- play_arrow Overview
- play_arrow Setting Up a Chassis Cluster
- SRX Series Chassis Cluster Configuration Overview
- SRX Series Chassis Cluster Slot Numbering and Logical Interface Naming
- Preparing Your Equipment for Chassis Cluster Formation
- Connecting SRX Series Firewalls to Create a Chassis Cluster
- Example: Setting the Node ID and Cluster ID for Security Devices in a Chassis Cluster
- Chassis Cluster Management Interfaces
- Chassis Cluster Fabric Interfaces
- Chassis Cluster Control Plane Interfaces
- Chassis Cluster Redundancy Groups
- Chassis Cluster Redundant Ethernet Interfaces
- Configuring Chassis Clustering on SRX Series Devices
- Example: Enabling Eight-Queue Class of Service on Redundant Ethernet Interfaces on SRX Series Firewalls in a Chassis Cluster
- Conditional Route Advertisement over Redundant Ethernet Interfaces on SRX Series Firewalls in a Chassis Cluster
- play_arrow Configuring Redundancy and Failover in a Chassis Cluster
- Chassis Cluster Dual Control Links
- Chassis Cluster Dual Fabric Links
- Monitoring of Global-Level Objects in a Chassis Cluster
- Monitoring Chassis Cluster Interfaces
- Monitoring IP Addresses on a Chassis Cluster
- Configuring Cluster Failover Parameters
- Understanding Chassis Cluster Resiliency
- Chassis Cluster Redundancy Group Failover
- play_arrow Chassis Cluster Operations
- Aggregated Ethernet Interfaces in a Chassis Cluster
- NTP Time Synchronization on Chassis Cluster
- Active/Passive Chassis Cluster Deployments
- Example: Configuring an SRX Series Services Gateway as a Full Mesh Chassis Cluster
- Example: Configuring an Active/Active Layer 3 Cluster Deployment
- Multicast Routing and Asymmetric Routing on Chassis Cluster
- Ethernet Switching on Chassis Cluster
- Media Access Control Security (MACsec) on Chassis Cluster
- Understanding SCTP Behavior in Chassis Cluster
- Example: Encrypting Messages Between Two Nodes in a Chassis Cluster
- play_arrow Troubleshooting
- Troubleshooting a Control Link Failure in an SRX Chassis Cluster
- Troubleshooting a Fabric Link Failure in an SRX Chassis Cluster
- Troubleshooting a Redundancy Group that Does Not Fail Over in an SRX Chassis Cluster
- Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Disabled State
- Troubleshooting an SRX Chassis Cluster with One Node in the Primary State and the Other Node in the Lost State
- Troubleshooting an SRX Chassis Cluster with One Node in the Hold State and the Other Node in the Lost State
- Troubleshooting Chassis Cluster Management Issues
- Data Collection for Customer Support
- play_arrow Configuration Statements and Operational Commands
- play_arrow Chassis Cluster Support on SRX100, SRX210, SRX220, SRX240, SRX550M, SRX650, SRX1400, SRX3400, and SRX3600 Devices
Upgrading Individual Devices in a Chassis Cluster Separately
Devices in a chassis cluster can be upgraded separately one at a time; some models allow one device after the other to be upgraded using failover and an in-service software upgrade (ISSU) to reduce the operational impact of the upgrade.
To upgrade each device in a chassis cluster separately:
During this type of chassis cluster upgrade, a service disruption of about 3 to 5 minutes occurs.