- play_arrow Hierarchical CoS for Subscriber Management
- play_arrow Hierarchical Class of Service for Subscriber Management
- Hierarchical Class of Service for Subscriber Management Overview
- Understanding Hierarchical CoS for Subscriber Interfaces
- Hardware Requirements for Dynamic Hierarchical CoS
- Configuring Static Hierarchical Scheduling in a Dynamic Profile
- Configuring Hierarchical CoS for a Subscriber Interface of Aggregated Ethernet Links
- Configuring Hierarchical CoS on a Static PPPoE Subscriber Interface
- Example: Maintaining a Constant Traffic Flow by Configuring a Static VLAN Interface with a Dynamic Profile for Subscriber Access
- play_arrow Applying CoS to Groups of Subscriber Interfaces
- play_arrow Configuring Hierarchical Scheduling for MPLS Pseudowire Interfaces
- Hierarchical CoS on MPLS Pseudowire Subscriber Interfaces Overview
- CoS Configuration Overview for MPLS Pseudowire Subscriber Interfaces
- CoS Two-Level Hierarchical Scheduling on MPLS Pseudowire Subscriber Interfaces
- Configuring CoS Two-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces
- CoS Three-Level Hierarchical Scheduling on MPLS Pseudowire Subscriber Interfaces
- Configuring CoS Three-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces (Logical Interfaces over a Transport Logical Interface)
- Configuring CoS Three-Level Hierarchical Scheduling for MPLS Pseudowire Subscriber Interfaces (Logical Interfaces over a Pseudowire Interface Set)
- play_arrow Configuring Hierarchical Scheduling for L2TP
- play_arrow Preventing Bandwidth Contention on Subscriber Interfaces
- Hierarchical CoS Shaping-Rate Adjustments Overview
- Shaping Rate Adjustments for Subscriber Local Loops Overview
- Guidelines for Configuring Shaping-Rate Adjustments for Subscriber Local Loops
- Configuring the Minimum Adjusted Shaping Rate on Scheduler Nodes for Subscribers
- Configuring Shaping-Rate Adjustments on Queues
- Enabling Shaping-Rate Adjustments for Subscriber Local Loops
- Disabling Shaping-Rate Adjustments for Subscriber Local Loops
- Disabling Hierarchical Bandwidth Adjustment for Subscriber Interfaces with Reverse-OIF Mapping
- Example: Configuring Hierarchical CoS Shaping-Rate Adjustments for Subscriber Local Loops
- Verifying the Configuration of Shaping-Rate Adjustments for Subscriber Local Loops
- Verifying the Configuration of ANCP for Shaping-Rate Adjustments
- Using Hierarchical CoS to Adjust Shaping Rates Based on Multicast Traffic
- play_arrow Configuring Targeted Distribution of Subscribers on Aggregated Ethernet Interfaces
- Distribution of Demux Subscribers in an Aggregated Ethernet Interface
- Providing Accurate Scheduling for a Demux Subscriber Interface of Aggregated Ethernet Links
- Configuring the Distribution Type for Demux Subscribers on Aggregated Ethernet Interfaces
- Configuring Link and Module Redundancy for Demux Subscribers in an Aggregated Ethernet Interface
- Configuring Rebalancing of Demux Subscribers in an Aggregated Ethernet Interface
- Example: Separating Targeted Multicast Traffic for Demux Subscribers on Aggregated Ethernet Interfaces
- Verifying the Distribution of Demux Subscribers in an Aggregated Ethernet Interface
- Configuring the Distribution Type for PPPoE Subscribers on Aggregated Ethernet Interfaces
- Verifying the Distribution of PPPoE Subscribers in an Aggregated Ethernet Interface
- play_arrow Applying CoS Using Parameters Received from RADIUS
- Subscriber Interfaces That Provide Initial CoS Parameters Dynamically Obtained from RADIUS
- Changing CoS Services Overview
- CoS Traffic Shaping Attributes for Dynamic Interface Sets and Member Subscriber Sessions Overview
- Guidelines for Configuring CoS Traffic Shaping Attributes for Dynamic Interface Sets and Member Subscriber Sessions
- Configuring Initial CoS Parameters Dynamically Obtained from RADIUS
- Configuring Static Default Values for Traffic Scheduling and Shaping
- Applying CoS Traffic-Shaping Attributes to Dynamic Interface Sets and Member Subscriber Sessions
- CoS Traffic Shaping Predefined Variables for Dynamic Interface Sets
- Example: Configuring Dynamic Hierarchical Scheduling for Subscribers
-
- play_arrow Configuration Statements and Operational Commands
Hierarchical CoS for Metro Ethernet Environments
In metro Ethernet environments, a virtual LAN (VLAN) typically corresponds to a customer premises equipment (CPE) device and the VLANs are identified by an inner VLAN tag on Ethernet frames (called the customer VLAN, or C-VLAN, tag). A set of VLANs can be grouped at the DSL access multiplexer (DSLAM) and identified by using the same outer VLAN tag (called the service VLAN, or S-VLAN, tag). The service VLANs are typically gathered at the Broadband Remote Access Server (B-RAS) level. Hierarchical schedulers let you provide shaping and scheduling at the service VLAN level as well as other levels, such as the physical interface. In other words, you can group a set of logical interfaces and then apply scheduling and shaping parameters to the logical interface set as well as to other levels.
You can apply CoS shaping and scheduling at one of four different levels, including the VLAN set level. (Some devices support up to five levels of scheduler hierarchies.)
The supported scheduler hierarchy is as follows:
The physical interface (level 1)
The service VLAN (level 2)
The logical interface or customer VLAN (level 3)
The queue (level 4)
Users can specify a traffic control profile (output-traffic-control-profile
)
that can specify a shaping rate, a guaranteed rate, and a scheduler map with
transmit rate and buffer delay. The scheduler map contains the mapping of
queues (forwarding classes) to their respective schedulers (schedulers
define the properties for the queue). Queue properties can specify a
transmit rate and buffer management parameters such as buffer size and drop
profile.
To configure CoS hierarchical scheduling, you must enable hierarchical
scheduling by including the hierarchical-scheduler
statement at the physical interface.