- play_arrow Understanding How Virtual Chassis Provides Interchassis Redundancy
- play_arrow Understanding How a Virtual Chassis Works
- play_arrow Configuring a Virtual Chassis
- Configuring Interchassis Redundancy for MX Series 5G Universal Routing Platforms Using a Virtual Chassis
- Preparing for a Virtual Chassis Configuration
- Creating and Applying Configuration Groups for a Virtual Chassis
- Configuring Preprovisioned Member Information for a Virtual Chassis
- Configuring Enhanced IP Network Services for a Virtual Chassis
- Configuring Enhanced LAN Mode for a Virtual Chassis
- Enabling Graceful Routing Engine Switchover and Nonstop Active Routing for a Virtual Chassis
- Configuring Member IDs for a Virtual Chassis
- Configuring an MX2020 Member Router in an Existing MX Series Virtual Chassis
- Switching the Global Primary and Backup Roles in a Virtual Chassis Configuration
- Deleting Member IDs in a Virtual Chassis Configuration
- Example: Replacing a Routing Engine in a Virtual Chassis Configuration for MX Series 5G Universal Routing Platforms
- Deleting a Virtual Chassis Configuration for MX Series 5G Universal Routing Platforms
- Example: Deleting a Virtual Chassis Configuration for MX Series 5G Universal Routing Platforms
- Upgrading an MX Virtual Chassis SCB or SCBE to SCBE2
- play_arrow Configuring Virtual Chassis Ports to Interconnect Member Devices
- play_arrow Configuring Locality Bias to Conserve Bandwidth on Virtual Chassis Ports
- play_arrow Configuring Redundancy Mechanisms on Aggregated Ethernet Interfaces in a Virtual Chassis
- Redundancy Mechanisms on Aggregated Ethernet Interfaces in a Virtual Chassis
- Configuring Module Redundancy for a Virtual Chassis
- Configuring Chassis Redundancy for a Virtual Chassis
- Multichassis Link Aggregation in a Virtual Chassis
- Targeted Traffic Distribution on Aggregated Ethernet Interfaces in a Virtual Chassis
- Understanding Support for Targeted Distribution of Logical Interface Sets of Static VLANs over Aggregated Ethernet Logical Interfaces
- play_arrow Upgrading Junos OS in a Virtual Chassis Configuration for MX Series 5G Universal Routing Platforms by Rebooting the Routing Engines
- play_arrow Upgrading Junos OS in an MX Series Virtual Chassis by Performing a Unified In-Service Software Upgrade (ISSU)
- play_arrow Upgrading Junos OS in an MX Series Virtual Chassis by Performing a Sequential Upgrade
- play_arrow Monitoring an MX Series Virtual Chassis
- Accessing the Virtual Chassis Through the Management Interface
- Verifying the Status of Virtual Chassis Member Routers or Switches
- Verifying the Operation of Virtual Chassis Ports
- Verifying Neighbor Reachability for Member Routers or Switches in a Virtual Chassis
- Verifying Neighbor Reachability for Hardware Devices in a Virtual Chassis
- Determining GRES Readiness in a Virtual Chassis Configuration
- Viewing Information in the Virtual Chassis Control Protocol Adjacency Database
- Viewing Information in the Virtual Chassis Control Protocol Link-State Database
- Viewing Information About Virtual Chassis Port Interfaces in the Virtual Chassis Control Protocol Database
- Viewing Virtual Chassis Control Protocol Routing Tables
- Viewing Virtual Chassis Control Protocol Statistics for Member Devices and Virtual Chassis Ports
- Verifying and Managing the Virtual Chassis Heartbeat Connection
- Inline Flow Monitoring for Virtual Chassis Overview
- Managing Files on Virtual Chassis Member Routers or Switches
- Virtual Chassis SNMP Traps
- Virtual Chassis Slot Number Mapping for Use with SNMP
- Example: Determining Member Health Using an MX Series Virtual Chassis Heartbeat Connection with Member Routers in the Same Subnet
- Example: Determining Member Health Using an MX Series Virtual Chassis Heartbeat Connection with Member Routers in Different Subnets
- play_arrow Tracing Virtual Chassis Operations for Troubleshooting Purposes
- Tracing Virtual Chassis Operations for MX Series 5G Universal Routing Platforms
- Configuring the Name of the Virtual Chassis Trace Log File
- Configuring Characteristics of the Virtual Chassis Trace Log File
- Configuring Access to the Virtual Chassis Trace Log File
- Using Regular Expressions to Refine the Output of the Virtual Chassis Trace Log File
- Configuring the Virtual Chassis Operations to Trace
- play_arrow Configuration Statements and Operational Commands
Guidelines for Configuring Class of Service for Virtual Chassis Ports
Consider the following guidelines when you configure class of service (CoS) for Virtual Chassis ports in an MX Series Virtual Chassis:
Virtual Chassis ports on MPC/MIC interfaces support a maximum of eight forwarding classes and five priority scheduling levels.
The same CoS configuration applies globally to all Virtual Chassis ports in the Virtual Chassis. You cannot configure CoS for an individual Virtual Chassis port (such as vcp-3/1/0).
The CoS configuration is propagated to a newly created Virtual Chassis port as soon as the member router on which the new Virtual Chassis port resides joins the Virtual Chassis.
Although Virtual Chassis ports function as hierarchical schedulers, you cannot explicitly configure hierarchical scheduling on Virtual Chassis ports.
If you configure a nondefault output traffic-control profile to customize the CoS configuration, you must apply the profile to all Virtual Chassis port interfaces at once by using vcp-* as the interface name.
Configuring nondefault IEEE 802.1p ingress classifiers and IEEE 802.1p egress rewrite rules has no effect in a two-member MX Series Virtual Chassis because the forwarding class assigned to a packet is maintained across the Virtual Chassis until the packet reaches the egress network port.
Configuring per-priority shaping for Virtual Chassis ports is unnecessary because the neighboring member router has exactly the same bandwidth, and the same type of Virtual Chassis port is present at both ends of the connection.