces
- Parameterized Filter Match Conditions for IPv4 Traffic
- Parameterized Filter Match Conditions for IPv6 Traffic
- Parameterized Filter Nonterminating and Terminating Actions and Modifiers
- Firewall Filter Match Conditions for Protocol-Independent Traffic in Dynamic Service Profiles
- Firewall Filter Terminating and Nonterminating Actions for Protocol-Independent Traffic in Dynamic Service Profiles
- Interface-Shared Filters Overview
- Dynamically Attaching Filters Using RADIUS Variables
- Example: Implementing a Filter for Households That Use ACI-Based VLANs
- Example: Dynamic-Profile Parsing
- Example: Firewall Dynamic Profile
- Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber
- play_arrow Using Ascend Data Filters to Implement Firewalls Based on RADIUS Attributes
- Ascend-Data-Filter Policies for Subscriber Management Overview
- Ascend-Data-Filter Attribute Fields
- Dynamically Applying Ascend-Data-Filter Policies to Subscriber Sessions
- Example: Configuring Dynamic Ascend-Data-Filter Support for Subscriber Access
- Example: Configuring Static Ascend-Data-Filter Support for Subscriber Access
- Verifying and Managing Dynamic Ascend-Data-Filter Policy Configuration
- play_arrow Configuring Fast Update Filters to Provide More Efficient Processing Over Classic Static Filters
- Fast Update Filters Overview
- Basic Fast Update Filter Syntax
- Configuring Fast Update Filters
- Example: Configuring Fast Update Filters for Subscriber Access
- Match Conditions and Actions in Fast Update Filters
- Configuring the Match Order for Fast Update Filters
- Fast Update Filter Match Conditions
- Fast Update Filter Actions and Action Modifiers
- Configuring Terms for Fast Update Filters
- Configuring Filters to Permit Expected Traffic
- Avoiding Conflicts When Terms Match
- Associating Fast Update Filters with Interfaces in a Dynamic Profile
- play_arrow Defending Against DoS and DDoS Attacks Using Unicast RPF and Fail Filters
- play_arrow Improving Scaling and Performance of Filters on Static Subscriber Interfaces
- play_arrow Configuring Dynamic Service Sets
- play_arrow Configuring Rate-Limiting Premium and Non-Premium Traffic on an Interface Using Hierarchical Policers
- play_arrow Monitoring and Managing Firewalls for Subscriber Access
-
- play_arrow Configuring Dynamic Multicast
- play_arrow Configuring Dynamic IGMP to Support IP Multicasting for Subscribers
- play_arrow Configuring Dynamic MLD to Enable Subscribers to Access Multicast Networks
-
- play_arrow Configuring Application-Aware Policy Control and Reporting
- play_arrow Configuring Application-Aware Policy Control
- Understanding Application-Aware Policy Control for Subscriber Management
- Understanding PCC Rules for Subscriber Management
- Configuring Application-Aware Policy Control for Subscriber Management
- Installing Services Packages for Subscriber Management Application-Aware Policy Management
- Configuring Service Data Flow Filters
- Configuring Policy and Charging Control Action Profiles for Subscriber Management
- Configuring Policy and Charging Control Rules
- Configuring a Policy and Charging Control Rulebase
- Configuring a Policy and Charging Enforcement Function Profile for Subscriber Management
- Identifying the Service Interface That Handles Subscriber Management Application-Aware Policy Control
- Configuring PCC Rule Activation in a Subscriber Management Dynamic Profile
- Enabling Direct PCC Rule Activation by a PCRF for Subscriber Management
- play_arrow Configuring Application Identification
- play_arrow Configuring Reporting for Application-Aware Data Sessions
- Logging and Reporting Function for Subscribers
- Log Dictionary for Template Types
- Configuring Logging and Reporting for Subscriber Management
- Installing Services Packages for Subscriber Management Logging and Reporting
- Configuring an LRF Profile for Subscribers
- Applying Logging and Reporting Configuration to a Subscriber Management Service Set
- Configuring the Activation of an LRF Rule by a PCC Rule
-
- play_arrow Configuring HTTP Redirect Services
- play_arrow Configuring Captive Portal Content Delivery Services for Redirected Subscribers
- HTTP Redirect Service Overview
- Remote HTTP Redirect Server Operation Flow
- Local HTTP Redirect Server Operation Flow (MX Series, ACX7100-48L, ACX7332 and ACX7348)
- Configuring MS-MPC-Based or MX-SPC3-Based Static HTTP Redirect Services
- Configuring MS-MPC-Based or MX-SPC3-Based Converged HTTP Redirect Services
- Configuring Routing Engine-Based, Static HTTP Redirect Services
- Configuring Routing Engine-Based, Converged HTTP Redirect Services
- Adding Subscriber Information to HTTP Redirect URLs
- How to Automatically Remove the HTTP Redirect Service After the Initial Redirect
- Example: Configuring HTTP Redirect Services Using a Next-Hop Method and Attaching It to a Static Interface
-
- play_arrow Configuring Subscriber Secure Policy
- play_arrow Configuring Subscriber Secure Policy Traffic Mirroring Overview
- play_arrow Configuring RADIUS-Initiated Subscriber Secure Policy Traffic Mirroring
- RADIUS-Initiated Subscriber Secure Policy Overview
- Subscriber Secure Policy Traffic Mirroring Architecture Using RADIUS
- RADIUS-Initiated Traffic Mirroring Interfaces
- RADIUS-Initiated Traffic Mirroring Process at Subscriber Login
- RADIUS-Initiated Traffic Mirroring Process for Logged-In Subscribers
- RADIUS Attributes Used for Subscriber Secure Policy
- Using the Packet Header to Track Subscribers on the Mediation Device
- Configuring RADIUS-Initiated Subscriber Secure Policy Mirroring Overview
- Guidelines for Configuring Subscriber Secure Policy Mirroring
- Configuring Support for Subscriber Secure Policy Mirroring
- Configuring RADIUS Server Support for Subscriber Secure Policy Mirroring
- Terminating RADIUS-Initiated Subscriber Traffic Mirroring
- play_arrow Configuring DTCP-Initiated Subscriber Secure Policy Traffic Mirroring
- DTCP-Initiated Subscriber Secure Policy Overview
- Subscriber Secure Policy Traffic Mirroring Architecture Using DTCP
- DTCP-Initiated Traffic Mirroring Interfaces
- DTCP-Initiated Traffic Mirroring Process
- DTCP Messages Used for Subscriber Secure Policy
- Packet Header for Mirrored Traffic Sent to Mediation Device
- Configuring DTCP-Initiated Subscriber Secure Policy Mirroring Overview
- Guidelines for Configuring Subscriber Secure Policy Mirroring
- Configuring Support for Subscriber Secure Policy Mirroring
- Configuring the Mediation Device as a User on the Router
- Configuring a DTCP-over-SSH Connection to the Mediation Device
- Configuring the Mediation Device to Provision Traffic Mirroring
- Disabling RADIUS-Initiated Subscriber Secure Policy Mirroring
- Example: Configuring Traffic That Is Mirrored Using DTCP-Initiated Subscriber Secure Policy
- Terminating DTCP-Initiated Subscriber Traffic Mirroring Sessions
- play_arrow Configuring DTCP Messages Used for DTCP-Initiated Subscriber Secure Policy Mirroring
- play_arrow Configuring Subscriber Secure Policy Support for IPv4 Multicast Traffic
- play_arrow Configuring Intercept-Related Information for Subscriber Secure Policy
-
- play_arrow Configuring Stateless, Rule-Based Services Using Application-Aware Access Lists
- play_arrow AACL Overview
- play_arrow Configuring AACL Rules
- play_arrow Example: Configuring AACL Rules
- play_arrow Example: Configuring AACL Rule Sets
- play_arrow Configuring Logging of AACL Flows
-
- play_arrow Remote Device and Service Management
- play_arrow Configuring Remote Device Services Management
- play_arrow Configuring TCP Port Forwarding for Remote Subscriber Services
- play_arrow Configuring IPFIX Mediation for Remote Device Monitoring
- play_arrow Collection and Export of Local Telemetry Data on the IPFIX Mediator
-
- play_arrow Troubleshooting
- play_arrow Contacting Juniper Networks Technical Support
- play_arrow Knowledge Base
-
- play_arrow Configuration Statements and Operational Commands
- [OBSOLETE] applications (Services AACL)
- [OBSOLETE] application-group-any
- [OBSOLETE] application-groups (Services AACL)
- [OBSOLETE] destination-address (Application Aware Access List)
- [OBSOLETE] destination-address-range
- [OBSOLETE] destination-prefix-list (Services AACL)
- [OBSOLETE] from
- [OBSOLETE] match-direction
- [OBSOLETE] nested-applications
- [OBSOLETE] rule
- [OBSOLETE] rule-set
- [OBSOLETE] source-address (AACL)
- [OBSOLETE] source-address-range
- [OBSOLETE] source-prefix-list
- [OBSOLETE] term
- [OBSOLETE] then (Application Aware Access List)
- Junos CLI Reference Overview
Changing CoS Services Overview
This topic describes how to provide CoS when subscribers dynamically upgrade or downgrade services in an access environment.
You can configure your network with a dynamic client profile that provides all subscribers with default CoS parameters when they log in. For example, all subscribers can receive a basic data service. By configuring the client profile with Junos OS predefined variables for RADIUS-provided CoS parameters, you also enable the service to be activated for those subscribers at login.
The dynamic client profile is also referred to as a dynamic
client access profile, or sometimes just access profile for brevity.
Do not confuse this profile, configured at the [edit dynamic-profiles profile-name]
hierarchy level, with the access profile
configured at
the [edit access profile profile-name]
hierarchy level. These static access profiles are used to configure
authentication, accounting, and authorization parameters for subscriber
access, some session attributes, and client-specific properties for
L2TP and PPP sessions. Access profiles are applied at various configuration
levels with the access-profile
statement.
To enable subscribers to activate a service or upgrade to different services through RADIUS change-of-authorization (CoA) messages after login, configure a dynamic service profile that includes user-defined variables.
Types of CoS Variables Used in a Service Profile
You can configure variables for the following CoS parameters in a service profile:
Shaping rate
Delay buffer rate
Guaranteed rate
Scheduler map
For each CoS parameter, you must associate a RADIUS vendor ID. For each vendor ID, you must assign an attribute number and a tag. The tag is used to differentiate between values for different CoS variables when you specify the same attribute number for those variables. These values are matched with the values supplied by RADIUS during subscriber authentication. All of the values in the dynamic profile must be defined in RADIUS or none of the values are passed.
Optionally, you can configure default values for each parameter. Configuring default values is beneficial if you do not configure RADIUS to enable service changes. During service changes, RADIUS takes precedence over the default value that is configured.
Static and Dynamic CoS Configurations
Depending on how you configure CoS parameters in the access and service profiles, certain CoS parameters are replaced or merged when subscribers change or activate new services.
Static configuration is when you configure the scheduler map
and schedulers in the static [edit class-of-service]
hierarchy
and reference the scheduler map in the dynamic profile. Dynamic configuration
is when you configure the scheduler map and schedulers within the
dynamic profile.
The CoS configuration also depends on whether you have enabled
multiple subscribers on the same logical interface using the aggregate-clients
statements in the dynamic
profile referenced by DHCP. When you specify the aggregate-clients
replace
statement, the scheduler map names are replaced. In
both cases, if the length of the scheduler map name exceeds 128 characters,
subscribers cannot log in. When you specify the aggregate-clients
merge
statement, the scheduler map names specified in the dynamic
profile are appended.
To improve CoS performance in IPv4, IPv6, and dual-stack networks,
we recommend that you use the aggregate-clients replace
statement rather than the aggregate-clients merge
statement.
Scenarios for Static and Dynamic Configuration of CoS Parameters
Table 1 lists the scenarios for static and dynamic configuration of CoS parameters in access profiles and service profiles at subscriber login. The table also lists the behavior for each configuration for service activation and service modification using RADIUS CoA messages.
Scenario | Static CoS Configuration (Single Subscriber) | Dynamic CoS Configuration (Single Subscriber) | Dynamic CoS Configuration (Multiple Subscribers
Enabled on a
Logical Interface with the | Dynamic CoS Configuration (Multiple Subscribers
Enabled on a
Logical Interface with the |
---|---|---|---|---|
Subscriber login |
|
|
|
|
RADIUS CoA for service or variable change | Replaces the following parameters:
| Replaces the following parameters:
| Combines the values of the following parameters to their maximum scalar value:
Appends the scheduler map parameter | Replaces the following parameters:
|
RADIUS CoA for service activation | Does not merge queues
| Merge queues if the queue specified in the service profile is not already in use for the subscriber
| Merge queues if the queue specified in the service profile is not already in use for the subscriber
| Merge queues if the queue specified in the service profile is not already in use for the subscriber
|