- play_arrow Understanding How Virtual Chassis Provides Interchassis Redundancy
- play_arrow Understanding How a Virtual Chassis Works
- play_arrow Configuring Virtual Chassis Ports to Interconnect Member Devices
- play_arrow Configuring Locality Bias to Conserve Bandwidth on Virtual Chassis Ports
- play_arrow Configuring Class of Service for Virtual Chassis Ports
- play_arrow Configuring Redundancy Mechanisms on Aggregated Ethernet Interfaces in a Virtual Chassis
- Redundancy Mechanisms on Aggregated Ethernet Interfaces in a Virtual Chassis
- Configuring Module Redundancy for a Virtual Chassis
- Configuring Chassis Redundancy for a Virtual Chassis
- Multichassis Link Aggregation in a Virtual Chassis
- Targeted Traffic Distribution on Aggregated Ethernet Interfaces in a Virtual Chassis
- Understanding Support for Targeted Distribution of Logical Interface Sets of Static VLANs over Aggregated Ethernet Logical Interfaces
- play_arrow Upgrading Junos OS in a Virtual Chassis Configuration for MX Series 5G Universal Routing Platforms by Rebooting the Routing Engines
- play_arrow Upgrading Junos OS in an MX Series Virtual Chassis by Performing a Unified In-Service Software Upgrade (ISSU)
- play_arrow Upgrading Junos OS in an MX Series Virtual Chassis by Performing a Sequential Upgrade
- play_arrow Monitoring an MX Series Virtual Chassis
- Accessing the Virtual Chassis Through the Management Interface
- Verifying the Status of Virtual Chassis Member Routers or Switches
- Verifying the Operation of Virtual Chassis Ports
- Verifying Neighbor Reachability for Member Routers or Switches in a Virtual Chassis
- Verifying Neighbor Reachability for Hardware Devices in a Virtual Chassis
- Determining GRES Readiness in a Virtual Chassis Configuration
- Viewing Information in the Virtual Chassis Control Protocol Adjacency Database
- Viewing Information in the Virtual Chassis Control Protocol Link-State Database
- Viewing Information About Virtual Chassis Port Interfaces in the Virtual Chassis Control Protocol Database
- Viewing Virtual Chassis Control Protocol Routing Tables
- Viewing Virtual Chassis Control Protocol Statistics for Member Devices and Virtual Chassis Ports
- Verifying and Managing the Virtual Chassis Heartbeat Connection
- Inline Flow Monitoring for Virtual Chassis Overview
- Managing Files on Virtual Chassis Member Routers or Switches
- Virtual Chassis SNMP Traps
- Virtual Chassis Slot Number Mapping for Use with SNMP
- Example: Determining Member Health Using an MX Series Virtual Chassis Heartbeat Connection with Member Routers in the Same Subnet
- Example: Determining Member Health Using an MX Series Virtual Chassis Heartbeat Connection with Member Routers in Different Subnets
- play_arrow Tracing Virtual Chassis Operations for Troubleshooting Purposes
- Tracing Virtual Chassis Operations for MX Series 5G Universal Routing Platforms
- Configuring the Name of the Virtual Chassis Trace Log File
- Configuring Characteristics of the Virtual Chassis Trace Log File
- Configuring Access to the Virtual Chassis Trace Log File
- Using Regular Expressions to Refine the Output of the Virtual Chassis Trace Log File
- Configuring the Virtual Chassis Operations to Trace
- play_arrow Configuration Statements and Operational Commands
Configuring Preprovisioned Member Information for a Virtual Chassis
To configure a Virtual Chassis for MX Series routers,
you must create a preprovisioned configuration on the primary router
by including the virtual-chassis
stanza at the [edit
virtual-chassis]
hierarchy level. The preprovisioned configuration
specifies the chassis serial number, member ID, and role for both
member routers in the Virtual Chassis.
When a new member router joins the Virtual Chassis, the software compares its serial number against the values specified in the preprovisioned configuration. If the serial number of a joining router does not match any of the configured serial numbers, the software prevents that router from becoming a member of the Virtual Chassis.
To configure the preprovisioned member information for an MX Series Virtual Chassis:
The following example shows an MX Series Virtual Chassis preprovisioned configuration for two member routers.
[edit virtual-chassis] user@gladius# show preprovisioned; no-split-detection; locality-bias; traceoptions { file vccp size 10m; flag all; } member 0 { role routing-engine; serial-number JN115FDADAFB; } member 1 { role routing-engine; serial-number JN10C78D1AFC; }
Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to determine if a feature is supported on your platform.